

—www.forgottenbooks.com

Copyright © 2016 FB \&c Ltd.
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

MATHEMATICS

FOR

 TECHNICAL SCHOOLS

 TECHNICAL SCHOOLS}

BY

J. M. WARREN, B.A.,
Assistant Prlnclpal Day Schools
Central Technical School, Toronto

AND

W. H. RUTHERFORD, M.A., D.Paed.,
Director Department of Mathematlcs
Central Technlcal School, Toronto

Copyright, Canada, 1921, by The Copp Clark Company, Limited, Toronto, Ontario

PREFACE

In this book an attempt has been made to present the subject of Elementary Mathematics in a way suitable to industrial students in our technical schools. While it would be manifestly impossible to deal with the mathematics of all the industries in a book of this nature, yet we hope that the fundamentals as herein presented will form a basis for a wide range of industries.

No doubt experts in the various departments will have suggestions to make as to how the book might be improved. We will be very glad to hear from them in this connection.

With respect to the general plan of the work, we are indebted to Dr. F. W. Merchant, Director of Technical Education for Ontario, and Dr. A. C. McKay, Principal of the Toronto Technical Schools. Thanks are due in a special sense to Volney A. Ray, M.A., of the Department of Shopwork in the Central Technical School in connection with the chapter on "Mathematics of the Machine Shop," and to A. J. Stringer, M.S.A., of the Department of Architecture and' Design in connection with the chapter on "Application of the Measures to the Trades." The cuts of Quick Change Gears are by courtesy of the R. K. Le Blond Machine Tool Company, Cincinnati, and those of the Planimeters by courtesy of the Hughes Owens Company, Montreal. The drawings were made by James Hanes a former. student of our school. June, 1921.

CONTENTS

Chapter Page
i.-The Fundamental Operations of Arithmetic 1
ii.-Fractions-Percentage 18
iII.-Weights and Measures-Specific Gravity 37
iv.-Square Roor 50
v.-Application of Measures to the Trades 54
vi.-Algebraic Notation 71
vil.-Simple Equations 84
viil.-The Fundamental Operations of Algebra 92
ix.-Formulas 103
x.-Mensuration of Areas 108
xi.-Ratio and Proportion 134
xii.-Simultaneous Equations-Formulas (continued) 140
XIII.-Graphs 150
xiv.-Mathematics of The Machine Shop 171
XV.-Logarithms 228
xvi.-Mensuration of Solids 241
xVii.-Resolution into Factors 263
xvili.-Indices and Surds 270
xix.-Quadratic Equations 279
xx.-Variation 288
xxi.-Geometrical Progression 297
Miscellaneous Exercises 301
Tables-Decimal Equivalents, Weight and Specific Gravity, Logarithms, Antilogarithms 315
Answers 323
Index 335
mernventwht

数

CHAPTER I.

THE FUNDAMENTAL OPERATIONS OF ARITHMETIC.

1. The Symbols of Arithmetic are 1, 2, 3, 4, 5, 6, 7, 8, $9,0$. These symbols are called numbers, digits or figures. Their values depend on how they are written with respect to each other. When used separately or with commas between them as above they denote one, two, three, four, five, six; seven, eight, nine, zero. When written one after the other with no marks between, their values are determined by their positions. The established method of numeration, the Decimal System (from the Latin word decem, ten) is based on the number ten. For example 534 is read five hundred and thirty four. The figure 4 being in the first place counting from the right indicates 4 units, the figure 3 being in the second place from the right indicates ten times three units or thirty, the figure 5 being in the third place from the right indicates one hundred times five units or five hundred. The following table indicates the values of the figures owing to their positions:

in which a point called the decimal point is used to separate the units figure from one having one tenth the value. Thus 7256.438 is read seven thousand; two hundred and fifty six and four hundred and thirty eight thousandths. The figures following the decimal point are read as thousandths because
the last figure is in the thousandths place. Thus $\cdot 13$ would be read thirteen hundredths because the last figure is in the hundredths place. A whole number may be written with a decimal point to the right of the units place.

Exercises I.

Write in words the following numbers:

1.	36	5.	$93 \cdot 4$	9.	$\cdot 34$
2.	$\cdot 734$	6.	$732 \cdot 45$	10.	$\cdot 435$
3.	43689	7.	$43 \cdot 124$	11.	.03
4.	718965	8.	$7986 \cdot 1583$	12.	.075

When the meanings of the figures in their relation to the decimal point have been fixed, the figures to the right of the decimal point are not read as above.

For example $134 \cdot 56$ is read one hundred and thirty four decimal five six or more generally one hundred and thirty four point five six; that is the figures to the right of the decimal point are merely named in their order going from left to right.

Exercises II.

1. Read the numbers in Exercises I making use of this notation.
Express the following numbers in figures:
2. Four hundred and thirty four.
3. Seven hundred and forty eight and twenty six hundredths.
4. Six thousand, four hundred and eighty two and seven tenths.
5. Five million, three hundred and nine thousand five hundred and six and one hundred and twenty five thousandths.
6. Five one-thousandths.
7. Sixty five ten-thousandths.
8. Three hundred and twenty five one-thousandths.
9. Four hundred and seventy eight point three four.
10. Five thousand, three hundred and .fifty point seven eight six.
11. The Four Fundamental Operations. All computations in Arithmetic are made by means of the four operations:

Addition or finding the sum.
Subtraction or finding the difference.
Multiplication or finding the product.
Division or finding the quotient.
3. Addition. The sign for addition is + (plus). Thus $6+4$ means that 6 and 4 are to be added. The result is called the sum. If we wish to add 6 ft .4 in . and 3 ft .2 in . we must add in. to in. and ft . to ft . In a similar way when adding numbers it is necessary to place tens under tens, units under units, tenths under tenths and so on. In the case of numbers having no decimal part this may be done by keeping the margin on the right-hand side in a straight line and, in the case of numbers having decimal parts, by keeping the decimal points in a vertical column.

For example to add 9, 75, 18, 324, 9678, 27436, and also $37 \cdot 5,124 \cdot 69, \cdot 75, \cdot 0023,346 \cdot 058,27$, the arrangement is as follows:

9	$37 \cdot 5$
75	$124 \cdot 69$
18	$\cdot 75$
324	$\cdot 0023$
9678	$346 \cdot 058$
27436	$27 \cdot \cdot$
37540	$536 \cdot 0003$

Each column is added beginning at the right. The sum of the figures in the units column of the first case is 40 , the 0 is placed in the units column, and the 4 is carried and added to the figures in the second column since 40 units is equal to 4 tens and 0 units. The sum of the figures in the tens column with the 4 carried over is 24 , the 4 is placed in the tens column and the 2 is carried to the hundreds column and so on. In a similar way beginning at the right the sum in the second case is found.

Exercises III.

Copy in your work book and add the following:

1.	743	2.	1975	3.	1374
	1589		4386		9281
	642		721		4962
	7593		15935		758
	846		420		63
4.	$25 \cdot 72$	5.	$35 \cdot 21$	6.	328.42
	$136 \cdot 01$		$136 \cdot 35$		$736 \cdot 84$
	23.54		$23 \cdot 48$		$39 \cdot 43$
	$7 \cdot 28$		$78 \cdot 62$		$100 \cdot 26$
	199.71		91.43		$702 \cdot 85$
7.	53.92	8.	$118 \cdot 64$	9.	321.25
	$16 \cdot 81$		$406 \cdot 21$		$76 \cdot 84$
	$4 \cdot 25$		$325 \cdot 9$		$1352 \cdot 41$
	. 85		$76 \cdot 84$		-13
	$3 \cdot 24$		$231 \cdot 35$		$470 \cdot 02$
10.	$1392 \cdot 6$	11.	21985.	12.	$2 \cdot 635$
	$435 \cdot 84$		436.54		18.923
	$936 \cdot 815$		$3985 \cdot 216$		29.712
	$72 \cdot 002$		$798 \cdot 005$		$43 \cdot 002$
	$732 \cdot 54$		- 792		1.986
	. 006		$43 \cdot 841$		$868 \cdot 12$
	13.021		$983 \cdot 521$		$125 \cdot 34$
	$4798 \cdot 058$		$7648 \cdot 005$		9875-1346
13.	\$ 89.25	14.	\$1728•36	15.	\$320.51
	121.63		$256 \cdot 93$		$192 \cdot 81$
	$2 \cdot 87$		24.87		$568 \cdot 53$
	$13 \cdot 42$		34.25		$402 \cdot 96$
	$829 \cdot 78$		$176 \cdot 98$		$768 \cdot 34$

4. Subtraction. The sign for subtraction is - (minus). Thus 6-4 means that 4 is to be subtracted from 6 . The result is called the difference. In subtraction the numbers are arranged as in addition, that is units under units, tens under tens, and so on. For example, to subtract 872 from 2625 the arrangement is as follows:

2625
872
1753

2 is taken from 5 leaving 3 . Since 7 cannot be táken from 2, 1 hundred or 10 tens is borrowed from 6 hundreds and 7 tens are then subtracted from 12 tens leaving 5 . In the third column there are now only 5 hundreds in the upper line. Since 8 cannot be subtracted from 5,1 thousand is borrowed from the 2 thousands and 8 hundreds are then subtracted from 15 hundreds leaving 7 hundreds. The operation may be performed by adding to the lower line instead of subtracting from the upper line, thus 2 from 5 leaves 3,7 from 12 leaves 5,9 from 16 leaves 7,1 from 2 leaves 1 .

Exercises IV.

Copy the following examples in your work book and subtract:

1.	$7963-428$.	6.	$11 \cdot 423-8 \cdot 216$.
2.	$7 \cdot 48-5 \cdot 12$.	7.	$235 \cdot 48-132 \cdot 18$.
3.	$436 \cdot 2-71 \cdot 253$.	8.	$2 \cdot 415-\cdot 0034$.
4.	$\$ 168 \cdot 45-\$ 29 \cdot 25$.	9.	$21 \cdot 053-9 \cdot 821$.
5.	$34648-239 \cdot 21$.	10.	$638 \cdot 215-421 \cdot 006$.

5. Multiplication. The sign for multiplication is \times (multiplied by). Thus 6×4 means that 6 is to be multiplied by 4 . The number multiplied is called the multiplicand, the number by which it is multiplied is called the multiplier, the result is called the product. Before the operation of multiplication can be performed it is necessary to commit to memory the multiplication tables following:

Multiplication Tables.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
-7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

In the table the second column gives the products when 1 is multiplied by 2,2 by 2,3 by 2 and so on to 12 by 2 ; the third column gives the products when 1 is multiplied by 3 , 2 by 3 and so on to 12 by 3 . Similarly the seventh column gives the products when $1,2,3$ and so on up to 12 are multiplied by 7 .
To multiply 8345 by 7 the arrangement is as follows:

58415
5×7 is 35 that is 3 tens and 5 units. The 5 is placed in the units column and the 3 is carried to the tens column. 4×7 is 28 and when the 3 carried over is added the result is 31 tens the 1 is placed in the tens column and the 3 is carried to the hundreds
column. 3×7 is 21 and when the 3 carried over is added the result is 24 hundreds. The 4 is placed in the hundreds column and the 2 is carried to the thousands column. 8×7 is 56 and with the 2 carried over the result is 58 thousands. The 8 is placed in the thousands column and the 5 in the ten thousands column.
6. Powers of $10.10 \times 10=100$ and may be written 10^{2}. $10 \times 10 \times 10=1000$ and may be written 10^{3}. 10^{2} may be called the second power of $10,10^{3}$ the third power and so on, the figure placed to the right and above the ten being called the index or exponent of the power. It may be observed that the number of ciphers is the same as the index of the power.
7. Multiplication by 10 and its Powers. $436 \times 100=43600$. $725 \cdot 26 \times 10=7252 \cdot 6$ since 6 hundredths multiplied by 10 becomes 60 hundredths or 6 tenths, 2 tenths multiplied by 10 becomes 20 tenths or 2 units and so on. Also $43 \cdot 568 \times 100=$ 4356.800. The rule may be stated as follows:-To multiply by 10 or its powers write the number with decimal point moved as many places to the right as the number of ciphers in the power, that is as many places as the index. Since $400=4 \times 100$ it is evident that the product when multiplying by 400 may be obtained by multiplying by 4 and then moving the decimal point two places to the right.

Exercises V.

Copy in your work book the following examples and find the products:

1. 173×9.	9. $78 \cdot 64 \times 100$.	17. 23.01×800.
2. 187×7.	10. 1.475×8.	18. $\cdot 00078 \times 10^{5}$.
3. 769×8.	11. 298×6.	19. $\cdot 00846 \times 9000$.
4. $34 \times 7 \times 4$.	12. 298×60.	20. $1 \cdot 475 \times 800$.
5. $769 \times 8 \times 9$.	13. $78 \cdot 64 \times 10^{2}$.	21. $236 \cdot 896 \times 10^{6}$.
6. 296×10.	14. $\cdot 0067 \times 7$.	22. $\cdot 6345 \times 4 \times 10^{3}$.
7. 345×100.	15. $\cdot 0067 \times 700$.	23. $12.73 \times 8 \times 10^{4}$.
8. $76 \cdot 45 \times 10$.	16. $4 \cdot 2905 \times 10^{3}$.	24. $\cdot 765 \times 10^{3} \times$

8. When the multiplier contains more than one digit the arrangement is as follows: $364 \times 28=$ 364 28

2912
728
10192

364 is multiplied by 8 as before. When multiplying by 2 proceed as before but since the 2 is 2 tens the first figure 8 of the partial product is placed in the tens column and so on. The partial products are added and the product 10192 obtained. When the numbers have decimal parts as 13.742×4.3 the arrangement is as follows:

$13 \cdot 742$
$4 \cdot 3$
41226
54968
$59 \cdot 0906$

The number of decimal places in the product is equal to the total number of decimal places in the two numbers multiplied.

Exercises VI.

Copy the following examples in your work book and find the products:

1.	364×9.
2.	793×8.
3.	436×11.
4.	731×43.
5.	936×72.
6.	119×27.
7.	4392×435.
8.	3854×729.
9.	9386×538.
10.	1234×567.
11.	23.54×21.
12.	$734 \cdot 183 \times 36$.
13.	$98 \cdot 43 \times 13.2$.
14.	$93.02 \times .75$.
15.	$\cdot 754 \times \cdot 028$.

16. $\cdot 054 \times \cdot 721$.
17. $82 \cdot 9 \times 4 \cdot 31 \times \cdot 08$.
18. $\cdot 7854 \times \cdot 09 \times 11 \cdot 2$.
19. $3 \cdot 009 \times 721 \cdot 3 \times 23 \cdot 08$.
20.. $5 \cdot 43 \times \cdot 034 \times 7 \cdot 18$.
20. $\cdot 035 \times \cdot 728 \times 436$.
21. 119×27.
22. $43 \cdot 9 \times 16 \cdot 8 \times \cdot 002$.
23. $143 \cdot 5 \times 7 \cdot 25 \times \cdot 075$.
24. $12 \cdot 961 \times 32 \cdot 4 \times 5 \cdot 03$.
25. 1234×567.
26. $\quad 84 \cdot 21 \times 15 \cdot 8 \times \cdot 072$.
27. $23 \cdot 54 \times 21$.
28. $46 \times \cdot 08 \times \cdot 921$.
29. $734 \cdot 183 \times 36$.
30. $736 \times \cdot 98 \times 4 \cdot 12$.
31. $98 \cdot 43 \times 13 \cdot 2$.
32. $158 \times \cdot 75 \times \cdot 1625$.
33. $93 \cdot 02 \times \cdot 75$.
34. $\cdot 754 \times \cdot 028$.
35. $\cdot 0625 \times \cdot 04 \times \cdot 025$.
36. $\cdot 1416 \times 3 \cdot 1416 \times 3 \cdot 5$.
37. Division. The sign for division is \div (divided by). Thus $35 \div 7$ means that 35 is to be divided by 7 , or that it is required to find how many times 7 is contained in 35 . The number to be divided is called the dividend, the number by which it is divided the divisor, the result of the division the quotient. When a number is not contained an exact number of times the part left over is called the remainder. Division may also be indicated thus $\frac{35}{7}$.
38. Short Division. In general when the divisor is not too large the method of short division is used.

Thus, $5852 \div 7=7 / \frac{5852}{836}$.
7 is contained in 58, 8 times and 2 to carry, 7 is contained in 25, 3 times and 4 to carry, 7 is contained in 42,6 times. When there is a remainder it is written over the divisor or reduced to decimal form:

$$
\frac{8 / 35826}{4478 \frac{2}{8}} \quad \text { or } \quad \frac{8 / 35826 \cdot 00}{4478 \cdot 25} .
$$

11. Division by 10 and its Powers. To divide by 10^{2} the dividend may first be divided by 10 and the resulting quotient then divided by 10 . Since dividing by 10 makes each figure equal to one-tenth its original value owing to position, it is evident that the result may be expressed thus:-to divide by 10 or its powers move the decimal point as many places to the left as the number of ciphers in the power of 10 , that is as the index of the power. Since $600=6 \times 100$ if 600 is the divisor it is only necessary to divide by 6 and then move the decimal point two places to the left. Hence the rule:-To divide by a number ending with one or more ciphers move the decimal point in the dividend as many places to the left as the number of ciphers in the divisor and then divide by the part of the divisor preceding the ciphers.

Exercises VII.

Copy in your work book the following examples and perform the operations indicated:

1.	$131948 \div 4$.	7.	$13 \cdot 25 \div 10^{3}$.
2.	$2170944 \div 12$.	8.	$\frac{78}{63} 5$.
3.	$12 \cdot 348 \div 7$.	9.	$12 \cdot 5 \div 500$.
4.	$\frac{158}{14} 4$.	10.	$7659 \div 90$.
5.	$\cdot 00632$	11.	$15318 \div 900$
	4	12.	9/280765.
6.	$176 \div 10^{2}$.	13.	$7 \longdiv { / 3 2 4 \cdot 9 4 }$.

12. Long Division. The method of long division is indicated by the following example:
13/6942/534

65

13 is contained in 69,5 times. 13×5 is 65 which subtracted from 69 leaves 4 . Bring down 4 the next figure of the dividend. 13 is contained in 44,3 times. 13×3 is 39 which subtracted from 44 leaves 5 . Bring down 2 the next figure of the dividend. 13 is contained in 52,4 times. 13×4 is 52 which subtracted from 52 leaves no remainder. When there is a remainder it - may be written over the divisor or changed to a decimal as in short division. $62563 \div 39=62563 \cdot 00 \div 39$

$$
{\underline{39} / 62563 \cdot / 1604_{3}^{7} 9}_{39}
$$

-

235
234

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Since there are 5 places in the dividend and 2 in the divisor, the number in the quotient is $5-2$ or 3 and the quotient is therefore $8 \cdot 425$.

and the quotient is $\cdot 004$ since there are three decimal places in the dividend and none in the divisor. If it is required to carry the division to another decimal place add 0 to the right of the decimal and then divide into 30870 thus:

3430/16•8070/49
13720
3• 0870
and the quotient is $\cdot 0049$.
The following examples show a method often used in determining the position of the decimal point.

Example:-Divide $433 \cdot 652$ by 163.
$2 \cdot 660$
163/433•652
326

1076
978

985
978

72
Explanation:-When the divisor is an integer the point in the quotient should be placed directly above the point in the dividend and the division performed as in whole numbers.

Example:-Divide $27 \cdot 4289$ by $1 \cdot 24$.

Explanation:-When the divisor contains decimal figures move the point in both divisor and dividend as many places to the right as there are decimal places in the divisor. This is equivalent to multiplying both divisor and dividend by the same number, 100 in the above, and does not change the quotient. Then place the decimal in the quotient above the position of the decimal point in the dividend and divide as in whole numbers.

Exercises VIII.

Find results to two decimal places:

1. $5462 \div 84$.
2. $1024 \div 16$.
3. $31264 \div 46$.
4. $746215 \div 352$.
5. $834 \div 6 \cdot 21$.
6. $7342 \div 26 \cdot 4$.
7. $1235 \div 406$.
8. $738 \cdot 1 \div 92 \cdot 6$.
9. $1934 \cdot 43 \div 136 \cdot 3$.
10. $138 \cdot 42 \div \cdot 034$.
11. $128 \cdot 942 \div \cdot 4327$.
12. $43 \cdot 2198$.

41 -8.
13. Relative Importance of Signs of Operation. If only + and - signs occur they may be operated in any order. Thus $12+3-2+9-6=16$ in whatever order the signs are used.

If only \times and \div signs occur they must be operated in the order given $12 \div 3 \times 5 \div 2$ means that 12 is divided by 3 , the quotient multiplied by 5 and the resulting product divided by 2 .

If + and - signs occur together with \times and \div signs the X and \div signs must be used first and then the + and - signs may be used in any order. Thus $12 \div 3+8 \times 2-6 \div 2+7=$ $4+16-3+7=24$.

If brackets are used as in $36 \div(4+8)$ the part within the bracket is to be regarded as one quantity and the operation would be $36 \div 12=3$.

Exercises IX.

Find the values of:

1. $16 \div 8+4 \times 2 \times 3-16 \times 2 \div 4$.
2. $60-25 \div 5+15-100 \div 4 \times 2$.
3. $17 \times 3+27 \div 3-40 \times 2 \div 5$.
4. $864 \div 12-124 \div 31+54 \div 27$.
5. $13 \times 9 \times 62+44 \div 4-17 \times 22$.
6. $4963 \div 7+144 \div 72-14 \times 9$.
7. $1728 \div(36-2 \times 12)+(13 \times 12) \div(8 \div 2)$.
8. Factors-Cancellation. The factors of the number are the integers (meaning whole numbers) which multiplied together give the number. Thus 3 and 5 are the factors of 15 since $3 \times 5=15$.

A number that has no factors but itself and unity (or 1) is called a prime number. If a prime number is used as a factor it is called a prime factor. Thus 2 and 5 are prime factors of 20 . When the same number is a factor of two or more numbers it is said to be a common factor of those numbers. Thus 3 is a common factor of 27 and 36. By means of factors it is often possible to shorten the work in division. In $183 \div 15$ since 3 is a factor common to 183 and 15 we can divide by it and then $183 \div 15=61 \div 5=12 \frac{1}{5}$.

This method, cancellation, may be used in finding the value of such an expression as :

$$
\frac{4 \times 3 \times 14 \times 32}{3 \times 2 \times 3 \times 21}=\frac{2}{\frac{4 \times 3 \times 14}{1} \times 32} \underset{1}{1 \times 2 \times 3 \times 21}=\frac{128}{9}=14_{9}^{2} .
$$

First the 3 below the line is divided into the 3 above the line and since $3 \div 3=1$ the 3 's are cancelled by each other and 1's are placed in their stead. Similarly 2 below the line cancels 2 in the 4 above the line; next since 7 is a common factor of 14 and 21 it is divided into 14 giving 2 and into 21 giving 3 . When all common factors are cancelled the remaining numbers are multiplied together giving $\frac{128}{9}=14_{9}^{2}$.

Exercises X.

Find the values of:

1. $\frac{57 \times 119 \times 16}{17 \times 12 \times 19}$.	8.	$\frac{76 \cdot 5 \times 9 \cdot 2 \times 11}{36 \cdot 8 \times 9 \times 10}$
2 $20 \times 56 \times 12$	9	$32 \cdot 18 \times \cdot 006 \times 3 \cdot 4$
2. $\overline{21 \times 10 \times 18}$.		$1 \cdot 7 \times 16 \cdot 09 \times \cdot 003$
3. $77 \times 100 \times 18 \times 14$	10.	$42 \times \cdot 36 \times 4 \cdot 8$
3. $\overline{25 \times 11 \times 49 \times 16}$.	10.	$\overline{1.2 \times \cdot 7 \times 1.8}$.
4. $1200 \times 515 \times 70 \times 100$	11.	$\underline{192 \times 16.8 \times 4.4}$
4. $5 \times 35 \times 103$.	11.	$4 \times 2 \cdot 1 \times 22$.
5. $114 \times 1728 \times 999$	12.	$\underline{10.24 \times 7.29 \times 36}$
5. $96 \times 270 \times 33$.		$1 \cdot 44 \times 9 \times 1.8$.
6. $99-25+14 \times 7$	13.	$\underline{10^{2} \times 8 \cdot 6 \times \cdot 0625}$
6. $50 \div 2 \times 18$.		$2 \cdot 5 \times 4 \cdot 3 \times 2$.
7. $\underline{2560 \div 4+125 \times 4-14 \times 76}$	14	$7 \cdot 2 \times 12 \cdot 5 \times 39$
$17 \times 27+32 \times 40-1618$.		$1 \cdot 3 \times 1 \cdot 2 \times 10^{2}$.

Exercises XI.
Applied Problems.

1. In an electrical shop there were three motors, one weighed $278 \mathrm{lb} .$, another 380 lb. , and the third 475 lb . What was the total weight?
2. Three coal sheds contained respectively $6382 \mathrm{lb} ., 14728 \mathrm{lb} .$, 24725 lb . How many tons in all three?
3. Electric light wire was run around the four sides of two rooms. If the first room was 18 ft . long and 12 ft . wide; the second 20 ft . long and 13 ft . wide, what was the total length of wire required? (Electric lights require two wires).
4. A reel of wire contained 6425 ft . If 3226 ft . were used on a certain job, how many ft. remained on the reel?
5. A reel of wire contained 7280 ft . If 2348 ft . were used on one house and 1425 ft . on another, how many ft . were used on both? How many ft. were left on the reel?
6. In the coal-bin at the school there were $48,720 \mathrm{lb}$. of coal at the beginning of the week. On Monday 11600 lb . were usėd; Tuesday $12350 \mathrm{lb} . ;$ Wednesday 10718 lb . On Thursday 24600 lb . were received and 11880 lb. used. How much coal was used during these days? How much coal was there in the bin on Friday morning?
7. A màchinist sent in the following order for bolts: 15 bolts, 3 lb . each; 21 bolts, 2 lb . each; 14 bolts, 4 lb . each; 9 bolts, 3 lb . each; 11 bolts, 6 lb . each. What was the total weight of the order?
8. A wiring job required the following labour: 3 men for 4 hours each; 6 men for 5 hours each; 8 men for 9 hours each; 2 men for 15 hours each. Find the total number of hours on the job?
9. A rod is 72 in . in length. How many pieces 5 in . in length can be cut from it? Would there be a remainder?
10. An engine requires 90 lb . of coal per mile. How far could it run on 8 tons?
11. If 4 dozen screws weigh one pound, how many case: containing 24 screws could be filled from 30 lb . of screws?
12. A train runs from Toronto to Penetang, a distance of 101 miles, in 4 hours. What is the average rate per hour?
13. The cost of construction of a railway from Toronto to Montreal, a distance of 333 miles, was $\$ 3,425,625$. What was the average cost per mile?
14. How many gallons of water would be discharged in an hour by two pipes, if one discharged 18 gallons per minute and the other 4 gallons more per minute?
15. If 18 men working 8 hours a day, can do a piece of work in 12 days, how many days will.it take 24 men working 9 hours a day?
16. If a horse-shoe weighs 8 oż., how many horse-shoes will 36 lb . of steel produce. ($1 \mathrm{lb} .=16 \mathrm{oz}$.).

CHAPTER II.

FRACTIONS-PERCENTAGE.

15. Definition. A yard measure is divided, or marked off, into three equal parts called feet so that:

$$
\begin{aligned}
& 1 \text { foot }=\text { one-third }\left(\frac{1}{3}\right) \text { of a yard. } \\
& 2 \text { feet }=\text { two-thirds }\left(\frac{2}{3}\right) \text { of a yard. }
\end{aligned}
$$

A foot rule is divided into twelve equal parts called inches so that:

$$
\begin{aligned}
& 1 \text { inch }=\frac{1}{12} \text { of a foot. } \\
& 5 \text { inches }=\frac{5}{12} \text { of a foot. } \\
& 9 \text { inches }=\frac{9}{12} \text { of a foot. }
\end{aligned}
$$

The symbols $\frac{1}{3}, \frac{2}{3}, \frac{1}{12}, \frac{5}{12}, \frac{9}{12}$ are called fractions because they denote a part or fraction of something which has been divided.

A fraction may then be defined as a number which denotes one or more of the equal parts into which some thing or unit has been divided. In the fraction $\frac{5}{7}$ the number below the line is called the denominator since it denotes or names the parts into which the unit has been divided, the number above the line is called the numerator, since it denotes the number of parts taken. The numerator and the denominator are called the terms of the fraction. A fraction expressed in this notation is called a vulgar fraction.

Since $\frac{5}{7}=5 \div 7$ a fraction may also be regarded as a case of indicated division.
16. Kinds of Fractions. When the numerator is less than the denominator the fraction is said to be a proper fraction, Ex. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$. When the numerator is greater than the denominator the fraction is said to be an improper fraction, Ex. $\frac{8}{2}, \frac{6}{6}, \frac{1}{2}$. A combination of an integer (whole number) and a fraction is called a mixed number, Ex. $3 \frac{1}{2}, 5 \frac{7}{16}, 4 \frac{1}{8}$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
that $\frac{3}{4}=\frac{1}{2} \frac{5}{6}$. Further, $\frac{8}{6}$ may be obtained from $\frac{1}{2}$ by multiplying numerator and denominator by the same number 3 , also $\frac{8}{12}$ may be obtained from $\frac{2}{3}$ by multiplying numerator and denominator by the same number 4 , and $\frac{1}{2} \frac{5}{8}$ may be obtained from $\frac{3}{4}$ by multiplying numerator and denominator by the same number 5 .

From these illustrations it may be inferred that a ${ }^{\prime}$ raction is not changed in value when the numerator and the denominator are multiplied by the same number.

If the above results are written $\frac{8}{6}=\frac{1}{2}, \frac{8}{12}=\frac{2}{3}, \frac{1}{2} \frac{5}{6}=\frac{3}{4}$ it may be inferred that a fraction is not changed in value when the numerator and the denominator are divided by the same number.

Exercises XII.

Change the following:

1. $\frac{8}{7}$ to an equivalent fraction having 14 as denominator.
2. $\frac{5}{6}$ to an equivalent fraction having 24 as denominator.
3. $\frac{9}{10}$ to an equivalent fraction having 50 as denominator.
4. $\frac{7}{23}$ to 75ths.
5. $\frac{1}{3} \frac{7}{6}$ to 144 ths.
6. $\frac{3}{8}$ to 40 ths.
7. $\frac{8}{8}^{8}$ to 252 nds.
8. $\frac{7}{8}$ to 56 ths.
9. $\frac{8}{2 T}$ to 189 ths.
10. $\frac{17}{17}$ to 108 ths.
11. Reduction to Lowest Terms. A fraction is said to be in its lowest terms when no number other than 1 will exactly divide the numerator and denominator or, in other words, when the numerator and denominator have no common factor.

The fraction $\frac{7}{9}$ is in its lowest terms because 7 and 9 have no common factor.

The fraction $\frac{12}{\frac{2}{5}}$ is not in its lowest terms because 3 is a common factor of 12 and 15 and dividing numerator and denominator by the common factor, $\frac{1}{1} \frac{1}{5}$ becomes $\frac{4}{5}$.

To reduce a fraction to its lowest terms divide both parts by any common factor and continue the process until no further division is possible. Ex. $\frac{120}{144}=\frac{20}{24}=\frac{5}{6}$.

Exercises XIII.
Reduce to lowest terms:

1. $\frac{6}{8}$.
2. $\frac{8}{16}$.
3. $\frac{2}{8}$.
4. $\frac{24}{36} 0$.
5. $\frac{4}{7} \frac{8}{2}$.
6. $\frac{18}{7} \frac{8}{25}$.
7. $\frac{968}{1245}$.
8. $\frac{428}{1478}$.
9. $\frac{68}{80}$.
10. $\frac{4}{4} \frac{2}{0}$ 音.
11. To Reduce an Improper Fraction to a Mixed Number. Example:-Reduce 1_{5}^{66} to a mixed number. $126 \div 5$ gives 25 for quotient and 1 for remainder and, as in division, may be written $25 \frac{1}{5}$. Therefore ${ }^{136}=25 \frac{1}{3}$. Hence the rule:-Divide the numerator by the denominator and express as in division. Note-any integer may be written in the form of a fraction thus $25=\frac{25}{1}$.

To Reduce a Mixed Number to an Improper Fraction. Example:-Reduce $16 \frac{3}{7}$ to an improper fraction.

Since in 1 there are 7 sevenths, in 16 there are 16×7 or 112 sevenths, and $\frac{8}{7}$ is 3 sevenths, then $16 \frac{3}{7}$ is $112+3$ or 115 sevenths, therēfore $16 \frac{8}{7}=\frac{115}{7}$. Hence the rule:-Multiply the whole number by the denominator and add the numerator to the product. Take this result for the numerator and' the original denominator for the denominator.

Exercises XIV.

-Express the following improper fractions as whole or mixed numbers:

1. $\frac{7}{2}$.
2. $\frac{18}{4}$.
3. $\frac{64}{9}$.
4. $\frac{36}{6}$.
5. $\frac{70}{8}$.
6. $\frac{125}{7}$.
7. $\frac{807}{27}$.
8. $\frac{72}{22}$.
9. $\frac{369}{33}$.
10. $\frac{435}{16}$.
11. $\frac{25000}{10}$.
12. $\frac{380}{39}$.
13. ${ }^{13} 5^{2}$.
14. $\frac{729}{81}$.

Reduce to improper fractions:

15. $3 \frac{1}{3}$.	17. $7 \frac{3}{11} \cdot$	19. $121 \frac{3}{4}$.	21. $431 \frac{3}{5}$.	23. $722 \frac{9}{9}$.
16. $6 \frac{7}{15}$.	18. $115 \frac{7}{3}$.	20. $91 \frac{2}{3}$.	22. $4000 \frac{1}{4}$.	24. $392 \frac{7}{9}$.

20. Addition and Subtraction of Fractions. When fractions have the same denominator they can be added by adding the numerators, and subtracted by subtracting the numerators.

$$
\text { Exs. } \frac{1}{3}+\frac{2}{3}=\frac{3}{3} . \quad \frac{3}{4}-\frac{1}{4}=\frac{2}{4} .
$$

When the denominators are not alike as $\frac{1}{2}$ and $\frac{1}{3}$, they cannot be added without first changing to equivalent fractions having the same denominator.

$$
\frac{1}{2}=\frac{1 \times 3}{2 \times 3}=\frac{3}{6} \quad \frac{1}{3}=\frac{1 \times 2}{3 \times 2}=\frac{2}{6}
$$

then, $\frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$,
also, $\frac{2}{3}-\frac{3}{5}=\frac{10}{15}-\frac{9}{15}=\frac{1}{15}$.
21. Least Common Multiple-Least Common Denominator of Fractions. The fractions $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$, can be added only when the denominators are alike. This may be any number of which the different denominators are factors, but in practice it is customary to take the smallest number containing the different denominators. This number is then called the Least Common Multiple (L.C.M.) of the denominators because it is the least number into which the numbers will divide without remainder. It is also called the Least Common Denominator (L.C.D.) of the fractions.

In the given case 12 is the L.C.M. of $2,3,4$, then since 2 is contained in 12, 6 times, the numerator and denominator are multiplied by 6 , so that $\frac{1}{2}=\frac{6}{12}$, also $\frac{2}{3}=\frac{8}{12}$, and $\frac{3}{4}=\frac{9}{12}$, then $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}=\frac{6}{12}+\frac{8}{12}+\frac{9}{12}=\frac{6+8+9}{12}=\frac{2}{12}$.

When the L.C.M. cannot be-easily determined by inspection the following method may be used:

Find the least common multiple of $12,14,15,16,18,20$.

$2 / 12$	14	15	16	18	20
$2 / 6$	7	15	8	9	10
$3 / 8$	7	15	4	9	5
	7	5	4	3	

L.C.M. $-2 \times 2 \times 3 \times 7 \times 5 \times 4 \times 3=5040$.

Explanation:-Divide through by the least number which is a divisor of two or more of the given numbers. Continue this process until there is no number common to any two as a factor. In the third line 3 and 5 are struck out because 15 is also in that line, and any number which is a multiple of 15 is also a multiple of 3 and 5. The L.C.M. is obtained as indicated.

Exercises XV.

Find the values of the following:

1. $\frac{1}{3}+\frac{2}{5}$.	6. $\frac{5}{13}+\frac{5}{16}-\frac{2}{39}$.	11. $3 \frac{1}{2}-1 \frac{2}{3}+2 \frac{1}{8}$.
2. $\frac{1}{7}+\frac{8}{5}$.	7. $\frac{7}{8}+\frac{3^{3} 4}{}+{ }^{4} \mathrm{f}-1^{\frac{1}{8}}$.	12. $\lambda_{8}{ }^{5}-\frac{2}{3}+4 \frac{1}{9}-2 \frac{1}{7}$.
3. $\frac{5}{16}-\frac{1}{4}$.	8. $0^{3} 4+\frac{5}{8}+\frac{7}{8}+\frac{9}{3}$.	13. $5 \frac{3}{5}+7_{10}^{70}+6_{1{ }_{1}^{7} 5}$.
4. $\frac{7}{8}+\frac{2}{3}-\frac{1}{16}$.	9. $\frac{3}{8}+{ }^{5}{ }^{5}+\frac{1}{3} \frac{1}{2}-\frac{1}{2}$.	14. $\mathrm{1}_{8}{ }^{5}-\frac{3}{16}+7 \frac{1}{9}$.
5. $\frac{3}{4}+\frac{5}{22}-\frac{3}{16}$.	10. $2 \frac{1}{2}+4 \frac{1}{4}+5 \frac{1}{8}$.	

Exercises XVI.

1. Four castings weigh respectively $8 \frac{7}{8} \mathrm{lb} ., 5 \frac{1}{2} \mathrm{lb} ., 11 \frac{3}{4} \mathrm{lb}$., and $7 \frac{5}{8} \mathrm{lb}$. What is their total weight?
2. A piece of steel on a lathe is 1 in . in diameter. In the first cut $\frac{3}{3^{2}}$ in. is taken off, in the second cut $8^{2} \frac{2}{4}$ in., in the third cut $\frac{1}{16} \mathrm{in}$. Find the diameter of the finished piece.

Fig. 2
3. Find the overall length for the template in Figure 2.

Fig. 3 .-
4. Find the missing dimensions in Figure 3.
5. A drawing calls for the following divisions: $3 \frac{3}{16}$ in., $7 \frac{1}{2}$ in., $4 \frac{3}{4} \mathrm{in}$., $8 \frac{7}{8} \mathrm{in}$. Find the overall dimensions.

Fig. 4
6. A crank-pin has the dimensions given in Figure 4. If $\frac{1}{4}$ in. is allowed at each end for finishing what must be the length of the rough forging?

Fig. 5
7. A drawing for a part of the end of a valve rod is given in Figure 5. Find the missing dimension.

Fig. 6
8. Find the missing dimensions, AB, CD, in Figure 6.

Fig. 7
9. Find the missing dimensions $\mathbf{x}, \mathrm{y}, \mathrm{z}$, in Figure 7.
10. Find the missing dimension in the upper part of the height in. Figure 7.
22. Multiplication of Fractions-Consider the following example:-A man left $\frac{3}{4}$ of his estate to his children, $\frac{1}{2}$ of this being left to his eldest son. What fraction of the estate did the eldest son receive?

Fig. 8
We might represent this example by the above diagram. ABCD represents the whole estate. The shaded part ABEF, $\frac{3}{4}$ of the whole, represents the part left to the children. One-half of this is taken, BEHG, to represent the eldest son's share, i.e., $\frac{1}{2}$ of $\frac{3}{4}$ or $\frac{1}{2} \times \frac{3}{4}$. We further observe that, of the eight squares in the figure, the eldest son has three or $\frac{3}{8}$ of the whole, $\therefore \frac{1}{2} \times \frac{3}{4}=\frac{3}{8}$.

From this illustration we may infer that in order to multiply $\frac{1}{2}$ by $\frac{3}{4}$ we multiply the numerators for a new numerator and the denominators for a new denominator. Hence the rule:-To multiply two or more ${ }^{\prime} f_{\text {ractions }}$ together, multiply the numerators for a new numerator and the denominators for a new denominator.

Thus, $\frac{3}{4} \times \frac{5}{7}=\frac{3 \times 5}{4 \times 7}=\frac{15}{28}$.
Frequently cancellation shortens the process.
Thus, $\frac{5}{8} \times \frac{1}{4} \times \frac{4}{9}=\frac{5}{82}$.
Make a drawing to illustrate that $\frac{1}{3} \times \frac{5}{6}=\frac{5}{18}$.
To multiply a mixed number by an integer one of two methods may be used.

Thus to multiply $25 \frac{1}{3}$ by $7 . \quad 25 \times 7=175$

$$
\begin{aligned}
\frac{1}{3} \times 7 & =\frac{7}{3}=2 \frac{1}{3} \\
175+2 \frac{1}{3} & =177 \frac{1}{3} \\
\text { or, } 25 \frac{1}{3} \times 7=\frac{76}{3} \times 7=\frac{5}{3} \frac{2}{3} & =177 \frac{1}{3} .
\end{aligned}
$$

To multiply two mixed numbers together change each to an improper fraction and then multiply.

Thus to multiply $2 \frac{1}{3}$ by $4 \frac{2}{5} . \quad 2 \frac{1}{3} \times 4 \frac{2}{5}=\frac{7}{3} \times \frac{2}{5}=\frac{15}{15}=10_{15}^{4}$.

Exercises XVII.

Perform the operations indicated:

1. $\frac{5}{9} \times 4$.
2. $5 \times{ }_{9}^{4}$.
3. $3 \times \frac{16}{81}$.
4. $\frac{1}{2} \times \frac{3}{8}$.
5. $\frac{1}{4} \times{ }_{1}^{5}$.
6. $\frac{1}{2}$ of $\frac{3}{8}$.
7. $\frac{1}{4}$. of $\frac{5}{18}$.
8. $\frac{3}{10} \times \frac{3}{8} \times \frac{2}{5}$.
9. $\frac{4}{13} \times \frac{26}{3} \times \frac{9}{16}$.
10. $\frac{13}{13} \times \frac{7}{26} \times \frac{54}{14} \times{ }_{10}^{9}$.
11. $\frac{7}{16} \times \frac{3}{64} \times \frac{5}{14} \times \frac{1}{16}$.
12. $\frac{4}{13} \times \frac{51}{6} \times \frac{4}{10}$.
13. $\frac{25}{3} \times \frac{75}{8} \times \frac{64}{10}$.
14. $\frac{15}{16} \times \frac{7}{24} \times \frac{18}{21}$.
15. $15 \frac{1}{2} \times 4$.
16. $6 \frac{1}{4} \times \frac{4}{1}$.
17. $9 \frac{1}{2} \times{ }_{1} \frac{3}{9} \times 2$.
18. $3 \frac{1}{7} \quad \frac{1}{11} \quad \frac{7}{2}$.
19. $\frac{4}{3} \times \chi_{\frac{2}{2}}^{2} \times 1 \frac{1}{4}$.
20. $3 \frac{1}{2} \times 2 \frac{3}{4} \times 4 \frac{1}{8}$.
21. $13 \frac{1}{2} \times 1 \frac{1}{27} \times 3 \frac{1}{2}$.
22. $1 \frac{2}{3} \times 2 \frac{3}{5} \times 1 \frac{1}{13}$.
23. $9 \frac{1}{2} \times 3 \frac{1}{19} \times \frac{2}{58}$.
24. $6 \frac{1}{2} \times 4_{\frac{3}{13}} \times 1 \frac{1}{57}$.
25. Division of Fractions. Consider Figure 8, page 25, regarding multiplication of fractions.

ABCD represents the whole estate. The shaded part, $\frac{3}{4}$ of the whole, represents the part left to the children. This is divided into two parts to represent the eldest son's share i.e., $\frac{3}{4} \div 2$ or $\frac{3}{4} \div \frac{2}{1}$. We observe that, of the eight squares in the figure, the eldest son has three or $\frac{3}{8}$ of the whole.
$\therefore \frac{3}{4} \div \frac{2}{1}=\frac{3}{8}$.
But in the previous illustration $\frac{3}{8}=\frac{3}{4} \times \frac{1}{2}$.
$\therefore \frac{3}{4} \div \frac{2}{1}=\frac{3}{4} \times \frac{1}{2}$.
That is we may infer that to divide. $\frac{3}{4}$ by $\frac{2}{1}$ we invert $\frac{2}{4}$ obtaining $\frac{1}{2}$ and then multiply $\frac{3}{4}$ by $\frac{1}{2}$.

Hence the rule:-To divide one fraction by another invert the divisor and proceed as in multiplication.

Thus to divide $\frac{3}{4}$ by $\frac{5}{6}$. Invert the divisor $\frac{5}{6}$ (i.e., write it $\frac{6}{5}$) and multiply $\frac{3}{4}$ by $\frac{6}{5}, \therefore \frac{3}{4} \div \frac{5}{6}=\frac{3}{4} \times \frac{8}{5}=\frac{18}{20}=\frac{9}{10}$.

To divide a mixed number by a $\mathrm{f}_{\mathrm{raction}}$ change the mixed number to an improper' $f_{r a c t i o n ~ a n d ~ p r o c e e d ~ a s ~ a b o v e . ~}^{\text {a }}$

Thus to divide $16 \frac{1}{3}$ by $\frac{1}{5} . \quad 16 \frac{1}{3} \div \frac{1}{5}=\frac{49}{3} \times \frac{5}{1}=\frac{245}{3}=81 \frac{2}{3}$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

26. To change a Vulgar Fraction to its equivalent Decimal Fraction. Example:-Change $\frac{1}{8}$ to its equivalent decimal. $\frac{1}{8}=1 \div 8=\frac{8 / 1 \cdot 000}{\cdot 125}=\cdot 125$.

Example:-Change $\frac{11}{16}$ to its equivalent decimal. $\frac{11}{16}=11 \div 16=$ $\underline{16 / 11 \cdot 0000 / \cdot 6875}$

96
140
128
120
112
80
80
It is evident that, to change a fraction to its equivalent decimal fraction, it is only necessary to perform the division indicated after 0 's have been placed to the right of the decimal point.

Exercises XX.

Change the following fractions to their equivalent decimals:

1. $\frac{1}{4}$	4. $\frac{11}{16}$.	7. $\frac{31}{31}$.	10. $\frac{127}{128}$.
2. $\frac{1}{2}$	5. $\frac{3}{5}$.	8. $\frac{15}{16}$.	11. $\frac{37}{57}$.
3. $\frac{3}{8}$	6. $\frac{124}{125}$.	9. $\frac{24}{25}$.	12. $\frac{127}{250}$.

27. Repeating Decimals. Example:-Change $\frac{1}{3}$ to its equivalent decimal.

$$
\frac{1}{3}=1 \div 3=\frac{3 / 1 \cdot 000}{\cdot 333+}
$$

The division in this case would never end. $\frac{1}{3}$ therefore produces what is known as a repeating decimal. This is expressed by placing a period above the figure $3 \therefore \frac{1}{3}=\cdot \dot{3}$.

Example:-Change $\frac{5}{6}$ to its equivalent decimal.

$$
\frac{5}{6}=5 \div 6=\frac{6 / 5 \cdot 0000}{\cdot 8333+}
$$

In this case the decimal does not begin to repeat until the second figure and is therefore called a mixed repeating decimal.
$\therefore \frac{5}{6}=.8 \dot{3}$.

The denominators in Exercises XX contain only 2's or 5's or 2's and 5's as their factors. The fractions can be changed into fractions having some power of 10 as denominators and therefore give terminating decimals. All fractions such as $\frac{1}{3}, \frac{5}{6}$, etc., having some factor other than 2 or 5 in the denominator, when expressed in their lowest terms, cannot be changed into fractions having some power of 10 as denominator and therefore give repeating or mixed repeating decimals.

Exercises XXI.

- Change the following to their equivalent decimals:

1. $\frac{5}{9}$.
2. $\frac{1}{12}$.
3. $\frac{1}{7}$.
4. $\frac{2}{15}$.
5. $\frac{1}{18}$.
6. $\frac{2}{11}$.
7. $\frac{4}{13}$.
8. To change Repeating and Mixed Repeating Decimals to their equivalent Fractions.

Example:-Change $\cdot \dot{2} \dot{4}$ to its equivalent fraction

$$
\begin{aligned}
\cdot \dot{2} \dot{4} & =\cdot \dot{242424} \ldots \ldots \\
100 \text { times } \cdot \dot{2} \dot{4} & =24 \cdot 242424 \ldots \ldots \\
1 \text { times } \cdot \dot{2} \dot{4} & =\cdot 242424 \ldots \ldots
\end{aligned}
$$

Subtracting, 99 times $\cdot 24=24$

$$
\therefore \quad . \dot{2} \dot{4}=\frac{24}{99} .
$$

That is to change a repeating decimal to its equivalent fraction write the decimal, after removing the point, as numerator and as denominator as many 9's as there are figures in the repeating part.

Example:-Change $\cdot 3 \dot{4}$ to its equivalent fraction

$$
\begin{aligned}
\cdot 3 \dot{4} & =-34444 \ldots \ldots \\
100 \text { times } & \cdot 3 \dot{4}
\end{aligned}=34 \cdot 444 \ldots \ldots \ldots .
$$

Subtracting, 90 times $\cdot 3 \dot{4}=31$

$$
\therefore \quad \cdot 3 \dot{4}=\frac{31}{90} .
$$

That is to change a mixed repeating decimal to its equivalent fraction subtract the part which does not repeat 'from the whole giving the numerator, and for denominator take as many 9's as there are figurès in the repeating part followed by as many 0 's as there are figures which do not repeat.

Exercises XXII.

Express as fractions in their lowest terms:

1. $\cdot \dot{5}$	6. $\cdot \dot{3} 6 \dot{9}$	11. $2 \cdot 5 \dot{3} 0 \dot{6}$
2. $\cdot \dot{3} \dot{6}$	7. $3 \cdot 25 \dot{3}$	12. $\cdot 04 \dot{7} 2 \dot{6}$
$3 . \cdot 3 \dot{6}$	$8 . \cdot 251 \dot{6}$	13. $\cdot 003 \dot{6}$
$4 . \cdot 15 \dot{3}$	$9 . \cdot 14285 \dot{7}$	$14 . \cdot 0 \dot{4} 2 \dot{6}$
$5 . \cdot 3 \dot{6} \dot{9}$	$10.2 \cdot 7 \dot{6}$	

29. Percentage. The term "percent." usually written $\%$, is an abbreviation of the Latin "per centum" which means by the hundred. Five percent. (5\%) would be $\frac{5}{100}$ of the quantity named. Percent. may be changed to a decimal fraction.

$$
\begin{aligned}
& \text { Thus, } 62 \%=\frac{8^{8}}{100}=\cdot 62 \text {. } \\
& 37 \cdot 5 \%=\frac{375}{10}=; 375 .
\end{aligned}
$$

A decimal fraction of a quantity may be expressed as percènt.

$$
\begin{aligned}
& \text { Thus, } \quad .7=\frac{70}{100}=70 \% \\
& -89=\frac{89}{100}=89 \% \\
& \cdot 375=\frac{37.5}{10}=37 \cdot 5 \%
\end{aligned}
$$

That is the decimal $\mathrm{f}_{\text {raction may }}$ be changed to percent. by moving the decimal point two places to the right. Also any If raction may be changed to percent. by changing it to its equivalent decimal fraction, and then moving the decimal point two places to the right.

Exercises XXIII.

1. In the following table supply the missing quantities:

\%	$\underset{\substack{\text { Declmal } \\ \text { Fractlon }}}{ }$	$\underset{\text { Vraction }}{\substack{\text { Val }}}$	\%	\| Declmal	${ }_{\substack{\text { Vulgar } \\ \text { Fraction }}}^{\text {a }}$	\%	${ }_{\substack{\text { Declmal } \\ \text { Fraction }}}$	$\underset{\text { Vraction }}{\text { Val }}$
1			$16 \frac{2}{3}$			100		
	. 02			. 25		200		
$2 \frac{1}{2}$,	$\frac{1}{3}$		$1 \cdot 75$	
		$\frac{1}{20}$	$37 \frac{1}{2}$					$2 \frac{1}{5}$
$6 \frac{1}{4}$				- 5			$3 \cdot 86$	
	- 10				$\frac{3}{4}$			$1_{\mathrm{T}^{7} 2}$
		$\frac{1}{8}$		$\cdot 9$		350		

2. Find 25% of 16 , of 8 , of 90 , of 240 .
3. 5 is what $\%$ of 10 ? of 20 ? of 40 ?
4. 8 is what $\%$ of 16 ? of 40 ? of 24 ?
5. What $\%$ of $\frac{3}{5}$ is $2 \frac{1}{2}$? $27 \frac{2}{5}$ of 600 ?
6. 20% of what number is $3 ? 7 ? 14$? 17 ?
7. 68 is 15% less than what number?
8. 98 is 40% more than what number?
9. A gas bill was 25% higher last month than this. If it is $\$ 6.46$ this month how much was it last month?
10. How much water must be added to a 5% solution of a. certain liquid to make a 2% solution? (original solution 20 gallons).
11. Short Methods. In practical work a large number of decimal places is not needed. In all measurements the accuracy depends upon the instruments, the methods used, and the thing measured. It is only necessary that the error is small compared with the quantity measured; a fraction of an inch in a dimension of several feet would probably not make much difference.

In measuring to - 001 inches it is not necessary to carry the work to say $\cdot 00001$ inches. In any case of multiplication or division it is only necessary to carry the result to one decimal place more than the measurement. Thus if a measurement of $7 \cdot 265$ inches is multiplied by $3 \cdot 1416$ it is only necessary to carry the work to four places of decimals, care being taken to allow for numbers carried over from the fifth place.

Other short methods of multiplication and division may be used.

To multiply by $5,50,500$, etc., add $0,00,000$, etc., to the right of the number and divide by 2 . Why?
$`$ To multiply by 25,250 , etc., add 00,000 to the right of the number and divide by 4 . Why?

To multiply by 125 , add 000 to the right of the number and divide by 8 . Why?

To multiply by $33 \frac{1}{3}, 16 \frac{2}{3}, 12 \frac{1}{2}, 8 \frac{1}{3}, 6 \frac{1}{1}$. Add 00 to the right of the number and divide by $3,6,8,12,16$. Why?

By using the reverse process division by $33 \frac{1}{3}, 16 \frac{2}{3}, 12 \frac{1}{2}$, 125 , etc., may be performed. Thus to divide by $33 \frac{1}{3}$ multiply by 3 and divide by 100 or mark off two decimal places. Why?

To multiply a number ending in $\frac{1}{2}$ such as $13 \frac{1}{2}$ by itself. Multiply the number plus 1 by itself and add $\frac{1}{4}$ to the product.

Thus $13 \frac{1}{2} \times 13 \frac{1}{2}=14 \times 13+\frac{1}{4}$.

To multiply a number ending in 5 by itself, multiply the number to the left of 5 by a number one greater than itself and place 25 to the right of the number. Thus, $75 \times 75,7 \times 8=56$, and the result is 5625 .

Exercises XXIV.

Applied Problems.

1. From 2000 lb . of iron bars each weighing $80 \mathrm{lb} . \frac{2}{5}$ is cut up for bolts, $\frac{1}{5}$ for shafts and the remainder for studs. How many bars are used for the different articles?
2. At $2 \frac{1}{2}$ c. a pound, what will be the cost of 108 castings each weighing $29 \mathrm{lb} . ?$
3. An automobile runs at the average rate of $10 \frac{1}{2}$ miles an hour. How long will it take to go from Toronto to London, a distance of 116 miles?
4. A $\frac{3}{4} \mathrm{in}$. steel bar weighs 1.914 lb . per foot. What will be the cost of 5000 ft . of $\frac{3}{4} \mathrm{in}$. steel bars if it cost $\$ 1.75$ per $100 \mathrm{lb} . ?$
5. Which is cheaper, and by how much, to have a $36 \frac{1}{2} \mathrm{c}$. an hour man take $12 \frac{1}{2} \mathrm{hr}$. on a job or to have a $48 \frac{1}{2} \mathrm{c}$ - an hour man who can do the job in $9 \frac{1}{2} \mathrm{hr}$.?
6. The weight of a foot of $\frac{\circ}{16} \mathrm{in}$. steel bar is 1.06 lb . Find the weight of a 20 ft . bar.
7. At $42 \frac{1}{2} \mathrm{c}$. an hr. what will be the pay for $21 \frac{1}{4}$ days of 8 hours each?
8. If $2 \frac{1}{2}$ bundles of shingles are used on $82 \frac{1}{2} \mathrm{sq}$. ft . of roof, how many bundles will be used on 325 sq. ft . of roof?
9. How many pieces $5 \frac{1}{2} \mathrm{in}$. long can be cut from a rod 27 ft. long?
10. A person spending $\frac{1}{3}, \frac{2}{5}$ and $\frac{1}{8}$ of his money has $\$ 119$ left; how much had he at first?
11. If $\frac{4}{11}$ of a house be worth $\$ 1969.92$, what is the value of $\frac{5}{16}$ of the house?
12. Three men own a house worth $\$ 6250$; one owns $\frac{3}{10}$ of it; the second $\frac{1}{5}$ of it; what is the value of the third's share?
13. A man having $271 \frac{1}{2}$ acres of land, sold $\frac{1}{3}$ to one man and 3 to another; what was the value of the remainder at $\$ 323{ }^{8} 68$ an acre?
14. I want to mix up a pound of solder to consist of ${ }^{\circ} 4$ parts zinc, 2 parts tin and 1 part lead; what fraction of a pound of each metal must I have?
15. An apprentice who is drilling and tapping a cylinder for $\frac{7}{8}$ in. studs, tries a $\frac{3}{4} \mathrm{in}$. drill, but the tap binds, so he decides to use a drill $\frac{1}{6 x} \mathrm{in}$. larger; what size drill will he use?
16. An 8 ft . bar of steel is cut up into 16 in . lengths; what fraction of the whole bar is one of the pieces?
17. The time cards for a certain piece of work show 2 hours and 15 minutes lathe work, 4 hours and 10 minutes milling, 2 hours and 20 minutes bench work; what is the total number of hours charged to the job?
18. A gallon is about $\frac{4}{25}$ of a cubic ft . If a cubic foot of water weighs $62 \frac{1}{2} \mathrm{lb}$., how much does a gallon of water weigh?
19. What is the cost of a casting weighing $432 \frac{1}{2} \mathrm{lb}$. at $6 \frac{1}{4} \mathrm{c}$. a pound?
20. How many steel pins to finish $1 \frac{1}{8} \mathrm{in}$. long can be cut from an 8 ft . rod if we allow $\frac{3}{16} \mathrm{in}$. to each pin for cutting off and finishing?
21. A machinist whose rate is 67.5 cents per hour puts in a full day of 8 hours and also 3 hours overtime. If he is paid "time and a half" for overtime, how much should he be paid altogether?
22. If an alloy is $\cdot 67$ copper and $\cdot 33$ zinc, how many pounds of each metal would there be in a casting weighing $82 \mathrm{lb} . ?$
23. A can do a piece of work in 25 days; B can do it in 30 days; \mathbf{C} can do it in 35 days. In what time will they do it, all working together?
24. A man earns $\$ 280$ in $2 \frac{1}{3}$ months. If he spends in 4 months what he earns in 3 months, how much will he save in a year?
25. From a farm of $125 \frac{3}{10}$ acres there were sold at one time $27 \cdot 63$ acres and at another $34 \frac{3}{8}$ acres. How many acres remained?
26. From an oil tank containing 375.087 gallons there leaked out each day $2 \frac{5}{8}$ gallons. How many gallons remained in the tank at the end of 25 days?
27. If the weight of a brass casting is approximately fifteen and a half times that of its white pine pattern, what will be the weight of a casting if the pattern weighs 15 oz ??
28. Since the shrinkage of brass castings is about $\frac{1}{8} \mathrm{in}$. in 10 in., what length would you make the pattern for a brass collar which is required to be 6 in . long?

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
42. From a steel bar $27 \frac{5}{8} \mathrm{in}$. long were cut the following pieces:-one $7 \frac{1}{4}$ in., one $6 \frac{7}{8}$ in., one $3 \frac{3}{4} \mathrm{in}$. long. If the length of the bar was then $8 \frac{3}{8} \mathrm{in}$., what was the amount of waste in cutting?
43. A man, buying a house and lot, paid $\$ 2200$ for the lot and $62 \frac{1}{2} \%$ more than that for the house. What did both cost him?
44. A man invested $\$ 16,400$ as follows:- 25% in an automobile, $37 \frac{1}{2} \%$ in bank stock, and the remainder im an addition to his house. How much did he invest in each?
45. An electrician has a reel of 300 ft . of copper wire. He used at various times $50 \frac{1}{2} \mathrm{ft}$., $32 \frac{1}{4} \mathrm{ft}$., $109 \frac{2}{3} \mathrm{ft}$. How. much wire was left? What percent. was left?
46. If $\frac{2}{3}$ of the shell of a stationary boiler is considered as the heating surface, how many square feet of heating surface are there in a boiler containing $98 \frac{7}{16}$ sq. ft.?
47. A pump pumps $3 \cdot 38$ gallons to each stroke and the pump makes $51 \cdot 2$ strokes per minute. How many gallons of water will it pump per hour?

