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RESIDUES OF GENERALIZED FIBONACCI SEQUENCES 

C. C. YALAVIGI 
Government College, Mercara, India 

Consider a sequence of GF numbers, [wn(b,c; P.Q)}^. For b =c= 1, L Taylor [1] has proved the follow-
ing theorem. 

Theorem. The only sequences which possess the property that upon division by a (non-zero) member of 
that sequence, the members of the sequence leave least +ve, or -ve residues which are either zero or equal in 
absolute value to a member of the original sequence are the Fibonacci and Lucas sequences. 

Our objective is to consider the extension of this theorem to GF sequences by a different approach, and show 
that a class of sequences can be constructed to satisfy the property of this theorem in a restricted sense, i.e., for 
a particular member only. For convenience, wn(b,l; 0,1), wn(b,1; 2,b), wn(b,1; P,Q) shall be designated by 
un> vn, Hnr respectively. 

Let Hk+r = (-l)r~ Hk.r (mod H k). Assume without loss of generality, k to be +ve. We distinguish 2 cases: 
(A)0<r<k, and (B) r>k. 

(A) Evidently, the members leave least residues which are either zero or equal in absolute value to a member 
of the original sequence. 

(B) Allow | / /_5+ ; | < \Hk\ < \H.S\. Let 

(D H2k+S - (-Vk+S'1H.S (mod Hk), H2k+S+1 = (-Vk+sH.s.j (mod Hk). 

Clearly, the property of above-cited theorem holds for {Hp}^, iff 

(_1)k+s-lH_s _ HQ ( m o d Hj<)i a n d (-Dk+sH-s-i = HQ + 1 (mod Hk), 

for some c such that -s + 1 < e < 2k. Denote the period of { Hn (mod Hk)} Q by k(Hk). Rewrite the given 

sequence as { Hp'}™^, where H'n' = Hn. Set k' = k + t, s' = s - t, and 2'=£ + t. Then, it is easy to show that 

k(Hk) = 2k + s-z, k(H'k>) = 2k'+ s'- c', and k(Hk) = k(H'k-). 

We assert that ^ / / ^ ' ^ is even, for f = ^ - z)/2 obtains s'= si', k(H'k') = 2k', and the substitution ois-s. = 2t + 1 
leads to s' - si' = 1, k(H'k') = 2k'+ 1, which is a contradiction. Hence, it is sufficient to examine the following 
system of congruences, viz., 

(2) H'2k- = H'0 (mod H'k-\ H'2k+1 = H', (mod H'k>). 

These congruences imply 

(3) H2k+t = Ht = (-Vk+t~1H^(mo6Hk) = (-l)k~1 {Ht- (2Q - bP)ut } (mod Hk ) 

= (-1)k~1{Pvt-Ht}(m^Hk). 

Therefore, (i) P = 0, Q = 1, and (\\) P = 2, Q = b, furnish readily the desired sequences, and they are the only 
sequences for which the property of L. Taylor's theorem holds. For the restripted case, by using the well known 
formula Hn = Pun-i + Qun, it is possible to express H.s = HQ (mod Hk), and //_s_; =H%+1 (mod Hk) as two 
simultaneous equations in P, Q, and obtain their solution for given s, si, and k. In particular, the latter case may 
be handled by using k(H'k') = k(uk'), where H'k' is selected arbitrarily to satisfy k'= k(uk')/2 and 

Hk- = Puk-„i + Quk, 
determines/3 and Q. 

Example: H'g = 19, k(H'9) =18, P = 9, Q = -5. 
1 
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COMPOSITES AND PRIMES AMONG POWERS 
OF FIBONACCI NUMBERS, INCREASED OR DECREASED BY ONE 

V. E. HOGGATT, JR., and MARJORIE BICKNELL\IOHNSON 
San Jose State University, San Jose, California 95192 

It is well known that, among the Fibonacci numbers Fn, given by 

F-i = 1 = F2, Fn+1 * Fn + Fn-i, 
2 

Fn + 1 is composite for each n > 4, while Fn - / is composite for/7 > 7. It is easily shown that Fn ± 1 is also 
composite for any n, since 

Fn± 1 = Fn-2Fn+2, Fn + / = Fn+1Fn^1 . 

Here, we raise the question of when F™ ± 1 is composite. 
First, if k£0 (mod 3), then Fk is odd, F™ is odd, and F™± 7 is even and hence composite. Now, suppose we 

deal with F™k ± I Since An - Bn always has (A - B) as a factor, we see that F™k - 1m is composite except 
when (A- B)= 1; that is, for k= 1. Thus, 

Theorem 1. F™ - 1 is composite, k ± 3. 

We return to F™k + I For/77 odd, then Am + Bm is known to have the factor (A + B), so that F™k + 1m has 
the factor (F^k + 11 and hence is composite. If m is even, every even m except powers of 2 can be written in 
the form (2j + 1)2' = m, so that 

F3k+1m = (F2
3k)

2i+1 + (12)2i+1. 

which, from the known factors of Am + Bm, m odd, must have (Fjk + 1) as a factor, and hence, F™k + /is 
composite. . 

This leaves only the case F™k + /, where m = 2'. When k= 1, we have the Fermat primes,?2 + /, prime for 
/ = 0, 1, 2, 3, 4 but composite for / = 5, 6. It is an unsolved problem whether or not 22' + 1 has other prime 
values. We note in passing that, when k = 2,F6=8 = 23, and 8m ± 1 = (23 ) ^ ± 1 = (2m ) 3 ± 7 is always com-
posite, since A 3 ± B is always factorable. It is th ought that Fg + 1 is a prime. 

Since F3k=Q (mod 10),Ar=0(mod 5 ) , / ^ , + / = 102'-t+1. 

Since F?/, = 6 (mod 10), i> 2, k^ 0 (mod 5), F2' + 1 has the form 10t + 7, k4ft (mod 5). We can sum-
marize these remarks as 

Theorem 2. F™ + 1 is composite, k ?3s, F™k + 1 is composite, m =f 2'. 

It is worthwhile to note the actual factors in at least one case. Since 

Fk+2Fk-2-F2k = (~Vk+1 

Fk+lFk-l~ Fk = (-V 

moving Fk to the right-hand side and then multiplying yields 

We now note that 
Fk-2Fk-lFk+lFk+2 ~ Fk-1. 

Fk-Fk = Fk-2Fk-iFkFk+iFk+2 

which causes one to ask if this is divisible by 5!. The answer is yes, if k ^3 (mod 6), but if k = 3 (mod 6), then 
only 30 can be guaranteed as a divisor. 



DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES 

V. E. HOGGATT, JR., and MARJORIE B5CKNELL JOHNSON 
San Jose State University, San Jose, California 95192 

1. INTRODUCTION 

In Matijasevic's paper [1] on Hilbert's Tenth Problem, Lemma 17 states that F2
m divides Fmr if and only if 

Fm divides r. Here, we extend Lemma 17 to its counterpart in Lucas numbers and generalized Fibonacci num-
bers and explore divisibility by higher powers. 

In [2 ] , Matijasevic's Lemma 17 was proved by Hoggatt, Phillips and Leonard using an identity for Fmr. Since 
that proof is the basis for our extended results, we repeat it here. 

We let a= (1 +\/5)/2, (5= (1 - yJs)/2. Then it is well known that the Fibonacci numbers Fn are given by 

(1.1) Fn = 5 L ^ | _ 
a- p 

and that 

(1.2) am = aFm + Fm_1f (3m = ^Fm + Fm,1 . 

Combining (1.1) and (1.2) with the binomial theorem expansion of amr and fimr gives 
„mr n/nr r . % , , / _/r nk \ 

k=0 

so that 

(1-3) Fmr-J:(r
k)F

k
mFr-11Fk. 

k=0 

Since FQ= 0 and Fm divides all terms for k > 2, 

Fmr *(rj) FmFr~l1F1 ^ rFmFr~l1 (mod F2
m) . 

Since (Fm, Fm-f) = 7, it follows easily that 

(1.4) Fm\Fmr if and only if Fm\r. 

2. DIVISIBILITY BY OTHER FIBONACCI POWERS 

The proof of (1.4) can easily be extended to give results for divisibility by higher powers. 
Since Fm 

of Section 1 
Since Fm divides all terms of (1.3) for k > 3, and since Fj = F2= 1, proceeding in a manner similar to that 

F = rF Fr~1 + (iLzJl F2 Fr~2 (mnri F3 ) 

When r is odd, (r - V/2 = k is an integer, and 

S\nce(Fm/Fm.1)=l 

Fmr = rFmFr
r^

2
1(Fm.1+kFm) (mod Fm) . 

Fm^(Fm.1+kFm) and Fm \ F^,, 

so that F I Fmr if and only if F \r. 
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If r is even, 
L
2 FmFr^1(2Fm.1 + (r- l)Fm) (mod F3

m) 

\UFm,2Fm-1)= 1, then Fm\Fmr\i and only if F^\r. Thus, we have proved 

Theorem 2.1. Whenever rh odd, F3
m\Fmr\\\ F^\r. Whenever/^ is odd, F^\Fmr iff FJ*,\r. 

Sinilarly, since F-j = F2- 7 and Fj = 2, from (1.3) we can write 

F - rF Fr~1 + r(r~ 1) F2 Fr~2 + r(r~ 1>(r~2> F3 Fr~3 (mnrl F4 ) 

since Fm divides every term for k > 4. 
\ir=6k± 1, then/V- 1)/2 = j and (r- 1)(r~ 2)/3 = / for integers/ and I, so that 

Fmr^rFmFr^1(F
2

m,1i-jFmFm,1 + iF2
m) (mod F4

m). 

As before, since f f m , Fm.1 ) = 1, F^\Fmr\ii F^\r, r = 6k±L 
If r = 5Ar, then 

W - jFm Fm-1 (®Fm-1 + 3^~ ^Fm Fm-7 + 2(r - 1)(r - 2)F2J (mod F%) . 

\UFm,6F2
m_1)= 1, then F4

m \Fmr iff F* |£ . Note that (Fm,6)= 1 if /?? t 5 ^ /?? ^ The casesr = 6k±2 

and /* = 6k ± J are similar. Thus, we have proved 

Theorem 2.3. Wheneverr=£*± 7, f ^ | / W i f f F^|r. Wheneverm ^3?, m f 4q, F4
m\Fmr\\\ F%\r. 

Continuing in a similar fashion and considering the first terms generated in the expansion of Fmn we could 
prove that whenever r = 6k± 1, or m ? 3q, 4q, 

F5
m\Fmr iff F4

m\r, and also F6
m\Fmr iff F%\r, 

but the derivations are quite long. In the general case, again considering the first terms of (1.3), we can state 
that, whenever r = k(s - 1)1 ± 1, Fs

m\Fmr\\\ F^1\r, by carefully considering the common denominatorof the 
fractions generated from the binomial coefficients. 

We summarize these cases in the theorem below. 

Theorem 2.4. Whenever r = 6k± 1, 

Whenever m 13q, m ? 4q, 

Whenever r= k(s- 1)!± 1, 

Fm\Fmr iff F%1 \rt s = 1,2,3,4,5,6. 

Fm\Fmr iff F%1 \r, s = 1,2,3,4,5,6. 

Fm\Fmr ™ FS~1 \r. 

Next, we make use of a Lemma to prove a final theorem for the general case. 

Lemma. If sn~1\r, then snk\(k
r), k=1,-,n. 

Proof. \in<r, then /r </7 < r. Cases'/r = 7 and £ = /-are trivial. Case s = 1 is trivial. If s11'1 \r, then r = Msn~1 

for some integerM, and 

t r \ = L C- M = Ms"~1 I1" 1 \ = Msk~1sn~k tr-1\ 
\k) k U - V k [ k- 1 ) k \k- 1 I ' 

If 

then 

If 

k\Msk'1 i r ~ 1 

„n-k\ 
U) • 
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then 
k\Msq {r

kZ_]) . k < q < „, 

since (^\ is an integer. That is, k = pqNf wherep is some prime. 

But /r <pq for/7 > 2 and q > k > 0, a contradiction, so that k must divide 

nk-1 I r -1 \ , n-k\ Ms" a : 7 , ) - »"" ^%r
k) 

It is impossible for n > r. If n < r, then sn~1 \r implies Ms11 1 = r, where n- 1 > rf and where M is an inte-
ger. Buts"" 7 >rtars> 2, n- 1 > r. 

Theorem. If F%1\r, then Fs
m\Fmr. 

Proof. 
r 

fmr = J2 (k) FmFm-1Fk -
k=0 

(Fm< Fm-1> = h so that if F^ \r, then Fs
m divides rFmFr^lp If F8^1 divides/; then F^ divides (£ ) for k 

the Lemma, ar 
have a factor Fm while F^ appears as a factor of ( f ) 

These theorems allow us to predict the entry point of 
The entry point of a numbers in the Fibonacci sequence is the subscript of the first Fibonacci number of which 
n is i 
or 6. 

If k>s, then Fb
m divides each term. Si nee FQ= 0, Fb

m divides the term k = 0. When k= 7, the term i s r F ^ F ^ i ; . 
" *'r, then Fs

m divides rFmFr^[v If Fs^1 divides/; then F ^ divic 
/, •••, s by the Lemma, and Fs

m divides each successive term for k= 7, —, s, since in the kth term we always 

These theorems allow us to predict the entry point of Fm in the Fibonacci sequence in limited circumstances. 
snee is the subscript of the first Fibonaci 

n is a divisor. When m / 3j or 4j, the entry point of F in the Fibonacci sequence \smF~ for k = 1, 2, 3, 4, 5, 

3. DIVISIBILITY BY LUCAS SQUARES 

Next, we will derive and extend the counterpart of (1.4) for the Lucas numbers. It is well known that, analo-
gous to (1.1), the Lucas numbers Ln obey 

(3.1) Ln = a" +f 

and _ 
/nni m _ Lm + \J5 Fm „m _ Lm — \J5 Fm 

Combining (3.1) and (3.2) with the binomial theorem expansion of amr and fimr, 

Lmr = amr + $mr =(^m±^Im_) " + (Ln^z^/SF, m 
2 

J=o 

When/ is odd, all terms are zero. We let/ = 21 and simplify to write 

[r/2] 
(3-3) Lmr2

r'1 = £ ( ^ Ltf'F**1 . 
i=0 

All terms on the right of (3.3) are divisible by L^ except the last term, / = [r/2]. \\r=2t, the last term is 

(2t\ L0 F2trt = 5tF2t 
\2tl rn rm ° 3 rm -
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Since 5 X Lm for any m and Lm >[ Fm for any m > 1, Lm J(2r~1 Lmr, m > 7. However, if r = 2t + 7, the 
last term is 

r-2t 
[2t2t1) LmF*5<=(2t+V5tLmF* 

and 22tL(2t+Dm is divisible by Lm if and only if Lm\(2t + 11 m > 1. If m / 3q, then (Lm, 2) = 1, 
and L^\Lm(2t+i) if and only if Lm\(2t+ 1). If m = 3q, then Lm is even, so that 

Lm)((2t+1), and Lm\22tL(2t+i)m, m> U 

Return to (3.3) and notice that, when r = 2t+ 7, all terms except the last are divisible by Lm, so that 

L3
m\Lmr iff L2

m\(2t+1), m > 1. 

We summarize these results as 

Theorem 3.1. Whenever/- is odd, 

L2
m\Lmr iff Lm\r, and Lm\Lmr iff Lm\r. 

Whenever/"is even, Lm )(Lmr,m > 7. If/77 = 3q > 1, then Lm \Lmr for any r. 
We can also determine criteria for divisibility of Lmr by Fm and Fmr by Lm. It is trivial that Fm\Lmr for 

m / 1, 2, 3, 4, since F^ >̂  Z.n for other values of m. To determine when Lm \ Fmr, return to (3.1) and (3.2), 
and use (1.1) and the binomial expansion of aW rand j8A77/" to write an expression for Fmr in terms of Lm. (Re-
call that sj~5 =a-$.) 

lr _ Rmr = (Lm + \J5 Fm\ _ lim-\l5 Fn 

1 

j=0 

Here, whenever/ is even, all terms are zero. Setting/ = -?/ + 7 and rewriting, we obtain 
[r/2] 

j5Fmr=M £ ( n ^ ) L£2i~1F%+1-(j5)2i+1-2 
i=0 

[r/2] 

(3-4) 2r-1Fmr= £ ( 2 / ; 7 ) C 2 / - 7 ^ / ^ -
i=0 

Notice that, whenr = -2f + 7, Z.̂ , divides all terms of (3.4) f o r / < //-/?/. When/- [r/2] = t, the last term is 

(2t+1\ ,0 F2t+1rt = ctF2t+1 
\2t+ 1 I m m m 

which is not divisible by Lm, m > 1, since Lm j{ Fm, m > 7, and Lm \ 5t for any t > 0. That is, if r is odd, 
Lm%Fmrt°r anY m > 1-

However, when r is even, Lm divides all terms of (3.4) for / < [r/2] - 7. If r = 2t, then the terms i= t - 7 
and i = t give 

Now, 
^ ^ /w > 7, and Lm^1. f > 7. 

Thus,/.^ l ^ - ^ m f c t j t f a n d only if Lm \2t If Am is odd, 

Lm I f 2mf iff Lm \ t or, A* | Fmr iff A^ | r. 
The same result holds for Lm even, which case depends upon the fact that 4 is the largest powerdf 2that 
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divides the Lucas sequence. If Lm is even, m = 3q. If m is even, Lm contains exactly one factor of 2,, while 
Fmr = F(3q)(2t) = F6t contains at least three factors of 2, since F$ = 23 is a factor of % r . If m = 3q is odd, 
then Lm contains exactly two factors of 2, and Lm \ 2t\\\ t = 2s for some integers, making Fmr = F^qs, a mul-
tiple of F 12= 144 = 24-32. Thus, for Z.^ even, if Lm\2r'1 Fmr, then Lm \ Fmr. 

Notice that, since also Lm divides all terms of (3.4) for /-even and/< [r/2] - 1, it can be shown in the same 
manner that 

L3
m\Fmr iff L2

m\r, or, 
We summarize these results as follows. 

Theorem 3.2. If/-is even, 
Lm\Fmr iff Lm \r, and 

Further, 
Lm I F2mt 'ff Lm \ * and 

If /-is odd, Lm'J(Fmr, m > 1. 

4. GENERALIZED FIBONACCI NUMBERS 

The Fibonacci polynomials fn(x) are defined by 

f0(x) = 0, frfx) = I fn + lM = xfnM + fn-rfx), 

and the Lucas polynomials Ln(x) by 

L0(x) = 2, Lj(x) = x, Ln+1(x) = xLn(x) + Ln-j(x). 

Since (1.3) is also true if we replace Fn by fn(x) (see [2]), we can write 

(4.D ww - E (r
k) dwcV^w. 

k=0 

Notice that Fm = fm(1) and Lm = Lm(1). The Pell numbers 1, 2, 5, 12, 29, 70, - , Pn, - , Pn+1 = 2Pn +Pn-1, 
are given b y / ^ = fn(2). Thus, (4.1) also holds for Pell numbers, which leads us to 

Theorem 4.1. For the Pell numbers/>„, Pm \Pmr'^pm \r. 

Similarly, since (3.3) and (3.4) hold for Lucas and Fibonacci polynomials, if the Lucas-analogue Rn of the 
Pell numbers is given by Rn = Pn+-j +Pn-i, then Ln(2) = Rn, and we can write, eventually, 

Theorem 4.2. If r is odd, Rm \ Rmr iff Rm \r. If r is even, Rm \ Pmr iff Rm | r. 

We could write similar theorems for other generalized Fibonacci numbers arising from the Fibonacci 
polynomials. 

5. DIVISIBILITY BY FIBONACCI PRIMES 

From [3] , [4] we know that a prime p\Fp-j or p\Fp+i depending upon if/? = 5k±1 or/7 = 5k ±2. For ex-
ample, 13 \Fi4, but, note that the prime 13 enters the Fibonacci sequence earlier than that, since Fy= 13. From 
P\ Fp±i one can easily show that/? \Fp

2±p, but squares of primes which are also Fibonacci numbers divide the 
sequence earlier than that; i.e., Fy - 13, and 13 \Fgj = Fy. 13, where of course, Fy. 13 < F131+13. If/? is a 
Fibonacci prime, if/? - Fm\Fmr then /7 |r and the smallest such r\sp itself, so that p2\Fmp. \f p = Fm, then 
m <p ± 1 since Fp±1 >/? for/? > 5. Thus, Fmp < Fp^+p -

Are there other primes than Fibonacci primes for which p2\Fn, n<p(p ± 1)? 

L3
m\F2mt iff L2

m\t. 

L3
m\Fmr iff L2

m\r. 

L3
m | F2mt iff L2

m 11 
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LETTER TO THE EDITOR 

March 20, 1974 
Dear Sir: 

I would like to contribute a note, letter, or paper to your publication expanding the topic presented below. 
Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as 

the sides increase: 
(1) 3 , 4 , 5 , - 2 1 , 2 0 , 2 9 - 119, 120, 1 6 9 - - . 

Following is another sequence of such "Pythagorean" triangles, the smallest angle approximating 30 degrees 
as the sides increase: 
(2) 15,8, 17-209, 120,241-2911, 1680,3361-23408,40545,46817-564719,326040,652081 ••• 

The scheme for generating these sequences resembles that for generating the Fibonacci sequence 1, 2, 3, 5, 
and so on. 

Let#£ and#£_/ be any two positive integers,^ >gk-i • Then, as is well known, 

(3) df-Sk-p ?9k9k-l, and 9k+9k-i 

are the sides of a Pythagorean triangle. 
Now let/77 and n be two integers, non-zero, and let 

W) gk+1 = ngk + mgk-i 

to create a sequence of g's. 
If #7 = l 92 = Z m = 1, n = 2, substitution in (4) and (3) gives the triangle sequence in (1) above. 
If 91 = h 92 = 4, m = -1, n = 4, the resulting triangle sequence is (2) above. 
If the Fibonacci sequence itself is used (m = n = 7), a triangle sequence results in which the ratio between the 

short sides approximates 2:1. 
In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the 

legs, or of the hypotenuse to one leg, approximates any given positive rational number/?/<7 (p and q positive 
non-zero integers,/? > q). It is easy to obtain m and n and good starting valuesg-j and#2 given/?/#, and there is 
more to the topic besides, but I shall leave all that for another communication. 

For all I know, this may be an old story, known for centuries. 
However, Waclaw Sierpinski, in his monograph Pythagorean Triangles (Scripta Mathematica Studies No. 9, 

Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such 
triangle sequences, unless I missed it in a hasty reading. He obtains sequence (1) above by a different method 
(Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given 
angle in the first quadrant (Chap. 13); but again, the method differs from the one I have outlined. 

[Continued on page 10.] 



AN ELEMENTARY PROOF OF KRONECKER'S THEOREM 

JOEL SPENCER 
Santa Monica, California 90406 

Kronecker's Theorem. Let p(x) be a monic polynomial with integral coefficients, irreducible over 
the integers, such that all roots a of p have \a\= 1- Then all roots a are roots of unity. 

This result was first proven by Kronecker using symmetric polynomials. In this note we prove Kronecker's 
Theorem using Linear Recursive Sequences. The condition that/? is monic is necessary since p(x) = 5x - 6x + 5 
has roots (3 ±4i)/5. It is also necessary that all roots a have \a\ = 1. For let/? be the minimal polynomial of 
a = x + isji - x2 where x = ̂ /2 - 1. Then \a\ = 1 butp((3) = 0 where (3 = y + i^T'-~yT

f y = ->J2 - 1 
and |j3 | > 7. 

Pro of of Theo rem. Let 

PM = xn-J2 six""1 . 

Consider the sequence {u,-} defined by 
Uj = 0 [0 < i < n-2] 

Un-1 = 1 

n 

(*) Us = Y^ a/Us-i for s > n 

Then 

us = E *,-<*/ > 
i=1 

where a,/, •••, an are the roots of/?. Then 

l ^ i < £ IS/IN5 <£; i£/i</v, 
i=i i=i 

independent of s. Since the Us are integers there are < (2N + 1) possible Us and hence < (2N + 1)n possible 
sequences/7/5, Us+j, •••, Us+(n-l))- Therefore, for some 0 <s < t < (2N + 1)n + 1, 

(Us, Us+1, - , Us+(n-u) = (Ut, Uf+f, - , Ut+fn-u). 
That is 

Us+j = Ut+j (0 < / < n- 1). 
By (*) this implies 

(**) Us+j = Ut+j (0 < / 7 . 

Setting K = t-s, 

£ sri* - E ii<j+k <o < i) 

9 
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E nM-iu*r = ° (o <j). 
i=1 

Setting x,- = %j(af - 1) 

The coefficient determinant 
a1 

det 

^s+n-1 

£ af+JXi = 0 (0 < j < n- 1). 
i=1 

s 
'n 
s+1 

77 

^s+n-1 

= (a-j •••an)
s d e t 

^n-1 ^n-1 

? o, 

since this is the Vandermonde matrix and the a,- are distinct since/? is irreducible. Hence the n linear forms are 
independent, so 

Xj = 0 (1 < / < n). 

Some %j f 0 since Un-j i= 0. For that/, ay = 1. Since the a's are roots of an irreducible polynomial, by Galois 
theory a!- = 1 for 1 <j<n. 

Q.E.D. 

Corollary. Kronecker's Theorem holds even if p is not irreducible. 

Proof. We factor p(x) = Up,(x), where the p; are irreducible. All roots a of/7/ are roots of p so \a\ = 1 
so all roots are roots of unity. But all roots of p are roots of some/7/ and hence roots of unity. 

David Cantor has noted that the proof after (**) can be shortened using generating functions. For 

2>,v=—x-
i=0 

n-1 

7 - £ a,*' 

A(x) 

xk-1 

i=1 

Hence 

xnP(x~1) = 7 - ] £ aix
i\xk- 7 

i=1 

p(a) = 0 impliesp(a 1) = 0 implies a - 7 = 0, a~ = 1,zvak = 1. 

[Continued from page 8.] 

I must tell you that I am short of proofs and most of the propositions would have to be presented as observa-
tions or conjectures. Co-authors with proofs are welcome. 

Thank you for your attention to this letter. Please write and let me know whether the subject is of interest, 
You are free, of course, to publish this letter or any part of it. 

Sincerely, 
John W. Jameson, 
P. 0. Box 205 
Edgewood, Maryland 21040 



FIBONACCI NUMBERS IN THE COUNT OF SPANNING TREES 

PETER J. SLATER* 
Applied Mathematics Division, National Bureau of Standards, Washington, D.C. 20234 

Hilton [3] and Fielder [1] have presented formulas for the number of spanning trees of a labelled wheel or 
fan in terms of Fibonacci and Lucas numbers. Each of them has also counted thejiumber of spanning trees in 
one of these graphs which contain a specified edge. The purpose of this note is to generalize some of their re-
sults. The graph theory terminology used will be consistent with that in [2 ] , Fk denotes the kth Fibonacci 
number, and Lk denotes the kf Lucas number. All graphs will be connected, and ST(G) will denote the num-
ber of spanning trees of labelled graph, or multigraph, G. 

A fan on k vertices, denoted N^, is the graph obtained from path Pk-i = 2, 3, •••, k by making vertex 1 adja— 
cent to every vertex oiPk--/. The wheel on k vertices, denoted W^, is obtained by adding edge (2,k) to / l /^ . 
That is, Wk= Nk + (2,k). Aplanar qraph G is one that can be drawn in the plane so that no two edges intersect; 
G is outerplanar if it can be drawn in the plane so that no two edges intersect, and all its vertices lie on the same 
face; and a maximal outerplanar graph G is an outerplanar graph for which G + (u,v) is not outerplanar for any 
pair^/,1/ of vertices of G such that edge (u,v) is not already in G. For example, each fan is a maximal outerplanar 
graph because, as will be used in the proof of Proposition 1, an outerplanar graph on k vertices is maximal outer-
planar if and only if it has 2k - 3 edges. 

Figure 1 Three Graphs on Six Vertices 

As shown in Hilton [3] ,ST(Nf<) = F2k-2 a n d ST(Wk)= L.2k-2- 2- Let OPJ
k denote the set of maximal outer-

planar graphs with k vertices, of which exactly/ are of degree two. Note that/I/^ e QP% for k > 4, and, with Gi 
as in Figure \,G1-(3,6) e OP§ . 

*This work was done while the author was a National Academy of Sciences-National Research Council Post-
doctoral Research Associate at the National Bureau of Standards, Washington, D.C. 20234. 
* *Au thor is currently at Sandia Laboratories, Applied Mathematics Division-5121, Albuquerque, N.M. 87115. 

11 



12 FIBONACCI NUMBERS IN THE COUNT OF SPANNING TREES [FEB. 

Proposition 1. If// e OPJ;, then ST(H) = F2k.2. 
Proof. If k equals 4 or 5, then OPk = {/ l/^}, and ST(Nk) = F2k~2 *o r anY k. The proposition will be 

proved by induction on k. Suppose it is true f o r4< / r< /?— 7 with n > 6, and suppose H e OPn. Assume the 
vertices of H are labelled so that 1, 2, ••-, n is a cycle bounding the outside face and vertex n is one of the two 
vertices of degree two, written deg (n) = 2. Now H is maximally outerplanar implies that edge (1, n - 1)\s in H. 
Also, either (1, n - 2) or (n - 7, <?J is in H, and, by symmetry, one can assume (1, n - 2) is in //. (See Fig. 2.) 

