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RESIDUES OF GENERALIZED FIBONACCI SEQUENCES

€.C. YALAVIG!
Government College, Mercara, India

Consider a sequence of GF numbers, {w,(b,c;P,Q) }L:o Forbh =c =1, L. Taylor [1] has proved the follow-
ing theorem.

Theorem. The only sequences which possess the property that upon division by a (non-zero) member of
that sequence, the members of the sequence leave least +ve, or —ve residues which are either zero or equal in
absolute value to a member of the original sequence are the Fibonacci and Lucas sequences.

Qur objective is to consider the extension of this theorem to GF sequences by a different approach, and show
that a class of sequences can be constructed to satisfy the property of this theorem in a restricted sense, i.e., for
a particular member only. For convenience, w,(b,7; 0,7), w,(b,1; 2.b), w,(b,1; P,Q) shall be designated by
Up, Vp, Hp, respectively.

Let Hypr =(—1) r_7Hk_, {mod H ). Assume without foss of generality, & to be +ve. We distinguish 2 cases:
(A)0<r<k and (B)r >k

(A) Evidently, the members leave least residues which are either zero or equal in absolute value to a member
of the original sequence.

(B) Allow |H_gr7| < |Hg| < |H-g|. Let

(1) Howss = (=15 TH_g (mod Hi ), Hoksser = (—1)H_g-7 (mod Hy) .
Ciearly, the property of above-cited theorem holds for {4, } 2, iff
(1)K Ty o = Ho (mod Hy), and (~1)KH o1 = Hosy (mod Hy),

for some ¢ such that —s + 7 < ¢ < 2k Denote the period of { H,, (mod H,)} & by k(Hy ). Rewrite the given
sequence as  { Hp-} ., where Hj-=H,. Setk’=k +1,5"=s—t and ¢ =2+ Then, it is easy to show that
klH) = 2k+s—, KkiHp) = 2k'+s"— ), and  klHi) = kiHk).

We assert that k(H -} is even, for t= (s — ¢)/2 obtains s” = ¢, k(Hy+) = 2k’, and the substitution of s —2 =2t + 7
leads to s” — ¢" = 1, k(Hy-) = 2k’ + 1, which is a contradiction. Hence, it is sufficient to examine the following
system of congruences, viz.,

(2) Hokr = Hp (mod Hi), Hok+1 = H7 (mod Hi-) .
These congruences imply ’
(3) Hokve = He = (=K1 (mod Hie) = (— 1)K T{H,— (20 — bPJu; } (mod Hy )

= (— 7)k“7{PVt— He } (mod Hg ).

Therefore, (i) P =0, Q = 1, and (ii) P=2 Q = b, furnish readily the desired sequences, and they are the only
sequences for which the property of L. Taylor's theorem holds. For the restricted case, by using the well known
formula H,, = Pup_g + Quy,, it is possible to express H_g = Hg {mod Hg), and H_e_7 =Hor7 (mod Hy ) as two
simultaneous equations in A, @, and obtain their solution for given §, ¢, and 4. In particular, the latter case may
be handled by using k(H%-) = k(uk ), where Hy - is selected arbitrarily to satisfy k”= k(ug-}/2 and

Hir = Pugrq + Quy ,
determines P and Q.

Example: Hg = 19, k(Hg) = 18, P=g a=-5.
1
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COMPOSITES AND PRIMES AMONG POWERS
OF FIBONACCI NUMBERS, INCREASED OR DECREASED BY ONE

V.E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

It is well known that, among the Fibonacci numbers F,,, given by
F1=1=F3, Fnt1 = FntFp-g,

F, + 1is composite for each n > 4, while £, — 7is composite forn > 7. It is easily shown that F,?i: 7is also
composite for any n, since

F241 = FpoFaia,  F2F1= FoprFnog .
Here, we raise the question of when fm + 1 is composite.
First, if k & 0 (mod 3), then Fy is odd Fk is odd, and Fk £ 7 is even and hence composite. Now, suppose we

deal with F3k £ 1. Since A — B" always has (A — B) as a factor, we see that ng — 1™ is compaosite except
when (A — B) = 1, that is, for k = 1. Thus,

Theorem 1. F} — 1is composite, k # 3.

We return to F3; + 1. Form odd, then A™ + B™ is known to have the factor (4 + 8), so that £, + 1™ has
the factor (F3, + 7), and hence is composite. If m is even, every even m except powers of 2 can be written in
the form (2/ + 1)2' = m, so that i i
Fge+ 17 = (F3)T 4 (1% )]
which, from the known factors of A + 8™, m odd, must have (F2, + 7) as a factor, and hence, F% + 7is
composite.

This leaves only the case F3; + 7, where m = 2”. When & = 7, we have the Fermat prumesZ " 7, prime for
i=0,1,2 3,4 but composite for/ =5, 6. It is an unsolved problem whether or not 22"+ 1 has other prime
values. We note in passmg that, when k=2, Fg=8= 23, and Bm t]1= (23) £]= (2m} % 7 is always com-
posite, since A3+ B3 s always factorable. It is thought that Fg + 1 is a prime.

Since F3, =0 (mod 10), K =0 (mod 5), F/25’k +1=102"t+1.

Since F2/ =6 (mod 10), / > 2, k% 0 (mod 5), F2' + 1 has the form 70t + 7, k # 0 (mod 5). We can sum-
marize these remarks as
Theorem 2. F; + 1is composite, k #35, F3; + 1is composite, m # 20
It is worthwhile to note the actual factors in at least one case. Since
FrioFi-2 — FF = (=1)K77
Fr+1Fr-1— Flg = (- Hk
moving F,f to the right-hand side and then multiplying yields
Fi-2Fk-1Fi+1Fez = Fe—1.
We now note that
FE~ Fk = Fk-2Fk-1FkFi+1Fis2
which causes one to ask if this is divisible by 51. The answer is yes, if K #3 (mod 6), but if K =3 (mod 6), then

only 30 can be guaranteed as a divisor.
Yotk



DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES

V.E.HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

1. INTRODUCTION

In Matijasevic’s paper [1] on Hilbert's Tenth Problem, Lemma 17 states that Fﬁ, divides £, if and only if
Fm divides r. Here, we extend Lemma 17 to its counterpart in Lucas numbers and generalized Fibonacci num-
bers and explore divisibility by higher powers.

In [2], Matijasevic’s Lemma 17 was proved by Hoggatt, Phillips and Leonard using an identity for £, . Since
that proof is the basis for our extended results, we repeat it here.

We leta=(7+/5)/2, §=(1—+/5)/2. Then it is well known that the Fibonacci numbers F,, are given by

_al=p"
(11) Fn (1—6
and that
(1.2) am:aFm’LFm—L Bm:BFm+Fm-1-

Combining (1.1) and (1.2) with the binomial theorem expansion of & and 8" gives

mr mr
a

r k k
Fr = === = 2 (%) Ffﬁﬁf{f;(g-a—:g-)

k=0
so that
d k
(1.3) Fror = 3 (%) FonFrmt1Fic -
k=0
Since Fg= 0 and F,f, divides all terms fork > 2,

Frr = () FmFinl1F1 = rEm P2y (mod F2) .
Since (Fm, Fm-1J=1, it follows easily that
(1.4) F2|Fm, ifand only it Fplr.

2. DIVISIBILITY BY OTHER FIBONACCI POWERS

The proof of (1.4) can easily be extended to give results for divisibility by higher powers.
Since F,‘: divides all terms of (1.3) for k > 3, and since F; = Fo= 1, proceeding in a manner similar to that
of Section 1,

Frr = tF i dy + L) F2 P12, mod £3)

e
When ris odd, (r— 7)/2 = kis an integer, and
Fir = rFmFE2 (Frg # kFpy) (mod F2) .

Since (F,,, Frye1)=1,
Fm {(Fm-1+kFm)  and Fml FL2,,

50 that £ | Fpnif and only if F2 |1,
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If r is even,
F Fr2/(2F 14 (r— 1)Fm) (mod F2).

Fonr =

2
I (Fry, 2Fm-1) = 1, then F,‘;’;\Fm,if and only if Fm |r. Thus, we have proved
Theorem 2.1. Whenever ris odd, F3)|Fpm, iff F2 |r. Whenever £y, is odd, £, | o, iff F2 |7
Sinilarly, since F7=F>=17and F3=2, from (1.3) we can write

For = bty # L1 2 pr2, 0 = 1220 p3 P25 (mod F)

m' m-1

since F,‘,’7 divides every term for k > 4.
ifr=6k+1 then{r— 1)/2=jand (r— 1)(r— 2)/3 =i for integers and /, so that

Fne = tFm Fin3 (F2 1 # jFp Froeg #iF2) (mod F).

As before, since (Fm, Fr-7)= 1, Fib\Fm iff F2 11,
If r = 6k, then

Fonr = b FnFial1(6F 1+ 300 = 1FmFong + 20r = lr=2)FZ) mod £3) .