CHAPTER İII.

WEIGHTS AND MEASURES-SPECIFIC GRAVITY.

31. Linear Measure. Linear Measure is used in measuring lines and distance.

The fundamental unit of English Linear Measure is the yard. It is the distance between two marks on a bronze bar in the Royal Exchange, London, England.

Table.

12 inches (in.)	$=1$ foot (ft.).
$3 \mathrm{ft}$.	$=1$ yard (yd.).
$5 \frac{1}{2}$ yd.	$=1$ rod.
320 rods	$=1$ mile.

Inches are commonly denoted by two strokes above the figure. Feet are denoted by one stroke. Thus 6 in. is.written $6^{\prime \prime}$ and 6 ft . is written 6^{\prime}.
32. Surveyor's Measure. Surveyor's Measure is used in measuring land.

\[

\]

The chain in this table is known as Gunter's chain. It is the one in general use for country surveys.

Engineers frequently use a chain, or steel tape, 100 ft . long. The feet are usually divided into tenths instead of into inches.
33. Nautical Measure.

Table.
$6 \mathrm{ft} . \quad=1$ fathom.
120 fathoms $=1$ cable.
6080 ft . $=1$ nautical mile $=1 \cdot 151$ statute miles.
1 knot . = a sailing rate of one nautical mile per hour.

Exercises XXV.

1. How many yards in a mile?
2. How many feet in a mile?
3. One inch is what decimal of a yard?
4. One rod is what decimal of a mile?
5. Reduce 18 yd., 2 ft ., 9 in . to inches.
6. Reduce 3 mi ., 30 rods, $1 \frac{1}{2}$ yd. to feet.
7. Express 1 link as a decimal of a mile.
8. Express 1 in . as the decimal of a chain.
9. Change 4 chains, 15 links to links.
10. Change 26 yd., 1 ft ., 2 in . to chains.
11. Change 4356 li. to feet.
12. Change 25 rods, 3 yd., 2 ft . to chains.
13. The world's record (Dec. 1919) for a destroyer was $45 \cdot 5$ knots. What is this in statute miles?
14. Metric Linear Measure. Metric is the adjective form of the word metre which is a French word meaning "measure." The earth's quadrant (one fourth of the circumference) was measured by French engineers in 1799. One ten-millionth of this length was taken as the length of the metre.

Table.
10 millimetres (mm .) $=1$ centimetre (cm .)
$10 \mathrm{~cm} . \quad=1$ decimetre (dm.)
10 dm . $=1$ metre (m.)
$10 \mathrm{~m} . \quad=1$ decametre (Dm.)
$10 \mathrm{Dm} . \quad=1$ hectometre (Hm.$)$
$10 \mathrm{Hm} . \quad=1$ kilometre (Km.)
It may be seen that the prefixes have definite meanings: milli $=\frac{1}{1000}$, centi $=\frac{1}{100}$, deci $=\frac{1}{10}, \quad$ deca $=10$, hecto $=100$, kilo $=1000$.
35. Comparison of English and Metric Linear Measurements.

1 in . $=2.5399 \mathrm{~cm} .(2.54 \mathrm{~cm}$. approx.).
$1 \mathrm{~cm} .=\cdot 3937 \mathrm{in}$.
1 mile $=1.60935 \mathrm{Km}$. (1.61 Km . approx.).
$1 \mathrm{Km} .=.621$ miles.
$1 \mathrm{~m} . \quad=39.3707 \mathrm{in}$. (39.37 in . approx.).
Make calculations to test the accuracy of the above table.

Exercises XXVI.

1. Measure the perimeter of the room with both metre stick and yard stick. Make drawings to scale in your laboratory book. Change the result in the English system to the Metric system and compare.
2. Do the same as in 1 for the door, table, etc.
3. Write all the measurements in the Metric system in terms of the metre.
4. Fill in the omitted entries in the following:
Unit
5. A piece of steel bar is laid off to a length of 438 cm . Find this length in feet and inches.
6. The thickness of a steel plate is $\frac{3}{8}{ }^{\prime \prime}$. Find the thickness in cm . and dm.
7. A speed of 200 ft . per second is how many Km . per second?
8. When a body falls freely from rest it increases in speed each second $32 \cdot 2 \mathrm{ft}$. per second. Express this in cm. per second each second.
9. An express train is travelling at the rate of 50 miles per hr. Express this in Km. per minute.
10. Find the difference in cm . between the lengths of two steel rods, one of which is $4 \cdot 8^{\prime}$ long and the other $4 \cdot 8^{\prime \prime}$ long.
11. Square Measure. In measuring areas or surfaces, the
 inch, foot, yard, etc., can no longer be used. It is necessary to use the square inch, the square foot, the square yard, etc.

By a square inch is meant a surface one inch long and one inch wide.

Thus in measuring surfaces two dimensions, length and breadth, are used.

Fig. 9

Table.
144 square inches (sq.in.) $=1$ square foot (sq. ft.). 9 sq. ft.
$30 \frac{1}{4}$ sq. yd .
160 sq. rods
10 sq. chains
640 acres
Make drawings to scale in your laboratory book and illustrate the truth of the first three lines in the above table.
37. Metric Square Measure.

Table.
100 square mm. (sq. mm.) $=1$ square cm . (sq. cm.)
100 sq. cm . $=1$ square dm. (sq. dm.)
100 sq. dm. $\quad=1$ square m. (sq. m.)
100 sq. m. $\quad=1$ square Dm. (sq. Dm.)
100 sq. Dm. $=1$ square Hm. (sq. Hm.)
100 sq. Hm. $\quad=1$ square Km. (sq. Km.)
Make drawings to scale in your laboratory book and illustrate the truth of each line in the above table.
38. Comparison of English and Metric Square Measure. Table.

Make calculations to test the accuracy of the above table.

Exercises XXVII.

1. Find the area of the floor of your classroom in square metres and also in square feet. Make drawings to scale in your laboratory book. Change the area in square metres to square yards and compare.
2. Find the area of a page of your laboratory book in sq. in. and also in sq. cm. Test as in preceding question.
3. Perform similar experiments by measuring the schoolyard, the door, table, the teacher's desk, etc.
4. Change one acre to sq. yd.
5. Express 4 sq. rods, 25 sq. yd., 7 sq. ft., in sq. ft.
6. Express 5 sq. rods, 8 sq. yd., 5 sq. ft., as the decimal of an acre.
7. Express 5 sq. yd., 3 sq. ft., 18 sq. in., as sq. in.
8. Express 4 sq. ft., 85 sq. in., as the decimal of a sq. yd.
9. A square field measures 20 rods to a side. Find its area in acres.
10. A steel plate in the form of a rectangle is $18 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ long by $6 \frac{1}{4}^{\prime \prime}$ wide. Find the area in sq. ft.
11. A number-plate on an automobile is $21^{\prime \prime}$ long by $5 \frac{1}{4}$ " wide. Find area in sq. ft.
12. A rectangular garden $2 \frac{1}{2}$ chains wide contains $\frac{3}{4}$ of an acre. How many feet long is it?
13. How many sq. ft. of glass are there in a box containing 72 panes each $12^{\prime \prime}$ by $16^{\prime \prime}$?
14. How many sq. yd. are there in the walls of a room 15^{\prime} $6^{\prime \prime}$ long, 12^{\prime} wide, and $9^{\prime} 4^{\prime \prime}$ high?
15. A rectangular piece of land measures 1200 links by 180 links. What is its area in acres?
16. How many bricks 8 in . long and 4 in . wide will pave a yard 116^{\prime} long and 46^{\prime} wide?
17. Find the cost of laying a concrete walk 400 yd. long and 4 ft .8 in . wide at 60 c . a sq. yd.
18. Find the cost of painting both sides of a tight board fence 80^{\prime} long, $5^{\prime} 3^{\prime \prime}$ wide at 7 c . a sq. 'yd.
19. How many boards each 12^{\prime} long and $10^{\prime \prime}$ wide will be required to build a fence 60 yd . long and 4 ft . high?
20. How many sq. ft. of tin will be necessary to line the inside of an open box whose external measurements are 4^{\prime} long, 3^{\prime} $8^{\prime \prime}$ wide and $2^{\prime} 10^{\prime \prime}$ deep, if the material in the box is $2^{\prime \prime}$ thick and 10% is allowed for cutting and joining the tin?
21. Cubic Measure. In the measurement of surfaces in the
 preceding sections two measurements, length and breadth, were used. The areas resulting were expressed in square inches, square feet, etc.

If it is required to measure the volume of solids, the dimensions, length and breadth must be taken into account and in addition another dimension-thickness.

By a cubic inch is meant the volume of a cube, 1 inch on each edge, Figure 10.

Volumes of solids are measured in cubic inches, cubic feet, cubic yards, etc.

Table.

$$
\begin{aligned}
1728 \mathrm{cu} . \mathrm{in} . & =1 \mathrm{cu} . \mathrm{ft} . \\
27 \mathrm{cu} . \mathrm{ft} . & =1 \mathrm{cu} . \mathrm{yd} . \\
128 \mathrm{cu} . \mathrm{ft} . & =1 \mathrm{cord}\left(8^{\prime} \times 4^{\prime} \times 4^{\prime}\right) .
\end{aligned}
$$

Make drawings to scale in your laboratory book and illustrate the truth of each line in the above table.
40. Metric. Cubic Measure.

Table.
1000 cubic millimetres ($\mathrm{c} . \mathrm{mm}$.) $=1$ cubic centimetre (c.c.)
1000 c.c. $=1$ cubic decimetre (c.dm.)
$1000 \mathrm{c} . \mathrm{dm}$.
$=1$ cubic metre
(c.m.)
$1000 \mathrm{c} . \mathrm{m}$.
1000 c.Dm.
$=1$ cubic decametre (c.Dm.)
$=1$ cubic hectometre (c.Hm.)

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

12. The end of a rectangular bar of iron is a square $\frac{3}{4}^{\prime \prime}$ to the side. How many c.c. are there in 4^{\prime} of the bar?
13. In excavating a tunnel $374,166 \mathrm{cu} . \mathrm{ft}$. of earth were removed. If the length of the tunnel was 492 ft . and the width 39 ft ., what was the depth?
14. In making a tender for some excavating a contractor notes that the excavation is in the shape of a rectangle 11^{\prime} wide, 86^{\prime} long at the top and has a depth of 8^{\prime}. What will it cost him to excavate it at 40c. a cu. yd.? What must he bid to make a profit of 15% ?
15. Rain falling uniformly for 5 hours on a roof, whose dimensions are 30^{\prime} by 15^{\prime}, fills a tank $6^{\prime} 3^{\prime \prime}$ by 3^{\prime} by $2^{\prime} 6^{\prime \prime}$. Find the depth of the rainfall per hour.
16. The ice on a pond whose area is $\frac{1}{3}$ of an acre is $10^{\prime \prime}$ thick. How many cu. ft. of ice may be removed?
17. Measures of Weight. The fundamental unit of English weight is the pound. There are the pound Avoirdupois and the pound Troy.

The pound, Avoirdupois, is equal to the weight of 7000 grains (plump grains of wheat) and is used for all ordinary purposes of weighing. The pound, Troy, is equal to 5760 grains and is used in weighing gold, silver and precious stones.

Table-Avoirdupois Weight. 16 drams $=1$ ounce (oz.).
16 oz . $=1$ pound (lb.) $=7000$ grains.
$100 \mathrm{lb} .=1$ hundredweight (cwt.).
20 cwt . $=1$ ton.
2240 lb . $=1$ long ton.
Table-Troy Weight.
24 grains $=1$ penny weight (dwt.)
20 dwt . $=1 \mathrm{oz}$.
$12 \mathrm{oz} . \quad=1 \mathrm{lb} .=5760$ grains.
43. Metric System of Weights. The fundamental unit of metric weight is the kilogram which is the weight of 1 litre, equal in volume to 1 cubic decimetre, of distilled water under fixed conditions of temperature and pressure.

	Table.	
10 milligrams	$=1$ centigram	(cg.)
10 cg.	$=1$ decigram	(dg.)
10 dg.	$=1$ gram	(g.)
10 g.	$=1$ decagram	(Dg.)
10 Dg.	$=1$ hectogram	(Hg.)
10 Hg.	$=1$ kilogram	(Kg.)

44. Comparison of English and Metric Systems of Weights. Table.

$$
\begin{aligned}
& 1 \text { gram }=15 \cdot 432 \text { grains. } \\
& 1 \text { ounce }=28 \cdot 35 \text { grams. } \\
& 1 \text { pound (avoirdupois) }=453 \cdot 6 \text { grams. } \\
& \quad=\cdot 4536 \text { kilograms. } \\
& 1 \text { kilogram }=2 \cdot 2046 \text { pounds. } \\
& 1 \text { metric ton }=1000 \text { kilograms. } \\
& \qquad \begin{aligned}
-\quad & =2204 \cdot 6 \text { pounds. }
\end{aligned}
\end{aligned}
$$

Knowing any one of the above relations test the accuracy of the others.
45. Measures of Capacity. The fundamental unit of capacity in the English system is the gallon, which contains 10 pounds of distilled water under fixed conditions of temperature and. pressure.
46. Liquid Measure-used in measuring liquids.

Table.

$$
\begin{aligned}
& 4 \text { gills }=1 \text { pint } \quad \text { (pt.) } \\
& 2 \text { pt. }=1 \text { quart (qt.) } \\
& 4 \mathrm{qt.}=1 \text { gallon (gal.) }
\end{aligned}
$$

47. Dry Measure-used in measuring grains, vegetables, etc.

Table.
2 pints = 1 quart (qt.)
4 qt. $=1$ gallon (gal.)
2 gal. $=1$ peck (pk.)
$4 \mathrm{pk} .=1$ bushel (bu.)
48. .Metric System. The fundamental unit of measurement is the litre and is equal in volume to one cubic decimetre.

Table.

10 millilitres	$=1$ centilitre (cl.)	
$10 \mathrm{cl}$.	$=1$ decilitre (dl.)	
10 dl.	$=1$ litre (l.)	
10 ll.	$=1$ decalitre (Dl.)	
10 Dl.	$=1$ hectolitre (Hl.)	
10 Hl.	$=1$ kilolitre (Kl.)	
		$=1$ cu. metre

49. Comparison of Capacity Tables with Cubic Measure.

$$
\begin{aligned}
1 \text { litre } & =61.024 \text { cu. in. (approx.) } \\
& =.22 \text { gal. } \\
1 \text { gal. } & =4.541 . \\
1 \text { cu. ft. } & =28.38 \text { litres. } \\
& =6.2321 \text { gal. }
\end{aligned}
$$

$277 \cdot 274$ cu. in. $=1$ gal. $231 \mathrm{cu} . \mathrm{in} .=1$ gal. (American).
50. Specific Gravity. The specific gravity (sp. gr.) of a substance is its weight as compared with the weight of an equal volume of pure water.

Since the weight of a fixed volume of water is known we can find the weight of an equal volume of any substance if we know the specific gravity.

Example:-Find the weight of $8 \mathrm{cu} . \mathrm{ft}$. of steel if its sp . gl. is 7.8 .

Solution:-1 cu. ft. water weighs $62 \cdot 321 \mathrm{lb}$.
1 cu . ft. steel weighs $62 \cdot 321 \times 7 \cdot 8 \mathrm{lb}$.
8 cu . ft. steel weighs $62 \cdot 321 \times 7 \cdot 8 \times 8 \mathrm{lb} .=$ 3888.83 lb .

Exercises XXIX.

1. How much space will be filled by 14 tons of wroughtiron (sp. gr. 7.7)?
2. Find the average sp. gr. of a piece of brick construction weighing 114 lb . per cu. ft.
3. If 13 litres of milk weigh $13 \cdot 39$ kilograms, what is the sp. gr. of milk?
4. A tunnel 625 yd . long having a cross-seetion of 64 sq. yd. is excavated through rock of sp . gr. 2•7. Find the weight of rock removed.
5. If 3 litres of alcohol weigh $2 \cdot 37$ kilograms, what is the sp. gr. of alcohol?

51. Measure of Time:

> Table.

60 seconds (")	$=1$ minute ($\left.1^{\prime}\right)$.
60 minutes	$=1$ hour.
24 hours	$=1$ day.
7 days	$=1$ week.

365 days, 5 hours, 48 minutes, 48 seconds $=1$ year.
As the calendar year of 365 days is nearly 6 hours less than the above, correction is made as follows:-Every year whose number is divisible by 4 is a leap year and contains 366 days, the other years containing 365 days, except that the century years are leap years only when the number of the year is divisible by 400 .

The year is divided into 12 months:-January (Jan.), February (Feb.), March, April, May, June, July, August (Aug.), September (Sept.), October (Oct.), November (Nov.), December (Dec.).
" Thirty days hath September, April, June and November." The other months, except February, have 31 days each. February has 29 days in leap years and 28 days in all other years.

Exercises XXX.

1. Compute the actual number of days from Sept. 23, 1919, to April 6, 1920.
2. A note bearing interest from March. 8, 1899, was paid on July 5, 1900. Compute the interest period.
3. Reduce to the lowest denomination named:-4 weeks, 3 days, 15 hr .23 min .
4. How many hours between 10 A.M. Jan. 1, 1920, and 6 P.M. March 3, 1920.
5. Miscellaneous Measures:

Counting Tables.
12 things $=1$ dozen (doz.).
12 doz. $=1$ gross.
12 gross $=1$ great gross.
20 units $=1$ score.
Stationers' Tables.
24 sheets $=1$ quire.
20 quires $=1$ ream.
3 reams $=1$ bundle.
5 bundles = 1 bale .
Exercises XXXI.
1 Calculate the volumes of a number of the rectangular solid models in the laboratory and estimate their weights in both systems. Change from one system to the other and check.
2. Fill in the omitted entries in the following:

Quantity	Volume		$\mathrm{Weight}^{\text {a }}$	
	cu. in.	c.c.	wt. in lb .	${ }^{\text {wt. in }} \mathrm{Kg}$.
2 pints water				
3 qt. water				
$1 \mathrm{cu} . \mathrm{ft}$. water				
1 gal. water	277-274		10	
10 c.c. water		10		
1. Kl. water				

3. A rectangular tank is 2.5 m . long, 1.4 m . wide, and .98 dm . deep. Find its capacity in litres. Find the weight of water it will hold in grams.
4. The thickness of a steel plate is $5^{\prime \prime}$. If the plate has an area of $400 \mathrm{sq} . \mathrm{dm}$., find its volume in cu. in. and its weight in lb. if 1 cu . in. of steel weighs $\cdot 283 \mathrm{lb}$.
5. A block of granite weighs $2 \frac{1}{2}$ tons. Find. its weight in kilograms.
6. Find the weight in grams of the air in a room $16^{\prime} \times 10^{\prime}$ and 9^{\prime} high, if the air is $\cdot 00128$ times as heavy as water.
7. Find the number of litres in a rectangular tank $8^{\prime} \times$ $6^{\prime} 6^{\prime \prime} \times 4^{\prime} 3^{\prime \prime}$.
8. How many gallons of water are contained in a tank 6 metres long, $3 \cdot 4$ metres wide, and 2.7 metres deep?
9. A concrete watering trough is $3 \frac{1}{2}^{\prime}$ wide, 8^{\prime} long and 2^{\prime} deep outside while inside the basin is $2^{\prime} 10^{\prime \prime}$ wide, $7^{\prime} 4^{\prime \prime}$ long and $1^{\prime} 6^{\prime \prime}$ deep. What is its weight if a cu. ft. of concrete weighs 145 lb ? If the concrete was mixed in the proportion of 1 cement, 2 sand, 3 stone, and $1 \frac{1}{2}$ cu. yd. dry material makes 1 cu. yd. concrete, how many bags of cement were used. ($1 \mathrm{bag}=1 \mathrm{cu} . \mathrm{ft}$.)?

CHAPTER IV.

SQUARE ROOT.

53. The Square of a Number is the product obtained by multiplying the number by itself. Thus the square of $5=$ $5 \times 5=25$.

The square root of a given number is that number whose square is the given number. Thus the square root of 25 is 5 because $5 \times 5=25$.

Square root is indicated by prefixing the symbol $\sqrt{ }$ to the given number. Thus $\sqrt{ } 64$ denotes the square root of 64 .

When a number is small the square root may be found by inspection or by means of the factors of the number. Thus $1225=5 \times 5 \times 7 \times 7=5^{2} \times 7^{2}$ so that $\sqrt{ } 1225=\sqrt{ }\left(5^{2} \times 7^{2}\right)$ $=5 \times 7=35$.

The following general method may be used for finding the square root. To find the square root of $1326 \cdot 4164$.

	1326.4164/36.42
	9
66	426
	396
724	3041
	2896
7282	14564
	14564

Explanation:-Beginning at the decimal point, separate the number into groups of two figures each, counting both to the right and the left. Find the greatest square in the left-hand group and write its square root as the first figure of the root.

In the example, 9 is the greatest square in 13 , and 3 is the first figure in the root.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
15. A steel plate is rectangular in shape, $18^{\prime \prime} \times 14^{\prime \prime}$. Find the side of a square plate of the same area.
54. One of the most Valuable Practical Uses of Square Root is in finding the third side of a right-angled triangle, when two of its sides are given.

Fig. 11

In the adjoining figure ABC is a right-angled triangle with the sides $\mathbf{A B}$ and BC 3 in. and 4 in. respectively (to scale).
'Squares are described on the three sides and divided into smaller squares as indicated. If we make tests with dividers we will find that the small squares are equal throughout the figure. We will also notice that the number of small squares in the square on AC is equal to the total of the number of small squares in the squares on AB and BC .

From this experiment we derive:-In a right-angled triangle the square on the side opposite the right angle (hypotenuse) is equal to the sum of the squares on the other two sides.

Exercises XXXIII.

1. Find the distance from corner to corner of a square piece of tin which contains 100 sq. in.
2. A room is $40^{\prime} \times 28^{\prime}$. Find the length of a diagonal.
3. If the above room is 16^{\prime} high, find the distance from any corner to the diagonal corner of the ceiling.
4. A baseball diamond is in the form of a square 90^{\prime} to the side. Find the distance from "first" to "third."
5. A boy was flying a kite with a string 650^{\prime} long. If the distance, from where the boy was standing, to a point directly under the kite was 450 ft . how high was the kite?
6. A tree broke in such a way that the top struck the ground 30^{\prime} from the base of the tree. What was the height of the tree, the broken part being 60 ft . long?
7. A ladder, 42^{\prime} long, placed with its foot 24^{\prime} from a wall, reached within 2^{\prime} of the top. How near the wall must the foot of the ladder be brought in order that it may reach the top?

CHAPTER V.'

APPLICATION OF MEASURES TO THE TRADES.

55. Stone Work. In stone work it is difficult to get any fixed method of estimating the cost. One job will have a set of conditions which do not exist in another, hence the contractor will make an allowance in one that he would not regard as necessary in another. There are two kinds of stone work, rubble or rough and ashlar or squared. In rubble work the toise is the common unit of measurement. This is used both in estimating the amount of stone required and in the cost of the work.

Table.

$$
\begin{aligned}
& 10 \text { tons rubble }=1 \text { toise (approx.) } \\
& 1 \text { toise-in wall }=162 \text { cu. ft. (approx.) } \\
& 1 \text { toise-measured loose }=216 \text { cu. ft. (approx.) }
\end{aligned}
$$

In ashlar work the unit for estimating either the amount of stone necessary, or the cost of laying, is the cubic foot. The labour for dressing the stone is figured by the square foot. The minimum thickness of stone work for facing is 4 in . increasing in thickness as requirements demand.

Exercises XXXIV.

1. How many toise of rubble will be required for the foundation of a house $40^{\prime} 0^{\prime \prime} \times 32^{\prime} 0^{\prime \prime}$. the stone work being $5^{\prime} 0^{\prime \prime}$. high and $18^{\prime \prime}$ thick?
2. A cellar is $23^{\prime} 6^{\prime \prime}$ wide by $35^{\prime} 8^{\prime \prime}$ long and $6^{\prime} 6^{\prime \prime}$ high. If the wall is $16^{\prime \prime}$ thick and has two openings each $3^{\prime} 3^{\prime \prime} \times 2^{\prime} 3^{\prime \prime}$, find the number of toise of stone required.
3. The basement walls for a house $26^{\prime} 0^{\prime \prime}$ wide and $38^{\prime \prime} 0^{\prime \prime}$ long are to have 6 windows each $3^{\prime \prime} 0^{\prime \prime} \times 2^{\prime} 0^{\prime \prime}$. The walls are to be $7^{\prime} 0^{\prime \prime}$ high and $18^{\prime \prime}$ thick. (a) Find the cost at $\$ 20.00$ a toise if the actual volume be estimated and 5% be allowed for extra work on openings. (b) Find the cost at $\$ 18.00$ a toise if corners be doubled and only 50% of the openings be deducted.
4. A foundation wall for a building $28^{\prime} 0^{\prime \prime} \times 40^{\prime} 0^{\prime \prime}$ is to be $7^{\prime} 0^{\prime \prime}$ high and $1^{\prime} 6^{\prime \prime}$ thick. There are to be 4 openings, two $3^{\prime} 0^{\prime \prime} \times 2^{\prime} 6^{\prime \prime}$ and two $3^{\prime} 0^{\prime \prime} \times 5^{\prime} 0^{\prime \prime}$. Concrete is to be used in the construction and is to be mixed in the following pro-portions:-1 cu. ft. (1 bag) of cement, $2 \frac{1}{2} \mathrm{eu} . \mathrm{ft}$. sand and 5 cu. ft. broken stone. If $1 \frac{1}{2}$ cu. yd. of dry material will make $1 \mathrm{cu} . \mathrm{yd}$. of concrete, find the number of cu. ft. of cement, of sand, and of broken stone.
5. A building $24^{\prime} 6^{\prime \prime}$ wide, $36^{\prime} 0^{\prime \prime}$ long and $20^{\prime} 0^{\prime \prime}$ high, above the foundation, is to be of stone with walls $16^{\prime \prime}$ thick. The foundation, $6^{\prime} 0^{\prime \prime}$ high, $16^{\prime \prime}$ thick, is to be concrete and to have 6 windows $1^{\prime} 10^{\prime \prime} \times 3^{\prime} 4^{\prime \prime}$. If a cu. yd. of concrete requires 25 $\mathrm{cu} . \mathrm{ft}$. of stone, $12 \mathrm{cu} . \mathrm{ft}$. of sand, and $4 \mathrm{cu} . \mathrm{ft}$. of cement, find the number of cu. ft. of each in the foundation. In the walls of the house there are to be 8 windows $2^{\prime} 0^{\prime \prime} \times 5^{\prime} 0^{\prime \prime}, 3$ windows $3^{\prime} 6^{\prime \prime} \times 5^{\prime} 0^{\prime \prime}$ and 3 doors $3^{\prime} 6^{\prime \prime} \times 7^{\prime} 0^{\prime \prime}$. How many cu. ft. of stone will be necessary?
6. Brick Work. There is the same lack of uniformity in methods of estimating cost in brick work as in stone work. In measuring up the cost of the work some contractors make no deduction for openings less than 2 ft . square. Usually, however, the exact volume of the brick work is estimated and, in fixing the cost, allowance is made for extra labour and material for arches, cuttings, etc.

Since bricks are of varying size no fixed rule for the volume of laid brick can be given. If we consider an ordinary stock brick as $8 \frac{5}{8}{ }^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime}$ and add a $\frac{3}{8}^{\prime \prime}$ joint to thickness, length and width we get $9^{\prime \prime} \times 2 \frac{7}{8}^{\prime \prime} \times 4 \frac{3}{8}{ }^{\prime \prime}$ or approximately $9^{\prime \prime} \times 3^{\prime \prime}$ $\times 4 \frac{1}{2}$ ". The number of bricks for $1 \mathrm{cu} . \mathrm{ft}$. of masonry would then be $\frac{1728}{9 \times 3 \times 4 \frac{1}{2}}=14 \frac{2}{9}$.

Table-(Based on above calculation).
Per cubic foot, 15 bricks. Superficial foot of $9^{\prime \prime}$ wall, 11 bricks. Superficial foot of $13^{\prime \prime}$ wall, $16 \frac{1}{2}$ bricks.
Superficial foot of $18^{\prime \prime}$ wall, 22 bricks.
The labour and material for brick work are usually estimated by the 1000 brick, if in a straight wall.

Exercises XXXV.

1. Make drawings to scale, in your laboratory book, of bricks of different sizes. Allowing a $\frac{3^{\prime \prime}}{8}$ joint calculate the number of bricks that will be required for a wall $20^{\prime} 0^{\prime \prime}$ long, $8^{\prime} 0^{\prime \prime}$ high, and $18^{\prime \prime}$ thick.
2. A house is to have $27^{\prime} 0^{\prime \prime}$ frontage, $30^{\prime} 0^{\prime \prime}$ in depth, and $20^{\prime} 0^{\prime \prime}$ in height above foundation. It is to have 8 windows $4^{\prime} 6^{\prime \prime} \times 5^{\prime} 6^{\prime \prime}$ and 4 doors $4^{\prime} 3^{\prime \prime} \times 7^{\prime} 0^{\prime \prime}$. The wall is to be $9^{\prime \prime}$ thick; allowing 15 bricks to the cu. ft., how many bricks will be required?
3. If the wall in the preceding question is $13^{\prime \prime}$ thick, find the number of bricks.
4. What will it cost to lay the brick in each of the two preceding questions if a bricklayer lays an average of 700 a day and received 90 c. an hour for an eight hour day?
5. The walls of a building $40^{\prime} 0^{\prime \prime}$ wide and $100^{\prime} 0^{\prime \prime}$ long are to be $18^{\prime} 0^{\prime \prime}$ high. There are 4 doors $8^{\prime \prime} 0^{\prime \prime} \times 8^{\prime} 0^{\prime \prime}, 4$ doors 3^{\prime} $3^{\prime \prime} \times 7^{\prime} 0^{\prime \prime}, 30$ windows $4^{\prime} 0^{\prime \prime} \times 5^{\prime} 0^{\prime \prime} . \quad$ Making use of the table for superficial area find the number of bricks required, if the wall is $13^{\prime \prime}$ thick?
6. Reckoning 15 bricks per cu. ft., find the cost at $\$ 30$ a thousand for the walls of a building $30^{\prime} 0^{\prime \prime}$ wide, $50^{\prime} 0^{\prime \prime}$ long and $24^{\prime} 0^{\prime \prime}$ high with the following specifications:-the lower $14^{\prime} 0^{\prime \prime}$ is to have a wall $18^{\prime \prime}$ thick and is to have 4 doors 2^{\prime} $10^{\prime \prime} \times 6^{\prime} 10^{\prime \prime}$ and 5 windows $3^{\prime} 0^{\prime \prime} \times 7^{\prime} 0^{\prime \prime}$; the upper $10^{\prime} 0^{\prime \prime}$ is to have a wall $13^{\prime \prime}$ thick, and is to have 6 windows $3^{\prime} 0^{\prime \prime} \times$ $5^{\prime} 0^{\prime \prime}$.
7. Lumber. The common unit of measurement in lumber

Fig. 12 is the board foot.

It is a piece of lumber 1 ft . long, 1 ft . wide, and 1 in . thick.

If we take a board 12 ft . long, 12 in . wide, and 1 in. thick, we readily see that it will contain 12 board feet.

This might have been obtained as follows:-length (in feet) \times width (in feet) \times thickness (in inches), thus 12×1 $\times 1=12$.
This' rule is applicable for finding the board feet of all kinds of lumber. Example:-Find the number of board feet of lumber in a floor joist $2^{\prime \prime} \times 10^{\prime \prime}, 18^{\prime} 0^{\prime \prime}$ long.

Solution:-Number of board feet=length (in ft.) \times width (in ft.) \times thickness (in in.) $=18 \times \frac{10}{12} \times 2=30$.

Lumber is billed in different ways; (1) per thousand (M) board feet, (2) per thousand (M) sq. ft., (3) per foot run.

Speaking generally we may say that, in dealing with material $1^{\prime \prime}$ thick and up, the board foot is the unit, although special sizes up to $2^{\prime \prime} \times 3^{\prime \prime}$ are frequently charged as per foot run. Below $1^{\prime \prime}$ in thickness material is reckoned in sq. ft., except "trim" which is sold as per foot run.

The following data for estimating the amount of allowance for dressing and

Fig. 13 working the tongue in flooring is furnished by one of the large lumber companies of Toronto:
$1 \frac{1}{2}{ }^{\prime \prime}$ wide, $\frac{7}{8} \prime$ thick, add 50%
$1_{\frac{1}{2}}^{\prime \prime}$ wide, $\frac{3}{8}{ }^{\prime \prime}$ thick, add 33%
$2^{\prime \prime}$ wide, $\frac{7}{8}{ }^{\prime \prime}$ thick, add $37 \frac{1}{2} \%$
$2^{\prime \prime}$ wide, $\frac{3}{8}{ }^{\prime \prime}$ thick, add 25%
$2^{\frac{1}{4}}{ }^{\prime \prime}$ wide, $\frac{7}{8}{ }^{\prime \prime}$ thick, add $33 \frac{1}{3} \%$

Example:-Find the cost of flooring a room $20^{\prime} \times 10^{\prime}$ with No. 1 red oak flooring, $1^{\prime \prime}{ }^{\prime \prime} \times \frac{7^{\prime \prime}}{8}$, at $\$ 160$ per M sq. ft.

Solution:-Area of floor $=20 \times 10$ sq. ft .
Lumber required $=\frac{150}{100} \times 20 \times 10 \mathrm{sq} . \mathrm{ft}$.
Cost $=\frac{150}{100} \times 20 \times 10 \times \frac{160^{\circ}}{1000}=\$ 48.00$.

The following is a sample bill of lumber:

	Feet	Price	Amount	
$125 \mathrm{ft}$. lineal, $1^{\frac{3}{8}}{ }^{\prime} \times 6^{\prime \prime}$, Pine D4S.	125	\$7.25	\$ 9.06	
400 ft . lineal, $1^{\prime \prime \prime} \times 1^{\prime \prime}$, Pine Rgh. .	400	1.00	4.00	
130 ft . lineal, ${ }^{\frac{7}{8} \prime \prime} \times 10^{\prime \prime}$, Pine D4S. .	130	8.00	10.40	
130 ft . lineal, ${ }^{\prime \prime}{ }^{\prime \prime} \times 2 \frac{1}{}{ }^{\prime \prime}$, ${ }^{\prime \prime}$ Bed Mldg.	130	3.00	3.90	
310 ft . lineal, $7_{8}^{\prime \prime} \times 1 \frac{3}{4}{ }^{\prime \prime}$, Fir Picture Mldg.	310	3.00	9.30	
500 ft . B.M., $1^{\prime \prime}$ No. 1 H. D1S	500	62.00	31.00	
2000 ft . Strip 6" H. Decking	2000	66.00	132.00	
2000 ft . Strip ${ }^{\frac{7}{8 \prime \prime}}{ }^{\prime \prime}$ Spruce Flg.	2000	68.00	136.00	
14 pieces, $2^{\prime \prime} \times 4^{\prime \prime} \times 12^{\prime}$, H. Szd. 70 pieces, $2^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime}$, No. 1 H	112	63.00	7.06 75.86	
	100	2.00	2.00	
100 ft . lineal, $3^{\prime \prime} \times 2^{\prime \prime}, \mathrm{H}$. Rgh.	50	65.00	3.25	
5 pieces, $2 \frac{3}{4}{ }^{\prime \prime} \times 5 \frac{3}{4}{ }^{\prime \prime} \times 10^{\prime}$, Oak Sill.	50	. 75	37.50	
			Total.	461.33

D4S—dressed on four sides.
Rgh.-rough.
Mldg.-moulding.
Flg.-flooring.

Szd.-sized.
No. 1-No. 1 (best quality).
H.-hemlock.

Lin.-per foot run.

Exercises XXXVI.

1. Take measurements of a number of pieces of lumber obtained from the woodworking shop. Make drawings in your laboratory book and estimate the board feet in each.
2. Measure the top of a laboratory table, the top of the teacher's desk, etc. Make drawings in your laboratory book and estimate the board feet in each.
-3. Take measurements of the floor of your classroom and make a drawing in your laboratory book. Find the cost of flooring with birch $2 \frac{1}{2}{ }^{\prime \prime}$ wide and $\frac{7}{8}{ }^{\prime \prime}$ thick at $\$ 140$ per thousand square feet.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

11. Complete the following bill of lumber:

	Feet	Price	Amount
44 pieces, $2^{\prime \prime} \times 12^{\prime \prime}-20^{\prime} 0^{\prime \prime}$ long, Red Pine.		\$84.00	
10 pieces, $8^{\prime \prime} \times 14^{\prime \prime}-16^{\prime} 0^{\prime \prime}$ long, Red Pine.		86.00	
105 pieces, $2^{\prime \prime} \times 4^{\prime \prime}-10^{\prime} 0^{\prime \prime}$ long, Hem. Szd		63.00	
15 pieces, $2^{\prime \prime} \times 4^{\prime \prime}-12^{\prime} 0^{\prime \prime}$ long, Hem. Szd		63.00	
32 pieces, $2^{\prime \prime} \times .4^{\prime \prime}-8^{\prime} 0^{\prime \prime}$ long, Hem. Szd		62.00	
17 pieces, $2^{\prime \prime} \times 6^{\prime \prime}-16^{\prime} 0^{\prime \prime}$ long, Com. Pine		86.00	
23 pieces, $2^{\prime \prime} \times 6^{\prime \prime}-12^{\prime} 0^{\prime \prime}$ long, Hem. Szd.		65.00	
9 pieces, $2^{\prime \prime} \times 8^{\prime \prime}-14^{\prime} 0^{\prime \prime}$ long, Hem.Szd.		66.00	
		Total.	

12. Complete the following bill of lumber:

	Feet	Price	Amount
12 pieces, $\frac{7}{8 \prime \prime}^{\prime \prime} \times 7^{\prime \prime}-16^{\prime} 0^{\prime \prime}$ long, Pine D4S		\$ 6.00	
2 pieces, $6^{\prime \prime} \times 6^{\prime \prime}-16^{\prime} 0^{\prime \prime}$ long, Pine D4S..		85.00	
310 ft . lineal, $8^{\prime \prime}$, Fir base.		8.75	
680 ft . lineal, $\frac{7}{8}^{\prime \prime} \times 23^{\prime \prime}$, Fir base D4S.		5.50	
46 pieces, $\frac{7^{\prime \prime}}{}{ }^{\prime \prime} \times 5 \frac{1}{4}^{\prime \prime}-14^{\prime} 0^{\prime \prime}$ long,Door jamb sanded.		8.00	
x100 ft. lineal, $1^{\frac{3}{4}}{ }^{\prime \prime} \times 3 \frac{3}{4}^{\prime \prime}$, Pine D4S		123.00	
x 9 pieces, $1 \frac{3}{4}^{\prime \prime} \times 55^{\prime \prime}-10^{\prime} 0^{\prime \prime}$ long, Pine D4S.		163.00	
5 pieces, $2^{\frac{3}{4}}{ }^{\prime \prime} \times 55^{\frac{3}{4}}{ }^{\prime \prime}-12^{\prime} 0^{\prime \prime}$ long, Oak sill. .		. 75	
5 pieces, $22^{\prime \prime}{ }^{\prime \prime} \times 5 \frac{3}{4 \prime}-10^{\prime} 0^{\prime \prime}$ long, Oak sill. .		. 75	
2 pieces, $2 \frac{3}{4}{ }^{\prime \prime} \times 5 \frac{3}{4}^{\prime \prime}-14^{\prime} 0^{\prime \prime}$ long, Oak sill. .		. 75	
65 ft . lineal, $3^{\prime \prime}$, Crown moulding.		3.75	
x120 ft. lineal, $\frac{7}{8}^{\prime \prime} \times 9 \frac{3}{4}^{\prime \prime}$, Clear PineD4S. .		190.00	
x125 ft. lineal, $\frac{7}{8}^{\prime \prime} \times 5 \frac{3}{4 \prime \prime}$, Clear PineD4S...		160.00	
x125 ft. lineal, ${ }^{\frac{7}{8}}{ }^{\prime \prime} \times 3 \frac{3}{4}^{\prime \prime}$, Clear PineD4S...		150.00	
.		Total.	

x Dressed out of material even inch above.
58. Roofs, Rafters, Pitch.

Fig. 14
In the above section of an ordinary gable roof, some of the terms used in connection with roofs are indicated. The span of a roof is the same as the width of the building. The run is one-half the span, and the rise is the vertical distance from the top of the plate to the top of the ridge. The pitch of a rafter is given by dividing the number of feet in the rise by the number of feet in the span. Thus if the rise is 6 ft . and the span 12 ft . the roof would have a one-half pitch. The rafter length is the distance from the outside corner of the plate to the centre of the ridge. The heel is the distance from the - outside corner of the plate to the end of the rafter. The length of the heel would have to be added to the rafter length if the above method were used for the construction of the eaves.

The accompanying figures illustrate the method of finding the lengths of the different rafters in a Hip or Cottage roof. Figure

Fig. 15
15 shows a plan of the roof, Figure 16 a right side elevation, Figure 17 a plane at plate level.

Fig. 16
In order to find the length of a hip rafter it would first be necessary to find the length of HK in Figure 17. Using
this length and the perpendicular distance from H to the ridge the length of the hip rafter may be found as in Figure 18.

Fig. 17
To find the length of the jack rafter we observe in Figure 17 that, if the rafters be $16^{\prime \prime}$ on centre, MN would also be $16^{\prime \prime}$.

Fig. 18

Fig. 19

Also since the roof has a $\frac{1}{2}$ pitch, the perpendicular distance from the hip to N would also be $16^{\prime \prime}$, hence Figure 19. If the roof has other than a $\frac{1}{2}$ pitch, similar triangles would give the lengths of the jack rafters.
59. Roofing-Shingles. Shingles for roofing are estimated • as being $16^{\prime \prime}$ long and averaging $4^{\prime \prime}$ wide. They are put up in bundles of 250 each, four bundles making a square of shingles.

The unit in measuring for roofing is the square. A square contains 100 sq. ft. If shingles are laid $4^{\prime \prime}$ to the weather, each shingle would on an average cover an area of 16 sq . in. This would give for 100 sq. ft. $\frac{14400}{16}$ or 900 shingles. In this result, however, no allowance has been made for waste in cutting or for defective shingles.

The following table has been found useful in practice (Kidder's Pocket Book):

Inches to the Weather	Area Covered by 1000 Shingles	Number to Cover a Square
4	100 sq. ft.	1000
$4 \frac{1}{4}$	110 sq. ft.	910
$4 \frac{1}{2}$	120 sq. ft.	833
5	133 sq. ft.	752
$5 \frac{1}{2}$	145 sq. ft.	690
6	156 sq. ft.	637

60. Roofing-Slate. Slate for roofing is also .measured by the square (100 sq . ft.). In estimating either the amount required or the cost of laying, eaves, hips, valleys, etc., are measured extra-1 ft . wide by the whole length. The sizes of slates' range from $9 " \times 7$ " to 24 " $\times 14^{\prime \prime}$. "Each slate should lap the slate in the second row below, 3 inches", Kidder.

The gauge of a slate is the portion exposed to the weather, which should be one-half of the remainder obtained.by subtracting 3 in. from the length of the slate.

The following table is taken from Kidder's Pocket Book:

$\underbrace{\text { In }}_{\text {Size of Slates }}$	Inches Exposed to Weather	Number to SQuare
14×24	101 $\frac{1}{2}$	98
12×24	$10 \frac{1}{2}$	115
12×22	$9 \frac{1}{2}$	126
11×22	$9 \frac{1}{2}$	138
12×20	$8 \frac{1}{2}$	142
10×20	$8 \frac{1}{2}$	170
12×18	$7 \frac{1}{2}$	160
10×18	$7 \frac{1}{2}$	192
9×18	$7 \frac{1}{2}$	214
12×16	$6 \frac{1}{2}$	185
10×16	$6 \frac{1}{2}$	222
9×16	$6 \frac{1}{2}$	247
8×16	$6 \frac{1}{2}$	277
10×14	$5 \frac{1}{2}$	262
8×14	$5 \frac{1}{2}$	328

Exercises XXXVII.

Note.-In working the following problems take the actual quantity of lumber used, not allowing for waste due to having to buy stock lengths of material. In case of fractional inches take the inch above in each separate piece.

Lumber is cut in lengths of $10^{\prime} 0^{\prime \prime}, 12^{\prime} 0^{\prime \prime}, 14^{\prime} 0^{\prime \prime}, 16^{\prime} 0^{\prime \prime}$, $18^{\prime} 0^{\prime \prime}$, and will be charged on that basis.

1. Find the number of shingles for a square of roof for each line in the table if no allowance be made for waste.
2. A shed $9^{\prime} 0^{\prime \prime}$ wide and $18^{\prime} 0^{\prime \prime}$ long is to have a "lean to" roof, $\frac{1}{3}$ pitch. If the rafters are $2^{\prime \prime} \times 4^{\prime \prime}$ at $16^{\prime \prime}$ centre and have a $12^{\prime \prime}$ heel, find their cost at $\$ 52$ per M. If the roof extends $12^{\prime \prime}$ on each end, find the cost of covering with $1^{\prime \prime}$ square sheeting at $\$ 56$ per M . Find the cost of shingling the above with shingles laid $4 \frac{1}{2}{ }^{\prime \prime}$ to the weather, if material and labour cost $\$ 14$ a square of shingles.
3. A garage $10^{\prime} 0^{\prime \prime}$ wide and $16^{\prime} 0^{\prime \prime}$ long is to have a gable roof, $\frac{1}{2}$ pitch. The rafters are $2^{\prime \prime} \times 4^{\prime \prime}$ at $2^{\prime} 0^{\prime \prime}$ centre and have a $15^{\prime \prime}$ heel. The rafter ties are $2^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime} 0^{\prime \prime}$. Find the cost at $\$ 50$ per M. If the roof extends $10^{\prime \prime}$ on the ends and
$6^{\prime \prime}$ more on each end be allowed for waste, find the cost of covering with $1^{\prime \prime}$ square sheeting, at $\$ 48$ per M.

Find the cost of shingling the above with shingles laid $4 \frac{1}{2}$ " to the weather if material and labour cost $\$ 13.50$ per square of shingles.
4. A stable $15^{\prime} 0^{\prime \prime}$ wide and $20^{\prime} 0^{\prime \prime}$ long is to have a gable roof, $\frac{1}{2}$ pitch. The rafters are $2^{\prime \prime} \times 4^{\prime \prime}$ at $20^{\prime \prime}$ centre and have an $18^{\prime \prime}$ heel, the ridge board

Fig. 20 being $1^{\prime \prime} \times 6^{\prime \prime}$. The roof is supported at every second rafter by a brace $2^{\prime \prime} \times 4^{\prime \prime}$ (see Figure 20) and collar ties $2^{\prime \prime} \times 6^{\prime \prime} \times 15^{\prime} 0^{\prime \prime}$. Find the cost of lumber at $\$ 52$ per M. If the extension on the ends is $12^{\prime \prime}$, find the cost of sheeting with $6^{\prime \prime}$ tongued and grooved lumber at $\$ 55$ per M sq. ft., allowing 10% for the tongue and groove and $6^{\prime \prime}$ on each end for waste.

Find the cost of shingling the above roof with shingles laid $5^{\prime \prime}$ to the weather if material and labour cost $\$ 13$ per square of shingles.
5. A house $25^{\prime} 0^{\prime \prime}$ wide and $32^{\prime} 0^{\prime \prime}$ long is to have a gable roof, $\frac{2}{3}$ pitch. The rafters are $2^{\prime \prime} \times 6^{\prime \prime}, 16^{\prime \prime}$ on centre, with an $18^{\prime \prime}$ heel. The roof is supported by braces $2^{\prime \prime} \times 4^{\prime \prime}, 4^{\prime} 0^{\prime \prime}$ on centre, $6^{\prime} 0^{\prime \prime}$ long, and tied with ceiling rafters $2^{\prime \prime} \times 6^{\prime \prime} \times 25^{\prime} 0^{\prime \prime}$. Find the cost of the above lumber at $\$ 55$ per M.

If the extension on the ends be $12^{\prime \prime}$, find the cost of covering with $\frac{7}{8}{ }^{\prime \prime} \times 6^{\prime \prime}$ tongued and grooved sheeting at $\$ 66$ per M sq. ft., allowing 10% for the tongue and groove and $8^{\prime \prime}$ on each end for waste.

Find the cost of roofing the above with slate, the gauge being $8 \frac{1}{2}{ }^{\prime \prime}$, if material and labour cost $\$ 30$ a square.
6. A building $20^{\prime} 0^{\prime \prime}$ wide and $28^{\prime} 0^{\prime \prime}$ long is to have a hip roof, $\frac{1}{2}$ pitch, the ridge being $1^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime} 0^{\prime \prime}$ long. The hip rafters are $2^{\prime \prime} \times 6^{\prime \prime}$, the jack rafters $2^{\prime \prime} \times 6^{\prime \prime}$, at $16^{\prime \prime}$ centre. Ceiling joist $5^{\prime} 0^{\prime \prime}$ from plate level, $2^{\prime \prime} \times 6^{\prime \prime}$; act as ties. Find the cost of the above lumber at $\$ 56$ per M.

Note.-In estimating the amount of material in rafters, find the length of a common rafter and multiply by the number of rafters on both sides.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
4. Find the cost of paneling the walls in the preceding question to a height of $4^{\prime} 6^{\prime \prime}$. if the sills of the windows be 2^{\prime} $6^{\prime \prime}$ from the floor, at 85 c . a sq. ft.
5. A hall is $50^{\prime} 0^{\prime \prime}$ wide, $90^{\prime} 0^{\prime \prime}$ long, and $20^{\prime} 0^{\prime \prime}$ high. There are 4 doors $5^{\prime} 6^{\prime \prime} \times 10^{\prime} 0^{\prime \prime}, 2$ windows $5^{\prime} 0^{\prime \prime} \times 11^{\prime} 0^{\prime \prime}, 7$ windows $5^{\prime} 0^{\prime \prime} \times 8^{\prime} 3^{\prime \prime}$. Find the cost of lathing and plastering at 75 c . a sq. yd., deducting 80% of the openings.
62. Decorating and Painting. Wall paper is put up in rolls, the number of yards in the roll and the width of the paper varying. The kinds chiefly in use are:
(1) Paper $18^{\prime \prime}$ wide and in single rolls 8 yd . in length, or double rolls 16 yd. in length.
(2) Paper $21^{\prime \prime}$ wide and in rolls 12 yd . in length.
(3) Paper $30^{\prime \prime}$ wide and in rolls 5 yd . in length; frequently put up in 15 yd . rolls.

To estimate for the walls.
(1) Find the perimeter of the room, less the width of doors and windows.
(2) Find the number of strips required by dividing the result in (1) by the width of the paper.
(3) Find the number of strips that can be cut from a roll by dividing the length of the roll by the height to be papered.
(4) Find the number of rolls by dividing the number of strips required for the room by the number of strips in a roll.

To estimate for the ceiling.
If the strips are to run lengthwise, find the number of strips by dividing the width of the room by the width of the paper, then proceed as in case of walls.

To estimate for the border.

Find the total perimeter of the room. Estimate cost per running yard.

When double rolls are available they would be used, if more economical in cutting.

Example:-A room $16^{\prime} 0^{\prime \prime}$ wide, $20^{\prime} 0^{\prime \prime}$ long and $9^{\prime} 0^{\prime \prime}$ high from base-board, has two doors each $4^{\prime} 0^{\prime \prime}$ wide and three windows each $3^{\prime} 6^{\prime \prime}$ wide. Find the cost of paper for the walls and ceiling, the wall paper being $18^{\prime \prime}$ wide and costing $\$ 2$ a double roll, the ceiling paper being $18^{\prime \prime}$ wide and costing 80 c. a double roll.

Perimeter of room $=\left(16^{\prime}+20^{\prime}\right) 2=72^{\prime}$.
Perimeter-Width of doors and windows $=72^{\prime}-18 \frac{1}{2}^{\prime}=53 \frac{1}{2}^{\prime}$.
Number of strips required $=\frac{53 \frac{1}{2} \times 12}{18}=35 \frac{2}{3} \therefore 36$.
Number of strips in a double roll $=\frac{48}{9}=5 \frac{1}{3} . \therefore 5$.
Number of rolls $\frac{38}{5}=7 \frac{1}{5} \therefore 8$. Cost $=\$ 16$.
Number of strips required for the ceiling if running lengthwise $=\frac{16 \times 12}{18}=10 \frac{2}{3} \therefore 11$.

Number of strips im a double roll $=\frac{4}{20}=2 \frac{2}{5} \therefore 2$.
Number of rolls $=\frac{11}{2}=5 \frac{1}{2} \therefore 6 . \quad$ Cost $=\$ 4.80$.
Total Cost $\$ 20.80$.
Painting. The area is usually estimated in sq. yd.
The following is a common method of reckoning the area of doors, windows, etc.:

Doors are taken to average $3^{\prime \prime} 0^{\prime \prime} \times 7^{\prime} 0^{\prime \prime}$, windows $3^{\prime} 0^{\prime \prime}$ $\times 6^{\prime} 0^{\prime \prime}$. If the window be divided into 12 lights the area is doubled, if divided into 6 lights one-half the area is added, and so on. The base-board is taken as $1^{\prime} 0^{\prime \prime}$ by total perimeter, picture moulding $3^{\prime \prime}$ by total perimeter, and dado rail $6^{\prime \prime}$ by total perimeter.

Exercises XXXIX.

' 1 . A room is $13^{\prime} 0^{\prime \prime}$ wide, $15^{\prime} 0^{\prime \prime}$ long and $8^{\prime} 6^{\prime \prime}$ high. There are two doors each $2^{\prime} 8^{\prime \prime}$ wide, and three windows each $3^{\prime \prime} 0^{\prime \prime}$ wide. Two of the windows have 6 lights and the other 2 lights. A picture móulding $2^{\prime \prime}$ wide and a base-board $8^{\prime \prime}$ wide run around the room. Find (1) the cost of tinting the ceiling and 1^{\prime} down to picture moulding at 25 c . a sq., yd., (2) the cost of painting the interior woodwork at 50 c . a sq. yd.,
(3) the cost of papering the walls with paper $21^{\prime \prime}$ wide at $\$ 1.25$ a roll, the decorator charging 40 c. a roll for the work.
2. A room $10^{\prime} 8^{\prime \prime}$ wide, $11^{\prime} 4^{\prime \prime}$ long and $8^{\prime} 6^{\prime \prime}$ high, has two doors each $2^{\prime} 10^{\prime \prime}$ wide, one window 4^{\prime} wide, 2 lights, two windows each $3^{\prime \prime}$ wide, 12 lights, base-board $10^{\prime \prime}$ wide running around the room. Find (1) the cost of painting the woodwork at 25 c . a sq. yd., (2) the cost of papering the ceiling with paper $18^{\prime \prime}$ wide at 25 c . a single roll, (3) the cost of papering the walls with paper $30^{\prime \prime}$ wide at 90 c. a roll, using a border $4^{\prime \prime}$ wide at 20 c. a yard. The decorator charges 30 c . a roll for the work in both walls and ceiling.
3. A room' $12^{\prime} 0^{\prime \prime}$ wide, $18^{\prime} 6^{\prime \prime}$ long and $10^{\prime} 0^{\prime \prime}$ high, has two doors each $3^{\prime} 10^{\prime \prime}$ wide, two windows each 2^{\prime} wide, 4 lights in each, one window $4^{\prime} 6^{\prime \prime}$ wide, 12 lights, a fire-place $5^{\prime} 6^{\prime \prime}$ wide, a picture moulding $3^{\prime \prime}$ wide and a base-board $1^{\prime} 0^{\prime \prime}$ wide running around the room. Find (1) the cost of tinting the ceiling and $16^{\prime \prime}$ on wall to picture moulding at 30c. a sq. yd., (2) the cost of painting the woodwork at 40 c . a sq. yd., (3) the cost of papering the walls with paper $18^{\prime \prime}$ wide at $\$ 1.20$ a double roll, the decorator charging 50 c . a roll for the work.

CHAPTER VI.

ALGEBRAIC NOTATION.

63. In Arithmetic we denote quantities by numbers, each number having a fixed value. By 5 in . we mean that the line, or pencil, or bolt, is 5 in . in length. For this purpose we have the symbols $0,1,2,3,4,5,6,7,8,9$. These symbols, in whatever way they are combined, have definite fixed values. In Algebra there is no limit to the number of symbols employed, the letters from our own alphabet being the ones chiefly used.
64. Algebra-generalized Arithmetic. These symbols:-a, b, c, d, etc., in contrast to the symbols of Arithmetic, have not fixed values but may be given any values required by the conditions under discussion. Thus in Arithmetic 2×4 is always 8 , whereas $2 \times a$, or more briefly $2 a$, will have different values according to the numerical values assigned to the symbol a. When $a=4,2 a=2 \times 4=8$, when $a=8,2 a=2 \times 8$ $=16$, and so on. Here the $2 a$ is called an Algebraic Expression, the 2 being called the Numerical Coefficient, denoting the number of times a is taken in the sum. When no numerical coefficient is placed in front of the symbol, 1 is understood, thus a means $1 a$.
65. Arithmetic Laws Applicable. Since the symbols a, b, $c \ldots . \dot{x}, y, z$ stand for numerical quantities we may apply the ordinary Arithmetic laws in using them. In Arithmetic $2 \times 6+3 \times 6=5 \times 6=30$. So in Algebra $2 a+3 a=5 a, 6 a-2 a=$ 4a. In Arithmetic $2 \times 6=6 \times 2$, so in Algebra $a \times b=b \times a$. Also $2 \times 4 \times 6=4 \times 6 \times 2=6 \times 2 \times 4$, so in Algebra $a \times b \times c=$ $a \times c \times b=b \times a \times c=a b c=a c b=b c a$. If we then wish to add $3 a b c+2 a c b+7 c a b$ we should rearrange the terms thus, $3 a b c+2 a b c+7 a b c=12 a b c$. An important difference between
the notation of Arithmetic and that of Algebra should be noted. In Arithmetic $3<4$ means thirty 1 four or $3 \times 10+4$; in Algebra ab means $a \times b$.

Exercises XL.

Find the values of the following:

1. $3 x+9 x$.
2. $2 a b+3 b a$.
3. $3 a b+2 a b+4 a b$.
4. $a+a$.
5. $a b-b a$.
6. $5 x y+6 x y+3 x y$.
7. $2 a-a$.
8. $11 x y-7 x y$.
9. $3 a b c+2 b c a+10 c a b$.
10. $7 x-3 x$.
11. $9 x y-3 y x$.
12. $x+x+x+x$.
13. $11 x-4 x$.
12.' $6 a b-b a$.
14. $3 x+4 x+x+6 x$.
15. $x-x$.
16. $8 a b c-3 c a b$.
17. $9 b+3 b+5 b+6 b$.
18. $3 a b+5 a b$.
19. $3 x+4 x+5 x$.

What is the value of $8 x$ when:
21. $x=2$.
22. $x=4$.
23. $x=\frac{1}{2}$.
24. $x=-4$.
25. $x=\frac{3}{4}$.
26. $x=2 \frac{1}{2}$.

What is the value of $\frac{x}{2}$ when:
27. $x=4$.
28. $x=16$.
29. $x=5$.
30. $x=\frac{1}{2}$.
31. $x=\cdot 5$.
32. $x=2 \cdot 5$.

What is the value of $\frac{x}{3}$ when:

33. $x=6$.	35. $x=7 \cdot 5$.	37. $x=\cdot 6$.	39. $x=\cdot 036$.
34. $x=18$.	36: $x=2 \cdot 7$.	38. $x=\cdot 9$.	40. $x=\cdot 0024$.

Exercises XLI.

1. What is the number which is 2 greater than x ?
2. What is the number which is 3 less than x ?
3. If an article costs x cents what is the cost of three articles? of seven articles? of eleven articles?
4. Express x sq. ft. in sq. in.
5. Express x sq. in. in sq. ft.
6. Express x metres in (1) decimetres, (2) in centimetres, (3) in millimetres, (4) in kilometres.
7. Express x millimetres (1) in centimetres, (2) in decimetres, (3) in metres, (4) in kilometres.
8. If there is an average of x trains leaving Toronto every day and an average of y cars per train, how many cars leave Toronto per day?
9. In a rectangle $A B C D$ if $A B$ is $c \mathrm{ft}$. in length and $B C, b \mathrm{ft}$. in length, find (1) the perimeter of the rectangle, (2) the area of the rectangle.-
10. If the side of a square is b feet, find its perimeter.
11. A can do a piece of work in m days and B in n days; write down (1) the amount of work each can do in 1 day, (2) the amount of work both can do in 1 day.
12. The sides of a triangle measure $x, y, z \mathrm{ft}$. Write down an expression for (1) the perimeter, (2) the semiperimeter.
13. A merchant mixes x ib. tea worth z c. a lb. with n lb. worth y c. a lb. Find the value of one lb. of the mixture.
14. If a man works $x \mathrm{hr}$. per day and handles y castings per hour, how many castings does he handle each day?
15. If there are x cars in a railroad yard, how many trains will there be if there is to be an average of b cars per train?
16. What is the length of the casting in the accompanying figure?