1 

^ \ 

\ 

! 

J 
n - 1 /? - 2 

Figure 2 Structure in a Graph H e OP* 

Since any spanning tree T contains at least one edge incident with vertex n, either T is a spanning tree of 
H - (In) or H - (n - 7, /?A or else Tcontains both edges (In) and (n - 1, n). Now deg (n - 1) = 2'm H - n 
impl ies/ / - /? ^OP^v Hence, ST(H - (1,n» = ST(H - (n - 1, n)) = ST(H - n) = F2n-4. Also, deg (1) > 3 
and deg (n - 2) > 3 in H, but exactly one of these two vertices will have degree two in H - [n, n - 7}, that is, 
H - [n, n - 7} e 0Pn_2. Now the number of spanning trees of H using both (l,n) and (n - 7, n) equals the 
number of spanning trees of H - n using (1, n - 1). This is obtained by subtracting the number of spanning 
trees of H - n that contain (n - 1, n -~ 2) but not (1, n - 1) from the total number of spanning trees of H - n, 
and one obtains 

F2n-4 ~ ST(H -n-(ln-D) = F2n„4 - ST(H -{n,n-l}) = F2n.4 - F2n.6 = F2n.5. 
Consequently, 

ST(H) = ST(H- (In)) + ST(H - (n - 7, n» + F2n.„5 = 2F2n.4 + F2n,5 = F2n.2, 

and the proposition is proved. 
For OP I w i t h / > 3, no result like Proposition 1 is possible. Indeed, let/ / / = N7 + 8 + (8,4) + (8,5), and let 

H2 = N7 + 8 + (8,3) + (8,4). Then H-, e OP%. H2 e OP%. ST(H7) = 368 and ST(H2) = 369. 
Allowing there to be several edges connecting each pair of vertices, let G be any multigraph. Several observa-

tions can be helpful. 
Observation 1. Suppose v is a cutpoint of (connected) multigraph G, and G - v has components 

C i, C2l —, Ct. If/?,- is the subgraph of G induced by C-, and v (1 < / < t), then 
t 

ST(G) = l\ST(Bj). 
i=l 

For example, vertex 1 is a cutpoint of % - (3,4), and ST(N6- (3,4)) = ST(N3)*ST(N4) = 3-8 = 24. 

Observation 2. Suppose (u,v) is an edge of multigraph G and G' is obtained from G by identifying u 
and v and deleting (u,v). (Note that even if G is a graph then G' may have multiple edges. Also, if (u,v) is one of 
several edges between u and v, then G' will have loops, but no spanning tree contains a loop.) Then ST(G') is 
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the number of spanning trees of G that contain edge (u,v). For example, ST(Wk+j+1) is the number of spanning 
trees of "biwheel" Wkj (as in Fig. 3) which contain the edge (u,v). 

1 k+j 

Figure 3 A "Biwheel" on k+j + 2 Vertices with 7 < / < k and k > 2 

Observation 3. Suppose edge (u,v) is in spanning tree 7" of G. LetU (respectively, V) by the subgraph 
of G induced by the set of vertices in the component of T- (u,v) that contains */ (respectively, v). Clearly there 
areST(U)-ST(V) labelled spanning trees of G containing (u,v)that produce these same two subgraphs. This pre-
sents another way to count the labelled spanning trees of G containing (u,v). For example, in graph G j of Fig. 1, 
let u = 3 and v = 6. The possibilities for the vertex set of U are 

{3 } , {3,4}, {3, 4, 5}, {3,2}, {3 , 2, 4}, {3, 2, 4, 5}, {3, 2, 1}, {3, 2, 4, 1} and { 3, 2, 4, 1, 5 } . 

Thus one obtains 
1.21 + 1-3 + 1.1 + 1.8 + 3.3 + 3.1 + 1-1 + 8-1 + 21-1 = 75 

spanning trees containing (3,6). 
Let G be any multigraph, and let G' be as in Observation 2, then ST(G) = ST(G - (u,v)) +ST(G'). That is, 

ST(G) is given by evaluating the number of spanning trees in two multigraphs, each one with fewer edges and 
one with one fewer vertices. As this procedure can be iterated, one can compute ST(G) in tfeis manner tot any 
multigraph G. 

One can also find formulas for classes of graphs, such as the "biwheels," where the biwheel on k + j +2 ver-
tices, denoted Wkjr is as in Fig. 3 with deg (u) = k+ 7 and deg (v)= j+ 1. 

Let U (respectively, V) be the fan % (respectively, Nj) containing u (respectively, v) in 

H = WkJ-{(k,k+ 11 (u,v), (I k +j)} . 

Consider the spanning trees of Wkj that contain (k, k+ 7̂  and (1, k+j) but not (u,v). Any such spanning tree of 
Wkj contains a spanning tree of U or V, but not both. The number of such spanning trees that contain a fixed 
spanning tree of V can be found, using a slight variation of Observation 3, by enumerating the number of span-
ning subgraphs of U that have two components, each of which is a tree, one containing vertex 1 and the other 
containing vertex k. This equals 2(ST(Nk) + ST(Nk.1) + - + ST(N2)). Similarly, if / > 2, there are 

2(ST(Nj) + ST(NH) + - + ST(N2)) 

such spanning trees containing a fixed spanning tree of U. 

Proposition 2. ST(WkJ) = L2k+2j + 2F2k+2j - 2F2j - 2F2k - 2. 

Proof. The number of spanning trees of Wkj which contain (u,v) is ST(Wk+j+i )• The number of span-
ning trees containing Ik, k + 1) but not (u,v) or ft k +]) (or (1, k +j) but not (k, k + 1) or (u,v)) is 
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ST(Nk+1hST(Nj+1). 
Thus 

ST(Wkt1) = L2k+2-2+2F2k + 2(F2 + F4 + -+F2k.2l 

and, if/ > 2, 

ST(WkJ) = L2k+2j- 2 + 2F2kF2j + 2F2j(F2+ F4 + •••+ F2k-2) + 2F2k(F2+ F4 + ••+ F2h2>. 

Simple Fibonacci identities reduce these equations to the desired formula. 
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T H E D I O P H A N T I N E E Q U A T I O N (x7 + x2 + •» +xn)
2 = xf + x3

2+>~ + x3
n 

W. R. UTZ 
University of Missouri - Columbia, Mo. 

The Diophantine equation 

(1) (x1+x2 + -+xn)
2 = x3 + x3

2 + ~+x3
n 

has the non-trivial solution X; = i as well as permutations of this n-tuple since 
n n 

£ / - n(n + 1)/2 and £ j3 = n
2(n + l)2/4. 

i=l i=1 

Also, for any n, x; v n for all / = /, 2, •••, n, is a solution of (1). Thus, (1) has an infinite number of non-trivial 
solutions in positive integers. 

On the other hand if one assumes x\ > Of then for each / one has x; <n . To see this, let a be the largest co-
ordinate in a solution (xj, x2, ••-, xn). Then, 

Xf + x2 + •'• + xn < na. 

For the same solution 
x3+x2+- + x3 > a3 

and so a < n2. Thus, we see that for a fixed positive integer, A7, equation (1) has only a finite number of solu-
tions in positive integers and we have proved the following theorem. 

Theorem. Equation (1) has only a finite number of solutions in positive integers for a fixed positive inte-
ger /7 but as n -> °° the number of solutions is unbounded. 

Clearly if (x j, x2f •••, xn) is a solution of (1) wherein some entry is zero, then one has knowledge of a solu-
tion (1) for/7 - 7 and so, except for/7 = /, we exclude all solutions with a zero coordinate hereafter. 

[Continued on page 16.] 



AN APPLICATION OF W. SCHMIDT'S THEOREM 
TRANSCENDENTAL NUMBERS AND GOLDEN NUMBER 

MAURICE MIGNOTTE 
Universite Louis Pasteur, Strasbourg, France 

INTRODUCTION 

Recently, W. Schmidt proved the following theorem. 

Schmidt's Theorem. Let 1, a1f a2 be algebraic real numbers, linearly independent over 0, and let 
e > 0. There are only finitely many integers q such that 

(1) Wqajl II<732i < c 7 q ~ 1 ~ € , 
where c-j is a positive constant and where II II denotes the distance from the nearest integer. 

Of course, this theorem can be used to prove that certain numbers are transcendental. We shall take a / equal 
to the golden number. The integers q will be chosen in the sequence of Fibonacci numbers. It remains only to 
take a number a2 such that \\qa2II is small for these values of q and such that 1, aj, a2 are ^-linearly indepen-
dent We shall give only one example of such a number #2 but the proof shows clearly that there are many other 
possible choices of 32-

THE RESULT 

Proposition. Let (u 1,112, -••) be the sequence of Fibonacci numbers. Put qn = Un. Then the number 

a2 - ± *±J=Ui 
is transcendental. 

Proof. It is well known and easily proved that 
"n+l\ 3 / - - -

Thus, 
y/5U* 

(2) 

Since un\U2n- Qn divides qn+v H 

wherepn is an integer. 
Now, it is easily proved that 

I 
\B2-

Thus, 

(3) 

ance, 

QN 

\a»aA ~ ' 
"Hnd1" _ 

\/5Qn 

N 
y 2 + (-1)n _Ph 

„% Qn Qfi ' 

2 + (-l)N+1 (2 + (-1)N+1)^ 

\qNa2l , (ItUf^JJL , 
QN 

From (2) and (3), we get 
15 
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\\qNai\\ |<7/v*2 II < "~" , 
VN 

where c is a positive constant. 
We have verified that (1) holds with e= 1. 
It remains only to show that 1, 3y, a2 are linearly independent over 0. Suppose that we can find a non-trivial 

relation 
ko + k1a1 + k2a2 = 0, k,- e 0. 

We can now limit ourselves to the case of kt e Z For large /I/, the previous relation gives 

MW/I = ±k2\\qNa2\ • 
This contradicts (2) and (3). Thus, 1,37,32 are 0-linearly independent Now Schmidt's theorem shows that a2 

is not algebraic. The assertion is proved. 
REMARK. The proposition remains true if we put 

xn -yn 

x - y 
where A- is a quadratic Pisot number and y its conjugate. 

******* 

[Continued from page 14.] 

For small integers n the positive solutions of (Drnay be found with a machine because of the upper bound of 
n2 on the coordinates. For n = 3 these solutions are exactly those revealed in the general case. That is, (3,3,3) 
and permutations of (1,2,3). 

In the complementary case (that is, some coordinate is negative), there are, for each n > 1, always an infinite 
number of solutions. For example, (a,l,-a)f for any integers, satisfies (1) in case n =3. Forfl =4, {a, a,-a, -a) 
satisfies (1), etc. For/? =3 the solution will be a subset of the solutions of 

x] + x3
2+x3

3 = u2, 

an identified problem [1 , p. 566]. 
In case n = 2 the reader will have no difficulty in showing that all solutions are (a, -a), (I 2), (2, 1), (2, 2) 

together, of course, with (0, 0), (0, 1), (1, 0) which come from the case n = 1. The case n = 2 is a special case of 
a well known theorem [1 , p. 412 etseq.]. 
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THE RECIPROCAL PERIOD LAW 

V\LE.;GREIG 
West Virginia University,^ organtown, West Virginia 26506 

The opinion of scientists on Bode's rule falls into several camps. The computer work of Hills [1 , Fig. 2] 
proves that an average period ratio exists and lies in the range 9/4 <P < 3. Some think there is a reason for this 
[2, 13], while others such as Lecar [3] think that the distances are random subject to the restraint of not being 
too near to each other. The idea that the asteroids were once a planet has been disproven [4] . The interested 
readership may consult any of the several summaries of physical theories of the origin of the solar system 
[6, 7 ,8 ,9 , 10, 11]. Almost all theories proposing specific distance rules are discounted (e.g., Blagg's 1.73 rule 
[9 ] , Dermott's rules [12]) by almost all scientists because they have too many independent parameters and 
lack any logical basis. More than two parameters is too many. The only models not discounted in this way are 
von Weizsacker's [see 5] , the author's [13, 14] and perhaps Schmidt's [see 7] . Von Weizsacker proposed a sys-
tem of eddies of ellipticity = Vi lubricated by smaller eddies. One can derive the equation: distance factor = 
tan2 [TT (N + 1)/4N], where N is the number of eddies in a ring. If the first law of scientific reasoning is that 
equations should balance dimensionally, then the zeroth law should be the principle of Occkham's razor-the 
paring away of unnecessary assumptions. The mathematical theory in [16] is now given a logical derivation. I 
begin this essay by a study of first principles. 

1. PRINCIPLES 
I insist that satellite and planetary systems: 
i. are discrete and therefore discrete algebra should be used, namely a difference equation, 

ii. have at most two boundary conditions (B.C.) and therefore 

(18) 82Zm = jZm+cZm_1 , 

where J,c are constants and 52 = A - V = A\7 is the central difference operator, 
iii. consist of one primary, a pair of secondaries which we ignore and the rest tertiary masses, 
iv. by the Commonality Principle must all satisfy the same spacing law, 
v. may equally likely have pro or retrograde outer satellites since retrograde bodies are not irregular, 

vi. are stable due to weak (gravitational, tidal or gyroscopic) non-dissipative forces and hence, 
vii. the relevant variable is the frequency of nearest approach, the synodic frequency, Y, where 
(19) Ym+h = Zm+1-Zm with h = 1/2 

viii. cannot have B.C. in empty space and hence they must reside in the primary which means that the recipro-
cal period sequence, Zm, must turn around near the outermost body and be asymptotic to the inner bodies up-
on both leaving and returning to the primary. Alone this restricts us to even order difference equations. It 
forces the roots of (18) to be reciprocal pairs and by the theory of equations c = 0. Thus 

(20) 8*Zm=jZm. 

To elucidate, values of a = j + 2 equal to ±2 give arithmetic progressions, and ±3 gives finite exponential (En) or 
alternate FL numbers, and -t6 gives alternate Pell numbers. The sequence ••• 11, 12, 16, 24, ••• is given by /= %. 
The data on near-commensurabilities are not significant [15] if the peculiar ratios of 2 and 4 are omitted. 
ix. Intuitive considerations of stability require the minimization of the number of mutual perturbations be-

tween adjacent satellite orbits. This will obtain if adjacent periods are coprime. This, as is proven later, deter-
mines/to be an integer. Now we can determine the value of / 

x. The forces are attractive so the largest root of (20) should be as small as allowed; thus a = ±3. Assuming 
that the Sun-Jupiter distance is fixed then a better way to state point (x) is that it is the minimization of the 

17 
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potential energy of the tertiaries with respect to their secondary. Thus satellites try to get as close to their sec-
ondaries as other conditions (ix) will allow. Now a = 0 gives two constant sequences and so is trivial and a - ±1 
gives cyclical sequences of periodicities 6 and 3 and so is also trivial. Arithmetic progressions, a = ±2, are also 
trivial. Hence a = ±3, i.e., j = +1 o r - 5 . I first used bisected FL (Fibonacci Lucas) sequences in a letter [17]. 
xi. I assert that only one physical B.C. exists which must equal both matematical B.C. Therefore 

(21) Z0 = AZM = B.C. or VZ0 = ZM = B.C. 

which differ only in notation. This is equivalent to GQ = GJ\J in [16]. And from point (x) we have 

(22a,b) 8*Zm = Zm or 82Zm = -5Zm, 

where the " - 5 " case corresponds to outer satellites that are alternately prograde and retrograde. When M is in-
finite, Eqs. (21) and (22a) give sequenced of [16]. Writing v = y/5 for brevity we have 

(23a) 5v + 7 2v+3 v+2 v + 3 2v + 7 5v+18 13v+47 34v+123 89v +322 

(23b) -3v-4 -v-1 0+1 v+4 3v+ll 8v+29 21v + 76 55v+199 

(24) Nept X Uran Satur (Jup) Astrea Mars 

(25) / = -7/7 -3h h 5h 9h 13h 17h 

where either sequence may be regarded as the first-order differences (synodic frequencies) of the other. Se-
quence (23) gives an earth value of 521. For convenience, not rigor, sequence (24) has been placed parallel to 
(23). The index h = %. 

2. CONCEPTS 

A FL sequence, Hn, cannot be expressed as a function of 52 and / alone since 

(26) (A+ \f - l)Hn = 0 . 

But a finite exponential (bisected FL) sequence, En, satisfies 

(27) (fr-l)En = 0. 

Further, define a sequence, E'n, such that 

(27a) (82 +5l)E'n = 0 . 

Now let Zn be a bisection of Gn (Eq. 1 and Table 1 of [16]). Then Zn satisfies (27). If Zn represents the real 
reciprocal periods of satellites or planets this can be written as a minimum principle^ 

(28) £ (8*-l)Zm - 0. 

We may state this in words. A system of satellites (planets) much lighter than their primary tries to act as if 
their synodic frequencies correspond to real bodies with their synodic frequencies in turn being the reciprocal 
periods of the original bodies. This is true even if all the bodies do not revolve in the same sense. If they are 
alternately pro- and retro-grade we can use (31). Thus (28) gives a closed system having a finite number of 
sidereal (true) and synodic frequencies. 

Now in point (xi) we could not have written ZQ = AZQ since that leads to monotonically increasing sequences. 
Now this point, namely (21) which is the same as Eq. (1) GQ= GN led via the theorem in [16] to the beautiful 
closure relation (14) £1"S, = (-1)f~hS.-,\ This immediately gives by taking ratios 

(29) (Sf+2 + Si)/(Sj + Sj-2) = S-f- / JS /./ = (S-i-2 - S-i)/(S-i - S2-i) • 

Now if satellites are alternately pro- and retro-grade then we may interpret the first pair of (29) to mean that 
the ratio of adjacent synodic frequencies (since Sj is now negative) equals the ratio of the sidereal frequencies 
of two other members of the bisection of S aside from a (-1). Real satellite systems have a finite number of 
bodies but the difference in the ratios given by [S] and {G33} for example is less than \ti~6. Hence (29) is an 
excellent approximation to the finite cases. 
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It is easy to show that the ratio of adjacent terms in (23b), 

Snh+l/Snh-1 = (Ln + v)/Ln-2 = Ln+2/(Ln-v), 

where mod (n, 4) = 3. Similarly the ratio of adjacent terms in (23a) is 
Snh + l/Snh-1 = (Ln-vJ/Ln-2 = Ln+2/(Ln + v), 

where mod (n, 4) = 1 and where (25) is the index. For completeness we may define the double bisection of an 
FL sequence, Dn , by 
(30) (82 ~5l)Dn = 0. 

Now a system of alternately pro- and retro-grade satellites satisfies an £ primed sequence, E'n. But the synodic 
frequencies are no longer differences (since every other term is negative) but sums. Application of the sum-
ming of adjacent terms twice is equivalent to the operator(82 +41). Hence in place of (28) we may write 

(31) £ (o2-Dz'm - 0, 

where o is the central sum operator defined by 
ofn = fn+h + fn-h * 

where fn is any sequence whatsoever. It is then easy to show that 

(32) o2 = 41 + b2. 

Z'is a bisection of S or G but with alternate terms multiplied by (-1). A Z' sequence satisfies (27a). 
The theory herein has been predicated upon: The Commonality Principle, The Simplicity Principle, and 

the assumption that the physical reason for the stability of tertiary orbits is the avoidance of low-order com-
mensurabilities (ALOC). J. C. Maxwell approached the motion of molecules in air in a similar vein of which 
James Jeans wrote [19, pp. 97-98] "...by a train of argument which seems to bear no relation at all to mole-
cules or to their dynamics,... or to common sense, reached a formula which according... to all the rules of 
scientific philosophy ought to have been hopelessly wrong. ...was shown to be exactly right." 

3. PREDICTIONS 

Dermott [12] ignored the outer Jovian and Saturnian satellites. I have chosen to give them an important place 
in this paper. The reciprocal period law is the only theory to make very narrow predictions. There is a blank 
midway between Saturn's Phoebe and lapetus in Table 2 of [ 16]. Hence a Saturnian satellite(s) of (mean) period 
207.84 < P < 208.03 day is predicted. I propose to call it Aurelia. If it is ever found, it would constitute proof 
positive of the theory herein. The allowed range is 0.1 percent of the numbers but I regard 1 percent as accept-
ible. Similarly a stable orbit in the Jovian system is likely at 97 day with much less likelihood of another at 37 
day because of its proximity to the Galilean quadruplet (secondaries). 

For the Sun, Jupiter, Saturn their secondaries are Jupiter, the Galilean quadruplet, Titan+Hyperion, respec-
tively. The theory says little about the secondaries. Hence the distance between the primaries and secondaries 
and their mass ratio must be determined by the properties of the proto-solar system cloud, namely its mass, 
spin, moment of inertia and magnetic field. We infer that the proto-solar system soon formed two clouds of 
cold dust and gas. The larger became the Sun and the smaller became Jupiter and Saturn. These then captur-
ed enough material to form the other planets and comets by coalesence. During the late phases when dissipa-
tive forces were no longer important, the reciprocal period rule would begin to operate. The Kirkwood gaps 
have prevented the coalesence of asteroids into a planet. Gaps exist at 3/8, 4/9, 5/11 of Jupiter's period as well 
as at 1/3, 2/5, 3/7 and 1/2. In fact the gap at 3/8 is only 2 percent from the predicted asteroidal planet See 
[18, p. 97]. 

The physical B.C. (point XI) may: (a) lie in the mean angular velocity of the prinary, (b) be a mean of the 
spins of the primary and secondary, (c) lie in the ter'tiaries as a whole in which case they constitute a self-
enclosed system, (d) be the period of a hypothetical satellite that skims the primary's surface, or (e) otherwise. 
At the moment, I prefer (c). 
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4. VENUS 
The synodic period, y, of a superior (exterior) body of period z > 1 is given by 

(33) 1/z+1/y = 1. 

The following relations [18, p. 51] are interesting. I use ratios for clarity. Choose the Venu&ian sidereal (true) 
year, 224.701 day, to be the unit of time. Then to better than 5 significant figures the earth's period is 395/243 
(13/8 is less accurate) and the rotation period of Venus is -79/73 (clockwise). Thinking of ourselves as Venus-
ians, then Venus is fixed and the Sun and Earth appear to revolve around us. We have three frequencies: 1, 
73/79, 243/395 to be added in pairs. The first pair gives 79/152 for one Venusian solar day. The first and third 
using (33) gives 395/152 for the earth's synodic period (584 da). The latter two give 395/608 for the time be-
tween successive Earth transits. These frequences 152/79, 608/395, 152/395 are in the exact ratios 5, 4, 1. 
Hence during every 584 day the same spot on Venus faces the Sun 5 times and the Earth 4 times. Venus must 
be aspherical so that torque forces can cause this. Tidal forces tend to pull a body apart and are inverse cube, 
But to align two prolate bodies one of whose axes is.0 away from the line joining them requires a sin 6/d* 
force which is very weak, yet over long time periods must be sufficient. 

In passing we give the continued fraction expansion of the distance factor derived from Kepler's III law. 

1.8995476269 •••= 1 + r L + ^ + ^ + ^ + ^+r- + T- + ^ + ^ + r - + ' -1+ 8+ 1+ 21+ 4+ 1+ 7+ 1+ 1+ 1 + 
whose convergent is 1 + 25253/28073. The first useful convergent is 416/219. 

5. COPRIME SEQUENCES 

If the recurrence Pn+i = (integer)^ ±Pn-i holds we have a Coprime sequence because it satisfies the follow-
ing theorem which is a generalization of one in [20, p. 30]. As an example viz. 0, 1, 4, 15, 56, 11-19, 780, 
41-71, - . Consider Pn+1 = bPn + cPn,-,. 

Theorem. Of all two-point recurrences only those with the middle coefficient b an integer and c = ±1 
have coprime adjacent terms given that an initial pair, PQ and Pf say, are coprime. 

Proof. The proof obtains by postulating the contrariwise proposition. Let c = 1. LetPn+i and Pn be divis-
ible by some integer d. ThenbPn is divisible by d and so also is Pn_1 = Pn+1 - bPn . But then 

Pn-2 = Pn-bPn^ 

is divisible by d and likewise all earlier terms by induction. Hence both PQ and Pj are divisible by d which con-
tradicts the assumption which says that at most one of PQ and Pi are divisible by any number. Hence the 
theorem must be true. 

Choosing c = -1 changes no essential part of the argument. 
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BINET'S FORMULA GENERALIZED 

A. K.WHITFORD 
Torrens College of Advanced Education, Torrensville, 5031, South Australia 

Any generalization of the Fibonacci sequence {Fn} = 1, 1, 2, 3, 5, 8, 13, 21, ••• necessarily involves a change 
in one or both of the defining equations 

(D F1 = F2= 1, Fn+2 = Fn+1 + Fn (n > 11 

Here, however, we seek such a generalization indirectly, by starting with Binet's formula 

\ n ii / F \ n 

f~n ~~ ~" 

7 5 <" > 1> 

instead of (1). Suppose we define, for any positive integer^, the sequence Gn by 

Jn 1= (n (2) Gn = A__£___/ _1___^___^_ (n > 1). 

Thus [Gn] = {Fn} in the case/7 = 5. We can also write 

(3) Gn = ^ X - (n > V, 

where 

2 , P 2 

are roots of the equation 

(4) x2_x_^jy0 

Corresponding to (1), we now have the equations 

(5) G1 = G2 = I Gn+2 = Gn+1 + {P-f1) Gn (n > V. 

Proof. Clearly a - $ = \fp and a +0 = /, so that (3) implies 

GI = CL-J-= i G2 = (SLzm+1) = 7. 
VP VP 

[Continued on page»14.] 



ON THE MULTINOMIAL THEOREM 

DAVID LEE H1LLIKER 
The Cleveland State University, Cleveland, Ohio 44115 

The Multinomial Expansion for the case of a nonnegative integral exponent n can be derived by an argument 
which involves the combinatorial significance of the multinomial coefficients. In the case of an arbitrary ex-
ponent n these combinatorial techniques break down. Here the derivation may be carried out by employment 
of the Binomial Theorem for an arbitrary exponent coupled with the Multinomial Theorem for a nonnegative 
integral exponent. See, for example, Chrystal [1] for these details. We have observed (Hilliker [6]) that in the 
case where n isnotequal to a nonnegative integer, aversion of the Multinomial Expansion may be derived by an 
iterative argument which makes no reference to the Multinomial Theorem for a nonnegative integral exponent. 
In this note we shall continue our sequence of expositions of the Binomial Theorem, the Multinomial Theorem, 
and various Multinomial Expansions (Hilliker [2 ] , [3 ] , [4 ] , [5] , [6] , [7]) by making the observation that this 
iterative argument can be modified to cover the nonnegative integral case: 

(1) I T..X- 2 ( . . ".. . ) ,V,",2 ••:"/ 
\ i=1 I ni+n2 + -"+nr=n 

where n /, n2, —, nr are nonnegative integers and where the multinomial coefficients are given by 

( n )= dL . 

As before (Hilliker [6]) we begin with a triple summation expansion: 

(2) y\a-, = E E m » / E <* 
j=1 k=1 

WE 
\ 2=7 

n-k 

Here, we are using the convention that the empty sum is zero and that 0° = 1. 
We next assert that the Multinomial Theorem (1) is covered by the Formula (2). To see this, let us make a 

change of notation and write Formula (2) as 

(3) ( £ a; 
\ i=l 

where the double summation on the right is taken under 9.x and 22 with 1 < ex < r and 1 < c2 < n. We single 
out the terms for which n - 22 = 0 and write (3) as 

A7-£0 

Co ( L « ) - I «> E*/ - £ m * £ * + £ * e ; 
>0 \ C=/ . / n-Q2=0 

Note that, for nonzero terms, c, = 1 implies that A7 - fi2 = 0, so that the range in the summation with n - c2 > 0 
is 2 < e t </-and 1 <c 2 <n - 1. 

We now apply Formula (3) to the summation under 2 on the right side of (4). This iterative process may be 
continued. After/77 iterations of Formula (3), m > 0 and not too large, we obtain 

22 
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2 «)"-„, L (4)("-S)-(—i^-*-) 
i-1 I n-SL? ^2m>0 

t*2m+1-1 x 

S 1=1 / 

n 

(5) [ ^ \ 
n-Z2-...-Q2m>0 

'^2m+1 
*2 £4 ^2m+2 ( \^ „_ \ n-SL2 *2m+2-

+ Y V / n \ f nr*2\ ... f>-*2 *2k-2\ %2-U *2k 

k=1 n-%2- C2A=0 ' 

Here, the indices are subject to the restrictions 
f / < e ; < r 

(6) < 1 < e2/>/ < c 2 / - / - / / for 7 < i < m, 
I / < c2/>2 < fl-22 c 2 / ' torO < / < m. 