I (Fim, 6F 1) = 1, then Fry | Fmy iff Fi3 | Note that (Frn, 6) = 71 m # 30, m # 4. The cases r = 6k:+2
and r = 6k £ 3 are similar. Thus, we have proved
Theorem 2.3. Whenever r=6k £ 1, Fih | F,p, i F2 |r. Whenever m #3q, m # 4, Fi| oy ifE F2) | 1.

Continuing in a similar fashion and considering the first terms generated in the expansion of F,,, we could
prove that whenever r= 6k £ 1, orm # 3q, 4q,

Fo\Fm, iff FAlL andalso  FS\Fm, iff F2r,
but the derivations are quite long. In the general case, again considering the first terms of (1.3), we can state
that, whenever r = kfs — 1)/ £ 1, FS | Fpp, iff FS5 7|1,
fractions generated from the binomial coefficients.

We summarize these cases in the theorem below.

Theorem 2.4. Whenever r =6k = 1,
FS\Frmp iff FST

s=1234256.

,

Whenever m # 3q, m # 4g,
/_-S

m

\Fr it FS T\ 5= 1,23456
Whenever r = kfs — 1)/ £ 1,
FS \Fmp it TP,
Next, we make use of a Lemma to prove a final theorem for the general case.
Lemma. 1f s"—”r, then s”k|(kr) k=1 -, n

Proof. Vin<r thenk<n <r. Casesk =1 and k = rare trivial. Case s = 7 is trivial. 15" 7
for some integer A7, and

_ -1 I ' N L
(2)_%(2—7)=_k_(/r<—7)_—ks (2 7>
If r
k-1 -1
then e (2_7) l
n-ky/r
If ) ‘(k)

ks (1 20)
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then

k|Ms9 (r_;), k <q <n,

r
k

Butk <p9 forp>2 and g > k > 0, a contradiction, so that x must divide

Msk_7(2___77), and s"‘kl(Z)

since ( ) is an integer. That is, k = p 9/, where p is some prime.

It is |mp033|ble forn >r. Ifn<r, thens"” 71r implies Ms"~" = r, where n — 7 > r, and where M is an inte-
ger. But s” T rfors> 2, n—1=>r.

7
Theorem. 1f F))'|r, o Fmr-
Proof.

r
e = 3 (1) FoFEE Fi
k=0
If k=35, then F,, divideseach term Since Fp= 0, F,, divides the termk 0. When k=1, the term is rFp F,) 71
(Fr, Fm 7}—7 so that if FS nFs, leldeer Fr 7, If Fs divides r, then Fs d|V|des ( ) for &
=1, - ,shy the Lemma, and F d|V|des each successive term fork =1, .., sincein the k™ torm we always
haveafactorF while Fs'k appears as a factor of ( ) )

These theorems allow us to predict the entry point of Fk in the Fibonacci sequence in limited circumstances.
The entry point of a number n in the Fibonacci sequence |sthe subscript of the first Flbonacm number of which
n is a divisor. When m # 3/ or 4j, the entry point of F in the Fibonacci sequence is mF "fork = 1,2 3 4,5,
oré.

3. DIVISIBILITY BY LUCAS SQUARES

Next, we will derive and extend the counterpart of (1.4) for the Lucas numbers. It is well known that, analo-
gous to (1.1), the Lucas numbers L,, obey

(3.1) Ly = a"+p"
and B
(3.2) RS L. LY

Combining (3.1) and (3.2) with the binomial theorem expansion of " and ™",

mr o, gmr - (___/;Lt_l_t.\_é_g_/frﬁ) ’ + (_LL”_:_\;E/_:’E >r

Ly =

r

= 08" % (0 ) L FRBITT + (=1)7].

j=0
When / is odd, all terms are zero. We let; = 2/ and simplify to write
[r/2] S
83 Lo 2™ = 5 (5) LRPFRS
=0

All terms on the right of (3.3) are divisible by L,f, except the last term, j = [r/2]. |f r= 2t the last term is

2t 0 22t t _ 2t
(2r) Lo Foist = 5T,
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Since 5 f L,y for any m and Ly, f Fpy forany m > 17, L,f, ,{Zr"ILm,, m > 1. However, if r= 2t + 1, the
last term is

(PP 1) L FRISE = (204 105 L F2L,

and 2 ' (2¢41)m is divisible by L if and only if Lpy|(2t + 1), m > 1. lf m # 3qg, then (L, 2) =1,
and Lm\Lm(gtﬂ; if and only if Lm|(2t+ 1). 1fm= 3q, then L, is even, so that

L £ (2t+ 1), and Ly ){2 U (2e41)m. m > 1.
Return to (3.3) and notice that, when r =2t + 7, all terms except the last are divisible by L,‘f,, so that
L3 Ly ifF L2V (2t41), m > 1.

We summarize these results as
Theorem 3.1. Whenever r is odd,

and $Lm, iff Lm|r

Whenever r is even, Lm )(Lm, m>11fm= 3q > 1, then Lm /fLmr forany r.

We can also determine criteria for divisibility of L,,, by F and Fp, by L . Itis trivial that F2 m A Lmrfo
m#1,2, 3,4, since Fp, f Ly, for other values of m. To determine when Lm 5 Fmy. return to (3.1) and (3. 2)
and use (1.1) and the binomial expansion of @ and 8" to write an expression for F,,, in terms of L . (Re-
call that\/5 =a—8.)

SEFmy = a™ = g™ = (Lm+2\/§/-'m)’_ <Lm_2\/‘5‘,_-m>r

r . . . .
= ()" ;‘] (;) Lo BV (1= (=1)'] .
j=

Here, whenever/ is even, all terms are zero. Setting/ = 2/ + 7 and rewriting, we obtain

[rr2] _ .
\/EFmr = () E (2,+7) L,/;;Z’ 1F57/+7.(\/§}2/+1_2
=0
[r/2]
(3.4) 2r_7Fmr - E <21+7> Lr—2/—7F2/+7 50
=0

Notice that, when r=2t+ 1, Li divides all terms of (3.4) forj < [r/2]. When/ = [r/2] =t the last term is

2t + 1 0 [2t+1 pt _ ptp2t+1
wh|ch is not divisible by Ly, m > 1, since Ly [ Fpp, m > 1, and Ly, )(5tfor any t > 0. Thatis, if r is odd,
m)(Fmrforanym > 1.
However, when r is even, L divides all terms of (3.4) for/ < [r/2] — 1. |f r = 2¢ then the terms/=¢— 1
and / =t give

2t 2t-1,t-1 -1 2t gt _ 2t-1 t-
(5:2%;) LmFRTT55 T+ ) Lot FAT15E = (200, F 155 T 4 0.

(2t+7
Now,
Ln{Fm, m > 1, and L K557, > 1.

Thus, L2 | 2257 F ooy ifand only if L, | 2t If Ly, is odd,
L2 | Fome iff o, L2 |Fmr iff Lyl

The same result holds for L., even, which case depends upon the fact that 4 is the largest powerdf 2 that
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divides the Lucas sequence. If L, is even, m = 3q. If m is even, L, contains exactly one factor of 2, while
Fmr = F(3q)(2t) = Fer contains at least three factors of 2, since Fg = 2% is a factor of Fge. 1 m = 3qg is odd,
then L, contains exactly two factorsof 2, and L, ‘Zt iff t = 25 for some |nteger5 making Frmy = Fr2gs, a mul-
tiple of F 75 = 144 = 2%.32, [ Thus, for L, even, if L2427 Fopy, then L2 | Fray.

Notice that, since also L divides all terms of (3. 4) for reven and / < [r/Z] — 1, it can be shown in the same
manner that )

LI\ Fp iff L20r  or, L3 | Fome iff L2 1.
We summarize these results as follows.

Theorem 3.2. |friseven,
L2\ Fop iff Ly |1,

and m|Fm, iff Lmlr
Further,
LE |\ Fome iff Lyp\t  and L3\ Fome iff L2 ]2,

fris odd, L2 Frmp, m > 1.

4. GENERALIZED FIBONACCI NUMBERS
The Fibonacci polynomials f, (x) are defined by
folx) = 0, f1lx) = 1, foe1(x) = xFolx) +fooqlx),
and the Lucas polynomials L, (x) by
Lolx) = 2, Lilx) = x, Lpt1(x) = xLp(x)+ Lp-1(x).

Since (1.3) is also true if we replace £, by 7, (x) (see [2] ), we can write

(4.1) Fplx) = zr (%) K K () (x).
k=0

Notice that Fp; = £y (1) and L,y = Ly (7). The Pell numbers 1, 2,5, 12,29, 70, -, Py, -+, Pny1=2Pn +Pp_y,
are given by P, = f,(2). Thus, (4.1) also holds for Pell numbers, which leads us to

Theorem 4.1. For the Pell numbers Py, P2 | P, iff Py | .

Similarly, since (3.3) and (3.4) hold for Lucas and Fibonacci polynomials, if the Lucas-analogue R, of the
Pell numbers is given by R, = Pp47 +Pp-q, then L,(2) = R, and we can write, eventually,

Theorem 4.2. \frisodd, B2 | Ry iff Ry | 1. 1f ris even, B2, | P, iff B | 1.

