
#### **ICP Periodic Table Guide**







Inorganic Ventures has over twenty-five years experience specializing in the manufacturing of inorganic certified reference materials (CRMs) and nearly a decade accredited to ISO 17025 & ISO Guide 34 by A2LA. This singular focus has enhanced the quality of our manufacturing, the depth of our technical support and the caliber of our customer service.

The pursuit of excellence in these areas has lead to the creation of the ICP Periodic Table Guide. This guide includes essential data for 70+ elements for every ICP user. Analytical data includes chemical compatibilities, preferred emission lines, as well as major interferences and detection limits for both ICP and ICP-MS. Learn more about solubility issues in different acid matrices, storage and handling tips, and the long-term stability of elements at different concentrations.



# Table of Contents

| Li | 4  |
|----|----|
| Be | 5  |
| В  | 6  |
| C  | 7  |
| Na | 8  |
| Mg | 9  |
| AI | 10 |
| Si | 11 |
| P  | 12 |
| S  | 13 |
| K  | 14 |
| Ca | 15 |
| Sc | 16 |
| Ti | 17 |
| V  | 18 |
| Cr | 19 |
| Mn | 20 |
| Fe | 21 |
| Co | 22 |
| Ni | 23 |
| Cu | 24 |
| Zn | 25 |
| Ga | 26 |
| Ge | 27 |
| As | 28 |
| Se | 29 |
| Rb | 30 |
| Sr | 31 |
| Υ  |    |
| Zr | 33 |
| Nb | 34 |
| Mo | 35 |
| Ru | 36 |
| Rh |    |
| Pd |    |
| Ag |    |
| Cd |    |

| In | 41 |
|----|----|
| Sn | 42 |
| Sb | 43 |
| Te | 44 |
| Cs | 45 |
| Ва | 46 |
| La |    |
| Hf |    |
| Ta | 49 |
| W  | 50 |
| Re |    |
| Os |    |
| lr |    |
| Pt |    |
| Au |    |
| Hg |    |
| TI |    |
| Pb |    |
| Bi |    |
| Ce |    |
| Pr |    |
| Nd |    |
| Sm |    |
| Eu |    |
| Gd |    |
| Tb |    |
| Dy |    |
| Ho |    |
| Er |    |
| Tm |    |
| Yb |    |
| Lu |    |
| Th |    |
| U  |    |
| ·  |    |

#### 3 6.941 1342 180.7 L1 [He]2s 0.534

# Lithium

Location: Group 1, Period 2

**Atomic Weight:** 6.941 **Coordination Number:** (6)

Chemical Form in Solution: Li<sup>+</sup>(aq) (large effective radius due to hydration sphere)

(coordination number in parentheses is assumed, not certain)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, and HF aqueous matrices. Stable with all metals and inorganic anions.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Li Containing Samples (Preparation & Solution):** Metal (dissolves very rapidly in water); Ores (sodium carbonate fusion in Pt<sup>o</sup> followed by HCl dissolution - blank levels of Li in sodium carbonate critical); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition).

| Technique / Line   | Estimated D.L.*    | Order | Туре | Interferences |
|--------------------|--------------------|-------|------|---------------|
| ICP-OES 670.784 nm | 0.002/.00002 μg/mL | 1     | atom | **            |
| ICP-OES 460.286 nm | 0.9/.04 μg/mL      | 1     | atom | Zr, Th        |
| ICP-OES 323.261 nm | 1.1/.05 μg/mL      | 1     | atom | Sb, Th, Ni    |
| ICP-MS 7 amu       | 10 ppt             | n/a   | M+   |               |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

<sup>\*\*2</sup>nd order radiation from R.E.s on some optical designs

# 4 9.012 2472 1287 Be

# **Beryllium**

Location: Group 2, Period 2 Atomic Weight: 9.01218 Coordination Number: 4

Chemical Form in Solution: Be+(H2O)4+2

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and HF aqueous matrices. Stable with all metals and inorganic anions.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10% HNO<sub>3</sub> / LDPE container.

**Be Containing Samples (Preparation & Solution):** Metal (is best dissolved in diluted H<sub>2</sub>SO<sub>4</sub>); BeO (boiling nitric, hydrochloric, or sulfuric acids or KHSO<sub>4</sub> fusion); Ores (H<sub>2</sub>SO<sub>4</sub>/HF digestion or carbonate fusion in Pt<sup>0</sup>); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution according to the BeO procedure above).

| Technique / Line   | Estimated D.L.*     | Order | Туре | Interferences |
|--------------------|---------------------|-------|------|---------------|
| ICP-OES 313.042 nm | 0.0003/.00009 μg/mL | 1     | ion  | V, Ce, U      |
| ICP-OES 234.861 nm | 0.0003/.00016 μg/mL | 1     | atom | Fe, Ta, Mo    |
| ICP-OES 313.107 nm | 0.0007/.0005 μg/mL  | 1     | ion  | Ce, Th, Tm    |
| ICP-MS 9 amu       | 4 ppt               | n/a   | M+   |               |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 5 10.81 4002 2.027 B

### Boron

**Location:** Group 13, Period 2 **Atomic Weight:** 10.811 **Coordination Number:** 4

Chemical Form in Solution: B(OH), and B(OH),-1

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Moderately soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and HF aqueous matrices and very soluble in NH<sub>4</sub>OH. Stable with all metals and inorganic anions at low to moderate ppm levels.

**Stability:** 2-100 ppb levels stable for months in 1%  $\rm HNO_3$  / LDPE container. 1-1,000 ppm solutions chemically stable for years in 1%  $\rm HNO_3$  / LDPE container. 1000-10,000 ppm stable for years in dilute  $\rm NH_4OH$  / LDPE container.

**B Containing Samples (Preparation & Solution):** Metal (crystalline form is scarcely attacked by acids or alkaline solutions; amorphous form is soluble in conc. HNO $_3$  or H $_2$ SO $_4$ ); B(OH) $_3$  (water soluble); Ores (avoid acid digestions and use caustic fusions in Pt $^0$ ); Organic Matrices (dry ash mixed with Na $_2$ CO $_3$  in Pt $^0$  at 450°C then increase heat to 1000°C to fuse; or perform a Na $_2$ O $_2$  fusion in a Ni $^0$  crucible / Parr bomb).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                    |
|--------------------|-------------------|-------|------|----------------------------------|
| ICP-OES 249.773 nm | 0.003/.001 μg/mL  | 1     | atom | W, Ce, Co, Th, Ta,<br>Mn, Mo, Fe |
| ICP-OES 249.678 nm | 0.004/.003 μg/mL  | 1     | atom | Os, W, Co, Cr, Hf                |
| ICP-OES 208.959 nm | 0.007/.0005 μg/mL | 1     | atom | Мо                               |
| ICP-MS 11 amu      | 700 ppt           | n/a   | M+   |                                  |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 6 12.011 2.5 3827 2.5 [He]2s<sup>2</sup>2p<sup>2</sup> 2.25 2.±4

### Carbon

**Location:** Group 14, Period 2 **Atomic Weight:** 12.011 **Coordination Number:** 4

Chemical Form in Solution: (Carbon standard is made using Tartaric Acid)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Moderately soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, and HF aqueous matrices and very soluble in NH<sub>4</sub>OH. Stable with all metals and inorganic anions at low to moderate ppm levels. Do not dilute or store Carbon standards using plastic containers or similar devices.

**Stability:** 2-100 ppb level stability unknown. 1000-10,000 ppm level stable for years in dilute acidic media in a glass container.

**C Containing Samples (Preparation & Solution):** elemental amorphic or graphitic carbon (Oxidative closed vessel fusion such as a Na<sub>2</sub>O<sub>2</sub> fusion in a sealed Ni<sup>0</sup> crucible / Parr bomb); H<sub>2</sub>CO<sub>3</sub> (water soluble); Organic Compounds (water solubility is best if possible, or perform a Na<sub>2</sub>O<sub>2</sub> fusion in a sealed Ni<sup>0</sup> crucible / Parr bomb).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences |
|--------------------|-----------------|-------|------|---------------|
| ICP-OES 193.091 nm | 0.05/.005 μg/mL | 1     | atom | In, Ru, Mn    |
| ICP-OES 247.856 nm | 0.2/.02 μg/mL   | 1     | atom | Nb, V, Ti     |
| ICP-MS 12 amu      | (uncertain)     | n/a   | M+   |               |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 11 22.990 883 98.0 1.0 Na

# Sodium

**Location:** Group 1, Period 3 **Atomic Weight:** 22.98977 **Coordination Number:** (6)

**Chemical Form in Solution:** Na<sup>+</sup>(aq) (largely ionic in nature) (coordination number in parentheses is assumed, not certain)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl,  $HNO_3$ ,  $H_2SO_4$  and HF aqueous matrices. Stable with all metals and inorganic anions.

**Stability:** 2-100 ppb levels stable for months in 1% HNO $_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO $_3$  / LDPE container.

Na Containing Samples (Preparation & Solution): Metal (dissolves very rapidly in water); Ores (lithium carbonate fusion in graphite crucible followed by HCl dissolution - blank levels of Na in lithium carbonate critical); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                       |
|--------------------|-------------------|-------|------|-----------------------------------------------------|
| ICP-OES 589.595 nm | 0.07/.00009 μg/mL | 1     | atom | **                                                  |
| ICP-OES 588.995 nm | 0.03/.006 μg/mL   | 1     | atom | **                                                  |
| ICP-OES 330.237 nm | 2.0/.09 μg/mL     | 1     | atom | Pd, Zn                                              |
| ICP-MS 23 amu      | 310 ppt           | n/a   | M+   | 46Ti <sup>+2</sup> , <sup>46</sup> Ca <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

<sup>\*\*2</sup>nd order radiation from R.E.s on some optical designs

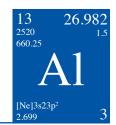
## 12 24.305 1090 1.2 Mg [Ne]2s² 1.738 2

# <u>Magnesium</u>

**Location:** Group 2, Period 3 **Atomic Weight:** 24.305 **Coordination Number:** 6

Chemical Form in Solution:  $Mg(H_2O)_6^{+2}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO<sub>3</sub> / LDPE container.

**Mg Containing Samples (Preparation & Solution):** Metal (best dissolved in diluted HNO<sub>3</sub>); Oxide (readily soluble in above compatible aqueous acidic solutions); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO<sub>2</sub>).

| Technique / Line   | Estimated D.L.*     | Order | Туре | Interferences                                                                                    |
|--------------------|---------------------|-------|------|--------------------------------------------------------------------------------------------------|
| ICP-OES 279.553 nm | 0.0002/.00003 μg/mL | 1     | ion  | Th                                                                                               |
| ICP-OES 280.270 nm | 0.0003/.00005 μg/mL | 1     | ion  | U, V                                                                                             |
| ICP-OES 285.213 nm | 0.002/.00003 μg/mL  | 1     | atom | U, Hf, Cr, Zr                                                                                    |
| ICP-MS 24 amu      | 42 ppt              | n/a   | M+   | <sup>7</sup> Li <sup>17</sup> O, <sup>48</sup> Ti <sup>+2</sup> , <sup>48</sup> Ca <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

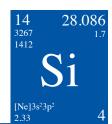


# Aluminum

Location: Group 13, Period 3
Atomic Weight: 26.98154
Coordination Number: 6

Chemical Form in Solution: Al(H<sub>2</sub>O)<sub>6</sub>+3

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in HCl, HNO $_3$ , HF and H $_2$ SO $_4$ . Avoid neutral media. Soluble in strongly basic NaOH forming the Al(OH) $_4$ (H $_2$ O) $_2$ 1- species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

**Stability:** 2-100 ppb levels stable for months in 1%  $\rm HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5%  $\rm HNO_3$  / LDPE container.

**Al Containing Samples (Preparation & Solution):** Metal (is best dissolved in HCl/ HNO<sub>3</sub>); - Al<sub>2</sub>O<sub>3</sub> (Na<sub>2</sub>CO<sub>3</sub> fusion in Pt<sup>0</sup>); - Al<sub>2</sub>O<sub>3</sub> (soluble in acids such as HCl); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCl.