Formula (5) is meaningful as long as m <r, so that the first two inequalities in (6) are possible and as long as 

(7) m < n, 

so that the last inequality in (6) is possible. We \etm = r- I Then, by (6) we have z2r-i
 = 1/ f ° r otherwise, we 

would have £7 > r. Consequently, for nonzero terms, 

n-5.2 %2r = 0. 
Formula (5) now takes the form 

<*> ( x > ) " - ~ E ("2)(^;2)-("-fi2«2r^-2)^-42;-, 
\ 1=1 I n-SL2-'-^2r=0 

*E E U ) ( " u 2 ) (""*2-*2k-*2k~2)#&-41% 
k=1 n-SL2 9.2k=0 

r 

E ^p ( n \ I n - fi2 \ i n - Zo- - ~ *2k-2 \ £* M ^2k 

k=1 n-SL2 %2k=0 

If the range of £2/, for 1 < / < r, is extended to include 0, then, the summation under k reduces to a single term, 
k = r; the restriction (7) may be lifted; and, by (6), the subscripts are uniquely determined: 2/ = r, 0.3= r- 1, 
'"' z2r-i = 1- The coefficients may be written as 

n(n - 1) - (n -SL2 %2r + V = n! 

SL2!Z4l—SL2r! %2lSL4i- •9-2r! 

It now follows from (8) that 

I n \(n-Q2 \...( n-Z2 *2r-2 \ 
\ C2 M U I \ *2r ) 

that 
r ,n 

2>) -
i=1 / n 

n! ^2U ^2f 
ar ar-t - a 7 

•9.2 %2r=0 

With a change of notation, the Multinomial Theorem (1) now follows. 
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Also, since a and |3 satisfy (4), we have the equations 

0P+2 = an + 1 + ^ J j anf pn+2 = ^n+1 + (*L^7) 0" (n > 1). 

Therefore, using (3), it follows that 
nn+1.lp-1\nn on-f-1 ( p__^J_ \ on 

Gn+2 = ^jf— = ^ 

Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the 
sequence {Gn}, for any choice of/?. Assuming that we are interested only in integer-valued sequences, (5) tells 
us to take p of the form 4k + 1; namely p = 1,5,9, 13, 17, —. Thus the first five such sequences start as follows: 

p 

1 
5 
9 
13 
17 

4 

0 
1 
2 
3 
4 

Gi 

1 
1 
1 
1 
1 

G2 G3 

1 
2 
3 
4 
5 

G4 

1 
3 
5 
7 
9 

G5 

1 
5 
11 
19 
29 

G6 

1 
8 
21 
40 
65 

Gy 

1 
13 
43 
97 
181 

G8 

1 
21 
85 
217 
441 

G9 

1 
34 
171 
508 
1165 

G10 

1 
55 
341 
1159 
2929 

We can use the above table to guess at various properties of the generalized Fibonacci sequence {Gn}, espe-
cially if our knowledge of {Fn} is taken into account. Generalizations of some of the better-known properties 
of [Fn} are listed below. Of course, in each case, the original result may be found by taking 

p = 5, ^ 1 = 1 and Gn = F„ . 

(i) lim GJl±L=i±JlL 

(ii) Gn-Gn+2-Gt+1 = (-1)n+1 [£fl)n In > 1) 

[Continued on page 29.] 



A F IBONACCI F O R M U L A OF LUCAS 
A N D ITS SUBSEQUENT M A N I F E S T A T I O N S A N D REDISCOVERIES 

H.W.GOULD 
West Virginia University, Morgan town, West Virginia 26506 

Almost everyone who works with Fibonacci numbers knows that diagonal sums in the Pascal triangle give rise 
to the formula r 

[?±] 
(D F„. £ ( " - * " ' ) , a>1. 

k=0 

but not many realize that 

(2) F2n = £ f-/i*("-*-')r'-a, 
k=0 

or that 

\ri\ 
(3) F3n = 2 £ { " ' I ' 1 )4"-1-2k, 

k=0 

and that these are special cases of a very general formula given in 1878 by Edouard Lucas [5, Eqs. 74-76] , 
[6, pp. 33-34] . 

As far as I can determine, formula (2) first appeared in our Fibonacci Quarterly as a problem posed by Lurline 
Squire [10] when she was studying number theory at West Virginia University. M. N. S. Swamy's solution in-
voked the use of Chebyshev polynomials. I was reminded of the formula recently when Leon Bernstein [1] 
found the formula again and asked me about it. He used a new technique involving algebraic number fields. 

Formulas (2) and (3) generalize in a curious manner. On the one hand we have for even positive integers r 

F [T] 
(4) f1 = H (~Vk {n~k

k'
1)L"r'1'2k. 2\r. 

r k=0 

but on the other hand for odd positive integers r we get the same terms but with all positive signs 

, IT] 
(5) Ff = J2 (n~k

k-
1)Ln

r-
1-2k, 2\r, 

r k=1) ' 
where Lr is the usual Lucas number defined by Ln+1 = Ln + Ln-f, with LQ = 2, Lj = 7, this of course in con-
trast with Fn+i = Fn + Fn--j and FQ = Of F-J = 1. 

Formulas (4) and (5) may be written as a single formula in a clever way as noted by Hoggatt and Lind [4] 
who would write rn-U 

(6) T =11 (-Vk(r'1> {"-k
k-

1)L"r-
1-2k , 

r k=0 

25 
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valid now for any positive integers nj > 1. 
Formula (6) of Hoggatt and Lind was posed as a problem by James E. Desmond [11] and solved by him using 

a result of Joseph A. Raab [7] . The precise same problem was posed again by David Englund [12] and Douglas 
Lind pointed out that it was just the same formula. 

Formulas (4) and (5) were obtained by Hoggatt and Lind [4] by calculations using compositions and gener-
ating functions. Although they cite Lucas [5] for a number of items they were evidently unaware that the for-
mulas appear in Lucas in a far more general form. Since Lr= F2r/Fr, formulas (4)-(5) can be written entirely 
in terms of f ' s . 

Lucas introduced the general functions U, V defined by 

(7) Un = a—=-f> Vn = an+bn, 
a — b 

where a and b are the roots of the quadratic equation 

(8) x2-Px + Q= 0, 

so that a + b = P and ab = Q. When we have x2 - x - 7 - ft we gets and/? as (1 + ^Js)/2 and (1 -yJs)/2 and 
then Un = Fn, Vn = Ln. 

One of the general formulas Lucas gave is [6, pp. 33-34, note misprint in formula] 

„ l"f] 
(9) ^ = £ (~Vk (n~k

k-
1) Vf-1-2*!]* , 

r k=0 

which unifies (4) and (5) and is more general than (6). Curiously, as we have intimated, Hoggatt and Lind do 
not cite this general formula. 

Now of course, there are many other such formulas in Lucas' work. Two special cases should be paraded here 
for comparison. These are 

(10) Lrn = £ (-1)k --V-- ( n - k ) Ln~2k f o r m e r , 

and 

f] 
mi L„. £ - 2 - ("-*) cr-

2k « ' -
k=0 

These can be united in the same manner as (4)-(5) in (6). Thus 

[I] 
(11.1) Lrn = £ (-7)k(r~1) -JLj {"-k) Ln

r~
2k . 

k=0 

There is nothing really mysterious about why such formulas exist There are perfectly good formulas for the 
sums of powers of roots of algebraic equations tracing back to Lagrange and earlier. The two types of formulas 
we are discussing arise because of 

[§] 
(12) £ (- 1)k (" ~ *) (xy)k(x + Yr2k = X-^X-— , 

k=0 X V 

formula (1.60) in [3] , and 
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f - 1 
L2J 

(13) ^ ( - j ) * " {n-k)(xy)k(x+yr2k = xn+yn , 
k=0* n 

formula (1.64) in [3 ] , familiar formulas that say the same thing Lucas was saying. The reason it is not myster-
ious that (2) holds true, e.g., is that Z /̂? satisfies the second-order recurrence relation 

F2n+2 = 3F2n ~ F2n-2 

with which we associate the characteristic quadratic equation 

x2 = 3x - / 

so that a formula like (2) must be true. For formula (4) with r = 4 we note that F4n+4 = 7F4n - F4n_4. 
In general in fact, 

(14) Frn+r = LrFrn-Fm.r for even r, or Fm+r + Fm-r= LrFm, 

and 

(15) Fm+r = LrFrn + Frn-r ioroddr, or Fm+r- Fm.r= LrFm . 

Regularly spaced terms in a recurrent sequence of order two themselves satisfy such a recurrence. Set un = Frn 

to see this for then we have 

(16) un+i = Lrun±un-i, with z2 = Lrz± 7, 

so we expect a priori that un must satisfy a formula rather like (1). Formulas like (12)— (13) give the sums of 
powers of the roots of the characteristic equation, whence the general formulas. 

Formula (12) corresponds to (B.1) and (13) corresponds to (A.1) in Draim's paper [2] which the reader may 
also consult. 

Another interesting fact is that these formulas are related to the Fibonacci polynomials introduced in a prob-
lem [9] and discussed at length by Hoggatt and others in later issues of the Quarterly. These are defined by 

fn(x) = xfn-f(x) + fn-2(x), n > 2, 
with fi(x)= 1 and f2(x) = x. 

In general 

m 
(17) fn(x)= £ {"-k

k-
1)x"-2k-1 . 

k=0 
whence for odd r we have by (5) that 

(18) f„{Lr) = F-P . 
' r 

Many other such relations can be deduced. 
Finally we want to note two sets of inverse pairs given by Riordan [8] which he classifies as Chebyshev in-

verse pairs: 

i] 
(19) «W = £ (-1>k ^k (nkk)9(n~2k) 

if and only if 

[I] 
(20) g(n) = £ ("k)f(n-2k); 

k=0 
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and 

tfi 
(211 IM- X. TlfH » ' " -2kl 

k=0 
if and only if 

[i] 
(22) g(n) = £ (-if (n~K) f(n-2k). 

k=0 

Applying (19)—(20) to (10) we get the particularly nice formula 

u i] (23) Ln
r = £ ("k)

 Lr(n-2k), reven. 
k=0 

Using (21)—(22) on (4) we get the slightly more complicated formula 

(24) , „ _ _ £ r ^ i t n ^ f r o ^ a 
n-k+1 \kl Fr 

k^O r 

I do not recall seeing (23) or (24) in any accessible location in our Quarterly. 
If we let /--> 0 in (4) we can obtain the formula (1.72) in [3] of Lucas, which is also part of Desmond's prob-

lem [11] who does not cite Lucas, 

Ir'l 
(25) n= £ (~1)k (n-k

k-
1)2"-2k-1, n>1. 

k=0 

It is abundantly clear that the techniques we have discussed apply to many of the generalized sequences that 
have been introduced, e.g., Horadam's generalized Fibonacci sequence, but we shall not take the space to develop 
the obvious formulas. It is hoped that we have shed a little more light on a set of rather interesting formulas all 
due to Lucas. 
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9. Problem B-74, Posed by M. N. S. Swamy, The Fibonacci Quarterly, Vol. 3, No. 3 (Oct., 1965), p. 236; 
Solved by D. Zeitlin, ibid.. Vol. 4, No. 1 (Feb. 1966), pp. 94-96. 

10. Problem H-83, Posed by Mrs. W. Squire, The Fibonacci Quarterly, Vol. 4, No. 1 (Feb., 1966), p. 57; Solved 
by M. N. S. Swamy, ibid., Vol. 6, No. 1 (Feb., 1968), pp. 54-55. 

11. Problem H-135, Posed by J. E. Desmond, The Fibonacci Quarterly, Vol. 6, No. 2 (April, 1968), pp. 143-
144; Solved by the Proposer,/M/„ Vol. 7, No. 5 (Dec. 1969), pp. 518-519. 

12. Problem H-172, Posed by David England, The Fibonacci Quarterly, Vol. 8, No. 4 (Dec, 1970), p. 383; 
Solved by Douglas Lind, ibid., Vol. 9, No. 5 (Dec, 1971), p. 519. 

13. Problem B-285, Posed by Barry Wolk, The Fibonacci Quarterly, Vol, 12, No. 2 (April 1974), p. 221; 
Solved by C. B. A. Peck, ibid., Vol. 13, No. 2 (April 1975), p. 192. 

******* 
[Continued from page 24.] 

(iii) ( ^ - 7 ) G2 + G2
H = G2n+1 (n > 1) 

(iv) G2
n+2- (P-flf'G2 = G2n+2 (n > 1) 

r=0 

(vi) {P-J-L)T, °r= Gn+2-1 (n > V. 
r=1 

The proofs of the above results, which rely essentially on equations (2), (3) and (5), together with 

a - j 3 = V p , a+p.= 1 and a(S =-(&-—) , 

are fairly straightforward and left to the reader. Of course, results such as these are not new. For example, (ii) 
was proved in a slightly more general form by E. Lucas as early as 1876 (see [1] page 396). 

Finally, turning to the vertical sequences in the table given earlier, it follows from (v) that the sequence under 
Gn (n > 1) is given by 

is'c-;-r)'*-"'} 
t r=0 J 

(6) \ X [n'l-r)(k-Ur\ <k> 1), 
1 r=0 J 

so that for example the sequences under G4 and G5 are {2k - 7} and {k + k- / } , respectively. Alternatively, 
instead of using (6), we can apply the Binomial Theorem to (2) and obtain the general vertical sequence in the 
form 

~~n~l 2 {n
r)(4k-3)(r-1J/2} (k > 1).. 

2 r=1 J 
rodd 
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NUMERATOR POLYNOMIAL COEFFICIENT ARRAYS 
FOR CATALAN AND RELATED SEQUENCE CONVOLUTION TRIANGLES 

V. E. HOGGATT, JR.f and MARJORIE BICKNELL-JOHNSON 
San Jose State University, San Jose, California 95192 

In this paper, we discuss numerator polynomial coefficient arrays for the row generating functions of the con-
volution arrays of the Catalan sequence and of the related sequences S,- [1 ] , [2 ] . In three different ways we can 
show that those rows are arithmetic progressions of order/. We now unfold an amazing panorama of Pascal, 
Catalan, and higher arrays again interrelated with the Pascal array. 

1. THE CATALAN CONVOLUTION ARRAY 

The Catalan convolution array, written in rectangular form, is 

Convolution Array forS/ 

1 
1 
2 
5 
14 
42 

1 
2 
5 
14 
42 
132 

1 
3 
9 
28 
90 
297 

1 
4 
14 
48 
165 
572 

1 
5 
20 
75 
275 
1001 

1 
6 
27 
110 
429 
1638 

1 
7 
35 
154 
637 

1 
8 
44 
208 
910 

1 .» 
9 ••• 

54 •• 
273 » 
1260 •• 

Let Gn(x) be the generating function for the nth row, n = O, 7, 2, •••. By the law of formation of the array, 
where Cn-j is a Catalan number, 

Gn-rfx) = xGn(x)-x2Gn(x) + Cn-1 . 
Since 

G0(x) = 1/(1-x) = 1+x+x2 + x3 + -+xn +-

G7(x) = 1/(1-x)2 = 1+2x+3x3 + - + (n+1)xn + -

we see that by the law of formation that the denominators for Gn(x) continue to be powers of (1 - x). Thus, 
the general form is 

Gn(x) = Nn(x)/(1-x)n+1 . , 
We compute the first few numerators as 

Nf(x) = 7, N2(x) = 7, N3(x) = 2-x, N4(x) = 5- 6x + 2x2, 

N5(x) = 14-28x + 20x2-5, ••• 
and record our results by writing the triangle of coefficients for these polynomials: 

Numerator Polynomial Nn(x) Coefficients Related to £7 

1 
1 
2 -1 
5 -6 2 
14 -28 20 -5 
42 -120 135 -70 14 
132 -495 770 -616 252 -42 
429 -2002 4004 -4368 2730 -924 132 

30 
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Notice that the Catalan numbers, or the sequence £7, appears in the first column, and again as the bordering 
falling diagonal of the array. The next falling diagonal parallel to the Catalan numbers is the central diagonal of 
Pascal's triangle, taken with alternating signs and deleting the first one, or, the diagonal whose elements are 
given by [2"\ The rising diagonals, taken with the signs given, have sums 1, 1, 2,4, 8,16, 32, •••, 2n~1, ••• . 
The row sums- are all one. The coefficients for each row also can be used as a convolution with successive terms 
in rows of Pascal's triangle to write the terms in the rows for the convolution triangle. For example, the third 
row has coefficients 5, - 6 , and 2. The third row of Pascal's rectangular array is 1, 4, 10, 20, 35, 56, 84, •••, and 
we can obtain the third row of the convolution array for^7 thus, 

5 = 5-1 - 6 - 0 +2-0 
14 = 5-4 - 6 - 1 +2-0 
28 = 5 - 1 0 - 6 - 4 +2-1 
48 = 5 .20-6 -10 + 2 4 
75 = 5 .35 -6 -20 + 2.10 

We can take columns in the array of numerator polynomial coefficients to obtain columns in the Catalan con-
volution array. The zeroth or left-most column is already the Catalan sequence Sp We look at successive 
columns: 

n = 0 1(1/1, 2/1, 5/1, 14/1, 42/1, - ) 

n = 1 2(1/2, 6/3, 28/4, 120/5, 495/6, • 

n = 2 3(2/6, 20/10, 135/15, 770/21, - ) = 1, 6, 27, 110, - = sf 

n = 3 4(5/20, 70/35, 616/56, 4368/84, •• ) = 1, 8, 44, 208, - - sf 

The divisors are consecutive elements from column 1, column 2, and column 3 of Pascal's triangle. The first case 
could have divisors from the zero th column of Pascal's triangle and is£7. Thus, the/t /7 column of the numera-
tor coefficient triangle for the £7 array, the / column of the Pascal array, and the / column of the convolu-
tion array for 5 ; are closely interrelated. 

2. THE CONVOLUTION ARRAY FORS2 

Next we write the numerator polynomial coefficient array for the generating functions for the rows of the 
convolution array for the sequence^. First, the convolution array for$2 's 

Convolution Array forS2 

= 1, 2, 5, 14, 42, -..= S 

) = 1, 4, 48, 165, 572, = s; 

1 
1 
3 
12 
55 

1 
2 
7 
30 
143 

1 
3 
12 
55 
273 

1 
4 
18 
88 
455 

1 
5 
25 
130 
700 

1 
6 
33 
182 
1020 

1 
7 
42 
245 
1428 

1 
8 
52 
320 
1938 

1 -• 
9 -
62 •• 
408 •• 
2565 -

The numerator polynomial coefficient array is 

Numerator Polynomial Coefficients Related to S2 

1 
1 
3 
12 
55 
273 
1428 

-2 
-18 

-132 
-910 
-6120 

7 
108 
1155 

-30 
-660 143 
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Again, the row sums are one. The rising diagonals, taken with signs, have sums which are half of the sums of 
the rising diagonals, taken without signs, of the numerator polynomial coefficient array related to Sp Again, 
the zeroth column is S2, and the falling diagonal bordering the array at the top \sS2. The next falling diagonal 
is three times the diagonal 1, 6, 36, 220, •••, which is found in Pascal's triangle by starting in the third row of 
Pascal's triangle and counting right one and down two. (The diagonal in the corresponding position in the array 
related to £7 is twice the diagonal 1, 3, 10, 35, 126, •••, which is found by starting in the first row and counting 
down one and right one in Pascal's rectangular array.) 

Again, columns of the convolution array for £2 ar 'se f r o m t n e columns of the numerator polynomial coef-
ficient array, as follows: 

n = 0 1(1/1, 3/1, 12/1, 55/1, - ) = 1, 3, 12, 55, - = S3
2 

n = 1 2(2/4, 18/6, 132/8, 910/10, 6120/12, - ) = 1, 6, 33, 182, ••• = s f 

n = 2 3(7/21, 108/36, 1155/55,-) = 1,9, 63, ••• - S% 

n = 3 4(30/120, 660/220, 9282/364, ••) = 1, 12, 102, •• = S1
2
2. 

Note that the zeroth column could also be expressed as S2, and could be obtained by multiplying the column 
by one and dividing successively by 1, 1, 1, •••. Each column above is divided by alternate entries of column 1, 
column 2, column 3 of Pascal's triangle. S2^

n+1^ is obtained by multiplying the/7f/7 column of the numerator 
polynomial coefficient array by n and by dividing by every second term of the (n - 1)st column of Pascal's 
triangle, n = 0, 1, 2, •••. Also notice that when the elements in the ith row of the numerator array are convolved 
with / successive elements of the iT row of Pascal's triangle written in rectangular form, we can write the/ 
row of the convolution triangle forS^-

3. The Convolution Array for S3 

For the next higher sequence S3, the convolution array is 

Convolution Array for S3 

1 
1 
4 
22 
40 

1 
2 
9 
52 
340 

1 
3 
15 
91 
612 

1 
4 
22 
140 
969 

1 
5 
30 
200 
1425 

1 
6 
39 
272 
1995 

1 
7 
49 
357 
2695 

1 
8 
60 
456 
3542 

1 
9 
72 
570 

4554 

and the array of coefficients for the numerator polynomials for the generating functions for the rows is 

Numerator Polynomial Coefficients Related to S3 

1 
1 
4 - 3 
22 -36 15 

140 -360 312 - 9 1 ••• 

Again, the first column is S3, or, S3, while the falling diagonal bordering the array is S3, and the falling diagon-
al adjacent to that is four times the diagonal found in Pascal's triangle by beginning in the fifth row and count-
ing right one and down three throughout the array, or, 1, 9, 78, 560, •••. The rising diagonal sums taken with 
signs, s,-, are related to the rising diagonal sums taken without signs, rjf of the numerator array related to S2 by 
the curious formula /-/ = 4s; - i, i = 1, 2, •••. Again, a convolution of the numerator coefficients in the/ row 
with / elements taken from the ith row of Pascal's triangle produces the ith row of the convolution triangle for 
S3. For example, for/ = 3, we obtain the third row of the convolution array for S3 as 
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22 = 22-1 - 3 6 - 0 +15-0 
52 = 22-4 - 3 6 - 1 +15-0 
91 = 22-10-36 .4 +15-1 

140 = 22-20 - 36-10+ 15-4 

We obtain columns of the convolution array for S3 from columns of the numerator polynomial coefficient 
array as follows: 

n = 0 1(1/1,4/1,22/1, 140/1 , - ) = 1,4,22, 1 4 0 , - = $ | 

n = 1 2(3/6,36/9,360/12,-) = 1, 8, 60, - = S§ 

n = 2 3(15/45,312/78, 1560/120,-) = 1, 12, 1 1 4 , - = S1
3

2 

Here, the divisors are every third element taken from column 0, column 1, column 2, ••• of Pascal's triangle. 

4. THE GENERAL RESULTS FOR THE SEQUENCES Sf 

These results continue. Thus, for 5/, the n column of the array of coefficients for the numerator polynomi-
ials for the generating functions of the rows of the S,- convolution array is multiplied by (n + 1) and divided by 
every / f successive element in the nt row of Pascal's rectangular array, beginning with the [in + 1)i- l]st 

term, to obtain the successive elements in the (in + i - Dst column of the convolution array forS/, or the se-
quence S'Jn+1K That is, we obtain the columns/^ 2i + 1, 3/ +2, 41 + 3, —, of the convolution array forS,-. 

We write expressions for each element in each array in what follows, using the form of the m th element of 
Sf given in [1] . 

Actually, one can be much more explicit here. The actual divisiors in the division process are 

/ i(m +n) + in- 1)\ 

where we are working with the sequence S,-, i = O, 1, 2, —; the nf column of Pascal's triangle, n = O, 1, 2, — ; 
and the mth term in the sequence of divisors, m = 1, 2, 3, •••. 

Now, we can write the elements of the numerator polynomial coefficient array for the row generating func-
tion of the convolution array for the sequence S,-. First, we write 

S" = \-k— !(<+1)m+k-lU m =0,1,2,-

which gives successive terms of the (k - 1jst convolution of the sequence S;. Then, when k= (i + l)(n + 1), 

n(i+1)(n + 1) _ J (i + 1)(n + 1) ((i+1)(m+n) + i \ \ 
1 I mi + (i+1)(n + 1) l ™ " ' 

m = O, 1, 2, -..; / - O, 1, 2, - ; n = O, 1, 2, - . 

Let an+m/n be the element in the numerator polynomial triangle for 5/, m = O, 1, 2, —, n = O, 1, 2, •••, in the 
nth column and (n + m)th row. Then, the topmost element in the/7t/? column is given by an/n. Now, 

s(i+1}(n+1) = {(n + 1hn+mn J (ih+ml+n^i-l 

so that, upon solving for an+m/n after equating the two expressions for the /??f/? term of 5/ "n+ , we obtain 

= L+J. ( d + 
am+n,n ~ j ( m + n ) + n + j + 1 { 

Dim +n) +i \ ( iin + m) + n + i -
m 1 V n 

= i l l I (' + V(m+n) + i )( (i + Dn + (i - 1) + mi ) 
m \ m-1 1x n ' 

Now, we can go from the convolution array to the numerator polynomial array, and from Pascal's triangle to 
the convolution array, and from Pascal's triangle directly to the numerator polynomial array. 

And, do not fail to notice the beautiful sequences which arise from the first terms used for divisors in each 
column division for the columns of the numerator polynomial coefficients of this section. For the Catalan 
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sequence S7, the first divisors of successive columns were 1, 2, 6, 20, 70, —, the central column of Pascal's tri-
angle which gave rise to the Catalan numbers originally. For S2, they are 1,4, 21, 120, — , which diagonal of 
Pascal's triangle yields S2 upon successive division by (3j+ 1), j = 0, 1, 2, — , and S2 = {1, 2, 7, 60, •••} upon suc-
cessive division by 1,2,3,4,-". For .Sj, the first divisors are 1, 6,45, •••, which produce^ = (/, 3, 15, 91, •••}, 
upon successive division by 1, 2, 3, 4, •••. 
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ON THE N CANONICAL FIBONACCI REPRESENTATIONS OF ORDER N 

N-1 
N v ^ i 

i=0 

for some N > 2. Then 
N-1 

N+i ^ rk „N-k • _ 1 n n 

k=0 

Proof. The case / = 7 amounts to F1^ 7= 1, k = 0, 1, —, N - 1. If the theorem is true for some/ > 1, then 

N-1 N-2 N-2 
N+i+1 _ sp Fk nN-k+1 _ ^ Fk+1 N-k + F0 nN+1 _ y * (Fk+1 F0 )nN-k F0 

a ~ 2^ hN,ia ~ ZJ hN,i a +hN,ia ~ 2^ {tN,i +hN,i)a +hN,i-
k=0 k=0 k=0 

Now 
k k-1 

FN,i +FN,i = FNti+k+1~ Zl FN,i+j+FN,i = FN,i+1+k~^L FN,i+1+j = FN,i+1 • 
1=0 j=0 

Also FI\IJ = FN~j+1, so the above equation reduces to 

N-1 
N+i+1 _ T - rk N-k 

a ~ 2-J hN,i+1a 

k=0 
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FIBONACCI-LIKE GROUPS AND PERIODS OF FIBONACCI-LIKE SEQUENCES 

LAWRENCE SOMER 
1266 Parkwood Drive, North Merrick, Mew York 11566 

The purpose of this paper is to investigate Fibonacci-like groups and use them to show that for any odd prime 
/?, there are Fibonacci-like sequences, in fact an infinite number of them, with a maximal period modulo/7. At 
the conclusion of this paper, we will present a program to show how one might apply Fibonacci-like groups to 
problems concerning primitive roots modulo an odd prime. One of our main results will be to prove that the 
exponent to which any non-zero residue r of an odd prime p belongs is equal to either the period or one-half 
the period modulo/7 of a Fibonacci-like sequence, except when both/7 = 1 (mod 4) and r = ±^~l (mod/?). We 
will give a proof of this theorem and draw some consequences. To continue, we will need a few definitions. 

Definition 1. A primary Fibonacci-like sequence {Jn}, hereafter called a P.F.L.S., is one which satisfies 
the recursion relation: Jn+i = aJn + bJn-j for some non-negative integers, a, b, and for which JQ = Q, J? = 7, 
antiJ2 = a. 

Definition 2. A generalized Fibonacci-like sequence, hereafter called G.F.L.S., is a Fibonacci-like se-
quence {Kn) in which KQ and Kj are arbitrary non-negative integers. 

Definition 3. \sia, b, p) is the period modulo p, p an odd prime, of a P.F.L.S. in which 

Jn+l = aJn +bJn-i. 

It is the first positive integer/7 such that J^ =0 (mod p) andJn+i =Jj = 7 (mod/?). 

Definition 4. a(a,b,p), called the restricted period of a P.F.L.S. modulop, is the least positive integerm 
such that 

Jm = SJQ = 0 and Jm+1 ^ sJ-j = s (mod/?) 

for some residue s. Then s(a, b, p) = s will be called the multiplier of the P. F. L S. modulo p. 

Definition 5. &(a, b, p) is the exponent of s(a, b, p) (mod p). It is equal to pi la, b, p)/a(a, b, pi 

The next fact that we will need is that if (a2 + 4b/p) = 0 or /, where (p/q) is the Legendre symbol, then the 
period of the G.F. L.S. modulo/7, beginning with either 

(KQ = 7, K1 = (a + s/FT4b)/2) or (K0 = 1, K1 = (a - ^+Tb)/2), 

forms a group under multiplication (mod/7). The G.F.L.S., reduced modulo/?, beginning with 

(I (a + ^2~T~4b)/2) 

will be designated by {Mn}
 ar|d t n e G.F.L.S. beginning with 

(I (a - y/'FT4b)/2) 
by {M'n}. The specific generalized Fibonacci sequence beginning with 

(1,{1+y/5)/2), and (1,(1-sj5)/2)t 

reduced modulo/7, will be designated by [Hn] and {H'n), respectively. Generalized Fibonacci sequences satisfy 
the same recursion relation as the Fibonacci sequence. 