We could write similar theorems for other generalized Fibonacci numbers arising from the Fibonacci
polynomials.

5. DIVISIBILITY BY FIBONACCI PRIMES

From [3], [4] we know thata prime p|Fp-7 or p|Fp+7 depending upon ifp = 5k £ 7 orp = 5k £ 2. Forex-
ample, 13| F74, but, note that the prlme13 enters the Fibonacci sequence earlier than that, since F,=13. From
p| Fp+7 one can easily show that p \F 24p, but squares of primes which are also Fibonacci numbers divide the
sequence earlier than that |e , F7 =13, and 732|F97 = F7.13, where of course, F7. 73 < F132473. Ifpisa
Fibonacci prime, |fp =F2 ]Fm, then p|r and the smallest such r is p itself, so thatp2|Fmp If p = Fy, then
m <p £ 1since Fpi., >p forp > 4. Thus, Fmp <Fprup-

Are there other primes than Fibonacci primes for WhICh Jij |F , n<plp £1)?
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LETTER TO THE EDITOR

March 20, 1974
Dear Sir:
| would like to contribute a note, letter, or paper to your publication expanding the topic presented below.
Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as
the sides increase:
(1) 3,4,5,—-21,20,29 - 119, 120, 169 — ---.

Following is another sequence of such “Pythagorean’ triangles, the smallest angle approximating 30 degrees
as the sides increase:
(2) 15, 8,17—209, 120, 241-2911, 1680, 3361 — 23408, 40545, 46817 — 564719, 326040, 652081 ---

The scheme for generating these sequences resembles that for generating the Fibonacci sequence 1, 2, 3, 5,
and so on.
Let gx and g7 be any two positive integers, g, > gk—-7 - Then, as is well known,

2 2 2, 2
(3) 9% — Jik-1- 29k9k-1. and g * gk-q

are the sides of a Pythagorean triangle.
Now let m and n be two integers, non-zero, and let

@) Gk+1 = NGk + MYk-1
to create a sequence of g's.

1fg7=192=2 m=1n=2 substitution in (4) and (3) gives the triangle sequence in (1) above.

Ifgy=1 go=4, m=—1,n=4, the resulting triangle sequence is (2) above.

If the Fibonacci sequence itself is used (m = n = 7), a triangle sequence results in which the ratio between the
short sides approximates 2:1.

In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the
legs, or of the hypotenuse to one leg, approximates any given positive rational number p/ (o and ¢ positive
non-zero integers, p > g). ltis easy to obtain m and  and good starting values g7 and g2 given p/g, and there is
more to the topic besides, but | shall leave all that for another communication.

For all | know, this may be an old story, known for centuries.

However, Waclaw Sierpinski, in his monograph Pythagorean Triangles (Scripta Mathematica Studies No. 9,
Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such
triangle sequences, unless | missed it in a hasty reading. He obtains sequence (1) above by a different method
(Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given
angle in the first quadrant (Chap. 13); but again, the method differs from the one | have outlined.

[Continued on page 10.]



AN ELEMENTARY PROOF OF KRONECKER'S THEOREM

JOEL SPENCER
Santa Monica, California 90406

Kronecker’s Theoremn. Let p(x) be a monic polynomial with integral coefficients, irreducible over
the integers, such that all roots a of p have |a|= 1. Then all roots a are roots of unity.

This result was first proven by Kronecker using symmetric polynomials. In this note we prove Kronecker’s
Theorem using Linear Recursive Sequences. The condition that p is monic is necessary since p(x) = 5% _6x+5
has roots (3 £ 4j)/5. |t is also necessary that a// roots @ have |a| = 1. For let p be the minimal polynomial of
a=x+iJ1 —x* where x =+/Z — 1. Then |a| = 1 butp(B)=0where §=y +i\/T—y%, y=—-/2 — 1
and 8| > 1.

Proof of Theorvem. Let

Consider the sequence {u; } defined by

Un—7 =1
n
(%) Us = 3 ajlsi for s >n
=1
Then
Us = Z E,-af p
i=1

where ay, -+, a, are the roots of p. Then
n n
Us| < 20 N&illaif® < 22 J&il < W,
=1 =1

independent of s. Since the U are integers there are < (2V + 7) possible Us and hence < (2N + 1)” possible
sequences (U, Us+1, -+, Uss(n-1)) Therefore, forsome 0 <s <t < (2N +1)" +1,

(Us, Ust1, =, Ust(pn-1)) = (Ug, Ugrq, -, Ugrn-1)).
That is
US+/: Uﬁ/ (0</.<I7—H.

By (=) this implies
(%) Ustj = Uy (0 < j).
Setting K = t—s,

n 3 n .

X ke = 3 galT 0 <)

=1 =1

9
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Y ek~ 1)afT =0 (0 <))
=1

Setting x; = E,-(a,k - 1)
n
Y afxi =0 (0<j<n-1).
i=1

The coefficient determinant

s s 4 g
ay an ay ay
+ +
aj ! a, ! s a77 al
det | . : = fag --ap ) det | . 3 0,
as+n-—7 as+n—1 n-1 n-1
7 n ay a,

since this is the Vandermonde matrix and the g; are distinct since p is irreducible. Hence the # linear forms are
independent, so

nl.

Some &; # 0 since U,_7 # 0. For that/, a,-k = 1. Since the a's are roots of an irreducible polynomial, by Galois
theory a/’-‘ =1forl1<j<n

xi =0 (1 <i

A

Q.ED.
Corollary. Kronecker’s Theorem holds even if p is not irreducible.

Proof.  We factor p(x) = Ilp;(x), where the p; are irreducible. All roots a of p; are roots of p so |a| =1
so all roots are roots of unity. But all roots of p are roots of some p; and hence roots of unity.
David Cantor has noted that the proof after (xx) can be shortened using generating functions. For

S - XA
I

n k
i=0 oxt =1
1-3 apxi
i=1
Hence

n
xP(x71) = 71— > aix! [xk -1
=1
p(a}:l?impliesp(a"):[)implies ak- 1=0 ak = 7,s0ak = 1.

Yolodoioioiok
[Continued from page 8.]

| must tell you that | am short of proofs and mast of the propositions would have to be presented as observa-
tions or conjectures. Co-authors with proofs are welcome.
Thank you for your attention to this letter. Please write and let me know whether the subject is of interest,
You are free, of course, to publish this letter or any part of it.
Sincerely,
John W. Jamesaon,
P. 0. Box 205
Edgewood, Maryland 21040



FIBONACCI NUMBERS IN THE COUNT OF SPANNING TREES

PETER J. SLATER*
Applied Mathematics Division, National Bureau of Standards, Washington, D.C. 20234%*

Hilton [3] and Fielder [1] have presented formulas for the number of spanning trees of a labelled wheel or
fan in terms of Fibonacci and Lucas numbers. Each of them has also counted the number ofspanning trees in
one of these graphs which contain a specified edge. The purpose of this note is to generalize some of their re-
sults. The graph theory termmology used will be consistent with that in [2), Fx denotes the ” Fibonacci
number, and Lk denotes the k™ Lucas number. All graphs will be connected, and S7T(G) will denote the num-
ber of spanning trees of labelled graph, or multigraph, G.

Afan on k vertices, denoted Ny, is the graph obtained from path Pg_; =2, 3, ---, k by making vertex 1 adja—
cent to every vertex of Pg_y. The whee/ on k vertices, denoted Wy, is obtained by adding edge (2,k) to V.
That is, Wy = Ny + (2, k). Aplanar araph G is one that can be drawn in the plane so that no two edges intersect;
G is outerplanar if it can be drawn in the plane so that no two edges intersect, and all its vertices lie on the same
face; and a maximal outerplanar graph G is an outerplanar graph for which G + (u,v) is not outerplanar for any
pair u,v of vertices of G such that edge (v,v) is not already in G. For example, each fan is a maximal outerplanar
graph because, as will be used in the proof of Proposition 1, an outerplanar graph on k vertices is maximal outer-
planar if and only if it has 2k — 3 edges.

i 2

Figure 1 Three Graphs on Six Vertices

As shown in Hilton [3],ST(Ny )= Fox-2 and ST(Wy ) = Lok-o — 2. Let UP/ denote the set of maximal outer—
planar graphs with & vertices, of WhICh exactly / are of degree two. Note that /Vk S UPk for k > 4, and, with Gy
asin Figure 1,G;— (3,6) 0P6

*This work was done while the author was a National Academy of Sciences-National Research Council Post-

doctoral Research Associate at the National Bureau of Standards, Washington, D.C. 20234.

** Author is currently at Sandia Laboratories, Applied Mathematics Division-5121, Albuquerque, N.M. 87115.
i 1
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Proposition 1. \fH < OPF, then ST(H) = For_5.