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                            |
|--------------------|-----------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 394.401 nm | 0.05/.006 μg/mL | 1     | atom | U, Ce                                                                                                                                                                                                                    |
| ICP-OES 396.152 nm | 0.03/.006 μg/mL | 1     | atom | Mo, Zr, Ce                                                                                                                                                                                                               |
| ICP-OES 167.078 nm | 0.1/.009 μg/mL  | 1     | ion  | Fe                                                                                                                                                                                                                       |
| ICP-MS 27 amu      | 30 ppt          | n/a   | M+   | <sup>12</sup> C <sup>15</sup> N, <sup>13</sup> C <sup>14</sup> N,<br><sup>1</sup> H <sup>12</sup> C <sup>14</sup> N, <sup>11</sup> B <sup>16</sup> O,<br><sup>54</sup> Cr <sup>2+</sup> , <sup>54</sup> Fe <sup>2+</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



## Silicon

Location: Group 14, Period 3
Atomic Weight: 28.0855
Coordination Number: 6

Chemical Form in Solution: Si(OH)<sub>v</sub>(F)<sub>v</sub><sup>2</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4$  °C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HF,  $H_3PO_4$ ,  $H_2SO_4$ , and HNO $_3$  as the Si(OH) $_x$ (F) $_y$ <sup>2</sup>. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F $^-$  away (i.e. - do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming silicic acid (silicic acid is soluble up to  $\sim$  100 ppm in water) in all dilute acids except HF.

**Stability:** 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH)  $_x$ (F) $_y$ <sup>2-</sup>. 1-10,000 ppm single element solutions as the Si(OH) $_x$ (F) $_y$ <sup>2-</sup> chemically stable for years in 2-5% HNO $_3$  / trace HF in a LDPE container.

Si Containing Samples (Preparation & Solution): Metal (soluble in 1:1:1  $H_2O$  / HF / HNO $_3$ ); Oxide - SiO $_2$ , amorphic (dissolve by heating in 1:1:1  $H_2O$  / HF / HNO $_3$ ); Oxide-quartz (fuse in Pt $^0$  with Na $_2$ CO $_3$ ); Geological Samples (fuse in Pt $^0$  with Na $_2$ CO $_3$  followed by HCl solution of the fuseate); Organic Matrices containing silicates and non volatile silicon compounds (dry ash at 450°C in Pt $^0$  and dissolve by gently warming with 1:1:1  $H_2O$  / HF /  $H_2$ SO $_4$  or fuse / ash with Na $_2$ CO $_3$  and dissolve fuseate with HCl /  $H_2$ O); Silicone Oils - dimethyl silicones depolymerize to form volatile monomer units when heated (measure directly in alcoholic KOH / xylene mixture where sample is treated first with the KOH at 60 - 100°C to "unzip" the Si-O-Si polymeric structure or digest with conc.  $H_2$ SO $_4$  /  $H_2$ O $_2$  followed by cooling and dissolution of the dehydrated silica with HF). Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units such as hexamethylcyclotrisiloxane. The KOH forms the  $K_2$ +Si(CH $_3$ ) $_2$ O=NaCl, which is not volatile at room temperature.

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                                                  |
|--------------------|------------------|-------|------|----------------------------------------------------------------|
| ICP-OES 251.611 nm | 0.012/.003 μg/mL | 1     | ion  | Ta, U, Zn, Th                                                  |
| ICP-OES 212.412 nm | 0.02/.01 μg/mL   | 1     | ion  | Hf, Os, <i>Mo,</i> Ta                                          |
| ICP-OES 288.158 nm | 0.03/.004 μg/mL  | 1     | ion  | Ta, Ce, Cr, Cd, Th                                             |
| ICP-MS 28 amu      | 4000 - 8000 ppt  | n/a   | M+   | <sup>14</sup> N <sub>2</sub> , <sup>12</sup> C <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 15 30.974 277 44.30 P

# **Phosphorus**

Location: Group 15, Period 3
Atomic Weight: 30.97376
Coordination Number: 6

Chemical Form in Solution: OP(OH)<sub>2</sub>(O)<sup>1-</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, water and NH<sub>4</sub>OH. Stable with all metals and inorganic anions at low to moderate ppm levels under acidic conditions; precipitates with several metals occur in neutral media at higher concentrations.

**Stability:** 2-100 ppb levels - stability unknown - in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 0-1%  $HNO_3$  / LDPE container.

**P Containing Samples (Preparation & Solution):** Metal (never found free in nature); Oxides (water soluble); Ores (naturally occurring only as the phosphate, except for a few rare minerals found in meteorites - Na<sub>2</sub>CO<sub>3</sub> fusion in Pt<sup>0</sup>); Organic Matrices (dry ash mixed with Na<sub>2</sub>CO<sub>3</sub> in Pt<sup>0</sup> at 450°C then increase heat to 1000°C to fuse; or, perform a H<sub>2</sub>SO<sub>4</sub> / H<sub>2</sub>O<sub>2</sub> acid digestion).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                                        |
|--------------------|-----------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 178.287 nm | 0.03/.002 μg/mL | 1     | atom | T                                                                                                                                                                                                                                    |
| ICP-OES 177.495 nm | 0.01/.005 μg/mL | 1     | atom | Cu, Hf                                                                                                                                                                                                                               |
| ICP-OES 213.618 nm | 0.08/.03 μg/mL  | 1     | atom | Cu, Mo                                                                                                                                                                                                                               |
| ICP-MS 31 amu      | 6000+ ppt       | n/a   | M+   | <sup>15</sup> N <sub>2</sub> <sup>1</sup> H, <sup>15</sup> N <sup>16</sup> O,<br><sup>14</sup> N <sup>17</sup> O, <sup>13</sup> C <sup>18</sup> O,<br><sup>12</sup> C <sup>18</sup> O <sup>1</sup> H, <sup>62</sup> Ni <sup>2+</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 16 32.07 444.75 115.36 S [Ne|3s<sup>2</sup>3p<sup>4</sup> +2.4.6

# Sulfur

**Location:** Group 16, Period 3 **Atomic Weight:** 32.066 **Coordination Number:** 6

Chemical Form in Solution: (O), S(OH),

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, and HF aqueous matrices, water, and NH<sub>4</sub>OH. Stable with all metals and inorganic anions at low to moderate ppm levels under acidic conditions, except Ba, Pb, Ca, and to a lesser extent Sr.

**Stability:** 2-100 ppb levels - stability unknown - in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in LDPE container.

**S Containing Samples (Preparation & Solution):** We most often get questions about the determination of S in rocks, silicates and insoluble sulfates (the finely powered sample is fused in a Pt $^0$  crucible with 6 times its weight of Na $_2$ CO $_3$  + 0.5 grams KNO $_3$ . The fuseate is extracted with water. Any BaSO $_4$  present in the sample is transposed by the carbonate fusion to the BaCO $_3$ , which is left behind in the water-insoluble residue. If PbSO $_4$  is present, the fuseate should be boiled with a sodium carbonate saturated with CO $_2$  solution for 1 hour or more. The PbSO $_4$  will be transposed to the water insoluble carbonate which can be filtered off. Boiling the fuseate with a saturated carbonate solution is good insurance for samples containing Ba, Pb, Sr, and Ca. The Ba, Pb, Sr, and Ca free filtrate can be acidified and measured by ICP).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                   |
|--------------------|-----------------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 166.669 nm | 0.2/.19 μg/mL   | 1     | atom | Si, B                                                                                                                                                                                           |
| ICP-OES 182.034 nm | 0.3/.024 μg/mL  | 1     | atom |                                                                                                                                                                                                 |
| ICP-OES 143.328 nm | 0.4/.035 μg/mL  | 1     | atom |                                                                                                                                                                                                 |
| ICP-MS 32 amu      | 30,000 ppt      | n/a   | M+   | <sup>16</sup> O <sub>2</sub> , <sup>14</sup> N <sup>18</sup> O, <sup>15</sup> N <sup>17</sup> O, <sup>14</sup> N <sup>17</sup> O <sup>1</sup> H, <sup>15</sup> N <sup>16</sup> O <sup>1</sup> H |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 19 759 63.35 K [Ar]4s 0.96

## Potassium

**Location:** Group 1, Period 4 **Atomic Weight:** 39.0983 **Coordination Number:** (6)

**Chemical Form in Solution:** K<sup>+</sup>(aq)

(coordination number in parentheses is assumed, not certain)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, and HF aqueous matrices. Avoid use of HClO<sub>4</sub> due to insolubility of the perchlorate. Stable with all metals and inorganic anions except ClO<sub>4</sub>.

**Stability:** 2-100 ppb levels stable for months in 1%  $\rm HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5%  $\rm HNO_3$  / LDPE container.

**K Containing Samples (Preparation & Solution):** Metal (dissolves very rapidly in water); Ores (sodium carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution - blank levels of K in sodium carbonate critical); Organic Matrices (sulfuric / peroxide digestion).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                        |
|--------------------|-----------------|-------|------|------------------------------------------------------------------------------------------------------|
| ICP-OES 766.490 nm | 0.4/.001 μg/mL  | 1     | atom | **                                                                                                   |
| ICP-OES 771.531 nm | 1.0/.03 μg/mL   | 1     | atom | **                                                                                                   |
| ICP-OES 404.721 nm | 1.1/.05 μg/mL   | 1     | atom | U, Ce                                                                                                |
| ICP-MS 39 amu      | 10 ppt          | n/a   | M+   | <sup>38</sup> Ar <sup>1</sup> H, <sup>23</sup> Na <sup>16</sup> O,<br><sup>78</sup> Se <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

<sup>\*\*2</sup>nd order radiation from R.E.s on some optical designs

# 20 1484 839 Ca

# Calcium

Location: Group 2, Period 4 **Atomic Weight:** 40.078 **Coordination Number:** 6

Chemical Form in Solution: Ca(H<sub>2</sub>O)<sub>6</sub>+2

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at 20  $\pm$  4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid H<sub>2</sub>SO<sub>4</sub> HF, H<sub>3</sub>PO<sub>4</sub> and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, and tungstate in neutral aqueous media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO<sub>3</sub> / LDPE container.

**Ca Containing Samples (Preparation & Solution):** Metal (best dissolved in diluted HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO<sub>2</sub>). The oxide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCl or HNO<sub>3</sub>. The sulfates (gypsum, anhydrite, etc.), certain silicates, and complex compounds require fusion with Na<sub>2</sub>CO<sub>3</sub> followed by HCl / water dissolution. Note that contamination is a very real problem when analyzing for trace levels.

| Technique / Line   | Estimated D.L.*     | Order | Туре | Interferences                                                                                                     |
|--------------------|---------------------|-------|------|-------------------------------------------------------------------------------------------------------------------|
| ICP-OES 393.366 nm | 0.0002/.00004 μg/mL | 1     | ion  | U, Ce                                                                                                             |
| ICP-OES 396.847 nm | 0.0005/.00006 μg/mL | 1     | ion  | Th                                                                                                                |
| ICP-OES 422.673 nm | 0.01/.001 μg/mL     | 1     | atom | Ge                                                                                                                |
| ICP-MS 44 amu      | 1200 ppt            | n/a   | M+   | <sup>16</sup> O <sub>2</sub> <sup>12</sup> C, <sup>28</sup> Si <sup>16</sup> O,<br><sup>88</sup> Sr <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 21 44.956 2831 1539 SC [Ar]3d4s<sup>2</sup> 3

# Scandium

**Location:** Group 3, Period 4 **Atomic Weight:** 44.95591 **Coordination Number:** 6

Chemical Form in Solution: Sc(H<sub>2</sub>O)<sub>6</sub>+2

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl,  $H_2SO_4$ , and  $HNO_3$ . Avoid HF,  $H_3PO_4$ , and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride. The fluoride is soluble in excess HF, forming  $SCF_6^{3-}$  (not recommended for standard preparations).