Fig. 21
17. What is the length of the casting in the accompanying - figure?

Fig. 22
18. Find the length of the crank-pin in the accompanying figure.

Fig. 23
19. If l is the length of the crank-pin in the accompanying figure what is the length of the last step?

Fig. 24
20. If l is the length of the cylinder and saddle shoulder bolt in the accompanying figure what is the length of the shoulder?

Fig. 25
66. Index or Exponent, Power. In Arithmetic 3×3 may be written 3^{2} or 9 .

In Algebra if we multiply a by a we cannot write the product as a single symbol, since we do not know the value of a; but we may express it as a^{2}. In a similar way $a \times a \times a=a^{3}$, $a \times a \times a \times a=a^{4}$. The small figure placed to the right and above the symbol is called the Index or Exponent, and the product a^{4} is called the fourth power of a or more commonly a to the fourth.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Find the results of the following expressions in the most simplified form:
14. $a+3 a+6 a$.
16. $3 a b c+6 a b c$.
15. $7 a-2 a+4 a$.
17. $7 a b+10 b a$.
18. $13 a b c+6 b c a-2 c a b$.
19. $4 x y z+6 y x z+2 z x y-4 z y x$.

What is the result of:
20. $a^{6} \div a^{2}$.
24. $x y \div x^{4} y^{4}$.
28. $a^{2} b^{2} \div a b \times a^{3} b^{3}$.
21. $x^{16} \div x^{3}$.
25. $3 a^{2} b^{2} \div a b$.
29. $3 x^{3} y^{3} \cdots x y \times 2 x^{2} y^{2}$.
22. $x^{3} y^{3} \div x y$.
26. $15 x^{3} y^{3} \div x^{2} y^{2}$.
30. $4 m^{3} n^{3} \times m n \div m^{2} n^{2}$.
23. $x^{2} \div x^{6}$.
27. $x^{2} y^{2} \times x^{3} y^{3} \div x y$.
31. The side of a square is b in. What is its area?
32. The edge of a cube is $b \mathrm{in}$. What is the area of a face? What is the area of all the faces? What is the volume of the cube?
33. The volume of a cube is $8 x^{3}$. What is the area of a face? What is the area of all the faces?
34. If a train travels $l \mathrm{hr}$. at k miles per hr . and $c \mathrm{hr}$. at d miles per hr., find the total distance travelled.
35. Represent three consecutive numbers, (1) if x is the first one, (2) if x is the middle one, (3) if x is the last one.
36. If the length of a stick is $b \mathrm{ft}$. find its length in in., in yd., in rods.
37. If a rod is x yd. $b \mathrm{ft}$. and c in., how many inches in length is it?
38. If x is the price per quart for beans, what is the price per gallon? What is the price per bushel?
39. A man earned $\$ x$ per day and his son $\$ y$. How many dollars did they both earn in a month if the man worked 25 days and the son 20 days?
69. Roots. As in Arithmetic the square root of x; or the expression whose second power is x, is indicated by $\sqrt{ } x$. Similarly the cube, fourth, fifth, etc., roots of x, or the expressions whose third, fourth, fifth, etc., power is x, are indicated by $\sqrt[3]{x}, \sqrt[4]{x}, \sqrt[5]{x}$, etc.

Thus, $\sqrt[2]{2} a^{6}=a^{2}$ Since $a^{2} \times a^{2} \times a^{2}=a^{6}$.

$$
\begin{array}{ll}
\sqrt[4]{ } a^{12}=a^{3} & \text { Since } a^{3} \times a^{3} \times a^{3} \times a^{3}=a^{12} . \\
\sqrt[5]{32}=2 & \text { Since } 2 \times 2 \times 2 \times 2 \times 2=32 .
\end{array}
$$

The symbol $\sqrt{ }$ is called the radical sign.

Exercises XLIII.

Find the square root of :

1. x^{2}.	6. $16 a^{6}$.	11. $\frac{a^{2}}{4}$.	14. $\frac{a^{2} b^{2}}{9}$.
2. x^{6}.	7. $49 x^{2} y^{2}$.	12. $\frac{a^{6}}{9}$.	15. $\frac{x^{4} y^{4} z^{4}}{16}$.
3. $16 x^{2}$.	8. $81 a^{4} b^{4}$.		
4. x^{12}.	9. $144 a^{6} b^{6}$.	13. $\frac{x^{8}}{16}$.	
5. $64 x^{4}$.	10. $169 a^{6} y^{4}$.		

Find the value of:
16. $\sqrt{ } a^{4} b^{4}$.

25: Square of $4 x y$.
34. $\sqrt{25 a^{4}-16 a^{4}}$.
17. $\sqrt{ } a^{6}$.
18. $\sqrt{ } 49-\sqrt{ } 36$.
26. Cube of x^{2}.
19. $\sqrt{ } 49+\sqrt{ } 4$.
20. $\sqrt{ } x^{6}-x^{3}$.
27. Fourth power of y^{2}.
35. $\sqrt{\frac{\overline{49 a^{2}}}{b^{2}}}$
21. $\sqrt{ } x^{8}-x^{4}$.
22. $\sqrt[3]{x^{8}}$.
23. $\sqrt[4]{ } x^{16}$.
28. Cube of $2 a^{2} y^{4}$.
29. Cube root of x^{6}.
36. $\sqrt{\frac{1}{a^{2}}}$.
24. Square of $a^{4} b$. 33. $\sqrt{49-33}$.
30. Cube root of $8 a^{3}$.
31. Cube root of $27 a^{6}$.
32. $\sqrt{25-16}$.

Terms. T
70. Like and Unlike Terms. Two terms which contain the same letters involved in the same way are called like terms. Thus $6 a$ and $3 a$ are like terms. $3 a b$ and $4 a b$ are like terms. $7 x^{2}$ and $9 x^{2}$ are like terms.

Since $a b$ and $b a$ both mean $a \times b, a b$ and $b a$ are also like terms, also $5 a b$ and $7 b a$ are like terms.

Like terms may then be defined as terms that differ only in their.numerical coefficients.

Unlike terms may be defined as terms that differ in other than their numerical coefficients.

Thus $6 a$ and $4 b$ are unlike terms. $x^{2} y$ and $x y^{2}$ are unlike terms. $7 a^{2}$ and $9 b^{2}$ are unlike terms.

If we wish to add such terms all we can do is to write them down with a plus sign between them, thus $6 a+4 b, x^{2} y+x y^{2}$, $7 a^{2}+9 b^{2}$.

When we wish to simplify an algebraic expression such as $3 a+4 b-2 a+6 b$ we can combine the like terms $3 a$ and $-2 a$, giving a, and the like terms $4 b$ and $6 b$, giving $10 b$, and write the result $a+10 b$.

Examples:

$$
\begin{aligned}
10 a+6 b-3 a+4 c-2 b-c & =10 a-3 a+6 b-2 b+4 c-c \\
& =7 a+4 b+3 c . \\
9 x y+4 x^{2} y^{2}+2 x y-3 x^{2} y^{2} & =9 x y+2 x y+4 x^{2} y^{2}-3 x^{2} y^{2} \\
& =11 x y+x^{2} y^{2} .
\end{aligned}
$$

Exercises XLIV.

Simplify by combining like terms:

1. $4 a+3 a+6 a-2 a$.
2. $7 x y+6 x^{2} y^{2}-3 y x+4 y^{2} x^{2}+3 x y-2 x^{2} y^{2}$.
3. $3 a+2 a+6 b-4 b$.
4. $3 m+2 n+2 m-m-n+3 m n-n+2 m n$.
5. $3 a b+4 b a+3 b c-b c$. $7.6 p+2 q+4 r-3 p+6 q-2 r+4 p-2 q$.
6. $6 a b c+3 a^{2} b^{2}-2 b c a$. $\quad 8.3 a+2 x-4 y+7 a+8 y+5 x$.

If $a=8, \quad c=0, \quad k=9, \quad x=4, \quad y=1$, find the value of:
9. $\sqrt{2 a k^{2}}$.
10. $\sqrt[3]{3 k}$.
11. $\sqrt[3]{c y^{5}}$.
12. $2 x \sqrt{2 a y}$.
13. $5 y \sqrt{4 k x}$. 14. $3 c \sqrt{k x}$.
15. $\sqrt{\frac{8 x^{3}}{a k}}$.
16. $\sqrt{\frac{25 a}{2 k}}$.
17. $\sqrt[3]{\frac{3 a}{k^{3}}} \quad$ 18. $\sqrt{\frac{k a x^{2}}{18 y^{3}}}$.
71. Brackets. In Arithmetic when a number of terms is included within a bracket it is understood that these terms are to be regarded as a whole.

Thus, $10+(5+4)$ means that we first add 5 and 4 and then add the result to 10 . Also $10-(5+4)$ means that we first add 5 and 4 and then subtract the result from 10 . So in Algebra, $a+(b+c)$ means that we first add b and c and then add the result to a.

Certain rules are necessary with respect to the signs of the terms within the bracket when the bracket is removed. These rules may be obtained by an analysis of a few type cases.

By $a+(b+c)$ we mean that the quantity $b+c$ is to be added to a. We may first add b and then afterwards add c, giving $a+b+c$. By $a+(b-c)$ we mean that the quantity obtained by subtracting c from b is to be added to a. It is evident that if we add b to a, obtaining $a+b$, our result will be too great by c; we must therefore subtract c from $a+b$, obtaining $a+b-c$ as a result. From these illustrations we infer the rule:-When a group of terms is contained within a bracket preceded by the sign + the bracket may be removed without changing the signs of the terms within.

In $a-(b+c)$ we have to subtract the sum of b and c from a. If we subtract b from a, giving $a-b$, it is evident that the result is too great and that it is too great by c; therefore we must subtract c from $a-b$, giving $a-b-c$. In $a-(b-c)$ we have to subtract the result $b-c$ from a. If we subtract b from a, giving $a-b$, it is evident that we have taken away too much, for we were required to take away only $b-c$. The result $a-b$ is therefore too small by c, and we must add c to $a-b$, giving $a-b+c$. From these illustrations we infer the rule:-When a group of terms is contained within a bracket preceded by the sign - the bracket may be removed by changing the signs of the terms within.
$3 x$ means $x+x+x$, similarly $3(a+b)$ means $(a+b)+(a+b)$ $+(a+b)=3 a+3 b$. This would lead us to the rule:The product of an expression, consisting of two or more terms and a single factor, is the sum of the products of each term of the expression multiplied by the single f actor.

Examples: 1. $3 x-(a+b)=3 x-a-b$.
2. $7 a+(b+c)=7 a+b+c$.
3. $9 x^{2}-(x-y)=9 x^{2}-x+y$.
4. $6(a+b+c)=6 a+6 b+6 c$.

It is necessary to note the difference between $3 a^{2}$ and ($3 a)^{2}$. In $3 a^{2}$ we have to multiply a by a and take the result three times. In (3a ${ }^{2}$ we have to square the whole quantity $3 a$, giving $3 a \times 3 a$ or $9 a^{2}$

Examples: 1. $(7 a b)^{2}=7 a b \times 7 a b=49 a^{2} b^{2}$,

$$
\text { 2. }\left(2 a^{3}\right)^{4}=2 a^{3} \times 2 a^{3} \times 2 a^{3} \times 2 a^{3}=16 a^{12} .
$$

It is sometimes necessary to enclose with brackets part of an expression already enclosed within brackets. In such cases the pairs of brackets are made of different shapes-(), $\},[]$. Thus $a-\{b+(c-d)\}$.

The same rules with respect to the removal of brackets apply, it being usually best to begin with the inside pair and remove one pair at a time. In the example given we would first simplify thus, $a-\{b+c-d\}$. We would then remove the remaining pair and write the expression $a-b-c+d$.

- Exercises XLV.

Simplify:

1. $3 a+(4 a-2 a)$.
2. $3 b-(2 a+4 a)$.
3. $15 x-(6 x+3 x)$.
4. $6 a-(4 a+2 a)$.

Prove the following by removal of brackets:
5. $6+(x-2)-(3+4 x)+(6 x+1)=3 x+2$.
6. $(3 x-2)-(4 x+5)+(x+7)=0$.
7. $(9 a-b)+(3 a-2 b)-(6 a-5 b)=6 a+2 b$.
8. $(x+6 a)-(2 x-3 a)-(a-6 x)=5 x+8 a$.
9. $2(x+1)+3(1+x)+2(2+3 x)=9+11 x$.
10. $3(2-a)+6(2 a+7)+(a-42)=10 a+6$.
11. $2(a+b)-(2 a-b)=3 b$.
12. $3(a+\mathrm{b}+\mathrm{c})-(b+a-\mathrm{c})-(2 \mathrm{c}-2 a-b)=4 a+3 b+2 c$.
13. $2(3 x+12)+3(x+4)-(8 x-12)=x+48$.

Simplify:

14. $3\{x-(2 x-6 x)\}$.	17. $3 x^{2}+x(x+3)+x^{2}$.
15. $\{3 a+(6 a-2 a)+4 a\}$.	18. $a-\{b+(c-d)\}$.
16. $x+\{2 x+3(x+2 x)\}$.	19. $a-[b-\{a-(b-a)+b\}-a]$.

20. Enclose $a-b+c-d-e+\mathrm{f}$ in alphabetical order in brackets, two letters in each; three letters in each.
21. Negative Quantities. We have in Arithmetic found the value of an expression such as $6-5$. In every case however the number to be subtracted was less than the number from which it was subtracted.

A difficulty is presented if we are asked to find the value of $5-6$. This is arithmetically impossible. We cannot take $\$ 6$ from $\$ 5$. We may, however, by making use of brackets, write $5-6$ thus, $5-(5+1)=5-5-1$. Here $5-5$ is 0 , and the value appears as 1 to be subtracted with nothing from which to subtract it. We shall say that the result is the negative number 1 or minus 1 , and denote it by -1 . The idea of negative numbers may be made clearer by means of a graphical representation.

$$
\begin{array}{ccccccccccccc}
- & - & - & - & - & - & 1 & + & + & + & + & + \\
\hline 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

In the above diagram we have represented numbers to the right of the vertical line as positive, and numbers to the left of the vertical line as negative. The two series of numbers may be considered as forming but a single series consisting of a positive branch, a negative branch, and zero.

If then we wish to subtract 4 from 2 we begin at 2 in the positive series, count 4 units in the negative direction (to the left) and arrive at -2 in the negative series, that is, $2-4=-2$.

A few examples may be added to show the practical value of negative quantities.

Example 1:-If the temperature is 30° below zero it may be recorded -30°. If it rises 5° it is then 25° below zero or -25°. . If it increases 10° more it is 15° below zero or -15°.

Example 2:-If a merchant during a day's transactions gains $\$ 80$ on one class of goods and loses $\$ 100$ on another class we can represent the result of the day's business as $\$ 80-\$ 100=$ $-\$ 20$.

Example 3:-If a man rowed 50 yards up stream and then drifted down 60 yards, his position relative to the starting point would be 50 yards -60 yards $=-10$ yards.

Exercises XLVI.

1. A man has $\$ 500$ and owes $\$ 500$. How much is he worth?
2. A man has $\$ 500$ and owes $\$ 700$. How much is he worth?
3. A man goes 5 miles north of Barrie, then 9 miles south. How many miles north of Barrie is he? How many miles has he travelled? Make a diagram showing his route and his last position.
4. The temperature at 6.00 A.M. is $+14^{\circ}$ and during the morning it grows colder at the rate of 4° an hour. Find the temperature at 9.00 A.M., at 10.00 A.M., and at noon.
5. A freight engine is switching in front of a station. If it runs 400 ft . to the right of the station (+400 ft .) and then backs 525 ft . (-525 ft .), how many feet is it from the station?
6. In drilling a well the drill is raised 8 ft . (+8 ft .) above the surface. It is then dropped 15 ft . (-15 ft .). Where is it then with respect to the surface?
7. A boy is fishing in deep water with a line 20 ft . long. If the tip of the pole is +6 ft . above the water, how far is the sinker from the surface of the water, if it is 3 ft . from the hook?
8. A man who was $\$ 350$ in debt contracted another debt of $\$ 200$. He then earned $\$ 1000$. How much was he then worth?
9. A boat, that runs 16 miles an hour in still water, is going against a stream flowing 4 miles an hour. What is the rate at which the boat travels?
10. If a mine is opened 200 ft . above the base of a mountain and a shaft is sunk 700 ft ., how much is the base of the shaft above or below the base of the mountain?
11. A man starts from a point 0 on a road running north and south, and walks c miles north and then b miles in the opposite direction. How far is he now from the starting point? How far has he travelled?

Illustrate from the following cases:-(1) $c=8, b=6$. (2) $c=5, b=9$. (3) $c=8, b=8$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

CHAPTER VII.

SIMPLE EQUATIONS.

73. We might say that the greater part of a student's work in Arithmetic has been concerned with equations. The statement that 3 added to 4 is 7 might. be expressed in the form $3+4=7$. This is an equation or a statement of equality between two expressions, $3+4$ being one and 7 the other.

All such equations involving only simple Arithmetical operations may be called Arithmetical equations, to distinguish them from equations of the form $3 x=9$ which we will call Algebraic equations.

The x in this equation is called the unknown and the process of finding its value is called solving the equation.

An equation, in which the unknown quantity is involved to the first power only, is called a simple equation.

In the given case if $3 x=9$, then $x=3$; the value 3 is said to satisfy the equation.

Fig. 26
74. Operations on the equation. The two sides of an equation must always balance, just as the weights in the two pans of the scales above must be equal if the scales are to
balance. In the equation $3 x=9$ if we add 2 to the left-hand side we must of necessity add 2 to the right-hand side. The equation then becomes $3 x+2=9+2$ or $3 x+2=11$.

In the same way, if we subtract 2 from the left-hand side we must subtract the same quantity from the right-hand side. The equation then becomes $3 x-2=9-2$ or $3 x-2=7$.

Further, if we multiply the left-hand side by 2 we must multiply the right-hand side by 2 , giving $2 \times 3 x=2 \times 9$ or $6 x=18$.

We might also divide the .left-hand side by 2 giving $\frac{3}{2} x$, but we would also have to divide the right-hand.side by 2 , giving $\frac{9}{2}$ or the equation $\frac{3}{2} x=\frac{9}{2}$.
75. Transpositions. Let us consider the equation $3 x+4=16$. By the previous paragraph we could subtract 4 from both sides of the equation, giving $3 x+4-4=16-4$ or $3 x=16-4$. We then observe that the equation $3 x+4=16$ is equivalent to $3 x=16-4$, or that the 4 has been moved from the left-hand side to the right-hand and that its sign has been changed.

Next let us consider the equation $3 x-2=10$. We could add 2 to both sides giving $3 x-2+2=10+2$ or $3 x=10+2$. We then observe that the equation $3 x-2=10$ is equivalent to $3 x=10+2$, or that the 2 has been moved from the left-hand side to the right and that its sign has been changed. These two examples would lead us to make the statement:-A quantity may be transferred $\mathrm{f}_{\text {rom }}$ one side of an equation to the other without altering the balance, provided we change the sign of the quantity transferred.

Examples:

1. Solve the equation $3 x-2+5 x-4=3 x-10-7 x+16$.

Transposing so that we have all the terms containing x on the left and the other terms on the right we get.

$$
\begin{gathered}
3 x+5 x-3 x+7 x=-10+16+2+4 \text { giving } 15 x-3 x=22-10 \\
\text { or, } \quad 12 x=12 . \\
x=1 .
\end{gathered}
$$

2. Solve the equation $3(3 x+1)-(x-1)=6(x+10)$.

Multiplying out
Transposing

$$
\begin{aligned}
9 x+3-x+1 & =6 x+60 . \\
9 x-x-6 x & =60-3-1 . \\
2 x & =56 . \\
x & =28 .
\end{aligned}
$$

Verification:-Substitute the value 28 for x in the equation and we get $3(84+1)-(28-1)=6(28+10)$

$$
\text { or, } \begin{aligned}
3 \times 85-27 & =6 \times 38 \\
255-27 & =6 \times 38 \\
228 & =228
\end{aligned}
$$

76. Need of the equation. Let us work the following problem, first .without employing Algebraic symbols and then by making use of the Algebraic symbols, and compare the methods.

Example:

A shopper bought three articles, the second costing three times as much as the first and the third $\$ 3$ more than the second; find the cost of each if the total cost was $\$ 10$.

First solution:-Suppose that the third article had cost as much as the second, then the total cost would have been $\$ 10-\$ 3$ or $\$ 7$. . Then for every share allotted to the first article we must allot three to the second and three to the third. This makes seven shares into which we must divide $\$ 7$, giving $\$ 1$ for one share.
\therefore the first article cost $\$ 1$,
the second article cost $\$ 3$, the third article cost $\$ 3+\$ 3=\$ 6$.
Second solution:-Let $x=$ No. of dollars in cost of first,
then $3 x=$ No. of dollars in cost of second,
and $3 x+3=$ No. of dollars in cost of third,
then $x+3 x+3 x+3=10$
$7 x+3=10$
$7 x=10-3$
$7 x=7$
$x=1$
$3 x=3$
$3 x+3=3+3=6$.
or the first article cost $\$ 1$, the second $\$ 3$, the third $\$ 6$. If we compare the two solutions it is evident that the latter method has the advantage in both directness and clearness.

Additional examples:

1. A man works a full day of 8 hours, and in addition works 3 hours overtime, for which he receives time and a half. If he is paid $\$ 8.75$ for the entire time, what is his regular rate per hour?

Let $x \mathrm{c} .=$ regular rate per hour,
then $\frac{3}{2} x$ c. \doteq rate per hour for overtime,
then $8 x \mathrm{c} .=$ pay for 8 hours' work,
and $3 \times \frac{3}{2} x$ or $\frac{9}{2} x$ c. $=$ pay for overtime,

$$
\therefore 8 x+\frac{9}{2} x=875 \text {. }
$$

Multiplying both sides of the equation by 2 we get

$$
\begin{aligned}
16 x+9 x & =1750 \\
25 x & =1750 \\
x & =70,
\end{aligned}
$$

or the regular rate is 70 c . per hour and the overtime rate is $\frac{3}{2} \times 70$ or $\$ 1.05$ per hour.
2. How much water must be added to a quart of alcohol, which already contains 5% of water, so that the mixture may contain 50% of alcohol? (No allowance being made for contraction).

Let $x \quad=$ the number of quarts of water to be added,
then $1+x=$ total number of quarts of mixture,
and $\frac{1}{2}(1+x)=$ number of quarts of alcohol in the mixture.
Since no alcohol has been added, this must equal the number of quarts of alcohol in the mixture at the beginning.

$$
\therefore \frac{1}{2}(1+x)=\frac{95}{100} \text {. }
$$

Multiplying both sides through by 100 we get:

$$
\begin{aligned}
50(1+x) & =95 \\
50+50 x & =95 \\
50 x & =45 \\
x & =\frac{45}{50}=\frac{9}{10}
\end{aligned}
$$

$\therefore \frac{9}{10}$ quarts of water must be added.
3. The sum of $\$ 1100$ is invested, part at 5% and part at 6% per annum. If the total income is $\$ 59$, how much was invested at each rate?

$$
\begin{aligned}
& \text { Let } \$ x=\text { amount invested at } 5 \% \\
& \text { then income }=\frac{5}{100} \$ x \\
& \text { and } \$(1100-x)=\text { amount invested at } 6 \% \\
& \text { then income }=\frac{6}{100} \$(1100-x) \\
& \text { or } \frac{5}{100} x+\frac{6}{100}(1100-x)=59 .
\end{aligned}
$$

Multiplying through by 100 we get:

$$
\begin{aligned}
5 x+6600-6 x & =5900 \\
6600-5900 & =6 x-5 x \\
700 & =x
\end{aligned}
$$

$\therefore \$ 700$ invested at 5% and $\$ 400$ at 6%.

Exercises XLVII.

Solve the following and verify:

1. $3 x+x=64$.
2. $5 x+4 x=81$.
3. $8 x-3 x=50$.
4. $13 x-3 x=100$.
5. $4 x+7=3 x+10$.
6. $9 x-6=7 x-4$.
7. $7 x+3=3 x+67$.
8. $2 x-7=11-4 x$.
.. $27-3 x=68-4 x$.
9. $42-3 x=48-9 x$.
10. $6 x-18=4 x-8-3 x+5$.
11. $\cdot 2 x=4$.
12. $\frac{x}{3}=\frac{1}{2}$.
13. $\frac{7 x}{9}=21$.
14. $\frac{3}{4}=\frac{x}{12}$.
15. $\frac{11 x}{13}-\frac{19 x}{31}=0$.
16. $10 x-10-6 x-27=3$.
17. $24 x+10-20 x+100=$ $5 x+96$.
18. $5 x=-05$.
19. $8 x=\cdot 24$.
20. $\frac{x-3}{5}=0$.
21. $\frac{2 x-1}{3}=3$.
22. $\cdot 7 x=2 \cdot 1$.
23. $\frac{3 x+5}{7}=2$.
24. $\frac{2}{3}(x-10)=0$.
25. 䎹 $(6 x-15)=0$.
```
27. \(3(3 x+1)-(x-1)=6(x+10)\).
28. \(3 .(2 x+5)-(4 x-12)=5(3 x+1)-4\).
29. \((11 x-22)-(8-6 x)-(4-8 x)=17 x+7\).
30. \(x(x+4)=x^{2}+36\).
31. \(x^{2}+2 x=x^{2}+4\).
32. \(3 x^{2}-5-\left(3 x^{2}-x\right)=0\).
33. \(\frac{x}{4}+\frac{3}{5}=\frac{1}{4}-\frac{x}{5}+\frac{7}{2}\).
34. \(\frac{x+3}{4}+\frac{x+5}{2}=\frac{x+9}{8}+\frac{x+4}{3}+\frac{13}{12}\).
35. \(\frac{x+3}{4}-6+\frac{x+1}{5}=\frac{x+5}{3}-1\).
36. \(\frac{x}{3}+\frac{x+2}{5}=\frac{3+x}{4}\).
37. \(\frac{3 x}{4}+3 x=\frac{7 x}{8}+2 x+9\).
38. \(\cdot 09 x-\cdot 01 x=\cdot 14-\cdot 06 x\).
39. \(\cdot 03 x+\cdot 02=\cdot 17\).
40. \(\cdot 007 x-.008=\cdot 004 x+.412\).
41. \(\frac{x}{.5}-\frac{x}{.75}=.46\).
42. \(\frac{\cdot 25 x+\cdot 025}{\cdot 125}=\frac{2 x+\cdot 45}{1 \cdot 25}+\cdot 6\).
```


Exercises XLVIII.

1. A tree 84 ft . high is broken so that the length of the part broken off is five times the length of the part standing. What is the length of each part?
2. After selling $\frac{1}{2}$ of his farm and then $\frac{1}{8}$ of what was left a man still has 140 acres. How many acres had he at first?
3. The length of a rectangular building is $b \mathrm{ft}$., the width is $70 \mathrm{ft} .$, and its area is $43,400 \mathrm{sq} . \mathrm{ft}$. Find the value of b.
4. A rectangular building is 84 ft . long and $x \mathrm{ft}$. wide. Find x if the area is 13,440 sq. ft .
5. A rectangular shop is $x \mathrm{ft}$. long and $y \mathrm{ft}$. wide. If $x=120$ and $y=48$ what is the area?
6. The desired area of a new rectangular boiler shop is x sq. ft. Owing to the space available the width is limited to $b \mathrm{ft}$. What must be the length c, if $b=64$ and $x=9648$?
7. The length of a rectangular machine shop is $x \mathrm{ft}$., the width 50 ft ., and the floor space must be capable of accommodating 20 machines, each occupying an average of $300 \mathrm{sq} . \mathrm{ft}$. Find the value of x.
8. The front section of an engine frame is required to have 60 sq. in. area, the width is 5 in ., and the depth is $x \mathrm{in}$. Find x.
9. A man saves $\$ 100$ more than $\frac{1}{6}$ of his salary, spends 4 times as much for living expenses as he saves, and pays the remainder which is $\$ 500$ for rent. What is his salary?
10. If air is a mixture of 4 parts of nitrogen to 1 part of oxygen, how many cubic feet of each are there in a room 20 ft. by 30 ft . by 10 ft ?
11. The length of a room is to its width as 4 is to 3 and its. perimeter is 70 ft . Find the width of the room.
12. The number-plate on an automobile has a perimeter of 48 in., and its length is to its width as 3 is to 1 . Find its length and width.
13. Sirloin steak costs $1 \frac{1}{2}$ times as much as round steak. Find the cost per lb. of each if 3 lb . sirloin and 5 lb . round steak cost $\$ 3.04$.
14. If 2 lb . butter cost as much as 5 lb . lard, and $4 \frac{1}{2} \mathrm{lb}$. lard and 6 lb . butter cost $\$ 5.07$, find the cost of each per pound.
15. The interest on $\$ 138$ for a certain time' at 6% per annum is $\$ 16.56$. Find the time.
16. A can do a piece of work in 6 days, B can do the samework in 8 days, and C in 24 days. In how many days can they do the work if they all work together?
17. A tank is emptied by two pipes; one can empty the tank in 30 min ., the other in 25 min . If the tank is $\frac{2}{3}$ full and both pipes are opened, in what time will it be emptied?
18. Four pipes discharge into a cistern; one fills it in one day, the second in two days, the third in three days, the fourth in four days. If all run together how soon will they fill the cistern?

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

CHAPTER VIII.

FUNDAMENTAL OPERATIONS.

77. Addition. In a previous section we dealt with the addition of simple expressions such as $6 a$ and $3 a, 4 x^{2}$ and $3 x^{2}$, etc. We now wish to deal with compound expressions such as $2 a+5 b, 6 a-4 x+3 b^{2}$, etc. If we wish to add a number of these compound expressions we must recall what was stated with respect to like and unlike terms. It was there pointed out that like terms may be added, as for example, $6 a$ and $2 a$, giving $8 a$. It was also stated that unlike terms could not be added in the above way but merely written with a plus sign between them. Thus $6 a^{2}$ plus $7 b^{2}$ would be written $6 a^{2}+7 b^{2}$. If then we wish to add $3 a-5 b+c$, $2 a+4 b-c$ and $6 b+7 a-2 c$ greater accuracy may be secured by arranging so that the like terms would be in the same vertical columns.

Thus, Example 1: $3 a-5 b+c$

$$
\text { Sum }=\begin{gathered}
2 a+4 b-c \\
\frac{7 a+6 b+2 c}{12 a+5 b+2 c} .
\end{gathered}
$$

Example 2: Add 5ax-7by+cz, $a x+2 b y-c z$,

$$
-3 a x+2 b y+3 c z .
$$

Arrange as above giving :

$$
\begin{gathered}
5 a x-7 b y+c z \\
a x+2 b y-c z \\
-3 a x+2 b y+3 c z \\
\hline 3 a x-3 b y+3 c z
\end{gathered}
$$

Exercises XLIX.

Add:

1. $x^{3}-3 x^{2}, 3 x^{2}-4 x, 4 x+1$.
2. $3(x-1), 4(x-1)$.
3. $x-2 y+3 z, 2 x+y-3 z, x-2 y+z$.
4. $a+b, a-b$.
5. $\frac{a}{2}+\frac{b}{2}, \frac{a}{2}+\frac{b}{2}$.
6. $a-c, b-c$.
7. $x^{2}-2 x y+y^{2}, x^{2}+2 x y+y^{2}$.
8. $x+y-z, 3 x-2 y+4 z$.
9. $x-(y+z), y-(x-z)$.
10. $4(x-y), 5(x-y), 6(x-y)$.

Find the values of the following sums when $x=\frac{1}{2}, y=\frac{1}{4}, z=\frac{1}{3}$, $a=3, b=2, c=\frac{1}{5}$.
11. $\frac{1}{2} a+\frac{1}{2} b-c, a-\frac{1}{4} b-\frac{2}{3} c, 5 a-\frac{2}{5} b+2 c$.
12. $5 x y-5 x^{2} y-5 x y, \frac{1}{2} x y+\frac{8}{3} x^{2} y$.
13. $\frac{2}{3} a-\frac{3}{4} b+\frac{5}{2} c, \frac{3}{2} a-\frac{1}{2} b+\frac{2}{5} c$.
14. $12 y z-8 x y+\frac{1}{4} a+\frac{5}{2} b c$.
78. Subtraction. In its most elementary form subtraction has already been dealt with in connection with like terms.

Thus, $\quad 6 a-2 a=4 a$.

$$
7 a-9 a=-2 a .
$$

Also the rules for the removal of brackets would deal with an expression such as $6 a-(-3 a)$. We could write this expression $6 a-(0-3 a)=6 a-0+3 a=6 a+3 a$.

$$
\text { also, } \begin{aligned}
& -7 x-(-5 x)=-7 x-(0-5 x)=-7 x-0+5 x \\
& =-7 x+5 x
\end{aligned}
$$

An examination of the operation and the result in the two latter examples brings us to a very important result with respect to subtraction. In the first example we see that the subtracting of $-3 a$ from $6 a$ is equivalent to adding $+3 a$ to $6 a$; in the second that the subtracting of $-5 x$ from $-7 x$ is the same as adding $+5 x$ to $-7 x$. This gives us the fundamental principle with respect to subtraction:-To subtract one
expression from another we change the sign of the quantity to be subtracted and add it to the other expression.

An examination of the following examples in subtraction placed as in Arithmetic would illustrate this:

$$
\begin{array}{rrrrr}
6 & 4 a & 7 x^{2} & 3 a b & -6 x^{2} \\
9 & \frac{2 a}{+2 a} & \frac{8 x^{2}}{-x^{2}} & \frac{-2 a b}{+5 a b} & \frac{-3 x^{2}}{-3 x^{2}}
\end{array}
$$

If we wish to subtract one compound expression from another we arrange as in addition. Thus to subtract $3 a-2 b+c$ from $4 b-6 a-3 c$ we write

$$
\begin{array}{r}
4 b-6 a-3 c \\
-2 b+3 a+c \\
\hline 6 b-9 a-4 c
\end{array}
$$

Exercises L.

Subtract:

1. $4 a-3 b+c$ from $2 a-3 b+c$.
2. $a-3 b+5 c$ from $3 a-6 b+2 c$.
3. $2 x-8 y+z$ from $15 y-6 x+4 z$.
4. $-4 x y+2 y z-10 z x$ from $3 x y-6 y z+7 z y$.
5. $4 x^{2}-6 x+2$ from $7 x^{2}-3 x-4$.
6. From the sum of $3 a+2 b$ and $7 a-3 b$ subtract $3 a-b$.
7. Subtract $5 x^{2}+3 x-1$ from $6 x^{3}$ and add the result to $3 x^{2}+2 x+1$.
8. Add the sum of $2 y-3 y^{2}$ and $1-4 y^{3}$ to the remainder obtained when $1-4 y^{2}+2 y$ is subtracted from $8 y^{3}+3$.
9. Multiplication. The method of representing the product of two simple expressions has already been given, thus the product of a and $b=a b$, the product of a, b, and $c=a b c$, the product of x, y, z, and $k=x y z k$.

Combining this with our index laws we can find the product of expressions like $x^{2} y^{2}$ and $x y$ giving $x^{2} y^{2} \times x y=x^{3} y^{3}$.

$$
\begin{aligned}
& \text { Also, } 3 x^{2} \times 7 x^{2}=3 \times 7 \times x^{2} \times x^{2}=21 x^{4} \\
& \text { and, } 4 x^{3} \times \frac{2}{x^{2}}=4 \times 2 \times x^{3} \times \frac{1}{x^{2}}=8 x^{3-2}=8 x .
\end{aligned}
$$

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

From this multiplication might have been defined as follows:-To multiply one number by a second is to do to the first what was done to unity to obtain the second.

This law applies with equal force to the multiplication of fractions. Thus to multiply $\frac{5}{6}$ by $\frac{3}{4}$ we do to $\frac{5}{6}$ what was done to unity to get $\frac{3}{4}$: that is, we divide $\frac{5}{6}$ into four equal parts and take three of them. Each part would be $\frac{5}{6 \times 4}$, and by taking three of these parts we get $\frac{5}{6 \times 4} \times 3=\frac{5}{6} \times \frac{3}{4}$.

We will, therefore, make the above definition the basis of the rule of signs in multiplication.
(1) To multiply +3 by +4 ,

$$
+3 \times+4=+3+3+3+3=+12
$$

or generally $+a \times+b=+a b$.
(2) To multiply -3 by +4 .

If we do to -3 what was done to unity to obtain 4 we have $-3 \times+4=-3-3-3-3=-12$,
or generally $-a \times+b=-a b$.
(3) To multiply +3 by -4 .

To obtain -4 from the fundamental unit we changed its sign and took it four times. If this be done with +3 then

$$
+3 \times-4=-3-3-3-3=-12
$$

or generally $+a \times-b=-a b$.
(4) To multiply -3 by -4 .

Explaining. 4 as in (3) and applying definition we have

$$
-3 \times-4=+3+3+3+3=+12,
$$

or generally $-a \times-b=+a b$.
The results of (1), (2), (3), (4) may be stated in words giving the following rule for signs in multiplication :-The product of two numbers with like signs is positive and with unlike signs is negative.

Exercises LI.

Multiply:

1. $3 a$ by 2 .
2. $7 x^{3}$ by $-3 x$.
3. $x^{2} y^{2} z^{2}$ by $-x y z$.
4. $3 x$ by -2 .
5. $a^{2} b$ by $-a b$.
6. $\frac{1}{2} x$ by $-\frac{1}{3} y$.
7. $-2 b$ by -4 .
8. $4 x^{2}$ by $-2 x$.
9. $\frac{3}{4} a^{2}$ by $-\frac{4}{3} b^{3}$.
10. $-3 a^{2}$ by a^{2}.
11. p^{3} by $-p^{2}$.
12. $\frac{5}{8} x^{3}$ by $-\frac{8}{3} x^{2}$.
13. $-3 a b$ by. $2 a b$.
14. $a^{3} b$ by $-a b^{3}$.
15. $\cdot \frac{4}{3} x^{2} y$ by $-\frac{9}{16} x y^{2}$.
16. $3 x$ by $4 y$.
17. p^{11} by $-p^{3}$.
18. $-\frac{3}{11} a b^{2}$ by $\frac{22}{9} a^{2} b$.
19. $\frac{1}{4} x^{2} y^{2}$ by $-\frac{4}{x^{2} y^{2}}$. 20. $-4 x^{2} y$ by $-5 x^{3} y$.

Write down the continued product of:
21. $-3,-4,6$.
25. $2 a, 3 b$, $-a$.
29. $x,-x, x,-x$.
22. $a,-b$, c.
26. $2 x,-3 x,-4 x$.
23. $a^{2},-b^{2}, c^{2}$ 27. $a^{2} x, x, y$.
30. $3 p^{2}, 2 p q, 4 q p$.
24. $-b^{2},-c^{2}, a$.
28. $-2 x,-2 x,-2 x$.
31. $2 x,-3 x^{2},-2 x^{4},-x^{5}$.
32. $a^{2}, b^{3}, 2 c$.

Write down the values of:
33. $(-x)^{3}$.
34. $(-a)^{4}$.
35. $(-2 a)^{3}$.
36. $\left(x^{2}\right)^{3}$.
37. $(-a)^{6}$.
38. $\left(-x^{2}\right)^{3}$.
39. $(2 x y)^{3}$.
40. $(-1)^{2}$.
41. $(-1)^{3}$.
42. $(-1)^{4}$.
43. $(-1)^{5}$.
44. $\left(-x^{2}\right)^{7}$.
45. $\left(-x^{3}\right)^{5}$.
46. $\left(-2 a^{2} b\right)^{2}$.
47. $\left(-3 x^{2} y\right)^{3}$.
48. $\left(-3 x^{2} y\right)^{4}$.
49. $\left(-7 x^{2} y^{2}\right)^{2}$.
50. $(-x y z)^{3}$.

Exercises LII.

Multiply:

1. $a+b-c$ by 4 .
2. $2 a-3 b+c$ by -2 .
3. $x+y+z$ by $2 x$.
4. $3 x^{2}+y^{2}$ by $-2 x$.
5. $x^{2}+2 x y+y^{2}$ by x.
6. $a^{2}-a b+b^{2}$ by $-a$.
7. $3 x^{4}-2 x^{3}+6$ by $-5 x$.
8. $-3 a^{2}-2 a b+b^{2}$ by $-2 b^{2}$.
9. $1-2 x+x^{2}$ by $-2 x$.
10. $x^{2}-y^{2}$ by $-x y$.

Find the continued product of:
11. $a+b, a, b$.
14. $a-b, a,-b$.
12. $a^{2}-2 a b+b^{2}, a, b$.
15. $x^{4}-3 x^{3}+2 x^{2}-1,-3 x ;-2 x$.
13. $\mathrm{x}^{2}-5 x+3, x^{2}, x$.
16. $a^{3}-a^{2} b+a b^{2}-b^{3},-a,-b$.

When $a=-2, b=-3$, find the value of :
17. $a^{2}-2$.
22. $b^{4}-81$.
27. $a^{2}+b-b^{2}$.
18. $2 a^{2}-a+2$.
23. $b^{2}-a^{2}+2 a$.
28. $a^{4}-b^{4}$.
19. $a^{2}-b^{2}$.
24. $a^{3}+8$.
29. $a^{5}-b^{5}$.
20. $a^{2}-2 a b+b^{2}$.
25. $a^{3}+-b^{3}$.
30. $a^{3}-3 b$.
21. $2 a^{3}+16$.
26. $8 a^{2}-b^{3}$.
31. $a^{4}-1$.

Exercises LIII.

Find the product of :

1. $x+a, x-b$.
2. $x^{2}-a^{2}, x+a$.
3. $a y-b, c y-d$.
4. $x+2 y, 3 x+1$.
5. $5+3 x, 7-2 x$.
6. $7 a-2 b, a^{2}-b^{2}$.
7. $x-5 y, 2 x+3 y$.
8. $a x^{2}-b x, a x+b$.
9. $a+3 x, a-5 x$.
10. $6 a-2 b, a-b$.
11. $a x+1, b x+1$.
12. $a+b, c-d$.
13. $4 a^{2}-3 b, 2 a^{2}-b$.
14. $x^{2}+a, x^{3}-b$.
15. $x^{3}-1, x+1$.
16. $b x-a y, a x-c y$.
17. $a^{2}+6 b, a^{2}-4 b$.
18. $x y z-1, x y+2$.
19. $a+3 x, a-5 x$.
20. $x^{5}-1, x^{4}+1$.
21. There is a number of types of products in which the results can be written down by inspection if a few typical examples are examined.
(1) $(x+a)(x-a)=x+a$

$$
\begin{aligned}
& \frac{x-a}{x^{2}+a x} \\
& \frac{-a x-a^{2}}{x^{2}-a^{2}} .
\end{aligned}
$$

That is, the product of the sum and difference of two quantities is equal to the difference of their squares.

Thus, $(x+3)(x-3)=x^{2}-9$.

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

$$
(x y+1)(x y-1)=x^{2} y^{2}-1
$$

(2)

$$
\begin{aligned}
(a+b)(a+b) \text { or }(a+b)^{2}= & a+b \\
& \frac{a+b}{a^{2}+a b} \\
& \frac{+a b+b^{2}}{a^{2}+2 a b+b^{2}}
\end{aligned}
$$

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Exercises LIV.

Write down the results of the following:

1. $(c+d)(c-d)$.	14. $(2 x+3 y)^{2}$.
2. $(2 x+3)(2 x-3)$.	15. $(x y+1)^{2}$.
3. $\left(x^{2}-2 a^{2}\right)\left(x^{2}+2 a^{2}\right)$.	16. $\left(x^{2}-1\right)^{2}$.
4. $\left(x^{2}+2\right)\left(x^{2}-2\right)$.	17. $(a+b-c)^{2}$.
5. $(a+3 b)(a-3 b)$.	18. $(2 a-b-c)^{2}$.
6. $(p x+q)(p x-q)$.	19. $(a+b+c-d)^{2}$.
7. $\left(x^{2}-3 y^{2}\right)\left(x^{2}+3 y^{2}\right)$.	20. $(2 a-3 b+c)^{2}$.
8. $(2 x-3 y)(2 x+3 y)$.	21. $(x+3)(x+4)$.
9. $\left(a^{2}-4 b\right)\left(a^{2}+4 b\right)$.	22. $(a+5)(a-2)$.
10. $(x+y)(x-y)\left(x^{2}+y^{2}\right)$.	23. $(z+8)(z-5)$.
11. $(c+d)^{2}$.	24. $(p+3 q)(p-6 q)$.
12. $(a-2 b)^{2}$.	25. $(a b+4)(a b-5)$.
13. $(2 x-y)^{2}$.	26. $(x y-b)(x y+c)$.

Use the rule for the square of a binomial to find the value of:

$$
\begin{array}{lll}
\text { 27. } 99^{2} . & \text { 29. } 105^{2} . & \text { 31. }(100-6)^{2} . \\
28.102^{2} . & \text { 30. } 95^{2} . & 32 .(99 \cdot 5)^{2} .
\end{array}
$$

82. Division. The Rule of Signs in Division .may be readily deduced from the rule in Multiplication.
Thus, (1) $+x y=+x \times+y \therefore+x y \div+x=+y$ or $\frac{+x y}{+x}=+y$.
(2) $-x y=-x \times+y \therefore-x y \div-x=+y$ or $\frac{-x y}{-x}=+y$.
(3) $+x y=-x \times-y \therefore+x y \div-x=-y$ or $\frac{+x y}{-x}=-y$.
(4) $-x y=+x \times-y \therefore-x y \div+x=-y$ or $\frac{-x y}{+x}=-y$.

From these results we have the following rule of signs in division:-Terms with like signs when divided give plu's (+). Terms with unlike signs when divided give minus (-).

Examples: $\frac{+6}{+2}=+3 . \quad \frac{-6}{-2}=+3$.

$$
\begin{array}{ll}
\frac{+6}{-2}=-3 . & \frac{-6}{+2}=-3 . \\
\frac{+21 a^{2}}{-3 a}=-7 a . & \frac{-3 x^{2} y^{2}}{+x y}=-3 x y . \\
\frac{-35 a^{3} b^{2} c}{-7 a b c}=5 a^{2} b . & \frac{+5 x^{7}}{-5 x^{2}}=-x^{5} .
\end{array}
$$

Exercises LV.

Divide:

1. $3 x$ by 3 .
2. $-3 x$ by 3 .
3. $-3 x$ by -3 .
4. $-3 x$ by x.
5. $6 x y$ by $6 x$.
6. a^{2} by $-a^{2}$.
7. $8 a^{2}$ by $-4 a$.
8. $-b^{4}$ by b.
9. $8 \dot{a}^{2}$ by $-4 a^{2}$.
10. $-54 a^{2} b c$ by $6 a b c$.
11. $24 a^{2} b^{2} c^{2}$ by $-40 b c$.
12. $-21 x^{3} y^{4}$ by $-7 x^{3} y^{2}$.
13. $-49 a^{3} b^{3}$ by $7 a^{2} b^{2}$.
14. $-x^{5}$ by $+x^{2}$.

Simplify:
15. $\frac{15 x}{5}$.
16. $\frac{-21 x^{3} y^{3}}{-3 x y}$.
17. $\frac{-8 x y^{2}}{-x y}$.
18. $\frac{24 y^{2} z^{2}}{-4 y}$.
19. $\frac{49 p q^{2} r}{-7 p q r}$.
20. $\frac{-32 l^{2} m^{2} n^{2}}{4 l m}$.
21. $\frac{121 x^{3} y^{6}}{11 x^{3} y^{2}}$.
22. $\frac{-16 a^{3} b^{3}}{-8 a^{2} b}$.
23. $\frac{\frac{1}{4} a b c}{\frac{1}{8} a b c^{2}}$.

Divide:
24. $3 x-6 y$ by 3 .
25. $3 x-9$ by -3 .
30. $6 a-9 b+12 c$ by -3 .
26. $3 x^{2}-6 x$ by $-3 x$.
31. $x^{3}+3 x^{2}-3 x$ by x.
27. $-b^{2}+a b$ by b.
28. $4 a^{2} b-8 a b^{2}$ by $-2 a b$.
29. $-x^{3}+x^{2}$ by $-x^{2}$.
32. $15 y^{4}-5 y^{3} x^{3}-30 y^{3}$ by $5 y$.
33. $-5 m^{3} n+20 m^{2} n^{3}$ by $-5 m n$.
34. $a^{2} b c-a b^{2} c+a b c^{2}$ by $-a b c$.
35. $-a^{2} b^{2} c^{2}+a b c^{2}-c a b^{2}$ by $a b c$.
83. To divide one compound expression by another the work may be arranged by following the method of long division in Arithmetic:

Example. Divide $x^{2}+5 x+6$ by $x+2$.

$$
\begin{array}{r}
x+2) x^{2}+5 x+6 / x+3 \\
\frac{x^{2}+2 x \ldots}{3 x+6 \ldots} \\
3 x+6 \ldots \tag{3}
\end{array}
$$

$x^{2} \div x=x \therefore x$ is the first term in the quotient, $(x+2)$ multiplied by x gives $x^{2}+2 x$ and we obtain (1). Line (2) is obtained by subtracting $x^{2}+2 x$ from the expression and bringing down +6 . $3 x$ divided by $x=3, \therefore 3$ is the second term of the quotient.
$(x+2)$ multiplied by $3=3 x+6$ and we obtain line (3). This when subtracted leaves no remainder and the quotient is $x+3$.

This method may be applied to an expression of any number of terms, if care is taken to arrange the divisor and dividend in descending or ascending powers of some common letter, and to keep the remainder in each case in the same order.

Exercises LVI.

Divide:

1. $x^{2}+7 x+12$ by $x+3$.
2. $25-30 a+9 a^{2}$ by $5-3 a$.
3. $a^{2}+3 a+2$ by $a+2$.
4. $4 x^{4}-49$ by $2 x^{2}-7$.
5. $a^{2}-3 a+2$ by $a-1$.
6. $x^{2}+a x+b x+a b$ by $x+a$.
7. $x^{2}-5 x-14$ by $x+2$.
8. $x^{4}+x^{2} y^{2}+y^{4}$ by $x^{2}-x y+y^{2}$.
9. $15 x^{2}-26 x+8$ by $5 x-2$.
10. $a^{3}+b^{3}$ by $a+b$.
11. $6-13 a+6 a^{2}$ by $2-3 a$.
12. $4+4 x+x^{2}$ by $2+x$.
13. $x^{2}+2 x y+y^{2}$ by $x+y$.
$5 x y^{4}+y^{5}$ by $x^{2}+2 x y+y^{2}$.
14. $a^{3}+b^{3}+c^{3}-3 a b c$ by $a+b+c$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
2. The current flowing along a conductor is given by the formula $I=\frac{E}{\boldsymbol{R}}$, where I is the current in amperes, E the electromotive force in volts, and R the resistance in ohms.

Solve for E and R.

If $E=110$,	$R=220$,	find I.
If $I=2 \frac{1}{2}$,	$E=220$,	find R.
If $I=\cdot 5$,	$R=75$,	find E.

3. The resistance of a wire in an electric circuit is given by $R=K \underset{\sim}{L}$, where R is the resistance, L the length of the wire, A its area in circular mils, K the resistance of 1 mil foot in ohms.

Solve for K, L and A.

| If $L=3 \mathrm{ft} .$, | $A=1000$, | $K=10 \cdot 5, \quad$ find R. |
| :--- | :--- | :--- | :--- |
| If $R=220$, | $K=10 \cdot 5$, | $L=1000 \mathrm{ft} .$, find A. |
| If $R=10$, | $K=10 \cdot 5$, | $A=250, \quad$ find L. |

4. The work done by any force is given by $W=F S$, where W is the work done, \boldsymbol{F} the force in pounds, S the distance in feet through which the force acts.

Solve for F and S.

$$
\begin{array}{ll}
\text { If } F=525 \mathrm{lb} ., & S=51 \mathrm{ft} ., \\
\text { find } W . \\
\text { If } W=150, & F=5 \mathrm{oz} ., \quad \text { find } S . \\
\text { If } W=500, & S=800 \mathrm{ft} ., \text { find } F .
\end{array}
$$

5. The total resistance of a series circuit is given by $R=R_{1}+R_{2}+R_{3}$, where R is the total resistance and R_{1}, R_{2}, R_{3} are the resistances of the separate parts of the circuit respectively.

Solve for R_{1}, R_{2} and R_{3}.

$$
\begin{array}{lll}
\text { If } R_{1}=2, & R_{2}=4, & R_{3}=9, \text { find } R . \\
\text { If } R=12, & R_{1}=2, & R_{2}=7, \text { find } R_{3} .
\end{array}
$$

6. The indicated horse-power of a single acting engine is given by:

$$
H . P .=\frac{P L A N}{33000}
$$

where P is the mean effective pressure on the piston in pounds per sq. in., L the length of the stroke in feet, \boldsymbol{A} the effective area of piston in sq. in., N the number of strokes per minute.

Solve for P, L, A and N. .
If $P=80, L=2 \mathrm{ft} .$, , $A=30 \mathrm{sq}$. in., $N=60$, find $H . P$
If $H . P .=4, \quad L=1 \frac{1}{2} \mathrm{ft} ., \quad A=24$ sq. in., $\quad N=50$, tind P.
If $H . P:=10, \quad P=50, \quad A=30$ sq. in., $\quad N=100$, find L.
If $H . P .=20, \quad P=60, \quad . L=2 \mathrm{ft} ., \quad N=100$, find A.
If $H . P .=16, \quad P=60, \quad L=2 \mathrm{ft} ., \quad A=40$, find N.
7. The formula $D=Q I T$ is used in electrolysis, where D is the weight of the deposit, Q the electro-chemical equivalent, T the time in seconds, I the current.

Solve for Q, I and T.

If $Q=\cdot 001118$,	$I=40$,	$T=600$, find D.
If $D=2$,	$Q=\cdot 000328$,	$I=250$, find T.
If $D=\cdot 5$,	$I=10$,	$T=153$, find Q.

8. The diameter of a rivet is given by $d=1 \cdot 2 \sqrt{ } t$, where d is the diameter in inches and t the thickness of the plate in inches.

$$
\begin{aligned}
& \text { If } t=.75, \text { find } d . \\
& \text { If } d=\frac{3}{16} \text { in., find } t .
\end{aligned}
$$

9. The space through which a body falls from rest is given by $s=\frac{1}{2} g t^{2}$, where s is the space in ft., g the acceleration due to gravity, t the time in seconds.

Solve for g and t.

$$
\begin{array}{ll}
\text { If } t=12, & g=32 \cdot 2, \text { find } s . \\
\text { If } s=3155.6, & g=32 \cdot 2, \text { find } t .
\end{array}
$$

10. In a machine $E=\frac{W}{P V}$, where E is the efficiency, W the weight, V the velocity ratio, P the horizontal force.

Solve for W, P and V.

If $W=112$,	$P=20$,	$V=12 \cdot 5$,
find E.		
If $E=\cdot 55$,	$P=25$,	$V=18 \cdot 5$, find W.
If $E=\cdot 74$,	$W=350$,	$V=23$,
find P.		
If $E=\cdot 346$,	$W=799 \cdot 26$,	$P=20$,

11. The allowable working pressure in a steam boiler is given by:

$$
B=\frac{2 T s k}{D F},
$$

where T is the thickness of the plate in inches, s the tensile strength of plate in pounds per sq. in., k the efficiency of the
joint, D the inside diameter of shell in in., F the factor of safety.

Solve for T, s, k, D and F.

$$
\begin{array}{lll}
\text { If } T=\frac{1}{4}, s=35000, & k=45, & D=30, F=4, \text { find } B . \\
\text { If } B=75, s=40000, & k=\cdot 5, & D=40, F=5, \text { find } T . \\
\text { If } B=38, T=\frac{3}{16}, & k=\cdot 5, & D=50, F=4, \text { find } s . \\
\text { If } B=150, T=\frac{1}{2}, & s=60000, & D=60, F=5, \text { find } k . \\
\text { If } B=200, T=\frac{3}{4}, & s=70000, & k=\cdot 75, F=5, \text { find } D . \\
\text { If } B=40, T=\frac{1}{2}, & s=65000, & k=\cdot 8, \quad D=120, \text { find } F .
\end{array}
$$

12. The horse-power of an electric current is given by $\boldsymbol{H} . P .=\frac{E I}{746}$, where E is the electromotive force and I the current in amperes.

Solve for E and I.
If $E=110, \quad I=30, \quad$ find $H . P$.
If $H . P .=6, \quad E=200$, find I.
If $H . P .=10, \quad I=40, \quad$ find E.
13. The heat generated by a current is given by $H=.24 E I T$ (Joule's Law) where \boldsymbol{H} is the heat in calories, E the electromotive force, I the current in amperes, T the time in seconds.

Solve for E, I and T.

If $E=110$,	$I=2$,	$T=30$, find H.
If $H=500$,	$E=6$,	$I=10$, find T.
If $H=1000$,	$I=\cdot 5$,	$T=160$, find E.

14. The space traversed by a body starting from rest and moving with a uniform velocity is given by $s=v t$, where s is the space, v the velocity and t the time.

Solve for v and t.

If $v=12 \mathrm{ft}$. per sec.,	$t=25 \mathrm{sec} .$, find s.
If $s=300 \mathrm{ft} .$,	$t=15 \mathrm{sec} .$, find v.
If $s=500 \mathrm{ft} .$,	$v=20 \mathrm{ft}$. per sec., find t.

15. The width of a single belt to transmit a given horsepower is given by $W=\frac{33000 \times H}{P \times S}$, where W is the . width of the belt in in., \boldsymbol{H} the horse-power transmitted, P the allowable pull per in. of width of belt, S the speed of the belt in feet per min.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

CHAPTER X.

MENSURATION OF AREAS.

85. Mensuration is that part of Mathematics which deals with the length of lines, the areas of surfaces, and the volumes of solids.
86. To Find the Area of a Rectangle or of a Square.

Fig. 27

In Figure 27, $A B C D$ is a rectangle, i.e., a quadrilateral with its opposite sides parallel and its angles right angles. If we divide each side into inches and join as above we see by actually counting the small squares that the area of the rectangle is six square inches (to scale). This
result might have been obtained by multiplying the number of inches in the length (3) by the number of inches in the width (2). From this example we infer a formula for the area of a rectangle. If A represents the area, b the length, and h the breadth, then $A=b h$, or the area of a rectangle $=$ length \times breadth .

Note.-A correct statement of the above formula would manifestly ${ }^{\text {be-the measure }}$ of the area of the rectangle $=$ the measure of the length multiplied by the measure of the breadth, but for the sake of brevity the word "measure" will be omitted throughout.

Make drawings in your laboratory book to test the accuracy of the above.
87. To Find the Area of a Parallelogram.

Fig. 28
In Figure 28, $A B C D$ is a parallelogram ($\left\|\|^{g m}\right.$), i.e., a quadrilateral with its opposite sides parallel.

If the right-angled triangle $D F C$ be cut out and placed on $E B A$, it will coincide with $E B A$. The $\|^{g m} A B C D$ is therefore equal in area to the rectangle $E B C F$. If the area of the $\| \mathrm{gm}$ is A, the base b, and the perpendicular height or altitude h, then $A=b h$, or the area of a parallelogram $=$ base \times perpen diculä height.

Make drawings in your laboratory book to test the accuracy of the above.
88. To Find the Area of a Triangle in Terms of its Base and Altitude.

Fig. 29
In Figure 29, $A B C$ is a triangle. If we draw $C D$ parallel to $A B$ and $A D$ parallel to $B C$, we have the $\left\|\|^{\mathrm{mm}} A B C D\right.$. Since
the area of the $\|^{\mathrm{gm}} A B C D$ is bisected by its diagonal $A C$, we have the area of the triangle $A B C$ as one-half the area of the $\| \mathrm{gm} A B C D$. If A is the area of the triangle, b its base, and h its altitude, then $A=\frac{1}{2} b h$, or the area of a triangle $=\frac{1}{2}$ 'base \times altitude.

Make drawings in your laboratory book to test the accuracy of the above.
89. To Find the Area of a Triangle in Terms of the Sides.

Fig. 30

In Figúre 30 we have a triangle $A B C$ and have denoted the sides by a, b, c; a being opposite angle A, b opposite angle B, and c opposite angle C.