Proof. If k equals 4 or 5, then Usz = {/Vk} and ST(Ny ) = Foi-p for any k. The proposmon will be
proved by induction on k. Suppose it is true for4 < k <n — 7 with n > 6, and suppose H € OP Assume the
vertices of A are labelled so that 1, 2, ---, n is a cycle bounding the outside face and vertex n is one of the two
vertices of degree two, written deg (n) = 2. Now 4 is maximally outerplanar implies thatedge (7, n — 7)isin H.
Also, either (7, n — 2) or(n — 1, 2) isin H, and, by symmetry, one can assume (7, n — 2)is in H. (See Fig. 2.)

: |

-

n—1 n-2

Figure 2 Structure in a Graph H < [IPN2

Since any spanning tree 7 contains at least one edge incident with vertex n, either 7 is a spanning tree of

—(1,n) or H — (n — 1, n), or else T contains both edges (7,n) and (n — 1, n). Now deg (n — 7)=2in H—n
lmplles H-ne 0P _q- Hence, ST(H — (1,n)) = ST(H — (n = 1,n)}) = ST(H — n) = Fon_4. Also, deg (1) >
and deg (n — 2) > .3’ m H, but exactly one of these two vertices will have degree two in # — {n n- 7} that is,
H-{nn-1}e UP _o. Now the number of spanning trees of A using both (7,n) and (n — 7, n) equals the
number of spanning trees of H — n using (1, n — 7). This is obtained by subtracting the number of spanning
trees of H — n that contain {n — 7, n — 2} butnot(7, n — 7) from the total number of spanning trees of H — n,
and one obtains

Fon-a—=ST(H—n—=(1,n~1)) = Fapq—ST(H—{n,n=1}) = Fon-q— Fon-6 = Fan-s5.
Consequently,
ST(H) = ST(H —(1,n)) +ST(H — (n — 1,n)) + Fop.5 = 2Fop-q+ Fop-5 = Fop-2,

and the proposition is proved.

For 0Pk with j > 3, no result like Propomtlon 1is possnble Indeed, letH;=N7+8+(84)+(8,5), and let
Ho=N,+8+(83)+(84) ThenH; < 0P8 Hye 0P8 ST(H1) =368 and ST(H») = 369.

Allowing there to be several edges connecting each pair of vertices, let G be any multigraph. Several observa-
tions can be helpful.

Observation 1. Suppose v is a cutpoint of (connected) multigraph G, and G — v has components
Cy1,Co, -, Cy. 1T Bjis the subgraph of G induced by C;and v (7 </ < t), then

t
ST(6) = T ST(8;).
i=1
For example, vertex 1 is a cutpoint of Ng — (3,4), and ST(Ng — (3,4)) = ST(N3)-ST(N4) = 3-8 = 24.
Observation 2. Suppose (u,v) is an edge of multigraph G and G*is obtained from G by identifying u

and v and deleting (u,v). (Note that even if G is a graph then G” may have multiple edges. Also, if (u,v/is one of
several edges between v and v, then G’ will have foops, but no spanning tree contains aloop.) Then ST(G’) is
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the number of spanning trees of G that contain edge (u,v). For example, S T(Wyc++7) is the number of spanning
trees of “"biwheel” Wy ; (as in Fig. 3) which contain the edge (u,v)

k k+1

k+2

\
oy
/

/

~

—-y
k+j

Figure 3 A “Biwheel’’ on k +/ + 2 Vertices with 7 <j < kand k > 2

Observation 3. Suppose edge (u,v/ is in spanning tree 7 of G. Let U (respectively, V/) by the subgraph
of G induced by the set of vertices in the component of 7 — (u,v) that contains v (respectively, v). Clearly there
are ST(U)-ST(V) labelled spanning trees of G containing (u,v) that produce these same two subgraphs. This pre-
sents another way to count the labelled spanning trees of G containing (v,v). For example, in graph G of Fig. 1,
let v =3 and v = 6. The possibilities for the vertex set of U are

{3}, {3.4},13,4,5}, (3,2},{3,2,4},{3,2,4,5},{3,2,1},{3,2,4, 1}and {3, 2,4,1,5}.

Thus one obtains
1-21+1-3+1-1+1-8+3-3+3-1+1-1+8-1+21-1 = 75

spanning trees containing (3,6).

Let G be any multigraph, and let G” be as in Observation 2, then ST(G) = ST(G — (u,v)) + ST(G’). Thatis,
ST(G) is given by evaluating the number of spanning trees in two multigraphs, each one with fewer edges and
one with one fewer vertices. As this procedure can be iterated, one can compute S7(G/ in this manner for any
multigraph G.

One can also find formulas for classes of graphs, such as the “biwheels,” where the biwheel on k +/ + 2 ver-
tices, denoted Wy ;, is as in Fig. 3 with deg (v) = k + 7 and deg (v) =/ + 1.

Let U (respectively, V) be the fan Vx (respectively, /V;) containing v (respectively, v) in

H = Wk,j— ‘{ (k, k+1), (uv), (1, k +/}} .
Consider the spanning trees of Wy ; that contain (k, k + 7)and (7, k + /) but not (u,v). Any such spanning tree of
Wy ; contains a spanning tree of U or I/, but not both. The number of such spanning trees that contain a fixed
spanning tree of I/ can be found, using a slight variation of Observation 3, by enumerating the number of span-
ning subgraphs of U that have two components, each of which is a tree, one containing vertex 1 and the other
containing vertex k. This equals 2(ST(N ) + ST(Ng_1) + -+ ST(N2)). Similarly, if j > 2, there are
2(STIN;) + ST(Nj_7) + - +ST(N2))
such spanning trees containing a fixed spanning tree of U.
PTOPOSitiOTZ 2. ST{Wk'/') = Log+oj +2F k427 — 2F 25 — 2F o — 2.

Proof. The number of spanning trees of /¥ ; which contain (u,v) is ST(Wyc+j+7 ). The number of span-
ning trees containing (k, k + 7) but not (u,v) or (1, k +/) (or (1, k +) but not (k, k + 1) or (u,v)) is
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STNir1)-STN47).
Thus
ST(Wk, 7) = L2k+2 -2 +2F2k +2(F2 + F4 + ot F2k-2)/
and, ifj > 2,
ST(Wp,j) = Lok+zj— 2+ 2F o Foj+ 2F2(Fo+ Fq+ -+ Forp) # 2F g (Fo + Fg+ -+ Fpp).

Simple Fibonacci identities reduce these equations to the desired formula.

REFERENCES

1. D. C. Fielder, “Fibonacci Numbers in Tree Counts for Sector and Related Graphs,” The Fibonacci Quar-
terly, Vol. 12 (1974), pp. 355—359.

2. F.Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass., 1969.
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Foicdohokoiok

THE DIOPHANTINE EQUATION (x; + x5 + - +x,)% = xf +x3 4

Sw

W. R.UTZ
University of Missouri — Columbia, Mo.

The Diophantine equation

(1) . . (X7+X2+"'+Xn)2:X?+X§+'"+X§
has the non-trivial solution x; =/ as well as permutations of this n-tuple since
n n
i=nln+1)2 and Z i3 = n2m+1)%4.
=1 =1

Also, forany n, x; # n forall i = 1,2, ..., n, is asolution of (1). Thus, (1) has an infinite number of non-trivial

solutions in positive integers.
On the other hand if one assumes x; > 0, then for each / one has x; < n?. To see this, let a be the largest co-

ordinate in asolution (x7, x2, -+, X, /). Then,
XytXxpttX, < na.

For the same solution

X3 bx3 bt xS > a3

and so 2 < nZ. Thus, we see that for a fixed positive integer, n, equation (1) has only a finite number of solu-
tions in positive integers and we have proved the following theorem.

Theorem. Equation (1) has only a finite number of solutions in positive integers for a fixed positive inte-
gern but asn — «~ the number of solutions is unbounded.

Clearly if (x 7, x2, =+, x) is asolution of (1) wherein some entry is zerg, then one has knowledge of a solu-
tion (1) forn — 7 and so, except for n = 7, we exclude all solutions with a zero coordinate hereafter.

[Continued on page 16.]



AN APPLICATION OF W. SCHMIDT’'S THEOREM
TRANSCENDENTAL NUMBERS AND GOLDEN NUMBER

MAURICE MIGNOTTE
Université Louis Pasteur, Strashourg, France

INTRODUCTION
Recently, W. Schmidt proved the following theorem.

Schmidt’s Theorem. Let 1, a7, as be algebraic real numbers, linearly independent over £, and let
€ > 0. There are only finitely many integers g such that
(1) “qa;” ”qag“ < c;q‘Fe,
where ¢ is a positive constant and where | | denotes the distance from the nearest integer.

Of course, this theorem can be used to prove that certain numbers are transcendental. We shall take a 7 equal
to the golden number. The integers ¢ will be chosen in the sequence of Fibonacci numbers. It remains only to
take a number ao such that lgas | is small for these values of ¢ and such that 1, ay, a» are @-linearly indepen-
dent. We shall give only one example of such a number a2 but the proof shows clearly that there are many other
possible choices of a5.