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10% HNO<sub>3</sub> / LDPE container. Small atomic radius increases hydrolysis requiring higher acid levels than other Rare Earths.

Sc Containing Samples (Preparation & Solution): Metal (soluble in acids); Oxide (dissolved by heating in  $\rm H_2O$  /  $\rm HNO_3$ ); Ores (carbonate fusion in Pt $^0$  followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1  $\rm H_2O$  / HCl or  $\rm HNO_3$  - aqua regia or nitric / perchloric / sulfuric acid digestions can be used - exercise caution when using perchloric acid).

| Technique / Line   | Estimated D.L.*    | Order | Туре | Interferences                                                                                                                    |
|--------------------|--------------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 335.373 nm | 0.004/.00002 μg/mL | 1     | ion  |                                                                                                                                  |
| ICP-OES 337.215 nm | 0.004/.00002 μg/mL | 1     | ion  | Ti, U, Ni, Rh                                                                                                                    |
| ICP-OES 424.683 nm | 0.003/.00002 μg/mL | 1     | ion  | Се                                                                                                                               |
| ICP-MS 45 amu      | 2.3 ppt            | n/a   | M+   | <sup>16</sup> O <sub>2</sub> <sup>12</sup> C <sup>1</sup> H, <sup>29</sup> Si <sup>16</sup> O,<br><sup>90</sup> Zr <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 

# **Titanium**

**Location:** Group 4, Period 4 **Atomic Weight:** 47.867 **Coordination Number:** 6

Chemical Form in Solution:  $Ti(F)_6^{-2}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at 20  $\pm$  4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in concentrated HCI, HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F<sup>-</sup> away (i.e. - do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals) as the  $Ti(F)_6^{-2}$  for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm single element solutions as the  $Ti(F)_6^{-2}$  chemically stable for years in 2-5% HNO<sub>3</sub> / trace HF in an LDPE container.

**Ti Containing Samples (Preparation & Solution):** Metal (soluble in  $H_2O$  / HF CAUTION - powder reacts violently); Oxide - low temperature history anatase or rutile (dissolved by heating in 1:1:1  $H_2O$  / HF /  $H_2SO_4$ ); Oxide - high temperature history {~ 800°C} brookite (fuse in  $Pt^0$  with  $K_2S_2O_7$ ); Ores (fuse in  $Pt^0$  with  $K_2S_2O_7$  - no KF if silica not present); Organic Matrices (dry ash at 450°C in  $Pt^0$  and dissolve by heating with 1:1:1  $H_2O$  / HF /  $H_2SO_4$  or fuse ash with pyrosulfate if oxide is as plastic pigment and likely in brookite crystalline form).

| Technique / Line   | Estimated D.L.*      | Order | Туре | Interferences                                                                                                                                    |
|--------------------|----------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 334.941 nm | 0.0038/.000028 μg/mL | 1     | ion  | Nb, Ta, Cr, U                                                                                                                                    |
| ICP-OES 336.121 nm | 0.0053/.000034 μg/mL | 1     | ion  | W, Mo, Co                                                                                                                                        |
| ICP-OES 323.452 nm | 0.0054/.00092 μg/mL  | 1     | ion  | Ce, Ar, Ni                                                                                                                                       |
| ICP-MS 48 amu      | 14 ppt               | n/a   | M+   | $^{32}S^{16}O$ , $^{34}S^{14}N$ , $^{14}N^{16}O^{18}O$ , $^{14}N^{17}O_2$ , $^{36}Ar^{12}C$ , $^{48}Ca$ , [ $^{96}X=^2$ (where $X=Zr$ , Mo, Ru)] |

## 23 50.942 3409 1902 1.5 V [Ar]3d<sup>3</sup>4s<sup>2</sup> 2.3.4.5

# Vanadium

**Location:** Group 5, Period 4 **Atomic Weight:** 50.9416 **Coordination Number:** 6

Chemical Form in Solution: H<sub>2</sub>V<sub>10</sub>O<sub>28</sub><sup>4-</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, H<sub>3</sub>PO<sub>4</sub>, and strong basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**V Containing Samples (Preparation & Solution):** Metal (fusion with NaOH or KOH in Ni $^{0}$  or Na $_{2}$ CO3 / KNO $_{3}$ ); Oxides (V $_{2}$ O $_{3}$  - use HCl; V $_{2}$ O $_{4}$  - use HCl or HNO $_{3}$ ; V $_{2}$ O $_{5}$  - use conc. acids); Ores (Na $_{2}$ CO $_{3}$  / KNO $_{3}$  in Pt $^{0}$  (caution - nitrates attack Pt $^{o}$ ) followed by water extraction of fuseate); Organic Matrices (ash at 450 $^{\circ}$ C followed by dissolving according to V $_{2}$ O $_{5}$  above).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|-------------------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 309.311 nm | 0.005/.001 μg/mL  | 1     | ion  | Mg, U, Th                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ICP-OES 292.402 nm | 0.006/.001 μg/mL  | 1     | ion  | Th                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ICP-OES 290.882 nm | 0.008/.0008 μg/mL | 1     | atom | Hf, Nb                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ICP-MS 51 amu      | 4 ppt             | n/a   | M+   | <sup>34</sup> S <sup>16</sup> O <sup>1</sup> H, <sup>35</sup> Cl <sup>16</sup> O,<br><sup>38</sup> Ar <sup>13</sup> C, <sup>36</sup> Ar <sup>15</sup> N,<br><sup>36</sup> Ar <sup>14</sup> N <sup>1</sup> H, <sup>37</sup> Cl <sup>14</sup> N,<br><sup>36</sup> S <sup>15</sup> N, <sup>33</sup> S <sup>18</sup> O, <sup>34</sup> S <sup>17</sup> O,<br><sup>102</sup> Ru <sup>+2</sup> , <sup>102</sup> Pd <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 24 51.996 2672 1857 Cr [Ar]3d<sup>5</sup>4s 7.19 2.3.6

# Chromium

Location: Group 6, Period 4
Atomic Weight: 51.9961
Coordination Number: 6

Chemical Form in Solution: Cr(H<sub>2</sub>O)<sub>6</sub><sup>3+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Cr Containing Samples (Preparation & Solution):** Metal (soluble in HCl); Oxides / Ores (chrome ore/oxides are very difficult to dissolve. The following procedures *A - D* are commonly used:

- **A.** Fusion with KHSO $_4$  and extraction with hot KCI. The residue fused with Na $_2$ CO $_3$  and KCIO $_3$ , 3:1
- **B.** Fusion with NaKSO<sub>4</sub> and NaF, 2:1
- C. Fusion with magnesia or lime and sodium or potassium carbonates, 4:1
- D. Fusion with Na<sub>2</sub>O<sub>2</sub> or NaOH and KNO<sub>3</sub> or NaOH and Na<sub>2</sub>O<sub>2</sub>.

Nickel, iron, copper, or silver crucibles should be used for D. Platinum may be used for A, B, and C; Organic Matrices (ash at 450°C followed by one of the fusion methods above or sulfuric / hydrogen peroxide acid digestions may be applicable to non oxide containing samples).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                                       |
|--------------------|-------------------|-------|------|---------------------------------------------------------------------|
| ICP-OES 205.552 nm | 0.006/.0008 μg/mL | 1     | ion  | Os                                                                  |
| ICP-OES 284.325 nm | 0.008/.0007 μg/mL | 1     | ion  |                                                                     |
| ICP-OES 276.654 nm | 0.01/.001 μg/mL   | 1     | ion  | Cu, Ta, V                                                           |
| ICP-MS 52 amu      | 40 ppt            | n/a   | M-   | <sup>36</sup> S <sup>16</sup> O, <sup>36</sup> Ar <sup>16</sup> O** |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

<sup>\*\*</sup>The 50Cr, 53Cr, 54Cr lines suffer from many more potential interferences from sulfur, chlorine, and argon compounds of oxygen, nitrogen, and carbon.

### 25 54.938 2062 1244 1.6 Mn [Ar]3d<sup>5</sup>4s<sup>2</sup> 2.3.4.6.7

# Manganese

**Location:** Group 7, Period 4 **Atomic Weight:** 54.9380 **Coordination Number:** 6

Chemical Form in Solution: Mn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, and H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 %  $HNO_3$  / LDPE container.

**Mn Containing Samples (Preparation & Solution):** Metal (soluble in dilute acids); Oxides (soluble in dilute acids); Ores (dissolve with HCl. If silica is present, add HF and then fume off silica by adding  $\rm H_2SO_4$  and heat to  $\rm SO_3$  fumes - dense white fumes).

| Technique / Line   | Estimated D.L.*     | Order | Туре | Interferences                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 257.610 nm | 0.0014/.00002 μg/mL | 1     | ion  | Ce, W, Re                                                                                                                                                                                                                                                                                                                                                                                     |
| ICP-OES 259.373 nm | 0.0016/.00002 μg/mL | 1     | ion  | U, Ta, Mo, Fe,<br>Nb                                                                                                                                                                                                                                                                                                                                                                          |
| ICP-OES 260.569 nm | 0.0021/.00002 μg/mL | 1     | ion  | Со                                                                                                                                                                                                                                                                                                                                                                                            |
| ICP-MS 55 amu      | 10 ppt              | n/a   | M+   | <sup>40</sup> Ar <sup>14</sup> N <sup>1</sup> H,<br><sup>39</sup> K <sup>16</sup> O, <sup>37</sup> Cl <sup>18</sup> O,<br><sup>40</sup> Ar <sup>15</sup> N, <sup>38</sup> Ar <sup>17</sup> O,<br><sup>36</sup> Ar <sup>18</sup> O <sup>1</sup> H,<br><sup>38</sup> Ar <sup>16</sup> O <sup>1</sup> H,<br><sup>37</sup> Cl <sup>17</sup> O <sup>1</sup> H,<br><sup>23</sup> Na <sup>32</sup> S |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 26 55.847 2862 1.6 Fe [Ar]3d<sup>o</sup>4s<sup>2</sup> 7.86 2.3

#### Iron

**Location:** Group 8, Period 4 **Atomic Weight:** 55.847 **Coordination Number:** 6

Chemical Form in Solution: Fe(H<sub>2</sub>O)<sub>6</sub><sup>3+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Fe Containing Samples (Preparation & Solution):** Metal (soluble in HCl); Oxides (if the oxide has been at a high temperature then Na<sub>2</sub>CO<sub>3</sub> fusion in Pt<sup>0</sup> followed by HCl dissolution, otherwise dissolve in dilute HCl); Ores (see Oxides above using only the fusion approach).

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                                                                                                                                                                                                |
|--------------------|------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 238.204 nm | 0.005/.001 μg/mL | 1     | ion  | Ru, Co                                                                                                                                                                                                       |
| ICP-OES 239.562 nm | 0.005/.001 μg/mL | 1     | ion  | Co, W, Cr                                                                                                                                                                                                    |
| ICP-OES 259.940 nm | 0.006/.001 μg/mL | 1     | ion  | Hf, Nb                                                                                                                                                                                                       |
| ICP-MS 56 amu      | 970 ppt          | n/a   | M+   | <sup>40</sup> Ar <sup>15</sup> N <sup>1</sup> H, <sup>40</sup> Ar <sup>16</sup> O,<br><sup>38</sup> Ar <sup>18</sup> O, <sup>37</sup> Cl <sup>18</sup> O <sup>1</sup> H,<br><sup>40</sup> Ca <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 27 58.933 2928 1.7 CO [Ar]3d<sup>7</sup>4s<sup>2</sup> 2.3

# Cobalt

**Location:** Group 9, Period 4 **Atomic Weight:** 58.9332 **Coordination Number:** 6

Chemical Form in Solution:  $Co(H_2O)_6^{2+}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF and H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Co Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>2</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                  |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 238.892 nm | 0.01/.002 μg/mL | 1     | ion  | <i>Fe</i> , W, Ta                                                                                                                                                                                              |
| ICP-OES 228.616 nm | 0.01/.001 μg/mL | 1     | ion  |                                                                                                                                                                                                                |
| ICP-OES 237.862 nm | 0.01/.002 μg/mL | 1     | ion  | W, Re, Al, Ta                                                                                                                                                                                                  |
| ICP-MS 59 amu      | 2 ppt           | n/a   | M+   | <sup>42</sup> Ca <sup>16</sup> O <sup>1</sup> H, <sup>40</sup> Ar <sup>18</sup> O <sup>1</sup> H,<br><sup>36</sup> Ar <sup>23</sup> Na, <sup>43</sup> Ca <sup>16</sup> O,<br><sup>24</sup> Mg <sup>35</sup> CI |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 28 2914 1453 1.8 1453 1.8 [Ar]3d<sup>8</sup>4s<sup>2</sup> 8.9 2.3

# **Nickel**

Location: Group 10, Period 4

**Atomic Weight:** 58.69 **Coordination Number:** 6

Chemical Form in Solution: Ni(H<sub>2</sub>O)62<sup>+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, and H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels. 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5%  $HNO_3$  / LDPE container.