To prove that these form multiplicative groups modulo /?, note that the congruence: 

be + acx = ex2 (mod/?) 
leads to the conqruence: 

35 
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bcxn~1+acxn ^cxn+1 (modp). 

This has the solutions 
x = V2aiL1/2^T4b (mod/?). 

Letting c = 7, we see immediately that we obtain the group generated by the powers of x. These sequences will 
be called Fibonacci-like groups modulop and the sequences {Hn} and [Hn] will be called Fibonacci-groups 
modulo p. Note that these sequences have both the additive structure of a Fibonacci-like sequence and the mul-
tiplicative structure of a cyclic group. For an example of a Fibonacci-like group, let a = 1 and b = 3. Then 
a Fibonacci-like group exists iff 0 

(a2+4b/p) = (13/p) = 0 or 7. 
If p = 17, then a solution of 

x = (1±.s]~l3)/2 = (1±8)/2 (mod 17) 

is A- = 13 (mod 17), and this gives rise to the Fibonacci-like group (1, 13, 16, 4). 
Our method of proof of the main theorem will be based on the length of the periods of special types of 

Fibonacci-like groups, namely those for which b = 1. 
To demonstrate my method of proof, we will investigate the periods modulo p of the Fibonacci groups, 

[Hn] and {Hn}. Using the quadratic reciprocity formula, we can see that Fibonacci groups exist modulo p only 
when/7 = 5 orp =±1 (mod 10). 

Any generalized Fibonacci sequence {Gn} beginning with GQ = C, GJ =d, can be generated from the Fibon-
acci sequence lFn\ by the formula: 

Gn = (d - c)Fn + cFn+ 7. 

Thus, all the terms of the two Fibonacci groups {Hn} and [H'n} which are EE 1 (mod/7) can be expressed as: 

Hn =E ((1 + ^5)/2)n EE ((-1 + sf5)/2)Fn + Fn+1 s 7 (mod/7); 
or: 

Hn = ((1-j5)/2)n EE (~1-sj5)/2)Fn + Fn+1 EE 7 (mod/?). 

If Fn = 0 (mod p), then Fn+] must be EE 1 (mod p) and the nth term of both the sequences [Hn } and [H'n) 
will be EE 1 (mod/7). 

Note that the product of the/? terms of the two Fibonacci groups modulop, pf 5, is 

((1 + ^5)/2)n-((1-^5)/2)n ^-1n (mod/7). 

Let us now assume either Hn = 1 or H'n EE 7 (mod/7) but that Fn£0 (mod/7). Then Hn =±1 (mod/7) if Hn = 1 
(mod/?), or Hn EE±7 (mod/7) if H'n = 1 (mod/7). 

Let us assume that both Hn and Hn are EE 1 (mod/7). Then 

Hn EE ((-1+sj5)/2)Fn + Fn+1 EE 7 (mod/7), 
and 

H'n = ((-1-y/5)/2)Fn + Fn+1 = 1 (mod/7). 
Thus, 

Hn-Hn EE 5Fn EE 0 (mod/7). 

Since Fn^O by assumption, 5 = 0 (mod/7) and/7 must equal 5. If/7 = 5, then 

(1 + ^5}/2 = (1- sj5)/2 = Mt = 3 (mod 5), 

and there is only one Fibonacci group. This group is {1, 3, 4, 2} and has a period of 4. 
Now, suppose p i 5 and Fn ^0 (mod p). Then, either, 

(1) Hn EE ((~1+^5)/2)Fn + Fn+1 ^ 7 (mod/7) 

//;, = ((-1-y/5)/2)Fn-f-Fn+1=-1 {mod p) 
or 
(2) / / „ EE ((-1+^5)/2)Fn + Fn+J EE-7(mod/7) 

//;, EE ((-1-j5)/2)Fn + Fn+1 = 7 (mod/7). 
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In both (1) and (2), by adding Hn and H'n we see that/7,, = 2Fn+i (mod p). In (1), by subtracting Hn from 
Hn, we obtain Fn = 2/sJ~5 and thus Fn+1 = 7/^/5 (mod p). In (2), we observe that Fn =-2/«J~5 and Fn+j = 
- / A / 5 (mod/?). 

Now, if Fn =2Fn+i, then 
^ - / = Fn+1- Fn = -Fn + 1 (mod/?). 

Note that 
F2n = FnFn-i + FnFn+1 = Fn(Fn-7 + Fn+j). 

Thus, if Fn =2Fn+1/ Fn^O (mod/7), then Fn.f + Fn+1 =0and F2n = 0(mod/?). 
It is known that the only possibilities for fi(7, /, p) are 1, 2, or 4. If |3/7, 7,p) = 4, then a/7, /, /?> is an odd 

number. (See [2].) But, then F2n =0, Fn^O (modp) can have no solutions since the zeros of Fn (mod/7) can 
only occur at multiples of a(7, 7, p). Thus, Fn =2Fn+1 (mod/?) is not solvable if |3/7, /, /?J = 4. Thus, if 
]3/7, 7, p) = 4, all solutions of Hn = 7 or Hn = 7 (mod/?) must be generated by Fn =Q, Fn+i = 7 (mod/?), as 
we have seen before. Thus, the order of the two Fibonacci groups modulo/7 must both be oj(7f 7, p) if/? ^ 5. 

If j3f 7, 7, p) = 2, then a(7, 7, p) = 0 (mod 4) [2] . But the first solution for Hn or H'n = 7 generated by an 
Fn ^0 (mod/?) can only be n = 1/2a(7, 7,p), if such a solution exists. This is true since /? must equal 1/2k>a/7,7,pi 
for some odd integer Ar. But both Hfji(i,i,p) and H^^^p) are = 7 (mod/?). Thus,/? divides 

li(7, 7fp) = 2a(7, 7,p). 
Hence, k= 7 and n = 1/2a(7,7,pl But since a(7, 7, p) = 0 (mod 4), n= 1/2a(7, 7,p) = Q (mod 2); and.the prod-
uct of / / „ and Hn =-7n = 7 (mod /?), not - 1 , a contradiction. Thus, if (3(7, 7,p) = 2, the order of both Fib-
onacci groups must be \i(7, 7, p). 

The last case occurs if $(7, 7,p)= 7. Then a(7, 7,p) = 2 (mod 4) [2] . Hence, n = 1/2a(7, 7,p) = \ (mod 2) is 
the first place where either Hn or Hn can be = 1 and Fn ^ 0 (mod /?). Then the product of Hn and 

Hn SEE - 7 " = - 1 (mod/?). 
Now, look at the two congruences: 

F2n = Fa(i,i,p) = FnFn-i + FnFn+i'= 0 (mod/?) 
and 

F2n+1 = Fa(i,i,p)+1 = F^+F2
n+1 = 7 (mod /?). 

Solving for Fn and />,* 7, we see that 
Fn = £?A/5 and /77+r - #/>, = ±1/\/5 (mod/?), 

in agreement with earlier results. Thus, if |3f 7,7,p) - 7, the period of one Fibonacci group is 1/2<i(7,7,p) and the 
period of the other is a(7,7,p). 

We have now proved our first lemma. 

Lemma 1. If (5/p) = 0 or 7, p an odd prime, then the periods of the two Fibonacci groups [Hn) and 
{Hn} modulo/? are both \i(7,7,p) \\$(7,7,p) = 2 or 4 and p f 5. If/? = 5, the period of the unique Fibonacci 
group is 4. If j3/7,7fp) = 7, the period of one Fibonacci group modulo p is a(7,7,p) = \x(7,7,p)f while the period 
of the other group is 1/2\±(7,7fp). 

To generalize this result to other Fibonacci-like groups, it would be helpful if the product of the nf terms of 
these sequences, {Mn} and {M'n}, were = -1n (mod /?) as before. The product of the nt terms of the two 
Fibonacci-like groups is: 

((a + ̂ +Tb)/2)n• ((a - ^T~4~b)/2)n EE (-b)n (mod/?). 

This product will be =-1n if b = 7. From now on, in discussing Fibonacci-like groups [Mn] and [M'n] modulo 
/?, b will equal 1 and (a2 +4/p) will equal 0 or 1. 

If Kg = c, K1 = d are the first terms of a G. F. L.S., then this sequence can be generated from the correspond-
ing P.F.L.S. by the formula: Kn = (d - ac)Jn + cJn+i- Hence, if b = 7, 

Mn = ((a + -jl>2~T4}/2)n = ((-a+.jli2~^~4)/2)Jn+Jn+l (mod/?) 
and 
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M'n E= ((a-sja2 +4)/2)n = ((-a-s/a2 +4)/2)Jn+Jn+1 (mod/?). 

We wili next need a few formulas for P.F.L.S. [Jnj with a and b unspecified. These formulas are simply gen-
eralizations of some familiar Fibonacci identities: 

(a) Jn-lJn + l-Jn= h1)nbn'1 

(b) J2n = bJnJn-i+JnJn+i 

(c) J2n+1 = bJn +Jn+1 • 

These formulas can easily be proven by induction. If b = 7, we obtain exactly the same formulas as for the 
Fibonacci sequence. 

The method for finding the periods of Fibonacci-like groups with b = 7 is along the same lines as before. 
$(a, l,p) must be either 1, 2, or 4. To prove this let n = a(a,l,p). Then Jn.1Jn+1 - J„ = - l n (mod /?).But 
Jn = 0 (mod /?) and 

1-Jn-1 = Jn+i - aJn = Jn+i (mod/?). 

Thus, J%+1 =-1n (mod p). If n is o6d,J^+1 =-1n (mod p)',J^+1 = / and $6?, 1,p) = 4. (This also shows that 
no term J2n+1 of a P.F.L.S. with b = /can be divisible by a prime p = - / (mod 4) since (-1/p) = -1.)\\ 
Jn+1 = I then ^ ± 7 . lfjn+1 = 1,$(a,1,p) = 1. \ijn+1=-1 (mod/?), (S(a, 1,p) = 2. 

Let us now look at the terms of {Mn} and {/Wn} which are = 1 (mod/?). As before \ijn=0 (mod/?), then 
Jn+1 must be = 1 (mod/?) and bothM„ mdMn = 7 (mod/7). 

\iJn^O (mod/?) and bothM^ and M'n are = 1 (mod/?), then we have: /Va2 +4)Jn =0 (mod/?) and a2 * 4 = 
0 (mod/?). But then there is only one Fibonacci-like group [Mn) and Mn = (a/2)n (mod/?). Buta2+ 4 = 
0 (mod /?). Thus;a2// = (a/2)2 = - / (mod/7). Thus, a/? belongs to the exponent4 modulo/? if (a2 +4/p) = 0, 
and the period of such a Fibonacci-like group (mod/?) is 4. 

Hence, if eitherMn orMn = 7, •/„ ^ t f anda2 ^ 4 ^ 0 (mod/?), then one otMrifMnm 1 and the other is = - 1 
(mod/?). Solving for Jn a n d ^ 7 , we see that./,,*/ = 1/2aJn and that 

7„ = ±2/^]a~2~~+~4, Jn+1 = ^ a ^ = ta/ja^+i . 
Also, 

1 'Jn-1 =Jn+l — aJn = 1/2aJn — aJn = —1/2aJn = —Jp+1 (mod /7). 
Thus, as before, if a2 + 4^0 (mod/?), the first/7 > #such that / I^ orM'n = 1 (mod/?) is generated by aJn £ 

0 (mod /?), is /7 = %a(a,1,p), if it exists. If 0/a, 1,p) = 4, then no such instance can occur since afe 7,/?̂  is odd. If 
(3(a,1,p) = 4, then id(a,1,p) =4 (mod 8), since a(a, 1,p)= 1 (mod 2). 

If (3fa, 1,p) = 2, then one can solve for Jn an6Jn+j by the congruences: J2n = 0 (motip),J2n + i = ~1 (m°d 
p). Substituting back, one finds that the product of Mn and Mn is = 1 (mod/?) in contradiction to what we 
have determined before. This also shows that 1/2d(a, 1,p) = 0 (mod 2), a(a, l,p) = 0 (mod 4), and \x(a, l,p) = 0 
(mod 8). 

If $(a, 1,p) = 7, we solve for Jn andJn+j by the formulas: T ^ = 0 (mod/?), J2n+1 = 1 (mod/?). Solving, we 
find that 

Jn = ±2/^Ja2 +4, Jn+1 = ftaJn = ±a/sja2 +4 (mod/?), 

in accordance with our previous results. Note that this further shows that if fi(a,1,p)= 7, then (a2 +4/p)= 7. 
Also, if we substitute back to determine Mn and M'n, we determine that their product = —1 (mod/?). This 
shows that 1/2a(af 1,p) = 1 (mod 2) and a(a, 1,p) = 2 (mod 4) if j3fo 1,p) = I 

Thus, we have now proved our second lemma. 
Lemma 2. The periods of the Fibonacci-like groups {Mn} and [Mn] modulo p are both \±(a,1,p) if 

$(a, 1,p)= 2 or 4 and (a2 +4/p) = 7. If (a2 +4/p) = 0, then the period of the single Fibonacci-like group is.4. If 
(a2 + 4/pf = 7 and fi(a, 1,p) = 1, then the period of one Fibonacci-like group is 'Apt(a, 1,p) while the period of 
the other group is p(a, 1,pl 

The remainder of this paper will be devoted to finding for a given odd primep all the P.F.L.S. with 0 <a <p, 
b = 7, and (a2 +4/p) = 0 or 1, and studying the Fibonacci-like groups that they generate.. 
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To find all 0 <a <p such that (a2 +4/p) = 0 or 7, all one needs to do is find all solutions of the congruence: 

x2 - a2 = (x + a)(x - a) = 4 (mod/?). 

There are p — / sets of solutions fo r * and a, generated by 

(x+a) = -k, (x-a)=4/k (mod/?), 1' < k < p - 7. 
In general, 4 sets of solutions lead to the same x2 and a2: 

(x + a) = k, (x - a) = 4/k; (x + a) = 4/k, (x - a) = k; 

(x+a) = -k, (x-a) = -4/k; (x+a) s -4/k, (x - a) = -k (mod p). 

Since k^Ofk^-k and 4/k £ -4/k (mod/?). However, 4/k = k iff k = ±2 (mod /?). Also, -4/k = * iff * =±^J-4 
(mod /?). Combining these facts with the fact that/?, an odd prime, = 1 (mod 4) iff both ±4 are quadratic resi-
dues modulo /?, one finds that the number of solutions ofx2 = a2 +4 (mod/?) is n + 7, if/? = either4/7 + 7 or 
4n + 3. 

I next claim that the set of numbers of the form ((a±yja2 + 4)/2), where 0 < a </? and (a2 + 4/p) = 0 or /, 
gives rise to all the non-zero residues of /?. In general, (a ± *Ja2 + 4)/2 gives rise to two distinct residues, a and 
—a, except in the case where a = 0 (mod/?). Combining all these conditions with the fact that a2 +4 = 0 (mod/?) 
is solvable only if/? = 1 (mod 4), we see that all the non-zero residues are obtained if the congruences: 

(ax ± >Ja\T4)/2 = (a, ± ^f+~4)/2 

imply t h a t ^ =a2 (mod/?). 
In each of the different cases, if we put the square roots on the same side of the congruence, square both sides 

and collect terms, we obtain the congruence: 

4a\ - 8ala2 +4a\ = 4(ax - a2)
2 = 0 (mod/?). 

Thus, ax =a2 (mod/?). 
Combining our previous results, we are now ready to state our main theorem. The P.F.L.S. with recursion re-

lation: Jn+i = aJn + bJn-f will be denoted by {Ja,b}-

Theorem 1. If/? is an odd prime equal to either 4n + 1 or4n +3, then there are 2n + 1 P.F.L.S. {Ja,i} 
with 0 < a < p - 1 and b = 1, such that (a2 + 4/p) = 0 or 7. These generate/? - 7 Fibonacci-like groups, the 
first terms of which are equal to each of the/? - 7 non-zero residues modulo/?. 

The exponent e to which a non-zero residue r belongs modulo p is equal to the period of the Fibonacci-like 
group of which it is the first term. 

(1) If e = 1 (mod 2), thene = V2\i(a/l,p) for some P.F.L.S. {J a f 1 ) with a <p dx\&fi(a,1,p)= 7. 
(2) If e = 2 (mod 4), then e = /ife, 7,/?,/for some P.F.L.S. {Ja,i} witha</? andp(a,1,p)= I 
(3) We/4, e = 4 (mod 8), then e = \±(a, l,p) for some P.F.L.S. {Ja,l} with a <p ar\df5(a,1,p) = 4. 
(4) If 0 = 0 (mod 8), then e = id(a, 7,/?̂  for some P.F.L.S. {Ja,i} witha</? and $(a, 1,p) = 2. 
(5) If e = 4, then there exist 0(4) = 2 P.F.L.S. {j3/i} with a < p, a(a,1,p) = p, and $(a,1,p) = 4. Each 

P.F.L.S. generates a Fibonacci-like group with a period of 4. 
This theorem leads to a number of interesting corollaries. Unless stated otherwise, /? is an odd prime, b = 1, 

and (a2 +4/p) = 0 or 7. 
Corollary 1. If 0 < a <p - 7, and b= 1, then the period of any P.F.L.S., {Jaj}, divides/? - 7, is even, 

and is not equal to 4. If d divides/? - 7 and d = 2 (mod 4), then the number of P.F.L.S. {Ja,i}, 3 </?, with 
y.(a,1,pj = d is (p(d). If d / 4 and^/ = 0 (mod 4), then the number of P.F.L.S. {Ja,i}, a<pr with \x(a, 1,p) = d 
\%1/2(t)(d). 

Proof. This follows from Theorem 1 and the fact that the number of residues belonging to a particular ex-
ponents modulo/?, wheree dividesp - 1, \s(p(e). 

The next corollary is very important. It states that for any odd prime,/?, there exist an infinite number of 
P.F.L.S. with the maximum possible period modulo/?. 

Corollary 2. If 0 < a < /?, p / 5, then the number of P.F.L.S. {Ja,i} with a maximal period of/? - 7 is 
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1/2(p(p - 1)\\ p - 7 = 0 (mod 4). If p - 1-1 (mod 4), then the number of P.F.L.S. {jaf1} with a maxi-
mal period modulo p of p - 7 is <j>(p ~ 1). If p = 5, then the P.F.L.S. {jjj} = [Fn] and {J4fi\each have 
periods of 20. (These periods are maximal since T/2 +4/5) = (42 +4/5) = 0 and (}(1,1,5) = (3(4,1,5) = 4.) If a 
now ranges over the non-negative integers, then there are an infinite number of P.F.L.S. {Ja/j} with a maximal 
period modulo/?. 

Proof. If (a2 + 4/p) = 1, then one can generate a Fibonacci-like group whose period is at most/? - 7 and 
which equals \x(a,1,p). Thus, \i(a,1,p) is at most/? - 7. If a=d (mod/?), then the P.F.L.S. {Ja/j} and { 7 ^ 7} 
have the same period modulo/?. The rest follows from Corollary 1. 

If (a2 + 4/p) = -1, then Corollary 2 does not apply, but we can still find isolated cases of P.F.L.S. {Ja,i} 
with maximal periods. If (a2 + 4) = ~1 and fi(a, 1,p) = 2 or 4, then \i(a, 1,p) can be at most 2(p + 1). Examples 
are: (5/7) = - 1 , 0(1,1,7) =2 and JU(1,1,7) = 16; and (5/13) = - 1 , 0(1,1,13) = 4, JU(1,1,13) = 28. Note that if 
$(a,1,p) = 1, then (a2 +4/p) must = 1 as we have shown earlier, and the maximal period modulo/? is/? - 7, 

Corollary 3. If 0 <a </? and/? = 3 (mod 4), then every P.F.L.S. {Jaj} has (3(a,1,p) = I 

Proof. This follows from the fact that/? - 7 =2 (mod 4). 

Corollary 4. If 7 < a </?, then no P.F.L.S. { ^ 7 } has (l(a,1,p) = 7 iff/? is a Fermat prime = 22 + 1.lf 
a = 0 (mod p), then one gets the trivial P.F.L.S. (0,1,0,1, — ) with fi(a,1,p)= 1. This gives rise to the 2 trivial 
Fibonacci-like groups, {]n} and { - 1 / 7 } . 

Corollary 5. If 0 < a < p and/?- 1"=2kY\pj/ p/=] (mod 2), then the number of P.F.L.S. {Ja,i} with 
$(a,1,p)= 7 is ' 

The number of P.F.L.S. {ja/1} with ($(a, 1,p) = 2 is 

c/jp-r 
d=0 (mod 8) 

The number of P.F.LS. {j3f1} with fi(a, 1,p) = 4\s 

1/2 £ <t>(d) . 
d\p-1 

d^4 (mod 8) 

Corollary 6. If 0 < a < /? and e is an even number dividing/? - 7, then the summation of all the a's of 
P.F.L.S. {Jai} with \i(a, 1,p) = e is = 0 (mod /?). In addition, the summation of all the a's of P.F.L.S. {ja,i} 
with \x(a,1,p) dividinge is = 0 (mod/?). 

Proof One can prove this by using the fact that if r belongs to the exponents modulo/?, then so does 
1/r. Combine this with the fact that if r = (a ±sja2 +4)/2 (mod/?), then 1/r = (-a ±^J(-a)2 + 4)/2 (mod/?), 
and we obtain the result. 

One of my purposes in writing this paper was to see if I could get any general results on the relation between 
residues and the primes of which they were primitive roots. Unfortunately, I was unable to obtain any new re-
sults. But I will close this paper with an indication of how one might use P.F.L.S. and Fibonacci-like groups to 
obtain results about primitive roots. I will prove, using my method, the well-known result that if 5- and ^ -̂  7 
are primes, s = 3 (mod 4), then all quadratic non-residues are primitive roots modulo 2s + 1, excluding — 1 . 

I will use a result of Robert Backstrom [1], to prove this. He stated that if s is a prime and/? = 2s+ 7 is prime 
such that(-b/p) = -1 and (a2 +4b/p) = +1, then a(a,b,p) = p - 1A\b= 1, then/? = 3 (mod 4), %\x\z%(-b/p) = 
- I Hence,/?- 7 = 2 (mod 4). Thus, every P.F.LS. {Ja,i}, 0 < a < p, (a2 + 4/p)= 1, has(3(a,1,p)=* 1 by 
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Corollary 3. The only periods that a P . F . L S . { ^ ; } can have is 2 or/? - 7, the only even numbers dividing 
p - 7. It is easily seen tha t^ / /? - 3) of these P.F.L.S. have a period o f / 7 - 7, each giving rise to one Fibonacci-
like group with a period of 1Mp - 1) and one with a period o f / ? - 7. Those with periods of 1Mp - 1) correspond 
to the quadratic residues of p excluding 1, and the others correspond to the quadratic non-residues, excluding 
- 1 . 
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SOLUTION OF A CERTAIN RECURRENCE RELATION 

DOUGLAS A. FULTS 
Student, Saratoga High School, Saratoga, California 

At the recent research conference of the Fibonacci Association, Marjorie Bicknell-Johnson gave the recurrence 
relation 

(1) Prf1-2Pr-Pr-f+Pr-2 = 0, r = 3,4,-, 

that represents the number of paths for/- reflections in three glass plates (with initial valuesPj = 7, ?2 = 3 and 
P3 = 6). I submit here an explicit expression forPr / and also obtain its generating function. 

Based on the usual theory for such relationships, the general solution of (1) can be given in the form 

(2) Pr= C1R
r
1+C2Rr

2 + C3R
,
3f 

where the quantities R?, /?2 and R3 are the roots of the equation 

(3) R3-2R2- R+1 = 0, 

and the constants C-j, C2 and C3 must be determined to fit the specified conditions. 
This cubic, whose discriminant is equal to 49, has three real roots, and they can best be expressed in trigono-

metric form, as texts on theory of equations seem to say. The roots of (3) are 
r 

(4) 

where 

Rl = 3 [1 + ^ c o s < ^ 
R2 = I [2 - sfi cos 0 + V ^ T sin 07 

R3 = 1- [2 - V7 cos 0 - V27" sin 07 

(5) 0 = |- arc cos ( — L _ 

Such roots can be represented exactly only if they are left in this form. (Approximations of them are 

Rf = 2.2469796, R2 = 0.5549581, and R3 = -0.8019377.) 

The constants in the solution (2) are then found by solving the linear system 

[Continued on page 45.] 
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Stanton and Cowan [1] have discussed the two-dimensional analogue of Fibonacci Numbers. They dealt with 
numbers 

g(n + I r + 1) = g(n + 1, r) + g(n, r+1) + g(n, r) 

g(n,0) = g(0,r) = 1 rfn > O integers. 

Carlitz [2] has discussed in detail a more general form of g(n,r). In this paper we get the Tribonacci Numbers 
from g(n,r) and discuss properties of functions related to Tribonacci Numbers. Analogous identities have been 
established by Alladi [3] for Fibonacci Numbers. Bicknell and Hoggatt [4] have shown another method of 
getting Tribonacci Numbers. 

The numbers g(n,r) can be represented on a lattice as follows: 

k 11 ^ 
**•» k 9-. 

r-"7"' 
k^5^. ^ ̂  k. 3^ 
% 2l2^ 

41 
25 

^ " l 3 
* "N. 

"5 
^ , , 

^ " 63 

- ^ 25 
s 

7 
>* ^_ 

Array 1 

^ 
^ 4 1 

^ ^ - ^ 9 ^ 1 1 ^ 
^ V. -s» ^_- >*__, ^_ 

1 1 1 1 1 1 

13 

~1 

The descending diagonals are denoted by dotted lines. The above figure is transformed into a Pascal-shaped tri-
angle by changing the descending diagonals into rows 

Array 2 Tribonacci Triangle 

1 
1 
1 
1 
1 

1 
3 
5 
7 

1 
5 

13 
1 
7 

It is interesting to note that the sequence of diagonal sums in the Pascal-shaped triangle is 

1, 1,2,4,7, 13 ,24 ,44 ,81 , - , 

which is the Tribonacci sequence 

Tn = Tn-i + Tn-2+Tn„3, T0 = 0, T1 = 7, T2 = 1. 

We now add variables (suitably )xn,ym on the arrays to make every row a homogeneous function i n * andy. 

^Currently at UCLA. 
42 



FEB.1977 ON TRIBONACCI NUMBERS AND RELATED FUNCTIONS 43 

7 
x y 
x2 3xy Y2 

x3 5x2y 5xy2 y3 

x3 7x3y 13x2y2 7xy3 y4 

The rising diagonal sums give a sequence of functions Tn with the following rule of formation: 

Tn(x,y) = xTn-l(x,Y) + yTn-2(x,Y) + xyTn-3(x,y) . 

Let us denote the partial derivatives and convolutions by the following 

n 

Tn(*,y) = J2 Tk(x,y)Tn.k(x,y) . 
k=0 

As in the case of Fibonacci Polynomials, do there exist relations between these functions? To get symmetric 
results we denote Tn(x,y) by T*+1(x,y). 

Theorem 1. ^n+1(x/y) + y7^1(xfy) = tn(x,y). 

Theorem 2. 7n(x/y)+x7n-1(xfy) = t*+1(x,yj 

Theorem J, t*+1(x,y)-~ tn(x,y) = xTn-^xy) -yrn-2(x,y). 

Proofs. Theorem 3 follows immediately from Theorems 1 and 2. Since Theorem 2 is similar to Theorem 1 
we prove only Theorem 1. 

To prove Theorem 1 we would essentially have to show 

(D Tn(x,y) + yTn-2(x,y) = tn(x,y). 

Assume that statement holds far; n = Of 7, 2, 3, —, m. From the recurrence relation \wTn(x,y) we see that 

Now 

dTm+1(x,y) dTm(x,y) dTm-i(x,y) . zTm-2(x,y) 
—£T- "" T<n(x>y)+X -Tx~ +y—^— +yT™-2(x,y)+yx —^— ' 

m+1 m-1 

Tm+i(x,y) + yTm-i(x,y) = ]C Tk(x,y)Tm-k+i(x,y) + Y J2 Tk(x,y)Tm-k-i(x,y) 
k=0 k=0 

[ m m-2 "I 

X ) Tk(x,y)Tm-k(x,y)+y £ Tk(x/y)Tm.k.2(x/y)\ 
k=0 k=0 J 
r m-1 m-3 -| 

+ y \ H Tklx,y)Tm-k-1(x,y) + y YJ Tk(xfy)Tm^k-3(x,y)\ 
Lk=0 k=0 J 

[ m-2 m-4 *"| 

2 Tk(x,y)Tm-k-2(xfy) + y £ Tk(x,y)Tm-k-4(x,y)\+g(x,y)+h(x,y) 
k=0 k=0 J 

applying recurrence for Tn(x,y), whereg(x,y) + h(x,y) are the remainder terms from the first and second sum-
mations in each square bracket Now using the recurrence we may simplify g(x,y) and h(x,y) to 

g(x,y) = Tm(x,y), h(x,y) = yTm.2(x,y) 
which makes the right-hand side to be equal to the partial derivative 

*Tm+1(x) 
ax 
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This means (1) holds for/7 = m + 1 and can be verified to hold for/7 = Of 7. By mathematical induction it holds 
for all positive integral values of n. 