The area of the triangle is given by the formula: $A=\sqrt{s(s-a)(s-b)(s-c)}$ where a, b, c are the sides, and s is one-half their sum.
Example:-If the sides in Figure 30 are $13 \mathrm{ft} ., 14 \mathrm{ft} ., 15 \mathrm{ft}$. respectively, then $s=21, s-a=8, s-b=7, s-c=6$.
$\therefore A=\sqrt{21 \times 8 \times 7 \times 6}=\sqrt{7056}=84 \mathrm{sq} . \mathrm{ft}$.
Exercises LVIII.

1. Supply the missing quantities in the following rectangles:

Area Length Breadth

sq. ft.	4 ft .	3 ft .
444 sq. ft.	37 ft .	ft .
$360 \cdot 5 \mathrm{sq} . \mathrm{ft}$.	ft .	18.9 ft .
sq. yd.	24 ft .9 in .	15 ft .6 in.
$\frac{3}{4}$ acre	ft .	$2 \frac{1}{2}$ chains

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
91. A Practical Application of the Triangle and the Trapezium is found in the Measurement of Land.

The following represents an entry in a surveyor's field book and the corresponding plan:

Field Book
Plan
Links

	To B 460 340 to $E 120$ 180 to $D 80$ From 100 A

The field book entry is read upwards, which in the case above indicates that the chain line runs north from A. The centre column refers to measurement from A along the chain line to points

Fig. 32 from which the offsets are taken. Offsets to the right are indicated on the right and offsets to the left are indicated on the left.
In the plan the area of $A D X=\frac{1}{2} \times 100 \times 80=4000 \mathrm{sq}$. li.
the area of $E D X Z=\frac{1}{2} \times 240(120+80)=24000 \mathrm{sq}$. li.
the area of $B E Z=\frac{1}{2} \times 120 \times 120=7200$ sq. li.
the area of $A Y C=\frac{1}{2} \times 180 \times 90=8100$ sq. li.
the area of $B Y C=\frac{1}{2} \times 280 \times 90=12600$ sq. li.
Total Area $=55900$ sq. li.
$=\cdot 559$ acres.

Exercises LIX.

1. Find the missing quantities in the following triangles:
Area Base Altitude

sq. in.	24 in.	13 in.
sq. ft.	$2 \mathrm{ft} 6 in.$.	3 ft .4 in.
$120 \mathrm{sq} . \mathrm{in}$.	in.	15 in.
22 sq. ft.	$5 \mathrm{ft} 6 in.$.	ft.
$5 \frac{1}{2}$ acres	320 rods	yards

2. Find the missing quantities in the dimensions of the following boiler plates in the form of trapeziums:

Area $x \quad y \quad h$

sq. in	6 ft .	62 in.	102 in.
sq. in.	6 ft .9 in.	77 in.	83 in .
8505 sq. in.	$11 \mathrm{ft}$.10 in .	101 in.	in.
sq. in.	8 ft .5 in .	$79 \frac{1}{2} \mathrm{in}$.	93 in .
$9841 \frac{3}{4}$ sq. in.	$98 \frac{1}{2}$ in.	$90 \frac{1}{2} \mathrm{in}$.	
549 sq. ft.	25 ft .		18 ft .

3. Find the areas of the following triangles:

Sides 3 ft ., 4 ft ., 5 ft .; answer in sq. feet.
Sides 4 yd., 2 ft., 3 yd., 2 ft., 1 yd., 1 ft.; answer in square yards.
Sides 17 in., 18 in., 19 in.; answer in sq. inches.

Exercises LX.

1. Find the areas of the triangular faces of a number of the models in the laboratory, using both methods. Make drawings in your laboratory book.
2. Find the areas of trapeziums available in the laboratory. Make drawings in your laboratory book.
3. A rhombus is a quadrilateral with all its sides equal. Construct a rhombus in your laboratory book having each side 2 in. Employ both experiment and equality of triangles to establish how one diagonal divides the other, and also the magnitude of the angle contained by the diagonals. Write out the details and derive a formula for the area of a rhombus in terms of the diagonals.
4. Take a series of measurements in the school grounds and enter in your laboratory book as suggested. Draw a plan to scale from your measurements and calculate the area.
5. What is the area of the surface of a boiler plate $3^{\prime} 8^{\prime \prime}$ by $1^{\prime} 6$ "?
6. How many square pieces of zinc $6^{\prime \prime} \times 6^{\prime \prime}$ can be cut from a zinc plate $3^{\prime} \times 6^{\prime}$?
7. What is the value of copper in an open copper tank measuring $4 \frac{3}{4}{ }^{\prime \prime}$ long, $3 \frac{1}{2}^{\prime \prime}$ wide and $2 \frac{1^{\prime \prime}}{}$ deep; copper weighing 12 lb . per sq. ft. and costing 40 c per lb.? (No allowance being made for laps, seams or waste).
8. The diagonals of a sheet of zinc in the form of a rhombus are $24^{\prime \prime}$ and $16^{\prime \prime}$. Find the area of the sheet.
9. If a sheet of copper $5^{\prime} \times 10^{\prime}$ weighs 500 lb ., what is the weight per sq. ft.?
10. How many sq. ft. of sheet copper will be required to make an open rectangular tank 7^{\prime} long, 3^{\prime} wide, and $1 \frac{1}{2}^{\prime}$ deep, allowing 12% extra for waste?
11. Find the cost of shingling the roof in the diagram on page 62 with shingles laid $4 \frac{1}{2}$ in. to the weather if material and labour cost $\$ 14$ a square of shingles, the eaves projecting 2^{\prime} (equivalent to a roof $34^{\prime} \times 28^{\prime}$ on plan).
12. Find the cost of putting a slate roof on the building in the diagram on page 62 , gauge $8 \frac{1}{2}^{\prime \prime}$, at $\$ 30$ a square.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

25. The sides of a right-angled triangle are $5^{\prime \prime}, 12^{\prime \prime}$ and $13^{\prime \prime}$ respectively. Find the areas of the equilateral triangles described on its sides. Do these areas bear any relation to each other?
26. A column having a cross-shaped section has two opposite arms of the cross $4 \frac{1}{2}^{\prime \prime}$ long, and the other two arms $4^{\prime \prime}$. The arms are $\frac{1^{\prime \prime}}{}$ wide. What is the area of the section?
27. A T-shaped section has the top flange $8^{\prime \prime}$ long and $\frac{5}{8}{ }^{\prime \prime}$ wide, the other flange measuring 4^{\prime} long by $\frac{3^{\prime \prime}}{4}$ wide. What is the area of the T ?
28. The two parallel sides of a trapezium measure 13 chains 60 links, and 6 chains 40 links; the other sides are equal, each being 8 chains 50 links. Find the area.
29. $A B C D$ is a quadrilateral in which the following measurements have been taken: $A B=30^{\prime \prime}, B C=17^{\prime \prime}, C D=25^{\prime \prime}$, $D A=28^{\prime \prime}$, the diagonal $B D=26^{\prime \prime}$. Find the area in sq. ft.
30. $A B C D$ is a quadrilateral in which the angles $A B C$, $C D A$ are right angles, and $A B=36$ chains, $B C=77$ chains, $C D=68$ chains. Find the area in acres.
31. Find the area of a quadrilateral $A B C D$ in which the diagonal $A C$ measures 30^{\prime}, and the perpendiculars on it from B and D are $3 \frac{1}{2}^{\prime}$ and 6^{\prime} respectively.
32. Draw the plan and calculate the area, in acres, of a plot of ground from the following'notes:

Links

	To B	
	530	
to $E 75$	400	
	240	120 to C
to D 100	150	
From	A	go North.

33. Draw a plan and calculate the area, in acres, from the following notes:

34. Draw a plan and calculate the area, in acres, from the following notes:

	Links
250	
to B	
1200	
100	
760	
50	
From	 300 360 $A$$\quad$ Go N. $30^{\circ} \mathrm{W}$.

35. How many 6 in. sq. tiles should be supplied to cover the courtyard shown in Figure 34, an allowance of 5% being added to cover cutting and breakage?
36. Figure 35 shows a gusset-plate for a girder. What is its weight if the plate is of mild steel $\frac{1}{2}{ }^{\prime \prime}$ thick, weighing 20.4 lb . per sq. ft.?

Fig. 34

Fig. 35
37. Calculate the length of the rafters on each pitch and the total area of the entire gable end of the building in Figure 36.

Fig. 36

Fig. 37
38. Determine the area of the cross-section in Figure 37.

Fig. 38
92. The Circle. A circle is a plane figure bounded by a line called the circumference and such that every point on it is equidistant from the centre.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
94. To Find the Area of a Circle. If we take a circular board and divide it into sections as shown in Figures 39, 40, and place them as in Figure 41, we practically have a rectangle whose length is one-half the circumference and whose width is onehalf the diameter of the circle.

Fig. 39

Fig. 40

Fig. 41
Hence, to find the area of a circle we multiply one-half the circumference by the radius, i.e., $\pi r \times r=\pi r^{2}$.

$$
\therefore A=\pi r^{2} .
$$

In Figure 41, how would you to some extent overcome the difficulty of the length of the rectangle not being a straight line?

In the formula $A=\pi r^{2}$ if we write for r its value in terms of

$$
D \text { we get } A=\pi\left(\frac{D}{2}\right)^{2}=\frac{\pi D^{2}}{4}=\frac{3 \cdot 1416 D^{2}}{4}=\cdot 7854 D^{2}
$$

This formula for the area of a circle is commonly used by engineers and machinists.

Exercises LXI.

1. Supply the missing quantities in the following circles:

$$
(\pi=3 \cdot 1416)
$$

Radius	Diameter		CIrcumference
$5 \mathrm{ft}$.			

95. To Find the Area of a Circular Ring or Annulus.

The area of the outer circle is πR^{2} and the area of the inner circle is $\pi r^{2} . \quad \therefore$ area of the ring $=\pi R^{2}$ $\pi r^{2}=\pi\left(R^{2}-r^{2}\right)=\pi(R+r)(R-r)$.

If we examine this latter formula in relation to the figure we see that $R+r$ is the length of the mean diameter $A B$, and that $R-r$ is the width of the ring. The formula $\pi(R+r)(R-r)$ may, therefore, be

Fig. 42

Fig. 43 written π (mean diameter) \times (width of ring). \therefore area of ring $=$ mean circumference \times width of ring.
96. To Find the Length of the Arc of a Circle.

In Figure 43 the chord $A B$ divides the circumference of the circle into two arcs $A D B$ and $A H B$.

If the angle $A O B$, that is the angle subtended at the centre of the circle by the arc $A D B$, is 120° then the length of the arc
$A D B$ is $\frac{1228}{3} 8 \times$ circumference or in general the length of the arc $A D B$ is $\frac{n}{360} \times$ circumference, where n is the number of degrees in the angle subtended at the centre.

The length of an arc may be found approximately by the formula:-Length of arc $=\frac{8 a-c}{3}$ where c is the chord of the arc and a is the chord of half the arc.
97. To Find the Area of a Sector of a Circle. A sector of a circle is that part contained by two radii and the arc cut off by them.

In Figure 43, $K 0 H$ represents a sector of a circle. If the angle $K O H$ be 60° the area of the sector will be $\frac{60}{360}$ of the area of the circle, or in general the area of the sector is $\frac{n}{360} \times$ area of the circle, where n is the number of degrees in the angle contained by the two radii.

By a method similar to that used in finding the area of a circle it may be shown that the area of the sector $=\frac{1}{2}$ arc of sector \times radius of circle.
98. To Find the Area of the Segment of a Circle. A segment of a circle is that part of the circle contained by an arc and its chord.

In Figure 43 the chord $A B$ divides the area of the circle into two segments, the area above $A B$ being called the minor segment, and the area below $A B$ the major segment. It is evident that the area of the segment $A D B$ is equal to the area of the sector $A O B$ minus the area of the triangle $A O B$, so that if sufficient data is given the area may be found by this method. The area of the minor segment in Figure 43 may be found approximately from the formula.

Area of Segment $=\frac{h^{3}}{2 c}+\frac{2}{3} c h . \quad$ Where c is the length of the chord $A B$ and h is the height $C D$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

the former result by the latter. Repeat this experiment changing the radius in each case. Tabulate in your laboratory book and find the average of your results.
16. To establish $A=\cdot 7854 D^{2}$ experimentally, cut a circular piece of cardboard 1^{\prime} in diameter and also a square piece of the same material 1^{\prime} to the side. Weigh both and find the value of $\frac{\text { weight of square }}{\text { weight of circle }}$. Repeat this with pieces of board, pieces of zinc, etc., taking care that the materials, in any one case, have the same thickness and density, and that the diameter of the circular part is the same as the side of the square. Tabulate in your laboratory book and find the average of the results.
17. Fill in the omitted entries in the following:

No.	Diameter	Circumperence	Area
1	7		
2		44	
3		-	154
4		176	
5			2011
6			$55 \cdot 44$
7	$14 \cdot 8$		
8		264	
9	$15 \cdot 4$		

18. The piston of a locomotive is $20^{\prime \prime}$ in diameter. Find its area in sq. in. If the highest pressure carried is 205 lb . per sq. in., what would be the total pressure tending to blow off the cylinder head?
19. A workman finds the circumference of a shaft to be $11^{\prime \prime}$. In order to find the strength of the shaft he must know the area of a cross-section. Find this area.
20. Which has the greater capacity, one $4^{\prime \prime}$ pipe or two $2^{\prime \prime}$ pipes?
21. The area of an $8^{\prime \prime}$ circle is how many times the area of a $4^{\prime \prime}$ circle? The area of a $12^{\prime \prime}$ circle is how many times the area of a $4^{\prime \prime}$ circle?
22. Employ the relation between the sides of a right-angled triangle to find the diameter of a pipe equal in carrying capacity to two pipes $2^{\prime \prime}$ and $3^{\prime \prime}$ in diameter respectively. Illustrate by means of a diagram. Extend this method of illustration to find the diameter of a pipe equal in carrying capacity to three pipes $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$ respectively, in diameter.
23. The total pressure in a cylinder is to be 6000 lb . If the pressure per sq. in. is 50 lb ., what is the diameter of the piston?
24. A circular duct in a heating system is to supply air for four rectangular outlets $6^{\prime \prime}$ by $8^{\prime \prime}$. What must be the diameter of the duct so that its capacity will be equal to the combined capacity of the four outlets?
25. Establish experimentally the formula-Area of ring $=$ mean circumference \times width-by considering the ring as a trapezium.
26. The inner and outer diameters of a ring are $9^{\prime \prime}$ and $10^{\prime \prime}$ respectively, find the area of the ring.
27. A hollow cast-iron column has inside and outside diameters of $12^{\prime \prime}$ and $16^{\prime \prime}$ respectively, find the area of the end of the pipe.
28. What is the area of a circular race track 378 yd. inside _diameter and 16^{\prime} wide?
29. What is the area of the end of a cast-iron pipe that is $12^{\prime \prime}$ outside diameter and $1^{\prime \prime}$ thick?
30. What is the area of the end of a rod that is $4 \frac{1}{2}^{\prime \prime}$ outside diameter, and has a $1^{\frac{1}{1}}{ }^{\prime \prime}$ hole running through the centre of it?
31. A circular court 150 yd . in diameter is to have a walk 10^{\prime} wide around it on the inside. The remainder is to be sodded. Find the total cost if the walk costs $\$ 2.00$ a sq. yd. and the sodding 40 c a sq. yd.
32. The radius of a circle is 8^{\prime}. Find the area of a sector of the circle, the angle of which is 36°.
33. Find the radius of a circle such that the area of a sector whose angle is 60° may be 182.5 sq. in.
34. Find the area of the sector of a boiler supported by a gusset-stay, the radius of the boiler being $42^{\prime \prime}$ and the length of the arc $25^{\prime \prime}$.
35. The centres of two circles which intersect are 12^{\prime} apart. The radius of the one circle is 9^{\prime}, and that of the other 8^{\prime}; find the area of the part which is common to both circles.
36. Find the area of the segment of a circle if the chord be $15^{\prime \prime}$. long and the height of the arc $6^{\prime \prime}$.
37. Construct an arc of a circle by tracing part way around any circular object. Join the ends of the arc to form the segment of a circle. Find the centre of the circle and determine the length of the arc by treating as part of the total circumference. Also find the length of the arc by the formula $\frac{8 a-c}{3}$, and hence determine the percentage error in this formula.
38. Find the area of the segment in the above by finding the area of the sector and subtracting the triangle. Also, find area by the formula $\frac{h^{3}}{2}+\frac{2}{3} c h$, and hence determine the percentage error in this formula.
39. The Ellipse. An ellipse is a plane figure bounded by a curved line, such that the sum of the distances of any point
 in the bounding line from two fixed points is constant. Each of these fixed points is called a focus (plural foci).

Figure 44 shows an ellipse for which the sum of the distances of the point P from the foci F and F^{\prime} is equal to the sum of the distances of any other point in the bounding line from F and $F^{\prime} . A B$ is called the major axis and $C D$ the minor axis.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Since it is necessary to employ Trigonometry to find the apothem, the following table is given:

Number of Sides.	When Side is a Multiply a^{2} by	When Area is a^{2} Multiply a by
3	$\cdot 433013$	$1 \cdot 519671$
4	1	$1 \cdot$
5	$1 \cdot 720477$.762387
6	$2 \cdot 598076$	$\cdot 620403$
7	$3 \cdot 633912$.524581
8	$4 \cdot 828427$.455090
9	$6 \cdot 181823$.402200
10	$7 \cdot 694209$.360511
11	$9 \cdot 365640$.326762
12	$11 \cdot 196150$	$\cdot 298858$
15	$17 \cdot 642360$.238079
18	$25 \cdot 520770$	$\cdot 197949$
20	$31 \cdot 567876$	$\cdot 177980$

Explanation of table. The first column gives the number of sides, the second gives the area when the side is known, the third gives the side when the area is known.

Thus, if the side of a five-sided regular polygon is 6 in . then the area is obtained by multiplying 6^{2} by $1 \cdot 720477$; also if the area of a ten-sided regular polygon (decagon) is 256 sq. in. the length of a side is obtained by multiplying $\sqrt{256}$ by $\cdot 360511$.

Example:-The side of a twelve-sided regular polygon is $7^{\prime \prime}$. Find the area.

From the second column of the table-

$$
\text { Area }=7 \times 7 \times 11 \cdot 196150=548 \cdot 61135 \text { sq. in. }
$$

Example:-The area of a nine-sided regular figure is 726 sq. ft. Find the length of a side.

From the third column the length of the side $=\sqrt{726} \times \cdot 402200$

$$
=10.8353^{\prime} .
$$

101. Irregular Figures. Simpson's Rule for Finding Area.

The area of an irregular figure may be accurately determined by the use of a planimeter, a description of which is given on page 131. When great accuracy is not required, a sufficiently accurate measurement may be made by the use of Simpson's Rule.

Fig. 46
Figure 46 represents an irregular figure. The base line is divided into eight equal parts. The perpendiculars to this base line, d_{1}, d_{2}, d_{3}, $d_{4}, \quad d_{5}, d_{6}, d_{7}, d_{8}, d_{9}$, are called ordinates, and since there is an even number of divisions there will be an odd number of ordinates. The rule applies only when there is an odd number of ordinates.

Consider Figure 47 consisting of the first two sections of Figure 46.
$\boldsymbol{H} \boldsymbol{M}$ is drawn through \boldsymbol{E}

Fig. 47 parallel to $B C$ and such that $B K=K N=N C$.

The area of $A B C D=$ area of $A B K H+$ area of $H K N M+$ area of $M N C D$ approximately.

> Area of $A B K H=\frac{1}{3} s\left(d_{1}+d_{2}\right)$
> Area of $H K N M=\frac{2}{3} s d_{2}$
> Area of $M N C D=\frac{1}{3} s\left(d_{2}+d_{3}\right)$
> Area of $A B C D=\frac{1}{3} s\left(d_{1}+4 d_{2}+d_{3}\right)$

Similarly the area of the third and fourth sections

$$
=\frac{1}{3} s\left(d_{3}+4 d_{4}+d_{5}\right)
$$

Similarly the area of the fifth and sixth sections

$$
=\frac{1}{3} s\left(d_{5}+4 d_{6}+d_{7}\right)
$$

$\dot{\text { Similarly }}$ the area of the seventh and eighth sections

$$
=\frac{1}{3} s\left(d_{7}+4 d_{8}+d_{9}\right)
$$

Adding these we get the total area

$$
\begin{gathered}
=\frac{1}{3} s\left\{\left(d_{1}+d_{9}\right)+4\left(d_{2}+d_{4}+d_{6}+d_{8}\right)+2\left(d_{3}+d_{5}+d_{7}\right)\right\} \\
=\frac{1}{3} s(A+4 B+2 C)
\end{gathered}
$$

Where $A=$ sum of first and last ordinates.
$B=$ sum of the even ordinates.
$C=$ sum of the odd ordinates, omitting the first and last.
$s=$ common interval.
102. The Planimeter. The name of the instrument comes from "planus" meaning flat, and " meter" meaning measure. As the principle of recording area is the same in both of the types shown, Figures 48, 49, we will confine our description to the compensating planimeter. Its use consists in tracing the contour of the figure to be measured with the tracer f as shown. When doing so the wheel M is made to revolve, and it is by the extent of these revolutions that the area of the traced figure is ascertained. The various parts of the planimeter are so dimensioned as to bring about one complete revolution of the wheel when an area of 10 sq . in. has been traversed.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Applying this to the reading in Figure 50 we háve-the last

Fig. 50 number on the disc is $3, \therefore 30$ sq. in.; the last number on the drum is 5 , $\therefore 5$ sq. in.; the last division between the 5 and 6 is $8, \therefore \cdot 8$ sq. in.; the 4th division of the vernier is opposite a division on the drum, $\therefore \cdot 04$ sq. in. Total reading $35 \cdot 84$ sq. in.

Exercises LXIII.

1. Construct an ellipse in your laboratory book as suggested. Write a note as to why your construction fulfils the requirements. Find the area by counting the squares and check by formula for area.
2. Construct an ellipse on cardboard having major and minor axes $4^{\prime \prime}$ and $2^{\prime \prime}$ respectively, and also a rectangle having length $4^{\prime \prime}$ and breadth $2^{\prime \prime}$. Cut out both, weigh, and find the value of $\frac{w t . o f ~ r e c t a n g l e ~}{w t . ~ o f ~ e l l i p s e} . ~ D o ~ t h e ~ s a m e ~ w i t h ~ d i f f e r e n t ~$ materials and find the average of your results.
3. A plot of ground in the form of an ellipse has major and minor axes, 200^{\prime} and 150^{\prime} respectively. Draw to scale in your laboratory book and find the perimeter and area.
4. An elliptic man-hole door has major and minor axes of 3^{\prime} and 2^{\prime} respectively. It is made of cast iron $\frac{1}{4}^{\prime \prime}$ thick. Find weight if $1 \mathrm{cu} . \mathrm{in}$. weighs $\cdot 26 \mathrm{lb}$.
5. At what distance from the end of the major axis should the hole for the centre of revolution be drilled in an elliptic gear whose axes are $1^{\frac{1}{4}}{ }^{\prime \prime}$ and $2^{\prime \prime}$? (Elliptic gears will mesh when revolving about their foci).
6. The area of an elliptic sheet of zinc is 88 sq . in. If its minor axis is $4^{\prime \prime}$, find its major axis.
7. The head of a hexagonal bolt is $\frac{1^{\prime \prime}}{2}$ to the side; find the area of the head.
8. A square is $4^{\prime \prime}$ to the side. An octagon is formed by cutting off the corners of the square. Find the side of the octagon and hence its area. Find the area by subtracting the areas of the four corners from the square and compare with previous result.
9. Ten hurdles, each 4^{\prime} long, are placed to form a regular decagon. Find the area enclosed.
10. A steel plate in the form of a regular pentagon measures $1 \frac{3^{\prime \prime}}{4}$ on each side and is $\frac{1_{4}^{\prime \prime}}{}$ thick. Find its weight, if a cu. in. of steel weighs $\cdot 283 \mathrm{lb}$.
11. The area of, a regular hexagon is $284 \cdot 112$ sq. in. Find a side of the hexagon.
12. Regular polygons of 6 sides are inscribed in and circumscribed about a circle of radius 1^{\prime}. Find the difference of their areas.
13. Construct a semicircle $4^{\prime \prime}$ in diameter in your laboratory book. Find its area by Simpson's rule. Check by means of formula for the area of a circle and thus calculate the percentage error in Simpson's rule.
14. Construct an ellipse with major and minor axes $4^{\prime \prime}$ and $2^{\prime \prime}$ respectively. Proceed as in the preceding question.
15. Make a drawing of Figure 51 in your laboratory book. Common interval $\frac{1}{4}^{\prime \prime}$. If the scale be $\frac{3^{1} \Sigma^{\prime \prime}}{}$ to the foot, find the area in square ft. by Simpson's rule. Check by planimeter and estimate percentage error. Note-areas of similar figures are to one another as the squares on corresponding sides.
16. The ordinates of a curved piece of sheet lead in inches are $20,30,29 \cdot 9,29 \cdot 5,28 \cdot 4,25 \cdot 7,14 \cdot 2$. The common distance between them is $3 \cdot 65^{\prime \prime}$; find the area.
17. The half-ordinates of a transverse section of a vessel are in feet $12 \cdot 2,12 \cdot 2,12 \cdot 1,11 \cdot 8,11 \cdot 2,10,7 \cdot 3$ respectively. The common interval is $18^{\prime \prime}$; find the area.

CHAPTER XI.

RATIO•AND PROPORTION.

103. Ratio. We are constantly comparing weights, distances, sizes, etc. If one piece of metal weighs 50 lb . and another 10 lb ., we say that the first is five times as heavy as the second, or that the second is one-fifth as heavy as the first. If one board is 8 ft . long and another 2 ft . long, we say that the first is four times as long as the second, or that the second is one-fourth the length of the first.

This Relation between Two Quantities of the same Kind is called Ratio.

Note.-In the above definition of ratio it is important to notice "of the same kind." It would clearly be absurd to compare bushels and feet.

A ratio may be written in two different ways. For example, the ratio of the diameters of two wheels which are 10 in . and 16 in . in diameter can be written as a fraction $\frac{10}{16}$. Again, since a fraction indicates division, i.e., $10 \div 16$, the line in the division sign is sometimes left out and the ratio is written $10: 16$. In either case the ratio is read "as ten is to sixteen."

Since a ratio may be expressed as a fraction it may be reduced to lower terms without changing its value. For example, if one casting weigh 600 lb . and another $150 \mathrm{lb} .$, the ratio of the weight of the first to the weight of the second is $\frac{600}{150}=\frac{4}{1}$.

Example 1:
The diameter of the cylinder on an engine is $18^{\prime \prime}$ and the diameter of the piston rod is $3^{\prime \prime}$. What is the ratio of the cylinder diameter to the piston rod diameter?
$\frac{\text { Diameter of cylinder }}{\text { Diameter of piston rod }}=\frac{18}{3}=\frac{6}{1}$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Example 2:
If the diameter of a pulley is $40^{\prime \prime}$, and it makes 120 R.P.M., what is the R.P.M. of a second pulley belted to the first if its diameter is $16^{\prime \prime}$?

Note.-When two pulleys are belted together, the larger of the two is the one that makes the least R.P.M. The proportion formed from their diameters and revolutions is, therefore, called an inverse proportion.
Let $x=$ R.P.M. of the second pulley, then $40: 16=x: 120$

$$
\text { or } \begin{aligned}
16 x & =40 \times 120 \\
\text { or } x & =\frac{40 \times 120}{16}=300
\end{aligned}
$$

After some practice in proportion we might write this directly-R.P.M. of 16 in . pulley $=\frac{40}{16}$ of $120=300$.

Fig. 52

Fig. 53
105. Proportion in Similar Triangles:

In triangle $A B C$ and $D E F, B C$ and $E F$ are $1^{\frac{1}{2}}{ }^{\prime \prime}$ and $3^{\prime \prime}$ respectively, also $\angle B=\angle E$ and $\angle C=\angle F$.

The triangles $A B C$ and $D E F$ are, therefore; equiangular and are called similar triangles. If we compare corresponding sides with dividers we observe that $D E=2 A B$ and $D F=2 A C$.

This experiment would suggest that, when triangles are equiangular, their corresponding sides are proportional.

$$
\text { Thus, } \frac{B C}{E F}=\frac{A B}{D E}=\frac{A C}{D F} \text {. }
$$

Make drawings in your laboratory book to verify the above.

Observe this principle in the following Example :

Fig. 54
The top of a telegraph pole, Figure 54, is sighted across a 5^{\prime} pole placed 100^{\prime} from the foot of the telegraph pole, the observer sighting from the ground at a distance of 15^{\prime} from the foot of the 5^{\prime} pole. Find the height of the telegraph pole.

The triangles $A B E$ and $C D E$ are equiangular and therefore similar.

$$
\begin{aligned}
& \therefore \quad \frac{C D}{A B}=\frac{D E}{B E} \\
& \text { or, } \frac{C D}{5}=\frac{115}{15} \\
& \text { or, } C D=\frac{5}{15} \times \frac{115}{1}=38 \frac{1}{3}^{\prime} .
\end{aligned}
$$

Exercises LXIV.

1. A room is 16^{\prime} by 12^{\prime}. What is the ratio of the length to the breadth?
2. Two gear-wheels have 100 teeth and 40 teeth respectively. What is the ratio of the number of teeth?
3. Detroit has a population of $1,000,000$ and Toronto 600,000 . What is the ratio of the population of Toronto to that of Detroit?
4. A man rode 280 miles partly by rail and partly by boat. What distance did he travel by each, if the ratio is as 3 to 2 ?

5 . A locomotive has a heating surface of 1340 sq . ft. and a grate area of $24 \mathrm{sq} . \mathrm{ft}$. What is the ratio of the heating surface to the grate area?
6. The steam pressure in a locomotive is 196 lb . and the mean effective pressure in the cylinders is found to be 80 lb . What is the ratio of the mean effective pressure to the boiler pressure?
7. Two pulleys connected together have diameters of $36^{\prime \prime}$ and $22^{\prime \prime}$. If the first makes 120 R.P.M., what is the R.P.M. of the second?
8. The ratio of two gears connected together is as 5 to 3 . The first makes 105 R.P.M., how many does the second gear make?
9. If 15 tons of coal cost $\$ 120$, what will 18 tons cost?
10. If the freight charges on a shipment be $\$ 40.50$ for 216 miles, what should it be for 300 miles?
11. A pump discharges 20 gal. per min., and fills a tank in 24 hrs . How long would it take to fill the tank with a pump discharging 42 gal. per min.?
12. A machinist gets $\$ 7.50$ a day and a helper $\$ 5.00$ a day. How much would the helper receive when the machinist gets $\$ 80.00$, providing they both work the same number of days?
13. If a yard-stick held upright casts a shadow $3^{\prime} 9^{\prime \prime}$ long, how long a shadow would be cast at the same time by a chimney $66^{\prime} 8^{\prime \prime}$ high? Check by drawing to scale.
14. What is the height of a signal pole whose shadow is 12^{\prime}, when a 10^{\prime} pole at the same time casts a shadow of 2^{\prime} $4^{\prime \prime}$? Check by drawing to scale.
15. The length of shadow of a telegraph pole to the first cross-arm is 24^{\prime}. A 6^{\prime} pole at the same time casts a shadow of $2^{\prime} 8^{\prime \prime}$. What is the height of the first cross-arm? Check by drawing to scale.
16. In a mixture of copper, lead and tin there are 4 parts copper, 3 parts lead and 1 part tin. How many lb. of each would there be in 248 lb . of the mixture?
17. A solder is made of 5 parts zinc, 2 parts tin, and 1 part lead. How many parts of each metal in 96 lb . of the mixture?

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

CHAPTER XII.

SIMULTANEOUS EQUATIONS.

Formulas-(continued).
106. In the Discussion of the Simple Equation, we learned that it contained only one unknown quantity and that, therefore, the value of the unknown could be definitely determined.

$$
\text { Thus, if } \begin{aligned}
3 x+4 & =16 \\
3 x & =12 \\
x & =4 .
\end{aligned}
$$

If, however, a single equation contains two unknown quantities, we cannot find a definite value for either of them, and are restricted to finding the value of one in terms of the other.

Thus, in the equation $x+2 y=13$, if we transpose $2 y$ we have $x=13-2 y$. The value of x in this equation will depend upon the values assigned to y.

$$
\text { If, } \begin{aligned}
& y=1, x=13-2=11 . \\
y & =2, x=13-4=9 . \\
y & =5, x=13-10=3 .
\end{aligned}
$$

Similarly, if we give values to x we may obtain corresponding values for y. It is evident, then, that we cannot find definite values for x and y but have merely a statement of relation between them.

If, however, another relation between x and y be obtained from the same problem, we can, from the two equations, determine the definite values of x and y. If we also find that $3 x+y=14$, then transposing and dividing by 3 we have $x=\frac{14-y}{3}$.

$$
\begin{aligned}
& \text { If, as above, } y=1, \quad x=\frac{14-1}{3}=\frac{13}{3} . \\
& y=2, \quad x=\frac{14-2}{3}=4 . \\
& y=5, \quad x=\frac{14-5}{3}=3
\end{aligned}
$$

Comparing the two sets of values for x and y we observe that there is only one pair of values that will satisfy both equations, namely, $x=3$ and $y=5$. These values of x and y for the two equations are called simultaneous values and the equations are known as simultaneous equations.
107. In the following Problem we will illustrate Two Methods of Solution. One alloy 'contains 4% copper and another 10% copper. How many pounds of each should be used to make a 100 pound mixture containing 6% copper?

Solution by Substitution:
Let $x=$ No. of lb. from the first alloy.
And $y=$ No. of lb. from the second alloy.
Then $x+y=100$.
also, $\frac{4 x}{100}+\frac{10 y}{100}=\frac{6}{100} \times 100$, which reduces to $4 x+10 y=600$ or, $2 x+5 y=300$.

From
(1) $x=100-y$

Substituting in (2)

$$
\begin{aligned}
2(100-y)+5 y & =300 \\
200-2 y+5 y & =300
\end{aligned}
$$

giving

$$
\begin{aligned}
& y=33 \frac{1}{3} \\
& x=66 \frac{2}{3} .
\end{aligned}
$$

Substituting in (1)
Therefore we must use $66 \frac{2}{3} \mathrm{lb}$. from the first alloy and $33 \frac{1}{3} \mathrm{lb}$. from the second.

Solution by Elimination :

$$
\begin{align*}
x+y & =100 \tag{1}\\
2 x+5 y & =300 \tag{2}\\
(1) \times 2=2 x+2 y & =200 \\
\text { (2) }=2 x+5 y & =300 \\
-3 y & =-100 \\
y & =33 \frac{1}{3} . \\
\text { and } x=100-y & =66 \frac{2}{3} .
\end{align*}
$$

Subtracting

In simultaneous equations it frequently happens that one of the unknowns can be readily expressed in terms of the other, and the solution obtained by means of the simple equation. The problem given above affords an example of this.

It has been observed that, if the equation contains only one unknown, the value of this unknown may be 'found Ifrom one equation; also that, if the equation contains two unknowns, two equations are necessary to find the values of the unknowns.

This may be extended to three or more, and we say, generally, that we must have as many distinct equations as there are unknowns to be found.

Exercises LXV.

Solve the following equations:

1. $\begin{aligned} 3 x+4 y & =10 . \\ 4 x+y & =9 .\end{aligned}$
2. $4 x+7 y=29$.
$x+3 y=11$.
3. $8 x-y=34$. $x+8 y=53$.
4. $2 x+5 y=25$.
$3 x-y=9$.
5. $3 x-5 y=6$.
$4 x+3 y=37$.
6. $\frac{2 x}{3}+y=16$.

$$
x+\frac{y}{4}=14
$$

10. $\begin{aligned} \underset{5}{5}-\frac{y}{4}=0 . \\ 3 x-\frac{1}{2} y=17,\end{aligned}$
11. $\begin{aligned} & \stackrel{x}{5}-\begin{array}{l}y \\ 4\end{array}=0 . \\ & 3 x-\frac{1}{2} y=17,\end{aligned}$
$\bar{x}+2 y=1 \frac{1}{4}$.
12. $\frac{x}{a}+\frac{y}{3}=15$.
$\frac{x}{4}-\frac{y}{5}=4$.
13. $\frac{2}{4}+y=1$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
equilibrium in the case of parallel forces, the algebraic sum of the forces is 0 and the algebraic sum of the moments is 0 . - A uniform plank 20^{\prime} long, weight $90 \mathrm{lb} .$, rests on supports at its ends. A load of 500 lb . rests 8^{\prime} from one end. Find the reactions of the supports.
11. A uniform beam 16^{\prime} long weighs 300 lb . It is supported at one end and at a point 4^{\prime} from the other end. Calculate the reactions of the supports.
12. A uniform beam, 12^{\prime} long, is supported at each end and carries a distributed load, including its own weight, of $\frac{1}{2}$ ton per foot run. A concentrated load of 1 ton rests 5^{\prime} from one end and another of 3 tons, 4^{\prime} from the other end. Calculate the reactions of the supports.
13. If $\frac{E}{240+r}=\cdot 34$ and $\frac{E}{r}=1.47$ find E and r.
14. If $V_{1}=V_{0}(1+B t)$ and $V_{1}=12 \cdot 4$ when $t=21 \cdot 5$ and $V_{1}=17 \cdot 3$ when $t=75 \cdot 0$, find V_{0} and B.
15. The receipts of a railway company are divided as follows:- 40% for cost of operating; 10% for the reserve fund; a 6% dividend on the preferred stock which is $\frac{1}{4}$ of the capital; and the remainder, $\$ 630,000$, as dividend on the common stock, being at the rate of 4% per annum. Find the capital and receipts.

Exercises LXVII.

Formulas-(continued).

1. The time taken by a pendulum for a' complete oscillation is given by $t=2 \pi \sqrt{\frac{l}{g}}$, where t is the time in seconds', l the length in ft . and g the acceleration due to gravity in ft . per sec.

Solve for l and g :

$$
\begin{aligned}
& \text { If } l=1 \frac{1}{2}, g=32 \cdot 2 \text { find } t \text {. } \\
& \text { If } t=2, \quad g=32 \cdot 2 \text { find } l \text {. } \\
& \text { If } t=1 \cdot 57, \quad l=2 \text { find } g .
\end{aligned}
$$

2. The resultant of two forces at right angles is given by $R=\sqrt{\overline{P^{2}+Q^{2}}}$, where P and Q are the forces at right angles and \boldsymbol{R} the resultant.

Solve for P and Q :
If $P=8, Q=5$, find R.
If $R=17, Q=8$, find P.
3. The velocity of a body at the end of a specified time is given by $v=u+a t$, where v is the final velocity in ft. per sec., u the initial velocity in ft . per sec., a the acceleration in ft . per sec. per sec., t the time in seconds.

Solve for v, u, a, t :

$$
\begin{aligned}
& \text { If } u=12, \quad a=15, \quad t=6 \text {, find } v . \\
& \text { If } v=750, \quad a=30, t=18 \text {, find } u . \\
& \text { If } v=10 \cdot 9, \quad u=45, t=16 \text {, find } a . \\
& \text { If } v=215, \quad u=75, a=10 \text {, find } t .
\end{aligned}
$$

4. The space traversed by a body is given by $s=u t+\frac{1}{2} a t^{2}$, where s is the space in ft., u the initial velocity in ft . per sec., t the time in sec., a the acceleration in ft. per sec. per sec.

Solve for u and a :

$$
\begin{array}{lll}
\text { If } u=20, & a=32 \cdot 2, & t=8 \text {, find } s . \\
\text { If } s=300, & a=16, & t=5, \text { find } u . \\
\text { If } s=750, & u=25, & t=10, \text { find } a .
\end{array}
$$

5. The thickness of plate required in a boiler is given by $t=\frac{p d}{2 f e}$, where t is the thickness in in., p the pressure in lb. per sq. in., d the diameter of the boiler in in., f the tensile stress in lb. per sq. in., e the efficiency of the joint.

Solve for p, d, f, and e :
If $p=160, \quad d=8 \mathrm{ft} ., \quad f=20000, \quad e=\cdot 7, \quad$ find t.
If $t=\cdot 5, \quad d=90, \quad f=16000, \quad e=\cdot 6, \quad$ find p.
If $t=\frac{3}{8}, \quad p=150, \quad f=18000, \quad e=\cdot 7, \quad$ find d.
If $t=\frac{5}{16}, \quad p=140, \quad e=.75, \quad d=72, \quad$ find f.
If $t=\frac{7}{16}, \quad p=120, \quad d=48, \quad f=5$ tons, find e.
6. The Kinetic energy of a falling body in foot-pounds is given by $K=\frac{w v^{2}}{2 g}$, where K is the energy, w the weight of the body in lb., v the velocity in ft . per sec., g the acceleration due to gravity.

Solve for w, v, g :

| If $w=1000, \quad v=44$, | $g=32 \cdot 2$, | find K. |
| :--- | :--- | :--- | :--- |
| If $K=11 \cdot 2, \quad w=5000$, | $g=32 \cdot 2$, | find v. |
| If $K=12 \cdot 4, \quad v=35$, | $g=32 \cdot 2$, | find w. |

7. The effort of friction (measured in lb.) in diminishing the load lifted is given by $E=P V-W$, where E is the effort of friction, P the effort in lb., W the weight in lb., and V the velocity ratio $=\frac{\text { motion of effort }}{\text { motion of weight }}$.

Solve for P, V, W :

$$
\begin{array}{ll}
\text { If } P=2 \cdot 4, \quad V=16, \quad W=25, \quad \text { find } E . \\
\text { If } E=52, \quad V=16, \quad P=4 \cdot 2, \quad \text { find } W . \\
\text { If } E=82, \quad V=16, \quad W=30, \quad \text { find } P . \\
\text { If } E=104, \quad P=9, \quad W=40, \quad \text { find } V .
\end{array}
$$

8. The magnetic lines of force (Flux) is given by $Q=\frac{\cdot 4 \pi N I}{R}$, where Q is the total flux, N the number of turns of wire in the coil, R the reluctance of the magnetic circuit, I the current in amperes.

Solve for N, I, R :

If $N=200$,	$I=5$,	$R=\cdot 0002$,	find Q.
If $Q=30000$,	$N=500$,	$I=15$,	find R.
If $Q=100000$,	$N=50$,	$R=\cdot 00005$,	find I.

9. For a single riveted lap-joint, the efficiency in tension is given by $K_{t}=\frac{P-d}{\boldsymbol{P}}$, where K_{t} is the efficiency in tension, P the pitch in in., d the diameter in in. of the rivet.

Solve for P and d :

$$
\begin{array}{ll}
\text { If } P=1 \frac{1}{2} \text { in., } & d=\frac{5}{8} \text { in., find } K_{t} . \\
\text { If } K_{t}=\cdot 5, & d=\frac{9}{10} \text { in., find } P . \\
\text { If } K_{t}=\cdot 6, & P=1 \frac{3}{4} \text { in., find } d .
\end{array}
$$

10. The relation between a Centigrade and a Fahrenheit scale is given by $C=\frac{5}{9}(F-32)$, where C represents the Centigrade and \boldsymbol{F} the Fahrenheit reading.

Solve for \boldsymbol{F} :

> If $F=63^{\circ}$, find C.
> If $C=72^{\circ}$, find F.
> If $C=-4^{\circ}$, find F.
11. The counter electromotive-force (E.M.F.) of a motor is given by $\boldsymbol{E}=\boldsymbol{E}_{c}+\boldsymbol{I} \boldsymbol{R}$, where \boldsymbol{E} is the impressed E.M.F., $\boldsymbol{E}_{\boldsymbol{c}}$ the counter E.M.F., I the current in amperes, R the resistance in the armature.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Solve for $H . P$. and S :

$$
\begin{array}{llll}
\text { If } H . P . & =100, & & S=3000, \\
& & \text { find } W . \\
\text { If } S & =3200, & W=6 \mathrm{in}, & \\
\text { find } H . P . \\
\text { If } H . P . & =50, & & W=5 \mathrm{in} .,
\end{array}
$$

17. The length of belting in a closely rolled coil is given by $L=\cdot 1309 N(D+d)$, where L is the length in ft., D the diameter of the roll in in., d the diameter of the eye in in., N the number of turns in the coil.

Solve for N, D, d :

If $N=15$,	$D=16 \frac{1}{2}$,	$d=5$,	find L.
If $L=80$,	$D=14$,	$d=3$,	find N.
If $L=200$,	$D=44$,	$N=30$,	find d.

18. For a single riveted lap-joint the efficiency in shear is given by $K_{s}=\frac{a S_{s}}{P T S_{t}}$, where K_{s} is the efficiency in shear, a the cross-section area of the rivet in sq. in., P the pitch of the rivet in in., T the thickness of the plate in in., S_{s} the strength of rivet steel in shear (lb. per sq. in.), S_{t} the strength of plate in tension (lb. per sq. in.).

Solve for $a, S_{s}, P, T, S_{t}:$

$$
\begin{aligned}
\text { If } a= & \cdot 7854, S_{s}=30000, \quad P=1 \frac{1}{2} \text { in., } T=\frac{3}{8} \text { in., } \\
& S_{t}=40000, \text { find } K_{s} .
\end{aligned}
$$

If $K_{s}=1 \cdot 5, \quad S_{s}=32000, \quad P=1 \frac{3}{4} \mathrm{in} ., \quad T=5$ in., $S_{t}=35000$, find a.

- If $K_{s}=1 \cdot 75, \quad a=\cdot 5, \quad P=1 \cdot 3$ in., $T=\frac{1}{2} \mathrm{in}$.,

19. The horse-power of a boiler is given by B.H.P. = $\frac{W(H-t+32)}{34 \cdot 5 \times 965 \cdot 7}$, where B.H.P. is the boiler horse-power, W the number of pounds of water evaporated per hour, H the total heat of steam above $32^{\circ} \mathrm{F}$., t the temperature of the feed water.

Solve for W, H, t :
If $W \quad=20000, \quad H=1180, \quad t=100^{\circ}, \quad$ find B.H.P.
If B.H.P. $=600, \quad H=1175, \quad t=120^{\circ}$, find W.
If B.H.P. $=650, \quad H=1200, W=20000$, find t.
20. The quality of steam (\%) as determined by the throttling calorimeter is given by $x=100\left\{\frac{H-h-C_{p}\left(T_{s}-T_{e}\right)}{L}\right\}$, where x is the moisture in steam, H the total heat of steam at main pressure, h the total heat of saturated steam at pressure in calorimeter, T_{e} the temperature of saturated steam at pressure in the calorimeter, T_{s} the observed temperature in the calorimeter, C_{p} the specific heat of superheated steam at constant pressure, L the latent heat of steam at main pressure.

Solve for $H, h, C_{p}, T_{s}, T_{e}, L$:
If $H=1180, \quad h=1150, \quad T_{s}=220, \quad T_{e}=215, \quad C_{p}=48$, $L=920$, find x.
If $x=\frac{1}{50}(2 \%), \quad h=1160, \quad T_{s}=225, \quad T_{c}=218$, $C=\cdot 48, \quad L=930$, find H.

CHAPTER XIII.

GRAPHS.

108. If we wish to fix the position of a point \mathbf{P} on the page of this book, one way would be to find its perpendicular distance from the left of the page and also its perpendicular distance from the bottom of the page: If these distances were 3 in . and 4 in . respectively, then the point P would be definitely fixed with respect to the plane of the paper.

Consider a sheet of paper ruled as in Figure 55. If we know that a point P is 6 divisions to the right of $O Y$ and 4 divisions above $O X$, we can, at once, locate the position of the point by counting 6 divisions along $O X$ and then counting 4 divisions vertically to the point P. This method of fixing the point is called plotting the point. The lines $O X$ and $O Y$ are called Axes of Reference, the point of intersection O is called the Origin, and the distances 6 and 4, which locate the point, are called Co-ordinates. We would now say that the co-ordinates of P are 6 and 4 , and would write it $P(6,4)$, the first number always giving the distance along $O X$ and the second the distance along $O Y . O X$ is usually .spoken of as the axis of X and $O Y$ as the axis of Y. Distances along $O X$ are called abscissae and distances along $O Y$ are called ordinates. We see from the above that any point can be plotted on the squared paper if we know its distances from the axes $O Y$ and $O X$.
109. Let us use this for a Practical Purpose. A sewer runs across a rectangular lot and it is necessary to know its exact location in case of trouble later.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Measurements are taken according to the following plan:

Distance from $O Y$	5	10	15	25	35	45	55	65	75
Distance from $O X$	0	5	10	20	30	40	50	60	70

A graphical representation of the position of the sewer is shown in Figure 56. Each small division of the squared paper represents 1 ft . The first point A has for its co-ordinates $(5,0)$, the second point $B(10,5)$, the third point $C(15,10)$ and so on. If we join these points we have a graph of the position of the sewer. At some subsequent date it is necessary to make an excavation for the footings of a building on this lot, and the contractor wishes to know if a particular footing will come too near the sewer. He takes measurements and finds that the distance from the side corresponding to $O Y$ is 30 ft ., and the distance from the side corresponding to $O X$ is 25 ft . While these distances are not actually recorded in the data previously taken, yet by going out 30 ft . (30 spaces) from $O Y$ and up 25 ft . (25 spaces) from $O X$, he would find that he is directly over the sewer. This illustration brings out one of the most important functions of a graph: It gives results for data not actually recorded at the outset.
110. It usually happens in practice that we require to make a record of two corresponding sets of measurements, in which the unit of measurement in one is entirely different from the unit in the other.

The following will illustrate:
The observations below were taken of the loads on a lighting plant from 3 P.M. to 12 P.M. at intervals of one hour.

Time in hours. . \therefore	3	4	5	6	7	8	9	10	11	12
Load in Kilowatts.	50	60	76	120	140	150	142	100	45	30

Fig. 57

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Figure 58 is a graphical representation of this algebraical relation. Along the axis of Y we have represented the values of a, while along the axis of X we have the corresponding values of b. Corresponding values other than those recorded may be read off from the graph. Thus 77° Fahrenheit equals 25° Centigrade as represented in the drawing.

Another value of graphs is here illustrated, that is, they act as checks on computations.
112. It is often important to represent more than one Set of Relations on the same Sheet.

The following are the results obtained with a wheel and axle mounted on ordinary plain bearings. W represents the load lifted in pounds, \boldsymbol{P} the effort applied in pounds, \boldsymbol{F} the friction measured in pounds, E the efficiency percent.

W	P	F	E
.0	.8	1.60	0
5	4.30	3.60	58.2
10	7.14	4.28	70.1
15	9.91	4.82	75.7
20	12.81	5.62	78.0
25	15.63	6.26	80.0
30	18.50	7.00	81.2
35	21.50	8.00	81.4
40	24.45	8.90	81.8

A

Fig. 59

In Figure 59, the lower line represents the relation between the load and the effort. The middle line represents the relation between the load and the friction. The top line represents the relation between the load and the efficiency percent.

Note.-In the drawing of a graph relating to machines it often happens that the points are not absolutely on a straight line. It is necessary, in such a case, to take the line which lies most nearly along the path of the points.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Fig. 61
0

114. In Business Transactions frequent use is made of the Pictograph. This kind of representation takes a variety of forms-varying sized men may represent populations, varying sized bales of cotton may represent the export of cotton, and so on.

Figure 61, called the bar pictograph, is of frequent use.
Example:
The net income of a certain railway company for a recent year was divided as follows:

Sinking Fund Requirements, $\$ 2,000,000$.
Dividend on Preferred Stock, $\$ 5,000,000$.
Dividend on Common Stock, $\$ 18,000,000$.
Additions and Improvements, \$2,400,000.

- Surplus to Profit and Loss, $\$ 6,200,000$.

In Figure 61, the above amounts are represented by a series of parallel bars, each main division on the vertical line representing $\$ 2,000,000$. When the division of the income was presented in this form, the directors saw at a glance the relative division of the returns from the road.

This form of pictograph is also extensively used to represent a decline or growth in business.

Example:-The graph on page 161 is from a report re Toronto's gross funded debt 1910-1919.

It illustrates clearly the rapidity of the growth in recent years and its arrest in 1919.

When it is necessary to represent a percentage division, the circular pictograph is of common use.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

1. The distances along a road from a certain point and the height of the road above sea-level at these distances are shown as follows:

Distance from starting point in miles.

Height above sealevel in feet......

0	1	2	3	4	5	6	7	8
60	75	90	140	175	230	260	290	330

Represent the above relations by means of a graph. Estimate the probable height above sea-level $7 \frac{1}{2}$ miles from the starting point.
2. The following table represents the output of an automobile firm for the past ten years:

| Year. | 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number.... | 700 | 780 | 850 | 900 | 1000 | 950 | 960 | 1020 | 1050 | 1850 |

Represent the above relations graphically.
3. The following table gives the revolutions per minute of a 60 in . diameter locomotive driver and the corresponding speed of the locomotive in miles per hour:

Revolutions per min...........	0	60	90	100	150	200	250	275	300
Miles per hour..	0	$10 \cdot 5$	$15 \cdot 7$	$17 \cdot 5$	$26 \cdot 3$	35	$39 \cdot 3$	$48 \cdot 2$	$52 \cdot 5$

Represent the above graphically and find the revolutions for a speed of 30 miles an hour.
4. The following observations of temperature were recorded on July 25, 1919:

Hour of the day	4 A.M.	6 A.M.	8 A.M.	10 A.M.	12 NOON	2 P.M.	4 P.M.	6 P.M.	8 P.M.	10 P.M.
Temperature in degrees........	40	45	60	70	75	85	90	80	64	60

Draw a graphical representation of this variation in temperature.
5. If a cu. in. of steel weighs $\cdot 28 \mathrm{lb}$. construct a graph showing relation between volumes and weights.
6. If 1 inch $=2 \cdot 54$ centimetres, construct a graph showing relation between the two systems of measurement.
7. The following is an extract from a table giving breaking strength of steel, in pounds per sq. in., in relation to the percentage of carbon in the steel:

$\%$ Carbon.................	.09	$\frac{.16}{53000}$	$\frac{.20}{64000}$	$\frac{.31}{65000}$	$\frac{.39}{77000}$	$\frac{.50}{90000}$	$\frac{.57}{97000}$	$\frac{.71}{110000}$	$\frac{.724000}{1240}$
Breaking Strength......	$\frac{.79}{127000}$								

Represent the above graphically and estimate the percentage carbon for a breaking strength of 100,000 pounds per sq. in.
8. The prices charged by a manufacturing concern for a certain motor of different horse-powers is given by the following table:

H.P.......................	100	2	3	4	5	$7 \frac{1}{2}$	10	15
Price......	140	165	180	200	250	275	325	

Represent, graphically the relation between H.P. and price.
9. The quotations of a certain industrial stock at intervals of a week, were, $48,49,52 \frac{1}{2}, 53,56 \frac{1}{2}, 58,56 \frac{1}{2}, 55 \frac{1}{2}, 53$.

Represent graphically the probable fluctuations in price.
10. The record of a patient's temperature for a certain time at intervals of a half-hour, is $97,97 \cdot 5,98,98 \frac{1}{2}, 99 \frac{1}{2}, 101,101 \frac{1}{2}$, 102, 101, 100. Represent the fluctuations graphically.
11. A tram-car is found to travel the distance y, feet in x ' seconds, the distance moved in different times being measured 1 and recorded as follows:

Distance in feet	(y)	0	$7 \cdot 5$	13	20	27	34	42	$49 \cdot 5$
Time in seconds	(x)	0	1	2	3	4	5	6	7
8									

Represent this relation graphically.
12. A company finds that the buying expenses are 15% of its gross income; office expenses 5%; management 10%; other overhead 25%; selling expenses 30%; interest 10%; dividends 3%; incidentals 2%. Use the pictograph to represent the division of the gross income.
13. The value of the exports and imports of the United States for a given period is as follows:

Year.......	1830	1840	1850	1860	1870	1880	1890	1900
Value in Millions. .	134	222	318	687	829	1504	1647	2100

Use the pictograph to represent this growth in commerce.
14. The following results were obtained by hanging a series of weights on the free end of a spiral spring and thereby stretching it:

Weight in lb.	0	1	2	3	4	5	6	7	8	9	10
Stretch in in.	0	$0 \cdot 2$	$\cdot 4$	$\cdot 6$	$\cdot 8$	$1 \cdot 0$	$1 \cdot 2$	$1 \cdot 4$	$1 \cdot 6$	$1 \cdot 8$	$2 \cdot 0$

Represent this relation graphically and indicate the probable stretch for a load of $5 \frac{1}{2} \mathrm{lb}$.
15. The following results were obtained as in the preceding except that the stretch in inches is given by differences:

Load in lb.....	0	10	20	30	40	50	60	70	80	90	100	105	110	118	128	135	149	154	
Stretch in in. by differences	0	. 01	. 022	. 035	. 05	. 062	. 075	. 10	. 20	. 40	. 75	1.04	1.29	1.78	2.18	2.91	5.4	7.0	broke

Plot the above in two parts-the first for loads up to 60 lb ., the second for loads above. Compare the two graphs.
16. A car starting from rest is drawn by a varying force F pounds, which, after t seconds, is as shown in the following table:

t (seconds) $\ldots .$.	0	2	5	8	11	13	16	19	20
F (pounds) $\ldots . .$.	1280	1270	1220	1110	905	800	720	670	660

If the frictional resistance is constant and equal to 500 lb ., draw a graph of the above relation and indicate the force after 10 seconds.
17. The elasticity of a wire may be found by twisting. The following readings were taken in experimenting with a steel wire:

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

On the same sheet of paper draw graphs of the relation between load and effort, load: and friction, load and efficiency. From your graph estimate the effort necessary to lift a load of 40 lb ., also the friction and efficiency for this load.
22. From a series of tests on an oil engine the following values of the weight of oil used per hour (W) and the Brake Horse Power (B.H.P.) were obtained:

B.H.P....	$1 \cdot 0$	$2 \cdot 1$	$3 \cdot 0$	$4 \cdot 2$	4.70	$5 \cdot 3$
$W \mathrm{lb} . \ldots .$.	$1 \cdot 07$	$2 \cdot 16$	$2 \cdot 85$	3.91	4.40	$4 \cdot 90$

Represent the above graphically and estimate B. $\boldsymbol{H} . \boldsymbol{P}$. when $W=4 \mathrm{lb}$.
23. Toronto required $\$ 30,080,000$ during 1920 , to meet civic expenses. This was obtained as follows:

General taxes.	3,074,312
School taxes	6,396,788
Water rates.	2,840,066
Surplus from 1919	2,415,345
Hydro.	606,069
Local improvements	1,605,675
Street railway.	1,098,651
Abattoir	130,000
Rentals.	186,600
Licenses.	113,000
City car lines	445,000
C.N.E.	100,000
Fines	150,000
Other revenues.	917,120

Employ the circular pictograph to represent the above.
24. The following are the results obtained with a screw-jack:

Load in lb.....	0	5	10	15	20°	25	30	35	40	45
Effort in lb....	. 172	. 282	. 359	. 469	. 578	. 688	. 797	. 960	1.000	1.100
Frlctlon in lb..	19.86	27.48		.	46.77		62.04		75.50	83.13
Efficiency \%...	0	15.4			29.9		32.6		34.6	35.1

On the same sheet of paper draw graphs of the relation between load and effort, load and friction, load and efficiency.
Estimate the missing quantities from your graph.
25. The results shown in the following table were obtained experimentally from a lifting machine. Plot the two curves connecting P and W and F and W :

Load (W) lb...........	0	5	10	15	20	25	30	35	40
Effort (P) lb..	. 094	. 45	. 81	1.17	1.53	1.88		2.61	2.97
Friction (F^{\prime}) lb.........	2.34	6.32	10.31	14.29	18.28	22.26			34.21

Estimate the missing quantities from your graph.
26. The tax rate in Toronto in 1919 was $28 \frac{1}{2}$ mills, divided as follows:

General City purposes	89 mills
Schools	7.90 mills
Public Library	0.25 mills
Administration of Justi	2.27 mills
Street Maintenance	3.93 mills
War Expenditure	3.26 mill

Employ the circular pictograph to represent the above.
27. The increase in wages of the employees of a railway company from 1913 to 1916, based on $\$ 1$ a day, is given as follows:

Trackmen from.	to	\$1.30
Station Agents from.	1.75 to	2.25
Office Clerks from.	2.10 to	2.50
Trainmen from	1.80 to	2.80
Machinists from	2.25 to	3.20
Conductors from	$3: 15$ to	4.25
Enginemen from.	3.60 to	4.75

Represent these increases graphically.
28. The following table gives the edible portions of various kinds of fish and the price per pound:

Kind	Halibut	Haddock	Whitefish	Bass	Herring	Perch	Pike	Canned Salmon
Edible portion in $\% \ldots$.	72	49	56	45	57	37	42	86
Price per lb....	24.	18	20	22	16	12	18	32

Express graphically the edible portions of these various kinds of fish that can be bought for $\$ 1$.
29
THE INCREASE IN THE LENGTH OF OCEAif LINERS IS GIVEN BELOW:

Represent by means of the bar pictograph

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Outside calipers are used for taking outside dimensions as the diameter of a cylindrical piece of work, inside calipers for measurements such as the bore of a pipe, and hermaphrodite calipers for finding the centre of a piece of work and for scribing.