**Ni Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                                                                                                           |
|--------------------|------------------|-------|------|-------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 221.647 nm | 0.01/.0009 μg/mL | 1     | ion  | Si                                                                                                                      |
| ICP-OES 232.003 nm | 0.02/.006 μg/mL  | 1     | atom | Cr, Re, Os, Nb, Ag, Pt, Fe                                                                                              |
| ICP-OES 231.604 nm | 0.02/.002 μg/mL  | 1     | ion  | Sb, Ta, Co                                                                                                              |
| ICP-MS 60 amu      | 100 ppt          | n/a   | M+   | <sup>43</sup> Ca <sup>16</sup> O <sup>1</sup> H, <sup>44</sup> Ca <sup>16</sup> O,<br><sup>23</sup> Na <sup>37</sup> Cl |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 29 63.546 2563 1.8 1084.6 Cu [Ar]3dio4s 8 96 1.2

# Copper

**Location:** Group 11, Period 4 **Atomic Weight:** 63.546

Coordination Number: 6

Chemical Form in Solution: Cu(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO $_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO $_3$  / LDPE container.

**Cu Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>2</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                                                                         |
|--------------------|-----------------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 324.754 nm | 0.06/.001 μg/mL | 1     | atom | Nb, U, Th, Mo, Hf                                                                                                                                                                                                                                                     |
| ICP-OES 224.700 nm | 0.01/.001 μg/mL | 1     | ion  | Pb, Ir, Ni, W                                                                                                                                                                                                                                                         |
| ICP-OES 219.958 nm | 0.01/.002 μg/mL | 1     | atom | Th, Ta, Nb, U, Hf                                                                                                                                                                                                                                                     |
| ICP-MS 63 amu      | 10 ppt          | n/a   | M+   | <sup>40</sup> Ar <sup>23</sup> Na, <sup>47</sup> Ti <sup>16</sup> O,<br><sup>14</sup> N <sup>12</sup> C <sup>37</sup> CI, <sup>16</sup> O <sup>12</sup> C-<br><sup>35</sup> CI, <sup>44</sup> Ca <sup>18</sup> O <sup>1</sup> H,<br><sup>23</sup> Na <sup>40</sup> Ca |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 30 65.39 1.7 419.73 **Z11**[Ar]3d<sup>10</sup>4s<sup>2</sup> 2

## Zinc

**Location:** Group 12, Period 4 **Atomic Weight:** 65.389 **Coordination Number:** 4

Chemical Form in Solution: Zn(OH)(aq)1+

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF and H<sub>3</sub>PO<sub>4</sub>. Avoid basic media that promotes formation of insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Zn Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>3</sub>); Organic based (dry ash at 450°C and dissolve ash in HCl), (sulfuric / peroxide acid digestion).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|-------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 213.856 nm | 0.002/.0004 μg/mL | 1     | atom | Ni, Cu, V                                                                                                                                                                                                                                                                                                                                                                      |
| ICP-OES 202.548 nm | 0.004/.0002 μg/mL | 1     | ion  | Nb, Cu, Co, Hf                                                                                                                                                                                                                                                                                                                                                                 |
| ICP-OES 206.200 nm | 0.006/.0006 μg/mL | 1     | ion  | Sb, Ta, Bi, Os                                                                                                                                                                                                                                                                                                                                                                 |
| ICP-MS 66 amu      | 7 ppt             | n/a   | M-   | <sup>50</sup> Ti <sup>16</sup> O, <sup>50</sup> Cr <sup>16</sup> O,<br><sup>50</sup> V <sup>16</sup> O, <sup>34</sup> S <sup>16</sup> O <sub>2</sub> ,<br><sup>32</sup> S <sup>16</sup> O <sup>18</sup> O,<br><sup>32</sup> S <sup>17</sup> O <sub>2</sub> , <sup>33</sup> S <sup>16</sup> O <sup>17</sup> O,<br><sup>32</sup> S <sup>34</sup> S, <sup>33</sup> S <sub>2</sub> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 31 69.72 2205 1.8 29.9 Ga

# Gallium

**Location:** Group 13, Period 4

**Atomic Weight:** 69.723 **Coordination Number:** 6

Chemical Form in Solution: Ga(H<sub>2</sub>O)6<sup>+3</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>. Avoid neutral media. Stable with most metals and inorganic anions. The fluoride is insoluble in water but soluble in HF.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Ga Containing Samples (Preparation & Solution):** Metal (is best dissolved in HCl / HNO<sub>3</sub>); Ga<sub>2</sub>O<sub>3</sub> (Na<sub>2</sub>CO<sub>3</sub> fusion in Pt<sup>0</sup>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition or dry ash and dissolution in dilute HCl).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|-----------------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 141.444 nm | 0.05/.001 μg/mL | 1     | ion  | Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ICP-OES 294.364 nm | 0.05/.008 μg/mL | 1     | atom | Ce, U, Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ICP-OES 417.206 nm | 0.07/.005 μg/mL | 1     | atom | Ti, Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ICP-MS 69 amu      | 2 ppt           | n/a   | M+   | $\begin{array}{l} {}^{35}\text{Cl}^{16}\text{O}^{18}\text{O},  {}^{35}\text{Cl}^{17}\text{O}_2, \\ {}^{37}\text{Cl}^{16}\text{O}_2,  {}^{36}\text{Ar}^{33}\text{S}, \\ {}^{33}\text{S}^{18}\text{O}_2,  {}^{34}\text{S}^{17}\text{O}^{18}\text{O}, \\ {}^{36}\text{S}^{16}\text{O}^{17}\text{O},  {}^{33}\text{S}^{36}\text{S}, \\ {}^{53}\text{Cr}^{16}\text{O},  [{}^{138}\text{X}^{2+}  (\text{where} \\ \text{X} = \text{Ba},  \text{La},  \text{Ce})] \end{array}$ |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



# Germanium

Location: Group 14, Period 4

**Atomic Weight:** 72.59 **Coordination Number:** 6

Chemical Form in Solution:  $Ge(OH)_{x}(F)_{v}^{2}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HF,  $H_3PO_4$ ,  $H_2SO_4$ , and HNO $_3$  as the  $Ge(OH)_x(F)_y^{-2}$ . Avoid neutral to basic media. Unstable at ppm levels with metals that would pull  $F^-$  away (i.e. - Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze.

**Stability:** 2-100 ppb levels - stability unknown alone or mixed with all other metals as the  $\text{Ge(OH)}_x(\text{F)}_y^{2-}$ . 1-10,000 ppm single element solutions as the  $\text{Ge(OH)}_x(\text{F)}_y^{2-}$  chemically stable for years in 2-5%  $\text{HNO}_3$  / trace HF in a LDPE container.

**Ge Containing Samples (Preparation & Solution):** Metal (soluble in 1:1:1  $H_2O$  / HF / HNO<sub>3</sub>); Oxide - GeO (readily soluble in HCl or NaOH), GeO<sub>2</sub> (fuse in Pt<sup>0</sup> with Na<sub>2</sub>CO<sub>3</sub> followed by HCl solution of the fuseate); Geological Samples (fuse in Pt<sup>0</sup> with Na<sub>2</sub>CO<sub>3</sub> followed by HCl solution of the fuseate); Organic Matrices (dry ash at 450°C in Pt<sup>0</sup> and dissolve by gently warming with 1:1:1  $H_2O$  / HF /  $H_2SO_4$  or fuse ash with Na<sub>2</sub>CO<sub>3</sub> and dissolve fuseate with HCl /  $H_2O$ ).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 164.919 nm | 0.01/.001 μg/mL | 1     | ion  | Co, Fe, Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ICP-OES 219.871 nm | 0.06/.009 μg/mL | 1     | atom | W, Ir, Re, Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ICP-OES 265.117 nm | 0.05/.009 μg/mL | 1     | atom | Ir, Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ICP-MS 72 amu      | 20 ppt          | n/a   | M+   | <sup>36</sup> Ar <sub>2</sub> , <sup>37</sup> Cl <sup>17</sup> O <sup>18</sup> O,<br><sup>37</sup> Cl <sup>35</sup> Cl, <sup>36</sup> S <sup>18</sup> O <sub>2</sub> ,<br><sup>36</sup> S <sub>2</sub> , <sup>36</sup> Ar <sup>36</sup> S, <sup>56</sup> Fe <sup>16</sup> O,<br><sup>40</sup> Ar <sup>16</sup> O <sub>2</sub> , <sup>40</sup> Ca <sup>16</sup> O <sub>2</sub> ,<br><sup>40</sup> Ar <sup>32</sup> S, <sup>144</sup> Nd <sup>2+</sup> , <sup>144</sup> Sm <sup>2+</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

### 33 74.922 603 (subl.) 2.2 808 (28 atm) 2.2 AS [Ar]3d<sup>10</sup>4s<sup>2</sup>4p<sup>3</sup> ±3.5

## Arsenic

**Location:** Group 15, Period 4 **Atomic Weight:** 74.9216 **Coordination Number:** 6

Chemical Form in Solution: H<sub>3</sub>AsO<sub>4</sub> and HAsO<sub>9</sub>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Arsenic has no cationic chemistry. It is soluble in HCl, HNO<sub>3</sub>,H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> and HF aqueous matrices water and NH<sub>4</sub>OH. It is stable with most inorganic anions (forms arsenate when boiled with chromate) but many cationic metals form the insoluble arsenates under pH neutral conditions. When fluorinated and/or under acidic conditions arsenate formation is typically not a problem at moderate to low concentrations.

**Stability:** 2-100 ppb levels - stable for months alone or mixed with other elements at equivalent levels - in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**As Containing Samples (Preparation & Solution):** Metal (soluble in 1:1  $H_2O$  /  $HNO_3$ ); Oxides (the oxide exists in crystalline and amorphous forms where the amorphoric form is more water soluble. The oxides typically dissolve in dilute acidic solutions when boiled); Minerals (one gram of powered sample is fused in a  $Ni^0$  crucible with 10 grams of a 1:1 mix of  $K_2CO_3$  and  $KNO_3$  and the melt extracted with hot water); Organic Matrices (0.2 to 0.5 grams of the sample are fused with 15 grams of a 1:1  $Na_2CO_3$  /  $Na_2O_2$  mix in a  $Ni^0$  crucible. The fuseate is extracted with water and acidified with  $HNO_2$ ).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                                                                                                                                                       |
|--------------------|-----------------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 189.042 nm | 0.05/.005 μg/mL | 1     | atom | Cr                                                                                                                                                                                                                                                                  |
| ICP-OES 193.696 nm | 0.1/.01 μg/mL   | 1     | atom | V, Ge                                                                                                                                                                                                                                                               |
| ICP-OES 228.812 nm | 0.1/.01 μg/mL   | 1     | atom | Cd, Pt, Ir, Co                                                                                                                                                                                                                                                      |
| ICP-MS 75 amu      | 30 ppt          | n/a   | M+   | <sup>40</sup> Ar <sup>35</sup> CI, <sup>59</sup> Co <sup>16</sup> O, <sup>36</sup> Ar <sup>38</sup> Ar <sup>1</sup> H,<br><sup>38</sup> Ar <sup>37</sup> CI, <sup>36</sup> Ar <sup>39</sup> K, <sup>150</sup> Nd <sup>2+</sup> ,<br><sup>150</sup> Sm <sup>2+</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 34 78.96 685 2.5 **Se** [Ar]3d<sup>10</sup>4s<sup>2</sup>4p<sup>2</sup> 4 79 -2.4.6

# Selenium

Location: Group 16, Period 4

**Atomic Weight:** 78.96 **Coordination Number:** 6

Chemical Form in Solution: H<sub>2</sub>SeO<sub>3</sub>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> and HF aqueous matrices and water. It is stable with most inorganic anions but many cationic metals form the insoluble selenites under pH neutral conditions. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations.