We shall now discuss some more properties of the Tribonacci Triangle. If we attach the term xm to every 
member of the (m + Vth row then the generating function of the (n + Vth column is 

Gnix) = xiii±xr 
<1-x)n+1 

so that 

(1) £ GnM= ____! 
n=0 1-2X-X2 

Now (T) clearly indicates that the row sums of the Tribonacci Triangle are Pell-Numbers 

Pn = 2Pn-.1+Pn-2, Po= 0, Pi = /. 
If on the other hand we shifted the (n + 1)*' column n steps downwards and in the new array added the term 
Xm to every member of the (m + Vth row, then the generating function of the (n + Vth column of this array 
would be 

(1-X)n+1 

so that 

(2) 
n=0 1-x-x2-x3 

Now (2) indicates that the rising diagonal sums of array (2) are Tribonacci Numbers. In fact if we attached 
Xm Yr to the (m + l)th ior(r+ Vth column element of the Tribonacci triangle we get the generating function 
of the r/7 -̂  />/f/7 colu mn as 

Gn(XfY) = X?YHll±A)^ 

(1-x)n+1 

1 

so that 

<3> E Gn(X,Y) = 
n=o 1-X-XY-XJY 

which is the two-variable generating function of array (2). We conclude by considering the inverse of the follow-
ing matrix. 

/:, v ' . ' . \ 
1 3 1 = - 1 1 \ 
1 5 5 1 / 2 - 3 1 

\ 1 7 13 7 1 / \ - 6 10 - 5 1 / 
Now denote by nT? the (n + Vth row(r+ Vth column element of 

1 
1 
2 
6 

1 
-3 
10 

1 
-5 

Two interesting properties of nT*\stand out 
n 

p.1. ]P nr; = o 
r=0 

n > 1 (= Horn = 0) 
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P. 2. E 
r=0 

\nT?\ {n + U 
(= 1 for n = 0). 

REMARKS. We wish to draw attention to the fact that we obtained Tribonacci Numbers from Stanton and 
Cowan's Diagram. Such a generalization to higher dimensions may be possible but it is very complicated as it is 
exceedingly difficult to picture these numbers. However there are other ways of obtaining these numbers as for 
example Tribonacci numbers from the expansion of (1 +x +x )nW. 
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[Continued from page 41.] 

(6) 

whose determinant is 

(7) D 

C1R1 + C2R2 + C3R3 = 1 

C1R^ + C2R2 + C3R3 = 3 

C1R
3
1+C2R2 + C3R3 = 6 , 

Rl R2 R3 

01 ^2 ^3 
n3 p3 n3 
M1 h2 n3 

= (R1 - R2)(Ri - R3HR2 -R3) = 7 . 

Thus, using Cramer's rule, one obtains constants as 

(8) 

C1 = f ^2^3(^3 ~ R2>16 - 3(R2 + Fl3) + R2R3] 

C2 = j RiR3<Fd-Fl3)[6-3(R1 + R3) + R1R3] 

[ C3 = 1
7 RjR2(R2- R1)[6-3(R1 + R2) + R1R2] 

which reduce simply to the fixed numbers 

(9) C1=L(3-R3), c2=
1

7(3-R1), C3=
1j(3-R2) 

when many discovered relations between the three roots are taken into account. These involve the following. 
Relations between the roots and the coefficient of the cubic gives 

(10) R7 + R2 + R3 = 2, R1R2 + R1R3+R2R3 = -1, R1R2R3 = - I , 

while from the discriminant we have 

(11) (Ri- R2)(R1 - R3)(R2- R3) = s/W = 7. 

Use of these and the relation R1 + R2 + R3 = 6 furnish, after some manipulation, 

(12) 
R7R3 + R2R

2
1 + R3R§ = 4 

R1RI+R2R
2

3 + R3R
2
1 

[Continued on page 56.] 



SUMS OF FIBONACCI RECIPROCALS 

W.E. GREIG 
West Virginia University, Morgan town, West Virginia 26506 

Good [1] has shown that 

(1) V / = 3-^1 . n > 7, 

where b = 2m and B = 2n. (We use this notation to achieve clarity in printing.) A generalization may be given as 
follows: 

(2) JL J~ = Ck-
. run 

FkB-1 

m=0 • "** ~* FkB 

n,k > 7, 

where Ck is independent of /7 and in fact 

f(1 + Fk_j)/Fk for even k, (3) r =\ ' l rk-V't~k tor even K, 
k \(1 + Fk_1)/Fk+2/F2k for odd k. 

For k=\, 2, 3, - , the first ten values of Ck are: 3, 2, 10/8, 1, 46/55, 3/4, 263/377, 2/3, 1674/2584, 7/11, 
•••. If we write Ck with denominator as F2k

 t n e n the numerators form the interesting sequence 

3, 6, 10, 21, 46, 108, 263, 658, 1674, 4305, 11146, 28980, ••. 

Formula (2) is easily proved by induction. Assuming it holds for n, then for /7 -̂  / we find that we have to 
show that 

7 _ FkB-i F2kB-l 
F2kB FkB F2kB ' 

and this comes by setting/ = kB in the formula 

(-D'Fj - F2JFH-F2HFJ , 

which may be proved directly by the Binet formula, or can be seen as a special case of the well known formula 
Fm + 1 Fj + Fm Fj-1 = Fm +j 

when m = -2j and using F_j = (- 1)J Fj. 

This shows that Formula (2) holds with Ck independent of n. Taking n = 1 we may determine Ck from 

1/Fk+ VF2k = Ck-(
F2k-l/F2kl 

It is from this that we have found (3). 
Since FJ/FJ-J -+ (1 + ^5)/2 as/ -> °°, we have a corollary 

oo 

(4) • £ -L = Ck - 1 with a = l^fi- . 

Our formula has an interesting application to sums of reciprocals of Fibonacci numbers in another way. As k 
and m take on all integer values such that k > O and m > 0, then (2k + 1)2m generates each natural number 
once. Hence for absolutely convergent series we have the general transformation formula 

46 
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(5) ]T f(n) = £ E f((2k+ 1)2m) ""XL tf*^-
n=1 k=0 m=0 k=1 m=0 

Arodd 
Applying this to the Fibonacci numbers we have 

(6) f i - i t jr = i {Ck-\)> by W-
n=1

 hn k=1 m=Q l-kb k=1 3 J 

k odd k odd 
= 2.382 - + 0.632 -+0.218 -+0.080 -+0.030 ••• 
= 3.35988 -

as given by Brousseau [2, p. 45] . 
By some simple manipulations with the Binet formula Fn = (an - (-1/a)n)/\/5, formula (6) m 

formed into some variant forms that we believe are of interest It is easy to verify the following: 

(7) 

(8) 

(9) 
F2kg4k_1 g2k_1 

To use these, we note that in view of (3), series (6) becomes 

no) y -J- = y {-L +-2- + ^ - 1-) 
A Fn A I f t F7k Fk a I 

Fk-1 _J=_ 
Fk a 

_ L _ N/5 
F2k a2k + •, 

_L + _ ^ _ 

a2k
+1 ' 

= _*£_ 
a4k-1 

= y/5 

^ F n k=1 ^ k F2k 

/rodd 
so that by (7) we get 

(ID Z^LU^-^-
n=1 

I Fk F?k 2k , 

A: odd 

k=i K k=1 ZK k=1 a + 1 
k odd k odd k odd 

- 1.8245 - + 2 . 2 9 2 4 - - 0 . 7 5 7 1 - . 
Next, using (8), we get 

k odd k odd /c odd 
= 1.8245 -+1.1462 -- + 0.389082--. 

Finally, using (9), this becomes 

n=1
 tn k=1 fk k=1 a<*«_ 7 

kodd kodd 
= 1.8245 -+1.5353 •-. 
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This last form of our result is most interesting because it is not at all what we get if we transform the recipro-
cals by simple bisection. 

By bisection it is easy to see that 

E 
n=1 

whence 

(14) 

Comparing this with (13) • 

(15) 

-1 = y -1 +E -1 = 
f» h Fk

 M
 Fi 

E 
k=l 

k odd j even k odd 

n=1
 hn k=1 t~k 

A: odd 

we find the interesting equivalence 
oo 0 oo 

A: odd 

E 
n=1 

> 

i * „?, 
a2n 

a4n-1 

a = l±f 

a2"-

J5 

-a'2n 

The series on the right seems to converge twice as fast as that on the left, and six terms give the sum as 
0.68663 •••, whereas it takes 12 terms of the other series to get this. 

Using the Binet formula it is also possible to rewrite (12) as 

2ak 
(16) E i - E la3k+*2k+ak+1-2ak) - ^ - = V* E { T * - 4k , 

n-1 n k~l a - 1 k-i l ak-1 a4k-1 
k odd k odd 

= (2.083313 — 0.580727 — )V5" = (1.5025865492-)V5 = 3.359885665 ••• . 

A preliminary form of this paper was written in October 1975 and communicated to H. W. Gould and I. J. 
Good later. The author is also indebted to H. W. Gould for suggestions leading to the presentation of the ideas 
in the present form. A generalization of the main results here will appear in another paper [3] . A generalization 
of formula (5) will appear in Gould [4 ] . See [5] for an earlier treatment. 
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FIBONACCI NOTES 
5. ZERO-ONE SEQUENCES AGAIN 

L.CARL1TZ* 
Duke University, Durham, Worth Carolina 27706 

1. The point of view of the present paper is somewhat different from that in [1] . We shall now consider the 
following problem. 

Let f(m,n,r,s) denote the number of zero-one sequences of length m + n: 

(1.1) (ai,a2,-, am+n) (a,- = 0 or 1) 

with m zeros, n ones, r occurrences of (00) and s occurrences of (11). 
Examples. 
I. m = 3, n = 2, r = 1, s = 0 

( 0 0 1 0 0 ) 
( 1 0 1 0 0) 

. ( 1 0 0 1 0) f(3,2,1,0) = 4 
( 0 1 0 0 1 ) 

\\. m = 4, n = 2, r = 2, s = 1 
( 0 0 1 1 0 0 ) 
( 0 0 0 1 1 0 ) f(4,2,2,1) = 3 
( 0 1 1 0 0 0 ) 

111.777=4 n=2, r= /, s= 1 /(4,2,1,1) = 0. 

In order to evaluate f(m,n,r,s) it is convenient to define fj(m,nj,s^ the number of sequences (1.1) with m 
zeros,/7 ones, r occurrences of (00),s occurrences of (11) and with 57 = j, where/= 0 or 1. It follows immediate-
ly from the definition that fj(m,n,r,s) satisfies the following recurrences. 

fo(m,n,r,s) = fgim - 1, n, r- 1, s) + f-jfrn - /, n, r, s) 

(1.3) 

(1 2) 
fi(m,n,r,s) = fo(m, n- 1,r,s) + frfm, n- 1, r,s- 1), 

where m > 1, n > 1 and it is understood that 

fj(m,n,r,s) = O (j = O or V 

if any of the parameters /??,/?,r,s is negative. We also take 

fo(lO,0,0) = fi(0,l,0,0) = 1 

f0(lO,r,s) = fj(0,7,r,s) = 0 (r + s > O) 

and 
(1.4) fi(OfO,r,s) = O (j = Oor 1) 

for all r,s> 0. 
Now put 

(1.5) Fj = Fj(x,y,u,v) = £ fj(m,n,r,s)xmynurvs 

m,n,r,s=0 

^Supported in part by NSF Grant GP-37924X. 
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and 
(1.6) F = F(x,y,u,\/) = Fo(xfy,u,v) + Fi(xfy,u,v) . 

It follows from (1.2), (1.3), (1.4) and (1.5) that 

Fo(x,y,uey) = x +xuFo(x,y,u,v) +xFi(x,y,u,i/) 

Fi (x,yfufv) = y +y Fo(x,y,u,v) + yvF i(x,y,ufv), 
or more compactly 

(1 - XU)FQ- xFi = x 

-yF0 + (1-yv)F1 = y . 

Solving this system of equations we get 

(1.7) 

(1.8) 

Therefore, by (1.6), 

(1.9) 

In the next place, we have 
o 

7 _ v-

p x(l - yv) +xy 
0 (1-xu)(1-yv)-xy 

f1 = xy +y(i -xu) 
i (1 - xu)(1 - yv) - xy 

11 - xu)(1 -yv) - xy 

(xy r 
<1-xu)(1-yV)-xy fo (1_xujk+l(1_yvjk+1 k% r % 

°° min(m,n) 

• Z *mvn £ (?) (V) »m-kv"-k 

7 - E M * z ( r r ) ( s D w w 

m,n=0 

It then follows from (1.9) that 

k=0 

F= E { C V ) (n
k)x

mynum'k-1vn-k
+[

m
k) (n~k

 1) xmy"um-kvn~k-7 

k ,{n'k
1)xmynum-kv 

m,n,k 

+ 9 ( m- 1\ in - U vmx/nnm-k-1 n-k-1 {m - 1 \ ( n - 1 x „m ltn„m-kt,n-k-1 
z \ k ) \ k ) x y u v 

(1.10) _ ^ - 7 ) (n-l^xmynum-k-1vn-k^ 

= i {\mk 1) [lZ\)xnVum-k-1vn-k+{m
kZ]) (n~k

1) *mynum-kv"-k-] 

m.n.k 

-2{m~1) ("-1)xmynum-k-1vn-k-1} 

Since 

it follows from (1.10) that 

(1.11) f(m,n,r,s) = < 

F = £ f(m,n,r,s)xmyW , 
m,n,r,s=0 

f 2 ( - - ' ) ( " 7 ? ) (.-r-n-s) 

Cr~1){ns~1) (m-r = n-s±1) 

0 (otherwise). 
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This holds for all m,n > 0, exceptm = n = 0. If m (orn) = 7̂ clearly f(m,n,r,s) = 0 unless r (ors) = 0. 
For example, (1.11) gives 

f(3,2,1,Q) = 2 (2
7) ( M = 4 

f(4,2,2,1) = (3
2) []) = 3 

f(4,2,l,1) = 0, 
in agreement with the worked examples. 

We may now state the following 

Theorem 1. The enumerant tfVfl,/?,/;^ is evaluated by (1.11). 

The simplicity of this result suggests that one may be able to find a direct combinatorial proof. 

2. We now examine several special cases. First, forx = y, (1.9) becomes 

(2.1) F(x,x,u,v) = 2x^~*-kU:vL 
(1 -xu)(1-xv)-x2 

Put 

(2.2) f(n,r,s) = £ f(j,k,r,s) , 
j+k=n 

so that f(n,r,s) is the number of zero-one sequences of length n with r occurrences of (00) and s occurrences of 
(11). To evaluate f(n,r,s)\Ne make use of (1.11). 

It is clear from (1.11) that the only values of/,/: in (2.2) that we need consider are those satisfying 

f j+k=n 
J / - k = r-s + (0, 1or-1). 

(2.3) 

Thus, for example, if 

(2.4) 

we must have 

(2.5) ) n ^r + s (mod 2) 

j + k = n 
j - k = r-s, 

n > \r-s\ . 

If (2.5) is satisfied it follows that 
(2.6) fifties) = 2 { * ( n + r - s ) - 1 ) ^ ( n - r + s)- / ) 

provided at least one of the numerators is non-negative. 
Similarly, if 

(2.7) J j + k = n 
I j-k = r-s + 1 

we must have 

(2.8) 

and we get 
(2.9) Hn,r,s) = ^ M n + r - s + 1 ) - 1 ) {%<n - r+s- D- 1} 

j n = r +s + 1 (mod 2) 
{ n > | r - s + 11 

provided at least one numerant is non-negative. 
Finally, if 

(2.10) f j + k = n 
[ j-k = r-s- 1 , 

we must have 
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/o 11 \ [ n = r + s + 1 (mod 2) 
U ' n i { n > r-s - 1 
and we get 
(2.T2) f(nfrtS} = -1%<n+r-s-1)-1){%(n-r + *+1)-1) # 

provided at least one numerant is non-negative. 
In all other cases 

(2.13) f(n,r,s) = 0. 
We may state 

Theorem 2. The enumeranttf/wJ defined by (2.2) is evaluated by (2.6), (2.9), (2.12) and (2.13). 

3. We next take u = v in (19) so that 
(3.1) F(x,y,u,u) = ?-±y-±2*l-Jxy_ujL . 

(I - xu)(i — yu) - xy 
Define 

(3.2) g(m,n,t) = ] T f(m,n,r,s) , 
r+s=t 

so that g(m,n,t) is the number of zero-one sequences with m zeros, n ones and t occurrences of either (00) or 
(11). As in the previous case we need only consider 

(33) ( r+s = t 
[6'6} I m-n = r-s + (0, 1 o r - / A 

We get the following results: 

provided 
m + n = t (mod 2) 

> \m- n\ 
(3.5) f m + n 

1 t 

<3-6> S(m,n,t) - ( ,A(m X+\+ V ) (y,(-m
n
+-n lt-1,) 

provided 

(3.7) m + n = t+ 1 (mod 2) 
t > \m - n + 1\ 

provided 

(3.9) \m+
t
n m + n = t + 1 (mod 2) 

> \m - n - 1\ 

in all other cases 
(3.10) g(m,n,t) = 0. 

We may state 
Theorem 3. The enumerant^m^fJt defined by (3.2), is evaluated by (3.4), (3.7), (3.9) and (3.10). 
4. Forx = y, u = v, (1.9) reduces to 

(4.1) F(x,x,u,u) = 2x±2x^2££ 
(1 —xu) - x 

Thus 

F(x,x,u,u) = --2fiL^?M^m = f * = 2 V ^ + J)"-1 = 2 T, xn T ( " 7 ' ) uf. 
(1-x(u+1))(1-x(u-1)) J-x(u+V ~ ~ ^ v f ' 
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Hence if we put 

(4.2) h(n,t) = £ f(JXr,s), 
j+k=n 
r+s=t 

it follows that 

(4.3) h(n,t) = 2 [n~ 1 ) (0 < t < n). 

The enumerant h(n,t) can be described as the number of zero-one sequences of length n with t occurrences of 
either (00) or (11). 

We may state 

Theorem 4. The enumeranth(n,t) defined by (4.2) is evaluated by (4.3). 

This result can be proved by a combinatorial argument in the following way. Let the symbol x denote any 
doublet -either (00) or (11). Thus we are enumerating sequences of length n - t: 

(4.4) (a1,a2,-,an-t), 

where each a,- is equal to 0, 1 or*. Consecutive zeros and ones are ruled out; also if 0 is followed byx, thenx 
stands for (11), while if 1 is followed by x, then* stands for (00). Thus we can describe the sequence (4.4) in 
the followingway. Assume it begins with 0 or (00). Then we have a subsequence (0101 •••) of length rg, follow-
ed by a subsequence (xx •••) of length s-j, where thex's denote doublets of the same kind; this is followed by a 
subsequence of length r-j which is either of the type (0101 •••) or (1010 •••) depending on the*, and so on. By 
the subsequence (xxx)f for example, we understand (0000) or (1111). Thus, for the sequence, 

(010(111)01(00X11)) 
we have ro = 3, si = 2, r-\ = 2, S2= 1, r2 = 0,S3= 7, rj= 0, t = 4. 

Hence 

(4.5) h(n,t) = 2^,1, 

where the summation is over non-negative /-#, r/, •••, /> and positive57, •••, Sk such that 

( r0 + rj + - + rk+s1 + -+sk = n-k 
<4"6) •• st + '-' + Sk = t (k = O, 7,2,-t . 

For t = O there is nothing to prove so we assume t > 0. Since 

rg + r-j + •-• + /> = n - k - t 
# {ro+ri+"7ron-k-t} = c-kn 

and 
n { s7 + - + sk = t\ _ jsj + - + sk = t - k \ _ ( t - 1\ 

w \ Si > 0 J " ^ 1 Sj > 0 1 ~ \ k ) ' 

it follows from (4.5) and (4.6) that 

^ - ^ £ C * t ) ( t r ) - ^ E ( B - ^ _ , ) ( V ) - ^ ( ^ 7 - / ) ^ ( , , 7 ; ) 
k=1 ' k=0 

5. For 1/ = Q, (1.9) becomes 

5.1) 

The right-hand side of (5.1) is equal to 

(5.1) F(x,y,uto) = ^±y-t2^---mi 
7 - x(y +u) 
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(x+y+2xy-xyu) £ xm £ ( ? ) / " " V = E C" 7 ' ) x V ^ V ^ E ( ? ) 
AH^O r=0 m,r A: 

x x y u 

„mym-r+1ur 
+2Y,(m;1)xmym-rur-Y.^-1i)*n 

m.r m,r 

- E ("71)xmym'r'1ur
+ E (m7 ' ^ v ^ V ^ E C";1) xmym~rur. 

/?7,A- A77,r m,r 

Since 

F(x,y,u,0) - J ] f(m,n,r,0)xmynur , 
m,n,r 

it follows that 
(2(m~ ; ) (m-n = r) 

f(mfn,r,Q) = } , _ n 
M y - ) (m-n = r±1). 

If we take /y = / in (5.1), we get 

(5.2) F(x,yflO)=^±^-. 
1-x(y+l) 

The RHS of (5.2) is equal to 
oo m 

fr^^E^E(I)A-E((ra;'H;_,)^:/))A"-Er;')A". 
m=0 A?=0 m,n " ™-" 

Hence 
/r? 

(5.3) £ tf^/^fl - ( m ^ / ) -

Finally, forx=y, (5.2) reduces to 

F(x,x,1,0> = - ^ J ^ j = (2+x) £ ^ = £ Fn+2*n > 
1-x-x n=1 n=1 

where Fn+2 is a Fibonacci number in the usual notation. It follows from (5.3) that 

J 

(5.4) J^ £ f('>*>r><» = Fn+2 • 
j+k=n r=0 

Clearly 
m 

£ f(m,n,r,0) 
r=0 

is the number of zero-one sequences with m zeros, n ones and doublets (11) forbidden. Similarly 

E E f(^,o> 
j+k=n r=0 

is the number of zero-one sequences of length n with (11) forbidden. Thus (5.3) and (5.4) are familiar results. 

6. Put 
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(6-1) F(x,y,u,v) = £ Fm,n (u,v)xmYn . 
m,n=0 

so that 
m n 

(6-2) Fm,n(u.v) = Y, E f(m.n,r,s)urvs , 
r=0 s=0 

a polynomial in u and v. Thus (1.9) becomes 

(6.3) ^±y-±!2_=u-Vlxy__ = £ Fmn(u,V)xmyr 

1 - xu -yv - (1 - uvjxv " _ ' 

It follows that 

- xu -yv - (1 - uv)xy 
m,n=o 

x+y + (2-u-v)xy = (1 -xu-yv-(1- uv)xy) £ F
m^(u/v)xmyn . 

Comparing coefficients, we get 

(6.4) Fmfn(u,v) = uFm-itn(u,v) + vFmtn-i(u,v) + (1 - uv)Fm-1rn.1(ufv) (m + n > 2). 

It is evident from (6.3) that 

(6.5) Fmn(u,v) = Fnrm(v,u). 

Also, taking y = 0, (6.3) reduces to 

7 - — = E Fm o(w)xm . 
1 - XU *-* ' 

m=0 
Hence , 
/ c c , J Fmt0(u,v) = um~1 (m > 0) 
m ) \ FQ^U.V) = vn~1 (n > 0). 

Since 
Fii(u,v) - VFIQ(U,V) - UFQI(U,V) = 2 - u - v , 

it follows that 
(6.7) Fh1(u,v) = 2. 

For u = v = 1, (6.3) becomes 

-• - y 
m,n=0 k m+n>Q 

SO that 

(6.8) FmjidD = (m+n) <m+n > °> 

By mans of (1.11) we can evaluate Fmn(u,v) explicitly, namely 

m — 1 \ (n — 1 \ ,,m-n+s,,s 
[n 

s=0 

n-1 

( 6 g ) +j, {m
nZ1

s){
n-1)um~n+s+1vs 

s=0 

s=0 

For example, for/7 = 7, 
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Fm,l(u,v) = 2um'1 + (m- 1)um (m > 1), 
so that 

Fhn(u,v) = 2vn~1 + (n- l)vn (n > 1). 

For m = n we get 
m—1 2 /T7-7 

(6.10) Fm,m(u,V) = 2 £ ( m ; ' ) (uv)' + (u + v) £ [m ~ '){?-, ' ) ^ / . 
r=0 r=0 

In connection with the recurrence (6.4), it may be of interest to point out that Stanton and Cowan [3] have 
discussed the recurrence 

(6.11) g(n + 1,r+ 1) = gfa r+ 1) + g(n + 1, r) + g(n, r) 

subject to the initial conditions 
g(n,0) = g(0,r) = 1 (n > O, r > O). 

The more general recurrences 

(6.12) A(n,r) = A(n - 1,r- l)+qnA(n,r- 1) + qrA(n- 1, r) 

and 

(6.13) Afar) = A(n - l,r- l)+pnA(n,r- 1) + qrA(n- 1,r) 

have been treated in [2] . 
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If the relations (10), (11) and (12) are used, it can be shown that the much simpler expressions for the con-
stants in the explicit solution (2) are indeed given by equations (9). 

The generating function for the sequence Pr is defined by 

(13) G= J > 7 > r « £ fCJ(xR1)
r + C2(xR2)

r+C3(xR3)
r], 

r=0 r=0 

If we now make use of the summation of a geometric series, then 

( 1 4 ) G = JLi— + _£*_ + -J*— 
1-xRj 1-xR2 1-xR3 

= Cl(1~ xR2>(1" xRs> + °2(1 ""xRl)(1 ~ xR3> + °3(1 ~ xRl)(1""xR2> 
1 -x(R1+R2 + R3) +x2(R1R2 + R?R3 + R2R3) - x3R1R2R3 

which, upon employing the relations (9), (10), (11) and (12), finally reduces to the simple equation 

(15) G = j—^^-r-Y -
1 - 2x -x2 +x3 

******* 



ON THE N CANONICAL FIBONACCI REPRESENTATIONS OF ORDER AT 

ROBERTSILBER 
North CaroSinaState University, Raleigh, North Carolina 27607 

SUMMARY 

Carlitz, Scoville and Hoggatt [1 , 2] have investigated Fibonacci representations of higher order. In this paper 
we introduce for each N > 2 a series of N distinct canonical Fibonacci representations of order N for each posi-
tive integer n which we call the first canonical through the Nth canonical representations. The first canonical 
representation parallels the usual Zeckendorff representation and the Nth canonical representation parallels 
what the aforementioned authors have called the second canonical representation. For each of these canonical 
representations there is determined a table WJ{i analogous to the tables studied in [ 1 , 3 ] . For 0 < k < N the 
tables WN are shown to be tables of Fibonacci differences of order k of the columns of Wjy, which is the 
table generated by the first canonical representation. As a result we obtain a remarkable theorem which states 
that for every 0 < k < N the table of Fibonacci differences of order k of the columns of W^ inherits the fol-
lowing characteristics (and more) from the table wfi: (1) Every entry of the table is a positive integer and every 
positive integer occurs exactly once as an entry in the table and, (2) Every row and every column of the table is 
increasing. It is interesting to note that no such table exists with analogous properties in terms of ordinary dif-
ferences even for/1/ = 3. In the latter part of the paper we give a generating function for the canonical sequences 
(those which generate the canonical representations) and also give the extension of the elegant procedure in 
[1, 3] for generating the tables W« and W°. 

1. THE N CANONICAL REPRESENTATION OF ORDER N 

A sequence {Gj}T=i shall be called a Fibonacci sequence of order N (N > 2) iff 
ft 

N-1 

2 J Gj+j = GJ+N for every / = 1,2, - . 
j=0 

The particular Fibonacci sequence {F/y/} = {F/v,/} of order /V determined by the initial eondit ionsf/v, /^7" , 
/ = /, 2, ••-, N is called the sequence of Fibonacci numbers of order N.* For each integer /r ^ 1, 2, ••-, N - 1 we 
define a Fibonacci sequence {FN •} of order /I/ by 

k-1 
FN,i = FN,i+k~^ FN,i+j, i = U,3,-. 

j=0 

Given a Fibonacci sequence {G,-} of order N and a positive integer/?, a canonical representation ofn by the 
sequence {G/ } is a su m 

in which (i) the summation extends over all positive indices / and all but a finite number of the ks are zero, 
(ii) kjt 0=> k,= 1 and 

N-1 

(iii) n k'+J = ° for a" ' 
1=0 

*This enumeration of the Fibonacci numbers is shifted by one from that in [ 1 , 2, 3] ; this shifting seems to be 
indicated by Theorem 1.1. 
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The largest index / such that Ay f 0 is called the upper degree of the representation and the smallest index / such 
that k\f 0 is called the lower degree of the representation. The principal result of this section is the following 
theorem 

Theorem 1.1. Let N be a fixed integer greater than one and let k be any integer between 0 and N - 1, in-
clusive. Then every positive integer/? has one and only one canonical representation by {F^ • } of lower degree 
congruent to one of the integers {1, 2, —, N - k) modulo N. 

Note that for k = 0 the theorem gives uniqueness of canonical representations by {FNJ} without restricting 
the lower degree of the representation. At the other extreme, canonical representations with respect to {FN~-) 
are required to have lower degree congruent to 1 modulo N. This, combined with the observation that 

FN,i = FN'j1+1 for / = 1f2,3, ••• 
explains the connection of these representations by [FN~j } with the representations in [1 , 3] called second 
canonical. 