The calipers must be finely adjusted so that they will just touch the sides of the work as they pass over it. Care must also be taken to keep them at right angles to the work.

Fig. 66
In laying the calipers on the scale to find the length, place one leg at the end of the scale and read the mark on the scale where the other leg touches (see Figure 66).
118. Centring. Work is frequently held in a lathe between two points called centres. In order to accommodate these, small holes must be drilled in the ends of the work. These holes are countersunk to the same angle as the centres, usually 60°.
(1) Centring by hermaphrodite calipers. The calipers are
 set so that the pointed leg reaches approximately the centre of the work: The calipers are then placed at A, B, C and D and arcs are described as shown. The centre of the work will be the centre of the figure thus obtained.

Fig. 67

(2) Centring by the centre square. The centre square consists of a head and blade. The head is so adjusted that the edge of the blade comes across the diameter of a piece of round stock placed in the head as shown.

A line is drawn along the blade on the work. The work is then turned to some other position and another diameter is drawn. Where these diameters cross will be the centre.
119. Vernier. With the scale, Figure 69, we could measure to a certain degree of accuracy. If the length

Fig. 68 came between 7 and 8, we could estimate the amount, say
7.6. For obtaining greater accuracy in this part between the 7 and 8 a device known as a vernier is used (Pierre Vernier -1631).

4

	l_{1}										

Fic. 69
In Figure 70 a second scale $C D$, called a vernier, is placed alongside of the scale $A B$ and we observe that 10 divisions on the vernier is equal to 9 divisions on the scale. Obviously

Fig. 70
each division on $C D$ is $\frac{1}{10}$ less than a division on $A B$. Therefore the length between the 1 mark on $A B$ and the 1 mark on $C D$ will be $\frac{1}{10}$ of a division on $A B$. Also the length between the 2 mark on $A B$ and the 2 mark on $C D$ will be $\frac{2}{10}$ of a division on $A B$, and so on.

Fig. 71
In Figure 71 the reading on AB is 2 plus a decimal. To get the decimal part we observe that division 4 of the vernier coincides with a division on the scale. Evidently the excess of the reading over 2 is the difference between 4 divisions on AB and 4 vernier divisions, which as above explained is $\frac{4}{10}$ of a division on AB . Therefore the reading is $2 \cdot 4$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
the edge of the thimble two small divisions are showing, therefore $2 \times \frac{1}{40}{ }^{\prime \prime}$ or $2 \times \cdot 025^{\prime \prime}=\cdot 05^{\prime \prime}$.

The thimble has evidently turned 12 spaces from the zero mark, therefore $\frac{12}{2} \frac{2}{5}$ of $\frac{1}{40}{ }^{\prime \prime}=\frac{12}{100 \sigma^{\prime \prime}}=\cdot 012^{\prime \prime}$.
\therefore total reading $=\cdot 4^{\prime \prime}+\cdot 05^{\prime \prime}+\cdot 012^{\prime \prime}=\cdot 462^{\prime \prime}$.
If the micrometer has a vernier, of the type described, the divisions on the thimble can be divided, making the micrometer read to 10,000 ths.

Exercises LXIX.

Fig. 73

1. Calculate the micrometer readings in the above figures.
2. If the thimble be turned backward through 6 complete revolutions, what decimal of an inch is the micrometer opened?
3. Through how many turns must the thimble be moved to open the micrometer $\cdot 7^{\prime \prime}$?
4. The sleeve reading is 4 and the thimble reading is 18. What is the opening of the micrometer?
5. How many turns must the micrometer be opened to read $\cdot 458^{\prime \prime}$?
6. A spindle is ground to $1 \cdot 345^{\prime \prime}$. What is the setting on the micrometer?
7. A ball measures " $864^{\prime \prime}$. What is the setting of the micrometer?
8. Calculate the setting of the micrometer for $\frac{7}{16}$ ".
9. Explain how you would set a micrometer for $\frac{2^{\prime \prime}}{1000}$ over $\frac{3}{4}$ ".
10. Calculate the setting of the micrometer for $\frac{5}{8}^{\prime \prime}$.
11. Vernier Caliper. The vernier caliper consists of a bar with a sliding jaw. The bar is divided the same as the

Fig. 74

Fig. 74a-
sleeve of the micrometer, i.e., the smallest division being $\frac{1}{40}$ of an inch.

On the sliding-jaw is a vernier. It is divided into 25 parts, the total length of these parts being equal to 24 divisions on the bar. As previously described in the case of the vernier, the distance between say the 4 th mark on the vernier and the 4 th mark on the bar will be $\frac{4}{20}$ of a division on the bar. Since a division on the bar is $\frac{1}{40}$ of an inch, this distance will be $\frac{4}{25} \times \frac{1}{40}=\frac{4}{1000}$ of an inch.

In the preceding figure our object is to obtain the bar reading opposite the 0 on the vernier. The last figure showing on the bar is $3, \therefore \cdot 3^{\prime \prime}$. From the 3 on the bar to the last division before the 0 on the vernier we have three small divisions. $\therefore 3 \times{ }_{4^{1} 0^{\prime \prime}}=3 \times \cdot 025^{\prime \prime}=\cdot 075^{\prime \prime}$. To get the vernier reading we observe that the 5 line on the vernier is exactly opposite a

\therefore total reading $=\cdot 3^{\prime \prime}+\cdot 075^{\prime \prime}+\cdot 005^{\prime \prime}=\cdot 380^{\prime \prime}$.

Exercises LXX.

1. What would be the correct setting for a vernier caliper to read 1.642"?
2. A reading on the vernier caliper shows $1^{\prime \prime}, 3$ tenths, 2 small divisions, while the 12 th division on the vernier is in line with a beam division. What is the reading?
3. How would you set a vernier caliper to read $\frac{3}{8}$ "?
4. What fraction of an inch is represented when the bar shows 2 tenths, 2 small divisions, and the 6 th division on the vernier is in line with a beam division?
5. How would you set a vernier caliper to read $\cdot 7645^{\prime \prime}$?
6. A reading on the vernier caliper shows $3^{\prime \prime}, 3$ tenths, 3 small divisions, while the 8th division on the vernier is in line with a beam division. What is the reading?
7. Cutting and Surface Speed. In the running of machinery in the shop, the workman should know the speed at which to run the machine in order to give the best results. Lathes, milling machines, etc., are provided with attachments for changing the speed. This speed depends on the kind of material in the work, whether it is a roughing or finishing cut, etc.

In the lathe the cutting speed is the rate at which the work passes the tool and is usually reckoned in 1 feet per min. The same definition would apply to the cutting speed of a planer. In the shaper, however, it is the tool that is moving and as a consequence the cutting speed would be the rate at which the tool passes over the work.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

3. A piece of work with a diameter of $3^{\prime \prime}$ is being turned at a cutting speed of 50 ft . per min. What are the R.P.M.?
4. A $30^{\prime \prime}$ grinding wheel is run at 50 R.P.M. What is the surface speed?
5. At what R.P.M. should a $50^{\prime \prime}$ wheel be run, for a surface speed of 300 ft . per min.?
6. What sized wheel should be ordered to go on a spindle running 1600 R.P.M., to give a surface speed of 4000 ft . per min.?
7. An $8^{\prime \prime}$ shaft is being run to give a cutting speed of 50 ft . per min. What are the R.P.M.?
8. A cast-iron pulley is machined at a cutting speed of 30 ft . per min. If the R.P.M. is 10 , what is the diameter of the pulley?
9. What would be the rim speed in ft. per min. of a flywheel 10^{\prime} in diameter, running 75 R.P.M.?
10. How many revolutions per min. will it take to turn a piece of tool steel $2^{\prime \prime}$ in diameter with a cutting speed of 40 ft. per min.?
11. Cutting Feed. In turning a piece of work in the lathe, the $\mathrm{f}_{\text {eed }}$ is the number of revolutions of the work to one inch travel of the carriage.

In drilling, the feed is the number of revolutions necessary to cause the drill to descend 1 in .

Example 1:
How many revolutions are necessary to take one cut over a shaft 6^{\prime} in length with a feed of 30 ?

Length of shaft $=72^{\prime \prime}$.
\therefore number of revolutions $=72 \times 30=2160$.
Example 2:
How long will be necessary to take one cut over a shaft 3^{\prime} long and $3^{\prime \prime}$ in diameter, with a cutting speed of 30 ft . per min . and a feed of 34 ?

Circumference of work $=3 \times \frac{22}{7}=\frac{66}{7}{ }^{\prime \prime}=\frac{66^{\prime}}{84}$
Since cutting speed is 30
\therefore R.P.M. $=30 \div \frac{66}{84}=30 \times \frac{84}{66}$.

Revs. necessary to finish the work $=36 \times 34$
\therefore time required $=(36 \times 34) \div\left(30 \times \frac{84}{66}\right)=32+\min$.
On account of variations in the nature of materials used, especially of cast-iron, and also in the cutting capacity of tool steels, no fixed rule can be given for cutting speeds and feeds. Generally, for roughing-slow speed and heavy feed; for finishing-high speed and light feed.

Exercises LXXII.

1. How many revolutions will be necessary to take a cut over a steel rod 8^{\prime} in length with a feed of 24 ?
2. How long will be necessary to take a cut over a shaft $22^{\prime \prime}$ long and $2 \frac{1}{2}^{\prime \prime}$ in diameter with a feed of 20 and a speed of 30 ft . per min.?
3. A piece of work 5^{\prime} in length is being turned at the rate of 60 R.P.M. If the feed be 16, what time will be necessary to make one complete cut?
4. A cast-iron pulley is $18^{\prime \prime}$ in diameter and has a $6^{\prime \prime}$ face. If the cutting speed be 40 ft . per min. and the feed 16, how long will it take for one cut over the work?
5. A shaft 6^{\prime} long and $4^{\prime \prime}$ in diameter is being turned at a cutting speed of 30 ft . per min. If the feed is 20 , what fraction of the surface will be cut over in 15 min ?
6. A drill is being fed to the work at $\cdot 01^{\prime \prime}$ per revolution. If it makes 40 revolutions per min., in what time will it cut through $2^{\prime \prime}$ of metal?
7. A drill cuts $1 \frac{1}{2}^{\prime \prime}$ into a piece of work in 15 minutes. If it makes 36 revolutions per min., what is the feed of the drill?
8. A drill with a feed of 100 is making 50 revolutions per min . In what time will it cut through $2 \frac{1}{2}$ " of metal?

9 . In 10 min . one cut is taken over a shaft 3^{\prime} long and $4^{\prime \prime}$ in diameter. If the feed of the machine is 21 , what is the cutting speed?
10. It takes 12 min . to take one cut over a shaft $18^{\prime \prime}$ long and $3^{\prime \prime}$ in diameter.' If the cutting speed is 40 ft . per min., what is the feed?
124. The Trigonometrical Ratios. It is frequently necessary to make use of trigonometrical ratios in the machine shop. We will merely define these ratios without giving reasons for the names assigned.

1. The Sine of an angle $\quad=\frac{\text { Side Opposite }}{\text { Hypotenuse }}$.
2. The Cosine of an angle $=\frac{\text { Side Adjacent }}{\text { Hypotenuse }}$.
3. The Tangent of an angle $=\frac{\text { Side Opposite }}{\text { Side Adjacent }}$.
4. The Cosecant of an angle $=\frac{\text { Hypotenuse }}{\text { Side Opposite }}$.
5. The Secant of an angle $=\frac{\text { Hypotenuse }}{\text { Side Adjacent }}$.
6. The Cotangent of an angle $=\frac{\text { Side Adjacent }}{\text { Side Opposite }}$.

The contractions Sin, Cos, Tan, Cosec, Sec, Cot, are used when writing the above.

Fig. 75
In the above triangle:
$\operatorname{Sin} \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{AB}} . \quad \operatorname{Cos} \mathrm{B}=\frac{\mathrm{BC}}{\mathrm{AB}} . \quad \operatorname{Tan} \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}} . \quad \operatorname{Cosec} \mathrm{B}=\frac{\mathrm{AB}}{\mathrm{AC}}$.
Sec $B=\frac{A B}{B C} . \quad \operatorname{Cot} B=\frac{B C}{A C}$.
Tables giving the values of the trigonometrical ratios of all angles from 0° to 90° are available.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

It is approximately $\frac{5}{8}^{\prime \prime}$ per ft ., but varies somewhat according to the following table:

Number	Inches per Foot
0	.625
1	.600
2	.602
3	.602
4	.623
5	.630
6	.626

Of the above numbers 1,2 and 3 are more commonly used.
(2) Brown and Sharpe Taper (B. \& S.). The Brown and Sharpe taper is $\frac{1}{2} \mathrm{in}$. per ft . for all sizes except No. 10, which is $\cdot 516 \mathrm{in}$. per ft .

It is the taper used on milling machine arbors, the milling machine having been developed largely by Brown and Sharpe.
(3) Jarno Taper. The Jaruo taper is $\cdot 6 \mathrm{in}$. per ft. for all sizes. It is frequently used on lathe centres.
126. Methods of Cutting Tapers on the Engine Lathe.
(1) By Means of the Compound Rest.

In cutting short tapers and bevels, this compound rest (Fig. 78) is used, the extent of the work being limited by the length of the compound rest screw. This attachment is used in turning head-stock centres. A graduated slide divided into degrees permits of adjustment to any required angle.
(2) By Offsetting the Tail Stock.

When the tail centre and head centre of the lathe are in alignment, the cutting tool moves in a line parallel to a line
connecting the two centres. If a piece of work be turned in this position, a uniform cut will be taken throughout its

Fig. 78
length. If, however, the tail centre be moved out of alignment with the head centre, the cut will be deeper at one end than at the other.

The following diagram will help to make this clear:

Fig. 79
In the above diagram the tail centre is represented as set over an amount x. If a piece of work be turned when the
centres are related in this way, the radius of the work at the tail centre will be less by x than the radius of the work at the head centre. Since the taper is the difference in diameter between the centres, it follows that the offset of the tail stock is one-half this difference in diameter.

Example:
A piece of work $9^{\prime \prime}$ long is to be turned with a taper of $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ per foot; find the amount of offset of the tail stock.

A taper of $\frac{1}{2}^{\prime \prime}$ in $12^{\prime \prime}=$ a taper of $\frac{9}{12} \times \frac{1^{\prime \prime}}{}$ in $9 \prime$.

$$
=\text { a taper of } \frac{3^{\prime \prime}}{8} \text { in } 9^{\prime \prime} .
$$

As the tail stock must be set over one-half of this amount, the required offset is $\frac{3}{16}{ }^{\prime \prime}$.

In the above method it must be kept in mind that the amount of offset of the tail stock is one-half the difference of the end diameters whether the taper extends the full length of the work or not.

Example:
A steel pin $12^{\prime \prime}$ long is to be tapered for $8^{\prime \prime}$ and turned straight for the remaining $4^{\prime \prime}$. The diameter at the large end is $1 \frac{5}{8}{ }^{\prime \prime}$ and the small end is to be $1^{\prime \prime}$ in diameter; find the amount of offset.

The taper in $8^{\prime \prime}=1^{\frac{5}{8}}{ }^{\prime \prime}-1^{\prime \prime}=\frac{5}{8 \prime}$
\therefore taper in $12^{\prime \prime}=\frac{12}{8}$ of $\frac{5}{8 \prime \prime}=\frac{15}{16}{ }^{\prime \prime}$
\therefore amount of offset $=\frac{1}{3} 2^{\prime \prime}$.

(3) By Means of a Taper Attachment.

Many lathes are now fitted with a taper attachment. This is attached to the back of the lathe and is connected to the cross-feed. A movable slide can be adjusted at various angles to the travel of the carriage, and the cross-feed screw having been released, the cross-feed slide will move backward and forward according to the alignment of the slide on the taper attachment. This method should always be used if a lathe with a taper attachment is available.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

18. Determine the distance that the tail stock should be set over to cut the following:
(a) A No. 0 Morse taper on a piece of work $9^{\prime \prime}$ long.
(b) A No. 1 Morse taper on a piece of work $7 \frac{1}{2}^{\prime \prime}$ long.
(c) A Jarno taper on a piece of work $10^{\prime \prime}$ long.
(d) A Brown \& Sharpe taper on a piece of work $18^{\prime \prime}$ long.
19. A piece of work $18^{\prime \prime}$. long is to be turned straight for $12^{\prime \prime}$ and the remaining $6^{\prime \prime}$ to be tapered. The diameter at the large end is to be $2^{\prime \prime}$ and at the small end $1^{\prime \prime}$; find the offset of the tail stock.
20. A tapered piece of work is $8^{\prime \prime}$ long, and a Jarno taper was turned on the piece. What is the difference in end. diameters?
21. A piece of work $20^{\prime \prime}$ long is to be turned to a diameter of $3^{\prime \prime}$ at the centre, and to be tapered from centre to each end with a taper of $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ per foot. Determine the end diameters and the offset of the tail stock.
22. A piece of work $12^{\prime \prime}$ long having a diameter at the larger end of $6^{\prime \prime}$, tapers to an angle of 10°. What is the amount of taper?
23. A piece of work $18^{\prime \prime}$ long and a diameter at the smaller end of $8^{\prime \prime}$, tapers to an angle of 8°. What is the amount of taper?
24. What is the angle of taper in a Morse No. 0, a Morse No. 2, a B. \& S., a Jarno?
25. Threads. A thread is formed by cutting a uniform spiral groove around a piece of work.

Fig. 80
The diameter of a screw is the distance from the point of a thread on one side to a point on the opposite side (outside diameter of diagram). The inside diameter is the diameter measured at the bottom of the groove (see diagram). The pitch of a thread on a screw is the distance from the middle
point of one thread to the middle point of the next, measured in a line parallel to the axis. Pitch is usually stated as the number of threads per inch. Thus if there are 10 threads per inch, the pitch is $\frac{1}{10}$.

$$
\text { Stated generally : Pitch }=\frac{1}{\text { No. of threads per inch. }}
$$

To estimate the number of threads per inch, place a mark on the scale on the point of a thread and count the number of grooves within the inch line, or count the number of threads and subtract 1 .

The lead of a screw is the distance the screw advances in one complete turn. In a single threaded screw the pitch is equal to the lead. Thus if the pitch is $\frac{1}{10}$, the screw will move forward $\frac{1}{15}{ }^{\prime \prime}$ in one complete revolution. In a double threaded screw the pitch is $\frac{1}{2}$ the lead, in a triple threaded screw $\frac{1}{3}$ the lead, and so on.

If a screw has a right-handed thread it turns in the direction of the hands of a clock when screwed into the nut. If a lefthanded thread it will turn in the opposite direction when screwed into the nut.

Exercises LXXIV.

1. Secure a number of different kinds of screws and find the number of threads per inch in each.
2. What is the lead of a single threaded screw if it has (a) 6 threads per inch, (b) 12 threads per inch, (c) 15 threads per inch?
3. A single threaded screw advances $2^{\prime \prime}$ in 12 turns, what is the pitch?
4. What is the pitch of a double threaded screw if it has 12 threads per inch?
5. A jack-screw has 4 threads per inch. How far does it move in $\frac{1}{2}$ a revolution?
6. What is the pitch of a triple threaded screw that advances . 3 " in 6 revolutions?
7. What is the pitch of a double threaded screw which advances $1^{\prime \prime}$ in 6 revolutions?
8. Kinds of Threads:
(1) Sharp " V" Thread.

Fig. 81
The sharp " V" thread is a thread having its sides at an angle of 60° to each other and being perfectly sharp at both top and bottom. It is difficult to get a sharp " V " thread on account of the wear on the point of the tool in cutting.

Depth of "V" thread.
In figure above the thread has a pitch of 1 ", then in the triangle $A B C$ each side is $1^{\prime \prime}$ in length. The depth of the thread will be equal to $B D$, the altitude of the triangle.

In the right-angled triangle $B C D, D B^{2}=B C^{2}-C D^{2}$

$$
\therefore D B^{2}=1^{2}-\left(\frac{1}{2}\right)^{2} \text { or } D B=\sqrt{\frac{3}{4}}=\cdot 866^{\prime \prime} .
$$

If the pitch be only $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, then since the triangle formed would be similar to the triangle $A B C$ of the preceding, the depth would be $\frac{1}{2}$ of $\cdot 866^{\prime \prime}=\cdot 433^{\prime \prime}$. 'If the pitch be $\frac{1}{12}{ }^{\prime \prime}$ then for like reason the depth would be $\frac{1}{12}$ of $\cdot 866^{\prime \prime}=\cdot 0721^{\prime \prime}$.

Calculations for threads are usually made on the double depth. In a thread of $1^{\prime \prime}$ pitch the double depth would be $2 \times \cdot 866^{\prime \prime}=1 \cdot 732^{\prime \prime}$.

Since by the above the depth is proportional to the pitch, 1.732 is used as a constant for all " V " threads.

Example:
If the pitch of a "V" thread is I^{1-0} " the double depth would be $\frac{1}{10}$ of $1 \cdot 732=\cdot 1732$ ".

Since pitch $=\frac{1}{\text { Number of threads per inch }}$,
1.732
\therefore double depth $=\frac{1}{\text { Number of threads per inch }}$,
or, for brevity, $D=\frac{1 \cdot 732}{N}$, where D is the double depth, and N the number of threads per inch.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
(2) The United States' Standard Thread (U.S. Std.).

Fig. 82
This thread is commonly used in machine work as it gets over the difficulty of the sharp edges of the "V" thread.

This thread has the same triangular form as the sharp "V" thread but is flattened at the point and bottom. This flattened part is $\frac{1}{8}$ of the pitch in width. As $\frac{1}{8}$ of the height is taken from the top and bottom the depth of the thread is $\frac{3}{4}$ the depth of the "V" thread. \therefore depth $=\frac{3}{4}$ of $\cdot 866$ " $=\cdot 649$ ", Also double depth is $\frac{3}{4}$ of $1 \cdot 732 "=1 \cdot 299 "$.

As in the sharp "V" thread, the double depth of the U.S. Std. for different pitches may be found by dividing the constant by the number of threads per inch.
\therefore Double Depth of U.S. Std.thread $=\frac{1 \cdot 299}{\text { Number of threads per inch }}$.
Also Root Diameter $=$ Outside Diameter $-\frac{1 \cdot 299}{\text { Numberofthreadsperinch }}$,
To find the size of tap drill for a U.S. Std. thread we would proceed as in the case of a sharp " V " thread.

Example:
What sized tap drill would be used for a $\frac{5}{8} "^{\prime \prime}$ screw, U.S. Std. thread, 11. threads per inch?

Root Diameter $=$ Outside Diameter - Double Depth

$$
=\cdot 625^{\prime \prime}-\frac{1 \cdot 299^{\prime \prime}}{11}=\cdot 5069^{\prime \prime} .
$$

From table of decimal equivalents $\frac{33}{64}$ is the next above and consequently the correct size.

Exercises LXXVI.

1. What is the double depth of a U.S. Std. thread of $\frac{1}{8}$ pitch?
2. What is the root diameter of a $\frac{9}{16}{ }^{\prime \prime}$ U.S. Std. threaded screw, 12 threads per inch?
3. The root diameter of a $\frac{3}{4}^{\prime \prime}$ U.S. Std. threaded screw is -6201". What is the pitch?
4. The root diameter of a U.S. Std. threaded bolt is 3.567 " . If the pitch is $\frac{1}{3}$, what is the outside diameter of the screw?
5. If the single depth of a U.S. Std. thread is $\cdot 0491^{\prime \prime}$, find the pitch?
6. If the double depth of a U.S. Std. thread is $\cdot 3248^{\prime \prime}$, what is the number of threads per inch?
7. The single depth of a U.S. Std. thread is $\cdot 1998^{\prime \prime}$, what is the number of threads per inch?
8. What sized tap drill would be used for a $1 \frac{1}{8}^{\prime \prime}$ screw, U.S. Std. thread, 7 threads to the inch?
9. What sized tap drill would be used for a $1 \frac{3}{4}^{\prime \prime}$ screw, U.S. Std. thread, 5 threads to the inch?
10. What sized tap drill would be used for a $1^{\prime \prime}$ screw, U.S. Std. thread, 8 threads to the inch?
(3) Square Thread.

Fig. 83
The square thread is used in screws which are subjected to heavy loads, the jack-screw being an example.

In this thread the sides are parallel, the thickness of the tooth, the depth, and the width of the groove being all theoretically equal. In practice, however, the width of the groove is made slightly larger than the thickness of the thread to allow for clearance.

The pitch-or the distance from the middle point of one tooth to the middle point of the next-is in the square thread equivalent to one tooth and one space.

If, as in previous cases, we take a pitch of $1^{\prime \prime}$, then the thickness of the thread will be $\frac{1}{2}{ }^{\prime \prime}$, the depth $\frac{1}{2}^{\prime \prime}$, and the width of the groove $\frac{1}{2}{ }^{\prime \prime}$.

Example:
Find the root diameter of a square thread $3^{\prime \prime}$ in diameter, with a pitch of $\frac{1}{4}$. If the pitch is $\frac{1}{4}$, then the depth is $\frac{1}{8}{ }^{\prime \prime}$. \therefore double depth $=\frac{1}{4}$ ". $\quad \therefore$ root diameter $=2 \frac{3}{4}{ }^{\prime \prime}$.

We could obtain the same result by using a formula similar to that for preceding threads.

Root Diameter $=$ Outside Diameter $-\frac{1}{\text { No. of threads per inch }}$.
\therefore Root Diameter $=3^{\prime \prime}-\frac{1}{4}{ }^{\prime \prime}=2 \frac{3}{4}^{\prime \prime}$.
(4) Acme 29° thread.

Fig. 84
This thread was designed to overcome the defects in the square thread. It is less difficult to make and does away with the sharp corners. Its principle use is in machine tool manufacture, where it is used for lead screws and other service where power is transmitted.

The angle between the threads is 29°, and theoretically the depth of the thread is one half the pitch.

If we consider the figure to the right above-pitch $\mathbf{1}^{\prime \prime}$ we have:

$$
\text { In } \begin{aligned}
\triangle A B C, B C & =\cdot 5^{\prime \prime} \operatorname{Cot} 14^{\circ} 30^{\prime} \\
& =\cdot 5^{\prime \prime} \times 3 \cdot 86671 \\
& =1 \cdot 93335^{\prime \prime}
\end{aligned}
$$

$\therefore 2 A M=1 \cdot 93335^{\prime \prime}-\cdot 5^{\prime \prime}=1 \cdot 43335^{\prime \prime}$
$\therefore A M=.71667^{\prime \prime}$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

(5) Whitworth Thread.

Fig. 85
This is a standard thread in England and on the Continent.
The sides form an angle of 55° with one another, while the top and bottom are rounded. The rounded part at both top and bottom is equal to one-sixth of the total depth of triangle above, leaving two-thirds for the depth of the thread.

In above figure if $A D=x, B C=$ radius of rounded part (r), then $A B=\frac{x}{6}+r$.

If the pitch be $1^{\prime \prime}$ we have:
In $\triangle A D E, A D=.5 \operatorname{Cot} 27^{\circ} 30^{\prime}$
$=.5^{\prime \prime} \times 1 \cdot 92098$
$=\cdot 96049^{\prime \prime}=x$.
In $\triangle \dot{A} B C, \operatorname{Cosec} 27^{\circ} 30^{\prime}=\frac{\frac{x}{6}+r .}{r} \quad \therefore 2 \cdot 16568=\frac{\frac{x}{6}+r}{r}$
$\therefore 2 \cdot 16568 r=\frac{x}{6}+r$
$\therefore 1 \cdot 16568 r=\frac{x}{6}=\frac{.96049}{6}=\cdot 16008^{\prime \prime}$
$\therefore r=\cdot 1373^{\prime \prime}$
depth of thread $=\frac{2}{3} \times \cdot 96049^{\prime \prime} \doteq \cdot 64033^{\prime \prime}$.
The dimensions of this thread stated in terms of the pitch (P) are as a consequence of the above:
$D_{\text {epth }}=.64033$ P.
Radius of rounded part $=\cdot 1373 P$.
Example:
Find the depth and radius of curvature of a Whitworth thread having a pitch of $\frac{1}{10}$.

Depth $=.64033 \times \frac{1}{10}=\cdot 064033^{\prime \prime}$.
Radius of Curvature $=\cdot 1373 \times \frac{1}{10}=\cdot 01373^{\prime \prime}$.

Exercises LXXVIII.

1. Find the depth and radius of curvature of a Whitworth thread having a pitch of $\frac{1}{12}$.
2. The depth of a Whitworth thread on a $\frac{3}{4}^{\prime \prime}$ screw is $\cdot 064033^{\prime \prime}$ What is the pitch and the diameter at the root?
3. A $1^{\prime \prime}$ screw has a Whitworth thread with a pitch of $\cdot 1250^{\prime \prime}$. What is the depth of the thread and the diameter at the root?
4. A $1 \frac{1}{4}{ }^{\prime \prime}$ screw with a Whitworth thread has a diameter at the root of $1.067^{\prime \prime}$. Find depth of thread, the pitch, and radius of curvature.
5. The depth of a Whitworth thread on a $2^{\prime \prime}$ screw is $\cdot 1423^{\prime \prime}$. Find the number of threads per inch, the diameter at the root, and the radius of curvature.
6. A $\frac{3}{8}$ " screw has a Whitworth thread with 16 threads per inch. Find the depth of the thread, the diameter at the root, and the radius of curvature.

129. Thread Cutting.

Gear Trains. One of the common ways of transmitting motion from one point to another is by means of gear trains.

Fig. 86
The simplest form of gear train, having but two gears, is shown in Figure 86. Gears are usually known by their number of teeth. Thus, if I has 20 teeth it would be called a 20 -toothed gear. Similarly $I I$ would be called a 60 -toothed gear.

If two such gears are in mesh, as above, and the motion from I is transmitted to $I I, I$ would be known as the driver and $I I$ as the driven. As each tooth in I pushes along a corresponding tooth in $I I$, it follows that one revolution of I will cause $I I$ to make only one-third of a revolution. Therefore the shaft to which I is keyed will make three revolutions while the shaft to which $I I$ is keyed is making one revolution. This principle is used extensively in gear trains.

Fig. 87
In Figure 87 we have three gears in the train. It may be necessary to insert the intermediate gear $I I$, either, that I and $I I I$ may have the same direction, or to permit of I driving III without increasing the size of the gears. The gear II has no effect on the speed ratio of I and III, for when I moves one tooth the same amount of motion will be transmitted to $I I$, which in turn will move III one tooth. Since each revolution of I will result in one-fourth of a revolution of $I I I$, therefore the speed ratio of I to $I I I$ will be 4 to 1 .

This may be stated as follows:

$$
\frac{R . P \cdot M: \text { of driver }}{R . P \cdot M \cdot \text { of driven }}=\frac{\text { teeth on driven }}{\text { teeth on driver }}=\frac{80}{20}=\frac{4}{1 .}
$$

Frequently it is necessary to make such a great increase or decrease in speed, that to accomplish it with a simple train of

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Cutting a Thread. If a piece of work, on which a thread is to be cut, is placed in a lathe, it will revolve at the same rate as the spindle. If the spindle and lead screw turn at the same rate, then the number of threads per inch on the work will be the same as the number of threads per inch on the lead screw. If it is necessary that the number of threads per inch on the work differ from the number of threads per inch on the lead screw, then the principle of changing the speed by inserting gears of different sizes becomes necessary.

Fig. 89
Figure 89 shows the relation of gears in a simple geared lathe.

The spindle gear turns with the spindle, and drives the inside stud gear through the idler. The change stud gear, which is keyed to the inside stud, transfers the motion through another idler to the lead screw.

If the spindle gear in the above has 24 teeth, the inside gear on the stud 24 teeth, the change stud gear 40 teeth, and the lead screw 80 teeth, then:-Speed of spindle $\frac{24}{24}$ of speed of stud. Speed of stud $\frac{80}{40}$ of speed of lead screw. \therefore Speed of spindle $=\frac{24}{24} \times \frac{80}{40}=\frac{2}{1}$ of speed of lead screw.

The same result may be obtained by substituting in the formula, giving:
$\frac{\text { Revolutions of spindle }}{\text { Revolutions of lead screw }}=\frac{\text { Product of No. of teeth in driven }}{\text { Product of No. of teeth in drivers }}$.

$$
=\frac{24 \times 80}{24 \times 40}=\frac{2}{1} .
$$

In this case if the lead screw has 6 threads per inch, then the work would have 12 threads per inch.

Knowing the Lead of the Lathe we can find an arrangement of gears which will give the desired number of threads per inch on the work.

Example:

If the lead of the lathe is 8 , find the necessary gears on stud and lead screw to cut a thread of $\frac{1}{10}$ pitch.

In this case the lead screw will advance $\frac{1}{8}^{\prime \prime}$ in one revolution and we want the work to advance $\frac{1}{10}^{\prime \prime \prime}$ in one revolution.

This ratio of 8 to 10 would be obtained if we placed an 8 -toothed gear on the stud and a 10 -toothed gear on the lead screw. These gears are, however, not obtainable, but the same ratio may be maintained if we place a 48 -toothed gear on the stud and a 60 -toothed gear on the lead screw.

Gears furnished with a Lathe. Gears for a lathe usually vary in size by adding the same number of teeth each time to the gear just below. The two common sets are those obtained by adding 4 to the one below, giving $24,28,32 \ldots .120$, and those obtained by adding 7, giving 21, 28, 35.... 105 . This is called gear progression.

Exercises LXXIX.

1. A lead screw has 6 threads per inch. What gears must be placed on stud and lead screw to cut 16 threads per inch?
2. Determine the change gears for cutting a $\frac{1}{12}$ pitch thread when the lead screw has a $\frac{1}{8}$ pitch.
3. A lathe with a lead screw of $\frac{1}{6}$ pitch has a 24 -toothed gear on the stud and a 60 -toothed gear on the lead screw. How many threads will be cut on a screw when the carriage has advanced 3 inches?
4. How many threads per inch will be cut by a lathe when the lead screw has a 64 -toothed gear and the stud a 24 -toothed gear, the lead screw having a $\frac{1}{6}$ pitch?
5. We wish to cut 24 threads per inch on a lathe with a lead of 8 and a gear progression of 4 . What gears would be used?
6. The lead screw is $\frac{1}{8}$ pitch, the screw to be cut $\frac{1}{12}$ pitch. If there is a 24 -toothed gear on the stud, what gear must be placed on the lead screw?
7. A lathe having a 72 -toothed gear on the lead screw and a 24 -toothed gear on the stud cuts 18 threads per inch. What is the pitch of the lead screw?
8. The lead screw has a 96 -toothed gear and a $\frac{1}{6}$ pitch. What gear on the stud will cut 24 threads per inch?
9. What gear must be used on the lead screw in order to cut 12 threads per inch, when the lead screw has 6 threads per inch and a 36 -toothed gear is used on the stud?
10. We wish to cut 14 threads per inch on a lathe with a lead of 6 and a gear progression of 7. What gears would be used?

Compound Gearing in the Lathe. Owing to the limited number of gears and also to give a wider range of speeds to those available, the principle of compound gears is used on the lathe.

Figure 90 represents the arrangement of gears on a lathe when compounding is necessary.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

screw gear, consisting of a 72 and a 36 (see diagram), we would have the following speed ratio:
$\frac{\text { Revolutions of spindle }}{\text { Revolutions of lead screw }}=\frac{\text { Product of No. of teeth in driven }}{\text { Product of No. of teeth in drivers }}$.

$$
=\frac{24 \times 72 \times 80}{24 \times 40 \times 36}=\frac{4}{1} .
$$

In this arrangement the spindle will make four revolutions when the lead screw is making one, therefore 24 revolutions when the lead screw is making 6 revolutions.

Example 2:
We wish to cut 3 threads per inch on a lathe with a lead of 6 . In this case it is necessary for the spindle to revolve only onehalf as fast as the lead screw. For this purpose we might use the simple gear with say an 80 on the change stud and a 40 on the lead screw. We might also use the compound gear with equal gears on the change stud and lead screw, say 40 and 40 , and interchange the gears on the compound, i.e., have the change stud mesh with the small gear on the compound and the lead screw mesh with the large gear on the compound. Then as in preceding cases:
$\frac{\text { Revolutions of spindle }}{\text { Revolutions of lead screw }}=\frac{\text { Product of No. of teeth in driven }}{\text { Product of No. of teeth in drivers }}$.

$$
=\frac{24 \times 36 \times 40}{24 \times 72 \times 40}=\frac{1}{2}=\frac{3}{6} .
$$

In practice the machinist reduces the method of finding the necessary gears when compounding to the following rule:
"Write the ratio of the speed of the driving gear to the driven gear as a ${ }^{\prime} f_{\text {raction, divide the numerator and denominator into }}$ two factors and multiply each pair of 'factors by the same number until gears with suitable number of teeth are $\mathrm{f}_{\text {ound }}$. The gears in the numerator are the driven and those in the denominator the driving gears."

Applying this rule to the two examples above, we have In Example 1:

$$
\begin{aligned}
\frac{24}{6}=\frac{6 \times 4}{3 \times 2} & =\left(\frac{6 \times 12}{3 \times 12}\right) \times\left(\frac{4 \times 20}{2 \times 20}\right) \\
& =\frac{72}{36} \times \frac{80}{40}=\frac{4}{1}
\end{aligned}
$$

In Example 2:

$$
\begin{aligned}
\frac{3}{6}=\frac{3 \times 1}{6 \times 1} & =\left(\frac{3 \times 12}{\overline{6} \times 12}\right) \times\left(\frac{1 \times 40}{1 \times 40}\right) \\
& =\frac{36}{72} \times \frac{40}{40}=\frac{1}{2}
\end{aligned}
$$

Reduction Gears in the Head-stock. Some lathes, particularly those intended for cutting fine threads, have reduction gears in the head-stock. If in this case equal gears are placed on the change stud and lead screw, the spindle does not make the same number of revolutions as the lead screw. The ratio of this gearing in the head-stock is usually 2 to 1 , so that with equal gears on the change stud and lead screw the spindle will turn twice as fast as the lead screw. In such lathes this must be taken into account in figuring the necessary gears.

Cutting of Double, Triple, etc., Threads. To cut a double thread on a screw, say 8 - per inch, we would set the lathe for cutting half that number, in this case 4 . Having cut this, turn the work one-half of a revolution and repeat the operation.

To cut a triple thread, set the lathe for cutting one-third the number. Having cut this, turn the work one-third of a revolution and repeat.

Exercises LXXX.

1. A lathe has a lead screw with a lead of 4, and has a 40toothed gear on the stud and a 90 -toothed gear on the lead screw. Using a 72 and 36 as compounding gears, how many threads are cut?
2. We wish to cut $11 \frac{1}{2}$ threads per inch on a lathe with a lead of 6 . If the gear progression is 4 , what gears would do the work by compounding?
3. We wish to cut $1 \frac{3}{4}$ threads per inch on a lathe, the lead screw having 6 threads per inch. If the gear progression is 4 , what gears would do the work by compounding?
4. We wish to cut 64 threads per inch on a lathe with a lead screw having 8 threads per inch. If a 24 -toothed gear is used on the stud, what gears placed on compound and lead screw would do the work?
5. A lathe has a lead of 6 . If the gear progression be 7, calculate the change gears for cutting 14 threads per inch.
6. What gears must be used to cut 12 threads per inch on a lathe having a lead of 6 , when 36 and 72 are used as compounding gears?
7. A special job requires $2 \frac{1}{2}$ threads per inch. If the lathe has a lead of 4 , what gears would do the work?
8. In a boat-lifting apparatus a 12 -toothed gear meshes with a 48 -toothed gear. Keyed to the latter is a 12 -toothed gear, which meshes in turn with another 48 -toothed gear on the revolving shaft. If the revolving shaft is 3 in . in diameter, how many turns of the handle will be necessary torraise the boat $5 \frac{1}{2}$ feet?
9. A lathe has 6 threads per inch on the lead screw and a 40 and 80 on the inside and outside compound respectively. What gears must be used on stud and lead screw to cut 3 threads per inch?
10. It is desired to cut 4 threads per inch on a piece of work The lead screw gear has 6 threads per inch, while a 36 -toothed gear is placed on the stud and a 48-toothed gear on the lead screw. What arrangement of compound gears would be suitable?

Quick Change Gears. To avoid the difficulty of having to calculate the necessary change gears, modern lathes are equipped with a mechanism for this purpose.

In Figures 91 and 92 this mechanism is shown.
The device is complete in one unit, and is contained in a box which is mounted on the front of the bed where its operating levers are convenient to the operator. The mechanism consists essentially of a cone of gears, an intermediate shaft, and a set of sliding gears. The tumbler gear is permanently in mesh with a long face pinion located inside the barrel about which the

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

In Figure 93 some of the more important terms with respect to a spur gear are indicated.

Fig. 93
The Pitch Circle is the line half-way between the top and bottom of the teeth. When two spur gears mesh, their pitch circles are regarded as being in contact.

The Pitch Diameter is the diameter of the pitch circle.
The Diametral Pitch is the number of teeth to every inch of pitch diameter of the gear. If the gear has 36 teeth and is 4 in . in diameter, it is said to be a 9 pitch gear.

The Circular Pitch is the distance from the centre of one tooth to the centre of the next, measured along the pitch circle.

The Thickness of the tooth should be slightly less than the space between the teeth to allow for clearance, but in practice they are calculated as being equal. As a result either the' tooth or the space is one-half the circular pitch.

Clearance must be provided at the bottom of the space between the teeth (see diagram). It is usually $\frac{1}{10}$ of the thickness of the tooth measured on the pitch circle.

The Addendum is the part of the tooth projecting beyond the pitch circle. It is reckoned as a fraction of the size of the tooth. Thus in a 12 pitch gear the addendum would be $\frac{1}{1_{2}^{2}}{ }^{\prime \prime}$.

The Dedendum is the part of the tooth between the pitch circle and the working depth.

The addendum plus the dedendum make the working depth of the tooth.

The Root Diameter is the diameter measured at the bottom of the space (see diagram).

The Outside Diameter is the diameter measured at the outside of the gear (see diagram).

Knowing the number of teeth in a gear and the diametral pitch, to find the size of gear blank, i.e., outside diameter.

Example:
What should be the outside diameter of a gear blank for a gear of 98 teeth and a diametral pitch of 14 ?

Diameter of pitch circle $=\frac{98}{14}=7^{\prime \prime}$.
Addendum $=\frac{1}{14}{ }^{\prime \prime}$ on one side.

$$
=\frac{1^{\prime \prime}}{7} \text { on both sides. }
$$

\therefore Outside diameter $=7^{\prime \prime}+\frac{1}{7}{ }^{\prime \prime}=7 \cdot 1428^{\prime \prime}$.
To Find the Depth of Cut necessary in the Preceding Example.
Total depth $=$ Addendum + Dedendum + Clearance .
Since the clearance depends on the thickness of the tooth it will first be necessary to determine the thickness.

Number of teeth $=98$.
Since there are 14 teeth for $1^{\prime \prime}$ of diameter there will be 14 teeth for $3 \cdot 1416^{\prime \prime}$ of circumference.
\therefore Circular pitch $=\frac{3 \cdot 1416}{14}=\cdot 2244^{\prime \prime}$.

Since the circular pitch is the distance which a space and tooth together occupy,
\therefore thickness $=\frac{1}{2}$ of $\cdot 22444^{\prime \prime}=1122^{\prime \prime}$.
Since clearance $=\frac{1}{10}$ of thickness,
\therefore clearance in above $=\cdot 01122^{\prime \prime}$.
\therefore Total depth $=\frac{1}{14}{ }^{\prime \prime}+\frac{1}{14}{ }^{\prime \prime}+\cdot 01122^{\prime \prime}=\cdot 15407^{\prime \prime}$.

Exercises LXXXI.

1. The circular pitch of a gear is $\cdot 3927$ ". What is. the diametral pitch?
2. The diametral pitch is 12 . Find the circular pitch.
3. Find the thickness of tooth on a 14 pitch gear.
4. Find the total depth of tooth on a 14 pitch gear.
5. Find the thickness of tooth on a 16 pitch gear.
6. Find the total depth of tooth on a 16 pitch gear.
7. Find the outside diameter of a gear blank for a 60 -toothed gear, 12 pitch.
8. Find the outside diameter of a gear blank for 20 teeth with a circular pitch of $\cdot 7854^{\prime \prime}$.
9. What is the number of teeth on a gear 6 " outside diameter, 12 pitch?
10. What is the number of teeth on a gear $8^{\prime \prime}$ outside diameter, 6 pitch?
11. What is the pitch of a gear having 63 teeth and measuring $6 \cdot 5^{\prime \prime}$ outside diameter?
12. What is the distance between the centres of a pair of gears having 72 teeth and 54 teeth respectively, 9 pitch?
13. The Milling Machine. "Milling is the process of removing metal with rotary cutters. It is used extensively in machine shops to-day for forming parts of machinery, tools, etc., to required dimensions and shapes. A machine designed especially for this purpose was in existence as early as 1818, but little progress was made in the process until after the invention of the universal milling machine in 1861-62 by Joseph R. Brown of J. R. Brown and Sharpe."

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

With Carbon Steel Cutters. Cast iron-40 ft. per min. Machine steel- 40 ft . per min. Annealed carbon steel-30 ft . per min. 'Brass or composition-80 ft. per min.

With High Speed Steel Cutters. Cast iron-80 ft. per min. Machine steel- 80 ft . per min. Annealed carbon steel- 60 ft . per min. Brass or composition- 160 ft . per min.
Feeds.
Feeds for milling cutters are from $\cdot 002^{\prime \prime}$ to $\cdot 250^{\prime \prime}$ per cutter revolution, and depend on diameter of cutter, kind of material, width and depth of cut, size of work and whether light or heavy machine is used.

In order to calculate the feed it is necessary to know the lead of the feed screw and the number of revolutions per minute at which it is turning. Thus, if the lead of the feed screw is $\frac{1}{4}{ }^{\prime \prime}$, and it is turning at the rate of 3 revolutions per min., then the feed $=\frac{1}{4}{ }^{\prime \prime} \times 3=\frac{3}{4}{ }^{\prime \prime}$ per min.

Exercises LXXXII.

1. A milling cutter $4^{\prime \prime}$ in diameter is turning at a rate of 40 R.P.M. What is the cutting speed?
2. A milling cutter $3 \frac{1}{2}^{\prime \prime}$ in diameter is cutting at a speed of $36 \frac{2}{3} \mathrm{ft}$. per min. What is the R.P.M.?
3. A milling cutter turning at a rate of 56 R.P.M. has a cutting speed of 60 ft . per min. What is the diameter of the cutter?
4. A milling cutter $6^{\prime \prime}$ in diameter is cutting at a speed of 66 ft . per min. What is the R.P.M.?
5. A milling cutter $2^{\prime \prime}$ in diameter is running at 58 R.P.M. What is the cutting speed?
6. A milling cutter turning at a rate of 30 R.P.M. has a cutting speed of 40 ft . per min. What is the diameter of the cutter?
7. The feed screw in a milling machine is single threaded and has a pitch of $\frac{1}{8}$. If it is turned at a rate of 6 R.P.M., what is the feed?
8. The feed screw in a milling machine has a double threadwith a pitch of $\frac{1}{4}$. If it is turned at a rate of 4 R.P.M., find the feed.
9. The feed screw on a milling machine has a lead of $\frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime}$. How many R.P.M. does it make if the feed is $1 \frac{1}{4}{ }^{\prime \prime}$ per min.?
10. The feed screw on a milling machine has a feed of $1 \frac{1}{2}^{\prime \prime}$ per min., and is being turned at 6 R.P.M. What is the lead of the screw?
11. Indexing. One of the purposes of the milling machine is to cut slots or grooves in a circular piece of work at regular intervals. It is, therefore, necessary that it should have an attachment for dividing the circumference of the work into equal parts. This attachment is called the dividing head. The process of dividing the work into equal parts is called indexing.

The metnods of indexing may be classified as-Rapid Indexing, Plain Indexing, Differential Indexing.

Rapid Indexing permits of only a limited number of divisions of the circumference of the work, plain indexing extends the number of divisions, while differential indexing permits of a still wider range.

Fig. 95
135. In Rapid Indexing the index plate is fastened directly to the nose of the spindle as shown in Figure 95. This plate usually has 24 holes and is rotated by hand to any desired position, being held in place by a stop-pin.

Assume that in Figure 96 we have a round-headed bolt which is required to be milled so that the head becomes

Fig. 96
square. In this case it is evident that the work must be turned through $\frac{1}{4}$ of a revolution when one side of the work has been milled and we are ready to mill the next. We would therefore turn the index plate $\frac{1}{4}$ of a revolution, i.e., 6 holes.

Using this kind of indexing we may obtain any number of divisions which will divide evenly into 24 , as two, three, four, six, etc.

- Fig. 97

136. Plain Indexing. In the figure above the index spindle is shown with a worm and worm-wheel mechanism, the worm

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

To accurately fix this $\frac{5}{7}$ of a revolution the index plate is made with a series of holes arranged in concentric circles. A sample plate is shown (Fig. 98).

It is required to choose some circle where the total number of holes can be divided by 7. In the plate shown the outside row having 49 holes will suffice.

We will, therefore, turn the index crank five complete revolutions, afterwards turn to the 35th hole in the outside circle of holes and insert crank-pin.

Most milling machines are furnished with three index plates, each having six index circles. The following numbers of holes in the index circles of the three plates are used:.

15	16	17	18	19	20
21	23	27	29	31	33
37	39	41	43	47	49

Exercises LXXXIII.

1. By the rapid method show how you would index for milling a hexagonal head on a round bolt, if the index plate has 24 holes.
2. A piece of work is to have eight sides'regularly spaced. How would you index by the rapid method, if the index plate has 24 holes?
3. What diameter must a piece be to mill square $1 \frac{1}{4}{ }^{\prime \prime}$ across the flats?
4. What diameter must a piece be to mill hexagonal $11_{4}^{1 \prime}$ across the flats?
5. Twelve flutes are to be milled in a tap. How would you index, using plain indexing, assuming that 40 turns of the index crank are required for one turn of the spindle?
6. It is required to cut nine regularly spaced flutes in a reamer. How would you index, assuming a ratio of 40 to 1 between index crank and spindle?
7. Assuming a ratio of 40 to 1 between index crank and spindle, find the number of complete turns, the proper plate, and the number of holes for indexing 15 divisions.
8. If the ratio between index crank and spindle be 60 to 1 , what indexing would be used for 21 divisions?
9. If the ratio between index crank and spindle be 40 to 1 , what indexing would be used to cut 84 teeth in a spur gear?
10. If the ratio between index crank and spindle be 40 to 1 , what indexing would be used to cut 105 teeth in a spur gear?
11. It is required to cut 85 teeth in a spur gear. How would you index assuming a ratio of 40 to 1 between index crank and spindle?

Fig. 99
137. Differential Indexing. Assume that we require to cut 101 teeth in a spur gear. If we proceed as in plain indexing we would conclude that the index crank must turn $\frac{40}{101}$ revolutions for milling each slot. As this fraction will not reduce
to lower terms it would be necessary to have a plate with a circle containing 101 holes. As such a plate is not available for all machines a different mechanism is necessary. The method employed in such cases is called differential indexing.

The diagrams 99 and $99 a$ will help to explain the method.

Fig. 99a

The index crank and index plate are shown connected with the worm and worm-wheel as in plain indexing. On the outer end of the spindle the gear a is fastened. To, an adjustable bracket are keyed the two gears b and c . The gear b meshes with a and the gear c with an idler \mathbf{i}, which in turn meshes with the gear d. Keyed to the same shaft with \mathbf{d} is a bevel gear \mathbf{e}, which meshes with another bevel gear f.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

the index plates, we will select a number on either side of 101 which is a multiple of some of the numbers. It is readily seen that 20 is a multiple of 100 and also that $\frac{8}{20} \times 100=40$. If, therefore, we make 100 moves of 8 holes each on the 20 hole circle we will turn the worm 40 revolutions.

If 101 such moves be made we would have $\frac{8}{20} \times 101=40 \frac{2}{5}$ rev. of worm. This is $\frac{2}{5}$ of a revolution too many, which may be offset by moving the index plate in the opposite direction to the spindle by suitable gears. Splitting this ratio into two parts we have $\frac{2}{5}=\frac{2}{1} \times \frac{1}{5}$.

Since we cannot multiply these fractions by any numbers which will give gears in stock, we write-

$$
\begin{aligned}
\frac{2}{5} & =\frac{2}{3} \times \frac{3}{5} \\
& =\left(\frac{2}{3} \times \frac{24}{24}\right) \times\left(\frac{3}{5} \times \frac{8}{8}\right) \\
& =\frac{48}{72} \times \frac{24}{40}
\end{aligned}
$$

.The 48 and 24 will be placed on the drivers, i.e., a and c, the 40 and 70 on the driven, i.e., b and d. It will be necessary to place one idler in the train, as in diagram, in order that the index plate may turn in the opposite direction to the spindle.

Example 2:
Required to cut 83 teeth in a spur gear.
Our object here is to turn the spindle $\frac{1}{83}$ of a revolution. Since 83 is not a multiple of any of the numbers on the index plates, we will select a number on either side of 83 which is a multiple of some of the numbers. Thus we observe that 16 is a multiple of 80 and also that $\frac{8}{16} \times 80=40$. If, therefore, we make 80 moves of 8 holes each on the 16 hole circle, we will turn the worm 40 revolutions.

If 83 such moves be made we would have $\frac{8}{16} \times 83=41 \frac{1}{2}$ rev. of the worm. As this is $1 \frac{1}{2}$ revolutions too many, the index plate must move opposite to the spindle.

As gears in the ratio of 3 to 2 are in stock, it is not necessary to split the ratio $\frac{3}{2}$, but write $\frac{3}{2}=\frac{48}{32}$.

Here the compound would be removed and the gears on worm and spindle connected by means of two idlers. The 48 gear would go on the driver, i.e., on a and the 32 gear on the driven, i.e., on d.

Example 3:
Required to cut 137 teeth in a spur gear.
By trying different combinations as in the preceding cases we find that $\frac{6}{21} \times 140=40$.

If, therefore, we make 140 moves of 6 holes each on the 21 hole circle, we will turn the worm 40 revolutions.

If 137 such moves be made we would have $\frac{8}{2 \mathrm{~T}} \times 137=39 \frac{3}{2 \mathrm{~T}}$ rev. of worm.

This lacks $\frac{18}{21}$ of a revolution, which may be offset by moving the index plate in the same direction as the spindle by suitable gears. As in the preceding case it is not necessary to split the ratio but use gears in the ratio of 6 to 7 , i.e., 24 and 28. The 24 will go on the driver, i.e., on a, and the 28 on the driven i.e., on d. One idler would be inserted to connect the worm and spindle.

Note.-When a simple gearing is used the number of idlers depends on whether the index plate is to turn in the same or opposite direction to that of the spindle. If in the same direction one idler will be inserted, if in the opposite direction two idlers.

To obviate the necessity of working out these gears, tables are available giving the necessary gears for all required divisions of the work.
138. Cutting Spirals. If the gears that drive the shaft carrying the worm gear be connected with the feed screw, then as the table advances the spindle will rotate. This will produce a spiral cut in the work, such as may be seen in a spiral reamer or a twist drill.

The gears for this purpose are shown in the following diagram:

The four change gears are indicated in the above figure. The screw gear and the first stud gear are the drivers, the others

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Example 2:
Find the change gears for cutting a spiral with a lead of $8 \cdot 333^{\prime \prime}$, when the lead of the machine is $10^{\prime \prime}$.
$\frac{\text { Lead of spiral }}{\text { Lead of machine }}=\frac{8 \frac{1}{3}}{10}=\frac{5}{6}$.
Splitting the ratio $\frac{5}{6}=\frac{5}{2} \times \frac{1}{3}$.

$$
\begin{aligned}
& =\left(\frac{5 \times 20}{2 \times 20}\right) \times\left(\frac{1 \times 24}{3 \times 24}\right) \\
& =\frac{100}{40} \times \frac{24}{72} .
\end{aligned}
$$

We will, therefore, place 100 and 24 on the worm and 2 nd stud respectively, and 72 and 40 on the feed screw and 1st stud respectively.
141. Position of Table in Cutting Spirals. In order that the cutter may have clearance in cutting the groove, it is necessary that the table of the machine should be set at an angle. This angle depends on two things:-The lead of the spiral and the diameter of the work to be milled. This angle may be determined either graphically or by calculation.

Fig. 102
In the figure $A B C$ is a right-angled triangle in which $B C$ is equal to the lead of the spiral and $A C$ the circumference of the work. The angle $A B C$ will then be the required angle.

Finding the angle by calculation is however a more accurate method, thus:
Tangent of required angle $=\frac{\text { Circumference of work }}{\text { Lead }}$.
From trigonometrical tables this angle can readily be found.
Example:
Find the angle at which the table must be set in milling a twist drill $1^{\prime \prime}$ in diameter, lead $8 \cdot 68^{\prime \prime}$.

If θ be the required angle, then $\tan \theta=\frac{3 \cdot 1416 \times 1}{8 \cdot 68}=\cdot 36193$

$$
\therefore \theta=19^{\circ} 54^{\prime}=20^{\circ} \text { (approx.) }
$$

Tables are available giving the proper gears and angle of the table for all necessary cases.

Exercises LXXXIV.

1. If the ratio between the worm and spindle of a dividing head is 40 to 1 , find the differential indexing for the following divisions:-83, 99, 111, 139, 159, 161, 171, 238, 269, 351. Verify from table.
2. What is the lead of a milling machine if the feed screw has a lead of $\frac{1_{4}^{\prime \prime}}{}$ and the ratio of worm to spindle is 60 to 1 ?
3. If the lead of a milling machine is $10^{\prime \prime}$, calculate the change gears for cutting spirals with the following leads:-.9", $1.067^{\prime \prime}$, $1 \cdot 200^{\prime \prime}, 1 \cdot 667^{\prime \prime}, 2 \cdot 200^{\prime \prime}, 3 \cdot 056^{\prime \prime}, 4 \cdot 000^{\prime \prime}, 5 \cdot 500^{\prime \prime}, 6 \cdot 482^{\prime \prime}, 8^{\prime \prime}$. Verify from table.
4. The following change gears were used in cutting a spiral, on worm 72 , on 1 st stud 24 , on 2 nd stud 24 , on screw gear 48. If the lead of the machine was $10^{\prime \prime}$, what was the lead of the spiral?
5. The following change gears were used in cutting a spiral, on worm 64, on 1 st stud 24 , on 2 nd stud 32 , on screw gear 40. If the lead of the machine was $10^{\prime \prime}$, what was the lead of the spiral?
6. The following change gears were used in cutting a spiral, on worm 86 , on 1 st stud 24 , on 2 nd stud 24 , on screw gear 40 . If the lead of the machine was $10^{\prime \prime}$, what was the lead of the spiral?
7. A spiral with a lead of $7 \cdot 92^{\prime \prime}$ is to be cut on a gear blank with a pitch diameter of $3^{\prime \prime}$; find the angle for setting the table.
8. A spiral with a lead of $9 \cdot 34^{\prime \prime}$ is to be cut on a twist drill with a diameter of $1 \frac{1}{4}{ }^{\prime \prime}$; find the angle for setting the table.
9. In milling a twist drill the table is set at an angle of 15°, and the lead of the spiral is $11 \cdot 724^{\prime \prime}$. Find the diameter of the drill.
10. In milling a twist drill the table is set at an angle of $17^{\circ} 30^{\prime}$, and the diameter of the drill is $1 \frac{1}{2}^{\prime \prime}$. Find the lead of the spiral.

Review Exercises LXXXV

1. What is the lead on a double-threaded screw of $\frac{1}{8}$ pitch?
2. A screw with a triple thread has a lead of $1^{\prime \prime}$. What is the pitch?
3. How many revolutions must be made with a doublethreaded screw, with a pitch of $\frac{1}{10}$, so that it may advance $2^{\prime \prime}$?
4. A sharp " V " thread with a pitch of $\frac{1}{12}$, makes 6 turns to the inch. How is it threaded? What is the double depth of the thread?
5. If the double depth of a sharp " V " thread is • 1924", what is the nu mber of threads per inch?
6. A $1 \frac{5}{8}$ " bolt with a sharp "V" thread has a diameter at the root of $1 \cdot 2784^{\prime \prime}$. What is the depth of the thread? What is the pitch?
7. How long will be necessary to take a cut over a shaft 3^{\prime} long and $2^{\prime \prime}$ in diameter with a feed of 18 and a speed of 36 ft. per min?
8. A drill cuts $\frac{7^{\prime \prime}}{8}$ into a piece of work in 10 min . If it makes 40 revolutions per min., what is the feed of the drill?
9. A piece of work $6^{\prime \prime}$ long is to have end diameters of $\cdot 7432^{\prime \prime}$ and $\cdot 6182^{\prime \prime}$; find the amount of taper and also the angle of taper.
10. A screw with a U.S. Std. thread has 16 threads to the inch. It has'a diameter at the root of $\cdot 2936$ ". What is the diameter of the screw?
11. A $6^{\prime \prime}$ screw with a Whitworth thread has a pitch of $\frac{2}{5}$. .What is the root diameter of the thread?
12. The width of the flat at the top of an Acme 29° thread is $\cdot 0371^{\prime \prime}$. What is the pitch?
13. A lathe has an 84 -toothed gear on the lead screw and the pitch of the lead screw is $\frac{1}{6}$. What gear on the stud will cut 18 threads per inch, simple gearing?