**Stability:** 2-100 ppb levels stable for months alone or mixed with other elements at equivalent levels in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5%  $HNO_3$  / LDPE container.

**Se Containing Samples (Preparation & Solution):** Metal (soluble in  $HNO_3$ ); Oxides (readily soluble in water); Minerals and alloys (acid digestion with  $HNO_3$  or  $HNO_3$  / HF); Organic Matrices (acid digestion with hot concentrated  $H_2SO_4$  accompanied by the careful dropwise addition of  $H_2O_2$  until clear).

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                                 |
|--------------------|------------------|-------|------|-----------------------------------------------|
| ICP-OES 196.026 nm | 0.08/0.006 μg/mL | 1     | atom | Fe                                            |
| ICP-OES 203.985 nm | 0.2/.05 μg/mL    | 1     | atom | Sb, Ir, Cr, Ta                                |
| ICP-OES 206.279 nm | 0.3/.16 μg/mL    | 1     | atom | Cr, Pt                                        |
| ICP-MS 82 amu      | 200 ppt          | n/a   | M+   | <sup>12</sup> C <sup>35</sup> Cl <sub>2</sub> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 37 85.468 688 39.64 **Rb**

# Rubidium

**Location:** Group 1, Period 5 **Atomic Weight:** 85.4678 **Coordination Number:** (6)

Chemical Form in Solution: Rb(aq)

(coordination number in parentheses is assumed, not certain)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, and HF aqueous matrices. Stable with most metals and inorganic anions. Forms insoluble Rb<sub>2</sub>[PtCl<sub>6</sub>] (0.028g/100mL <sup>20</sup>ag).

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 0.1-1% HNO<sub>3</sub> / LDPE container.

**Rb Containing Samples (Preparation & Solution):** Metal (dissolves very rapidly in water); Ores (sodium carbonate fusion in Pt<sup>o</sup> followed by HCl dissolution - blank levels of Rb in sodium carbonate critical); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                          |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------------------------|
| ICP-OES 420.185 nm | 40/10 μg/mL     | 1     | atom | Fe, Zr                                                                                 |
| ICP-MS 85 amu      | 1.5 ppt         | n/a   | M+   | <sup>69</sup> Ga <sup>16</sup> O, <sup>170</sup> Er+2, <sup>170</sup> Yb <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 38 1377 768 Sr [Kr]5s<sup>2</sup> 254 27

# Strontium

**Location:** Group 2, Period 5 **Atomic Weight:** 87.62 Coordination Number: 6

Chemical Form in Solution: Sr(H<sub>2</sub>O)<sub>6</sub>+2

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid H<sub>2</sub>SO<sub>4</sub>, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, and tungestate in neutral aqueous media.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5%  $HNO_3$  / LDPE container.

**Sr Containing Samples (Preparation & Solution):** Metal (is best dissolved in diluted HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO<sub>2</sub>).

| Technique / Line   | Estimated D.L.*        | Order | Туре | Interferences                                                                                                                         |
|--------------------|------------------------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 407.771 nm | 0.0004/.00006<br>μg/mL | 1     | ion  | U, Ce                                                                                                                                 |
| ICP-OES 421.552 nm | 0.0008/.00004<br>μg/mL | 1     | ion  | Rb                                                                                                                                    |
| ICP-OES 460.733 nm | 0.07/.003 μg/mL        | 1     | atom | Ce                                                                                                                                    |
| ICP-MS 88 amu      | 1200 ppt               | n/a   | M+   | <sup>72</sup> Ge <sup>16</sup> O, <sup>176</sup> Yb <sup>+2</sup> , <sup>176</sup> Lu <sup>+2</sup> , <sup>176</sup> Hf <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 39 3338 1526 X 1Kr|4d5s<sup>2</sup> 447 3

# Yttrium

**Location:** Group 3, Period 5 **Atomic Weight:** 88.906 **Coordination Number:** 6

Chemical Form in Solution:  $Y(OH)(H_2O)_x^{+2}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5%  $HNO_3$  / LDPE container.

**Y Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCl or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.*     | Order | Туре | Interferences                                                     |
|--------------------|---------------------|-------|------|-------------------------------------------------------------------|
| ICP-OES 360.073 nm | 0.005/.000036 μg/mL | 1     | ion  | Ce, Th                                                            |
| ICP-OES 371.030 nm | 0.004/.00007 µg/mL  | 1     | ion  | Се                                                                |
| ICP-OES 377.433 nm | 0.005/.0009 μg/mL   | 1     | ion  | Ta, Th                                                            |
| ICP-MS 89 amu      | 0.8 ppt             | n/a   | M+   | <sup>73</sup> Ge <sup>16</sup> O, <sup>178</sup> Hf <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



# Zirconium

**Location:** Group 4, Period 5 **Atomic Weight:** 91.224

Coordination Number: 6, 7, 8

Chemical Form in Solution:  $Zr(F)_6^{-2}$ 

(coordination numbers 7, 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in concentrated HCl, HF, H<sub>2</sub>SO<sub>4</sub> (very hot) and HNO<sub>3</sub>. Avoid H<sub>3</sub>PO<sub>4</sub> and neutral to basic media. Unstable at ppm levels with metals that would pull F<sup>-</sup> away (i.e. - do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, oxalate, and tartrate with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the  $Zr(F)_6^{-2} + Zr(OH)_4F_2^{-2}$  for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm single element solutions as the  $Zr(F)_6^{-2}$  chemically stable for years in 2-5%  $HNO_2$  / trace HF in an LDPE container.

**Zr Containing Samples (Preparation & Solution):** Metal (soluble in  $H_2O$  / HF / HNO<sub>3</sub>); Oxide unlike TiO<sub>2</sub>, the ZrO<sub>2</sub> is best fused in one of the following ways (Na<sub>2</sub>O<sub>2</sub> in Ni<sup>0</sup>, Na<sub>2</sub>CO<sub>3</sub> in Pt<sup>0</sup> or Borax in Pt<sup>0</sup>); Organic Matrices (dry ash at 450°C in Pt<sup>0</sup> and dissolve by fusing with Na<sub>2</sub>CO<sub>3</sub> and dissolving in HF / HNO<sub>3</sub> / H<sub>2</sub>O).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                                       |
|--------------------|-------------------|-------|------|---------------------------------------------------------------------|
| ICP-OES 343.823 nm | 0.007/.0004 μg/mL | 1     | ion  | Hf, Nb                                                              |
| ICP-OES 339.198 nm | 0.008/.0007 μg/mL | 1     | ion  | Th, Mo                                                              |
| ICP-OES 272.261 nm | 0.018/.001 μg/mL  | 1     | ion  | <i>Cr</i> , V, Th, W                                                |
| ICP-MS 90 amu      | 2 ppt             | n/a   | M+   | <sup>74</sup> Ge <sup>16</sup> O, <sup>74</sup> Se <sup>16</sup> O, |
|                    |                   |       |      | [ <sup>180</sup> X <sup>+2</sup> (where X = Hf, Ta, W)]             |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 41 92.906 4744 1.2 Nb

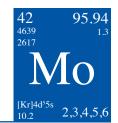
# Niobium

Location: Group 5, Period 5
Atomic Weight: 92.9064
Coordination Number: 6, 7, 8

Chemical Form in Solution: NbOF<sub>5</sub>-2

(coordination numbers 7, 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at 20  $\pm$  4°C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in concentrated HCl and dilute HF / HNO<sub>3</sub>. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F<sup>-</sup> away (i.e. - Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions provided it is in the chemical form shown above.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the NbOF $_5$ -2 for 5 months in 1% HNO $_3$ / LDPE container. 1-10,000 ppm single element solutions as the NbOF $_5$ -2 chemically stable for years in 2-5% HNO $_3$ / trace HF in an LDPE container.

Nb Containing Samples (Preparation & Solution): Metal (soluble in HF / HNO $_3$ ); Oxide - very resistant to all acids including HF (fusion with  $K_2S_2O_7$ , KOH, or  $Na_2CO_3$ ); Organic Matrices (dry ash at 450°C in Pt $^0$  and dissolve by fusing with  $Na_2CO_3$  or  $K_2S_2O_7$ ).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                 |
|--------------------|-----------------|-------|------|-------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 309.418 nm | 0.04/.002 μg/mL | 1     | ion  |                                                                                                                               |
| ICP-OES 269.706 nm | 0.07/.002 μg/mL | 1     | ion  | Th, Co                                                                                                                        |
| ICP-OES 295.088 nm | 0.08/.001 μg/mL | 1     | ion  | Hf, U                                                                                                                         |
| ICP-MS 93 amu      | 1 ppt           | n/a   | M+   | <sup>77</sup> Se <sup>16</sup> O, <sup>76</sup> Se <sup>17</sup> O,<br>[ <sup>186</sup> X <sup>+2</sup> (where X =<br>W, Os)] |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



# Molybdenum

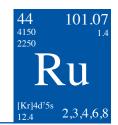
**Location:** Group 6, Period 5 **Atomic Weight:** 95.94

Coordination Number: 6, 7, 8, 9

Chemical Form in Solution: MoO<sub>4</sub>-2 (chem. form as received)

(coordination numbers 7, 8 and 9 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Mo is received in a NH<sub>4</sub>OH matrix, giving the operator the option of using HCl or HF to stabilize acidic solutions. The MoO<sub>4</sub><sup>-2</sup> is soluble in concentrated HCl, MoOCl<sub>5</sub><sup>-2</sup>, dilute HF / HNO<sub>3</sub>, MoOF<sub>5</sub><sup>-2</sup>, and basic media MoO<sub>4</sub><sup>-2</sup>. Stable at ppm levels with some metals, provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions, provided it is in the MoO<sub>4</sub><sup>-2</sup> chemical form.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the  $MoOF_5^{-2}$  for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm single element solutions as the  $MoO_4^{-2}$  chemically stable for years in 1%  $NH_4OH$  in a LDPE container.

**Mo Containing Samples (Preparation & Solution):** Metal (soluble in HF / HNO<sub>3</sub> or hot dilute HCl); Oxide (soluble in HF or NH<sub>4</sub>OH); Organic Matrices (dry ash at 450°C in Pt<sup>0</sup> and dissolve oxide with HF or HCl).

| Technique / Line   | Estimated D.L.*       | Order | Туре | Interferences                                                                                                                                            |
|--------------------|-----------------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 202.030 nm | 0.008/.0002 μg/<br>mL | 1     | ion  | Os, Hf                                                                                                                                                   |
| ICP-OES 203.844 nm | 0.012/.002 μg/mL      | 1     | ion  |                                                                                                                                                          |
| ICP-OES 204.598 nm | 0.012/.001 μg/mL      | 1     | ion  | Ir, Ta                                                                                                                                                   |
| ICP-MS 95 amu      | 3 ppt                 | n/a   | M+   | <sup>40</sup> Ar <sup>39</sup> K <sup>16</sup> O, <sup>79</sup> Br <sup>16</sup> O,<br><sup>190</sup> Os <sup>2+</sup> , <sup>190</sup> Pt <sup>2+</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



# Ruthenium

**Location:** Group 8, Period 5 **Atomic Weight:** 101.07

**Coordination Number:** 4, 5, 6, 8 **Chemical Form in Solution:** [RuCl.]<sup>2-</sup>

**Chemical Form in Solution:**  $[RuCl_6]^{2-}$  (coordination numbers 4, 5 and 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl. Stable with most metals and inorganic anions as the [RuCl<sub>a</sub>]<sup>2-</sup> in dilute acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 10% HCl / LDPE container.