THE RESULT

Proposition. Let(uy,up, ) be the sequence of Fibonacci numbers. Put g, = U - Then the number
=
2= Y Z_L(y__)_
n=1 n

is transcendental.

Proof. It is well known and easily proved that

Up+1] 7
ag-——=| ~ —
. Un l \/5U2
Thus,
(2) hgnarl ~ L
V54,

Since upjuzp, qn divides g,+7. Hence,

2+(=1)" _ Py

n On

M=

’

3
It
-

where p,,"is an integer.
Now, it is easily proved that

| ‘.’/_V‘ L2+~ e N

|42 =
N an+1 ‘7/%/
Thus,
N+1, =
3) lgvaz |l ~ 2+(=1)""" N5

an

From (2) and (3), we get 15
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L

’

lawarl fonazll < -5
N

0

where ¢ is a positive constant.
We have verified that (1) holds with e= 1.
It remains only to show that 1, a7, a, are linearly independent aver 2. Suppose that we can find a non-trivial
relation
ko+kga;+koar = 0, /(,'Eﬂ.
We can now limit ourselves to the case of k; & Z. For large V, the previous relation gives

kilanarl = tk2lgnazl -
This contradicts (2} and (3). Thus, 1,37, a2 are &-linearly independent, Now Schmidt's theorem shows that as
is not algebraic. The assertion is proved.
REMARK. The proposition remains true if we put
n n
=X -V
u .
" -y
where x is a quadratic Pisot number and y its conjugate.
Jodododoloiok

x|

[Continued from page 14.]

For small integers 7 the positive solutions of (1) may be found with a machine because of the upper bound of
n? on the coardinates. For n = 3 these solutions are exactly those revealed in the general case. That s, (3,3,3)
and permutations of (1,2,3).

in the complementary case (that is, some coordinate is negative), there are, for each n > 7, always an infinite
number of solutions. For example, fa,7,—a/J, for any integer a, satisfies (1) in casen = 3. Forn =4, (a, a,~a, —a)
satisfies (1), etc. Forn = 3 the solution will be a subset of the solutions of

X‘,?+xg+xg = u2,
an identified problem [1, p. 566].

In case n = 2 the reader will have no difficulty in showing that all sotutions are (a, —al, (1,2}, (2, 1), (2, 2}
together, of course, with (0, 0), (0, 7), (1, 0) which come from the case n = 7. The case n = 2 is a special case of
a well known theorem [1, p. 412 et seq.].

REFERENCE

1. L. E. Dickson, History of the Theorey of Numbers, Vol. Il, Carnegie [nstitution of Washington, D.C., 1920.
Folotokoiok



THE RECIPROCAL PERIOD LAW

W. E. GREIG
West Virginia University, Morgantown, West Virginia 26506

The opinion of scientists on Bode's rule falls into several camps. The computer work of Hills {1, Fig. 2]
proves that an average period ratio exists and lies in the range 9/4 < P < 3. Some think there is a reason for this
[2, 13], while others such as Lecar [3] think that the distances are random subiject to the restraint of not being
too near to each other. The idea that the asteroids were once a planet has been disproven [4]. The interests:l
readership may consult any of the several summaries of physical theories of the origin of the solar system
[6, 7,8, 9, 10, 11]. Almost all theories proposing specific distance rules are discounted {e.g., Blagg's 1.73 rule
{91, Dermott’s rules [12]) by almost all scientists because they have too many independent parameters and
lack any logical basis. More than two parameters is too many. The only models not discounted in this way are
von Weizsacker's [see 5], the author’s [13, 14] and perhaps Schmidt's [see 7]. Von Weizsacker proposed a sys-
tem of eddies of ellipticity = ' lubricated by smaller eddies. One can derive the equation: distance factor =
tan? [m (N + 1)/4N], where /V is the number of eddies in a ring. If the first law of scientific reasoning is that
equations should balance dimensionally, then the zeroth law should be the principle of Occkham's razor—the
paring away of unnecessary assumptions. The mathematical theory in [16] is now given a logical derivation. |
bhegin this essay by a study of first principles.

1. PRINCIPLES
| insist that satellite and planetary systems:
i. are discrete and therefore discrete algebra should be used, namely a difference equation,
ii. have at most two boundary conditions (B.C.) and therefore

(18) 8°Zm = JZm*Zm-1 .
where /,c are constants and 82 = A— V = AV is the central difference operator,
iii. consist of one primary, a pair of secondaries which we ignore and the rest tertiary masses,

iv. by the Commonality Principle must all satisfy the same spacing taw,
v. may equally likely have pro or retrograde outer satellites since retrograde bodies are not irregular,

vi. are stable due to weak (gravitational, tidal or gyroscopic) non-dissipative forces and hence,
vii. the relevant variable is the frequency of nearest approach, the synodic frequency, Y, where

(19) Ym+h = Zm+1—Zm with h =1

viii. cannot have B.C. in empty space and hence they must reside in the primary which means that the recipro-
cal period sequence, Z,,,, must turn around near the outermost body and be asymptotic to the inner bodies up-
on both leaving and returning to the primary. Alone this restricts us to even order difference equations. It
forces the roots of {18) to be reciprocal pairs and by the theory of equations ¢ = 0. Thus

(20) 8Zm = jZm.

To elucidate, values of a =/ + 2 equal to £2 give arithmetic progressions, and +3 gives finite exponential (£,/ or
alternate FL numbers, and +6 gives alternate Pell numbers. The sequence --- 11, 12, 16, 24, - is given by / = %.
The data on near-commensurahilities are not significant [15] if the peculiar ratios of 2 and 4 are omitted.

ix. Intuitive considerations of stability require the minimization of the number of mutual perturbations be-
tween adjacent satellite orbits. This will obtain if adjacent periods are coprime. This, as is proven later, deter-
mines / to be an integer. Now we can determine the value of /.

x. The forces are attractive so the largest root of (20) should be as small as allowed; thus a = £3. Assuming
that the Sun-Jupiter distance is fixed then a better way to state point (x) is that it is the minimization of the

17
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potential energy of the tertiaries with respect to their secondary. Thus satellites try to get as close to their sec-
ondaries as other conditions (ix) will allow. Now a = 0 gives two constant sequences and so is trivial and g = 1
gives cyclical sequences of periodicities 6 and 3 and so is also trivial. Arithmetic progressions, @ = +2, are also
trivial. Hence @ = 3, i.e., j = +1 or —5. | first used bisected FL (Fibonacci Lucas) sequences in a letter [17] .
xi. | assert that only one physical B.C. exists which must equal both matematical B.C. Therefore

(21) Zg = AZy = B.C. or VZg = Zy = B.C.
which differ only in notation. This is equivalent to Gg= Gp in [16]. And from point (x) we have
(22a,b) 62, = Zm or 822y = =52,

where the “—5" case corresponds to outer satellites that are alternately prograde and retrograde. When M is in-
finite, Eqgs. (21) and (22a) give sequence S of [16]. Writing v = </5 for brevity we have

(23a) Sv+7 v+3 v+2 v+3 v+7 5v+18 13v+47  34v+123 89v +322

(23b) v-4 wv-1 0+1 v+4 v+11 8v+29 21v+76 550+ 199
(24) Nept X Uran Satur (Jup) Astrea Mars
(25) /= -7h —3h h 5h 9h 13h 17h

where either sequence may be regarded as the first-order differences (synodic frequencies) of the other. Se-
quence (23) gives an earth value of 521. For convenience, not rigor, sequence (24) has been placed parallel to
(23). The index /= %.

2. CONCEPTS

A FL sequence, H,,, cannot be expressed as a function of 2 and / alone since
(26) (A+V -1, =10.
But a finite exponential (bisected FL) sequence, £,, satisfies
(27) (62 —1)E, = 0.
Further, define a sequence, £;,, such that
(27a) (62 +51)E}, = 0 .

Now let Z,, be a bisection of G, (Eq. 1 and Table 1 of [16]). Then Z,, satisfies (27). |f Z,, represents the real
reciprocal periods of satellites or planets this can be written as a minimum principle,

(28) Y. (82 —1)Zy, — 0.

We may state this in words. A system of satellites (planets) much lighter than their primary tries to act as if
their synodic frequencies correspond to real bodies with their synodic frequencies in turn being the reciprocal
periods of the original bodies. This is true even if all the bodies do not revolve in the same sense. If they are
alternately pro- and retro-grade we can use (31). Thus (28) gives a closed system having a finite number of
sidereal (true) and synodic frequencies.

Now in point (xi) we could not have written Zg= AZ since that leads to monotonically increasing sequences.
Now this point, namely (21) which is the same as Eq. (1) Gg= G led via the theorem in [16] to the beautiful
closure relation (14) 218; = (—1)""s_;. This immediately gives by taking ratios

(29) (Si+2+Si)/(S; +Si—2) = S—i=1/S81-i = (S-j—2—S-i)/(S-i—S2-;).