For each k = 1,2, —, N, the unique representation by {FN~t- } guaranteed by Theorem 1.1 shall be called the 
k canonical Fibonacci representation of order N. 

The proof of Theorem 1.1 is accomplished with the aid of four lemmas. 

Lemma 1.1. Let {Gj} be a Fibonacci sequence of order N which is non-decreasing and satisfies Gj - 1 
and Gj+i < 2G; for all i. Then for every positive integer /?, a canonical representation of/? by {Gj} can be ob-
tained from the following algorithm, which we shall call exhaustion. Let Gj be the term of {Gj} of largest in-
dex satisfying G; < n. If Gj £ n let Gj be the term of {Gj} of largest index satisfying G; < n - G; . Continue 
inductively; after finitely many steps an index ip will be found such that 

P 

n = £ £/-, 
M ' 

and this sum will be a canonical representation of/? by {Gj} . 

Proof. Because G-j = 1 and because {G,-} must be unbounded, each term of the sequence//, 12, —,ip, as 
well as/? itself, is well defined. From 2G-, > G,+ i we must have / / > 12 > —>ip since the equality of any adja-
cent pair of these indices would contradict the choice of the one with smaller subscript. If there exist among 
/'// '2* '"* 'p sets of N consecutive integers, let/^, ik+u "> l'k+N-i De that set having first index /^ of smallest 
subscript k. Then 

k+N-1 

YJ
 Gij = Gik + 1 

j=k 
which contradicts the choice o f /£ , 

Lemma 1.2. Let {G,-} be a positive term Fibonacci sequence of order N having the property that 

k 
£ ' 0 / < Gk+1 for k = 1,2, - , / ! / - 7. 
/=/ 

Then (i) {G,-} is strictly increasing except possibly for 67 = ^2 a r | d (ii) if £ ^ / ^ / is any canonical representa-

tion by {Gj} and if the upper degree of representation is/?, then ^kjGj < Gp+i. 

Proof. The validity of (i) is clear as is that of (ii) for 1 </?</!/. Suppose (ii) holds for all/? < m for some 
m > N. Of all sums determined by canonical representations by {Gj} of upper degree m let/7 be the largest. If/? 
is represented canonically by {Gj}, each of the numbers Gm, Gm-i, ••-, Gm-N+2 m u s t be present in the repre-
sentation since otherwise its sum could be increased without altering its canonical properties or its upper degree. 
The number Gm-^+i cannot be present, and so by the same reasoning Gm-N must be present unless it happens 
that m - N = 2 and G2= G1, in which case 67 must be present if G2 is not and can be replaced by G2 without 
altering the sum. It then follows that 
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m 
n- Z * 

i=m-N+2 

has a canonical representation by {G,-} of upper degree m - N, which by the inductive hypothesis cannot sum 
to more than Gm-/\i+i, so 

m 
n < Z Gi = Gm+1-

i=m-N+1 

Given a Fibonacci sequence {G,-} of order N, a term Gj shall be called redundant if G; can be expressed as a 
sum of fewer than N terms of distinctsubscriptsfrom among {Gj, Gj+j, •-, G,--i}, where/ = max {/, / - l\l). We 
shall make use of the observation that a positive term Fibonacci sequence of order N can contain no redundant 
terms beyond the first N. 

Lemma 1.3. Let {G/\ be a Fibonacci sequence of order N which satisfies the hypothesis of Lemma 1.2. 
Suppose some positive integer/7 has two distinct canonical representations by {£/ } . Then {G,-\ has a redundant 
term Grfor which one of the two canonical representations of n has lower degree congruent to r modulo N. 

Proof. Proof is by induction on the maximum p of the upper degrees of the two representations of n. The 
case p = 1 is vacuous. Suppose the lemma holds for all p < m and let/7 = m. If both representations have upper 
degree m, subtract Gm from both and apply the inductive hypothesis. Otherwise by Lemma 1.2 the representa-
tion of smaller upper degree can sum to at most Gm so the representation having upper degree m must consist 
of the single term Gm. If m < N then Gm is redundant and r = m. If m > N the other representation must have 
upper degree m - 1 by Lemma 1.2, and must contain all of the numbers Gm-f, Gm-2, —, Gm-/\/+j since 
otherwise its value could be increased beyond that of Gm in contradiction to Lemma 1.2. Since it is canonical 
it cannot contain the number Gm-/y. Therefore, upon removal of the terms Gm-i, Gm-2, - / ^-/V-/-7 from 
the representation there results a canonical representation for 

m-1 
n ~ 12 Gi = Gm~N 

i=m-N+ 7 

with upper degree less than m - N. By the inductive hypothesis either the lower degree of this representation 
for 6/77-A/ is congruent to r modulo N, in which case thesame is true of the canonical representation from which 
it was derived by the removal of the last/1/ - / terms of the latter, or else m - N is congruent to r modulo N, in 
which case the same is true of the lower degree of the other representation n = Gm . 

Lemma 1.4. Let N be an integer greater than one and let k be a nonnegative integer less than N. Then 
the redundant terms of {FNj} are precisely FNfN_k+1, FNN_k+2, ••-, F^ N, and in fact 

/-/ 
Fk

Nfi=12 FkN,i> > = N-k + 1,-,N. 

1=1 

We note that {^ /v / } nas n o redundant terms. 
Proof. By definition F/v,/ = 2'~1 for / = 7, 2, •••, N. By summation we obtain F/\/f/\/+j =2 - 7 which 

proves for/ = 7 the formula 
FN.N+'I = 2I~2(2N+1 - i -11 i = I 2, - , N. 

Proof for 2 < / < N follows by induction, using the relation Fi\i[\i+j = 2FNfN+hl ~ FNJ-1- By direct calcula-
tion one now finds that F^JJ = 21'1 fo r /= 7, 2, >~,N - k, so that none of these terms can be redundant. Again 
by direct calculation one finds that 

N-k 
rk _ 0N-k 7 _ V* ck 
hN,N-k+1 ~ z ~ l ~ JU hN,i 

i=1 
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which verifies the statement of the lemma for / = N - k + 1. Suppose the lemma is true for / " < / ! / - k +j for 
some/such that 7 <j < k. Then f o r / = / ! / - k +jwe have/l/^- / < / + k <2N so that 

k-1 k-1 
FN,i = FN,i+k~ 22 FN,i+p = 2FN,i+k-1~ FN,i+k-1-N~ Yl FN,i+p 

p=0 p=0 

k-1 
FN,i+p-1 = FN,i-1 + FN,i-1 ~ FN,i+k-1-N 

P=1 

i-2 
= H FN,p + FN,i-1 ~ FN,i+k-1-N 

p=1 

by the inductive hypothesis. But 

k-1 i+k-2 i+k-2 i-2 
FN,i-1 = FN,/+k-1-J2 FN,i+j-1 = 2 FN,p~ Yl FN,P = S FN,p 

j=0 p=i+k-N-1 p=i-1 p=i-(N-k+1) 

since i + k- 7 > N. Since/ < N we have 

E FNiP - '£ 2»-1 = 2i-2_2HN-k+2, _. f A / . . ? _ f / v ^ / . A / . 
p=i-(N-k+1) p=i-(N-k + 1) 

This gives 1-2 i-1 

12 FNfp + FN,i-1 ~ FN,i+k-1-N = X ) FN,p 
P=1 p=1 

and the induction is complete. 

Proof of Theorem 1.1. By the information contained in the statement and proof of Lemma 1.4 we 
see that 

Ffrj = 21'1 for / - 1,2,-,N-k, 
that 

FN,N-k+1 = 2FN,N-k~ 1 a n d t h a t FN,i+1 = 2FN,i f o r N-k+1 < / < N, 

the latter following from 
/ / - / 

FN,i+1 = YL FN,j = FN,i+Yl FN,j = 2FN/r 
1=1 1=1 

For k = 0 we know that FJ^N+1 = 2F^N- / and for Ar = 1,2, - , N - 7 we have, as above, 

N 
FN,N+1 = 12FN,i = 2FN,N-

i=1 

Thus for each {FN •} we have 

1 = FN,1 < FN,2 < - < FN,N a n d FN,i+1 < 2FN,i ^ ' = 1> 2> '~>N+ *• 

It now follows by induction that {^ /y / } satisfies the hypothesis of Lemma 1.1, and it is clear that {FN •} satis-
fies the hypothesis of Lemma 1.2 and hence also of Lemma 1.3. By Lemma 1.1 each positive integer has by 
exhaustion a canonical representation by [F£ .}. This representation fails to satisfy the condition imposed by 
the theorem on the lower degree only if it ha's lower degree of the form /77/I/ + p, N - k < p < /!/. For this case 
we describe a method for obtaining a canonical representation of the desired form which we shall call reduc-
tion. Replace 
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mN+p- 1 
FN,mN+p by JT FJ^j 

i=(m-1)N+p 
and then replace 

(m-1)N+p-1 
FN,(m-l)N+p by ^ FN,i' 

i=(m-2)N+p 
and so on, until arriving at 

N+p-1 

E Fki-
i=p 

According to Lemma 1.4 we can now replace 

i=1 

and the end result of all these replacements is seen to be a k + 1st canonical representation by j f / y f-} of lower 
degree one. The uniqueness of this representation comes immediately from Lemmas 1.3 and 1.4. 

Given a Fibonacci sequence {£;} of order /I/ and a system of canonical representations by {£ / } , we shall say 
that the system is lexicographic if whenever 

171 = Ylki^i and n = 2^/^/ 
are two canonical representations in the system, then m < n if and only if the representations 

HkiG; and YlkiGi 

differ and differ in such a way that the largest/for which k,-^ /:,-has/f/ = 0, k]= I Clearly this property implies 
uniqueness within the system (although it does not imply existence within the system or uniqueness outside of 
the system). 

Theorem 1.2. For each N > 2 and for each nonnegative k < N any system of unique representations by 
\FN,i) is lexicographic. 
Proof. This theorem is an extension of Lemma 1.2. Suppose that 

HkiFN.i a n d T>k'iFN,i 

differ and that kp = 0, k'p= 1 and k,- = k] for all / > p. Then remove 

E*/4,,-= E ^ / 
i>P i>p 

from both representations, so that it is sufficient to show that 

i>4,/<E^,/-
/=/ /=/ 

Since the upper degree of 
p 

J2k>FN,i 
i=1 
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is less than p, by Lemma 1.2 the sum cannot exceed 

FN,P < £ *;>#,/ • 
/=/ 

Thus we have 

£ kiFNJ < £ k'iFN,i > 
i=1 i=1 

since if the two sums were equal one could replace 

£ kiFN,i = £ kiFN,i 
i>p i>p 

and contradict the uniqueness assumption. 
Suppose that m and n are positive integers having canonical representations within the system and that/7? < 

n. Let the canonical representations be 

™=£kiFk
Nfi and n =^k)Fk

Ni . 

By the uniqueness of canonical representations within the system, the only way the theorem can fail is for 
these two representations to differ with kp = 1, k'p = 0 and k,- = /r7-for all / >p which gives/7? > n by the first 
half of the theorem. 

Theorem 1.3. Let N > 2 and / < k < N. Then no positive integer has more than two distinct canonical 
representations by {?&,}• A number has two distinct canonical representations by { ^ / v / } if and only if the 
representation given by exhaustion* is not k+ 1st canonical, and therefore all canonical representations by 
\FN J) can be found by first applying exhaustion* and then (if the result is not k+ 1st canonical) reduction**. 

Proof. It suffices to prove that if a positive integer n has two distinct canonical representations by {Fj^ -\f 
then the one which is lexicographically inferior is k + 1st canonical and the other is given by exhaustion. Let 

canonically with the first representation lexicographically inferior. Let kp = 0, kp = 7, kt = k]for all / >p, so 
that 

£ kiFN,i = £ k'iFN,r 
i<p-1 Kp 

By Lemma 1.2 

£ kiFN,i = 2.. k'jFN,i = FN,p • 
i<p-1 i<p 

If k < N - 7, the representation 

£ kiFN,i 
i<p-1 

and thus also the representation 

£ kiFN,i 

*Defined in the statement of Lemma 1.1. 
**Defined in the proof of Theorem 1.1. 
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must be k + 1st canonical since otherwise 

FN,1 + E kiFN,i 
i<p-1 

k 

is also canonical and exceeds FNp, in contradiction to Lemma 1.2. For k = N - 1 the same remarks apply un-
less /r; = tf and k2 = k3 = •>•= k/\/= 1, which cannot happen, since if it did we would have 

p-1 p-2 
\ N k-FN'1 - V k ,F° - FN~1 - F° Z . Ki^Nfi ~ 2^ K'+1tNfi ~ tNfp ~ hN,p-1 
i=2 i=1 

contradicting the uniqueness of the first canonical representation. 
It remains only to show that 

is given by exhaustion. If it were not, it would be lexicographically inferior to that representation of 

2 ^ k'jFN,i 

which was given by exhaustion, which by what has already been proven would make 

2^ k'iFN,i 

k+ 1st canonical. 

2. THE TABLES W$ AND FIBONACCI DIFFERENCES 

We now fix N > 2 and fix k such that 0 < k < N and consider the set of k + 1st canonical representations. For 
each / = 7, 2, •-, N - k let [af /}1LJ be the sequence generated by listing in increasing order those positive inte-
gers having k+ 1st canonical representations with lower degree congruent to / modulo N, and denote the (N - Ar-
rowed infinite matrix ((afc)) by W^. (4^ and W°have been discussed by Carlitz, Scoville and Hoggatt [1, 3 ] . 

The following theorem is an immediate consequence of the lexicographic property of the k+ 1st canonical 
representation. 

Theorem 2.1. If the k+ 1st canonical Fibonacci representation of order N of a 1 • is 

then ior afj it is 

Y,kpF
kN,P+i-V i = 2.3,-,N-k. 

The k + 1st canonical Fibonacci representation of order N for ar. and the first canonical representation for 
af-. have identical coefficient sequences [kp\ . 

Corollary. Each matrix wfc has the following properties: 
(1) Every entry of WJ^ is a positive integer and every positive integer occurs exactly once as an entry of WN, 
(2) Every row and every column of WJ^ is increasing, 
(3) For k= 1, 2, ••• , / ! / - /, for any ij < N - k and for any p,q, a?n <a!n if and only \\ain < ain, and 
(4) af+1J < 2a«jfor/ = 1, 2, - , N-k- 1. 
Statement (4) makes use of the property F^ j+1 < 2FN jf i = 1, 2, •••, verified in the proof of Theorem 1.1. 

Another useful corollary is the following. 
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Corollary. Let/7 be a positive integer. Then if the N th canonical representation of /7 is 

thek + 1stcanonical representation of af- n is 

Y*kPFN,P+i-P i = 1,2,...,N-k, k = 0,1,-,N-1. 

Proof. By Theorem 2.1, the first canonical representations of a® n and the Nth canonical representation of 
a ; ~ ; have identical coefficient sets. But by statements (1) and (2) of the preceding corollary and the fact that 

WN~ has just one row, we see that a1 ~3 = n for every positive integer/?. Thus if the Nth canonical representa-
tion of n is 

z2kPFN,p > 

the first canonical representation of a®n is 

22kPFN,p 

and so by Theorem 2.1 the k + 1st canonical representation of a7 n is 

Lv? N,p 

and that of afn is 

23 kP FN,p+i-1 

Given an N-tuple (aj, a2, —, 3/y) and given an integer A ^ 1, 2, •••, N - 7, we define an (N - AV-tuple called 
r 32, - / 3N) by 
k(ai, a2, ••-, 3/\/) = (bj,b2, - , b/y-k) 

the kx Fibonacci difference of (a-j, a2, —, 3/\/) by 

with 
k-1 

bj = dj+k ~ 23 a'+j' ' = 1> 2' '"' N ~ k-
1=0 

Then we can prove the following theorem. 
Theorem 2.2. For each N > 2 and for each k= 1,2, - , N - 1, every column of W^ is the kth Fibonacci 

difference of its corresponding column in W^. Thus the tables of kth Fibonacci differences of the columns of 
1/l/f\l enjoy all of the properties listed in the first corollary to the preceding theorem. 

Proof. By Theorem 2.1 we have 

3/J = jLtkpFN,p+i-1 > 

where 

is the k+ 1st canonical representation of a7 •. But 
k-1 

FN,p+i-1 " FN,p+i+k-1~ 23 FN,p+i+r-1 

which gives 

rN.p+i-
r=0 
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k-1 
aU ~ iL kPFN,p+i+k-l - S 2 kpFN,p+i+r-1 

p r=0 p 

Again using Theorem 2.1 we obtain 
k-1 

"I,J •.-Z'l i,j+k Z^ di,j+r 
r=Q 

which is the /',/' entry of the table of kr Fibonacci differences of the columns of Wi 7v-o .n Figure 2.1 we show a portion of W% with its accompanying tables of Fibonacci differences. One can see 
that the properties of the Fibonacci differences given in Theorem 2.2 suffice to determine the table of wft if it 
is also required that the rows of W^j be increasing sequences forming a disjoint partition of the positive integers. 
If one tries the same thing for ordinary differences for N = 3, the result is shown in Fig. 2.2, wherein dup l i -
cations occur in the third and fifth, fourth and seventh and fifth and ninth columns (as far as the table goes). 
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19 
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27 

52 

5 
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18 
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33 
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41 

79 
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20 

38 

12 

23 

45 

~l5~~ 

29 

56 
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16 

31 
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15 
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17 

33 
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Fig. 2.1 A Portion of fly^ and Accompanying Fibonacci Difference Tables 
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Fig. 2.2 Counter-Example to Theorem 2.2 for Ordinary Differences (N = 3) 

Our next theorem gives the generalization of the procedure used in [1, 3] to define M^and Wj_. 

Theorem 2.3. for each N > 2 and each k = 0,7,-, N - 2, 

I = 1,2,-,N-k- 7. ai+1,j 
1 J. k 

1+a1,a?,, 
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We note that the information in this theorem is sufficient for the construction of WN in the sense of [1 , 3 ] , 
but not for the construction of W^, unless W^ has already been constructed. 

Proof. A representation for a*" # can be obtained through the second corollary to Theorem 2.1 as follows. 
hi 

Let aj+1 have k + 1st canonical representation 

H kP FN,p '" 

which therefore has lower degree congruent t o / + 7 modulo N. Then by Theorem 2.1 the first canonical repre-
sentation for s/y is _ 0 

L,kPFN,p-1-

Since F^J+1 = F%p\ oral I p, 

2lkPFN,p 

is a canonical representation for af'• by {FN~-} which, however, is not Nth canonical because it has lower de-
gree congruent t o / + 7 modulo /I/, By Theorem 1.3the/l/f/7 canonical representation now follows by reduction. 
Let the lower degree of 

12 kP FN,p 

be mN + i + 1. Then by the nature of the reduction process we know that the N canonical representation of 
a/\is given by 

/ m-1 N+i 
V FN~1 - f V V FN'1 + Y k FN~1 

2u hN,p + 2-J 2-J hN,qN+r+ *-*» KP hN,p • 
p=1 q=0 r=i+2 p>mN+i+l 

By the second corollary to Theorem 2.1 we have that the k + 1st canonical representation of a 0 is 
1'ai,j / m-1 N+i ,J 

12 FN,p+12 12 FN,qN+r+ 12 kPFN,p-
p=1 q=0 r=i+2 p>mN+i+1 

Now since 
2^kPFN,p 

is a k+ 1st canonical representation of lower degree congruent to / + 7 modulo N and with 7 + 7 among the resi- _ 
dues 0. 7. —, / ! / - /r.we must havei <N - k and therefore 

/ 
12 FN,p = FN,i+1 ~ 1 

P=1 

by what has been shown in the proof of Theorem 1.1. Thus if 1 is added to the k + 1st canonical representation 
of ak

 0 the terms produced by the reduction process exactly recombine to yield the expression 
tai,j 

r-k 
' l,p-

p 

12 kPFN,p-

and hence 
aU/ = 1+a1aP. 

Our last theorem provides a generating function for thesequences [F/y 7-}. 

Theorem 2.4. Let a be a (positive) root of 
[Continued on page 34.] 
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Good [3] showed that 

(1) £ -±- = 3 - ^ , n> 1. 
m=0 2m 2n 

The problem of summing this for/? -> °° was posed by Millin [8] . The bibliography at the end of this paper gives 
an idea of what has been done with such series and their extensions. A common thread may be found among 
many of these studies: explicit or implicit use is made of an interesting partition of the natural numbers. Our 
object here will be to discuss this partition and generalize it, as well as show other uses. Our main results are 
some series rearrangement formulas that are related to multi-sections but differ and do not seem to appear in 
the literature. 

Our first observation is that the set {(2k + 1)2n\k > 0, n > #} is identical to the set of all natural numbers. 
Holding either k or n fixed and letting the other variable assume all non-negative integers, we find that the nat-
ural numbers are generated as the union of countably many disjoint subsets of the naturals. Pictorially, every 
natural number appears once and only once in the array: 

15 17 19 ••• 1 
2 
4 
8 
16 
32 

3 
6 
12 
24 
48 
96 

5 
10 
20 
40 

7 
14 
28 

9 
18 
36 

11 
22 

13 
26 

This seems to be common knowledge in the mathematical community, but its use in forming interesting series 
rearrangements does not seem to be widely known or appreciated. The rearrangement theorem is as follows: 

(2> E f<n> - ~ I I f((2k+l)2n) 
n=1 k=0 n=0 

for an arbitrary function /provided only that the series on the left converges absolutely so that it can be re-
arranged at will. For a convergent series of positive terms, of course, the formula always holds. The theorem is 
used by Greig [4] to obtain the transformation 

(3> £ J 
n=1 

where 
r (1 + Fk_1)/Fk for even k, 

(4) Ck =\ 
^(1 + Fk.1)/Fk+2/F2k for odd k. 

The numbers Ck arose in his proof that (1) generalizes to 
67 

£ {ck-
1-). 

k=1 
/rodd 

a = 
2 
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1 k9n 1 

(5) £ jl— = Ck- ^ - - 7 , k.n > I 
m=0 k2m k2n 

but he did not make explicit use of (2) in determining (5), the numbers Ck being introduced in the course of 
an inductive proof. 

On the other hand, according to Hoggatt and Bicknell [5, p. 275, Method X ] , Carlitz used what is essentially 
(2) to sum (1) when/7 -* «>. To make this as clear as possible, we rephrase the argument as follows: With a,b 
the roots o f z 2 - z - 1 = 0, so that ab = -1, and a- b = y/5, then the Binet formula is Fn = (an - bn)/(a - b), 
and so 

= E 
n=1 c 

(a-b) 

a-b 

r ~b2 

E £* 
n=0 k=0 

= (a-

-(2k+ 

-b) 

1)2" 

E E 
n=l k=0 

k=0 

a-(2k< 

-2k-1 

-1)2n 

and the double series can be summed by using (2), so that the result follows since everything is then known by 
simple geometric sums. 

If we apply the same argument to the Lucas numbers, recalling that Ln= an' -/- bn, we find that 

lkg-(2k+D2n 

<6> E r~ - E E (-*)k 
n=1 2n n=1 k=0 

but the presence of the factor (-1) prevents us from going further as (2) cannot be applied then. Perhaps 
some other result can be found using (6). 

The formula 

(7) T ^ = --x—, \x\ < 7, 

L x E (x 
n=0 k=0 

and this is substantially the way that many related results can be found. 
For instance, either using (7) or going back to (2) again, we may set down the hyperbolic trigonometric ana-

logue of (1) which is done for/? -» °° in (22) below. 
We come now to the generalization of (2). Going first to mod 3, we have: 

(8) £ f(n) = 2 E f((3k+l)3n)+J£ £ f((3k+2)3n), 
n=1 k=0 n=0 k=0 n=0 

provided only that the series on the left converges absolutely. 
The two disjoint sets 

{(3k+1)3n\k > 0, n > 0} and {(3k + 2)3n\k > 0, n > O) 

form an interesting partition of the natural numbers. The two sets are easily put down in the arrays 

3romwi 

X 

1 - x 

E 
n=0 

ich [1 , p. 

- E 
n=1 

- E 
n=0 

24] 

xn 

1 -

1 

to 

= 

X 

• x 

K2" 
1 

2n+1 
- X 

X 

1 - x' 

Augustus De Morgan f 

E 
k=0 

2" 

Z 

E 
n=0 

> 

y(2k+1)2 
X 
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and 

The general case, mod m, is: 

(9) £ 
n=1 

1 
3 
9 

27 
81 

2 
6 

18 
54 

162 

fin) = 

4 
12 
36 

108 
324 

5 
15 
45 

135 
405 

m-1 

1 
21 
63 

8 
24 
72 

« 

10 
30 
90 

11 
33 
99 

13 
39 

14 
42 

£ £ £ «<mk + 
i=1 h =0 n= -o 

16 
48 

17 
51 

i)mnl — m > 2, 
=0 

provided the series on the left converges absolutely. 
We should remark that when f(n) is replaced by f(ri)xn we may use (9) and its special cases as a theorem on 

formal power series and matters of convergence may be ignored when we use such a formula to equate coeffic-
ients in proving combinatorial formulae. Tutte [9] has given an interesting new theory of formal power series. 

Formula (9) may be further generalized usefully. It is not difficult to see that multiples of powers of m may 
be removed from the set of natural numbers and we obtain the following nice result: 

(10 ) E E E f((mk+i)mn) = £ f(n) - £ f(mr+1nj, m > 2, 
1=1 k=0 n=0 n=1 n=1 r > O, 

= E f(n>- E f(mr+1nl m > 2> 
n=0 n=0 r > O, 

provided that the series converge absolutely. Notice that the series on the right may be written in an alternative 
manner when f(0) is defined as then the first terms cancel out. This allows us often to write a more elegant 
formula. 

We pause now to exhibit a neat application of (10) to derive a general formula found by Bruckman and Good 
[2] whose argument is tantamount to formula (10) but it was not explicitly stated. We have, with f(n) = xn, 

m-1 °° r n °° °° r+1 
(mk+i)m \^ vn \ ^ m n E E z^mk+ihn - L *"-£ 

/ = / k=0 n=0 n=0 n=0 
SO that 

1-x 

(11) 

r m-1 n 

-1-7W - E Z xim T. 
m n=0 i=1 k=0 

7 / _ V V yim" V xmll+1 k 

r m-1 n „ n+1 -1 r 1 vm' (m-1) n 

E E ^ ^ > = E . — ^ -,* < 
n=0 i=1 n=0 (1_xm )(1 __ xm j 

which proves the finite series result in [2] . This formula, of course, is the extension to values other than m =2 
of De Morgan's formula (7) and in a finite setting. 

We pause to exhibit a non-Fibonacci application of (10). For the Riemann Zeta function we find 
m-1 oo 

Us> - E -1 - E E —J— E ~L. *>>. 
n=l ns i=i k=o (mk+i)s

 n=0 msn 
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which simplifies to 
m-1 -

(12) ( / - - i ) Us) = Z £ . — * — , * > / , 
ms/ i=i k=0 (mk+if 

or 
m-1 

(13) (ms- DUs) = £ l(s,i/m), 
i=1 

in terms of Hurwitz' generalized Zeta function, which is defined by 

f (s,a) = ^2 / s > 1, a arbitrary, 
k=0 (k + a)s 

so that £(s, 1) = $(s). But formula (12) or (13) is not new. It is the same result found by using ordinary multi-
section modulo m. 

Ordinary multisection means the following formula: 
oo m oo 

(14) £ f(n) = T, E f(mk + i)t m>U 
n=1 i=1 k=0 

the result again being valid for absolutely convergent series on the left. 
Since we are speaking of multisection, it may be worthwhile to set down the formula corresponding to (14) 

for a finite series: 

n m-1 Lm , 
(15) £ f(k) = £ £ f(mk+i)t n-a+1 > m > 1 

k=a i=0 k_ I' a+m- 1-i 1 

where brackets denote the usual greatest integer function. 
Finite multisection in the form (15) has always been a favorite of the author, and it has two interesting fur-

ther special cases worth setting down for reference: 

mn-1 m-1 n-1 

(16) £ ffk) = J2 Yl f(mk + i>' m > 1, n > 1; 
k=0 i=0 k=0 

and 
mn m n-1 

(17) £ f(k) = J^ E f(mk + i)t m > 1, n > 0. 
k=0 i=1 k=0 

It is well known that there is an analogy between the formulas for Fibonacci-Lucas numbers and trigonomet-
ric functions. To every formula involving Fibonacci and Lucas numbers there is a corresponding formula in-
volving sines and cosines. We know that this is true because of the similarities between the Binet formulas 

(18) Fn=^LiAlf Ln = an + bn 

a — b 
and the Euler formulas 

„ i x -ix Qix , n-\x n 

(19) sinx = e— -=f—, cosx = e — f f - , i2 = -1. 

The same may be said for the hyperbolic functions: 

(20) sinh x = e~=-e-- , cosh x = ^ - ^ — , 
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and we merely cite, e.g., relations like sin 2x =2sinx cosx, sinh 2x = 2s\n\\x coshx, f ^ = FnLn to remind 
of the analogy. It is natural then to set down trigonometric analogues of formulas we have discussed above. 