**Ru Containing Samples (Preparation & Solution):** Metal (fuse with KOH/KNO $_3$  in a Ag $^0$  crucible); Oxides (fuse with KOH / KNO $_3$  in a Ag $^0$  crucible); Ores (see Oxides); Alloys (see Oxides). Organics (the RuO $_4$  is volatile and acidic oxidizing preparations should be used with caution. The preferred approach is the KOH / KNO $_3$  fusion and dissolution of the fuseate in HCl).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                                              |
|--------------------|-----------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 240.272 nm | 0.03/.002 μg/mL | 1     | ion  | Fe                                                                                                                                         |
| ICP-MS 101 amu     | 3 ppt           | n/a   | M+   | <sup>40</sup> Ar <sup>61</sup> Ni, <sup>64</sup> Ni <sup>37</sup> Cl,<br><sup>85</sup> Rb <sup>16</sup> O, <sup>202</sup> Hg <sup>2+</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 45 3697 1963 Rh [Kr]4d<sup>8</sup>5s 12.4 2.3.4

## Rhodium

**Location:** Group 9, Period 5 **Atomic Weight:** 102.9055 **Coordination Number:** 6

Chemical Form in Solution: RhCl<sub>g</sub>-3

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl,  $HNO_3$ ,  $H_2SO_4$  and HF aqueous matrices. May cause AgCl precipitation when mixed with  $Ag^+$ . Stable with all other metals.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 10% HCl/LDPE container.

**Rh Containing Samples (Preparation & Solution):** Metal (elevated temp. with aqua regia or  $HCI / Cl_2(gas)$ ); Ores (HF /  $H_2SO_4$  digestion followed by aqua regia digestion); Platinum scrap (aqua regia digestion).

| Technique / Line             | Estimated D.L.*  | Order | Туре | Interferences                                                                                                                          |
|------------------------------|------------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 233.477 nm           | 0.04/0.004 μg/mL | 1     | ion  | Ni, Sn, Mo, Nb, Ta                                                                                                                     |
| ICP-OES 249.077 nm           | 0.06/0.006 μg/mL | 1     | ion  | Ta, Co, Fe, W, Cr, Os                                                                                                                  |
| ICP-OES 343.489 nm           | 0.06/0.006 μg/mL | 1     | atom | Mo, Th, Ce                                                                                                                             |
| ICP-MS 103 amu, monoisotopic | 1 ppt            | n/a   | M+   | <sup>40</sup> Ar <sup>63</sup> Cu, <sup>87</sup> Rb <sup>16</sup> O, <sup>87</sup> Sr <sup>16</sup> O, <sup>206</sup> Pb <sup>+2</sup> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 46 2964 1552 Pd [Kr]4d<sup>10</sup> 12.0 2.4

## **Palladium**

**Location:** Group 10, Period 5 **Atomic Weight:** 106.42

Coordination Number: 6

Chemical Form in Solution: Pd(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, and H<sub>3</sub>PO<sub>4</sub>. Avoid basic media. Stable with most metals and inorganic anions in acidic media. Avoid contact with water soluble organics such as aldehydes since Pd<sup>2+</sup> is easily reduced.

**Stability:** 2-100 ppb levels. 2 ppb Pd is stable for 1 day in 1%  $HNO_3$  / LDPE container. 10 ppb is stable for 3 days in 1%  $HNO_3$  / LDPE container. 100 ppb is stable for ≥ 5 months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5%  $HNO_3$  / LDPE container.

**Pd Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub> or aqua regia); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                      |
|--------------------|-----------------|-------|------|--------------------------------------------------------------------|
| ICP-OES 340.458 nm | 0.04/.003 μg/mL | 1     | atom | Ce, Th, Zr                                                         |
| ICP-OES 363.470 nm | 0.05/.007 μg/mL | 1     | atom |                                                                    |
| ICP-OES 229.651 nm | 0.07/.004 μg/mL | 1     | ion  | Со                                                                 |
| ICP-MS 105 amu     | 2 ppt           | n/a   | M+   | <sup>40</sup> Ar <sup>65</sup> Cu, <sup>89</sup> Y <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 47 107.868 2163 1.4 Ag [Kr]4d<sup>10</sup>5s 1

## Silver

Location: Group 11, Period 5
Atomic Weight: 107.8682
Coordination Number: 6

Chemical Form in Solution: Ag(H<sub>2</sub>O)<sub>6</sub>+

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HNO<sub>3</sub> and HF. Avoid basic media. Ag forms more insoluble salts than any other metal. It also is subject to photochemical reduction to the metal in HCl media although 10 μg/mL solutions in 10% HCl [AgCl<sub>x</sub>1-x] are commonly used in the analytical laboratory. The most common solubility problems exist with arsenate, arsenite, bromide, chloride, iodide, carbonate, chromate, cyanide, iodate, oxalate, oxide, sulfate, sulfide, tartrate, and thiocyanate in aqueous media. The addition of nitric acid renders many of these salts soluble.

**Stability:** 2-100 ppb levels stable for 75+ days when mixed with equivalent levels of all other elements including the precious metals (where chloride is present) when in 1% HNO $_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO $_3$  / LDPE container.

**Ag Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HNO<sub>3</sub>); Ores (digestion with conc. HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                    |
|--------------------|-------------------|-------|------|----------------------------------|
| ICP-OES 328.068 nm | 0.007/.0007 μg/mL | 1     | atom | Ce, Rh, V                        |
| ICP-OES 338.289 nm | 0.013/.001 μg/mL  | 1     | atom | Ce, Cr, Th                       |
| ICP-OES 243.779 nm | 0.12/.01 μg/mL    | 1     | ion  | Mn, Th, Ni, Rh                   |
| ICP-MS 107 amu     | 1 ppt             | n/a   | M+   | <sup>91</sup> Zr <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 48 112.41 767 321.18 Cd [Kr|4d|\*05s² 8.65 2

### **Cadmium**

**Location:** Group 12, Period 5

**Atomic Weight:** 112.41 **Coordination Number:** 4

Chemical Form in Solution: Cd<sub>2</sub>(OH)(aq)<sup>3+</sup> and Cd(OH)(aq)<sup>1+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO $_3$ , H $_2$ SO $_4$ , and HF. Avoid basic media forming insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media. The sulfide, carbonate, oxalate, phosphate, and cyanide are insoluble in water and soluble in HCl, HNO $_3$ , and NH $_4$ OH. The chloride, bromide, and iodide are soluble in water. Cdl $_2$  is one of the few iodides soluble in ethanol. All compounds of Cd are soluble in excess NaI, due to the formation of the complex ion, Cdl $_4$ <sup>2</sup>-.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 %  $HNO_3$  / LDPE container.

**Cd Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HCl or HNO<sub>3</sub>); Ores (dissolve in HCl /HNO<sub>3</sub> then take to fumes with H<sub>2</sub>SO<sub>4</sub>. The silica and lead sulfate are filtered off after the addition of water); Organic based (dry ash at 450°C and dissolve ash in HCl), (sulfuric / peroxide acid digestion).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                    |
|--------------------|-------------------|-------|------|----------------------------------|
| ICP-OES 214.438 nm | 0.003/.0003 μg/mL | 1     | ion  | Pt, Ir                           |
| ICP-OES 228.802 nm | 0.003/.0003 μg/mL | 1     | atom | Co, Ir, As, Pt                   |
| ICP-OES 226.502 nm | 0.003/.0003 μg/mL | 1     | ion  | Ir                               |
| ICP-MS 111 amu     | 11 ppt            | n/a   | M+   | <sup>95</sup> Mo <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 49 114.82 1.5 156.76 In [Kr]4d<sup>10</sup>5s<sup>2</sup>5p 3

#### Indium

**Location:** Group 13, Period 5 **Atomic Weight:** 114.82 **Coordination Number:** 6

Chemical Form in Solution: In(H<sub>2</sub>O)<sub>6</sub>+3

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>. Avoid neutral and basic media. Stable with most metals and inorganic anions. The oxalate, sulfide, carbonate, hydroxide, and phosphate are insoluble in water.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5%  $HNO_3$  / LDPE container.

**In Containing Samples (Preparation & Solution):** Metal (is best dissolved in HCl / HNO<sub>3</sub>); Oxide (soluble in mineral acids); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (sulfuric / peroxide digestion or dry ash and dissolution in dilute HCl).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                       |
|--------------------|-----------------|-------|------|-----------------------------------------------------|
| ICP-OES 158.583 nm | 0.05/.002 μg/mL | 1     | ion  |                                                     |
| ICP-OES 230.606 nm | 0.1/.03 μg/mL   | 1     | ion  | Ni, Os                                              |
| ICP-OES 325.609 nm | 0.2/.05 μg/mL   | 1     | atom | Ir, Re                                              |
| ICP-MS 115 amu     | 1 ppt           | n/a   | M+   | <sup>115</sup> Sn, <sup>99</sup> Ru <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 50 118.71 2603 1.7 232.06 Sn [Kr]4d<sup>10</sup>5s<sup>2</sup>5p<sup>2</sup> 2.4

#### Tin

**Location:** Group 14, Period 5 **Atomic Weight:** 118.710

**Coordination Number:** 4, 5, 6, 7, 8 **Chemical Form in Solution:** Sn(OH), F,2-

(coordination numbers 4, 5, 7 and 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and dilute HF / HNO<sub>3</sub>. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F<sup>-</sup> away (i.e. - do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions, provided it is in the chemical form shown above.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the  $Sn(OH)_xF_y^{-2}$  for 1 year in 1% HNO3 / LDPE container. 1-10,000 ppm single element solutions as the  $Sn(OH)_xF_y^{-2}$  are chemically stable for years in 2-5% HNO<sub>3</sub> / trace HF in a LDPE container.

**Sn Containing Samples (Preparation & Solution):** Metal (soluble in HF / HNO $_3$  or HCl); Oxides - SnO (soluble in HCl), SnO $_2$  - very resistant to all acids including HF (fusion with equal parts of Na $_2$ CO $_3$  and S is soluble in water or dilute acids as the thiostannate); Alloys (treat first 0.1 g with 10 mL conc. H $_2$ SO $_4$  to boiling until the alloy disintegrates and nearly all of the sulfuric acid is expelled. Then add 100 mL O $_2$  free water and 50 mL of conc. HCl or transfer to a plastic container and add 1 mL HF, in either case, warming gently to bring about solution); Organic Matrices (volatility and precipitation of the insoluble stannic oxide are problems -- because these preparations are prone to error, we recommend you contact our technical staff at info @inorganicventures.com or (800)669-6799 and we'll provide you with the necessary data for your specific sample type).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                           |
|--------------------|-----------------|-------|------|-----------------------------------------------------------------------------------------|
| ICP-OES 189.989 nm | 0.03/.003 μg/mL | 1     | ion  |                                                                                         |
| ICP-OES 242.949 nm | 0.1/.01 μg/mL   | 1     | atom | W, Mo, Rh ,Ta, Co                                                                       |
| ICP-MS 120 amu     | 5 ppt           | n/a   | M+   | <sup>120</sup> Te, <sup>104</sup> Ru <sup>16</sup> O, <sup>104</sup> Pd <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 51 121.75 1587 6317 Sb [Kr]4d<sup>10</sup>5s<sup>2</sup>5p<sup>3</sup> 669 ±3.5

## Antimony

**Location:** Group 15, Period 5 **Atomic Weight:** 121.75

Coordination Number: 6

**Chemical Form in Solution:**  $Sb(O)C_4H_4O_6^{-1}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in conc. HCl, dilute or conc. HF. Stable in dilute HNO<sub>3</sub> as the fluoride or tartrate complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media as the tartrate provided the acidity is not too high or the acid is oxidizing causing loss of the stabilizing tartrate ion. The fluoride complex of antimony is stable in strong acid but you should only mix with other metals that are fluorinated.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-2% HNO<sub>3</sub> / LDPE container.