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

CHAPTER XV.

LOGARITHMS.

142. If we wish to multiply 100 by 1000 we may do so in either of two ways:
(1) $100 \times 1000=100000$
(2) $100=10^{2}$ and $1000=10^{3}$
$\therefore 100 \times 1000=10^{2} \times 10^{3}=10^{5}=100000$.
In the second method we observe that the product is obtained by adding the exponents of the powers of 10 which equal 100 and 1000.

If then we had numbers expressed as powers of 10 , it would be possible to multiply them together by adding their exponents.

Thus, if we wished to multiply 23 by 432 we might do so by addition of the exponents of the powers of 10 which equal 23 and 432.

We are here met by two difficulties.
(1) What powers of 10 equal 23 and 432 ?
(2) What number is represented by 10 when raised to the sum of these two powers?

Let us consider the following set of numbers:
(1) 10 , (2) 25 , (3) 100 , (4) 365 , (5) 1000 , (6) 7628 , (7) 10000. We know that in (1) $10=10^{1}$, and that in (3) $100=10^{2}$.
Now in (2) 25 is greater than 10, or 10^{1}, and less than 100 , or 10^{2}, therefore $25=10^{1+a}$ dectmal.

Again in (4) 365 is greater than 100 , or 10^{2}, and less than 1000 , or 10^{3}, therefore $365=10^{2+\mathrm{a} \text { dectmal. }}$

Further in (6) 7628 is greater than 1000, or 10^{3}, and less than 10000 , or 10^{4}, therefore $7628=10^{3+a}$ declmal.

Tables have been worked out giving the decimal parts of the powers of 10 in the above.

$$
\text { Thus, from the tables } \begin{aligned}
25 & =10^{1.39794 .} \\
365 & =10^{2.56229 .} \\
7628 & =10^{3.88241}
\end{aligned}
$$

This exponent of the power to which we must raise 10 to give the number is called the logarithm of the number.

$$
\text { Thus, logarithm of } \begin{aligned}
\text { logrithm of } & =1 \cdot 365=2 \cdot 56229 . \\
\text { logarithm of } 7628 & =3 \cdot 88241
\end{aligned}
$$

In this system-called the Briggs' System-the base is 10 , and all numbers are considered as powers of 10 .

The contraction "log" is used instead of logarithm.
143. Characteristic and Mantissa.

In $25=10^{1.39794 .}$
the 1 in the: exponent is called the Characteristic and the -39794 the Mantissa. The Mantissa is always positive.

Characteristic written at sight.
In the above set of numbers we observe that 25 which is greater than 10 and less than 100, has 1 for its characteristic; that 365 which is greater than 100 and less than 1000 has 2 for its characteristic; that 7628 which is greater than 1000 and less than 10,000 , has 3 for its characteristic. We, therefore, infer that the characteristic of the logarithm of any number greater than 1 is one less than the number of integral Ifigures in the number.
144. How to find the Logarithm of a number from the Tables.

Find the \log of 36.
As previously explained we at once write down the characteristic, 1.

To get the decimal part we go down the left-hand column to 36 , then along the horizontal row to the right, and under the vertical column headed 0 , we read $\cdot 55630$,

$$
\therefore \log 36=1 \cdot 55630
$$

Find the \log of 365 .
The characteristic here is 2 .
To get the decimal part we go down the left-hand column to 36 as before, then along the horizontal row to the right, and under the vertical column headed 5 , we read $\cdot 56229$.

$$
\therefore \log 365=2 \cdot 56229 .
$$

Find the \log of 3658.
The characteristic here is 3 .
To get the decimal part we proceed as in the last case, giving $3 \cdot 56229$. To make the adjustment for the 8 , we follow the same horizontal row out to the mean differences. In the vertical column headed 8 , we read 95 . This we add to $3 \cdot 56229$, giving the \log of $3658=3 \cdot 56229$

95
$3 \cdot 56324$
Find the \log of 36587 .
The characteristic here is 4 .
To get the decimal part we proceed as in the last example, giving 4.56324. To make the adjustment for the 7, we observe that in the same horizontal row, under 7 in mean differences, we have 83 . Since the 7 is in the fifth place, it has only one-tenth the value that it would have in the fourth place, therefore we move the 83 one place to the right before adding, thus $4 \cdot 56324$

83
$\therefore \log 36587=4 \cdot 563323=4.56332$ to 5 places.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Example:
Find the value of $45 \cdot 236 \times 31 \cdot 341$.

Antilog $3 \cdot 15159=14158$
16
30
$1417 \cdot 70$
$\therefore 45 \cdot 236 \times 31 \cdot 341=1417 \cdot 7$ to 5 figures.

Exercises LXXXVI.

Employ logarithms to find the value of:

1. $\quad 53 \times 82$.
2. $10 \cdot 64 \times 150$.
3. $483 \cdot 26 \times 108$.
4. $381 \cdot 56 \times 17 \cdot 928$.
5. $493 \cdot 75 \times 4 \cdot 73$.
6. $7.53 \times 20.08 \times 14.93$.
7. $146 \cdot 32 \times 78 \cdot 49 \times 10 \cdot 09$.
8. $9 \cdot 36 \times 4 \cdot 592 \times 3 \cdot 61 \times 1 \cdot 08$.
9. $8.99 \times 61 \cdot 3 \times 7 \cdot 6297 \times 3.92$
10. $5 \cdot 037 \times 236 \cdot 84 \times 1 \cdot 009$.
11. Logarithms Applied to Division.

We have learned by the foregoing that to multiply two numbers together, we add their logarithms and find the antilogarithm of the result.

Since division is the reverse of multiplication, we could without further detail infer that, to divide one number by another, we subtract their logarithms and find the antilogarithm of the result.

Thus, divide 365 by 73 .
\log of $365=2 \cdot 56229$
\log of $73=1 \cdot 86332$
difference $=\cdot 69897$
antilog of $\cdot 69897=49888$
103
80

$$
4 \cdot 99990 \quad \therefore 365 \div 73=4 \cdot 9999
$$

Example:
Find the value of $\frac{43 \cdot 21 \times 148 \cdot 92}{149 \cdot 7 \times 37.42}$
$\log 43 \cdot 21=1 \cdot 63548$
10
$\log 148 \cdot 92=2 \cdot 17026$ 265

Sum of logs of numbers in numerator $=3 \cdot 808549$ (a). $\log 149 \cdot 7=2 \cdot 17319$
$\log 37 \cdot 42=1 \cdot 57287$
206
$\overline{2 \cdot 17525}$

Sum of logs of numbers in denominator $=3.74835$ (b). (a) $-(b)=3 \cdot 808549$ $3 \cdot 74835$

$$
\cdot 060199=\cdot 06020 \text { to } 5 \text { places } .
$$

Antilog $\cdot 06020=11482$

$$
1 \cdot 1487
$$

\therefore result $=1 \cdot 1487$ to 5 figures.

An abbreviated arrangement of the work is as follows:

$$
\begin{array}{rr}
\log 43 \cdot 21= & 1 \cdot 63548 \\
10 & \log 149 \cdot 7=2 \cdot 17319 \\
\log 148 \cdot 92= & 2 \cdot 17026 \\
265 & \log 37 \cdot 42=1 \cdot 57287 \\
-\quad 59 & \\
\hline 3 \cdot 808549 & \\
\hline 3 \cdot 74835
\end{array}
$$

subtract $3 \cdot 74835$

$$
\begin{aligned}
& 0.060199 \\
& \text { anti } 0.06020=11482
\end{aligned}
$$

$$
5
$$

$$
1 \cdot 1487
$$

148. Logarithm of a Number Less than Unity.

We have the following:

$$
\begin{gathered}
\cdot 1=\frac{1}{10^{1}}=10^{-1} \\
\cdot 01=\frac{1}{100}=\frac{1}{10^{2}}=10^{-2} \\
\cdot 001=\frac{1}{1000}=\frac{1}{10^{3}}=10^{-3} \\
.0001=\frac{1}{10000}=\frac{1}{10^{4}}=10^{-4}
\end{gathered}
$$

By. our definition of logarithms we have from the above

$$
\begin{aligned}
\log \quad \cdot 1 & =-1 \\
\log \cdot 01 & =-2 . \\
\log \cdot 001 & =-3 . \\
\log \cdot 0001 & =-4 .
\end{aligned}
$$

Consider the following set of numbers:
(1) $\cdot 1$.
(3) $\cdot 01$.
(5) $\cdot 001$.
(7) 0001 .
(2) $\cdot 06$.
(4) 008 .
(6) $\cdot 0007$.

We know from the above that in (1) $\cdot 1 \geqslant 10^{-1}$ and that in (3) $\cdot 01=10^{-2}$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

Example 2:
Find the value of $\frac{36 \cdot 215 \times \cdot 0724}{\cdot 0027 \times 936}$.

$\log 36 \cdot 215=$	$\overline{1} \cdot 55889$
$\log \cdot 0724=$	$\underline{2} \cdot 85974$
$(a)-(b)=$	$.41863(a)$
	$\frac{.40264}{.01599 .}$

$\log \cdot 0027=\overline{3} \cdot 43136$
$\log 936=2 \cdot 97128$
-40264 (b)
. 01599 .
Antilog of $\cdot 01599=1 \cdot 03741=1 \cdot 0374$ approx.

Exercises LXXXVII.

Employ logarithms to find the value of :

1. $43 \cdot 752 \div 8 \cdot 75$.
2. $\cdot 0752 \div \cdot 648$.
3. $\frac{26 \cdot 584 \times \cdot 075}{8 \cdot 359}$.
4. $408 \cdot 039 \div 3423 \cdot 08$.
5. $\frac{472.86 \times 15.8 \times 10^{-3}}{.0728 \times \cdot 63 \times 10^{2}}$.
6. $\frac{728 \cdot 43 \times \cdot 00625 \times 19}{\cdot 0946 \times 1 \cdot 0009}$.
7. Logarithm of a Power.

From tables $\log 2=\cdot 30103$.

$$
\therefore 2=10^{.30103} .
$$

$\therefore(2)^{2}=\left(10^{.30103}\right)^{2}=10^{.60206}$.
In the above we observe that the \log of 2^{2} is twice the \log of 2 , therefore to find the value of 2^{2}, we would find the log of 2 , double it and find the antilog of the result.

Thus, $\log 2=\cdot 30103$,
twice $\log 2=\cdot 60206$.
Antilog $\cdot 60206=3 \cdot 99996=4$ (nearly).
Again, $\log 3=.47712$.
$\therefore 3=10^{.47712}$.
$\therefore 3^{4}=\left(10^{.47712}\right)^{4}=10^{1.90848 .}$

Here we observe that the \log of 3^{4} is four times the \log of 3 , therefore to find the value of 3^{4}, we would find $\log 3$, take four times it, and find the antilog of the result.

Thus, $\log 3=.47712$,
four times $\log 3=1 \cdot 90848$.
Antilog 1•90848 $=80 \cdot 9988=81$ (nearly).
Further $\log 9=.95424$.

$$
\begin{aligned}
& \therefore 9=10^{.95424 .} \\
& \therefore 9^{\frac{1}{1}}=\left(10^{.95424}\right)^{\frac{1}{2}}=10^{.47712 .}
\end{aligned}
$$

Here we observe that $\log 9^{\frac{1}{3}}$ is one-half the $\log 9$, therefore to find the value of $9 \frac{1}{2}$, we would find $\log 9$, take one-half of it, and find the antilog of the result.

Thus, $\log 9=.95424$.

$$
\frac{1}{2} \log 9=\cdot 47712
$$

Antilog $\cdot 47712=3 \cdot 00004=3$ (nearly).
From these examples we infer:-To obtain any power of a number multiply its logarithm by the exponent of the power and find the antilogarithm of the result.
Example 1:
Find value of $(\cdot 026)^{3}$.
Let $x=(\cdot 026)^{3}$.
Then by above $\log x=3 \log \cdot 026$.

$$
=3(\overline{2} \cdot 41497) .
$$

Here we have to multiply a logarithm by 3 , the mantissa being positive and the characteristic negative. We should first multiply them separately, giving $\overline{6}+1 \cdot 24491$, and afterwards combine giving $\overline{5} \cdot 24491$.
$\therefore \log x=\overline{5} \cdot 24491$.
$\therefore \quad x=\cdot 0000175754=\cdot 000017575$ approx.

Example 2:
Find value of $(\cdot 026)^{\frac{1}{2}}$.
Let $\log x=(\cdot 026)^{\frac{1}{2}}$.
then $\log x=\frac{1}{3} \log \cdot 026$.

$$
=\frac{1}{3}(\overline{2} \cdot 41497) .
$$

The same difficulty is presented here as in the preceding example, only we have to divide by 3 instead of multiplying. We, therefore, write $\frac{1}{3}(\overline{2} \cdot 41497)$ as $\frac{1}{3}(\overline{3}+1 \cdot 41497)$, the object being to make the negative part so that the 3 will divide it evenly.

$$
\frac{1}{3}(\overline{3}+1 \cdot 41497)=\overline{1} \cdot 471656 .
$$

$\therefore \log x=\overline{1} \cdot 471656=\overline{1} \cdot 47166$ to 5 places.
$\therefore \quad x=\cdot 296251=\cdot 29625$ approx.
Example 3:

$$
\begin{aligned}
& \text { Find the value of } \frac{1}{(1 \cdot 05)^{8}} \\
& \text { Let } x=\frac{1}{(1 \cdot 05)^{6}} \\
& \text { then } \begin{aligned}
\log x & =\log 1-6 \log 1 \cdot 05 . \\
& =0-6(\cdot 02119) . \\
& =-\cdot 12714 .
\end{aligned}
\end{aligned}
$$

Since the mantissa must always be positive we must now change $-\cdot 12714$ to a number having a positive mantissa.

$$
\begin{aligned}
& \text { Thus, }-\cdot 12714=\overline{1}+1-\cdot 12714 \text {. } \\
& =\overline{1} .87286 \text {. } \\
& \therefore \log x \quad=\overline{1} .87286 \text {. } \\
& \therefore x \quad=.746214=.74621 \text { approx. }
\end{aligned}
$$

151. Solution of an Exponential Equation.

If $3^{x}=148$, find x.
This is an exponential equation, the unknown quantity being the exponent.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Employ the formula for the area of a triangle in terms of its sides to find the area of the following traingles:
20. $36 \cdot 4$ yd., $21 \cdot 3$ yd., $26 \cdot 5$ yd.
21. $16 \cdot 48^{\prime \prime}, 23 \cdot 39^{\prime \prime}, 31 \cdot 18^{\prime \prime}$.
22. 2500 links, 3500 links, 4000 links (area in acres).
23. $27 \cdot 6$ chains, $19 \cdot 5$ chains, $14 \cdot 3$ chains (area in acres).
24. Find the length of the perpendicular drawn from A on $B C$ in the triangle $A B C$, if $a=700^{\prime}, b=670^{\prime}, c=527 \cdot 2^{\prime}$.
25. The sides of a triangle are $43 \cdot 6^{\prime \prime}, 51 \cdot 8^{\prime \prime}$, and $62 \cdot 4^{\prime \prime}$. Find the side of an equilateral triangle of equal area.
26. Find the area of a circle whose radius is $72 \cdot 46^{\prime \prime}$.
27. A circle has a radius of $43 \cdot 46^{\prime \prime}$. Find the radius of the concentric circle which divides the first circle into two equal areas.
28. Find the diameter of a circle whose area is equal to that of an equilateral triangle on a side of $18^{\prime \prime}$.
29. Find the number of gallons in a cubical cistern, each side of which measures $18 \cdot 6^{\prime}(1 \mathrm{gal} .=277 \cdot 274 \mathrm{cu} . \mathrm{in}$.).
30. The water contained in a cubical cistern, each edge of which measures 5^{\prime}, is found to lose by evaporation - 03 of its volume in a day. If the total loss be due entirely to evaporation, find how many gallons will be left in the cistern at the end of 9 days, assuming it to be full at the outset.

CHAPTER XVI.

MENSURATION OF SOLIDS.

152. We have already found the surfaces and volumes of various rectangular solids. We will now proceed to deal with some of the more specialized forms of solids.

If the block in Figure 103 has the dimensions indicated, we can find the area of the sides, i.e., the lateral surface by finding the area of each lateral face and adding the results. Thus the area of the front and back faces $=6^{\prime \prime} \times 18^{\prime \prime} \times 2=216$ sq. in., the area of the two side faces $=4^{\prime \prime} \times 18^{\prime \prime} \times 2=144$ sq. in., giving a total lateral area of 360 sq . in.

The same result might have been obtained by first finding the perimeter of the base and multiplying this result by the height. Thus perimeter of base $=6^{\prime \prime}+6^{\prime \prime}+4^{\prime \prime}+4^{\prime \prime}=20^{\prime \prime}$. \therefore lateral surface $=20^{\prime \prime} \times 18^{\prime \prime}=360$ sq. in. Further in finding the volume of this solid we multiplied together the three dimensionslength, breadth and thickness. Thus volume $=18^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime \prime}=432 \mathrm{cu}$. in. The same result

Fig. 103 might have been obtained by first finding the area of the base and then multiplying this area by the height. Thus area of end $=6^{\prime \prime} \times 4^{\prime \prime}=24$ sq. in. and volume $=24 \times 18^{\prime \prime}=432 \mathrm{cu} . \mathrm{in}$.
153. The Prism. A prism is a solid whose sides are parallelograms and whose top and bottom are parallel to each other.

In Figure 104 we have represented a number of prisms each complying with the conditions in the definition.

A prism is called triangular, rectangular, pentagonal, etc., according as the base is one or other of these polygons.

To find the lateral surface of any of the prisms below we would proceed as in Figure 103, i.e., multiply the perimeter of the base by the height. Thus if p be the perimeter of the base and h the height, the area of the lateral surface of the prism $=p h$.

Fig. 104
To find the volume of any one of the above prisms we would as in Figure 103 multiply the area of the base by the height. Thus if b be the area of the base and h the height, the volume of the prism $=b h$.

If we wish to find the area of the total surface of a prism, we would add the areas of the two ends to the area of the lateral surface.

Exercises LXXXIX.

1. Measure the various prisms in the laboratory. Makedrawings in your laboratory book and find total area and volume.
2. The internal dimensions of a box, without a lid, are length 8^{\prime}, breadth 3^{\prime}, depth 2^{\prime}. Find the cost of lining it with zinc at 40 c . a sq. ft .
3. A rectangular tank, $13^{\prime} 6^{\prime \prime}$ in length by $9^{\prime} 9^{\prime \prime}$ in breadth, is full of water. How many gallons of water must be drawn off to lower the surface $\mathbf{1}^{\prime \prime}$?
4. How many sq. ft. of metal are there in a rectangular tank, open at the top, 12^{\prime} in length 10^{\prime} in breadth and 8^{\prime} deep?
5. A prism whose base is a regular pentagon with a side of $9 \frac{1}{2}$ " is $25 \frac{1}{2}^{\prime \prime}$ in height. Find its total area and volume.
6. A rectangular tank is $11 \frac{1}{2}^{\prime \prime}$ long, $14 \frac{1}{2}^{\prime \prime}$ wide, and $10^{\prime \prime}$ deep. Find the number of gallons it contains when filled with water within an inch of the top. .

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

with galvanized iron at 20c. a sq. ft., (2) its capacity in gallons.

Area of lateral surface $=\pi \times 3 \times 6=18 \pi$ sq. ft.
Area of bottom
\therefore total area

$$
\begin{aligned}
& =\pi\left(\frac{3}{2}\right)^{2} \text { sq. ft. }=2 \cdot 25 \pi \text { sq. } \mathrm{ft} . \\
& =\pi(18+2 \cdot 25) \text { sq. ft. } \\
& =\pi(20 \cdot 25) \text { sq. ft. } \\
& =\pi(20 \cdot 25) \times 20=\$ 12 \cdot 72 \\
& =\pi\left(\frac{3}{2}\right)^{2} \times 6 \mathrm{cu} . \mathrm{ft} . \\
& =\pi\left(\frac{3}{2}\right)^{2} \times 6 \times 6 \cdot 232 \text { gal. } \\
& =264 \cdot 31 \mathrm{gal}
\end{aligned}
$$

Exercises XC.

1. Measure the various cylindrical models in the laboratory. Make drawings in your laboratory book and obtain the lateral area and volume in each case. In the case of the iron and steel models find their weights from knowing their volumes: Check by weighing.
2. Fill in the omitted entries in the following cylinders:

No.	Dlameter	Helght	Clirc. at Base	Area of Base	Lateral Area	- Volume
1	5"	$3 \frac{1}{2}^{\prime \prime}$				
2	8"	$7{ }^{\prime \prime}$				
3	$1{ }^{\prime \prime}$				28 sq. ft.	
4		3^{\prime}		154 sq.ft.		
5		$7{ }^{\prime}$				$616 \mathrm{cu} . \mathrm{ft}$.
6		8^{\prime}	44^{\prime}			

3. Find the weight of a steel shaft $2^{\prime \prime}$ in diameter and 12^{\prime} long.
4. A tank car is $33 \frac{1}{2}^{\prime}$ long and $8 \frac{1}{2}^{\prime}$ in diameter. How many gallons of oil will it contain?
5. Find the cost of painting the inside of an open cylindrical tank 10^{\prime} in diameter and 15^{\prime} high at 20c. a sq. yd.
6. A cylindrical vessel partly filled with water is $8^{\prime \prime}$ in diameter. A steel crane hook is immersed in the vessel and the surface of the water is raised $2^{\prime \prime}$. Find the weight of the crane hook.

Fig. 107
155. The Hollow Cylinder. The total surface of the hollow cylinder in Figure 107 would consist of the outside lateral surface, the inside lateral surface, and the two rims.

The outside lateral surface $=\pi \times 8 \times 18=144 \pi$ sq. in.
The inside lateral surface $=\pi \times 6 \times 18=108 \pi$ sq. in.
The area of the rims $\quad=\pi \times 7 \times 1 \times 2=14 \pi \mathrm{sq}$. in.
The total lateral surface $=266 \pi$ sq. in. $=835.68$ sq. in:
The volume of the hollow cylinder would be the area of the base multiplied by the height.

Area of the base, i.e., the area of the ring in Figure 107

$$
=\pi \times 7 \times 1=7 \pi \text { sq. in. }
$$

\therefore the volume $=7 \pi \times 18=395.84$ cu. in.

Exercises XCI.

1. Measure the hollow cylindrical models in the laboratory. Make drawings in your laboratory book and calculate the total surfaces and volumes.
2. Find the whole surface of a hollow cylindrical pipe, open at the ends, if the length is $8^{\prime \prime}$, the external diameter $10^{\prime \prime}$ and the thickness $2^{\prime \prime}$.
3. An iron roller is in the shape of a hollow cylinder whose length is 4^{\prime}, external diameter $2^{\prime} 8^{\prime \prime}$ and thickness $\frac{1}{2}{ }^{\prime \prime}$. Find its weight if a cu. ft.of iron weighs 486 lb .
4. A portion of a cylindrical steel shaft casing is $12 \frac{1^{\prime}}{}{ }^{\prime}$ in length, $1_{\frac{1}{4}}{ }^{\prime \prime}$ thick, and its external diameter is $14^{\prime \prime}$. Find its weight.
5. Find the weight of a lead pipe 8^{\prime} long, external diameter $8^{\prime \prime}$, internal diameter $7^{\prime \prime}$, assuming that the weight of the two flanges is equivalent to one foot length of pipe.
6. Find the weight of a hexagonal cast-iron nut $1^{\prime \prime}$ to the side, $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ thick, inside diameter $\frac{3^{\prime \prime}}{4}$.
7. The Right Cone. A cone is a solid whose base is a circle and whose sides taper uniformly to a point directly over the base.

Fig. 109
Lateral Surface of a Cone. If a piece of paper be wrapped, without crumpling or tearing, around the lateral surface of a cone (Figure 108) and cut along the edge of the base and the line $\mathbf{A B}$, and then folded out, the paper will be a sector of a circle (Figure 109).

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

But the volume of the cylinder $=$ area of base multiplied by the height. Therefore the volume of a cone=area of base $\times \frac{1}{3}$ perpendicular height, or $V=\pi r^{2} \times \frac{1}{3} h=\frac{1}{3} \pi r^{2} h$.

Note.-Height means perpendicular height, unless otherwise stated, but in the formula for the volume of a cone we should state "perpendicular" height to distinguish from "slant" height in the formula for the lateral surface.

Perform the experiment suggested above. Make drawings and write conclusions in your laboratory book.

Example :
A conical tent has a diameter at the base of 14^{\prime} and a height of 7^{\prime}.

Find (1) the number of sq. yd. of canvas in the tent.
(2) the number of cu. ft . of air space.

Slant height of cone $=\sqrt{7^{2}+7^{2}}=9 \cdot 89^{\prime}$
Number of sq. yd. $=\pi \times 14 \times \frac{9.89}{2} \times \frac{1}{9}$
$=24 \cdot 17$
Air space $=\pi \times 7 \times 7 \times \frac{7}{3}=359 \cdot 19 \mathrm{cu} . \mathrm{ft}$.

Exercises XCII.

1. Measure the various conical models in the laboratory. Make drawings in your laboratory book and calculate lateral surfaces and volumes. Find the weights of iron models from knowing their volumes. Check by weighing.
2. A piece of paper in the form of a circular sector, of which the radius is $8^{\prime \prime}$ and the length of the arc $12^{\prime \prime}$, is formed into a conical cap. Find the area of the conical surface and the base of the cone.
3. Find the weight of a cast-iron cone, diameter of base $7^{\prime \prime}$ and height $15^{\prime \prime}$.
4. Find the weight of petroleum in a conical vessel, diameter of the base $14^{\prime \prime}$, height $10^{\prime \prime}$, specific gravity of petroleum $\cdot 87$.
5. The interior of a building is in the form of a cylinder of 20^{\prime} radius and 15^{\prime} in height. A cone surmounts it, radius of base 20^{\prime} and height 8^{\prime}. Find (a) the cost of painting the interior at 20 c. a sq. yd., making no allowance for openings, (b) cubic feet of air space in the building.
6. How many yards of canvas $27^{\prime \prime}$ wide will be required to make a conical tent 7 yd . in diameter and 10^{\prime} high?
7. The Pyramid. A pyramid is a solid whose sides are triangles and whose base is any figure bounded by straight linès.

In Figure 111 we have the simplest type of a right pyramid, the base being a square.

Lateral Surface of a Pyramid. In Figure 111 the lateral surface consists of four equal isosceles triangles. Area of $A C D=C D \times \frac{1}{2} A E$.
\therefore area of four faces $=4$ times

Fig. 111 $C D \times \frac{1}{2} A E$.

But 4 times $C D=$ perimeter of base, and $\boldsymbol{A} E=$ slant height of pyramid.
\therefore lateral surface of pyramid $=$ perimeter of base $\times \frac{1}{2}$ slant height: $=\frac{1}{2} p s$ ($p=$ perimeter, $s=$ slant ht.).
It may readily be shown that this formula holds where the base is any regular polygon.

Fig. 112
Volume of a Pyramid. Take two vessels one a square pyramid and the other a rectangular prism of the same height
and area of end as in Figure 112. If we fill the pyramidal vessel with sand and empty it into the prism, we find that it takes three fillings of the pyramid to fill the prism. We therefore infer that, when the vessels are related as above, the volume of the pyramid is one-third that of the prism.

The volume of prism=Area of base multiplied by the height.
\therefore volume of pyramid $=$ area of base $\times \frac{1}{3}$ perp.height. or $V=\frac{1}{3} A h$ ($A=$ area of base, $h=$ height).

Example:
A granite pyramid 12^{\prime} high stands on a square base 10^{\prime} to the side. Find (1) cost of polishing the lateral surface at 10c. a sq. ft. (2) weight, if $1 \mathrm{cu} . \mathrm{ft}$. weighs 165 lb .

Slant height

$$
=\sqrt{12^{2}+5^{2}}=13^{\prime}
$$

Lateral surface $=4 \times 10 \times \frac{13}{2}$ sq. ft.
Cost of polishing $=4 \times 10 \times \frac{13}{2} \times \frac{10}{1}=\$ 26.00$
Volume $=\frac{1}{3} \times 10 \times 10 \times 12$
$=400 \mathrm{cu} . \mathrm{ft}$.
Weight $=165 \times 400$
$=66,000 \mathrm{lb}$.

Exercises XCIII.

1. Measure the various pyramidal models in the laboratory. Make drawings and calculate lateral surfaces and volumes.
2. What is the weight of a cast-iron pyramid with a square base $6^{\prime \prime}$ to a side and a height of $10^{\prime \prime}$?
3. Find the total surface of a hexagonal pyramid with a base $3^{\prime \prime}$ to the side and a slant height of $12^{\prime \prime}$. Find its weight if made of cast-iron.
4. Find the number of cu. ft. of air space in a hexagonal room, each side of which is 12^{\prime}, and its height 18^{\prime}, which is furnished above with a pyramidal roof 9^{\prime} high. Find also the cost of painting the interior at 25 c . a sq. yd., making no allowance for openings.
5. A pyramid has a square base each side of which is $2 \cdot 48^{\prime \prime}$, and the pyramid has equilateral triangles for sides. Find its volume.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

\therefore lateral surface of frustum of cone $=$ sum of circumferences of ends $\times \frac{1}{2}$ slant $h t$.

$$
\text { or, } \begin{aligned}
\text { Lateral surface } & =\frac{1}{2}(C+c) S \\
& =\pi(R+r) S
\end{aligned}
$$

Lateral Surface of Frustum of Pyramid. If we consider the

Fig. 115 frustum of a pyramid in Figure 115, we observe that its lateral surface is made up of four equal trapeziums.

Area of the face $c C D d=$ $(c d+C D) \frac{1}{2} q Q$.
\therefore area of the four faces $=$ $4(c d+C D) \frac{1}{2} q Q$.

But $4(c d+C D)=$ Sum of perimeters of ends and $q Q=$ slant height of frustum.
\therefore lateral surfaces of $\mathrm{If}_{\text {rustum }}$ of pyramid \doteq sum of perimeters of ends. $\times \frac{1}{2}$ slant ht. $=\frac{1}{2}$ $\left(P_{1}+P_{2}\right) S\left(P_{1}\right.$ and P_{2} being perimeters and S slant height).

Volume of Frustum of Cone or Pyramid. In Figure 116 from similar triangles $\mathbf{O c b}$ and OCB we have $\frac{x}{x+h}=\frac{r}{R}$.
$\therefore x=\frac{h r}{R-r} \quad \therefore x+h=\frac{h R}{R-r}$.
Volume of whole cone

$$
=\frac{1}{3} \pi R^{2} \frac{h R}{R-r} .
$$

Volume of small cone

$$
=\frac{1}{3} \pi r^{2} \frac{h r}{R-r}
$$

Fig. 116
\therefore volume of frustum $=\frac{1}{3} \pi h\left\{\frac{R^{3}-r^{3}}{R-r}\right\}$.

$$
=\frac{1}{3} \pi h\left\{R^{2}+R r+r^{2}\right\}
$$

If A represents area of large end and a area of small end, then $A=R^{2}$ and $a=\pi r^{2}$.
\therefore volume of frustum $=\frac{h}{3}\{A+a+\sqrt{A a}\}$:
Work through a similar proof to show that the volume of a frustum of a pyramid is the same as the above.

Example:
A vessel in the form of a frustum of a cone has the following dimensions: Depth $16^{\prime \prime}$, diameter of large end $12^{\prime \prime}$, diameter of small end $8^{\prime \prime}$. Find (a) its lateral. surface (b) its capacity in gallons.

In the rt.-angled triangle $A B C, A C=\sqrt{16^{2}+2^{2}}$

$$
=16 \cdot 12^{\prime \prime} .
$$

Lateral surface

$$
=(\pi 12+\pi 8) \frac{16 \cdot 12}{2}
$$

$=20 \pi \times 8 \cdot 06=506 \cdot 43$ sq. in.
Volume
$=\frac{18}{3}\left\{\pi 6^{2}+\pi 4^{2}+\sqrt{\pi 6^{2} \pi 4^{2}}\right\}$
$=\frac{18}{3}\left\{\pi 6^{2}+\pi 4^{2}+\pi 6 \times 4\right\}$
$=\frac{18}{3} \pi\left\{6^{2}+4^{2}+24\right\}^{-}$

Fig. 117
$=\frac{16}{3} \pi 76 \mathrm{cu} . \mathrm{in}$.
Capacity in gallons $=\frac{16 \pi}{3} \times \frac{76}{277 \cdot 274}=4 \cdot 59$.
Exercises XCIV.

1. Measure the frustum models in the laboratory. Make drawings in your laboratory book and calculate lateral surfaces and volumes.

In the case of the iron and steel models find weights from knowing their volumes. Check by weighing.
2. Find the lateral surface of the frustum of a pyramid, perpendicular height $6^{\prime \prime}$, and a square base, side $6^{\prime \prime}$, the side of the upper square being $1^{\prime \prime}$.
3. A tapered piece of cast-iron 2^{\prime} long is $8^{\prime \prime}$ in diameter at one end and $12^{\prime \prime}$ in diameter at the other; find its weight.
4. A piece of steel $16^{\prime \prime}$ long is $4^{\prime \prime}$ in diameter at the large end. The taper is a Brown and Sharpe $-\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ to 1^{\prime}; find its weight.
5. Find the volume of a steel pin $8^{\prime \prime}$ long, diameter of small end $2^{\prime \prime}$, the taper being a No. 0 Morse- $5^{\prime \prime}$ to 1^{\prime}.
6. Two buckets, one cylindrical of $7^{\prime \prime}$ diameter, the other a frustum of a cone with the diameters of its ends $6^{\prime \prime}$ and $8^{\prime \prime}$ are of the same depth, $9^{\prime \prime}$. Find the difference in their volume.
158. The Sphere. A sphere is the geometrical name for a round or ball-shaped solid.

Fig. 118

Fig. 119

Area of Surface of Sphere. It has been found by measurement that the surface of a sphere is equal to the lateral surface of a cylinder of the same diameter and height, as illustrated in Figure 119.

The circumference of the cylinder is $2 \pi r$ and its height $2 r$, hence area of surface of sphere $=2 \pi r \times 2 r=4 \pi r^{2}$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Exercises XCV.

1. Measure the spherical models in the laboratory. Calculate areas and volumes.
2. Secure cylinder and sphere related as in Figure 119. After placing sphere in cylinder, fill the remaining space with sand. Remove sphere and replace the sand. By estimating the part of the cylinder now occupied by the sand derive the formula for the volume of the sphere.
3. Find the number of yards of material, $27^{\prime \prime}$ wide, necessary to make a spherical balloon 12^{\prime} in diameter.
4. Find the weight of a ball composed of a cast-iron sphere $4^{\prime \prime}$ in diameter, covered with a layer of lead $1^{\prime \prime}$ thick.
5. Find the weight of a hollow cast-iron sphere, internal diameter $2 \frac{1}{2}^{\prime \prime}$, thickness $\frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime}$.
6. How many ounces of nickel would be used in plating a ball $3^{\prime \prime}$ in diameter, to a depth of $\frac{1}{64}$ "? (1 cu . in. nickel weighs $5 \cdot 14 \mathrm{oz}$.).

Segment of a Sphere. A segment of a sphere is the part cut off from a sphere by a plane.

Lateral Surface of a Segment. If we roll a sphere on a sheet of paper, and keep in mind that the area

Fig. 121 of the surface is equal to that of a cylinder with radius of base equal to the radius of the sphere and height equal to the diameter of the sphere, we could infer that the surface traced out by any segment is equal in area to a rectangle having the circumference of the sphere for length and the height of the segment for width.
\therefore lateral surface of segment

$$
\begin{aligned}
& =2 \pi R \times h . \\
& =2 \pi R h .
\end{aligned}
$$

The volume of the segment in Figure 121 (less than a hemisphere) is given by the formula: $V=\frac{\pi h r^{2}}{2}+\frac{\pi h^{3}}{6}$.

Zone of Sphere. A zone of a sphere is the part cut off from the sphere between two parallel planes.

Lateral Surface of Zone. As in the segment of a sphere the area traced out when rolled on the paper would be equal in area to a rectangle having the circumference of the sphere for length, and the thickness of the zone for breadth.
\therefore lateral surface of zone $=2 \pi R h$.
The volume of the zone in Figure 122 is given by the formula:

Fig. 122

$$
V=\frac{\pi h}{2}\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)+\frac{\pi h^{3}}{6} .
$$

Sector of Sphere. A sector of a sphere consists of a segment and a cone whose bases are coincident,

Fig. 123 the apex of the cone being at the centre of the sphere.

The surface of the sector would be equal to the surface of the segment plus the surface of the cone.

The volume of the sector is given
by the formula:

$$
V=\frac{\pi}{6}\left\{r^{2}(h+2 R)+h^{3}\right\} .
$$

159. Bead. Volume remaining when sphere is pierced by a cylindrical solid.

Volume of bead as shown $=\frac{\pi h^{3}}{6}(h=h t$. of bead).

Fig. 124

Exercises XCVI.

1. The silk covering of an umbrella forms a portion of a sphere of $3 \frac{1}{2}^{\prime}$ in diameter, the area of the silk being $14 \frac{2}{3} \mathrm{sq}$. ft. Find the area sheltered from vertical rain when the handle is held upright.
2. A sphere of diameter 24^{\prime} is placed so that its centre is 37^{\prime} distant from the observer's eye. Find the area of that part of the sphere's surface that is visible to the observer.
3. A cylindrical tank is 8^{\prime} long and $2 \frac{1^{\prime}}{}{ }^{\prime}$ in diameter. The ends are spherical segments whose centre of curvature projects $6^{\prime \prime}$ beyond the base of the segment. Find the total surface and volume of the tank.
4. If the diameters of two circles of a spherical zone are $12^{\prime \prime}$ and $4^{\prime \prime}$, and the thickness of the zone $6^{\prime \prime}$, find its total surface and volume.
5. In the sector of a sphere of radius $10^{\prime \prime}$, the height of the segment is $4^{\prime \prime}$; find the volume of the sector.
6. Solid Ring. Examples of solid rings are found in anchor rings, curtain rings, etc. It will

Fig. 125 be observed that any cross-section of such a ring will be a circle, so it may be considered as a cylinder bent around in a circular arc until the ends meet. The mean length of the cylinder will be $2 \pi R$.
\therefore with notation of figure:

$$
\begin{aligned}
& \text { Surface }=2 \pi r \times 2 \pi R=4 \pi^{2} r R . \\
& \text { Volume }=\pi r^{2} \times 2 \pi R=2 \pi^{2} r^{2} R .
\end{aligned}
$$

161. Wedge. A wedge, as shown, is a solid contained by five plane faces; the base is a rectangle, the two ends are triangles, and the two remaining faces are trapeziums having a common side, called the edge, which is parallel to the base.

The surface of the wedge is found by calculating separately the area of each of the faces. To do this, the slant heights of the

Fig. 126 faces, or means of finding them, must be given.

The volume of the wedge is given by the formula:

$$
V=\frac{h b}{6}\{2 a+e\} .
$$

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

3. The rain which falls on a roof 22^{\prime} by 36^{\prime} is conducted to a cylindrical cistern 8^{\prime} in diameter. How great a rainfall would it take to fill the cistern to a depth of $7 \frac{1}{2}^{\prime}$?
4. Water is poured into a cylindrical reservoir 20^{\prime} in diameter, at the rate of 300 gallons per minute. Find the rate, in feet per minute, at which the water rises in the reservoir.
5. The internal diameter of a cylinder, open at the top, is $1 \frac{1}{2}^{\prime}$, and its weight is 180 lb .; when filled with water it weighs $2000 \mathrm{lb} . ;$ find the depth of the cylinder.
6. Find the weight of a copper tube $\frac{5}{8}^{\prime \prime}$ outside diameter, $\cdot 05^{\prime \prime}$ thick, and $5^{\prime} 10^{\prime \prime}$ long.
7. A steel bar whose cross-section is a regular hexagon $1^{\prime \prime}$ to the side, is 8^{\prime} in length. Find its weight.
8. A trough whose cross-section is an equilateral triangle $8^{\prime \prime}$ to the side contains 30 gallons of water; how long is it?
9. A boiler has 275 tubes, each $19^{\prime} 3^{\prime \prime}$ long and $23^{\prime \prime}$ in diameter. What is the total heating surface of the tubes?
10. Find the capacity in gallons of a conical vessel $15^{\prime \prime}$ in diameter and 2^{\prime} in slant height.
11. A conical tent covers an area of 154 sq . ft. and is 6^{\prime} in height. How many sq. yd. of canvas does it contain?
12. What is the volume of a cylindrical ring having an outside diameter of $6 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, an inside diameter of $5 \frac{3}{16}^{\prime \prime}$, and a height of $5 \frac{3}{8}$ "?
13. Water flows at the rate of 20^{\prime} per min. from a cylindrical pipe $\cdot 25^{\prime \prime}$ in diameter. How long would it take to fill a conical vessel, whose diameter at the surface is $10^{\prime \prime}$ and depth 9"?
14. The external diameter of a hollow steel shaft is $20^{\prime \prime}$, and the internal diameter $12^{\prime \prime}$. Find the weight of 20^{\prime} of this shafting.
15. From a cylinder whose height is $8^{\prime \prime}$, and diameter $12^{\prime \prime}$, a conical cavity of the same height and base is hollowed out. Find the whole surface of the remaining solid.
16. Find the cost of polishing the lateral surface of a pyramid $6^{\prime} 5^{\prime \prime}$ high, standing on a square base 6^{\prime} to the side, at the rate of 20 c . a sq. ft .
17. How many gallons of water will be discharged per \min. from a $4^{\prime \prime}$ pipe if it flows at the rate of 300^{\prime} per minute?
18. The cross-section of a water pipe is a regular hexagon whose side is $1^{\prime \prime}$. At what rate, in feet per min., must the water flow through the pipe in order to fill in one hour a cylindrical tank the radius of whose base is $16^{\prime \prime}$ and whose depth is 5^{\prime} ?
19. The base of a prism whose altitude is $15^{\prime \prime}$ is a quadrilateral whose sides are $10^{\prime \prime}, 18^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$, the last two forming a rt. angle. Find its volume.
20. A tower whose ground plan is a square on a side of 30^{\prime}, is furnished with a pyramidal roof 8^{\prime} high. Find the cost of covering the roof with sheet-iron at 25 c . a sq. ft.
21. A steel bar whose cross-section is an equilateral triangle $1_{2}^{\prime \prime}$ to the side is 8^{\prime} long; find its weight.
22. A cylindrical granite pillar 10^{\prime} high and $30^{\prime \prime}$ in diameter, is surmounted by a cone $2 \frac{1}{2}^{\prime}$ high. Find the weight of the whole if a cu. ft. of granite weighs 165 lb .
23. How many cu. in. are there in a hexagonal blank nut $\cdot 5^{\prime \prime}$ to a side and $\frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ thick?
24. It is desired to make a conical oil can with a base $5^{\prime \prime}$ in diameter to contain $\frac{1}{2}$ pint; what must be the height?
25. A piece of cast-iron has a B. \& S. taper- $\frac{1}{2}^{\prime \prime}$ to 1^{\prime}. It is $10^{\prime \prime}$ long and the diameter at the large end is $3 \cdot 5^{\prime \prime}$; find its weight.
26. Find the height of a pyramid, of which the volume is $625 \mathrm{cu} . \mathrm{in}$. and the base a regular hexagon $12^{\prime \prime}$ to the side.
27. The perpendicular height of a square chimney is $150^{\prime} 3^{\prime \prime}$. The side of the base measures $12^{\prime \prime} 6^{\prime \prime}$ and the side at the top $6^{\prime} 3^{\prime \prime}$, the cavity is a square prism whose side measures $3^{\prime} 9^{\prime \prime}$. How many cu. ft . of masonry in the chimney?
28. A circular disc of lead, $3^{\prime \prime}$ in thickness and $12^{\prime \prime}$ diameter, is converted into shot, each $\cdot 05^{\prime \prime}$ in radius. How many shot does it make?
29. The interior of a building, in the form of a cylinder of $15^{\prime} 0^{\prime \prime}$ radius and $10^{\prime} 0^{\prime \prime}$ high, is surmounted by a cone whose vertical angle is a rt. angle. Find the area of the surface and the cubical contents of the building.
30. A square building $20^{\prime} 0^{\prime \prime}$ to the side has a hip roof in the form of a pyramid. The peak of the roof is 10^{\prime} above the plate level and the rafter heel is 2^{\prime}; find the cost of roofing with shingles, laid $4 \frac{1}{2}{ }^{\prime \prime}$ to the weather, material and labour costing $\$ 12$ a square of shingles.
31. The base of a cone is an ellipse, major axis $4^{\prime \prime}$, minor axis $2^{\prime \prime}$, height $6^{\prime \prime}$. Find the volume.
32. A quart measure is $8^{\prime \prime}$ in height. Find the diameter of its base.
33. Find the weight of a $\log 40^{\prime}$ long, $4^{\prime} 6^{\prime \prime}$ in diameter at one end and $30^{\prime \prime}$ in diameter at the other, the specific gravity of the wood being $\cdot 78$.
34. A piece of copper $6^{\prime \prime}$ long, $2^{\prime \prime}$ wide, and $\frac{1}{2}^{\prime \prime}$ thick, is drawn out into a wire of uniform thickness and 100^{\prime} long. Find the diameter of the wire in mils.
35. A conical vessel $7 \frac{1}{2}^{\prime \prime}$ deep and $20^{\prime \prime}$ across the top is completely filled with water. If sufficient water is now drawn off to lower the surface $6^{\prime \prime}$, find the area of the surface of the vessel thus exposed.
36. A cylinder $2^{\prime \prime}$ in diameter and $8^{\prime \prime}$ in height contains equal volumes of mercury, oil and water. If the specific gravity of the mercury be $13 \cdot 6$, of oil $\cdot 92$, find the total weight of contents.
37. The radii of the internal and external surfaces of a hollow spherical shell of metal are $10^{\prime \prime}$ and $12^{\prime \prime}$ respectively. If it is melted down and the material formed into a cube, find the edge of the cube.
38. An automobile gasoline tank has an elliptical crosssection $9^{\prime \prime}$. by $15^{\prime \prime}$ and is 3^{\prime} long. How many gallons of gasoline will it hold?
39. A hemispherical basin holds 2 gallons. Find its internal diameter.
40. If $30 \mathrm{cu} . \mathrm{in}$. of gunpowder weigh 1 lb. , find the internal diameter of a spherical shell that holds $15 \cdot 4 \mathrm{lb}$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Exercises XCIX.

Factor:

1. $a x-a^{2}$.
2. $x^{2}-3 a x$.
3. $5 x^{3}-15 x^{2} y$.
4. $8 a^{3}-16 a b$.
5. $21-56 x$.
6. $-a y+b y+c y$.
7. $a x-b x-c x$.
8. $3 a^{2} b^{2}-9 a b+12$.
9. $14 x^{3}-7 x^{2} y+56 x y^{2}$.
10. $5 a^{2}+15 a x+20 a b$.
11. $a x-b x-a y+b y$.
12. $x^{2}-x y+x z-y z$.
13. $3 x-3 y+a x-a y$.
14. $x^{3}-x y-2 x^{2}+2 y$.
15. $a b\left(x^{2}+1\right)-x\left(a^{2}+b^{2}\right)$.
16. $a^{5}+a^{4}+a+1$.
17. $a^{2}-b c-b+a^{2} c$.
18. $2 a^{3}+6 a^{2}-c a--3 c$.
19. $x^{2}+m x(m+1)+m^{3}$.
20. $a x+b x+a y+b y-a z-b z$.
21. Second Type. In the treatment of multiplication we found the product of two binomials as $x+2$ and $x+5$ as follows:

$$
\begin{aligned}
& x+2 \\
& \frac{x+5}{x^{2}+2 x} \\
& \frac{+5 x+10}{x^{2}+7 x+10}
\end{aligned}
$$

While the result could always be obtained by this method, it is important that the student should be able to write down the product of two binomials by inspection. In the result above we observe that the first term is the product of the first terms of the two expressions; the third term is the product of the second terms of the two expressions; the middle term has for its coefficient the sum of the numerical quantities (with proper sign) in the second terms of the two expressions.

Write down the values of the following products:

1. $(x+4)(x+5)$.
2. $(x-6)(x+2)$.
3. $(p+3)(p-6)$.
4. $(r+4)(r-6)$.
5. $(x+6)(x+3)$.
6. $(p-9)(p+1)$.
7. $(x-3 a)(x+2 a)$.
8. $(x+7 y)(x-3 y)$.
9. $(2 x-5)(2 x+6)$.
10. $(3 x-1)(3 x+1)$.
11. $(2 x+7 y)(2 x-5 y)$.
12. $(2 x+a)(2 x+b)$.

The converse problem gives us our second type and consists in finding the two factors if we know the product.

Thus, factor $x^{2}+7 x+12$.
The second terms of the factors must be such that their product is +12 and their sum +7 . Hence they must both be positive, and it is readily seen that they must be +4 and +3 .
$\therefore x^{2}+7 x+12=(x+4)(x+3)$.
Factor $x^{2}-10 a x+9 a^{2}$. .
The second terms of the factors must be such that their product is $9 a^{2}$ and their sum-10a. Hence they must be $-9 a$ and $-a$.
$\therefore x^{2}-10 a^{2}+9 a^{2}=(x-9 a)(x-a)$.
If we multiply $3 x+4$ by $2 x+1$ we get $3 x(2 x+1)+4(2 x+1)$ $=6 x^{2}+3 x+8 x+4=6 x^{2}+11 x+4$.

The converse problem is now to be considered.
Factor $4 x^{2}+11 x-3$.
Here the numerical coefficients of the first terms of the factors must be 4 and 1 , or 2 and 2 , and the last terms must be 3 and 1.

The possible sets (omitting the signs) are:

$4 x$	3,	x	3,	$2 x$	1.
x	1,	$4 x$	1,	$2 x$	3.

Since the sign of the last term in $4 x^{2}+11 x-3$ is minus, we at once decide that the signs of the last terms in the factors must be different, and therefore that the partial products must be subtracted. The second arrangement is the only one from which we can obtain $11 x$, and also since the middle term is positive, the larger of the cross products must be positive.
$\therefore 4 x^{2}+11 x-3=(x+3)(4 x-1)$.
Example 1:

$$
12 x^{2}-x-20=(3 x-4)(4 x+5)
$$

Example 2:
Factor $3 x^{2}-7 x+2=(3 x-1)(x-2)$.

Exercises C.

Factor and verify:

1. $x^{2}+10 x+21$.
2. $5 x^{2}+42 x-27$.
3. $x^{2}-10 x+24$.
4. $4 x^{2}-16 x+15$.
5. $x^{2}-4 x+4$.
6. $x^{2}-x-2$.
7. $x^{2}-11 x+10$.
8. $x^{2}-x-42$.
9. $x^{2}-3 x-130$.
10. $1-3 x+2 x^{2}$.
11. $x^{2}+x-72$.
12. $x^{2}+4 x-5$.
13. $5-4 x-x^{2}$
14. $40-13 x+x^{2}$.
15. $1-5 x+6 x^{2}$.
16. $40-3 x-x^{2}$.
17. $1-3 x-130 x^{2}$.
18. $3 x^{2}-22 x+7$.
19. $6 x^{2}-11 x+3$.
20. $9 x^{2}-9 x-28$.
21. $26 x^{2}-41 x+3$.
22. $12 x^{2}-17 x+5$.
23. $5 x^{4}-10 x^{2} y^{2}-400 y^{4}$.
24. $2 x^{2}+5 x y+3 y^{2}$.
25. $12 x^{2}-2 x y-30 y^{2}$.
26. $12 x^{2}-5 x y-3 y^{2}$.
27. $8 x^{2}+22 x+9$.
28. $6 x^{2}-13 x y+6 y^{2}$.
29. $13 x^{2} y^{2}-9 x^{4}-4 y^{4}$.
30. $14 x^{2}+83 x y-6 y^{2}$.
31. Third Type. If we multiply $x+y$ by $x-y$ we have:

$$
\begin{aligned}
& x+y \\
& \frac{x-y}{x^{2}+x y} \\
& \frac{-x y-y^{2}}{x^{2}-y^{2}} .
\end{aligned}
$$

Observing the above we find that, when we multiply the sum

Fig. 128 of x and y by the difference of x and y, the result is the difference of the squares of x and y. Therefore we may say that the difference of the squares of two quantities is equal to the sum of the quantities multiplied by the difference of the quantities.
Geometrical Illustration:

$$
\begin{aligned}
(a+b)(a-b) & =A N H C \\
& =B M H C+C K F D \\
& =B E F D-M E K H \\
& =a^{2}-b^{2} .
\end{aligned}
$$

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

11. $x^{2}-y^{2}+2 y z-z^{2}$.	20. $x^{4}+9 x^{2}+81$.
12. $1-a^{2}-2 a b-b^{2}$.	21. $x^{4}+4 y^{4}$.
13. $a^{16}-1$.	22. $x^{8}-7 x^{4}+1$.
14. $x^{2}-2 x y+y^{2}-a^{2}-2 a b-b^{2}$.	23. $4 x^{4}-37 x^{2} y^{2}+9 y^{4}$.
15. $\pi 10^{2}-\pi 7^{2}$.	24. $x^{4}+4 x^{2}+16$.
16. $\pi 7 \cdot 5^{2}-\pi 2 \cdot 5^{2}$.	25. $9 x^{4}-10 x^{2} y^{2}+y^{4}$.
17. $5 a^{2}-10 a b+5 b^{2}-20 c^{2} .$.	26. $4 x^{4}-13 x^{2} y^{2}+9 y^{4}$.
18. $16-a^{2}-b^{2}+2 a b \ldots$.	27. $x^{4}+5 x^{2} y^{2}+9 y^{4}$.
19. $4 x^{4}+11 x^{2} y^{2}+9 y^{4}$.	28. $x^{4}+x^{2}+25$.

168. Fourth Type. Divide $\dot{x}^{3}+\dot{y}^{3}$ by $x+y$.

$$
\begin{array}{r}
x+y) \begin{array}{r}
x^{3}+y^{3} / x^{2}-x y+y^{2} \\
\frac{x^{3}+x^{2} y}{} \\
\frac{-x^{2} y+y^{3}}{-x^{2} y-x y^{2}} \\
\frac{x y^{2}+y^{3}}{x y^{2}+y^{3}}
\end{array}
\end{array}
$$

Divide ${ }^{\circ} x^{3}-y^{3}$ by $x-y$.

$$
\begin{aligned}
& x-y) x^{3}-y^{3} / x^{2}+x y+y^{2} \\
& \frac{x^{3}-x^{2} y}{x^{2} y-y^{3}} \\
& \frac{x^{2} y-x y^{2}}{x y^{2}-y^{3}} \\
& x y^{2}-y^{3}
\end{aligned}
$$

As a result of the above we may write: $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ and $x^{3}-y^{3}=(x-y)\left(x^{2}-x y+y^{2}\right)$.
The above results might be stated as follows:
The sum of the cubes of two quantities is divisible by the sum of the quantities, and the difference of the cubes of two quantities divisible by the difference of the quantities. The other Ifactor consists of the sum of the squares of the quantities, minus their product, if the sum of two cubes, and plus their product if the difference of two cubes.

Examples:

1. $p^{3}+q^{3}=(p+q)\left(p^{2}-p q+q^{2}\right)$.
2. $8 x^{3}-27 y^{3}=(2 x)^{3}-(3 y)^{3}=(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)$.
3. $5 a^{3}-40=5\left(a^{3}-8\right)=5(a-2)\left(a^{2}+2 a+4\right)$.

Exercises CII,

Factor:

1. $y^{3}+27$.
2. $a^{3}-125$.
3. $x^{6}+1$.
4. $a^{6}-b^{6}$.
5. $x^{6}-64$.
6. $a^{3}-216$.
7. $3-81 x^{3}$.
8. $x^{4}-27 x$.
9. $2 x^{3}+250$.
10. $x^{12}-y^{12}$.
11. $(a+b)^{3}-c^{3}$.
12. $(a+b)^{3}-(a-b)^{3}$.

CHAPTER XVIII.

INDICES AND SURDS.

169. Indices. In the introductory chapter in Algebra we inferred the laws with respect to indices from particular cases.

Thus, (1) $x^{3} \times x^{2}=x^{3+2}=x^{5}$.
(3) $\left(x^{3}\right)^{2}=x^{3} \times x^{3}=x^{6}$.
(2) $x^{5} \div x^{2}=x^{5-2}=x^{3}$.
(4) $(x y)^{2}=x y \times x y=x^{2} y^{2}$.

In the following discussion general proofs will be given for these laws and also their application when the indices are fractional, zero, or negative.

Definition. If x is any number and m any positive integer x^{m} means the product of m factors each equal to x.

1. To prove $x^{m} \times x^{n}=x^{m+n}$.

By definition:

$$
\begin{aligned}
x^{m} \times x^{n} & =(x \times x \times x \ldots \text { to } m \text { factors }) \times(x \times x \times x \text { to } n \text { factors }) . \\
& =x \times x \times x \ldots \text { to }(m+n) \text { factors. } \\
& =x^{m+n} \text { by definition. }
\end{aligned}
$$

From the above it follows that:

$$
x^{m} \times x^{n} \times x^{p}=x^{m+n} \times x^{p}=x^{m+n+p} .
$$

2. To prove $\frac{x^{m}}{x^{n}}=x^{m-n} \quad m>n$.

By definition:

$$
\begin{aligned}
\frac{x^{m}}{x^{n}} & =(x \times x \times x \ldots \text { to } m \text { factors }) \div(x \times x \times x \ldots \text { to } n \text { factors }) . \\
& =x \times x \times x \ldots \text { to }(m-n) \text { factors. } \\
& =x^{m-n} \text { by definition. }
\end{aligned}
$$

3. To prove $\left(x^{m}\right)^{n}=x^{m n}$.

$$
\begin{aligned}
\left(x^{m}\right)^{n} & =\left(x^{m}\right) \times\left(x^{m}\right) \times\left(x^{m}\right) \text { to } n \text { factors. } \\
& =x^{m+m+m \ldots . \text { to } n \text { terms }} \text { by } 1 . \\
& =x^{m n .}
\end{aligned}
$$

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Exercises CIII.

Express with positive indices:

1. x^{-2}.
2. p^{-6}.
3. $\frac{1}{x^{-3}}$.
4. $\frac{2}{3^{-2}}$.
5. $\frac{6^{-1}}{3^{-2}}$.
6. $\frac{4^{-1}}{2^{-2}}$.
7. $\frac{5^{-2}}{25^{-1}}$.
8. $\frac{a^{-2}}{a^{-4}}$.
9. $a^{-8} \times \frac{1}{a^{2}} \times \frac{1}{a^{-5}}$.
10. $\frac{1}{2^{2}} \times 8^{-1} \times \frac{1}{16}$.
11. $3^{-2} \times \frac{1}{3} \times 3^{3}$.
12. $\frac{1}{a^{2}} \times a^{3} \times \frac{1}{a^{-2}}$.
(c) Meaning of $x^{\cdot \frac{p}{q}}, p$ and q being positive integers.

Since $x^{m} \times x^{n}=x^{m+n}$ for all values of m and n, if we replace both m and n by $\frac{1}{2}$, we have $x^{\frac{1}{2}} \times x^{\frac{1}{2}}=x^{\frac{1}{1}+\frac{1}{2}}=x^{1}=x$.

Thus if $x^{\frac{1}{2}}$ be multiplied by $x^{\frac{1}{2}}$ we get the product x, or otherwise stated the square of $x^{\frac{1}{2}}=x$.

We have, however, previously represented the quantity whose square is x by \sqrt{x}.

$$
\therefore x^{\frac{1}{2}}=\sqrt{x}
$$

Similarly $x^{\frac{1}{3}} \times x^{\frac{1}{3}} \times x^{\frac{3}{3}}=x^{\frac{3}{3}+\frac{1}{3}+\frac{1}{3}}=x$,

$$
\left.\therefore x^{\ddagger}=\sqrt[3]{x} \text { (cube root of } x\right)
$$

Generally $x^{\frac{1}{n}}=\sqrt[n]{x}(n$th root of $x)$.
Again, since $\left(x^{m}\right)^{n}=x^{m n}$,
then $\left(x^{3}\right)^{4}=x^{3}$,

$$
\therefore x^{4}=\sqrt[4]{x^{3}}
$$

Similarly, $\left(x^{\frac{p}{q}}\right)^{q}=x^{p}$,
$\therefore x^{\frac{p}{q}}=\sqrt[q]{x^{p}}, p$ and q being positive integers.
Example 1: $\quad 16^{\mathfrak{t}}=\sqrt[4]{16}=\sqrt[4]{2^{4}}=2$.
Example 2: $27^{3}=(\sqrt[3]{27})^{2}=3^{2}=9$.
Example 3: $648=(\sqrt[6]{64})^{5}=2^{5}=32$.