Now if satellites are alternately pro- and retro-grade then we may interpret the first pair of (29) to mean that
the ratio of adjacent synodic frequencies (since S; is now negative) equals the ratio of the sidereal frequencies
of two other members of the bisection of S aside from a (—1). Real satellite systems have a finite number of
bodies but the difference in the ratios given by {S} and {G,,} for example is less than 1076. Hence (29) is an
excellent approximation to the finite cases.
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Itis easy to show that the ratio of adjacent terms in (23b),
Snh+1/Snh-1 = (Ln+v)/Lp-2 = Lp+2/(Lp—v),
where mod (7, 4) = 3. Similarly the ratio of adjacent terms in (23a) is
Snh+1/Sph-1 = (Ln=v)/Lp-2 = Lps2/(Lp+v),
where mod (7, 4) = 1 and where (25) is the index. For completeness we may define the double bisection of an

FL sequence, 0, , by
(30) (62 —51)D, = 0.

Now asystem of alternately pro- and retro-grade satellites satisfies an £ primed sequence, £;,. But the synadic
frequencies are no longer differences (since every other term is negative) but sums. Application of the sum-
ming of adjacent terms twice is equivalent to the operator (82 +4/). Hence in place of (28) we may write

(31) > (0 —-1)Zy — 0,

where ¢ is the central sum operator defined by

0fp = fpth + Tn-n.
where f,, is any sequence whatsoever. It is then easy to show that
(32) 0% = 4/ +6>.

Z’is a bisection of S or G but with alternate terms multiplied by (—1). A Z” sequence satisfies (27a).

The theory herein has been predicated upon: The Commonality Principle, The Simplicity Principle, and
the assumption that the physical reason for the stability of tertiary orbits is the avoidance of low-order com-
mensurabilities (ALOC). J. C. Maxwell approached the motion of molecules in air in a similar vein of which
James Jeans wrote [19, pp. 97—98] “..by a train of argument which seems to hear no relation at all to mole-
cules or to their dynamics,... or to common sense, reached a formula which according... to all the rules of
scientific philosophy ought to have been hopelessly wrong. ...was shown to be exactly right.”

3. PREDICTIONS

Dermott [12] ignored the outer Jovian and Saturnian satellites. | have chosen to give them an important place
in this paper. The reciprocal period law is the only theory to make very narrow predictions. There is a blank
midway between Saturn’s Phoebe and lapetus in Table 2 of [16]. Hence a Saturnian satellite(s) of (mean) period
207.84 < P < 208.03 day is predicted. | propose to call it Aurelia. If it is ever found, it would constitute proof
positive of the theory herein. The allowed range is 0.1 percent of the numbers but | regard 1 percent as accept-
ible. Similarly a stable orbit in the Jovian system is likely at 97 day with much less likelihood of another at 37
day because of its proximity to the Galilean quadruplet (secondaries).

For the Sun, Jupiter, Saturn their secondaries are Jupiter, the Galilean quadruplet, Titan+Hyperion, respec-
tively. The theory says little about the secondaries. Hence the distance between the primaries and secondaries
and their mass ratio must be determined by the properties of the proto-solar system cloud, namely its mass,
spin, moment of inertia and magnetic field. We infer that the proto-solar system soon formed two clouds -of
cold dust and gas. The larger became the Sun and the smaller became Jupiter and Saturn. These then captur—-
ed enough material to form the other planets and comets by coalesence. During the late phases when dissipa-
tive forces were no longer important, the reciprocal period rule would begin to operate. The Kirkwood gaps
have prevented the coalesence of asteroids into a planet. Gaps exist at 3/8, 4/9, 5/11 of Jupiter's period as well
as at 1/3, 2/5, 3/7 and 1/2. In fact the gap at 3/8 is only 2 percent from the predicted asteroidal planet. See
[18, p. 97].

The physical B.C. (point XI) may: (a) lie in the mean angular velocity of the prinary, (b) be a mean of the
spins of the primary and secondary, (c) lie in the tertiaries as a whole in which case they constitute a self—
enclosed system, (d) be the period of a hypothetical satellite that skims the primary’s surface, or (e) otherwise.
At the moment, | prefer (c).
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4. VENUS
The synodic period, y, of a superior (exterior) body of period z > 1 is given by
(33) 1/z+ 1)y = 1.

The following relations [18, p. 51] are interesting. | use ratios for clarity. Choose the Venusian sidereal (true)
year, 224.701 day, to be the unit of time. Then to better than 5 significant figures the earth’s period is 395/243
(13/8 is less accurate) and the rotation period of Venus is —79/73 (clockwise). Thinking of ourselves as Venus-
jans, then Venus is fixed and the Sun and Earth appear to revolve around us. We have three frequencies: 1,
73/79, 243/395 to be added in pairs. The first pair gives 79/152 for one Venusian solar day. The first and third
using (33) gives 395/152 for the earth’s synodic period (584 da). The latter two give 395/608 for the time be-
tween successive Earth transits. These frequences 152/79, 608/395, 152/395 are in the exact ratios 5, 4, 1.
Hence during every 584 day the same spot on Venus faces the Sun 5 times and the Earth 4 times. Venus must
be aspherical so that torque forces can cause this. Tidal forces tend to pull a body apart and are inverse cube.
But to align two prolate bodies one of whose axes is 6 away from the line joining them requires a sin 6/4°
force which is very weak, yet over long time periods must be sufficient.
In passing we give the continued fraction expansion of the distance factor derived from Kepler's [1i law.

18995476269 = 1+ ++ L 4 L 1 1 11 1 1 1

LIS L 2

A r TFRA i A A A T
whose convergent is 1+ 25253/28073. The first useful convergent is 416/219.
5. COPRIME SEQUENCES

If the recurrence P47 = (integer) P,, £ P,_7 holds we have a Coprime sequence because it satisfies the follow-
ing theorem which is a generalization of one in [20, p. 30]. As an example viz. 0, 1, 4, 15, 56, 11-19, 780,
41-71, ---. Consider Ppry = bP, + cPp-1.

Theorem. 0f all two-point recurrences only those with the middle coefficient 4 an integer and ¢ = 1
have coprime adjacent terms given that an initial pair, Pp and Py say, are coprime.

Proof. The proof obtains by postulating the contrariwise proposition. Letc = 7. LetP,+7 and P, be divis-
ible by some integer d. Then bP,, is divisible by o and so also is P,_7 = Pp+7 — bP,, . But then
Pn-2 = Pp—bPpq

is divisible by ¢ and likewise all earlier terms by induction. Hence both Pg and Py are divisible by & which con-
tradicts the assumption which says that at most one of Pp and Py are divisible by any number. Hence the
theorem must be true.

Choosing ¢ = —7 changes no essential part of the argument.
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BINET'S FORMULA GENERALIZED

A. K. WHITFORD
Torrens College of Advanced Education, Torrensville, 5031, South Australia

Any generalization of the Fibonacci sequence {Fn} =1,1,2,3,5,8, 13, 21, - necessarily involves a change
in one or both of the defining equations

(1) Fi1=Fy=1 Foio = Fpnegt Fn (n > 1)
Here, however, we seek such a generalization indirectly, by starting with Binet’s formula
(7+\/§)”_ <7mﬁ>"
2 2
J5

instead of (1). Suppose we define, for any positive integer p, the sequence G, by

(15 - (=2

Fn =

(n>1)

2 G, = (n>1).
2 5 N
Thus {Gp} = { Fn} in the case p = 5 We can also write
n n
(3) 6= =),
NG
where
_14p =1=p
-Lie, g
are roots of the equation
2_,_(p=1) -
(4) X< —x ( 7 ) 0.
Corresponding to (1), we now have the equations
(5) G1=Go=1 Gpio= Gpis+ (Bz‘—’) Gn  (n>1).

Proof. Clearly a—B=</p and a+ (=1, so that (3) implies
—a-f _ - la-pBNa+p) _ 4
ARV N '

[Continued on page<14.]