**Sb Containing Samples (Preparation & Solution):** Metal and alloys (soluble in  $H_2O$  / HF /  $HNO_3$  mixture); Oxides (soluble in HCl and tartaric acid or  $H_2O$  / HF /  $HNO_3$  mixtures); Ores (fusion with  $Na_2CO_3$  in  $Pt^0$  followed by dissolving the fuseate in a  $H_2O$  / HF /  $HNO_3$  mixture); Organic based (sulfuric acid / hydrogen peroxide digestion).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                   |
|--------------------|-----------------|-------|------|---------------------------------------------------------------------------------|
| ICP-OES 206.833 nm | 0.03/.003 μg/mL | 1     | atom | Ta, Cr, Ge, Hf                                                                  |
| ICP-OES 217.581 nm | 0.05/.005 μg/mL | 1     | atom | Nb, W, Re, Fe                                                                   |
| ICP-OES 231.147 nm | 0.06/.006 μg/mL | 1     | atom | Ni, Co, Pt                                                                      |
| ICP-MS 121 amu     | 5 ppt           | n/a   | M+   | <sup>105</sup> Pd <sup>16</sup> O, <sup>89</sup> Y <sup>16</sup> O <sub>2</sub> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 52 988 449.65 Te [Kr]4d<sup>10</sup>5s<sup>2</sup>5p<sup>4</sup> -2.4.6

## **Tellurium**

Location: Group 16, Period 5
Atomic Weight: 127.60
Coordination Number: 6

Chemical Form in Solution: H<sub>2</sub>TeO<sub>3</sub> (HNO<sub>3</sub> matrix), TeCl<sub>6</sub><sup>2-</sup> (HCl matrix)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> and HF aqueous matrices and water. It is stable with most inorganic anions and cations. Avoid mixing HCl matrices with elements forming insoluble chlorides such as Ag<sup>+</sup>. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations.

**Stability:** 2-100 ppb levels stable for months alone or mixed with other elements at equivalent levels in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Te Containing Samples (Preparation & Solution):** Metal (soluble in solutions of alkali hydroxides or a 1:1:1 mixture of H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>); Oxides (TeO<sub>2</sub> is soluble in HCl and the alkali hydroxides. TeO<sub>3</sub> is soluble in hot concentrated solutions of the alkali hydroxides.); Minerals and alloys (acid digestion with HNO<sub>3</sub> or HNO<sub>3</sub> / HF); Organic Matrices (Vegetable Matter - dry ash 100 g of the well-ground and mixed vegetation into a concentrated solution of 25 g of magnesium nitrate and magnesium oxide. Dry, ignite and muffle until the ash is a uniform gray color).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                        |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------|
| ICP-OES 170.000 nm | 0.04/.004 μg/mL | 1     | atom | Sn                                                                   |
| ICP-OES 214.281 nm | 0.04/.004 μg/mL | 1     | atom | Ta, Re, V                                                            |
| ICP-OE 225.902 nm  | 0.20/.02 μg/mL  | 1     | atom | Ir, Os W, Ga, Ru, Ta                                                 |
| ICP-MS 130 amu     | 20 ppt          | n/a   | M+   | <sup>114</sup> Cd <sup>16</sup> O, <sup>114</sup> Sn <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 55 132.905 671 28.55 0.9 [Xe]6s 1.873 1

#### Cesium

Location: Group 1, Period 6
Atomic Weight: 132.9054
Coordination Number: (6)

Chemical Form in Solution: Cs+(aq)

(coordination number in parentheses is assumed, not certain)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in dilute HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> and HF aqueous matrices. Stable with most metals and inorganic anions. Forms insoluble Cs<sub>2</sub>[PtCl<sub>6</sub>].

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 0.1%  $HNO_3$  / LDPE container. Will crystallize out of higher (~ 5%) levels of  $HNO_3$  at > 1000  $\mu$ g/mL.

**Cs Containing Samples (Preparation & Solution):** Metal (dissolves very rapidly in water); Ores (sodium carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution - blank levels of Cs in sodium carbonate critical); Organic Matrices (sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 455.531 nm | 100/2 μg/mL     | 1     | atom | Cr, U, <i>Ce</i> , Ti             |
| ICP-MS 133 amu     | 1.7 ppt         | n/a   | M+   | <sup>117</sup> Sn <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 56 1898 729 Ba [Xe]6s² 35

#### **Barium**

**Location:** Group 2, Period 6 **Atomic Weight:** 137.33 **Coordination Number:** 6

Chemical Form in Solution:  $Ba(H_2O)_6^{+2}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid H<sub>2</sub>SO<sub>4</sub>, HF, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, iodate, molybdate, sulfite and tungstate in neutral aqueous media.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5%  $HNO_3$  / LDPE container.

**Ba Containing Samples (Preparation & Solution):** Metal (is best dissolved in diluted HNO $_3$ ); Ores (carbonate fusion in Pt $^0$  followed by HCl dissolution. If sulfate is present dissolve the fuseate using HCl / tartaric acid to prevent BaSO $_4$  precipitate); Organic Matrices (dry ash and dissolve in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO $_2$ ).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                                        |
|--------------------|-------------------|-------|------|----------------------------------------------------------------------|
| ICP-OES 455.403 nm | 0.002/.0001 μg/mL | 1     | ion  | Zr, U                                                                |
| ICP-OES 233.527 nm | 0.004/.0003 μg/mL | 1     | ion  |                                                                      |
| ICP-OES 230.424 nm | 0.004/.0005 μg/mL | 1     | ion  | Mo, Ir, Co                                                           |
| ICP-MS 138 amu     | 1 ppt             | n/a   | M+   | <sup>122</sup> Sn <sup>16</sup> O, <sup>122</sup> Te <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 

## Lanthanum

**Location:** Group 3, Period 6 (lanthanoid)

Atomic Weight: 138.9055

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution: La(OH), (H2O), +3-y

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La - Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5 % HNO<sub>3</sub> / LDPE container.

**La Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O / HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>o</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                        |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------|
| ICP-OES 333.749 nm | 0.01/.001 μg/mL | 1     | ion  |                                                                      |
| ICP-OES 408.672 nm | 0.01/.001 μg/mL | 1     | ion  | Th                                                                   |
| ICP-OES 412.323 nm | 0.01/.001 μg/mL | 1     | ion  | Ce, Th                                                               |
| ICP-MS 139 amu     | 1 ppt           | n/a   | M+   | <sup>123</sup> Sb <sup>16</sup> O, <sup>123</sup> Te <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 72 178.49 4603 1.2 Hf [Xe]4f<sup>14</sup>5d<sup>2</sup>6s<sup>2</sup> 4

#### Hafnium

**Location:** Group 4, Period 6 **Atomic Weight:** 178.49

Coordination Number: 6, 7, 8

Chemical Form in Solution:  $Hf(F)_6^{-2}$ 

(coordination numbers 7 & 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in concentrated HCI, HF, H<sub>2</sub>SO<sub>4</sub> (very hot), and HNO<sub>3</sub>. Avoid H<sub>3</sub>PO<sub>4</sub>and neutral to basic media. Unstable at ppm levels with metals that would pull F<sup>-</sup> away (i.e. - do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, oxalate, and tartrate with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF.

**Stability:** 2-100 ppb levels stable alone or mixed with all other metals that are at comparable levels as the  $Hf(F)_6^{-2} + Hf(OH)_4F_2^{-2}$  for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm single element solutions as the  $Hf(F)_6^{-2}$  chemically stable for years in 2-5%  $HNO_3$  / trace HF in an LDPE container.

**Hf Containing Samples (Preparation & Solution):** Metal (soluble in  $H_2O$  / HF / HNO<sub>3</sub>); Oxide - unlike  $TiO_2$  the HfO<sub>2</sub> is best fused in one of the following ways (Na<sub>2</sub>O<sub>2</sub> in Ni<sup>0</sup>, Na<sub>2</sub>CO<sub>3</sub> in Pt<sup>0</sup> or Borax in Pt<sup>0</sup>); Organic Matrices (dry ash at 450°C in Pt<sup>0</sup> and dissolve by fusing with Na<sub>2</sub>CO<sub>3</sub> and dissolving in HF / HNO<sub>3</sub> / H<sub>2</sub>O).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                       |
|--------------------|-----------------|-------|------|-------------------------------------|
| ICP-OES 277.336 nm | 0.02/.002 μg/mL | 1     | ion  | Nb, Cr, U                           |
| ICP-OES 273.876 nm | 0.02/.002 μg/mL | 1     | ion  | U, Mo                               |
| ICP-OES 264.141 nm | 0.02/.002 μg/mL | 1     | ion  | Ba, Th, U                           |
| ICP-MS 177 amu     | 4 ppt           | n/a   | M+   | <sup>161</sup> Dy <sup>16</sup> O** |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

<sup>\*\*</sup>Fewer potential interferences on the 177 vs 180 mass



### **Tantalum**

**Location:** Group 5, Period 6 **Atomic Weight:** 180.9479 **Coordination Number:** 6, 7, 8

Chemical Form in Solution: TaOF 3

(coordination numbers 7 & 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in concentrated HCl and dilute HF / HNO<sub>3</sub>. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F<sup>-</sup> away (i.e. - do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions, provided it is in the chemical form shown above.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the  $TaOF_6^{-3}$ , for 2 months at the 2-10 ppb level in 1%  $HNO_3$  / LDPE container and for 5 months at the 100 ppb level under same conditions. 1-10,000 ppm single element solutions as the  $TaOF_6^{-3}$  are chemically stable for years in 2-5%  $HNO_3$  / trace HF in an LDPE container.

**Ta Containing Samples (Preparation & Solution):** Metal (soluble in HF / HNO $_3$ ); Oxide - very resistant to all acids including HF (fusion with K $_2$ S $_2$ O $_7$ , KOH, or Na $_2$ CO $_3$ ); Organic Matrices (dry ash at 450°C in Pt $^0$  and dissolve by fusing with Na $_2$ CO $_3$  or K $_2$ S $_2$ O $_7$ ).

| Technique / Line   | Estimated D.L.* | Order | Type | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 226.230 nm | 0.03/.01 μg/mL  | 1     | ion  | Sb, Nb                            |
| ICP-OES 240.063 nm | 0.03/.004 μg/mL | 1     | ion  | <i>Hf</i> , Fe, Bi                |
| ICP-OES 268.517 nm | 0.03/.005 μg/mL | 1     | ion  | Cr, Ru, HF, W                     |
| ICP-MS 181 amu     | 2 ppt           | n/a   | M+   | <sup>165</sup> Ho <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



## Tungsten

**Location:** Group 6, Period 6 **Atomic Weight:** 183.85

Coordination Number: 6, 7, 8, 9

**Chemical Form in Solution:** WOF<sub>5</sub><sup>-2</sup> (chem. form as received) (coordination numbers are 7, 8 and 9 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** W is very readily hydrolyzed requiring 0.1 to 1% HF for stable acidic solutions. The [WOF $_5$ ]<sup>-2</sup> is soluble in % levels of HCl and HNO $_3$ , provided it is in the [WOF $_5$ ]<sup>-2</sup> form. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths. W is best to be mixed only with other fluorinated metals (Ti, Zr, Hf, Nb, Ta, Mo, Si, Sn, Ge). Look for yellow WO $_3$  precipitate if mixed with other transitions at higher levels indicating instability. The yellow WO $_3$  will form over a period of weeks even in trace HF, therefore HF *levels of W multi-element blends should be* ~ 1%.

**Stability:** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the  $[WOF_5]^2$  for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm single element solutions as the  $[WOF_5]^2$  chemically stable for years in 1% HF in a LDPE container.