The case/7 -»°° of (1) was 

(21) X ! TT~ = —.r^ = 2.381966012 - , 
n=0 2

n 

and the hyperbolic sine analogue is 

(22) T 1— = --?— = 1163953414 - . 
n=o s i n h ^ e~1 

When n -* °° in (5) the special case of Greig's formula is 

k > I (23) E -r- = Ck-^j-1, 
n=0 k2n Z 

Ck being given by (4), and the hyperbolic analogue is 

(24) £ 7—- = —-— x > 0. 
n=o s inni"7* ex- 1 

Although (7) and its congeners are often listed in compendia of series, I am not aware of any ready listing for 
them written in the hyperbolic form (24), not even (22). 

Possibilities exist for application to number theoretic functions. Since g.c.d. (mk + i, mn) = 1 for all / < / < 
m - 1, we may apply (2), (8), (9), (10) to multiplicative number theoretic functions as well as completely mul-
tiplicative functions. For instance, using Euler's 0-function, we find from (2), 

(25) T ^ = T T ^i2k + 1)())<2n> = T T (t)(2k + 1)(t)<2n> + T $(2k + 1) 

n=1 ns
 n-0 k=0 (2k+1)s2ns n=1 k=0 (2k+1)$2ns

 k=o(2k+1)s 

oo oo 

_i__ V URttJl + T MZLU1 s > 2, 
-n+1 ~ /n, L ^s ,̂ ~1 /n. , 1ts n=l 2nS~n+l

 k=0 (2k + If k=0 (2k + If 

which I have not seen stated elsewhere. Since we can also use ordinary multisection of series we have besides 

(26) £ ^i = £ aim + f mui , s > 2 
„=1 ns

 n=i (2nf k=o (2k+lf 

whence, upon comparing (25) and (26) we get the unusual formula 

(27) f —L- ±M2k±lL Bj:mit s>2. 
n-1 2ns~n+1

 k=0 (2k+1)s
 n=l (2n)s 

To get these results we used <j)(pn) = pn - pn~1 (p = any prime), and similar formulas to (25) and (27) may be 
found for other multiplicative functions. A more complicated result follows with f= (p in (9) or (10). 

We should note that (27) is exactly analogous to the formula 

n=1 a - 1 k=1 a - 1 
A: odd 

which was found in Greig's paper [4] by an entirely analogous procedure, and which I do not believe is immed-
iately obvious. 

Besides these applications it is clear that the general formulas we have given, (2), (8), (9), (10), may be applied 
with success to the many generalizations of the Fibonacci-Lucas sequence that have been studied. It is hoped 
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that our remarks may shed some light on the nature of the formula (1) and its analogues and why Others fail to 
exist. For example, what can be said about (22) with sine instead of hyperbolic sine? 

A final observation is that our formulas sometimes give transformed series that are very rapidly convergent. 
Thus (10) gives 

oo oo r-i 

(29) £ f(n) = £ £ ff(2k+1)2n)+^f(2rn), 
n=1 k=0 n=0 n=1 

and when we can sum the double series, we may take a very large but convenient r and expect the remaining in-
finite series to converge very rapidly. Thus, for the Fibonacci case, using Greig's formulas, we get 

„% Fn n%
 [ F2nH F4n+2 a I £ F^ 

For r = 10, 20, or 100 we could sum the first part and the remaining infinite series needs only a few terms to get 
a good approximation. I suppose this is an old trick but I am not able to cite a reference. The method must have 
been used before. 
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A FORMULA FOR £ Fk (x)yn"k AND ITS GENERALIZATION 
1 

TOr -BONACCI P O L Y N O M I A L S 
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1. INTRODUCTION 
Some years ago, Carlitz [1] had asked the readers to show that 

(D E Fk2
n~k~1 = 2n-Fn+2 

0 

and 
n-1 

(2) E Lk2
n'k~1 =3(2n)-Ln+2f 

• 0 

where Fn and Ln are the/7 Fibonacci and Lucas numbers, Recently, King [2] generalized these results to ob-
tain the expressions: 

(3) y T yn-i<-l = (T0y + T.1)y
n - Tny - Tn^ 

o y2-y- i 
and 

(4) £ Tk2
n~k-1 = T2(2")-Tn+2* 

0 

where the generalized Fibonacci numbers Tn are defined by 
Tn

 = Tn-i + Tn.2t Tj = a, T2 = b. 

The purpose of this article is to generalize these results to sums of the form XFk(x)yn , HLk(x)yn~ , 
T,Hk(x)yn~ , where Fk(xj, Lk(x) and Hk(x) are, respectively, Fibonacci, Lucas and generalized Fibonacci 
Polynomials, and then finally to extend these results to r-bonacci polynomials. 

2. FIBONACCI AND LUCAS POLYNOMIALS AS COEFFICIENTS 
The Fibonacci polynomials Fn(x) are defined by [3] 

(5) Fn(x) =xFn-1(x) + Fn-2M 

with FQ(X) = 0, Ff(x) = 1. Now consider the sum 

S= E Fk(x)yn'k = yn-1+xyn-2+Y. lxFk-i<x) + Fk„2(x)lyn-k 

1 3 

- y'-1
+xyn-2 + xy-1 £ Fky"-k

+y'1 " f Fky
n~k 

2 1 

Hence, 
y"-1+xy-1 {S-FnM} + y'2 {S- F„_7My - Fn(x)} 

(y2-xy- 1)S = yn+1-yFn+1(x)- Fn(x). 
73 
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/ 

Letting 
(6) Gn(x,y) = yn+1 -yFn+1(x)-Fn(x), 
we may write S as 

(7) S - £ f ^ " " * = f ^ - j , <?,fr,W * 0 . 

The Lucas polynomials /.^ W are defined by [3] 

(8) Ln(x) = xLn-jM + Ln^M 
with LQ(X) = 2, L-j(x) = x. 

It may be shown by induction or otherwise that 
Ln(x) = Fn+1(x) + Fn.1(x). 

Hence, 

Y. Lk(x)yn-« = £ Fk+1(x)yn-k
+Y. Fk-lW" = "£. Fk(x)yn+1'k ^ Fk(x)y 

1 1 1 2 0 

- £ W K " ^ - Z Fk(x)yn~1'k - F1(x)yn - ^±^^"^1 _ ,», 

using (7) 
= ^ * ^ ~ ^ ( ^ 2 ^ * FnM) - {Fn+lM + Fn-1M} 

Gi(x,y) 
Therefore 

(9) £ ^ f r^^ - ^ - ^ ^ ^ ^ ^ . 

By letting x = 1, y = 2 \n results in (7) and (9), we obtain 

(10) £ Fk2
n'k = 2n+1 - Fn+3 = 2".F3- Fn+3 

1 
and 

(11) £ Lk2
n~k = 2n+2-Ln+3 = 2"-L3-Ln+3 

1 

which are the results of Carlitz [1 ] . Further, by letting A- = y = 2 in (7) we get 
n 

(12) £ Pk2
n'k = Pn+2-2

n+1 = Pn+2-2n.P2 , 
1 

where Pn is the nth Pell number. 

3. GENERALIZED FIBONACCI POLYNOMIALS AS COEFFICIENTS 

Let us define the generalized Fibonacci polynomials Hn(x) as 

(13) Hn(x) = xHn.1(x) + Hn.2M 

with Hg(x) and Hj(x) arbitrary. It is obvious that the polynomials Fn(x) are obtained by lettingHQ(X) = 0, 
Hi(x)= 7, while the Lucas polynomials Ln(x) are obtained by letting HQ(X) = 2 and Hf(x)= 1. In fact, it can 
be established that Hn(x) is related to Fn(x) by the relation 

Hn(x) = H1 (x)Fn (x) + H0 (x)Fn-1 (x). 
Hence, 
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Z Hk(x)yn'k = H7(x) Z Fk(x)yn~k + H0(x) Z i=k-l(x)yn~k 

1 1 1 

- »1M G0^ +H0M Z FkV"-l~k, using (7) 

= H 1 (x,Gn <X>V) + H0MGn- y (x,y) 
Gi(x,y) 

The right-hand side may be simplified to show that 

(14) Z Hk(x)yn~k = Hl(x)y"+]^ + H0(x)yn~yHn+1(x)-Hn(x) 

1 y2 -xy - 1 

Some special cases of interest obtainable from (14) are, 
n n 

Z Hk(x).xn'k = Hn+2(x)-xnH2(x), Z HkM = 1- lHn+1(x) + Hn(x)-H1(x)-HQ(x)l, 
1 1 

n 
Z (-Dk+1Hk(x) = t f(-Vn+1 {Hn+1(x)-Hn(x)} + {H7(x)-H0(x)}] . 
1 

It should be noted that by letting x = 7, HQ(X) = a and H j(x) = b in (13), we generate the generalized Fibonacci 
numbers Hn defined earlier by Horadam [4] . From (14) it is seen that for these generalized Fibonacci numbers 

(15) E Hky^ - ^HlfylzJ^y^n 
1 y 2 - y - i 

and <? 
n 

(16) Z Hk2
n~k = (2b+a)2n - Hn+3 = 2n-H3-Hn+3 

1 

which are the results obtained by King [2] . 
4. r-BONACCI POLYNOMIALS AS COEFFICIENTS 

The /--bonacci polynomials Fp(x) have been defined by Hoggatt and Bicknell [5] as 

Fir!r-2)M = ••• = Fl%) = F(
0

r,M = 0, F<r>(x) = 1, F<2
r>(x) = xr~1, 

and 

(17) F(
n

rlr(x) = xr~1 F(
n

rir^(x) +xr-2F(
n

rlr_2(x) +.» + F(
n

r)(x) . 

Let us now consider 

/ - £ F^Mvn~k • 

(18) F(
k
r,(x) = Rk 

Denoting for the sake of convenience 

(18) 

we have, 
/ = Riy

n~1 +xr-1R1y
n-2 + txl"1R2

 + xr'2Fli)yn'3+-+(x'"1Rr-i+x'"2Rr_2 + - + xR1)y
n-r 

+ £ (xr~7Rk^ +x
r~2Rk-2 + -+Rk„r)y

n-k = R1Y"-1 +xr-1f1 [Riy
n~1 +R2V

n~2 + -+ Rr-iy
n~r+11 

+ xr-2y-2[R1y
n-1 + R2y

n-2
 + - + Rr-2y

n-"2l 
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/ 

+ xy-('-1>[Riy°-
1] +xr-\-1 Y, Rky"-k +xr-2y-2 E *&"* 

Hence, 

Thus, 

r r-1 

+ ... + xy-(r-1) "'£' Rky
n-k+y~rj: Rky

n'k . 
2 1 

lyr = Riyn+r~1 + (xyr1 £ Rky"-k + (xyr2 JT Rky
n~k 

1 1 

n-r+1 n-r 

+ -+xv E Rkv
n~k + i: Rky

n'k 

1 1 

= Riy
n+r-1 + Hxyf-1 + (xy)1"2 + - + (xy) + till 

-(xyr
iRn-(Xyr

2 £ Rky
n'k--

- (xy) E RkY°-k - E Rky
n'k • 

n-r+2 n-r+1 

l\yr-E (xyA - R1y
n+r-1-yr-1(xr-1Rn+xr-2Rn„1 + -+Rn.r+1) 

- yr~2(xr-2Rn +xr~3Rn-i + -+Rn-r+2) 

-yr-3(xr~3Rn +xr~4Rn^ + -+Rn-r+3) 

-•••-y(xRn + Rn-iS-Rn • 
Denoting now 

G<n
r)(x,y) = yn+r-1 - F^My'-1 - yr~2 . (x^F^M ^ ^ F ^ M + ••• +F(

n
r]r+2(x)J 

(19) - yr-3[xr~3F(r>(x)+x
r-4F<fl,(x) + - + F<n

rlr+3(x)] 

ylxF^M + F<
n

rl1 (x)J - Fl
n
r)(x) 

we have 

(20) / = £ F<r>(x)-yn-k
 ILLJM} 

1 G\r)(x,y) ' 

The above result for r-bonacci polynomials may be considered as a generalization of the result (7) for Fibonacci 
polynomials. 

Let us now see if we can obtain for the r-bonacci numbers [5], a result corresponding to (10) for Fibonacci 
numbers; it may be noted that the r-bonacci numbers F'n

r' we obtained by lettingx= 7 in (17). We have from 
(20) that 

(2D E 4r)-2"-k - ^ - ^ -
/ G(jr,(1,2) 

Now we have from (19), 
2n+r-1 _ G(r)(w = 2^-2^ + 2r-2[F<r) + ... + ^ j +2^3[F(r) + ... + fjrj^j + ... + 

+ 2IFM + F^1+FM = 
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- f - 2 F ^ +2r-2fF<%] + f-
3[F^ + •••+ F<n

rlr+3] + - + 2[F<n
r> + F&J + F^ 

- f~3lF^+2 + F<?>,] + 2^3[F<n% + Fjfj, + F<r> + ••• + F^+3] + 2^[F<n'> +... + FJll^l 

+ -+2[F^ + F^]+F^ 
- 2-3[F<n% + F<n% + f W , y +2^1F<« + - + FlfJ^J + 2[F<„'> + F^J + F? . 

Continuing the process, the above may be reduced as 
2n+r'1 _ rJrUl ?) = ?r-rfF(r) +... + F(r) 1 = F(r) z un a,zj z Lrn+r-i- -1- tn+1j rn+r+1 

G(
n

r>(1,2) = 

G\r)(l2) 

nri+r-

= 2r-

= 2'-

1-F 

r-1 

-E 
0 

n+r+1 

2k 

Hence, 

(22) 

Also 

(23) 
= 2' -

1-2 
Therefore from (21), (22) and (23) we get 

n 

Z r(r) 9n-k _ 9n+r-1 p(r) _ 9n p(r) r(r) 
rk ' z " z ~ tn+r+1 ~ z mtr+1 rn+r+1 • 

1 

The above result may be considered as a generalization, for the r-bonacci numbers, of the result of Carlitz [1] 
for the Fibonacci numbers. 
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SOME SUMS CONTAINING THE GREATEST INTEGER FUNCTION 

L. CARLJTZ* 
Duke University, Durham, North Carolina 27706 

1. Let [x] denote the greatest integer less than or equal to the real number*. It is well known (see for 
example [4, p. 97] that 

an i : [f] - M-tM-t), 
r=1 

where (h,k) = 1. Indeed 

r i r=i r=1 s ' 
\ 

k-1 

= (h - v(k -v-Y. [f 
r=1 

and (1.1) follows immediately. 
For a later purpose we shall require the following extension of (1.1): 

k-1 

(1.2) £ [x + Jjf]= [kx] + V2(h - 1)(k - V . 
r=0 

For /7 = 7, (1.2) reduces to the familiar result [4, p. 97] 
k-1 

(1-3) £ [ x+'L]= [kx] . 
r=0 

To prove (1.2), put 
(1.4) <t>(x) = x - [x] , 

the fractional part of x. Then clearly 

(1.5) <j)(x + 1) = (j)(x) 

and, by (1.3), 
k-1 

(1.6) ] T 0 ( * + j-^j = kx + 1/2(k - 1) - [kx] - HM + 1Mk - 1). 

r=0 

It follows, using (1.5), that 
k-1 k-1 . 

Z [x+h{)=H \X+T-^{X+T)) = kx + y2h(k-1)-<t>(kx)-y2(k- 1) 
r=n r=n * I 

= [kx] +1/2(h- 1)(k- V. 

^Supported in part by NSF Grant GP-37924. 78 
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E [j] +6hH[j] = (h-Wh-1)(k-1)(2k-1), 

The writer has recently proved [2] the following result: 

k-1 2
 h~1 

(1.7) 6k ^ r h n - * * ^ r ks 

r=1 " " " 5=7 

where (h,k) = 1. This formula can be proved rapidly in the following way. 
Put 

k-1 o k-1 
hr r - v - r hr" ^ - S l f ] -L[f]' 

We have 

E *2 (f) - £ ( * - [ * ] )2 - & A - '*»- «-? S ^ ?]•**«. 
r=0 r=0 r= 1 

Since, by (1.5), 

v 2 

r=0 A=0 r=0 
it follows that 

k-1 

6kS2(h,k) = 12h Y, r[j}~ (h2~ 1)(k~ 1>(2k~ 1>-

It is known [3, p. 9] that 
k-1 h-1 

(1.8) 12h £ r\j]+1MH s [ f ] = (h~ 1)(k~ D(8hk-h-k-l). 
r=1 '" s=1 

Thus 
6kS2(h,k) + 6hS2(k,h) = (h - 1)(k - l)(8hk - h - k - 1) - (h2 - 1)(k - 1)(2k - 1) 

-(k2- 1)(h-1)(2h-l) 
and (1.7) follows at once. 

Incidentally, (1.8) is equivalent to the reciprocity theorem for Dedekind sums [3, p. 4 ] : 
(1.9) s(h,k)+s(k,h) = - 1- + -± ( £ + + + k ' 

4 12 \ k where 
hk h ) 

k-1 

<i..« «-Jji(Hr]-?) 

2. Define 
k-1 n 

(2.1) Sn(h,k) = Y [ j ] (" = °> 1<2<~)' 
r=1 

Thus S-j(h,k) is evaluated by (1.1) while S2(h,k) satisfies (1.7). It is not difficult to show that a similar result 
holds for S3(h,k). We shall prove that 

(2.2) 4k(k- W3(h,k) + 4h(h - 1)S3(k,h) = (h - l)2(k- 1)2(2hk-h-k+1), 

where of course (h,k) = 1. 
To prove (2.2), take 
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w - £ [h^]3- Z[»-?]3- £ ( " - ' - [ i f 
r=1 r=1 r=1 ' 

= (h - 1)3(k - 1) - 3(h - I^S^h.k) + 3(h - 1)S2(h,k) - S3(h,k) , 

so that, by (1.1), 
(2.3) 2S3(h,k) = 3(h - l)S2(h,k) - 1Mh - l)3(k - 1), 

Thus 
4k(k- VS3(htk) = 6(h - 1)(k- l)kS2(h,k)-(h - 1)3(k- 1)2k, 

so that, by (1,7), 
4k(k - 1)S3(h,k) + 4h(h - l)S3(k,h) = (h - 1)(k - 1){6kS2(h,k) + 6hS2(k,h)} - (h - 1)2(k - 1)2(2hk - h - k) 

= (h - l)2(2h -1)(k - 1)2(2k -1)-(h- 1)2(k - 1)2(2hk - h - k) 

= (h- 1)2(k~ 1)2{(2h- 1)(2k- 1) - (2hk- h - k)\ 
= (h- 1)2(k- 1)2(2hk-h-k+1). 

This proves (2.2). 
If we apply the same method to S4(h,k), we get 

w;--E 7 ( />- / - [ f - r ] ) 4 

= (h- 1)4(k -V- 4(h - I^Sjfrk) + 6(h - V2S2(h,k) - 4(h - l)S3(h,k)+S4(h,k), 

which reduces to 
4S3(h,k) - 6(h - l)S2(h,k) + (h- 1)3(k -1) = 0 

in agreement with (2.3). 
Generally, for arbitrary positive n, 

S„(k,k) = t , ( h- 7- [tjffj" = £ (-tJi('?)(h-triSi(h.k). 

In particular, we have 
2/7-/-7 

S2n+i(h,k)= E (-1)' (^/^(h-D^-^SjdiM 
r~o 

so that 
2n 

(2.4) 2S2n+1(h,k) = -Mn- 1)(h-l)2n+1(k- D + Y, (-Vj ( 2n + 1) (h - 1)2n~i+1 Sj(h, k). 

Similarly, 
2n 

S2n(h,k) = £ (-Vn ( f ) (h - 1)2n-JSj(h,k), 
j=0 

which reduces to 
2n-1 

(2.5) -(n - 1)(h - 1)2n-1(k -D+Y, (~DJ ( 2n ) ft " 1)2n~HSi(h,k) = 0. 
F2 W ; 

For example, for n = 2, (2.4) becomes 
2S5{h,k) = - | (h - 1)5(k - 1)+ 10(h - l)3S2(h,k) - 10(h - l)2S3(h,k) + 5S4(h,k), 

while, forA7 =3, (2.5) becomes 
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-2(h - 1)5(k -1)+ 15(h - 1)3S2(h,k) - 20(h - 1)2S3(h,k) 

+ 15(h - DS4(h,k)-6S5(h,k) = 0. 

Combining these two formulas we get 
1Mh - 1)3(k- 1)-3(h - 1)S2(h,k) + 2S3(h,k) = 0, 

which is the same as (2.3). 
St seems plausible \\\z\$n(h,k) satisfies a relation similar to (1.7) and (2.2) for every n > 2. However we are 

unable to prove this. 
3. Consider the sum 

ki./(f) •£(¥-&})'•%(? f->z (*)'[*] **£'* m2 

r=0 r=0 ' r=1 r=1 r=1 

Since 

we get 

k-1 

E 
r=1 

k-1 

r=1 

k-1 k-1 k-1 

r=0 r=0 r=0 

r=1 

Now put 
k-1 j 

(3-D hm.k>- E '• ' '[x] , sj = s a / . 

±?(%)'±y(rr)'±(i)3'if'-'* 
(3.2) S3(h.k)- TlS12(h,k)+3\s2i(h,k)- Jj-(k - l)2(h3 - 1) = 0. 

k k2 4k 
In the next place, 

k-1 . \ k-1 
S2,l(h,k) = E (k-r)2lh-1-[!£]\=-lk(k-1)(2k-1)(h-1)- £ ^ " ^ [ T ] 

r=1 \ i ,= / 

= 1-k(k- 1)(2k - 1)(h - 1) - - 7 (h - 1)(k -l)k2 + 2kS 1 7 )h.k) - S2 7 (h,k), 
6 2 ' 

so that 1 1 9 

(3.3) S2,i (h.k) -kSt1 (h,k) + j? k(k~ 1)<2k~ 1){h - V - j f o - D<k~ 1>k • 

Similarly 
k-1 , 2 k-1 

Si,2(h.k)=Y. (k-r)[h-1-[j\) = %k(k-D<h-U2-2(h-1)Y. (k~r,[^] 

k-1 2 

+ _ £ (k - r) [ ̂  J = Mfk - 1)(h - 1)2 - k(k - 1)(h - 1)2 

r=1 

+ 2(h - 1)Sh 7 (h,k) + kS2(h,k) - Sh2(h,k), 

so that 

(3.4) Sh2(h,k) = 1/2kS2(hfk) + (h - l)S1f1(h,k) - %k(k - 1 )(h - 1)2. 

By (1.8) 

12hSh7(h,k) + 12kSh 1 (k,h) = (h - 1)(k- 1)(8hk-h-k-1). 



82 SOME SUMS CONTAINING THE GREATEST INTEGER FUNCTION [FEB. 

Thus (3.3) yields 
12h2S2,1 (h,k) + 12k2S2,1 (k,h) = hk(h - 1)(k- 1)(8hk-h- k- 1)- 6h2k2(h - 1)(k- 1) 

+ k(k- 1)(2k- l)h2(h- 1) + h(h- 1)(2h- 1)k2(k- 1). 
Simplifying, we get 

(3.5) 12h2S2,i(h,k) + 12k2S2,i(k,h) = hk(h - 1)(k- 1)(6hk-2h -2k- 1). 

However, comparing (3.4) with (1.7) and (1.8), it does not seem likely that S]2(h,k) satisfies any relation 
similar to (3.5). 

4. We consider next the double sum 

k— 1 2 

(4.1) R(h1f h2; k) = £ [ hll^i ] ((h lh2f k)= 1)m 
r,s=0 

We have 

(4.2) } l W ^ s ) - x(±!^-\hL^]pJ.Rl_lfi2 + /i3r 
r,s=0 r,s=0 ' k 

where 
k-1 

I
Rl = L (hir + h2s)2 

r,s=0 

ris=0 

R3 = R(h1fh2,k). 

Clearly 
(4.3) R1 =

 1-h2k2(k- 1)(2k- 1)+ lh7h2k
2(k- 1)2+ ^h2

2k
2(k- 1)(2k- 1). 

In the next place, by (1.2), 

k-1 , . k-1 

2 r[ k) = £ r{hir + 12<h2- 1>(k~ 1>} = j*>ik(k- D(2k- V+ \ (h2- 1)k(k- 1)2. 
r,s=0 r=0 

Similarly 
k-1 , , 

2 ' [ / T 1 ] =\h2k(k- 1)(2k- 1)+ J- (h,- 1)k(k- 1)2, 
r,s=0 

so that 

(4.4) R2 =
 1- h2k(k- 1)(2k- 1)+ J- (2h 1h2-h1- h2)k(k- I)2 + 1- h2

2k(k- 1)(2k- 1). 

On the other hand, in view of (1.5), 

<«> £ V ( - ^ ) - £V(f-') = * £V(£) = *z (L)2= t(k- 1)m- v. 
r,s=0 r,s=0 t=0 t=*0 

Hence, by (4.2), (4.3), (4.4), (4.5), we have 
1- (k- l)(2k- 1) = tfi2(k- 1)(2k- 1)+ 1-hih2(k- 1)2+ \h2

2(k- l)(2k- 1) 

- jjrffk- V(2k- 1)- 1-2<2h1h2-h1-h2)(k- V2- J -^ f f t - V(2k- V + R(hhh2;k). 
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Simplifying, we get 

(4.6) R(hhh2;k)= l(h* + h%)(k- 1)(2k- 1)+ 1-(h1h2-h1 - h2)(k- 1)2+ 1-(k- 1)(2k- 1). 
o z o 

Next, put 

(4.7) R(h1,h2.h3;k)= Z [h-lr-+Jl2LtM] ((hlh2h3rk)= V. 
res, t=0 

Then, exactly as above 

k-1 
y $2 \hir + h2s + h3t^ = 

r,s, t=0 

1 = Y" ( h1r + h2S + h3t \h1r + h2s + h3tVY 

r,s,t=0 \ I 

4 R1~ TR2+R3 

where 

fj = ] T (hjr + h2s+h3t)
2, R2 = J^ (h 1r + h2s + h3t) 

r,s, t=0 r,s, t=0 

rh^r +h2s +h3t i 

I ~k J ' 

Clearly 

(4.8) 

R3 = R(h1fh2,h3;k). 

Ri = \k3(k- 1)(2k- D^h2+1-k3(k- 1)2Y* hi/12 , 

where the sums on the right denote symmetric functions. 
By (1.2), 

E r\^^f^) = kT,r[hlr + h2s+l(h3-V(k-1)} 
r,s, t=0 r,s=0 

= Ujk2(k- V(2k- D- \ lh2+h3- 1)k2(k- V2. 

It follows that 

(4.9) R2 = \k2(k- 1)(2k- 1)J^h2+ ^{2j2h7h2-J^h1 )k2(k-V2. 

Thus 

£ ^{hilJ^lM.) = i k ( k _ 1)(2k_ vZh2+ i M-,,2%,,,,,, 
r,s, t=0 

-2 [1- k(k- 1)(2k- VJ2h2+ jk(k- V2 ( < ? £ / ? 7h2- ]Th7 )) +R(hhh2,h3; k) 

(4.10) - - lk(k-1)(2k- D^h^- \k(k-1)2Y,hih2+
1- k(k- D2J^hi 

+ R(h1fh2,h3;k). 

On the other hand 

k-1 

r,s, t=0 

2 / h 7 r + h 2 s + h 3 t 
k-1 k-1 k-1 

) - E ^ ( " ^ ) =k2 E ^ (£) - E r2 = \ k(k- 1)(2k- 1, k > L^ ^ \ k ) *-< r K k J ^ ' 6 
r,s, t=0 r=0 r=0 
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Comparison with (4.10) gives 

(4.11) R(h1,h2,h3;k) = \k(k- V(2k - Vj^h^ + | k(k - V2^2hih2 

- lk(k- V2J^h1 - tk(k-1)(2k-1). 

It will now be clear how to evaluate 
k—1 2 

(4.12) m1.-,hn;k)= £ [ h L l l ^ R ^ ((hlh2...hnfk)= j, 
n=o 

for any n. 
The writer has proved [1] that the sunn 

a-1 

(4.13) S(b,c;a) = ] £ rs [££*££] 
r,s=1 

satisfies 
(4.14) S(1,b;a) = 4a4b- 10a2b + a4 + 8a2b - 2ab-a2 , 

where (a,b) = I The proof of (4.14) is rather complicated. 
5. Summary. For the convenience of the reader, we restate the main results proved above. 

k-1 2
 h~1 2 

(5.1) 6k £ [h-f] +6h J^ [jf] = (h- 1)(2h- l)(k- 1)(2k-l). 
r=1 s=1 

k-1 3 h-1 3 

(5.2) 4k(k-l) "£ [|£] +4h(h-1) £ [kj] 
r=1 s=1 

= (h - l)2(k - 1)2(2hk -h-k+1) . 

k-1 h-1 

(5.3) 12h2 £ r2 [ ^ ] + 12k2 J2 s2 [ ^ ] - hk(h- l)(k- 1)(6hk- 2b - 2k + 1). 
r=1 > s=1 

k— 1 2 

(5.4) ^ [ — - p - ] = 1-E(h2
1 + h2)(k-1H2k-1)+1-(h1h2-h1-h2)(k-1)2+l-(k-1)(2k-1) . • 

r,s=0 

(5 . 5 ) £ [lllLtAlLt!l^]
2^m.]m..u{j:h2,lhLk(k,])2{j:h^ 2 A / ) _ 

r,s, t=0 

In (5.1), (5.2), (5.3) it is assumed that ft,W= 7; in (5.4), (hjh2,k) = 1; in (5.5), (b7h2b3,k)= I 
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WYTHOFF'SNIM AND FIBONACCI REPRESENTATIONS 

ROBERT SiLBER 
Worth Carolina State University, Raleigh, Worth Carolina 27607 

Our aim in what follows is to show how Fibonacci representations play a role in determining winning moves 
for Wythoffs Nim [1, 2] very analogous to the role of binary representations in Bouton's Nim [3 ] . The partic-
ulars of these two games can be found in the preceding references, but for the convenience of the reader, we 
briefly recount the rules of play. 