ON THE MULTINOMIAL THEOREM

DAVID LEE HILLIKER
The Cleveland State University, Cleveland, Ohic 44115

The Multinomial Expansion for the case of a nonnegative integral exponent n can be derived by an argument
which involves the combinatorial significance of the multinomial coefficients. In the case of an arbitrary ex-
ponent n these combinatorial techniques break down. Here the derivation may be carried out by employment
of the Binomial Theorem for an arbitrary exponent coupled with the Multinomial Theorem for a nonnegative
integral exponent. See, for example, Chrystal [1] for these details. We have observed (Hilliker [6]) that in the
case where 7 isnotequal to a nonnegative integer, a version of the Multinomial Expansion may be derived by an
iterative argument which makes no reference to the Multinomial Theorem for a nonnegative integral exponent.
In this note we shall continue our sequence of expositions of the Binomial Theorem, the Multinomial Theorem,
and various Multinomial Expansions (Hilliker [2], [31, [4], [5], [6], [7]) by making the observation that this
iterative argument can be modified to cover the nonnegative integral case:

r \'7
(1) ( > ai ) = > (’77/”2,,7""'7/') 377352 e’
i=1

nytng+--+n,=n

whereny, no, ---, n, are nonnegative integers and where the multinomial coefficients are given by

( n ) —__n__
ny,n2, -, Ny nqylnol--nd
As before (Hilliker [6]) we begin with a trip/e summation expansion:

n-k

Here, we are using the convention that the empty sum is zero and that 0° = 1.
We next assert that the Multinomial Theorem (1) is covered by the Formula (2). To see this, let us make a
change of notation and write Formula (2) as

r n 2 Q-1 n-2,
(3) < 2 3/) =2 (Q';) aszf( > a ,
: =1 ¢=1

where the double summation on the right is taken under 2, and ¢, with 1 <@, <rand 1 <g, <n. Wesingle
out the terms for which n — ¢, = 0 and write (3) as

r n Q=1
) (Za,-) ST ()T ) T al

=1

Note that, for nonzero terms, 2, = 1 implies thatn — ¢, = 0, so that the range in the summation withn — ¢, >0
is2<¢ <rand1<e, <n-1

We now apply Formula (3) to the summation under ¢ on the right side of (4). This iterative process may be
continued. After /m iterations of Formula (3), m > 0 and not too large, we obtain

22
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? <>3> Lo () ("52) (" )

N-Qg— =R om>0

P 0 Qm+1-1

2 4 2m+2 Q== .

X a9y 303 " 3om g > asz) 2= am+2
m Q=17

+ n)(n_Q2)...("—22""_22k—2) Ro . Qk
Z Z ( 22 L4 QK Qq803 o7 -

k=1 n-Qo~-2o4=0

Here, the indices are subject to the restrictions

1< Qy <r
(6) 1 < Qjr7 < Rj-g1—1, for7 <i<m,
7<522,-+2<n—522—---—522,', for0 </ < m.

Formula (5) is meaningful as long as m < r, so that the first two inequalities in (6) are possible and as long as
(7) m<n,

so that the last inequality in (6) is possible. We letm = r— 7. Then, by (6) we have 25,7 = 1, for otherwise, we
would have 27 > r. Consequently, for nonzero terms,

n—Q——2Q, = 0.
Formula (5) now takes the form
r n
(8) o _ Z n n— Q9 n—Qy— =209 22 %4 22r
2o ) - !22) ( % ) ( 2 Q7303 M2y
=1 n-2o-+=22,=0
r—1
n n—29o n—2Q9—-—Q.2 L2 g Lk
2 )> (92 )( % ) ( 2k )aQr’Qs N ok-1
k=1 n-Qo=-+~Qof =
’
= n n—22\ fn—Qp=-—Q_ 2 R Qg Lok
Z Z ( Q2 ) ( ] ) ( Lok ) 91893 " k-1

k=1 n-29--+-=R =0
If the range of 227, for 1 </ <r, is extended to include 0, then, the summation under & reduces to asingle term,

k = r; the restriction (7) may be lifted; and, by (6), the subscripts are uniquely determined: ¢7 =1, R3=r—1,
-+, Q9,-7 = 1. The coefficients may be written as

( n )(n_Q2 ) ( ”—92_"'_Q2r—2) _ nln — 7}---(/7—!22_...__;22,.4' 7) - n!
22 2 L2r Q! gl Q2,1 Qol 0q! Q4!
It now follows from (8) that
" " 2 8 2
n! 2 %4 2r
< Zéﬁ) = > oo Aramt A
i=1 n-9o--Qg=0 2 4TE2r

With a change of notation, the Multinomial Theorem (1) now follows.
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Also, since a and Bsatisfy (4), we have the equations

™2 - an+7+(g_;_7) a” Bn+2 - 6n+7+(/1§,_7)6n (n> 1.

Therefore, using {3), it follows that

N N3
n+1 nt1 n n
_al BT eIy a0 _ g (PTG, .
T +( 7 ) N/ n+1 (4 ] on

Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the
sequence {Gn}, for any choice of p. Assuming that we are interested only in integer-valued sequences, (5) tells
us to take p of the form 4k + 7, namelyp =7, 5, 9, 13, 17, ---. Thus the first five such sequencesstart as follows:

v |6 6 6 6 65 G G 6 G 6o
1 0 1 i 1 1 1 1 1 1 1 1

5 1 1 1 2 3 5 8 13 21 34 55
9 2 1 1 3 5 11 21 43 85 1M 34
13 3 1 1 4 7 19 40 97 217 508 1159
17 4 1 1 5 9 29 65 181 441 1165 2929

We can use the above table to guess at various properties of the generalized Fibonacci sequence {G‘n}, espe-
cially if our knowledge of {Fn} is taken into account. Generalizations of some of the better-known properties
of {F,,} are listed below. Of course, in each case, the original resutt may be found by taking

p=5 E=l-y7 and G,=F,.

4
(i) lim  Gnt1 _ 1+./p
e TG, 2
n
i) Gp-Gpez— G2, = (—1)7*7 (£4:l) (> 1)

[Continued on page 29.]



A FIBONACCI FORMULA OF LUCAS
AND ITS SUBSEQUENT MANIFESTATIONS AND REDISCOVERIES

H.W. GOULD
West Virginia University, Morgantown, West Virginia 26506

Almost everyone who works with Fibonacci numbers knows that diagonal sums in the Pascal triangle give rise

to the formula [n_7]
2
(1) Fn = ("_/,5*7), n =1
k=0
but not many realize that
%]
2
) Fon= 3o (0% ("7 kTT)gmIo
k=0
or that
n-1
2
3) Fan=2 X (77K T)amiR
k=0

and that these are special cases of a very general formula given in 1878 by Edouard Lucas [5, Egs. 74—76],
[6, pp. 33-34].

Asfaras | can determine, formula (2) first appeared in our Fibonacci Quarterly as a problem posed by Lurline
Squire [10] when she was studying number theory at West Virginia University. M. N. S. Swamy’s solution in-
voked the use of Chebyshev polynomials. | was reminded of the formula recently when Leon Bernstein [1]
found the formula again and asked me about it. He used a new technique involving algebraic number fields.

Formulas (2) and (3) generalize in a curious manner. On the one hand we have for even positive integers r

2]

/.'
(4) Tn _ T (—Uk n—k—1 L”'7'2k, 21r,
F, /:-’;5 ( K ) r !

but on the other hand for odd positive integers  we get the same terms but with all positive signs

7]

Frn =" fn—k—1\ , n-1-2k
(5) 7 - k>;‘b< P >L, .2

where L, is the usual Lucas number defined by L7 =L, + L7, with Lg=2, L7 =1, this of course in con-
trastwith Froe7=F,+ Fp_gand Fp=0, F7=1

Formulas (4) and (5) may be written as a single formula in a clever way as noted by Hoggatt and Lind [4]
who would write

%]
Fun <o 1) (k= 1Y nei-
(6) ?? - kz;o (—1)kl(r=1) <n k 7) Lre12k

25
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valid now for any positive integersn,r > 1.

Formula (6) of Hoggatt and Lind was posed as a problem by James E. Desmond [11] and solved by him using
a result of Joseph A. Raab [7]. The precise same problem was posed again by David Englund [12] and Douglas
Lind pointed out that it was just the same formula.

Formulas (4) and (5) were obtained by Hoggatt and Lind [4] by calculations using compositions and gener-
ating functions. Although they cite Lucas [5] for a number of items they were evidently unaware that the for-
mulas appear in Lucas in a far more general form. Since L, = F5,/F,, formulas (4)—(5) can be written entirely
in terms of F's.

Lucas introduced the general functions U, V defined by

n n
(7) U, =4=b" V. o=a+p",

where a and b are the roots of the quadratic equation
(8) x2-pPx+q0=0,
so thata + b = Pand ab = 0. When we have xZ — x — 7= 0, we getaand b as(7++/5)/2 and (1 —/5)/2 and
thenUp,=F,, Vp=L,.
One of the general formulas Lucas gave is [6, pp. 33—34, note misprint in formula]

n-1
U 2
m _ 2“ k —k—-1 -1-2k f rk
(9) Ur = 2 (__7} (/7 . ) Vrn a ,

which unifies (4) and (5) and is more general than (6). Curiously, as we have intimated, Hoggatt and Lind do
not cite this general formula.