Exercises CIV.

Write with positive indices:

1. $a^{3} b^{-2}$.
2. $\frac{a^{-2}}{b^{-2}} \times \frac{a^{3}}{b^{2}}$.
3. $\frac{a^{3}}{a^{2}} \times a^{-4}$.
4. $\frac{a^{-2} b^{-8}}{c^{-4} d^{-6}}$
5. $\frac{2 x^{-1}}{4 y^{-8}}$.
6. $2 x^{\frac{1}{2}} \times 3 x^{-1}$.
7. $2 a^{-\frac{1}{x}}$.
8. $\frac{2}{x^{-\frac{1}{2}}}$.
9. $\frac{2 a^{-2}}{a^{-\frac{3}{2}}}$
10. $\frac{1}{\sqrt{x^{3}}}$.
11. $\frac{1}{\sqrt[3]{x^{-3}}}$.
12. $\frac{2}{\sqrt{y^{-3}}}$.
13. $\frac{4 x^{-1}}{x^{-1}}$.
14. $7 a^{-\frac{1}{2}} \times 3 a^{-1}$.
15. $\frac{a^{-\frac{1}{2}}}{3 a}$.

If $a=1, b=2, n=3$, find the value of:
16. $(a b)^{n}$.
19. $\left(a^{n} b^{n}\right)^{2}$.
22. $\left(a^{3} b^{3}\right)^{-n}$.
17. $\left(\frac{a}{\bar{b}}\right)^{n}$.
20. $\left(a^{-1} b^{-1}\right)^{-n}$.
23. $\left(a^{-4} b\right)^{n}$.
18. $\left(a^{2} b^{-1}\right)^{n}$.
21. $\left(a^{-2} b^{2}\right)^{-n}$.

Find the value of:
24. $\frac{2 \times 6^{-2}}{3^{-2}}$.
25. $16^{\text {a }}$.
26. $\frac{1}{25^{-\frac{1}{2}}}$.
27. $\frac{1}{8^{-\frac{1}{4}}}$.
28. $\left(\frac{24}{81}\right)^{-\frac{1}{2}}$.
29. 16^{1-5}.
30. $\left(\frac{32}{243}\right)^{-\frac{7}{3}}$.
31. $\left(\frac{182}{32}\right)^{2}$.
32. $36^{-\frac{3}{2}}$.

Show that:
33. $12^{\frac{1}{3}}=2 \times 3^{\frac{1}{2}} . \quad$ 34. $108^{\frac{1}{3}}=3 \times 2^{\frac{3}{3}} . \quad 35.80^{\frac{1}{t}}=2 \times 5^{\frac{1}{y}}$.

Express as the root of an integer:
36. $3^{\frac{1}{4}} \times 3^{\frac{1}{b}}$. $\quad 37 . \cdot 3^{\frac{3}{3}} \times 9^{\frac{7}{2}}$.
38. $3^{\frac{1}{2}} \times 9^{\frac{1}{2}} \div 27^{\frac{1}{2}}$.
39. Multiply $x^{\frac{1}{2}}+y^{\frac{1}{2}}$ by $x^{\frac{1}{2}}-y^{\frac{1}{2}}$. 40. Multiply $x^{\frac{1}{4}}+y^{\frac{1}{2}}$ by $x-y$.

Solve:
41. $x^{\frac{y}{b}}=2$.
42. $x^{-\frac{1}{2}}=4$.
43. $\frac{1}{x^{\frac{3}{3}}}=4$.
44. $x^{4}=27$.
170. Surds.

Definition. If the root of a number cannot be'exactly determined, the root is called a surd.

Thus, $\sqrt{2}$ is a surd because we cannot find a number whose square is exactly equal to 2 .

Fig. 129 We can find its value to a number of decimal places (1-4142), but this is only an approximate value.

We can, by a geometrical process (Fig. 129), find a line which is the $\sqrt{2}$ unitsin length. If we draw two lines at right angles to each other and each 1 unit in length, then the hypotenuse of the right-angled triangle so formed would be the $\sqrt{2}$ units in length. By continuing as in diagram, lines $\sqrt{3}, \sqrt{4}$, etc., may be found.
171. Quadratic Surds. We are chiefly concerned with surds in which the square root is to be found. These are, called quadratic surds.

Thus, $\sqrt{2}, \sqrt{3}, \sqrt{6}, \sqrt{8}$ are quadratic surds.
172. Surds other than Quadratic. These are indicated by the root symbol.

Thus, $\sqrt[3]{6}, \sqrt[4]{9}, \sqrt[5]{10}$, the first being called a surd of the third order, the second a surd of the fourth order, the third a surd of the fifth order.

A surd is sometimes called an irrational quantity, and for the sake of distinction, quantities which are not surds, are called rational quantities.
173. Like and Unlike Surds. When surds in their simplest form have the same surd factor they are called like surds, otherwise they are unlike surds.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

175. Mixed and Entire Surds. When a surd quantity is the product of a rational quantity and a surd, it is called a mixed surd. If there is no rational factor it is called an entire surd.

Thus, $6 \sqrt{3}$ is a mixed surd, and $\sqrt{7}$ is an entire surd.
The expressing of a mixed surd as an entire surd would be of little value practically, but the reverse process is of frequent application.

$$
\begin{array}{ll}
\text { Thus, } & \sqrt{27}=\sqrt{9 \times 3}=3 \sqrt{3} \\
\text { Again, } & \sqrt{72}=\sqrt{36 \times 2}=6 \sqrt{2}
\end{array}
$$

Exercises CVI.

Express as a single surd:

1. $2 \sqrt{63}+5 \sqrt{28}-\sqrt{7} .3 . \sqrt{72}+\sqrt{98}-\sqrt{128}+\sqrt{32}+\sqrt{50}$.
2. $10 \sqrt{44}-4 \sqrt{99}$. 4. $\sqrt{45}-\sqrt{20}+\sqrt{80}$.

Find the value correct to two places of decimals:
5. $\sqrt{288}$.
6. $\sqrt{147}$.
7. $\sqrt{250}$.
8. $3 \sqrt{150}$.
9. $5 \sqrt{245}$.
10. $4 \sqrt{63}$.
11. $\sqrt{36}-\sqrt{72}+\sqrt{90}$.
12. $4 \sqrt{63}+5 \sqrt{7}-8 \sqrt{28}$.
13. $2 \sqrt{ } \overline{363}-5 \sqrt{ } 2 \overline{43}+\sqrt{192}$.
14. $5 \sqrt{24}-2 \sqrt{54}-\sqrt{6}$.
15. $4 \sqrt{128}+4 \sqrt{75}-5 \sqrt{162}$.

Express in simplest form:
16. $\sqrt[3]{256}$.
17. $\sqrt[3]{432}$.
18. $\sqrt[4]{3125}$.
19. $\sqrt[3]{-2187}$.

Find the value to two decimal places:
20. $2 \sqrt{14} \times \sqrt{21}$.
24. $2 \sqrt{14} \times 3 \sqrt{28}$.
21. $3 \sqrt{8} \times \sqrt{128}$.
25. $2 \sqrt{ } \overline{15} \times 3 \sqrt{5}$.
22. $\sqrt{50} \times \sqrt{75}$.
26. $8 \sqrt{12} \times 3 \sqrt{2^{4}}$.
23. $3 \sqrt{6} \times 4 \sqrt{2}$.
176. Division of Surds.

Since $\sqrt{x} \times \sqrt{y}=\sqrt{x y}$,
$\therefore \sqrt{x y} \div \sqrt{x}=\sqrt{\frac{x y}{x}}=\sqrt{y}$.
Similarly, $\sqrt{x} \div \sqrt{y}=\sqrt{\frac{x}{y}}$,
and $2 \sqrt{30} \div 3 \sqrt{6}=\frac{2}{3} \sqrt{\frac{30}{6}}=\frac{2}{3} \sqrt{5}$.
Example:-Find the numerical value of $\frac{1}{\sqrt{3}}\left(\tan 30^{\circ}\right)$.
We might find the square root of 3 and perform the division. This, however, would not be the best method,

For $\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}=\frac{1.7321}{3}=.5774$.
Here we changed $\frac{1}{\sqrt{3}}$ into $\frac{\sqrt{3}}{3}$ by multiplying both numerator and denominator by $\sqrt{ } \overline{3}$.

This operation of making the denominator a rational quantity is called rationalizing the denominator.

Example:-Find the value of $\frac{1}{\sqrt{2}}\left(\sin 45^{\circ}\right)$.

$$
\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}=\frac{1 \cdot 4142}{2}=\cdot 7071 .
$$

Example:-To rationalize the denominator of an expression of the form $\frac{1+\sqrt{2}}{2-\sqrt{2}}$.

Here we wish to convert $\frac{1+\sqrt{2}}{2-\sqrt{2}}$ into an equivalent expression but with a rational denominator.

Since the product of the sum and difference of two quantities is equal to the difference of their squares, then $(2-\sqrt{2})$ $(2+\sqrt{2})=4-2=2$.

$$
\therefore \frac{1+\sqrt{2}}{2-\sqrt{2}} \times \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{(1+\sqrt{2})(2+\sqrt{2})}{2}=\frac{4+3 \sqrt{2}}{2} .
$$

The expression $2+\sqrt{2}$ is known as the conjugate expression to $2-\sqrt{2}$. If the denominator of the fraction had been $2+\sqrt{2}$ we would then have multiplied by $2-\sqrt{2}$.

Exercises CVII.

Calculate the value of the following to 3 places of decimals:

1. $\frac{15}{\sqrt{3}}$.
2. $\frac{2}{\sqrt{3}}$.
3. $\frac{12 \sqrt{ } 2}{\sqrt{3}}$.
4. $\frac{6}{\sqrt{5}}$.
5. $\frac{1}{\sqrt{24}}$.
6. $\frac{48}{\sqrt{6}}$.
7. $\frac{1}{\sqrt{500}}$.
8. $\frac{4}{\sqrt{243}}$.
9. $\sqrt{\frac{25}{252}}$.
10. $\frac{1}{2-\sqrt{2}}$.
11. $\frac{3}{\sqrt{5}+\sqrt{2}}$.
12. $\frac{5+2 \sqrt{6}}{6-2 \sqrt{6}}$.
13. $\frac{7 \sqrt{2}+3}{7 \sqrt{2}-3}$.
14. $3-\frac{2}{\sqrt{6}}$.
15. $(\sqrt{3}-\sqrt{2})^{2}$.
16. $\frac{\sqrt{3}-1}{\sqrt{2}-1}$.
17. $\frac{3 \sqrt{3}-1}{3 \sqrt{2}-1}$.
18. $\frac{4 \sqrt{7}+3 \sqrt{2}}{\sqrt{3}-\sqrt{2}}$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

By our previous principles in factoring $x^{2}+6 x-72=(x+12)$ $(x-6)$.

Now, if $x^{2}+6 x-72=0$, then $(x+12)(x-6)=0$.
In order that the product of these two factors may be equal to zero, it is necessary that one factor should be equal to zero.

Thus the equation will be satisfied if $x+12=0$ or $x-6=0$ or if $x=-12$ or 6 .

As +6 is the only admissible value, therefore the width $=6^{\prime \prime}$ and the length $6+6=12^{\prime \prime}$. The equation $x^{2}+6 x-72=0$ is known as a complete quadratic equation, containing as it does both the square and the first power of the unknown quantity.

Exercises CVIII.

Solve the following equations and verify:

178. Solving by Completing Squares. In connection with the squaring of a binomial we recall that $(a+b)^{2}=a^{2}+b^{2}+2 a b$, or that the square of a binomial equals the square of each term, plus twice their product. If then we have $x^{2}+6 x$ and we wish to add a sufficient quantity to make a complete square, we could reason as follows: x^{2} is the square of $x, 6 x$ is twice the product of x and 3 , therefore it is necessary to add 3^{2} or 9 .
$\therefore x^{2}+6 x+9$ is a complete square $=(x+3)^{2}$.

Similarly, to $x^{2}-8 x$ or $x^{2}-2 \times x \times 4$ we must add 4^{2} or 16, giving $x^{2}-8 x+16=(x-4)^{2}$.

Again, to $x^{2}+9 x$, or $x^{2}+2 \times x \times \frac{9}{2}$ we must add ($\left.\frac{9}{2}\right)^{2}$ or $\frac{81}{4}$, giving $x^{2}+9 x+\frac{81}{4}=\left(x+\frac{9}{2}\right)^{2}$.

An analysis of the three cases above would lead us to infer that we completed the square in each case by adding the square of half the coefficient of x.

This method is necessary where the quadratic equation cannot readily be resolved into factors.

Thus, Example 1:-Solve $x^{2}-6 x-13=0$.

$$
\text { or, } \quad x^{2}-6 x=13 .
$$

Completing the square on the left-hand side we have:

$$
\begin{aligned}
& x^{2}-6 x+9=13+9 . \\
& \text { or, }(x-3)^{2}=22 .
\end{aligned}
$$

Extracting square root, $x-3= \pm 22$.

$$
\begin{aligned}
\therefore \quad x & =3+\sqrt{22} \text { or } 3-\sqrt{22} . \\
& =7 \cdot 69 \text { or }-1 \cdot 69 .
\end{aligned}
$$

Example 2:-Solve $-3 x^{2}+8 x+12=0$.
In the examples above on completing the square, we observe that the coefficient of x^{2} in each case is unity and further that it is positive. Before attempting then to solve this equation we must make these two changes.

$$
\begin{aligned}
& -3 x^{2}+8 x+12=0 \\
& =3 x^{2}-8 x-12=0 \\
& =x^{2}-\frac{8}{3} x-4=0 .
\end{aligned}
$$

Complete the square, giving:

$$
\begin{aligned}
& x^{2}-\frac{8}{3} x+\left(\frac{4}{3}\right)^{2}=4+\left(\frac{4}{3}\right)^{2} . \\
& \text { or, }\left(x-\frac{4}{3}\right)^{2}=\frac{52}{9} . \\
& \text { or, } x-\frac{4}{3}= \pm \sqrt{\frac{52}{9}} . \\
& \text { or;, } x=\frac{4}{3} \pm \sqrt{\frac{52}{9}} . \\
& \\
& =\frac{4}{3}+\sqrt{\frac{52}{9}} . \\
& \quad=3 \cdot 74 \text { or } \frac{4}{3}-\sqrt{\frac{52}{9}} . \\
& =
\end{aligned}
$$

Exercises CIX.

Solve by completing the square:

1. $5 x^{2}+14 x-55=0$.
2. $9 x^{2}-143-6 x=0$.
3. $\frac{1}{1+x}-\frac{1}{3-x}=\frac{6}{35}$.
4. $19 x=15-8 x^{2}$.
5. $6 x^{2}-9 x-15=0$.
6. $5 x^{2}+11 x-12=0$.
7. $2 x^{2}+7-9 x=0$.
8. $5 x^{2}-15 x+11=0$.
9. $x^{2}-7 x+5=0$.
10. $\frac{5}{x-2}-\frac{4}{x}=\frac{3}{x+6}$.
11. $x^{2}+11=7 x$.
12. $\frac{4}{x-1}-\frac{5}{x+2}=\frac{3}{x}$.
13. $4 x^{2}=\frac{4}{15} x+3$.
14. $x^{2}-2=\frac{23}{12} x$.
15. $\frac{5 x+7}{x-1}=3 x+2$.
16. $\frac{x+3}{2 x-7}-\frac{2 x-1}{x-3}=0$.
17. $21 x^{2}-2 a x-3 a^{2}=0$.
18. $12 x^{2}+23 k x+10 k^{2}=0$.
19. $\frac{1}{2 x-5 a}+\frac{5}{2 x-a}=\frac{2}{a}$.
20. $\frac{5 x-1}{x+1}=\frac{3 x}{2}$.
21. The General Quadratic Equation. From the preceding examples it is apparent that every quadratic equation can be reduced to the form

$$
a x^{2}+b x+c=0,
$$

where a, b, c may have any numerical values whatever. If then we would solve this general quadratic equation we could use the result as a formula to solve particular cases and consequently save the labour entailed.

$$
a x^{2}+b x+c=0
$$

Transposing, $\quad a x^{2}+b x=-c$.
dividing by $a, x^{2}+\frac{b}{a} x=-\frac{c}{a}$.
Completing the square by adding to each side the square of half the coefficient of x, i.e., $\left(\frac{b}{2 a}\right)^{2}$.

$$
\begin{aligned}
& \text { giving } \quad x^{2}+\frac{b x}{a}+\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \\
& \text { or, } \quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} .
\end{aligned}
$$

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

In the preceding result the numerical value of the roots cannot be found, as there is no number whose square is negative.

Such a quantity as $\sqrt{-16}$ is called an imaginary quantity, and the roots are said to be imaginary. This is equivalent to saying that there is no real number which will satisfy the equation $x^{2}-2 x+5=0$.
180. There are some Equations that are not really quadratics but may be solved by the methods of this chapter.

Example 1:-Solve $x^{4}-5 x^{2}+4=0$.
Factoring $\left(x^{2}-4\right)\left(x^{2}-1\right)=0$.

$$
\begin{aligned}
& \therefore x^{2}=4 \text { or } x^{2}=1 . \\
& \therefore x= \pm 2 \text { and } x= \pm 1 .
\end{aligned}
$$

Example 2 :-Solve $x^{2}-x+\frac{72}{x^{2}-x}=18$.
Write y for $x^{2}-x$, then we have:

$$
\begin{gathered}
y+\frac{72}{y}=18 \\
\text { or, } y^{2}-18 y+72=0 .
\end{gathered}
$$

Factoring, $\quad(y-12)(y-6)=0$.
giving $\quad y=12$ or 6 .

$$
\therefore \quad x^{2}-x=12 \text { or } 6 \text {. }
$$

If $x^{2}-x=12$ then $x^{2}-x-12=0$.
then $(x-4)(x+3)=0$.
giving $x=4$, or -3 .
If $x^{2}-x=6$, then $x^{2}-x-6=0$.
then $(x-3)(x+2)=0$.
giving $x=3$ or -2 .

Exercises CX.

Solve the following examples:

1. $3 x^{2}-17 x+10=0$.
2. $2 x^{2}+19 x+9=0$.
3. $2\left(x^{2}+1\right)-5 x=0$.
4. $25 x^{2}-7 x-86=0$.
5. $7 x^{2}+32 x-15=0$.
6. $(2 x-1)^{2}=25$.
7. $10 x^{2}=13 x+9$.
8. A rectangular name-plate for a machine is to be $1 \frac{1}{2}{ }^{\prime \prime}$ longer than it is wide and to have an area of 10 sq . in. What will be its dimensions?
9. Three holes are to be drilled so that they will lie at the three corners of a triangle $A B C$, right angled at B. The distance from A to C is to be $10^{\prime \prime}$ and the distance from B to C is to be $2^{\prime \prime}$ more than from A to B. Find $A B$ and $B C$.
10. The sides $A B, B C, C A$ of a triangle measure 13,14 , 15 respectively. From A a perpendicular $A D$ is drawn to $B C$. If $B D$ measures x, express the length of $A D$ in two ways. Equate the results and find x.
11. The owner of a rectangular lot 15 rods by 5 rods, wishes to double the size of the lot by increasing the length and the width by the same amount. What should be the increase?
12. A straight line is $10^{\prime \prime}$ long. Divide it into two parts so that the rectangle contained by the whole line and one of the parts is equal to the square on the other part.
13. $S=\frac{1}{2} g t^{2}$ is the law governing a body falling from rest, $s=$ space, $g=$ acceleration due to gravity (32 ft .), $t=$ time in seconds. How long will it take a stone to fall from the top of the City Hall tower, Toronto, if it be 305 ft. high?
14. $S=u t+\frac{1}{2} g t^{2}$ is the law for a falling body when it has an initial velocity, u representing this initial velocity. If a stone be thrown with an initial velocity of 8 ft . per sec. from the top of the Eiffel tower, 984 ft . high, in what time will it reach the ground?
15. Simultaneous Quadratic Equations. The following problems will lead to simultaneous equations where one at least is of higher degree than the first.

Problem:
The perimeter of a rectangle is $18^{\prime \prime}$, and its area is 20 sq. in.; find its length and breadth.

If x represent the length and y the breadth, then:

$$
2 x+2 y=18
$$

$$
\begin{aligned}
\text { or, } x+y & =9 \ldots \ldots \ldots \ldots \ldots(a) \\
\text { also, } \quad x y & =20 \ldots \ldots \ldots \ldots(b) .
\end{aligned}
$$

Solution-1st method.
from (a), $y=9-x$.
Substitute in (b), $x(9-x)=20$.

$$
\begin{array}{ll}
\text { or, } & 9 x-x^{2}=20 . \\
\text { or, } & x^{2}-9 x+20=0 . \\
\text { or, } & (x-5)(x-4)=0 . \\
\therefore & x=5 \text { or } 4 . \\
\therefore & y=\frac{20}{5}=4 \text { or } \frac{20}{4}=5 . \\
\therefore \quad & x=5 \text { or } 4 . \\
& y=4 \text { or } 5 .
\end{array}
$$

Solution-2nd method.

$$
(a)^{2}=x^{2}+2 x y+y^{2}=81 .
$$

$$
\begin{aligned}
& \therefore \quad(x-y)^{2}=1 . \\
& \text { or, } \quad x-y= \pm 1 .
\end{aligned}
$$

$$
\begin{array}{rl}
x+y=9 & x+y=9 \\
\frac{x-y=1}{2 x \quad=10, x=5 .} & \frac{x-y=-1}{2 x \quad=8,} x=4 . \\
2 y=8, y=4 . & 2 y \quad=10, x=5 . \\
& \therefore x=5 \text { or } 4, y=4 \text { or } 5 .
\end{array}
$$

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

CHAPTER XX.

VARIATION.

182. Quantities are often related to each other in such a way that any change in one quantity produces a corresponding change in the other.

For example, consider a train travelling with a uniform speed. If in one hour the train travels 30 miles, then in two hours it will travel 60 miles, and so on.

We may state this by saying that the distance travelled is proportional to the time, or that the distance varies directly as the time.

If we represent distance by d and time by t, the relation may be expressed by d varies as t.

The symbol \propto represents "varies as", therefore we have $d \propto t$.

If we let $d_{1}, d_{2}, d_{3} \ldots \ldots$ be successive values of d and $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \boldsymbol{t}_{\mathbf{3}} \ldots$ corresponding successive values of \boldsymbol{t}, then, we have:

$$
\begin{aligned}
& \frac{d}{d_{1}}=\frac{t}{t_{1}} \text { or } d=\frac{d_{1}}{t_{1}} t . \\
& \text { also, } \frac{d}{d_{2}}=\frac{t}{t_{2}} \text { or } d=\frac{d_{2}}{t_{2}} t . \\
& \text { also, } \frac{d}{d_{3}}=\frac{t}{t_{3}} \text { or } d=\frac{d_{3}}{t_{3}} t, \text { etc. }
\end{aligned}
$$

Let us consider the expressions $\frac{d_{1}}{t_{1}}, \frac{d_{2}}{t_{2}}, \frac{d_{3}}{t_{3}} \ldots \ldots$ in the light of the above illustration.

$$
\begin{aligned}
& \text { If } d_{1}=60, t_{1}=2, \text { then } \frac{d_{1}}{t_{1}}=\frac{60}{2}=30 \\
& \text { If } d_{2}=90, t_{2}=3, \text { then } \frac{d_{2}}{t_{2}}=\frac{90}{3}=30 . \\
& \text { If } d_{3}=120, t_{3}=4, \text { then } \frac{d_{3}}{t_{3}}=\frac{120}{4}=30 .
\end{aligned}
$$

From the above we see that the ratios $\frac{d_{1}}{t_{1}}, \frac{d_{2}}{t_{2}}, \frac{d_{3}}{t_{3}}$ are each equal to 30 , therefore we infer that $d \propto t$ becomes $d=30 t$ or generally $d=$ Constant $\times t$ or $d=k t$ (k being a constant). Example 1:

The circumference of a circle varies directly as its diameter. A circle $7^{\prime \prime}$ in diameter has a circumference of $22^{\prime \prime}$, find the circumference of a circle of $64^{\prime \prime}$ diameter.

From the above $C=k d$,
then, $22=k 7$,

$$
\text { or, } k=\frac{22}{7}
$$

$$
\therefore C=\frac{22}{7} D
$$

Substituting for D the value 64,

$$
C=\frac{22}{7} \times 64=201 \cdot 14^{\prime \prime}
$$

In the above we observe that the first set of conditions enable us to find the constant k. The equation is then one between C and D, and from any value of one of these we can find the other.
Example 2:
The areas of circles vary directly as the squares of their radii. If a circle with a radius of $7^{\prime \prime}$ has an area of 154 sq . in., find the radius of a circle with an area of 1386 sq . in.

From the above $A \propto r^{2} . \quad \therefore A=k r^{2}$, then $154=k 7^{2}$, giving $k=\frac{22}{7}$.

Then substituting for A the value 1386 we have:

$$
1386=\frac{22}{7} r^{2} .
$$

$$
\therefore r=21 \text {. }
$$

Example 3:
The volume of a gas varies inversely as the height of the mercury in the barometer. If the volume is 22 cu . in. when the barometer registers $30^{\prime \prime}$, what is the volume when the barometer registers 32 "?

Here we have a case of varying "inversely." This means that an increase in one quantity gives a proportionate decrease in the other. Hence, when one quantity varies inversely as another it varies as the reciprocal of the other.

In the above $V \propto \frac{1}{H}$ or $V=k \frac{1}{H}$.
From the conditions given, $22=\frac{k}{30}$, giving $k=660$,

$$
\text { then, } V=\frac{660}{3 厶}=20 \cdot 6 \mathrm{cu} . \mathrm{in} \text {. }
$$

Exercises CXII.

1. The strength of a beam varies directly as the square of its thickness.

A beam of given length and width and $6 "$ thick carries a maximum load of 5 tons. What load will a beam of the same width and length, but $12^{\prime \prime}$ in thickness carry?
2. The weight of a substance varies directly as its volume. A steel bar containing 100 cu . in. weighs $28 \cdot 3 \mathrm{lb}$. What is the weight of a bar of the same material containing 642 cu. in.?
3. The velocity of a falling body varies directly as the time during which it is falling. When a body falls from rest, its velocity at the end of 1 sec . is approximately 32 ft . per second. Compute its velocity at the end of 15 seconds.
4. The velocity of the rim of a pulley varies directly as its diameter. A $12^{\prime \prime}$ pulley has a rim velocity, at a certain moment, of 160^{\prime} per min. What is the rim velocity, at the same moment, of a $9 \frac{1}{2}^{\prime \prime}$ pulley which is keyed to the same shaft?

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

We now wish to consider the variation in the area when both the length and width vary.

Fig. 130
In Figure 130 above the rectangles (1) and (2) have the same width but different lengths, while the rectangles (2) and (3) have the same length but different widths.

If A, A_{1}, and \boldsymbol{A}_{2} represent the respective areas, then with the above notation:

$$
\begin{array}{r}
\frac{A}{A_{1}}=\frac{l w}{l^{2} w}=\frac{l}{l^{1}} \quad(a), \\
\text { also, } \frac{A_{1}}{A_{2}}=\frac{l_{1} w}{l_{1} w_{1}}=\frac{w}{w_{1}} \quad(b) . \\
(a) \times(b) \frac{A}{A_{1}} \times \frac{A_{1}}{A_{2}}=\frac{l}{l_{1}} \times \frac{w}{w_{1}} . \\
\text { or, } \quad \frac{A}{A_{2}}=\frac{l w}{l^{1} w^{1}} \text { or } A=\frac{A_{2}}{l_{1} w_{1}} l w .
\end{array}
$$

Since, $A_{2}=l_{1} w_{1} \therefore \frac{A_{2}}{l_{1} w_{1}}=1$ (constant).
$\therefore A=$ Constant $\times l w$.
$\therefore A \propto l w$.
From this we state that the area of a rectangle varies as the product of its length and width, when both the length and width vary.

Further we know that triangles of the same altitude are to one another as their bases, and also that triangles of equal bases are to one another as their altitudes. Hence we might, as in the case of the rectangle, prove that the area of a triangle varies as the product of the base and altitude when both base and altitude vary.

Again, the volumes of cylinders of the same height are to one another as their bases, and also the volumes of cylinders with equal bases are to one another as their heights. Hence it might be proved that the volume of a cylinder varies as the product of the base and height, when both base and height vary.

From these illustrations we infer the general theorem:If A varies as B when C is constant, and A varies as C when B is constant, then A varies as $B C$ when both B and C vary.

Definition-One quantity is said to vary jointly as a number of others when it varies directly as their product.

Example 1

The volume of a cone varies jointly as its altitude and the area of its base. The volume is $392 \cdot 7 \mathrm{cu}$. in. when the altitude is $15^{\prime \prime}$ and the diameter of the base $10^{\prime \prime}$. Find the diameter when the altitude is $22^{\prime \prime}$ and the volume 436 cu. in.

Here $V \propto A B$ or $V=k A B$.
Substituting the first conditions:

$$
\begin{aligned}
392 \cdot 7 & =k 15 \times \cdot 7854 \times 10^{2} . \\
\text { giving } k & =\frac{392 \cdot 7}{15 \times \cdot 7854 \times 10^{2}} .
\end{aligned}
$$

From the second conditions:

$$
\begin{aligned}
436 & =\frac{392.7}{15 \times \cdot 7854 \times 10^{2}} \times 22 B . \\
\therefore B & =\frac{436 \times 15 \times \cdot 7854 \times 10^{2}}{22 \times 392 \cdot 7}
\end{aligned}
$$

If d be required diameter,

$$
\text { then } \begin{aligned}
\cdot 7854 d^{2} & =\frac{436 \times 15 \times \cdot 7854 \times 10^{2}}{22 \times 392 \cdot 7} \\
\therefore d^{2} & =\frac{436 \times 15 \times 10^{2}}{22 \times 392 \cdot 7} \\
\therefore d & =8 \cdot 7!
\end{aligned}
$$

Example 2:

The volume of a gas varies inversely as the pressure and directly as the absolute temperature (the absolute temperature is obtained by adding 273 to the temperature on the Centigrade scale).

If a quantity of nitrogen under 900 mm . pressure at $20^{\circ} \mathrm{C}$. occupies a volume of 300 cc ., what volume will it occupy at $100^{\circ} \mathrm{C}$. under 600 mm . pressure?

$$
\text { Here, } V \propto \frac{T}{P} \text { or } V=k \frac{T}{P} .
$$

From first conditions:

$$
300=k \frac{293}{900}, \text { giving } k=\frac{300 \times 900}{293} .
$$

From second conditions:

$$
V=\frac{300 \times 900}{293} \times \frac{373}{600}=572 \cdot 87 \mathrm{cc} .
$$

Exercises CXIII.

1. The area of a triangle varies jointly as its base and altitude. The area of a triangle whose base is 19^{\prime} and whose altitude is 10^{\prime} is $95 \mathrm{sq} . \mathrm{ft}$. Find the altitude when the base is $22 \cdot 5^{\prime}$ and the area $134 \mathrm{sq} . \mathrm{ft}$.
2. The volume of a pyramid varies jointly as its height and the area of its base. When the height is 18^{\prime} and the base a square 8^{\prime} to the side, the volume is $384 \mathrm{cu} . \mathrm{ft}$. What is the side of the base if a pyramid of the same form, 10^{\prime} high, has a volume of $432 \mathrm{cu} . \mathrm{ft}$.?
3. The pressure of the wind perpendicular to a plane surface varies jointly as the area of the surface and the square of the velocity of the wind. Under a velocity of 16 miles per hour the pressure on 1 sq . ft. is 1 lb ., what is the velocity when the pressure on 3 sq. yd. is 68 lb .?
4. The amount of illumination received by a body varies directly as the intensity of the light and-inversely as the square of the distance from the light.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
12. At what temperature must a gas be so that its volume will be 15 litres when the pressure is 800 mm ., if its volume is 175 litres when its temperature is $100^{\circ} \mathrm{C}$., and the pressure 700 mm ?
13. The electrical resistance of a wire varies directly as the length and inversely as the square of the diameter of the wire. Its weight varies jointly as the length and the square of the diameter.

If a pound of wire of diameter $\cdot 06^{\prime \prime}$ has a resistance of - 25 ohms, what is the resistance of a pound of wire of the same material, the diameter being $\cdot 01^{\prime \prime}$?

CHAPTER XXI.

GEOMETRICAL PROGRESSION.

184. Amount. If I deposit $\$ 100$ in a savings bank which pays interest annually at 4%, I will be entitled to $\$ 4$ interest at.the end of the first year. If I choose to leave this interest on deposit my bank account would then be $\$ 104$. This sum, representing the principal plus the interest, is said to be the amount of $\$ 100$ in one year.

Consider the following examples.
Example 1:
Find the amount of $\$ 100$ in 3 years at 6% per annum, compounded yearly.

The interest at the end of the first year $=\frac{6}{100}$ of $\$ 100$.
The sum itself $=\frac{100}{100}$ of $\$ 100$.
\therefore the amount at the end of the first year $=\frac{106}{100}$ of $\$ 100$.

$$
=\$ 100(1 \cdot 06)
$$

The interest at the end of the second year $=\frac{6}{100}$ of $\$ 100(1 \cdot 06)$.
\therefore the amount at the end of the second year

$$
\begin{aligned}
& =\frac{106}{100} \text { of } \$ 100(1 \cdot 06) . \\
& =\$ 100(1 \cdot 06)^{2} .
\end{aligned}
$$

The interest at the end of the third year $=\frac{6}{100}$ of $\$ 100(1 \cdot 06)^{2}$. \therefore the amount at the end of the third year $=\frac{106}{100}$ of $\$ 100(1 \cdot \dot{06})^{2}$

$$
\begin{aligned}
& =\$ 100(1 \cdot 06)^{3} \\
& =\$ 119 \cdot 10 .
\end{aligned}
$$

Example 2:
A man saves $\$ 200$ a year for 4 years. If each year he invests it at 6% per annum, what are his accumulated savings 4 years from the date of his first investment?

The amount of the first $\$ 200=\$ 200(1 \cdot 06)^{4}$.
The amount of the second $\$ 200=\$ 200(1 \cdot 06)^{3}$.
The amount of the third $\$ 200=\$ 200(1 \cdot 06)^{2}$.
The amount of the fourth $\$ 200=\$ 200(1 \cdot 06)$.
Accumulated savings $=\$ 200(1 \cdot 06)^{4}+\$ 200(1 \cdot 06)^{3}$

$$
\begin{aligned}
& +\$ 200(1 \cdot 06)^{2}+\$ 200(1 \cdot 06), \\
= & \$ 200(1 \cdot 06+1 \cdot 12360+1 \cdot 19102+1 \cdot 26248) . \\
= & \$ 200 \times 4 \cdot 63710 . \\
= & \$ 927 \cdot 42 .
\end{aligned}
$$

If in the preceding example the time had been 15 years, instead of 4 years, it is apparent that considerable work would be involved. The following discussion will develop a formula for shortening the work.

Consider the Series:

$$
a+a r+a r^{2}+a r^{3} \ldots \ldots \ldots . a r^{n-1}
$$

It is apparent that (1) each term is obtained from the preceding by multiplying by r, called the common ratio, (2) in the second term r is raised to the first power, in the third term to the second power, \therefore in the nth term to the $(n-1)^{\text {th }}$ power, (3) there are n terms in the series.

Such a series is called a Geometrical Series and the terms in the series are said to be in Geometrical Progression.

Let $S=a+a r+a r^{2} \ldots \ldots \ldots \ldots a r^{n-2}+a r^{n-1}$.
$\therefore r S=a r+a r^{2} \ldots \ldots \ldots \ldots \quad a r^{n-1}+a r^{n}$.
$\therefore r S-\bar{S}=a r^{n}-a$.
$\therefore S(r-1)=a\left(r^{n}-1\right)$.
$\therefore S=\frac{a\left(r^{n}-1\right)}{r-1}$.
We here observe that in the above 'formula a is the first term, r the common ratio, and n the number of terms.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

$\therefore \$ 1000(1 \cdot 05)^{2}$ due two years hence has for present worth $\$ 1000$.
$\therefore \$ 1000$ due two years hence has for present worth $\frac{\$ 1000}{(1 \cdot 05)^{2}}$.
Similarly $\$ 1000$ due three years hence has for present worth $\$ 1000$ $\overline{(1 \cdot 05)^{3}}$.
\therefore Present Worth of all the payments equals

$$
\begin{aligned}
& \frac{\$ 1000}{1 \cdot 05}+\frac{\$ 1000}{\$ 100}+\frac{\$ 1000}{(1 \cdot 05)^{3}} \ldots \ldots+\frac{\$ 1000}{(1 \cdot 05)^{10}} \\
& =\frac{(1 \cdot 05)^{10}}{(1 \cdot 0}\left\{1+(1 \cdot 05)+(1 \cdot 05)^{2} \ldots \ldots+(1 \cdot 05)^{9}\right\} \\
& =\frac{\$ 1000}{(1 \cdot 05)^{10}}\left[1\left\{\frac{(1 \cdot 05)^{10}-1}{1 \cdot 05-1}\right\}\right] \\
& =\frac{\$ 1000}{(1 \cdot 05)^{10}} \times \frac{1 \cdot 62889-1}{1 \cdot 05-1}=\frac{\$ 1000}{(1 \cdot 05)^{10}} \times \frac{\cdot 62889}{\cdot 05}=\$ 7721 \cdot 54 .
\end{aligned}
$$

Exercises CXIV.

1. Find the amount of $\$ 450$ if left on deposit im a bank for 3 years, if interest at 3% per annum compounded half-yearly be allowed?
2. What sum of money loaned at 5% per annum will in 7 years yield $\$ 407 \cdot 10$ interest?
3. What sum will amount to $\$ 1986 \cdot 86$ in $17 \frac{1}{2}$ years at 4% per annum?
4. A person deposits $\$ 100$ in a savings bank on January 1st, 1911, and the same sum each year until January 1st, 1921. If banks pay 3% per annum, compounded half-yearly, what sum stands to his credit just after making the deposit on January 1st, 1921?
5. A person holds $\$ 6000$ in bonds paying 5% per annum. He dies leaving the income for the first 10 years to his son. If money is worth 6% per annum, what is the present worth of the legacy?
6. A mortgage for $\$ 5000$ with interest at 6% per annum has 5 years to run. It is necessary to realize on the mortgage. What sum should a person pay for it, if he wishes to make 7% on his money?

Under what conditions would it be worth $\$ 5000$?
7. On November 1st, 1920, Brown invests $\$ 6000$ in Victory Bonds, due November 1st, 1933, paying $5 \frac{1}{2} \%$ per annum payable half-yearly. If money is worth 6% per annum compounded half-yearly, what is the present worth of the bonds? (November 1st, 1921).
8. A man deposits $\$ 200$ a year with a loan company which pays 4% per annum compounded quarterly. What sum stands to his credit at the end of 5 years?
9. A man dies leaving an annuity of $\$ 500$ to his eldest son for 10 -years and then to his second son for the following 10 years. If money is worth 6% per annum, what is the present worth of each legacy?
10. A municipality borrows $\$ 60,000$ at 5% per annum. What amount must be collected each year so that the debt may be discharged in 10 equal annual payments, if money is worth 6% per annum?
11. A man invests $\$ 500$ in a business which pays 5% per annum. Each year he invests an amount 10% greater than the previous year. What amount stands to his credit at the end of 10 years, if he reinvests his dividends in the business?
12. A man takes a 20 -year endowment policy of $\$ 1000$ on which the annual premium is $\$ 48 \cdot 50$. If he dies just after the twelfth payment, how much more will his heirs receive than if he had invested the money at 5% per annum? If he had lived, how much less will he receive than if he had invested the money as above?
13. A man takes a straight life policy for $\$ 5000$ on which the annual premium is $\$ 136$. If he dies just before making the 25th payment, compare the financial returns with having invested the premium each year at 6%.

MISCELLANEOUS EXERCISES.

1. A man ordered $11 \frac{1}{2}$ tons of coal. The first load contained 9500 lb ., the second 7000 lb . How many tons remain to be delivered?
2. A tank containing 400 gallons has two pipes opening from it. One pipe can empty it in 2 hours, the other in $2 \frac{1}{2}$ hours. If bóth pipes be opened for 15 minutes, how many gallons are left in the tank?
3. The recent summer vacation extended for 72 days. A boy spent $\frac{1}{6}$ of it in the country, $\frac{3}{8}$ of it camping, and the remainder in the city. How many days did he spend in the city?
4. A bricklayer received 90 c . an hour for an 8 -hour day. In the last year he worked 221 days, what was his total income?
5. A gang of men working on the roadway place $24 \frac{1}{8} \mathrm{cu}$. yd. of concrete in 1 hour. How many cu. yd. do they place in 3 days of $8 \frac{1}{2}$ hours each?
6. An alloy contains $\frac{19}{28}$ copper, $\frac{1}{7}$ tin, and the balance zinc. How many lb. of each are there in an alloy of $336 \mathrm{lb} . ?$
7. If beef is worth $21 \frac{3}{5} \mathrm{c}$. per lb., what is the value of beef weighing $532 \mathrm{lb} . ?$
8. One pipe can empty a tank in $3 \frac{1}{3} \mathrm{hr}$., and another pipe can empty it in $2 \frac{3}{5} \mathrm{hr}$. In what time can they both empty it if running together?
9^{\cdot} A drill with a feed of $\cdot 01^{\prime \prime}$ per revolution is making 80 R.P.M. How long will it take to drill 25 holes through a $\frac{1}{2}$ " plate if 15 seconds be lost in setting for each hole?
9. A contractor is to finish a piece of roadway in 20 days. Twelve men work for 8 days and do $\frac{1}{3}$ of the work. How many men must be employed for the balance of the time to finish according to contract?
10. A certain pump delivers 1.43 gallons per stroke. If a gallon of water weighs 10 lb ., what weight of water will be delivered in 218 strokes?
11. A drill with a feed of 100 is making 50 R.P.M. If $\frac{1}{3}$ of the time is used in setting, how many holes can be drilled in a $\frac{1}{2}^{\prime \prime}$ plate in 2 hours?
12. A gallon of water contains 277.274 cu . in. What is the percentage error in taking $6 \frac{1}{4}$ gallons as equivalent to 1 cu. ft.?
13. A reamer $9^{\prime \prime}$ long is $1 \cdot 375^{\prime \prime}$ in diameter at one end and $1 \cdot 125$." at the other end. What is the taper per foot?
14. How long will it take to excavate to a depth of 4^{\prime} for a building having a frontage of $74^{\prime} 0^{\prime \prime}$, and a depth of $243^{\prime} 0^{\prime \prime}$, using a steam shovel if the bucket holds two-thirds of a cu. yd. and is filled 3 times every 2 minutes?
15. The American gallon contains 231 cu . in. What per cent. is it of the English gallon?

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
31. Find the cost, at $\$ 60$ per M , of building a walk 60^{\prime} long by 6^{\prime} wide; plank to be $2^{\prime \prime}$ thick and laid crosswise on 3 pieces, $4^{\prime \prime} \times 4^{\prime \prime}$.
32. A mixture for casting contains 5 parts copper, 4 parts lead, and 3 parts tin. What is the percentage composition?
33. Find the cost of shingling a roof $16^{\prime} \times 20^{\prime}$ with shingles laid $4 \frac{1}{2}$ " to the weather, if the cost of material and labour is $\$ 12$ per square of shingles.
34. A road bed rises $2^{\prime} 3^{\prime \prime}$ in 300^{\prime}. What percent. grade is this?
35. Find the length of the longest straight line that can be drawn in a room 20^{\prime} long 16^{\prime} wide and 12^{\prime} high.
36. A barn is $40^{\prime} 0^{\prime \prime}$ wide and $60^{\prime} 0^{\prime \prime}$ long, with a roof $\frac{1}{3}$ pitch. The rafter heel and projections at ends are each $2^{\prime \prime}$. Find the cost of covering with $1^{\prime \prime}$ sheeting at $\$ 60$ per M , allowing 5% for waste.
37. Find the weight of a hexagonal bar of iron $\frac{5}{8}$ " to a side and 6^{\prime} long. ($1 \mathrm{cu} . \mathrm{in} .=\cdot 26 \mathrm{lb}$.).
38. Find the size of tap drill for a $\frac{9}{16}$ ", 12 pitch, sharp " V " thread nut.
39. An equilateral triangle has an area of 32.54 sq . in. What is the length of a side?
40. In a steel plate $4^{\prime} \times 2^{\prime} 3^{\prime \prime}$ and $\frac{1}{2}^{\prime \prime}$ thick, 10 round holes are bored each $1 \frac{1}{2}{ }^{\prime \prime}$ in diameter. Find the weight of the plate. after boring.
41. The diameter of the safety valve in a boiler is $3 \frac{1}{2}^{\prime \prime}$. If the pressure of the steam is 150 lb . per sq. in., find the total pressure on the valve.
42. A well is to be sunk 4^{\prime} in outside diameter and 24^{\prime} deep. If the carts used for carting away the earth hold $1 \frac{1}{2} \mathrm{cu} . \mathrm{yd}$., and excavated earth increases in bulk 15%, how many cart loads will there be? A concrete slab $8^{\prime \prime}$ thick is placed on the bottom, and the sides are bricked, using 4 bricks per superficial foot. How many cu. yd. of concrete would be used and how many bricks?
43. The driving wheels of a locomotive are 4^{\prime} in diameter, and the speed of the locomotive is 40 miles per hour. How many revolutions must the drivers make per minute?
44. A tank 7^{\prime} in diameter is bound by 4 wrought-iron hoops $2^{\prime \prime}$. wide and $\frac{1^{\prime \prime}}{16}$. thick. Find their weight.
45. The maximum speed for an emery wheel is a mile a minute. Find the maximum number of revolutions per sec. for an emery wheel $8^{\prime \prime}$ in diameter.
46.- A semi-circular platform with a diameter of 18^{\prime} has a table 2^{\prime} wide around its semi-circumference. Find the area of the table and the available space for seating accommodation.
47. The length of the shadow of a 2^{\prime} rod is $1^{\prime} 6^{\prime \prime}$ and at the same time the shadow of a tree is found to be 30^{\prime}. Find the height of the tree.
48. What is the offset of the tail stock for turning a taper $18^{\prime \prime}$ long on a bar $30^{\prime \prime}$ long if the diameters at the ends of the taper are $3 \frac{1}{2}{ }^{\prime \prime}$ and $2 \frac{1}{2}$ "?
49. Find the size of the largest square timber which can be cut from a $\log 18^{\prime \prime}$ in diameter.
50. Find the diameter of a tap drill for a Whitworth nut for a screw of outside diameter $1 \frac{1}{8}{ }^{\prime \prime}$, double threaded and 14 pitch.
51. Three circles each of radius $6 "$ are enclosed in an equilateral triangle; find the side of the triangle.
52. In riding a certain bicycle one revolution of the pedals gives two revolutions of the wheels. If the wheels are $26^{\prime \prime}$ in diameter, how many revolutions of the pedals per min. will give a speed of 12 miles per hour?
53. The diameter of a cylindrical winch barrel for'a crane is $10^{\prime \prime}$. If a rope with a diameter of $\frac{7}{8}{ }^{\prime \prime}$ be used, how many coils of rope and what length of barrel would be necessary to raise a load 30^{\prime} ?
54. If the speed of a point on the circumference of a flywheel must not exceed 5000 ft . per min., find the maximum diameter for the wheel in order to make 120 R.P.M.
55. A steel bar of square cross-section is to be equal in area to a rod $6^{\prime \prime}$ in diameter. Find a side of the square.
56. A triangular steel plate is to have its sides $13^{\prime \prime}, 14^{\prime \prime}$, and $15^{\prime \prime}$, and to weigh 2.98 lb .; find its thickness.
57. An elliptical steel plate has a major axis of $12^{\prime \prime}$ and a minor axis of $10^{\prime \prime}$. It is $\frac{3}{8}{ }^{\prime \prime}$ thick; find its weight.
58. A cylinder $14^{\prime \prime}$ in diameter fits in a cubical box. Calculate the percentage void.
59. The commutator of a dynamo is $24^{\prime \prime}$ in diameter and $16^{\prime \prime}$ long. Find the radiating surface in sq. ft. (lateral surface).
60. Find the diameter of a circular plate equal in area to an elliptical plate major and minor axis $18^{\prime \prime}$ and $12^{\prime \prime}$ respectively.
61. The shaft of a square-headed bolt is $1^{\prime \prime}$ in diameter, the head being $\frac{7}{8}$ " thick and $1 \frac{1}{2}{ }^{\prime \prime}$ to the side. Determine the length of the shaft to have twice the weight of the head. ($1 \mathrm{cu} . \mathrm{in} .=\cdot 26 \mathrm{lb}$.).
62. Find to the nearest sixteenth of an inch the length of a $\frac{7}{8}$ " steel rod that is turned per min., if the cutting speed is 40 ft . per min. and the feed 24.
63. The length of the core of a dynamo is $20^{\prime \prime}$ and it must have a radiating surface of 500 sq. in. Find its minimum diameter.
64. An elliptical funnel has a major axis of 18^{\prime} and a minor axis of 12^{\prime}. Find the discharge of smoke in cu. ft. per min., if at a rate of 12 ft . per sec.
65. The pulley on the armature shaft of a dynamo is $3 \frac{1}{2}$ " in diameter. This is belted to a driving shaft which makes 400 R.P.M. The speed of the dynamo must be 1800 R.P.M. What sized pulley must be placed on the driving shaft?
66. Find the weight of a coil of copper wire 400^{\prime} long, if the area of the cross-section of the wire is 40,000 circular mils. (1 circular mil $=$ area of a circle one mil, or $\cdot 001^{\prime \prime}$, in diameter).
67. Two hundred and forty-five sq. ft. of zinc are required in lining the sides and bottom of a cubical vessel. How many cu. ft. of water will it hold?
68. Four concrete abutments are to be built for a bridge. Each abutment is to be $8^{\prime} 0^{\prime \prime}$ high, $3^{\prime} 0^{\prime \prime}$ thick, $18^{\prime} 0^{\prime \prime}$ long at the bottom and $12^{\prime} 0^{\prime \prime}$ at the top. If one $\mathrm{cu} . \mathrm{yd}$. of concrete requires $25 \mathrm{cu} . \mathrm{ft}$. of stone, $12 \mathrm{cu} . \mathrm{ft}$. of sand, and 4 bags of cement ($1 \mathrm{bag}=1 \mathrm{cu} . \mathrm{ft}$.), find the quantity of each necessary for the job.
69. Find the total cost of building a rubble stone wall for a basement $30^{\prime} 0^{\prime \prime}$ by $26^{\prime} 0^{\prime \prime}$ by $8^{\prime} 0^{\prime \prime}$ high, the wall being $18^{\prime \prime}$ thick, if the stone costs $\$ 60$ a toise and the labour including sand and lime, is 30 c . per cu. ft. (Exact length of wall is taken with no allowance for openings).
70. It is required to build a brick wall on the front and one side of a lot $35^{\prime} 0^{\prime \prime}$ in frontage and $128^{\prime \prime} 0^{\prime \prime}$ in depth. The wall is to be $7^{\prime} 0^{\prime \prime}$ high and single brick $9^{\prime \prime}$ in thickness There are two gates one $12^{\prime} 0^{\prime \prime} \times 7^{\prime} 0^{\prime \prime}$ and the other $3^{\prime} 0^{\prime \prime} \times 7^{\prime} \cdot 0^{\prime \prime}$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

78. A chimney shaft $70^{\prime} 0^{\prime \prime}$ high is to be erected having a flue averaging $3^{\prime} 0^{\prime \prime} \times 3^{\prime} 0^{\prime \prime}$ from bottom to top. The shaft is square and for the first $14^{\prime} 0^{\prime \prime}$ the walls are $1^{\prime} 10^{\prime \prime}$ thick; the next $14^{\prime} 0^{\prime \prime}$ is $1^{\prime} 6^{\prime \prime}$ thick ; the next $20^{\prime} 0^{\prime \prime}$ is $1^{\prime} 1^{\prime \prime}$ thick and the remaining portion $9^{\prime \prime}$ thick. How many bricks would be required allowing 15 bricks to the cu. ft.?
79. How many sq. ft. of sheet-iron will it take to roof a hemispherical dome 30^{\prime} in diameter?
80. A building $24^{\prime} 0^{\prime \prime}$ wide and $36^{\prime} 0^{\prime \prime}$ long is to have a hip roof, $\frac{1}{4}$ pitch, with an $18^{\prime \prime}$ overhang, measured horizontally (formed by extending the rafters). Find the cost of the following material:

Hip Rafters, $2^{\prime \prime} \times 6^{\prime \prime}-\$ 55$ per M.
Rafters, $2^{\prime \prime} \times 6^{\prime \prime}$ (2^{\prime} on centre), $-\$ 55$ per M.
Square sheeting, $\frac{7^{\prime \prime}}{8}$ thick (10% added for cutting), $-\$ 53$ per M sq. ft.
Slate, gauge $7 \frac{1}{2}^{\prime \prime},-\$ 30$ per square.
81. A hollow copper sphere used as a float weighs 1 lb ., and is $6^{\prime \prime}$ in diameter. How heavy a weight will it support in the water?
82. Grain dumped in a pile makes an angle of 30° with the horizontal. How many bushels will there be if the pile forms a regular cone 10^{\prime} in diameter?
83. A tank 10^{\prime} long and 2^{\prime} in diameter is in the form of a cylinder with hemispherical ends. How many gallons will it hold?
84. A steel pin $6^{\prime \prime}$ long and $1^{\prime \prime}$ in diameter at the large end has a B. \& S. taper. Find its weight.
85. A chimney shaft $80^{\prime} 0^{\prime \prime}$ high is to be erected, having a flue averaging $3^{\prime} 0^{\prime \prime}$ in diameter from, bottom to top. The shaft is circular and for the first $15^{\prime} 0^{\prime \prime}$ the wall is $2^{\prime} 0^{\prime \prime}$ thick, the next $15^{\prime} 0^{\prime \prime}$ is $1^{\prime} 6^{\prime \prime}$ thick, the next $25^{\prime} 0^{\prime \prime}$ is $1^{\prime} 0^{\prime \prime}$ thick, and the remainder is $9^{\prime \prime}$ thick. How many bricks will be required allowing 15 bricks per cu. ft.?
86. An oil tank in the form of a cylinder 15^{\prime} long and 3^{\prime} in diameter is lying on its side. It is filled to a depth of $30^{\prime \prime}$. How many gallons of oil does it contain and what is the surface of the tank not in contact with the oil?
87. A ring of outer diameter $16^{\prime \prime}$ is made of round castiron $\frac{7^{\prime \prime}}{16}$ in diameter. Find its total surface and weight.
88. A water pail has a base $12^{\prime \prime}$ in diameter and a top $16^{\prime \prime}$ in diameter. The height of the pail is $18^{\prime \prime}$. Find the capacity in gallons and the sq. ft. of material used in construction.
89. A sphere $8^{\prime \prime}$ in diameter is penetrated axially by a cylindrical hole $4^{\prime \prime}$ in diameter. Find the volume of the remaining solid.
90. A tank is in the form of a cylinder with segments of spheres for ends. The total length is 8^{\prime}, the cylindrical part 7^{\prime}, and the diameter 2^{\prime}. Find the capacity in gallons.
91. A building $24^{\prime} 0^{\prime \prime}$ wide and $40^{\prime} 0^{\prime \prime}$ long is to have a hip roof, $\frac{1}{3}$ pitch, with a 2^{\prime} overhang, measured horizontally (formed by extending the rafters). Find the cost of the following material:

Hip rafters, $2^{\prime \prime} \times 6^{\prime \prime}-\$ 60$ per M.
Rafters, $2^{\prime \prime} \times 6^{\prime \prime}\left(2^{\prime}\right.$ on centre), $-\$ 50$ per M.
Square sheeting, $1^{\prime \prime}$ thick (8% for cutting), $-\$ 45$ per M.
Shingles, $4 \frac{1}{4}$ " to the weather, at $\$ 9.50$ per square of shingles.
92. In a room $16^{\prime} 4^{\prime \prime}$ by $20^{\prime} 8^{\prime \prime}$ it is required to lay a quarter cut clear white oak floor $3^{\prime \prime} \times 1 \frac{1}{2}$ " , face measure. Allowing 30% for loss in dressing and working tongue, find the cost at $\$ 250$ per M square feet.
93. A life-buoy elliptical in cross-section has major and minor diameters of $5^{\prime \prime}$ and $3^{\prime \prime}$ respectively. If the mean diameter be $30^{\prime \prime}$, find the volume in cu. in.
94. A conical tent 9^{\prime} high is to be of such a size that a man 6^{\prime} high can stand erect anywhere within 3^{\prime} of the centre pole. How many yd. of canvas $27^{\prime \prime}$ wide does it contain?

95 . Find the weight of a sheet of metal weighing 650 oz . per sq. ft., if the equidistant half ordinates at $1 \cdot 5^{\prime}$ intervals are $0,1 \cdot 75,2 \cdot 25,3,4 \cdot 25,6 \cdot 35,6 \mathrm{ft}$.
96. Two wheels $9^{\prime \prime}$ and $8^{\prime \prime}$ in diameter are running on parallel shafts 5^{\prime} apart. Find the length of a crossed belt connecting the two wheels. (1) Using the formula $3 \frac{3}{8}(R+r)+2 \mathrm{~d}$. (2) Using the exact method. Hence, find the percentage error in the formula.
97. A room $12^{\prime} 0^{\prime \prime}$ wide and $17^{\prime} 0^{\prime \prime}$ long is to be floored with No. 1 quality birch, $\frac{7^{\prime \prime}}{8} \times 2 \frac{11^{\prime \prime}}{}$, to cost 30 c. a sq. ft.; $33 \frac{1}{3} \%$ being added for dressing and working the tongue. It is also to be paneled to a height of $4^{\prime} 0^{\prime \prime}$ at a cost of 80 c . a sq. ft. There are 2 doors each $2^{\prime} 8^{\prime \prime}$ wide and 4 windows each $2^{\prime} 6^{\prime \prime}$ wide, the sills being $2^{\prime} 0^{\prime \prime}$ from the floor. Find the total cost.
98. $\dot{\mathrm{A}} \operatorname{lot} 50^{\prime} 0^{\prime \prime} \times 160^{\prime} 0^{\prime \prime}$ is to be enclosed by a picket fence. The pickets are $4^{\prime} 0^{\prime \prime}$ long, $3^{\prime \prime}$ wide and $1^{\prime \prime}$ thick, and are placed $3^{\prime \prime}$ apart. The posts are placed $8^{\prime} 0^{\prime \prime}$ apart, scantling $2^{\prime \prime} \times$ $4^{\prime \prime}$ being used at top and bottom for railing, and a base-board $10^{\prime \prime}$ wide. If the posts cost 30 c each, the lumber $\$ 52$ per M , and the pickets $\$ 10$ per hundred, find the total cost of material.
99. With a feed of $\frac{1}{8}{ }^{\prime \prime}$ per revolution, how fast is it necessary to run a bar, to turn $40^{\prime \prime}$ long im 10 minutes?

Fig. 131
100. The above figure represents a cross-section of an eggshaped sewer. $O E$ is the right bisector of $A B$ and equal in length to $A B$. The semi-circular top has a radius $0 A=12^{\prime \prime}$. The sides are arcs with radii $C B$ and $D A$ each equal $36^{\prime \prime}$. The small end is an arc with radius $F E=6^{\prime \prime}$. Find the area of the cross-section.

MISCELLANEOUS EXERCISES.

1. The area of a circle is πr^{2}; express the diameter in terms of the area.
2. Express the area of a rectangle in terms of its perimeter when the length is twice the width.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies
17. The law of a machine is given by $P=x+y w$. Find x when $P=6 \cdot 48, y=\cdot 2, w=62$.
18. The length and breadth of a rectangular floor differ by 6^{\prime}; the area is 72 sq. ft., find the perimeter.
19. An equilateral triangle has sides $20^{\prime \prime}$ in length. Find the radius of the inscribed and circumscribed circles.
20. The coefficient of self-induction of a coil of wire is given by $L=\frac{4 \pi A n^{2}}{l 10^{9}}$.