In Bouton's Nim (usually referred to simply as nim) two players alternate picking up from a given collection 
of piles of counters (such as stones or coins). In his turn, a player must pick up at least one counter, so is never 
allowed a "pass." All counters picked up in one turn must come from a single pile, although the selection of 
pile can be changed from turn to turn. The number of counters picked up is constrained above by the size of 
the selected pile, but is otherwise an open choice on each move. The player who makes the last move (picking 
up the last counter) is declared the winner. 

In Wythoffs Nim, only two piles are involved. On each turn a player may move as in Bouton's Nim, but has 
the added option of picking up from both piles, provided he picks up an equal number of counters from the 
two piles. As in Bouton's Nim, the winner is the player who makes the last move. 

As has been known since Wythoffs original paper [1 ] , the strategy for Wythoffs Nim consists of always leav-
ing the opponent one of a sequence of pairs 

(1,2), (3,5), (4,7) , -

which are defined inductively. Generating formulas have been found for these pairs, but they involve computa-
tions with irrational quantities. 

Thus a certain inequity is seen to exist with regard to the computation of play for the two games. In Bouton's 
Nim it is possible to determine correct play solely on the basis of the cardinalities of the constituent piles by 
way of their binary representations; no other information is necessary. In contrast, the traditional play of 
Wythoffs Nim requires having or computing the table of "safe" pairs to an appropriately advanced position. An 
analogous approach to playing Bouton's Nim would require the inductive generation of safe configurations up 
to an appropriately advanced stage, a process which, although altogether well-defined and straightforward, is 
quite complex in that case. 

Recent researches into Fibonacci representations [4, 5, 6, 7 and more] have coincidentally turned up the safe 
pairs for Wythoffs Nim as being quite fundamental to the analysis of the Fibonacci number system. An immed-
iate and explicit by-product of these investigations is a method of computing moves for Wythoffs Nim using 
Fibonacci representations. Ostensibly, this method places the two games on an equal footing with respect to 
the computation of play; in fact, there is a residual disparity, related to the Fibonacci representations. At the 
present time, the determination of Fibonacci representations requires a listing or calculation of Fibonacci num-
bers to an appropriately advanced stage, a calculation which resembles the very aspect of the present method 
which we might hope to eliminate. In the case of binary representations, a succession of divisions provides the 
needed representations, eliminating the necessity of computing tables of powers of 2. The existence and/or de-
termination of an analogous algorithm for the determination of Fibonacci representations is therefore a related 
question of interest in what follows. 

As has been stated, the method we are about to describe is an explicit consequence of the material in [4] and 
[5]., Our contribution consists of making available a description and proof of the method which is self-contained, 
and on the same level as Bouton's treatment [1] . This will remove the necessity for a good deal of background 
which might otherwise exclude this information from many to whom this same information will be comprehen-
sible in its present form. QP. 
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We begin by reviewing some basic facts about the Fibonacci number system. A Fibonacci representation con-
sists of a finite sequence of zeroes and ones, read positionally from right to left. A one in \\\eitfl position de-
notes the presence of the Ith Fibonacci number F,-, where we adopt the convention Fl = 1, F2 = 1, F3 = 2 and 
so forth. The number represented is determined by summing the Fibonacci numbers whose presence is indicated 
by a one. Thus 100000 denotes F6 =8, 11000 denotes f5 + F4 = 8 and 10101 denotes F5 + F3 + Fx= 8. Clear-
ly uniqueness is not generally assured. 

A Fibonacci representation is said to be canonical if it satisfies two conditions: (i) the representation contains 
no adjacent ones and (ii) Fx is not present (although F2 may be) meaning that there is not a one in the first posi-
tion. The canonical form turns out to exist and to be unique for each positive integer and is the representation 
resulting from the following algorithm: given n, determine the largest F^ < n and place a 1 in position k. Repeat 
for the residue n - F^ and continue to repeat, driving the residue to zero. (Be sure to denote the number 1 by 
F2 instead of Fu if it is needed.) Of course, the F; not used correspond to zeroes in the canonical representation. 

A Fibonacci representation is said to be second canonical if it satisfies condition (i) of the canonical represen-
tation and in addition (ii)' the right-most one of the representation is in an odd-numbered position. The second 
canonical form turns out to exist and to be unique for each positive integer and is the representation resulting 
from the following algorithm: given n, determine the canonical representation of n - 1 and then add 1 "in 
Fibonacci," meaning that any pair of adjacent ones is rounded up to a single one in the position immediately to 
the left of the pair. In the case of 8, 100000 is the canonical representation and 10101 is the second canonical 
representation. 

The canonical and second canonical Fibonacci representations are lexicographic, which means the following. 
If m and n are positive integers, then m < n iff the left-most position in which the canonical Fibonacci represen-
tations of m and n differ contains a one in the representation of n and a zero in that of m. The same is also true 
of the second canonical Fibonacci representations. What this amounts to is this: just as in the case of conven-
tional bases, one can determine the larger of two numbers "at sight" by comparing their representations. 

If the reader is willing to accept the assertions we have made concerning the canonical and second canonical 
Fibonacci representations, we can produce an otherwise complete account of the winning strategy for Wythoffs 
Nim. 

We begin with some definitions. Let n be a positive integer which is represented canonically (not necessarily 
second canonically) in Fibonacci. We shall call n an A-number if the right-most one in the representation of n 
occurs in an even-numbered position; otherwise we call n a B-number. Obviously every positive integer is either 
an A-number or a B-number, but never both. 

Let a and b be positive integers, a < b. The pair (a,b) will be called a safe pair if the following two conditions 
are satisfied: (i) the smaller numbers is an /l-number and (ii) the canonical Fibonacci representation of b is 
equal to that of a with a zero adjoined at the right end. For convenience we also agree to consider (0,0) a safe 
pair. Thus, for example, (12, 20) is a safe pair, since in canonical Fibonaccithisis written (101010,1010100). 
Notice that if (a,b) is a safe pair other than (0,0), b must be a ^-number. A pair which is not safe is unsafe. 

We shall prove the following two theorems. 

Theorem 1. If (a,b) is a safe pair, then every pair (c,d) which is derived from (a,b) by a legal move is unsafe. 

Theorem 2. If (c,d) is an unsafe pair, then there exists a safe pair (a,b) derivable from (c,d) by a legal 
move. 

Since (0,0) is a safe pair, it is clear that the winning strategy for Wythoffs Nim consists of always leaving one's 
opponent a safe pair. Thus the first player who can establish a safe pair is the winner, provided he continues to 
play correctly. 

We introduce one last bit of terminology for convenience. Given any Fibonacci representation, the left shift 
of that representation is the representation obtained by adjoining a zero at the right end. The right shiftIs the 
representation obtained by deleting the digit at the right end. We now prove some lemmas which will consider-
ably expedite the proofs of the theorems. 

Lemma 1. If (a,b) is any safe pair different from (0,0), the right shift of the canonical representation of a 
yields the second canonical representation of b — a. 
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Proof. Clearly the right shift of any /l-number is in second canonical form. Thus we need only show that 
the right shift of a represents b - a. Each one in the representation of b is equivalent to a pair of ones in the 
two immediately adjacent positions on its right. (This is simply a way of saying that Fn = Fn--j + Fn-2 if /7 >3, 
and since b is a ^-number in canonical form, the position of each one is 3 or greater.) 

Suppose we denote the right shift operation by ->. From the preceding remark, it is clear that 

b = ~b+T . 
By the definition of a safe pair, b is the canonical representation of a, so this equation is the same as 

b = a + a , 
which is the desired conclusion. 

Now let <- denote the left shift. 

Lemma 2. For each positive integer n, there is exactly one safe pair (an, bn) with bn - an = n. If n is rep-

resented in second canonical form, then an =ATand bn = a~n = n~, with an and bn in canonical form. 

Proof. Let (a,b) and (a',b') be safe pairs with b - a = b''- a'' = n. By Lemma 1, if a and a are represented 
canonically, both ?and a' are the second canonical representation of /7. But the latter is unique and thus the 
canonical representations of the /l-numberss and a'are identical. It follows that there can be no more than one 
safe pair (an, bn) with b - a = n for a given n. 

Clearly the left shift of any second canonical representation is the canonical representation of an /l-number. 

Therefore, given any positive integer nf set an = ATand bn =/7~with n in second canonical form to obtain a safe 
pair (an, bn) such that bn - an = n. 

Lemma 2 has the following corollary. 

Corollary. If m < n then am < an and bm < bn . 

Proof. Fibonacci representations are lexicographic. 

Since no Anumber can be a ^-number, this corollary yields another. 

Corollary. Each positive integer belongs to exactly one safe pair. 

Proof of Theorem 1. Let (an, bn) be a safe pair. By the rules of the game, a legal move must either re-
duce an or bn alone or reduce both an and bn by the same amount. If an alone is reduced, the resultant pairstill 
contains bn so cannot be safe by the preceding corollary; likewise \ox bn. If both an and bn are reduced to ob-
tain a pair (a,b), then b - a = bn - an, so that (a,b) cannot be safe because of Lemma 2. 

Proof of Theorem 2. Suppose that (a,b) is an unsafe pair. If a = b, the pair can be reduced to the safe 
pair (0,0). If a ? b we assume a < b. Represents and b canonically. If a is a ^-number, reduce/? to ~a. If a is an 
/4-number and b > a~, reduce b to a~. If a is an /l-number and b < a~, then b - a <a~- a. Let/7? = b - a > 0 and 
n = a~- a, so m < n and (a,*a) = (an, bnl By the corollary, am <an = a, so that a can be reduced to am. An 
equal reduction in b necessarily produces bm, since by definition, (am, bm) is the unique safe pair with 
bm~ 3m= m. 

If we put together the proof of Theorem 2 and the statement of Lemma 2, we arrive at the following specific 
algorithm for playing Wythoff s Nim. 

0„ Given a pair (a,b), represents and b canonically in Fibonacci. If (a,b) is a safe pair, concede (if you think 
your opponent knows what he is doing). Otherwise, proceed to 1. 

1. If the smaller number of the pair is a ^-number, reduce the larger to that quantity represented by the right 
shift of the canonical Fibonacci representation of the smaller. 

2. If the smaller number of the pair is an /l-number, and if in addition the larger number of the pair exceeds 
that quantity represented by the left shift of the canonical representation of the smaller, reduce it to the latter 
quantity. 

3. If neither 0, 1 nor 2 holds, determine the second canonical Fibonacci representation of the positive dif-
ference of the members of the pair. A left shift on this representation will produce an /l-number and another 
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left shift will produce a ^-number, the two of which constitute a safe pair obtainable from (a,b) by the reduc-
tion of a and b by an equal amount. 

We conclude by illustrating each of these cases. Suppose a = 10, b= 15. Then in canonical form, a = 100100 
and/? = 1000100. Thus a is a ̂ -number (case 1) so we reduce/? to?= 10010. The result is the safe pair (6,10). 

Suppose a=9,b = 20. Then a= 100010 and b= 1010100. Here a is an /^-number with t= 1000100, which is 
less than b by inspection (case 2). We therefore reduce /? to ^obtaining the safe pair (9, 15). 

Suppose a = 24, b = 32. In canonical form, a = 10001000 and b = 10101000. Here a is an /1-number with 
a~= 100010000 > /? (case 3). Hence we compute b - a = 8. The canonical representation of 7 is 10100 so the 
second canonical representation of 8 is 10101. This gives the canonical representation 101010 for as and 
1010100 for/?8, yielding the safe pair (12, 20), which is obtained by reducing both 24 and 32 by 12. 

FINAL NOTE. We are indebted to Mr. Martin Gardner who furnished the additional reference [10] upon 
reading a preprint of this manuscript. References [11, 12, 13] are cited in [10]. The connection with Fibonacci 
representations we have discussed is given (in very definite form) in [12] and is generalized in [10]. However, 
in neither case is the connection with second canonical representations discussed, which is the key to actual 
computation of play. In this connection reference [13] is usable, but more complicated than the second can-
onical approach herein. 
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RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 
H-269 Proposed by George Berzsenyi, Lamar University, Beaumontf Texas 

The sequences {dn\ n=l ^nd [bn]n=g , defined by 
["fl [n/3] . [n/2] 

k=0 k=0 k=0 

(n > 1) (n > 0) 

are obtained as diagonal sums from Pascal's triangle and from a similar triangular array of numbers formed by 

the coefficients of powers of A- in the expansion of (x + x + l)n, respectively. (More precisely, [ " is the coef-
ficient o fx k in (x2 + x+ 1)n.) Verify that an =bn-i + bn for each n = 1,2, •••. 

H-270 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Sum the series 
„a,,b^c 

s- L x y z 
, (b+c- a)!(c + a- b)! (a + b - c)! ' 

a,h,e 

where the summation is over all non-negative a, b, c such that 

a < b +c, b < a + b, c < a +b. 

B-271 Proposed by R. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

Define the binary dual, D, as follows: 

D =<t\t = \ \ (a/+ 21); a/ e {0,1}; n > 0 >. 

Let D denote the complement of D*. Form a sequence, [Sn}n=i, by arranging D in increasing order. Find 
a formula for5^ . 

NOTE: The elements of D result from interchanging t and x in a binary number. 

*With respect to the set of positive integers. 

SOLUTIONS 

UNITY WITH FIBONACCI 

H-247 Proposed by G. Wulczyn, Bucknell University, Lewis burg, Pennsylvania. 

Show that for each Fibonacci number, Fr, there exist an infinite number of positive nonsquare integers, D, 
such that 

89 
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F2
r+s-F

2
rD = 1. 

Solution by the Proposer. 

(1) F2
+s- 1 = (Fr+S+ 1)(Fr+s- 1) = F2D. 

It is assumed as well known that every positive integer is a divisor of an infinite number of Fibonacci num-
bers. Also, a congruence table modulo F2 of the Fibonacci numbers is not only periodic but each period starts 
1, 1, •••. Hence there are at least two infinite chains of Fibonacci numbers which are congruent to 1 modulo F'r 
thusmakingZTin (Dan integer.Since the difference of two positive squares is never one, D in (1) is a non-square 
integer. 

Example: Fr = F4 = 3 

Congruence Table Modulo 9 

1 1 2 3 5 8 4 3 7 1 8 0 
8 8 7 6 4 1 5 6 2 8 1 0 

Fr+S can be chosen as any one of the Fibonacci numbers 
F24n + 1, F24n+2, F24n+6r F24n+1Qf

 F24n+11, F24n+13, F24n+14, F24n + 18, F24n+22> F24n+23-

F6 = 8, 
FJO = 55, 
F„ = 89, 
F13= 233, 
F18 = 2584, 
F22 = 17711 
F23 = 28657, 

D = 
D = 
D = 
D = 
D = 
D = 
D = 

7 
336 
880 

6032 
741895 

34853280 
91247072 

Also solved by P. Bruckman. 
THE VERY EXISTENCE 

H-248 Proposed by F. D. Parker, St Lawrence University, New York. 

A well known identity for the Fibonacci numbers is 

rf-Fn-lFn+l = ~(-1)n 

and a less well known identity for the Lucas numbers is 

L2
n-Ln^Ln+1 = 5(-1)n. 

More generally, if a sequence [yQ, y-j, •••} satisfies the equation yn =yn-i +yn-2< and if Vo a n d / / are inte-
gers, then there exists an integer A/such that 

V$-Yn-lYn+1 = N(-1)n . 

Prove this statement and show that N cannot be of the form 4k + 2, and show that 4N terminates in 0, 4, or 6. 
Solution by G. Berzsenyi, Lamar University, Beaumont, Texas. 

By use of the above identity for Fibonacci numbers and the well known relation 

Yn = Fn-1Y0+ FnYU 
we first establish that 

N = Y0+Y0Y1-Y2 • 
Indeed, 

Yn'Yn-lYn+l = <Fn-lYO+ FnY 1>2 - (Fn-2Y0+ Fn-1Y 1>(Fnyo + Fn+lY 1> 

= (F2_1 - Fn„2Fn)Yo+ (F2- Fn-jFn + jly'j+fFJj., - Fn.2Fn)YoYl 

= -l-ir1Y2
0-(-1)nY2

1-l-ir
1y0y1 = (y2

0+y0yi-y*)(-Dn • 
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It is easy to see that/I/ is odd unless both y^and j/7 are even, in which case it is a multiple of 4. Thus it cannot 
be of the form 4k + 2. 

By a case-by-case examination of the congruences of yg and y 7 (mod 5) one can also establish that 

yo+VoYl-y2i = 0, 1 or 4 (mod 5). 
Therefore, there exists no integer t such that 

y20 + Yoyi-Y21 = 5t + 2 or vl + VoVi-V2 = 5t + 3. 

Consequently, 4N is not of the following forms 

4(5t + 2) = 20t + 8 = 10(2t) + 8 and 4(5t + 3) = 20t + 12 = 10(2t +D + 2, 

i.e., the last digit of 4N is 0,4 or 6. 

Also solved by A. Shannon, J. Biggs, J. Howell, C. B. A. Peck, P. B rue km an, J. I vie, and the Proposer. 

FOLK-LACJRIN 

H-249 Proposed by F. D. Parker, St. Lawrence University, Canton, New York. 

Find an explicit formula for the coefficients of the Maclaurin series for 
b0 + b1x + - + bkx

k 

1 + ox+fix2 

Since two quite different solutions were offered by the Proposer and by P. Bruckman, we present both 
solutions. 

Solution by the Proposer. 

We first get a Maclaurin series for the reciprocal of 1 + ax + fix2. Since we require the values for an for which 

1 = (1 + ax + $x2)(ao + a1x + a2X2 + - + anx
n +-) 

we say that ag= 1, a-j = - a , and 

an + aan-i+Pan-2 = 0. 

Thus the coefficients an satisfy a second-order difference equation which is both linear and homogeneous. The 
general solution is 

dp = C -iX 1 1 CpX n , 

where x-j and^2 are solutions to the equation 
/ +ax+fix2 = 0. 

Since ag= 1 and 5/ = - a , we can evaluate the constants cj and C2 to get 

Thus, we have 

and 

_ 2x2+x1 n 2X1+X2 n 
g X -f- X 

X2-X-, 1 Xj-X2 

b0 + b1x + - + bkx
k , . n 

-z—J — £ • — - d0 + d1x + - + dn x
n + - , 

I + ax + fix2 u 1 n 

dn = J2 an-i°i> 
i=0 

where r= min (n,k). 
If the roots xj and X2 are equal, then an takes the easier form of an = (1 + 3n)xr). 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

The following little-known determinant theorem was brought to my attention by Dr. Furio Alberti, U.I.C.C.: 
If 
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B0 + B^x + B2x2 + -
and BQ ^ 0, then 

Cn 
= (-1)" 

Rn+1 

A0 A1 A2 

B0 B1 B2 

0 B0 B1 

O O O 

An-l An 

Bn-1 Bn 
Bn-2 Bn-1 

Bn Bi (n+1)X(n+1) 
In our particular problem, An = bn, n = 0, 1, ••• , with bn = 0 if n > k; also, BQ= 1, B-j = a, B2 = $, Bn~ 0\\ 
n > 3. Therefore, 

(-1)n 

bo bi b2 b3 
1 a $ 0 
0 1 a $ 

0 0 0 0 

V 1 bn 

0 0 
0 0 

1 a (n+1)X(n+1) 

GROWTH RATE 
H-250 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that if 
AM = Fn+1+B(n)Fn = C(n) (n = 0, 1,2, -), 

where the Fn are the Fibonacci numbers and A(n), B(n), C(n) are polynomials, then 

AM = B(n) = CM = 0. 

Solution by the Proposer. 
We shall prove the following more general result. 

Theorem. Let r be a fixed positive integer and a > 1 a fixed real number. Assume that 

(*) A0(n)am+A1(n)a(r~1)n + - + Ar(n) = 0 (n = 0, 1,2,-), 

where the Aj(n) are polynomials in n. Then 

A0(n) = - = ArM = 0. 

Proof. We may assume that AQ(n) 4 0. Put 
k 

AoM = S ajxJ> ak ^ 0. 

Divide both sides of (*) by n am and let n -+ °°. This gives a^ = 0, thus proving the theorem. 
In the given equation 

A(n)Fn+1+B(n)Fn = C(n), 
put 

Fn = ^ i p , CL= W+yj5), 0= %(l-y/5). 

Then 
A(n)(a2n+2~ 1) + B(n)(a2n+1 -a) = C(n)(a-$)a

n, 
so that 

(a2AM + aB(n))a2n - (a- (S)C(n)an - (A(n) + aBM) = 0. 

Hence by the theorem 
[Continued on page 96.] 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy Fn+2 = Fn+f + Fn, FQ= 0, F7 = 1 and Ln+2 = 

Ln+1 + Ln, LQ = 2, Li= 1. Also a and/? designate the roots (1 +sfs)/2 and (1 - \f5)/2, respectively, of*2 -x 
-1 = 0, unless otherwise specified. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-346 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Establish a closed form for 
n 

£ F2kTn-k +Tn+1, 
k=1 

where Tk is the triangular number 
(k+

2
2) = (k + 2)(k+1)/2. 

B-347 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let a, b, and c be the roots of x3 - x2 - x - 1 = 0. Show that 

a - b b - c c - a 
is an integer for/7 = 0, 1, 2, •••. 

B-348 Proposed by Sidney Kravitz, Dover, New Jersey. 

LetP-j, •••, P5 be the vertices of a regular pentagon and let Q,- be the intersection of segments/V7P/+3 and 
Pj+2Pj+4 (subscripts taken modulo 5). Find the ratio of lengths QfQ2/PiP2-

B-349 Proposed by Richard M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let 30, a-j, a2, — be the sequence 1, 1, 2, 2, 3, 3, •••, i.e., let 3,7 be the greatest integer in 7 + (n/2). Give a re-
cursion formula for the an and express the generating function 

E anx
n 

n=0 
as a quotient of polynomials. 
B-350 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Let an be as in B-349. Find a closed form for 
n 

J2 an-k(ak+k) 
k=0 

93 
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in the case (a) in which n is even and the case (b) in which n is odd. 

B-351 Proposed by George Berzsenyi, Lamar University, Beaumont Texas. 

Prove that F4 = 3 is the only Fibonacci number that is a prime congruent to 3 modulo 4. 

SOLUTIONS 
FRONTPAGE ALPHAMETIC 

B 322 Proposed by Sidney Kravitz, Dover, New Jersey. 

Solve the following alphametic in which no 6 appears: 

A R K I N 
A L D E R 
S A L L E 

A L L A D I 

(All the names are taken from the front cover of the April, 1975 Fibonacci Quarterly.) 

Solution by Charles W. Trigg, San Diego, California. 

A = 1, whereupon R + 2 = 1'0, so R = 8. Then S + 3 = L + 10. This has two possible solutions: S = 7, L = zero 
and S = 9, L = 2. 

If S = 7, L = zero, the subsequent values follow immediately, namely: N = 4, E = 3,1 = 5, D = 9, and K = 2. 
Thus the reconstructed addition is 

18254 + 10938 + 71003 = 100195. 

Also solved by Richard Blaze/, John W. Milsom, C. B. A. Peck, and the Proposer. 

VARIATIONS ON AN OLD THEME 

B-323 Proposed by J. A. H. Hunter, Fun with Figures, Toronto, Ontario, Canada. 

Prove that F2
n+r - (-1)rF2

n = FrF2n+r • 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

The identity is a restatement of l-jg of Hoggatt's Fibonacci and Lucas Numbers with (k,n) replaced by (n,n+r). 
It may be proven directly by using the Binet-formulas: 

= i _ _ [a
2n+2r

 + b
2n+2r- 2(ab)n+r - (-1)r(a2n + b2n - 2(ab)n] 

(a-b)2 

(a-bj 
_ L _ tfn+2' + t,2"*2' _ (- »rb2n _ {_ J^nj 

2 

1 [a2n+2r + b2n+2r-(ab)rb2n - (ab)ra2n] 
(a - b)2 

= ar~br
 a

2n+r-b2n+r 

a-b a-b FrF2n +r 

Also solved by Richard Blaze/, Wray G. Brady, Herta T. Freitag, Ralph Garfield, Frank Higgins, Graham Lord, 
John W. Milsom, Carl F. Moore, C. B. A. Peck, Bob Prielipp, J. Shallit, Sahib Singh, Gregory Wulczyn, and the 
Proposer. 
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B-324 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Determine a constant k such that, for all positive integers n, 

F3n+2 = knFn~i (mod 5). 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

F3n+2 = F6F3n„3 + F5F3n„4 = F6-Fn-V[5F2
n_1 + 3(-L)n~1J + 5F3n-4 

- (-VnFn->i (mod 5). 

Also solved by George Berzsenyi, Ralph Garfield, Frank Higgins, Bob Prielipp, J. Shallit, Sahib Singh, Gregory 
Wulczyn, and the Proposer. 

IMPOSSIBLE FUNCTIONAL EQUATION 

B-325 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let a = (1 + \Js)/2 and b = (1 - >j5)/2r Prove that there does not exist an even single-valued function G 
such that 

x + G(x2) = G(ax) + G(bx) on -a < x < a . 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

There does not exist a single-valued function G which satisfies the equation since if x = a, one finds that 
a = G(ab) and for x = b that/? = G(ab); the two results together violate the single-valuedness. (Note that G need 
not be even.) 

Also solved by George Berzsenyi, l/l/ray G. Brady, Frank Higgins, C. B. A. Peck, and the Proposer. 

ON THE SUM OF DIVISORS 

B-326 Based on the Solution to B-303 by David Zeitlin, Minneapolis, Minnesota. 

For positive integers n, let o(n) be the sum of the positive integral divisors of n. Prove that 

o(mn) > 2^fo(m)o(nT for m > 1 and n > 1. 

Solution by Bob Prielipp, The University of Wisconsin, Oshkosh, Wisconsin. 

In B-260 it was shown that o(mn) > o(m) + o(n) for m > 7 and n > 1. By the arithmetic mean-geometric 
mean inequality, o(m) + o(n) > 2^/o(m)o(n). The desired result follows immediately. 

Also solved by Herta T. Freitag, Frank Higgins, Graham Lord, Carl F. Moore, J. Shallit and Sahib Singh. 

FINISHING TOUCHES ON A LUCAS IDENTITY 

B-327 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Find all integral values of r and s for which the equality 

•£ e;)(-ihn = s"Ln 
i=0 

holds for all positive integers n. 

Solution by Frank Higgins, Naperville, Illinois. 

For n = 1 and/7 =2 we obtain the equations 2 - Lr = s and 2 - 2Lr + L2r
 = 3s , respectively. Replacing s by 

2 - Lr\r\ the second equation we have L2r = 10 - WLr + 3Lf which, since L2r
 = Lr - 2(~1)r, reduced to 

(Lr- 2)(Lr- 3) = 0 for r even and to (Lr- 1)(Lr- 4) = 0for/- odd. Thusr= 0, 1,2,3ands = 2- Lr=0, 1, 
-1, -2, respectively, are the only possible pairs of solutions. We now show that each pair is, in fact, a solution 
for all positive integers n. Using the Binet form we have 
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sn(an+Pn) = snLn = £ (?) (-l)jLrj = £ (?) M J V / ' 
/=0 /=0 

+ H {n
i)(-V

i<&r)i = (1-ar)" + (1-$r)n 

from which it is readily verified that r - 0, 1, 2, 3 and 5 = 0, 1, - 1 , - 2 , respectively, are solutions. 

Also solved by Herta T. F mi tag, Ralph Garfield, and the Proposer. 

[Continued from page 92.] 
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a2A(n) + aB(n) = 0 

(a-p)C(n) = 0 

A(n) + aB(n) = 0 
It follows at once that 

AM = B(n) = CM = 0 (n > 0). 

It is evident That a similar result holds for the Lucas numbers and similar sequences of numbers. 

Also solved by P. Tracy and P. Bruckman. 

******* 
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care of one volume of the publication at a time. This binder is described by the 
company producing it as follows: 

"...The binder is made of heavy weight virgin vinyl, electronically sealed 
over rigid board equipped with a clear label holder extending 2 3/4' high from 
the bottom of the backbone, round cornered, fitted with a IV2" multiple 
mechanism and 4 heavy wires." 

The name, FIBONACCI QUARTERLY, is printed in gold on the front of the 
binder and the spine. The color of the binder is dark green. There is a small pocket 
on the spine for holding a tab giving year and volume. These latter will be supplied 
with each order if the volume or volumes to be bound are indicated. 

The price per binder is $3.50 which includes postage (ranging from 50^ to 80^ for 
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All orders should be sent to: Professor Leonard Klosinski, Mathematics Depart-
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