Now of course, there are many other such formulas in Lucas’ work. Two special cases should be paraded here
for comparison. These are

(10) Lrp = (~1)k ;_L/? (";k) L"2% ftorevenr,

and

(1) Ln = 3 ,-]—f—k (”;k) L2 foroddr.
k=0

These can be united in the same manner as (4)—(5) in (6). Thus
n
2 k(r-1) k 2k
_ — r- n n— n-
(11.1) Len = Y, (-1) piy U I Ml
k=0
There is nothing really mysterious about why such formulas exist. There are perfectly good formulas for the

sums of powers of roots of algebraic equations tracing back to Lagrange and earlier. The two types of formulas
we are discussing arise because of

7]
2 n+1 n+1

(12) Z (_l)k (n;k) {Xy}k()(+y}n—2k _ )_(__X_E_;/__ ,
k=0

formula (1.60) in [3], and
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3
2]
(13) k:ZO‘ (—1)k n—j—k (";k ) bxy K (x +y) 72K = x4yt

formula (1.64) in [3], familiar formulas that say the same thing Lucas was saying. The reason it is not myster-
ious that (2) holds true, e.g., is that Fo, satisfies the second-order recurrence relation
Fon+2 = 3Fon ~ Fop-2
with which we associate the characteristic quadratic equation
xZ =3x—1

so that a formula like (2) must be true. For formula (4) with r = 4 we note that Fg,4+4 = 7F4, — Fan-4.
In general in fact,

(14) Frntr = LyFrp— Fppey forevenr, ot Fpprt Fer = LeFm,
and
(15) Frntr = LyFrn# Frpep foroddr, or Fper=- Fo—r=LoFm .

Regularly spaced terms in a recurrent sequence of order two themselves satisfy such a recurrence. Setu, = F,,
to see this for then we have

(16) Upty = Lptp £up-g, with 22 = L,z%1,

so we expect a priori that u, must satisfy a formula rather like (1). Formulas like (12)—(13) give the sums of
powers of the roots of the characteristic equation, whence the general formulas.

Formula (12) corresponds to (B.1) and (13) corresponds to (A.1) in Draim’s paper [2] which the reader may
also consult.

Another interesting fact is that these formulas are related to the Fibonacci polynomials introduced in a prob-
lem [9] and discussed at length by Hoggatt and others in later issues of the Quarter/y. These are defined by

folx) = xfo-1(x) + fn_2(x), n>2
with f7(x) =1 and fa(x) = x.
In general

n-1

(%7 ]
(17) fn(X): Z (H—£—7)Xn"2k—1’

k=0
whence for odd r we have by (5) that

F

(18) foll,) = /_.—m

,
Many other such relations can be deduced.
Finally we want to note two sets of inverse pairs given by Riordan [8] which he classifies as Chebyshev in-
Verse pairs:
[ﬁ
z)

(19) fln) = k;g (~1)¢ L (") o~ 24)
if and only if

r—
N3
| F— )

(20) g(n)

It

(Z) fln — 2k) ;

=
]
(=]
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and
[Zﬁ} n—2k+1 (n
21 f(n):kzz_a 7 (k) aln—2k)
if and only if
n
{E] k (n—k
= ¥ -
(22) oln) = 5= (=1) (" K) fn - 2k).

k=0
Applying (19)—(20) to (10) we get the particularly nice formula
n
2]

(23) L7 =3 (%) Lrtn-2ky, 1 oeven.
k=0

Using (21)—(22) on (4) we get the slightly more complicated formula

2]

n_x~ n=2k+1 ;ny Frint1-2k)
(24) e 3 R () B

I do not recall seeing (23) or (24) in any accessible location in our Quarterly.
If we let r= 0in (4) we can obtain the formula (1.72) in [3] of Lucas, which is also part of Desmond’s prob-
lem [11] who does not cite Lucas,

n-1
%]

(25) n= 3 (=nf (TR 2 g
k=0

It is abundantly clear that the technigues we have discussed apply to many of the generalized sequences that
have been introduced, e.g., Horadam's generalized Fibonacci sequence, but we shall not take the space to -develop
the obvious formulas. It is hoped that we have shed a little more light on a set of rather interesting formulas all
due to Lucas.
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11. Problem H-135, Posed by J. E. Desmond, The Fibonacci Quarterly, Vol. 6, No. 2 (April, 1968), pp. 143—
144 Solved by the Propaser, /bid., Vol. 7, No. 5 (Dec. 1969), pp. 518—519.

12. Problem H-172, Posed by David Englund, The Fibonacci Quarterly, Vol. 8, No. 4 (Dec., 1970), p. 383;
Solved by Douglas Lind, j6/d., Vol. 9, No. 5 (Dec., 1971), p. 519.

13. Problem B-285, Posed by Barry Woalk, The Fibonacei Quarterly, Vol. 12, No. 2 (April 1974), p. 221;
Solved by C. B. A. Peck, jbid., Val. 13, No. 2 (April 1975), p. 192

Fololdodok
[Continued from page 24.]
(i) (fl—ZJ) G2+G2,, = Gopey (0= 1)
(iv) GZ2,,— (P—‘—7)262= G (n=1)
n+2 4 n 2n+2 n =
n—1 . T
y A S Gl S W U] L
r=0
n
(vi) (&Z—l—l) S 6= Gpez—1 (0> 1),
=1

The proofs of the above results, which rely essentially on equations (2), (3) and (5), together with

a-B=p, a+B=1 and a{3:~</12_~7),

are fairly straightforward and left to the reader. Of course, results such as these are not new. For example, {ii)
was proved in a slightly more general form by E. Lucas as early as 1876 (see [1] page 396).

Finally, turning to the vertical sequences in the table given earlier, it follows from (v) that the sequence under
G, (n > 1) is given by

n—1
(6) { > (T ITr ) k- Uf} (k > 1),

r=0

so that for example the sequences under G4 and G5 are {2/( - 7} and {k2 + k- 7}, respectively. Alternatively,
instead of using (6}, we can apply the Binomial Theorem to (2) and obtain the general vertical sequence in the
form

n

{ Z—HZ—I > (f)(zzk—s/”*”/?} (k > 1).

=1
rrt;dd

REFERENCE
1. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Carnegie Institution (Washington 1919).
Yodohofrioiok



NUMERATOR POLYNOMIAL COEFFICIENT ARRAYS
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In this paper, we discuss numerator polynomial coefficient arrays for the row generating functions of the con-
volution arrays of the Catalan sequence and of the related sequences S; [1], [2]. In three different ways we can

show that those rows are arithmetic progressions of order /. We now unfold an amazing panorama of Pascal,
Catalan, and higher arrays again interrelated with the Pascal array.

1. THE CATALAN CONVOLUTION ARRAY
The Catalan convolution array, written in rectangular form, is

Convolution Array for Sy

1 1 1 1 1 1 1
1 4 5 6 1 8 9
2 5 9 14 20 27 35 44 54
5 14 28 48 75 110 154 208 273
4 42 90 165 275 429 637 910 1260
2 132 297 572 1001 1638 -

N —
W -

1
4

Let G,(x) be the generating function for the n® row, n = 0, 1, 2,

-+, By the law of formation of the array,
where C,-7 is a Catalan number,

Gp-1(x) = xGn(x) = x2Gp(x)+Cpy .
Since
Golx) = 1M1 =x) = 1+x+x2+ x5+t x # .
Gilx) = M1 =x)? = 1420 +3x5 4t (0 + 1x" + -

we see that by the law of formation that the denominators for G, (x) continue to be powers of (7 — x). Thus,
the general form is

Galx) = N1 x)"*T
We compute the first few numerators as
Nylx) =1, Nalx) =1, Nzlx)=2-x  Nalx) = 5—6bx+2x2,
Ns(x) = 14— 28x + 20x2 - 5,
and record our results by writing the triangle of coefficients for these polynomials:

Numerator Polynomial VV,, (x) Coefficients Related to S'¢

1
1
2 ~1
5 -6 2
14 -28 20 -5
42 -120 135 -10 14

132 495 770 616 252 42
429 -2002 4004 -4368 2730 -924 132
30
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Notice that the Catalan numbers, or the sequence Sy, appears in the first column, and again as the bordering
falling diagonal of the array. The next falling diagonal parallel to the Catalan numbers is the central diagonal of
Pascal’s triangle, taken with alternating signs and deleting the first one, or, the diagonal whose elements are
given by (i” ) The rising diagonals, taken with the signs given, have sums 1, 1, 2, 4, 8, 16, 32, -, 2"'7, e
The row sums are all one. The coefficients for each row also can be used as a convolution with successive terms
in rows of Pascal’s triangle to write the terms in the rows for the convolution triangle. For example, the third
row has coefficients 5, —6, and 2. The third row of Pascal’s rectangular array is 1, 4, 10, 20, 35, 56, 84, ---, and
we can obtain the third row of the convolution array for §7 thus,

5=15.1 -6-0 +2.0
14 = 5.4 —6-1 +2-0
28 = 5-10-6-4 +2-1
48 = 5.20-6-10 + 2-4

75 = 5.35-6-20+2-10
We can take columns in the array of numerator polynomial coefficients to obtain columns in the Catalan con-

volution array. The zeroth or left-most column is already the Catalan sequence S7. We look at successive
columns:

n =10 1011, 2/1, 5/1, 141, 42/1, ) = 1,2, 5, 14,42, .. = 872

n =1 2(1/2, 6/3, 28/4, 120/5, 495/6, ) = 1, 4, 48, 165, 572, - = 374
n =2 3(2/6, 20/10, 135/15, 770/21, --) = 1,6, 27, 110, - = S,G

n =3 4(5/20, 70/35, 616/56, 4368/84, ---) = 1, 8, 44, 208, - = S,g

The divisors are consecutive elements from col<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>