Find n, when $A=\pi r^{2}, r=2 \cdot 5, \cdot L=\cdot 015, l=40$.
21. The difference between the lengths of the parallel sides of a trapezium is 4 ; the area is 100 , and the sum of the parallel sides 20. Find the dimensions.
22. The lifting power of an electro-magnet is given by

$$
P=\frac{B^{2} A}{8 \pi}
$$

P being the pull in dynes. Find P, when $B=14000, A=30$.
23. I have to walk a distance of 144 miles, and I find that if I increase my speed by $1 \frac{1}{2}$ miles per hour I can walk the distance in 14 hours less than if I walk my usual rate. Find my usual rate.
24. In measuring a rectangle the length is measured $1 \frac{1}{2} \%$ too small and the width 2% too large. Find the percentage error in the area.
25. The perpendicular from the vertex of the right angle of a right-angled triangle to the hypotenuse is $2 \mathbf{2}^{\prime \prime \prime}$. The hypotenuse is $5^{\prime \prime}$. Find the other sides.
26. The length of a cylinder is twice its diameter. Find the diameter so that the cylinder may contain three times as many cu. ft. as a sphere $6^{\prime \prime}$ in diameter.
27. A ton of lead is rolled into a sheet $\frac{1}{8}{ }^{\prime \prime}$ thick. Find the area of the sheet if a cu. ft. of lead weighs 712 lb .
28. A rectangular piece of tin has an area of 195 sq. in., and its perimeter is $56^{\prime \prime}$. Find its dimensions.
29. Around the outside of a square garden a path 3^{\prime} wide is made. If the path contains 516 sq. ft., find a side of the garden.
30. An open box is made from a square piece of tin by cutting out a $2^{\prime \prime}$ square from each corner and turning up the sides. How large is the original square if the box contains $1152 \mathrm{cu} . \mathrm{in}$.?
31. A man whose eye is $5^{\prime} 6^{\prime \prime}$ above the ground, sights over the top of a 12^{\prime} pole and just sees the top of a tower. If he is 7^{\prime} from the pole and 63^{\prime} from the tower, find the height of the tower.
32. A derrick for hoisting coal 'has its arm 24^{\prime} long. It swings over an opening 20^{\prime} from the bàse of the arm. How far is the top of the arm above the opening?
33. Show that the area of a triangle is $\sqrt{s(s-a)(s-b)(s-c),}$ where a, b, and c are the sides and s half their sum.
34. An open box is made from a rectangular piece of tin twice as long as it is wide, by cutting out a $2^{\prime \prime}$ square from each corner and turning up the sides. If the total surface is 56 sq. in., find the dimensions of the original piece.
35. At a school entertainment the price of the tickets for the second performance was redüced 20%, which resulted in an increase in receipts of 10%. What was the percentage increase in the number of tickets sold?
36. Two branches of an iron water pipe are respectively $1 \frac{1}{2}^{\prime \prime}$ and $2 \frac{1}{2}^{\prime \prime}$ in diameter. Find the diameter of a pipe that will just carry away the water from both branches.
37. If a man spent $\frac{1}{3}$ of his salary for board, $\frac{1}{3}$ of the remainder for other expenses, and saved annually $\$ 400$, what was his salary?
38. The resistance offered by the air to the passage of a bullet through it varies jointly as the square of its diameter and the square of its velocity. If the resistance to a bullet whose diameter is $\cdot 25^{\prime \prime}$ and whose velocity is 1600^{\prime} per second is 48.5 oz., what will be the resistance to a bullet whose diameter is $\cdot 4^{\prime \prime}$ and whose velocity is 1550^{\prime} per second?
39. The sides of the base of a triangular prism are as $3: 4: 5$, and its volume is 270 cu . in. If the altitude is $5^{\prime \prime}$, find the sides of the base.
40. The ends of a frustum of a cone are respectively ${ }^{\prime \prime} 8^{\prime \prime}$ and $2^{\prime \prime}$ in diameter. If the lateral surface is equal to the area of a circle whose radius is $5^{\prime \prime}$, find the height of the frustum.
41. The safe distributed load in wood beams is given by S.L. $=\frac{c \times b \times d^{2}}{L}$, where c is a const., b the breadth in in., d the depth in in., L the length in ft .

Solve for c, b, d and L.
If $c=100, b=10^{\prime \prime}, d=6^{\prime \prime}, L=10^{\prime}$ find S.L.
42. The horse-power required to drive air through a pipe is given by $H . P .=\frac{Q^{3} L}{41 \cdot 3 d^{5}}$, where Q is the volume in cu. ft. per sec., L the length in ft., d the diameter in in.

Solve for Q, L and d.
If $Q=10 \mathrm{cu} . \mathrm{ft}$., $L=16^{\prime}, d=10^{\prime \prime}$, find $H . P$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

The following Tables are from Kent's Engineers'. Pocket Book:

Weight and Specific Gravity of Stone, Brick, Cement, Etc.

	$\underset{\text { Gpeecific }}{\substack{\text { Gravity }}}$	Welght in lbs. per cublc foot
Asphaltum	$1 \cdot 39$	87
Brick, Soft	$1 \cdot 6$	100
" Common	1.79	112
" Hard	$2 \cdot 0$	125
" Pressed	$2 \cdot 16$	135
. Fire	$2 \cdot 24$ to $2 \cdot 4$	140 to 150
" Sand-Lime	$2 \cdot 18$	136
Brickwork in Mortar	1.6	100
" in Cement	$1 \cdot 79$	112
Portland Cement $\underset{\text { "، }}{\text { (loose) . . }}$ (in barrel)		92 115
Clay	1.92 to $2 \cdot 4$	120 to 150
Concrete	1.92 to 2.48	120 to 155
Earth, loose	$1 \cdot 15$ to 1.28	72 to 80
" rammed	1.44 to 1.76	90 to 110 *
Granite	$2 \cdot 56$ to $2 \cdot 72$	160 to 170
Gravel	1.6 to 1.92	100 to 120
Lime, Quick, in bulk	$\cdot 8$ to $\cdot 96$	50 to 60
Limestone	$2 \cdot 3$ to $2 \cdot 9$	140 to 185
Marble	$2 \cdot 56$ to $2 \cdot 88$	160 to 180
Masonry, dry rubble	$2 \cdot 24$ to $2 \cdot 56$	140 to 160
" dressed..	$2 \cdot 24$ to $2 \cdot 68$	140 to 180
Mortar	1.44 to 1.6	90 to 100
Pitch	$1 \cdot 15$	72
Plaster of Paris	1.50 to 1.81	93 to 113
Quartz.	$2 \cdot 64$	165
Sand	1.44 to 1.76	90 to 100
Sandstone	$2 \cdot 24$ to $2 \cdot 4$	140 to 150
Slate	$2 \cdot 72$ to $2 \cdot 88$	170 to 180
Stone, various	$2 \cdot 16$ to $3 \cdot 4$	135 to 200
Tile	1.76 to 1.92	110 to 120

Weight and Specific Gravity of Wood.

	$\begin{gathered} \text { Specific } \\ \text { Gravity } \\ \text { Mean Value } \end{gathered}$	Welght in lbs. per cublc foot
Ash	- 72	45
Bamboo	- 35	22
Beech	- 73	46
Birch	. 65	41
Cedar	- 62	39
Cherry	- 66	41
Chestniut.	. 56	35
Cypress	. 53	33
Ebony .	$1 \cdot 23$	76
Elm	-61	38
Fir	. 59	37
Hemlock	- 38	24
Mahogany	. 81	51
Maple	- 68	42
Oak, White.	. 77	48
Oak, Red.	-74	46
Pine, White	. 45	28
Pine, Yellow	. 61	38
Poplar . .	. 48	30
Spruce	. 45	28
Teak	. 82	51
Walnut	. 58	36
Willow	- 54	34

Weight and Specific Gravity of Metals.

	Specific Gravity Mean Value	Weight in lbs. per cubic foot	Welght in lbs per cuble lnch
Aluminum	$2 \cdot 67$	$166 \cdot 5$	- 0963
Brass:-Cu. +Zn .			
$\left(\begin{array}{ll} 80 & 20 \end{array}\right)$	$8 \cdot 6$	$536 \cdot 3$	-3103
, 7030	$8 \cdot 40$	$523 \cdot 8$	- 3031
$\{60 \quad 40\}$	$8 \cdot 36$	$521 \cdot 3$	-3017
5050	$8 \cdot 2$	$511 \cdot 4$	- 2959
Bronze	$8 \cdot 853$	552	-3195
Copper	$8 \cdot 853$	552	- 3195
Iron, Cast	$7 \cdot 218$	450	- 2604
Iron, Wrought	$7 \cdot 7$	480	- 2779
Lead	$11 \cdot 38$	$709 \cdot 7$. 4106
Magnesium	1.75	109	. 0641
Mercury	$13 \cdot 6$	848	. 4908
Nickel	$8 \cdot 8$	$548 \cdot 7$	- 3175
Platinum	$21 \cdot 5$	1347	- 7758
Silver	$10 \cdot 505$	$655 \cdot 1$. 3791
Steel	$7 \cdot 854$	$489 \cdot 6$	- 2834
Tin	$7 \cdot 35$	$458 \cdot 3$	- 2652
Tungsten	$17 \cdot 3$	$1078 \cdot 7$	- 6243
Zinc	$7 \cdot 00$	$436 \cdot 5$	- 2526

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Logarithms.

					4	5	6	7	8	9	Mean Differences		
											23	45	7
50	698	699	70070	701	70243	70329	704	70501	70586	70	26	344352	606977
51	707	708	70927	71012	71096	71181	71265	71349	71433	715178	17	3445	596776
5	71600	71684	71767	71850	71933	72016	72099	72181	72263	72346	25	334250	586675
	72428	72509	72591	72673	72754	72835	72916	72997	73078	73159	1624	324149	576573
54	73239	73320	73400	73480	73560	73640	73719	73799	73878	739578	1624	324048	566472
	74036	74	74194	74	74351	74429	74507	74586	74				556370
	748	7489	74974	75051	75128	7520	75282	75358	754	75	1523	313946	546269
	75587	75664	75740	75815	75891	7596	76042	76118	76193	76268	15	303845	536068
58	76343	76418	76492	76	11	76716	767	76864		77012	715	303744	525967
59	77085	77159	77232	77305	77379	77452	77525	77597	77670	77743	1522	293744	515866
			77	78032	78	78	78	78319	78390			293643	50585
	78	7860	78675	787	78817	78	789	79029	79099	791	21	283643	505764
62	79	79309	79379	79	79518	79	79	79727	79796	79865	析	283541	62
63	79934	8000	80072	80140	80209	80277	803	80414	80482	80550	14	27	
64	806	80686	80754	80821	80889	80956	81023	81090	81158	81224	71320	273440	475460
			81						81823				
	81954	82020	8208	82151	82217	82282	82347	82413	82478	82543	71320	263339	465259
	82607	82672	8273	82802	82866	82930	82995	83059	83123	83187	61319	263238	455158
	83	83315	83378	83442	835	835	8363	83	83759	83822	613	253238	445057
69		83948	84011			84	84	84	84		612	253137	435056
70		84										253137	
	85	8518	8524	85.309	837	543	85491	85552	85612		61		
72	857	85794	85854	85914	85974	86034	860	86153	86213	86273	61218	243036	
			86451	86510	8657	866		867	8680	86864	- 12	243035	
74		869	8704	870	871	8721	872	87	87390		7	232935	
		87	87					87					
		881	88195	88				88480	88536	88593		232934	404651
	886	88705	88762	8818	8887	8893	8	89042	89098				
	8990	89265	89321	89376	89432	8948	895	8959	89653		611	222833	
79		89818	8987	8992				90146	90200				
	9030	90	90	904	905	905	90	906	90741				
	90	90902	915	91009	9106	91116	911	91222	91275	91328		1	
	91381	91434	91487	9154	91593	91645	916	91751	91803	91855	51116	212732	
8	9190	91960	92012	92064	92117	92169	92221	92273	92324	92376	51016	212631	
84	924	924	92	92	926	926		927	92840				
	92942	9299	930	930	931	931	932	932	93349	93399	1015	20	
	93450	9350	9355	93601	93651	93702	937	93802	93852	93902	10		
	93952	940	94052	94	94151	94201	94250	94300	94349	94399	1015	202530	
88	94448	944	94547	945	94645	94694	94743	94792	94841	94890	51015	202529	
89			95036	950	951	951	95	952	95328	953	10	1924	
			95521			9566	95713	95761	95809	95856	1014	192	
1	${ }^{95904}$	95952	95999	96047	96095	96142	96190	96237	96284	96			
92	96379	96426	96473	96520	96.567	96614	96661	96708	96755	96802	914	19	
93	96848	9735	9694	979	970	97081	97	97174	9722		914	182328	323842
94	97313	97359	9740	974	974	97		97635	97681		914	1823	
		97818					98046	98091	98137	98182	914	182327	3231
96	98227	98272	98318	98363	98408	98453	98498	98543	38588	98632	914	1823	
97	98677	98722	98767	98811	98856	98900	98945	98989	99034	99078	913	1822	3640
98	99123	99167	99211	99255	99300	99344	99388	99432	99476		13	182226	(1) 313540
99		99607\|	99651	99	99739	99	998	998	999	99957	13	172226	313539

Antilogarithms.

Antilogarithms.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

16.—2. $22.9175 .3 .252 \mathrm{ft} .4 .3199 .5 .3773,3507.6 .46548 \mathrm{lb}$. 26772 lb .7 .236 lb .8 .144 .9 .14 rem. $2 \mathrm{ft} .10 .177 \frac{7}{9}$ miles. 11.60. 12. $25 \frac{1}{4}$ miles. 13. $\$ 10287 \cdot 16$. 14. 2400.
17.-15.8. 16. 72.
 9. $\frac{32}{252}$. 10 . $\frac{72}{189}$.
20.-1. $\frac{3}{4}$. 2. $\frac{1}{2}$. 3. $\frac{1}{4}$. 4. $\frac{2}{3}$. 5. $\frac{2}{3}$. 6. $\frac{37}{145}$. 7. $\frac{242}{311}$. 8. $\frac{107}{369}$. 9. $\frac{9}{100}$. 10. $\frac{5}{16}$.
21.-1. $3 \frac{1}{2}$. 2. 4. 3. $7 \frac{1}{9}$. 4.6. 5. $8 \frac{3}{4} . ~ 6.17 \frac{6}{7}$. 7. $29 \frac{8}{9}$. 8. $3 \frac{3}{1 \mathrm{~T}}$. 9. $11 \frac{2}{1 \mathrm{I}} .10 .27 \frac{3}{16}$. 11. 2500. 12. $9 \frac{3}{13}$. 13. 53. 14. 9 . 15. $\frac{10}{3}$. 16. $\frac{97}{15}$. 17. $\frac{80}{11}$. 18. $\frac{3687}{32}$. 19. $\frac{487}{4}$. $\quad 20 . \frac{275}{3}$. 21. $\frac{2158}{5}$. 22. $\frac{160021}{40}$. 23. $\frac{6508}{9}, 24 . \frac{3535}{9}$.
22.-1. $\frac{11}{15}$. 2. $\frac{26}{35}$. 3. $\frac{1}{16}$. 4. $1 \frac{23}{48}$. 5. $\frac{139}{176}$. 6. $\frac{31}{48}$. 7. $1 \frac{1}{18}$. 8. $1 \frac{53}{64}$. 9. $\frac{19}{64}$. 10. $11 \frac{7}{8}$. $11.3 \frac{23}{24}$. 12. $3 \frac{89}{504}$. 13. $19 \frac{23}{30}$. 14. $8 \frac{115}{144}$. 23.-1. $33 \frac{3}{4} \mathrm{lb}$. 2. $\frac{1}{16}$. 3. $2 \frac{3}{16}^{\prime \prime}$. 4. $2 \frac{13}{64}{ }^{\prime \prime}$. 5. $24 \frac{5}{16}$. 6. $19 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. 24.-7. $3 \frac{3}{4}^{\prime \prime}$. 8. $16 \frac{9}{16}^{\prime \prime}, 1 \frac{1}{4}^{\prime \prime}$. 9. $2 \frac{5}{12}^{\prime}, 2 \frac{3}{4}^{\prime}, 1 \frac{11^{\prime}}{}{ }^{\prime}$. 10. $1^{\frac{5}{6}}{ }^{\prime}$. 26.-1. $2 \frac{2}{9}$. 2. $2 \frac{2}{9}$. 3. $\frac{16}{27}$. 4. $\frac{3}{16}$. 5. $\frac{5}{64}$. 6. $\frac{3}{16}$. 7. $\frac{5}{64}$. 8. $\frac{9}{320}$. 9. $1 \frac{1}{2}$. 10. $\frac{27}{40}$. 11. $\frac{135}{32768 .}$ 12. $1 \frac{3}{65} .13 .500 .14 . \frac{15}{64}$. 15.62. 16.25. 17.3. 18. 1. 19. $5 \frac{5}{21}$. 20. $39 \frac{45}{64}$. 21. 49 . 22. $4 \frac{2}{3}$. - 23. 1. 24. $27 \frac{56}{57}$.
27.-1. $\frac{3}{20}$. 2. $\frac{7}{16}$. 3. $\frac{3}{256}$. 4. $\frac{7}{48} .5 . \frac{7}{12} .6 . \frac{15}{2}$. 7. $3 \frac{1}{2}$. 8. 376 $\frac{1}{2}$. 9.6. 10. $\frac{7}{10}$. 11. $7 \frac{13}{30}$. 12. $\frac{11}{50} .13 .12 \frac{115}{144} .14 . \frac{13}{112} .15 .1 \frac{7}{95}$. 16. $16 \frac{19}{21}$.
27.-1. $\frac{49}{100}$. 2. $\frac{1}{25}$. 3. $\frac{94}{125} . ~ 4 . \frac{3567}{5000} . ~ 5 . \frac{251}{500} .6 . \frac{1}{125} .7 . \frac{141}{200}$. 8. $\frac{817}{5000}$. 9. $\frac{2}{125}$. 10. $\frac{31}{200000}$.
28.-1. -25. 2. -5. 3. -375. 4. -6875. 5. -6. 6. -992. 7. 96875. 8. .9375. 9. .96. 10. 9921875 . 11. $\cdot 74$. 1ُ́. 508.
 7. $\cdot \dot{3} 0769 \dot{2}$.
30.-1. $\frac{5}{9}$. 2. $\frac{4}{11} \cdot$ 3. $\frac{11}{30}$. 4. $\frac{17}{111} \cdot$ 5. $\frac{61}{165}$. 6. $\frac{41}{111}$. 7. $3 \frac{19}{75}$. 8. $\frac{1}{6} \frac{1}{00}$. 9. $\frac{1}{7}$. 10. $2 \frac{23}{30}$. 11. $2 \frac{589}{1110}$. 12. $\frac{787}{16650 .}$ 13. $\frac{11}{3000}$. 14. $\frac{71}{16655}$. 31.—2. $4,2,22 \frac{1}{2}, 60$. 3. $50 \%, 25 \%, 12 \frac{1}{2} \%$. 4. $50 \%, 20 \%$, $33 \frac{1}{3} \%$. $5.416 \frac{2}{3} \%, 4 \frac{17}{30} \%$. 6. 15, 35, 70, 85. 7. 80. 8. 70. 32.-9. $\$ 8 \cdot 07 \frac{1}{2}$. 10. 30 gallons.

Page

33.--1. 10, 5,10 . 2. $\$ 78 \cdot 30$. 3. $11 \frac{1}{21} \mathrm{hr}$. 4. $\$ 167 \cdot 47$. 5. first by $4 \frac{1}{2} \mathrm{c}$. $6.21 \cdot 2 \mathrm{lb}$. 7. $\$ 72 \cdot 25$. 8. $9 \frac{28}{3}$. 9. 4 . 10. $\$ 840 \cdot 00$. 11. $\$ 1692 \cdot 90$. $12 . \$ 3125 \cdot 00$. 13. $\$ 25631 \cdot 41$. 14. $\frac{4}{7}, \frac{2}{7}, \frac{1}{7}$.
34. $-15 . \frac{49}{64} \mathrm{in} . \quad 16 . \frac{1}{6} . \quad 17.8 \frac{3}{4} . \quad 18.10 \mathrm{lb} .19 . \$ 27 \cdot 03 \frac{1}{8}$. 20.73. 21. $\$ 8 \cdot 44$. 22. $54 \cdot 94 \mathrm{lb}$. copper, $27 \cdot 06 \mathrm{lb}$. zinc. 23. $9 \frac{87}{107}$ days. 24. $\$ 360 \cdot 00$. 25. $63 \cdot 295$. 26. $309 \cdot 462$. 27. $232 \frac{1}{2}$ oz. 28. $6 \frac{6}{79} \mathrm{in}$.
35.-29. $55 \cdot 97^{\prime \prime}$. 30. $83 \cdot 27$. 31. $4 \cdot 5225^{\prime \prime}$. 32. 96. 33. $83 \frac{1}{3}$. 34. 78: 35. $\cdot 25, \$ 4000$. 36. $1062 \cdot 5,187 \cdot 5$. 37. 14 in. 38. $822.64 \mathrm{cu} . \mathrm{in} .39 .72 .40 .8000 \mathrm{lb} .41 .11 \frac{1}{2} \mathrm{in}$.
$36 .-42.1 \frac{3}{8}$ in. 43. $\$ 5775 \cdot 00$. 44. $\$ 4100 \cdot 00, \$ 6150 \cdot 00$, $\$ 6150 \cdot 00$. $45.107 \frac{7}{12}, 35 \frac{31}{36} \%$. 46. $65 \frac{5}{8}$. 47. $10383 \cdot 36$. 38.-1. 1760. 2. 5280 . 3. •027̣. 4. •003125. 5. 681". 6. $16339 \frac{1}{2}$ '. 7. $\cdot 000125$. 8. $\cdot 00126.9 .415$ li. $10.1 \frac{77}{396} \mathrm{ch}$. 11. $2874 \cdot 96^{\prime}$. 12. $6 \frac{5}{12}$ ch. 13. $52 \cdot 37$ miles.
39.-5. $14^{\prime}, 4 \cdot 4406$ ". $6.9525 \mathrm{~cm} ., \cdot 09525 \mathrm{dm} .7 . \cdot 06096 \mathrm{Km}$. 40.-8. $981.456 \mathrm{~cm} .9 .1 \cdot 34 \mathrm{Km}$. ' $10.134 \cdot 112 \mathrm{~cm}$.
41.-4. 4840 sq. yd. 5.1321 sq. ft. 6. 033 ac. 7. 6930 sq. in. 8. $\cdot 51$ sq. yd. $9.2 \frac{1}{2}$ ac. $10 . \cdot 803$ sq. ft. 11. $\frac{49}{64}$ sq. ft. 12. 198. 13. 96. 14. $57 \frac{1}{27} \cdot 15.2 \cdot 16 \mathrm{ac}$.
42. -16. 24012. 17. $\$ 373 \cdot 33$. 18. $\$ 6 \cdot 53$. 19. 72. 20. $54 \frac{23}{45}$.
$43 .-3.225 \mathrm{cu} . \mathrm{ft} .4 .143432 \mathrm{cu} . \mathrm{in} . \quad 5.6790 \cdot 363 \mathrm{cc} .6 .1 \frac{27}{28}$. 7. $3 \frac{11}{118} \cdot \cdot 37$. 8. $21 \frac{5}{27}, 104 . ~ 9 . ~ \$ 10 \cdot 67$. 10. $\$ 143 \cdot 44$. 11. 129.
44.-12. $442 \cdot 45.13 .19^{\prime} 6^{\prime \prime} .14 . \$ 112 \cdot 12, \$ 128 \cdot 34$. 15. $\frac{1}{4}^{\prime \prime}$. 16. 36300.
46.-1. $58 \cdot 35 \mathrm{cu} . \mathrm{ft}$. 2. 1-83.
47.-3. 1•03. 4. $90864 \cdot 018$ tons. 5. $\cdot 79$. 1. 196. 2. 484 days. 3. 45563 min . 4. 1496.
49.—3. $343 \mathrm{l}, 343000 \mathrm{~g} .4 .3875 \mathrm{cu}$ in., $1096 \cdot 625 \mathrm{lb} .5 .2268$ Kgm. 6. 52310. 7. $6271 \cdot 98$. 8. $12145 \cdot 14$. 9. $3600 \frac{5}{6} \mathrm{lb}$., $6 \frac{5}{24}$.
51.-1.45. 2. 199. 3.123. 4.327. 5.37. 6.1•732. 7. 3.4908. 8. 11•9668. 9. $\cdot 7370$. 10. 2507 . 11. 220 yd . 12. 11•67". 13. $30 \cdot 59^{\prime \prime}$. 14. The square pipe.
52.-15. $15 \cdot 87^{\prime \prime}$. 1. $14 \cdot 14^{\prime \prime}$. 2. $48 \cdot 82^{\prime}$. 3. $51 \cdot 38^{\prime}$. 4. 127•27'. 5. $469 \cdot 04^{\prime}$ 。
53.—6. 121•96'. 7. 20•85'.
54.-1.6.39. 2. 5.93. 3. (a) $\$ 159 \cdot 05$. (b) $\$ 146 \cdot 33$.
$55 . — 4.228 \cdot 97.572 \cdot 42,1144 \cdot 48$. 5. $2809 \frac{7}{9}$.
56.—2. 21409. 3. 30491. 4. \$220•20, $\$ 313 \cdot 63$. 5. 66248 . 6. $\$ 2647 \cdot 17$.
59.—5.6, 72. 6. $13 \frac{1}{3}, 160$. 7. $\$ 143 \cdot 60$. 8. \$139•78. 9. $\$ 44 \cdot 69$. 65.—2. $\$ 5 \cdot 46, \$ 11 \cdot 76, \$ 24 \cdot 49$. 3. $\$ 8 \cdot 00, \$ 14 \cdot 93, \$ 34 \cdot 99$. 66 . $4 . \$ 25 \cdot 00, \$ 33 \cdot 86, \$ 52 \cdot 33$. $5 . \$ 95 \cdot 63, \$ 114 \cdot 55, \$ 496 \cdot 40$. 6. \$47-12.
67.—'\%. $\$ 64 \cdot 83$. 1. (a) $\$ 57 \cdot 02$, (b) $\$ 88 \cdot 59$, (c) $\$ 197 \cdot 50$. 2. (a) $\$ 91 \cdot 04$, (b) $\$ 92 \cdot 16$, (c) $\$ 173 \cdot 40$. 3. $\$ 180 \cdot 21$.
68.—4. $\$ 375 \cdot 28$. 5. $\$ 800 \cdot 42$.
$69 .-1$. $\$ 6 \cdot 97, \$ 10 \cdot 39, \$ 8 \cdot 25$.
70.—2. $\$ 4 \cdot 97, \$ 2 \cdot 20 ; \$ 10 \cdot 20$. 3. $\$ 10 \cdot 11, \$ 8 \cdot 99, \$ 8 \cdot 50$. 89.-1. $70^{\prime}, 14^{\prime}$. 2: 320 . 3. 620^{\prime}. 4. 160. 5. 5760 sq. ft. 90.—6. $150 \frac{\mathbf{3}_{\underline{1}}}{}{ }^{\prime \prime}$. 7. 120^{\prime}. 8. 12. 9. $\$ 6000 \cdot 00$. $10.4800 \mathrm{cu} . \mathrm{ft} .$, $1200 \mathrm{cu} . \mathrm{ft} .11 .15^{\prime} .12 .18^{\prime \prime}, 6^{\prime \prime}$. 13. $48 \mathrm{c} ., 32 \mathrm{c} ., 14.65 \mathrm{c} .$, 26c. 15. 2 years: 16.3 days. $17.9 \frac{1}{11}$ min. $18 . \frac{1}{2} \frac{2}{5}$ day. 91.-19. 25 miles, 30 miles. 20. $16 \frac{2}{3}$. 21. $\$ 200000$. 22. $68 \frac{2}{1 \mathrm{r}}$. 23. 2100 gals. 24. $\$ 68750 \cdot 00$. 25. $\$ 18000 \cdot 00$. 26. $4 \frac{1_{2}^{\prime}}{}$ from fulcrum. 27.10 cm .
93.-11. $19 \frac{4}{15} . \quad 12 .-\frac{1}{12} . \quad 13.4 \frac{2}{5} \frac{9}{0} . \quad$ 14. $1 \frac{3}{4}$.
94. -1. $-2 a$. 2. $2 a-3 b-3 c$. 3. $-8 x+23 y+3 z$.
4. $7 x y-y z+10 z x$. 5. $3 x^{2}+3 x-6$. 6. 7a. 7. $6 x^{3}-2 x^{2}$ $-x+2$. 8. $4 y^{3}+y^{2}+3$.
102. - 1. $x+4$. 2. $a+1$. 3. $a-2$. 4. $x-7$. 5. $3 x-4$. 6. $3-2 a$. 7. $2+x . \quad$ 8. $x+y$. 9. $5-3$ a. 10. $2 x^{2}+7 . \quad$ 11. $x+b$. 12. $x^{2}+x y+y^{2}$. 13. $a^{2}-a b+b^{2}$. 14. $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$. 15. $\dot{a}^{2}+b^{2}+c^{2}-a b-b c-c a$.
104.—2. $\frac{1}{2}, 88,37 \cdot 5$. 3. $\cdot 0315,47 \cdot 7,238 \cdot 1$. 4. 26775, 480, $\frac{1}{2}$. $5.15,3$. $6.8 \frac{8}{11}, 73 \frac{1}{3}, 2 \frac{1}{5}, 55,110$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

328 MATHEMATICS FOR TECHNICAL SCHOOLS
Page
139.-18. $4 \frac{4^{13}}{}{ }^{\prime}$. $19.284^{4}{ }^{\prime \prime}$. 20: $\frac{3}{100}$. 21. 15^{\prime}. 22. $1 \frac{1}{4}, 80^{\prime}$. 23. 1056^{\prime}.
143.-1. 1200, 800. 2. $\frac{30}{7},-\frac{50}{7}$. 3. $66 \frac{2}{3}, 133 \frac{1}{3}, \quad$ 4. $5 \frac{1}{3}, 10 \frac{2}{3}$. 5. $\frac{1}{10}, 5, \mathrm{P}=\frac{1}{10} \mathrm{~W}+5$. 6. 6000, 20. 7. $\cdot 046,5$. 8. $21 \cdot 6$, -0044. 9. 1957, 1521. 10, 345, 245.
144. - $11.100,200$. 12. $4 \frac{7}{12}, 5 \frac{1}{4} .13 .106 \cdot 15,72 \cdot 21$. 14. 10.42, -0088. 15. $\$ 21000000, \$ 1890000$. 1. $1 \cdot 35,3 \cdot 26,32$. 2. $9 \cdot 4,15$.
145.—3. 102, 210, $-2 \cdot 13,14.4 .1190 \cdot 4,20,10.5 . \cdot 548,106 \frac{2}{3}$, $63,21504, \cdot 658.6 .30062 \cdot 1, \cdot 377, \cdot 65$.
146.—7.13.4, 12•2, 7, 16. .8. $6283200, \cdot 31416, \cdot 079$. 9. 58 , $1 \cdot 125, \cdot 7 . \quad 10.17 \cdot \dot{2}, 161 \cdot 6,24 \cdot 8$. 11. $111 \cdot 2,217$, -06, 6-66.
147.—12. $171^{\prime \prime}, 44 \cdot 5^{\prime \prime}$. 13. $245 \cdot 25^{\prime \prime}, .31 \cdot 5^{\prime \prime}$. 14.6•66, 1069•2. 15. $18 \cdot 6^{\prime \prime}, 34 \cdot 9,4400.16 .11^{\prime \prime} ; 58 \cdot 18,3300$.
$148 .-17 \cdot 42 \cdot 215,35 \cdot 9,6 \cdot 9.18 .1 \cdot 0472,14 \cdot 3,86450.19 .667 \cdot 6$, 18390, 149-21.
149.—20. 3, 1181.9.
179.-1. 19.64. 2. 68.75.
180.—3. 63.63. 4. $392 \cdot 85 . \quad$ 5. $22 \cdot 92$. 6. $9 \cdot 55^{\prime \prime}$. 7. $23 \cdot 86$. 8. $11.45^{\prime \prime}$. 9. 2357 +. 10. $76 \cdot 36$.
181.-1. 2304. 2. 9.60 min . 3. 16 min . 4. $11 \cdot 31 \mathrm{~min}$. 5. $\frac{105}{35}$. 6. 5 min. 7. $0028^{\prime \prime}$. 8. 5 min . 9. 79.2. 10. $33 \cdot 94$.
 7. No. 0 Morse. 8. B. \& S. 9. $604^{\prime \prime}$. 10. No. 0 Morse. 11. $\frac{1}{2}{ }^{\prime \prime}$. 12. Jarno. 14. $\frac{15}{64}{ }^{\prime \prime}$. 15. $\frac{1}{4}{ }^{\prime \prime}$. 16. $\frac{7^{3}}{3}{ }^{\prime \prime}$. 17. $\frac{5}{12}{ }^{\prime \prime}$.
188.—18. (a) $\frac{15}{6} \frac{4}{4}^{\prime \prime}$, (b) $\frac{3^{\prime \prime}}{}{ }^{\prime \prime}$, (c) $\frac{1_{4}^{\prime \prime}}{4}$, (d) $\frac{3}{8}{ }^{\prime \prime}$. 19. $1 \frac{1}{2}^{\prime \prime}$. $20.4^{\prime \prime}$. 21. $3 \frac{5}{12}^{\prime \prime}, \frac{5}{12}{ }^{\prime \prime}$. 22. $2 \cdot 1^{\prime \prime}$. 23. $1 \cdot 68^{\prime \prime}$. 24. $2^{\circ} 59^{\prime}$, $2^{\circ} 52^{\prime} \cdot 24^{\prime \prime}, 2^{\circ} 23^{\prime}, 2^{\circ} 51^{\prime} 50^{\prime \prime}$ 。
191.—2. 12. 3. 10 4. $\frac{11}{16}$. 5. $\frac{57}{64}$. 6. $\frac{27}{64}$. 7. $\frac{1}{5}$. 8. $3 \frac{1}{2}$. 9. $1^{\prime \prime}$. 10.1-615".
193.-1. $\cdot 1625^{\prime \prime}$. 2. $\cdot 4541^{\prime \prime}$. 3. $\frac{1}{10} .4 .4^{\prime \prime}$. 5. $\frac{1}{13}$. 6. 4. 7.3. 8. $\frac{61}{64}$. \quad 9. $\frac{1}{2}$. 10. $\frac{27}{32}$.

ANSWERS

329

Page

195.-1. $1 \cdot 187^{\prime \prime} .2 .2 \cdot 167^{\prime \prime}$. 3. $\frac{1}{2} .4 .3^{\prime \prime} .6 .1 \frac{1}{3} .7 . \frac{1}{2}$. 8.4. 9.6.
197.-1. $\cdot 05336^{\prime \prime}, \cdot 01144^{\prime \prime}$. 2. $\frac{1}{10}, \cdot 62193^{\prime \prime}$. 3. $\cdot 08004^{\prime \prime}$, -83992. 4. $\cdot 0915^{\prime \prime}, \frac{1}{7}, \cdot 0196^{\prime \prime}$. 5. $4 \frac{1}{2}, 1 \cdot 7154^{\prime \prime}, \cdot 02948^{\prime \prime}$. 6. $\cdot 04^{\prime \prime}, \cdot 295^{\prime \prime}, \cdot 00858^{\prime \prime}$.
202.-1. 24, 64. 2. 32, 48. 3. 45. 4. 16. 5. 24, 72. 6. 36. 7. $\frac{1}{6}$. 8. 24. 9. 72. 10. $42,98$.
205.-1. $4 \frac{1}{2}$. 2. 24 stud, 92 lead, 36 inside ., 72 outside c. 206.-3. 48 stud, 28 lead, 36 inside c., 72 outside c. 4. 24 stud, 96 lead, 72 inside c., 36 outside c. 5. 42 stud, 98 lead. 6. 24 stud, 96 lead. 7.64 stud, 40 lead. 8.112. 9. Equal gears. 10. 36 inside, 72 outside.
210.-1. $8^{\prime \prime}$. 2. $\cdot 2618^{\prime \prime}$. 3. •1122". 4. •1541". 5. -0982". 6. $\cdot 1348^{\prime \prime} .7 .5 \cdot 166^{\prime \prime} .8 .5 \cdot 5^{\prime \prime} .9 .70$. 10. 46. 11. 10. 12. $7^{\prime \prime}$.
212.—1.419. 2.40. 3.4•09". 4.42. 5.30.4. 6.5•09". 7. $\frac{3}{4}$ " per min. $8.2^{\prime \prime}$ per min.
213.-9.5. 10. $\frac{1}{4}$ ".
225.—2. 15". 4. $15^{\prime \prime} .5 .21 \cdot 333^{\prime \prime} .6 .21 \cdot 5^{\prime \prime}$. 7. $49^{\circ} 57^{\prime}$.
226.—8. $22^{\circ} 48^{\prime}$. 9. $1^{\prime \prime}$. 10. $14 \cdot 945^{\prime \prime}$. 1. $\frac{1}{4}{ }^{\prime \prime}$. 2. $\frac{1}{3}$. 3. 10. 4. $\cdot 1443^{\prime \prime} .5 .9 .6 . \cdot 3466^{\prime \prime}, \frac{1}{5}$. 7. $9 \frac{3}{7}$ min. 8. $71 \frac{1}{3}$. 9. $\frac{1^{\prime \prime}}{}{ }^{\prime} 2^{\circ} 23^{\prime}$. 10. $\frac{3}{8}$ ". 11. $5 \cdot 487^{\prime \prime}$. 12. $\frac{1}{10} .13 .28$.
227.-14.8. 15.72. 16.36. 17. $11 \frac{1}{4}$. 18. 5. 19. 36 inside, 72 outside. 20. $6 \cdot 5^{\prime \prime}$. 21. 11". 22. $3 \cdot 82^{\prime \prime}$. 23. $6 \frac{2}{3}$. 24. 24 worm, 32 second stud, 64 first stud, 72 screw. 25. $33^{\circ} 8^{\prime}$.
239.-1. 3.0099. 2. $\cdot 4420$. 3. $\cdot 08836$. 4. $\cdot 89827$. $5.7 \cdot 5229$. 6. $21 \cdot 015$. 7. $3 \cdot 3332$. 8. $\cdot 58798$. 9. . 0055873 . 10. $\cdot 0007237$. 11. $5800 \cdot 9$. 12. $4 \cdot 4419$. 13. $1 \cdot 2057$. 14.1•878. 15. $\cdot 2999$. 16. 25507 . 17.2•37. 18.1•80. 19. 1-68.
240.-20. 279.04 sq. yd. 21. $188 \cdot 86$ sq. in. 22. 43.301 acres. 23. 13•221. 24. $475 \cdot 4^{\prime}$. 25. 50•77". 26. 16495 sq. in. 27. 30•73. 28.13•365. 29.40101+. 30. 592•21.

Page
242.—2. $\$ 27 \cdot 20$. 3. $68 \cdot 35$. 4. 472. 5. $10 \cdot 57$ sq. ft., $2 \cdot 29 \mathrm{cu} . \mathrm{ft}$. 6. $5 \cdot 41$.
244.—3. $128 \cdot 18 \mathrm{lb}$. 4. $11846+$. 5. $\$ 26 \cdot 18$.
$245 .-6.28 .49 \mathrm{lb}$. \quad 2. $502.65 \mathrm{sq} . \mathrm{in}$.
246.—3. 667.98 lb . 4. $2127.89 \mathrm{lb} .5 .522 \cdot 78 \mathrm{lb} .6 .280 \mathrm{lb}$.
248.-2. 48 sq. in., $11.46 \mathrm{sq} . \mathrm{in}$. 3. $50 \cdot 03 \mathrm{lb}$. 4. $16 \cdot 15 \mathrm{lb}$. 5. (a) $\$ 71 \cdot 97$, (b) $22200+$.
249.-6. $70 \cdot 86$.
250.—2. $31 \cdot 196 \mathrm{lb}$. 3. $131 \cdot 4 \mathrm{sq}$. in., $24 \cdot 11 \mathrm{lb}$. 4. $7856 \cdot 4$, $\$ 49 \cdot 74$. $5.3 \cdot 59 \mathrm{cu} . \mathrm{in}$.
254.—2. 91 sq . in. $3.496 .61 \mathrm{lb} .4 .48 \cdot 01 \mathrm{lb} .5 .30 \cdot 73 \mathrm{cu} . \mathrm{in}$. 6. $2 \cdot 36 \mathrm{cu} . \mathrm{in}$.
256.—3. $67 \cdot 02 . \quad 4.41 \cdot 34 \mathrm{lb} .5 .1 \cdot 55 \mathrm{lb} .6 .2 \cdot 29 \mathrm{lb}$.
$257 .-1.907$ sq. ft. 2. $611 \cdot 3$ sq. ft.
258:—3. $74 \cdot 22$ sq. ft., $41 \cdot 86 \mathrm{cu} . \mathrm{ft}$. $4.352 \cdot 19 \mathrm{sq}$. in., $490 \cdot 09$ cu. in. $5.837 \cdot 76 \mathrm{cu} . \mathrm{in}$.
259.-1. 30 lb . 2. 2988 tons. 3. 3325.64 lb . 4. 7854 lb . 5. 165.93. 6. $10102+\mathrm{lb}$. 1. $1 \cdot 41^{\prime \prime}$. 2. $821 \cdot 6 \mathrm{lb}$.
260.—3. $5 \cdot 72^{\prime \prime} . \quad 4 . \cdot 153 . \quad 5.16 \cdot 53^{\prime} .6 .2 \cdot 02 \mathrm{lb} .7 .70 \cdot 68 \mathrm{lb}$. 8. $25 \cdot 01^{\prime}$. 9.3291 .48 sq. ft. 10. $4 \cdot 84$. 11. $22 \cdot 53$. 12. $51 \cdot 30 \mathrm{sq}$. in. 13. 20 min . 14. $13675+\mathrm{lb}$. 15. $603 \cdot 19$ sq. in. 16. $\$ 17 \cdot 00$. 17. $163 \cdot 17$.
261.—18. 25.79. 19. $2787 \mathrm{cu} . \operatorname{in.~20.~} \$ 255 \cdot 00$. 21. $26 \cdot 51 \mathrm{lb}$. 22. $8774 \cdot 30 \mathrm{lb}$. 23. $\cdot 243$. 24. $2 \cdot 65^{\prime \prime}$. 25. $22 \cdot 15 \mathrm{lb}$. 26. $5 \cdot 01^{\prime \prime}$. 27. $11581+$. 28. 648000. 29. $1942 \cdot 1$ sq. ft., $10603+\mathrm{cu} . \mathrm{ft}$. 30. $\$ 73 \cdot 67$.
262.—31. $12 \cdot 57 \mathrm{cu} . \mathrm{in}$. 32. $3 \cdot 32^{\prime \prime}$. 33. 19215+1b. 34.79.79. $35.376 \cdot 99 \mathrm{sq} . \mathrm{in} . \quad 36.4 \cdot 69 \mathrm{lb} .37 .14 \cdot 50^{\prime \prime}$. $38.13 \cdot 76$. 39. $12 \cdot 84^{\prime \prime}$. 40. $9 \cdot 59^{\prime \prime}$
264.-11. $(a-b)(x-y)$. 12. $(x+z)(x-y)$. 13. $(3+a)(x-y)$. 14. $\left(x^{2}-y\right)(x-2)$. 15. $(a x-b)(b x-a)$. 16. $\left(a^{4}+1\right)(a+1)$. 17. $\left(a^{2}-b\right)(1+c)$. 18. $(a+3)\left(2 a^{2}-c\right)$. 19. $\left(x+m^{2}\right)(x+m)$. -20. $(a+b)(x+\dot{y}-z)$.

Did you know we sell paperback books too?
To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month
*Fair usage policy applies

Continue

273.-37. $\sqrt[6]{2187}$. 38. $\sqrt[5]{9} . \quad$ 39. $x-y . \quad$ 40. $x^{\frac{3}{2}}+x y^{\frac{1}{2}} x^{\frac{1}{2}} y-y^{\frac{3}{3}}$. 41. 8. 42. $\frac{1}{16}$. 43. $\frac{1}{64}$. 44. 81.
$275 .-1 . \sqrt[12]{3^{6}}, \quad \sqrt[12]{4^{4}}, \quad \sqrt[12]{6^{3}} . \quad$ 2. $\sqrt[6]{5^{3}}, \sqrt[6]{11^{2}}, \quad \sqrt[6]{13} . \quad$ 3. $\sqrt[6]{2^{2}}$, $\sqrt[6]{2^{9}}, \sqrt[6]{2^{2}} . \quad 4 . \sqrt[12]{8^{3}}, \sqrt[12]{3^{4}}, \sqrt[12]{6^{6}} \quad$ 5. $\sqrt{6}$. \quad 6. $\sqrt{30}$. 7. $\sqrt{\overline{\overline{1}_{5}^{6}}} . \quad 8 . \sqrt[6]{4500} \quad$ 9. $2 \sqrt[6]{9}$.
276.-1. $25 \sqrt{7} . \quad$ 2. $8 \sqrt{11} . \quad$ 3. $14 \sqrt{2} . \quad 4.5 \sqrt{5 .} \quad 5.16 \cdot 97$. 6. 12•12. .7. $15 \cdot 81$. 8. 36.74. 9. 78.26. 10. $31 \cdot 75$. 11.7. 12. $2 \cdot 65 . \quad 13 .-25 \cdot 98$. 14. 7.35. 15. 16.26. 16. $4 \sqrt[3]{4} . \quad 17.6 \sqrt[3]{2} . \quad 18.5 \sqrt[4]{5} . \quad 19 . \quad-9 \sqrt[3]{3} . \quad 20.34 \cdot 29$. 21. 96 . 22. $61 \cdot 24$. 23. $41 \cdot 57$. 24. 118•78. 25. 51.96. 26. $332 \cdot 55$.
278.—1. 8.66. 2. $1 \cdot 155 . \quad$ 3. $9 \cdot 794 . \quad$ 4. $2 \cdot 683 . \quad 5 . \cdot 204$. 6. 19.596. 7. . $403 . \quad 8 . \quad \cdot 045.9$. 257 . 10. $\cdot 315$. 11.1.702. 12. $\cdot 822$. 13.8.989. 14. $\cdot 809$. 15.1.869. $16.2 \cdot 184 . \quad 17 . \cdot 101 . \quad 18.1 \cdot 768$. 19. $1 \cdot 294$. 20. $46 \cdot 647$.
282.-1. $\frac{11}{5},-5 . \quad$ 2. $\frac{13}{3},-\frac{11}{3}$. 3. $\frac{5}{8},-3 . \quad$ 4. $2 \frac{1}{2},-1$. 5. $-3, \cdot 8$. 6. $3 \frac{1}{2}, 1$. 7. $1 \cdot 72,1 \cdot 28$. 8. 6.19, $\cdot 807$. 9. $2 \cdot 38,4 \cdot 62$. 10. $\frac{9}{10},-\frac{5}{6}$. 11. $\frac{8}{3},-\frac{3}{4}$. 12. $3,-1$. 13. $2, \frac{1}{3}$. $14.13, \frac{2}{3}$. 15.12, -2 . $16.3,-\frac{1}{2}$. 17. $4, \frac{4}{3}$. 18. $\frac{3 a}{7}, \frac{-a}{3} . \quad 19 . \frac{-5 k}{4}, \frac{-2 k}{3} . \quad 20.3 a, \frac{3 a}{2}$.
285.-1. 5, $\frac{2}{3}$. 2. $-\frac{1}{2},-9 . \quad 3 . \frac{1}{2}, 2 . \quad 4.2,-1 \cdot 72 . \quad 5 . \frac{3}{7},-5$. 6. $3,-2$. 7. $\frac{9}{5},-\frac{1}{2}$. 8. $\pm 3, \pm 2$. 9. $\frac{9}{10},-\frac{5}{6}$. 10. $\pm 2,-5,-1 . \quad 11 . \pm 3, \pm 4$. 12. $3,-2$. 13. $2 \frac{1}{2}, 4$. $14.6^{\prime \prime}, 8^{\prime \prime}$. $15.5^{\prime \prime} . \quad 16.3 \cdot 23$ rods. $17.3 \cdot 82^{\prime \prime}, 6 \cdot 18^{\prime \prime}$. $18.4 .37 \mathrm{sec} .19 .7 \cdot 59 \mathrm{sec}$.
287.-1. $x=17,11, y=11,17$. 2. $x=14,-9, y=9,-14$. 3. $x=27,-19, y=19,-27.4 . x=71,13, y=13,71$. 5. $x= \pm 5, y= \pm 7, x= \pm 7, y= \pm 5$. 6. $x= \pm 8, \pm 5, y$ $= \pm 5, \pm 8 . \quad$ 7. $x=13,3, y=3,13 . \quad 8 . x=11,-8$, $y=8,-11 . \quad 9 . x=1, y=1 . \quad 10.4^{\prime \prime}, 3^{\prime \prime} .11 .5^{\prime \prime}, 7^{\prime \prime}$. 12. $24^{\prime \prime}, 7^{\prime \prime}$.
290.—1. 20 tons. 2. $181 \cdot 7$ lb. 3: 480 ft . per sec. 4. $126 \frac{2}{3} \mathrm{ft}$. per min.

291:—5. $\frac{8}{9}{ }^{\prime \prime}$. 6. 9.97 lb. 7. $20 \cdot 2^{\prime \prime} . \quad$ 8. $208 \cdot 9$ lb. 9. $23361+$ H.P. 10. $10 \cdot 55^{\prime \prime} .11 .2^{\prime} \cdot 406^{\prime \prime}$. 12. $\cdot 285^{\prime \prime}$. 294.-1. $11 \cdot 91^{\prime}$. 2. $11 \cdot 36^{\prime}$. 3. $25 \cdot 39$ miles per hr . 4. $9 \frac{1}{7}$. ¢95.-5. $37 \frac{1}{3}$. 6. $30 \cdot 7$ obms. \quad 7. $2 \times 3^{3}=1 \times(3 \cdot 78)^{3}$ approx. 8. $1.5 \mathrm{lb} .9 .2 \frac{1}{4}^{\prime} . \quad 10.9$ sq. ft. 11. $51 \cdot 66$ cc. 296.-12. $-236 \cdot 5^{\circ} \mathrm{C}$. 13. 324 obms.
300.-1. $\$ 492 \cdot 05$. 2. $\$ 1000$. 3. $\$ 1000$. 4. $\$ 1150 \cdot 60$. 5. $\$ 2208 \cdot 05$. 6. $\$ 4794 \cdot 96,6 \%$ interest.
301.—7. $\$ 5761 \cdot 04$. 8. $\$ 1128 \cdot 54$. 9. $\$ 3680 \cdot 40, \quad \$ 2055 \cdot 00$. 10. $\$ 7413 \cdot 40$. 11. $\$ 10,132 \cdot 70$. 12. $\$ 228 \cdot 03, \$ 683 \cdot 98$. 13. Amount of premiums invested $=\$ 7325 \cdot 60$.
301.-1. $3 \frac{1}{4}$. 2. 310.
302.—3. 33. 4. $\$ 1591 \cdot 20$. 5. $615_{\frac{3}{16}}$. 6. 228, 40, 60. 7. $\$ 114.91 . \quad 8.1 \frac{41}{89} \mathrm{hr} . \quad 9.21 \frac{7}{8} \mathrm{~min} . \quad 10.16$. 11. 3117.4 lb . 12. 80. 13. 286 . 14. $\frac{1}{3}^{\prime \prime}$. 15. 44.4 hr. 16. $83 \cdot 3$.
303.-17. $\$ 11 \cdot 27 \frac{1}{2}$. 18. $5 \cdot 39 . \quad 19.4526 .20 .224 \frac{1}{2}, 492$. 21. 406 , 22. $38 \cdot 9 . \sec$ 23. $\$ 3 \cdot 99$. 24. $62 \frac{1}{2}$. 25. $\$ 122 \cdot 67 . \quad 26 . \quad 65 \%$ 27. $29 \cdot 25 \mathrm{lb} .28 .1 \cdot 04$. 29. 899 . 30. $112 \frac{1}{2}, 6$.
304.—31. $\$ 57 \cdot 00$. 32. $41 \frac{2}{3}, 33 \frac{1}{3}, 25$. 33. $\$ 31 \cdot 99$. 34. $\frac{3}{4}$. $35.28 \cdot 28^{\prime} . \quad 36 . \$ 210 \cdot 32$. $37.19 \mathrm{lb} .38 . \frac{27}{64} . \quad 39.8 \cdot 67^{\prime \prime}$. 40. $181 \cdot 13 \mathrm{lb} .41 .1443 \cdot 17 \mathrm{lb} .42 .8 \cdot 6, \cdot 31,312$. 43.280. 44. 36.97 lb.
305. - 45. 42 +. $46.50 \cdot 27$ sq. ft., 76.97 sq. ft. 47. 40^{\prime}. 48. $\cdot 83^{\prime \prime} .49 .12 \cdot 73^{\prime \prime} .50 . \cdot 942^{\prime \prime} .51 .32 \cdot 78$ sq. in. 52. 77.6. 53. $11 \cdot 46,10^{\prime \prime} .54$. $13 \cdot 26^{\prime} .55 .5 \cdot 32^{\prime \prime}$. $56 . \cdot 125 "$. $57.10 \cdot 16 \mathrm{lb} .58 .21 \cdot 5.59 .8 \cdot 38$.
306. -60. 14.7". 61. 5•01". 62. 74 ${ }^{\prime \prime}$. 63. 7.96". 64. 122140. 65. 15.75". 66. 48.26 lb. 67. 343. 68. $1333 \frac{1}{3}, 640,213 \frac{1}{3}$. 69. $\$ 852 \cdot 71$. 70. $\$ 389 \cdot 63$.
307.-71. $9 \cdot 2^{\prime \prime}, 2 \cdot 53^{\prime \prime} . \quad 72 . \$ 42 \cdot 56$. 73. 4.91. 74. 8183. 75. $235+$. 76. $118 \cdot 75^{\prime \prime}, 118 \cdot 06^{\prime \prime}$, 58 . 77. $\$ 507 \cdot 52$.
308.-78. 22135. 79. 1413•72. 80. \$523.93. 81. 3•08-. 82. $58 \cdot 87 . \quad 83.182 \cdot 72 . \quad 84.1 \cdot 02 \mathrm{lb}$. 85. 19867. $86.587 \cdot 7,39 \cdot 7$ sq. ft. $87.67 \cdot 259$ sq. in., $1 \cdot 91 \mathrm{lb}$. 309.-88. $10 \cdot 06,6 \cdot 31$. $\dot{8} 9.174 \cdot 13$ cu. in. 90. $147 \cdot 66$. 91. $\$ 241 \cdot 83$. $92 . \quad \$ 109 \cdot 71$. 93. $1110 \cdot 3$. 94. $53 \cdot 31$. $95.2575 \cdot 7 \mathrm{lb} . \quad 96.148 \cdot 68^{\prime \prime}, 147 \cdot 92^{\prime \prime}, \cdot 52$. $97 . \$ 234 \cdot 13$. 310.-98. $\$ 142 \cdot 72 . \quad 99.32$ R.P.M. 100. $661 \cdot 59$ sq. in. 1. $2 \sqrt{\frac{A}{\pi}}$. 2. $\frac{p^{2}}{18}$.
311.-3. $2^{\prime \prime}, 3^{\prime \prime}, 1^{\prime \prime}$. 4. .615. 5. $52^{\circ} 30^{\prime}, 37^{\circ} 30^{\prime}$. 6. 189.55 lb. 7. $5 \cdot 28^{\prime \prime} . \quad 8.75000$. 9. $4 \cdot 35^{\prime \prime}$. $10.72^{\circ}, 72^{\circ}, 36^{\circ}$. 11. 81. 12. $16^{\prime \prime}, 11 \cdot 314^{\prime \prime}$. 13. $5 \cdot 03$. ${ }^{-14 .} 6 \cdot 48^{\prime \prime}$. 15. -649. 16. 15.49".
312.-17. $-5 \cdot 92$. 18. 36^{\prime}. 19. $5 \cdot 77^{\prime \prime}, 11 \cdot 54^{\prime \prime}$. 20. 1559. 38 . 21. Sides 8,12 , perp. 10. 22. 23395×10^{4}. 23. $3 \cdot 25$ miles. 24. $\cdot 47 \%$ too great. 25. $3^{\prime \prime}, 4^{\prime \prime} .26 .6^{\prime \prime}$. 27. 269.66 sq. ft. 28. $13^{\prime \prime}, 15^{\prime \prime}$. 29. 40^{\prime}.
313.—30. $28^{\prime \prime}$. 31. 64^{\prime}. 32. $13 \cdot 27^{\prime}$. 34. $6^{\prime \prime} \times 12^{\prime \prime}$. 35. $37 \frac{1}{2}$. $36.2 \cdot 92^{\prime \prime} .37 . \$ 900 \cdot 00$. 38. 116.52 oz. 39. $9^{\prime \prime}, 12^{\prime \prime}$, $15^{\prime \prime}$. 40. $4^{\prime \prime}$.
314.-41. 3600. 42. 0039.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

*Fair usage policy applies

Gears, calculation, 207 ; reduetion in head-stock, 205 ; quick change, 206, 207.
Geometrical series, 297, 298.
Graphs, 150.
Guage of slate, 65.

H

Heel, 61.
Head-stock, 205.

I

Imaginary quantity, 284.
Index, 74 ; laws, 75, 270.
Index plate, 213, 215, 219.
Indexing, rapid, 213; plain, 214 ; differential, 217.
Irrational quantity, 274.
Irregular figures, area of, 129.

L

Lathe, cutting speed of, 179; compound geared, 202; 203; lead of, 201 ; simple geared, 200.

Lathing, 57.
Lead screw, 200.
Logarithm, 228, 229 ; of number less than unity, 235; of a power, 236 ; tables, 319.
Lumber, 56.

M

Machinist's scale, 171.
Mantissa, 229.
Measure, linear, English, 37; linear metric, 38 ; square, English, 40 ; square, metric, 40 ; cubic, English, 42 ; cubic, metric, 42.
Micrometer, 175.

Milling machine, 210; cutting speed of, 210 ; feed of, 211,212 ; lead of, 223 ; change gear calculation, 223.
Multiple, least common, 22.
Multiplication, in Arithmetic, 3, 5 ; tables, 6; in Algebra, 94 ; rule of signs, 95 .

N

Negative quantities, 81.
Notation, in Algebra, 71; in Arithmetic, 1.

0

Ordinate, 150.
Origin, 150.
Outside diameter, 209.

\mathbf{P}

Painting, 68, 69.
Parallelogram, 109.
Percentage, 30.
Pictograph, 162.
Pitch, of roof, 61.
Pitch, diameter, 208 ; circle, 208 ; diametral, 208 ; cirċular, 208.
Planimeter, 130, 131, 132.
Plate, 61.
Plastering, 67.
Polygon, area of, 127.
Power of, 10,7 ; of a quantity, 71.
Present worth, 299.
Prism, 241, 242.
Prismoid, 259.
Proportion, 135 ; inverse, 136 ; in similar triangles, 136.
Pyramid, 249.
π, value of, 119.

Q

Quadratic equations, 286.

R

Rafters, 61 ; hip, 62, 63; jack, 62, 63.

Ratio, 134.

Rational quantity, 274.
Rectangle, 108.
Ring, solid, 258 ; anchor, 258.
Rise, 61.
Roofś, gable, 61 ; hip, cottage, 62.
Roofing, 64.
Root, square, 53 ; in Algebra, 76.
Run, 61.
Rubble, 54.

S

Screw, 188.
Shingles, 64.
Signs of operation in Arithmetic, 13.
Simpson's Rule, 129.
Simultaneous equations, 141; simultaneous quadratics, 286.
Slate, 64.
Span, 61.
Specific gravity, 46 ; tables of, 316, 317, 318.
Sphere, 254, 255; sector of, 257 ; segment of, 256 ; zone of, 257.
Spirals, cutting, 221 ; position of table, 224.
Square, 108.
Square root, 50.
Stone work, table, 54.
Subtraction, in Arithmetic, 3, 5 ; in Algebra, 93.
Surds, 273; quadratic, 274 ; like and unlike, 274 ; addition of, 275 ; subtraction of, 275 ; multiplication of, 275 ; mixed and entire, 276 ; division of, 277.

Symbols, of Arithmetic, 1; of Algebra, 71.

T

Taper, as amount, 183 ; as angle, 183 ; Morse, 183 ; B. \& S., 184 ; Jarno, 184; cutting by compound rest, 184, 185; cutting by offsetting tailstock, 184, 185, 186 ; cutting by taper attachment, 186.
Terms, like and unlike, 77.
Threads, pitch, 188; diameter of, 188, 209; inside diameter of, 188, 209 ; single, double, triple, 189 ; right-handed, left-handed, 189 ; double, triple cutting, 205 ; sharp "V," 190 ; U.S. Std., 192; Square, 193; Acme 29, 194; Whitworth, 196.
Thread cutting, 197, 200.
Toise, 54.
Trapezium, 111.
Triangle, 109, 110.
Trigonometrical ratios, 182.
Try square, 171.

V

Variation, 288.
Vernier, 173, 174.
Vernier caliper, 177.

W

Wedge, 258.
Whole depth, 208.
Working depth, 208.