**W Containing Samples (Preparation & Solution):** Metal (soluble in HF / HNO<sub>3</sub>); Oxide (soluble in HF or NH<sub>4</sub>OH); Organic Matrices (dry ash at 450 0C in Pt<sup>0</sup> and dissolve oxide with HF).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 207.911 nm | 0.03/.001 μg/mL | 1     | ion  | Ru, In                            |
| ICP-OES 224.875 nm | 0.05/.005 μg/mL | 1     | ion  | Co, Rh, Ag                        |
| ICP-OES 209.475 nm | 0.05/.008 μg/mL | 1     | ion  | Мо                                |
| ICP-MS 182 amu     | 5 ppt           | n/a   | M+   | <sup>166</sup> Er <sup>16</sup> O |
|                    |                 |       |      |                                   |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 75 186.207 5596 1.5 Re [Xe]4f<sup>14</sup>5d<sup>8</sup>6s<sup>2</sup> 210 -1.2.4.6.7

### Rhenium

**Location:** Group 8, Period 6 **Atomic Weight:** 186.207

Coordination Number: 4, 6, 7, 8, 9 Chemical Form in Solution: ReO<sub>a</sub><sup>1-</sup>

(coordination numbers 4, 7, 8 and 9 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HF, and H<sub>3</sub>PO<sub>4</sub>. Stable with most metals and inorganic anions in acidic media. Mixing higher levels of ReO<sub>4</sub><sup>1-</sup> with Ag<sup>+</sup>, Hg<sub>2</sub><sup>2+</sup>, K<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Cs<sup>+</sup>, Rb<sup>+</sup>, or Tl<sup>+</sup> will give the corresponding salt (solubilities are 1-12 g/L).

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO<sub>3</sub> / LDPE container.

**Re Containing Samples (Preparation & Solution):** Metal (soluble in  $HNO_3$ ); Oxides / Ores (fuse in  $Pt^0$  with  $Na_2CO_3$ ). Organic Matrix (all modes of acid attack invite the danger of loss of some volatile perrhenic acid. The use of a reflux condenser should be considered when a wet acid digestion is used such as nitric / perchloric or sulfuric / peroxide digestions. The preferred approach is to ash the sample in  $Pt^0$  mixed with  $Na_2CO_3$  starting the ash at 450°C and then increasing the temperature, if necessary, to 900°C to effect a fusion of accompanying alumino-silicates, etc.).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                        |
|--------------------|-------------------|-------|------|------------------------------------------------------|
| ICP-OES 221.426 nm | 0.006/.0006 μg/mL | 1     | ion  | Fe, Os, Mo, Ta                                       |
| ICP-OES 227.525 nm | 0.006/.0006 μg/mL | 1     | ion  | Ru, Co, Ca                                           |
| ICP-MS 187 amu     | 2 ppt             | n/a   | M+   | <sup>171</sup> Yb <sup>16</sup> O, <sup>187</sup> Os |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 76 190.2 5012 1.5 3027 1.5 [Xe]4f<sup>14</sup>5d<sup>6</sup>6s<sup>2</sup> 23.4 6.8

## **Osmium**

**Location:** Group 8, Period 6 **Atomic Weight:** 190.2

Coordination Number: 4, 5, 6, 8

Chemical Form in Solution: OsCl<sub>6</sub><sup>2-</sup> (coordination numbers 4, 5 and 8 are observed less frequently)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCI. Stable with most metals and inorganic anions as the [OsCl<sub>6</sub>]<sup>2-</sup> in dilute HCI media. DO NOT EXPOSE TO NITRIC ACID - FORMATION OF THE VERY VOLATILE AND TOXIC OsO<sub>4</sub> WILL RESULT. Any oxidizing condition must be avoided.

**Stability:** 2-100 ppb levels are *NOT* stable in 1% HNO<sub>3</sub> / LDPE container. The stability of HCl solutions at ppb levels has not been determined by our laboratory. 1-10,000 ppm solutions are presumed chemically stable for years in 10% HCl / LDPE container, stability studies have not been performed.

Os Containing Samples (Preparation & Solution): Oxides (fuse with KOH / KNO<sub>3</sub> in a Ag<sup>o</sup> crucible and dissolve in water being sure to avoid addition of any acid); Ores (see Oxides); Organics (the OsO<sub>4</sub> is volatile and acidic oxidizing preparations should be used with caution. The preferred approach is the KOH / KNO<sub>3</sub> fusion and dissolution of the fuseate in water. Our laboratory has used APDC to help stabilize Os solutions, but more work is required to validate its effectiveness).

**NOTE:** The presence of the OsO<sub>4</sub> will give false high results due to its enhanced nebulization efficiency (volatility). *Only dilutions in HCl should be made. The use of nitric acid should be strictly avoided.* Preparations from caustic nitrate fusions should be diluted in water.

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                                                              |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------------------------------------------------------------|
| ICP-OES 225.585 nm | 0.0004 μg/mL    | 1     | ion  | Fe, Ta, Ge, Ir, Cr                                                                                                         |
| ICP-MS 192 amu     | 1 ppt           | n/a   | M+   | <sup>176</sup> Yb <sup>16</sup> O, <sup>176</sup> Lu <sup>16</sup> O, <sup>176</sup> Hf <sup>16</sup> O, <sup>192</sup> Pt |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 77 192.22 4428 2443 1.6 IT [Xe]4f<sup>14</sup>5d<sup>7</sup>6s<sup>2</sup> 22.4 2.3,4.6

#### Iridium

**Location:** Group 9, Period 6 **Atomic Weight:** 192.22 **Coordination Number:** 6

Chemical Form in Solution: IrCl<sub>g</sub>-2

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, and HF aqueous matrices. May cause AgCl precipitation when mixed with Ag<sup>+</sup>. Stable with all other metals.

**Stability:** 2-100 ppb levels. 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 10% HCl / LDPE container.

**Ir Containing Samples (Preparation & Solution):** Metal (elevated temperature with aqua regia or  $HCI/CI_2$  {gas}); Ores (HF/H<sub>2</sub>SO<sub>4</sub> digestion followed by aqua regia digestion); Platinum scrap (aqua regia digestion).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 224.268 nm | 0.03 μg/mL      | 1     | ion  | Cu, Nb, Hf                        |
| ICP-OES 212.681 nm | 0.03 μg/mL      | 1     | ion  | Ta, Yb, Au, V                     |
| ICP-OES 205.222 nm | 0.06 μg/mL      | 1     | atom | Fe                                |
| ICP-MS 191 amu     | 2 ppt           | n/a   | M+   | <sup>175</sup> Lu <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 78 3827 1772 Pt [Xe]4f<sup>14</sup>5d<sup>6</sup>6s<sup>2</sup> 22.6 2.3.4.6.8

### **Platinum**

Location: Group 10, Period 6
Atomic Weight: 195.08
Coordination Number: 6

Chemical Form in Solution: Pt(Cl)<sub>6</sub><sup>2</sup>-

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl and HNO<sub>3</sub>, as the chloride complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-10 ppb Pt is stable for 2 months in 1%  $HNO_3$  / LDPE container. 100 ppb is stable for 5 months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 10 % HCI / LDPE container.

**Pt Containing Samples (Preparation & Solution):** Metal (aqua regia); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>2</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 214.423 nm | 0.03/.003 μg/mL | 1     | ion  | W, As, Ir, Cd                     |
| ICP-OES 203.646 nm | 0.06/.006 μg/mL | 1     | ion  | Co, Hf                            |
| ICP-MS 195 amu     | 5 ppt           | n/a   | M+   | <sup>179</sup> Hf <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 79 196.967 2857 1064.58 Au [Xe]4f<sup>14</sup>5d<sup>10</sup>6s 1.3

#### Gold

Location: Group 11, Period 6
Atomic Weight: 196.9665
Coordination Number: 6

Chemical Form in Solution: Au(CI)<sub>6</sub>3-

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, and HNO<sub>3</sub>, as the chloride complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability:** 2-100 ppb levels. 2-10 ppb Au is stable for  $\leq$  1 day maximum in 1% HNO $_3$  / LDPE container. 100 ppb is stable for  $\leq$  2 days maximum in 1% HNO $_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 10% HCl / LDPE container.

**Au Containing Samples (Preparation & Solution):** Metal (aqua regia); Oxides (soluble in HCl); Ores (dissolve in HCl / HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                     |
|--------------------|-----------------|-------|------|---------------------------------------------------|
| ICP-OES 242.795 nm | 0.02/.003 μg/mL | 1     | atom | Mn, Os, Th, Ta, Pt<br>Co, F                       |
| ICP-OES 267.595 nm | 0.03/.003 μg/mL | 1     | atom | <i>Nb</i> , <i>Ta</i> , <i>U</i> , Cr, Th, Rh, Ru |
| ICP-OES 208.209 nm | 0.04/.01 μg/mL  | 1     | ion  | Ir, Re                                            |
| ICP-MS 197 amu     | 5 ppt           | n/a   | M+   | <sup>181</sup> Ta <sup>16</sup> O                 |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 80 200.59 357 -38.72 Hg [Xe]4f<sup>14</sup>5d<sup>10</sup>6s<sup>2</sup> 1.2

## Mercury

Location: Group 12, Period 6
Atomic Weight: 200.59
Coordination Number: 4

Chemical Form in Solution: Hg(OH)(aq)1+

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HNO<sub>3</sub>. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate, and iodide are insoluble in water.

**Stability:** 2-100 ppb levels - stable in 10%  $\rm HNO_3$  packaged in borosilicate glass;  $\rm NOT$  stable in 1%  $\rm HNO_3$  /  $\rm LDPE$  container. 1-100 ppm levels stable in 7%  $\rm HNO_3$  packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10%  $\rm HNO_3$  /  $\rm LDPE$  container.

**Hg Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); HgO (soluble in HNO<sub>3</sub>); Ores and Organic based (our documentation has more references to the preparation of Hg containing samples than any other element -- because these preparations are prone to error, we recommend you contact our technical staff at info@inorganicventures.com or (800)669-6799 and we'll provide you with the necessary data for your specific sample type).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                    |
|--------------------|-----------------|-------|------|----------------------------------|
| ICP-OES 184.950 nm | 0.03/.005 μg/mL | 1     | atom |                                  |
| ICP-OES 194.227 nm | 0.03/.005 μg/mL | 1     | ion  | V                                |
| ICP-OES 253.652 nm | 0.1 /.03 μg/mL  | 1     | atom | Ta, <i>Co</i> , Th ,Rh , Fe, U   |
| ICP-MS 202 amu     | 9 ppt           | n/a   | M+   | <sup>186</sup> W <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

### **Thallium**

Location: Group 13, Period 6
Atomic Weight: 204.383
Coordination Number: 6

Chemical Form in Solution: TI(H<sub>2</sub>O)<sub>6</sub><sup>1+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HNO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub>. Stable with most metals and inorganic anions. The sulfite, thiocyanate, and oxalate are moderately soluble; the phosphate and arsenite are slightly soluble and the sulfide is insoluble.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**TI Containing Samples (Preparation & Solution):** Metal (is best dissolved in HNO<sub>3</sub> which forms chiefly the TI<sup>1+</sup> ion); Oxide (the thallous oxide is readily soluble in water. The thallic oxide requires high levels of acid); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCI dissolution); Organic Matrices (sulfuric / peroxide digestion or dry ash and dissolution in HCI).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 190.864 nm | 0.04/.004 μg/mL | 1     | ion  | V, Ti                             |
| ICP-OES 276.787 nm | 0.1/.01 μg/mL   | 1     | atom | Ta, V, Fe, Cr                     |
| ICP-OES 351.924 nm | 0.2/.02 μg/mL   | 1     | atom | Th, Ce, Zr                        |
| ICP-MS 205 amu     | 2 ppt           | n/a   | M+   | <sup>189</sup> Os <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 82 207.2 1750 1.6 Pb [Xe]4f<sup>14</sup>5d<sup>10</sup>6s<sup>2</sup>6p<sup>2</sup> 2.4

#### Lead

**Location:** Group 14, Period 6

**Atomic Weight:** 207.2 **Coordination Number:** 6

Chemical Form in Solution: Pb(H<sub>2</sub>O)<sub>6</sub>+2

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, HF, and HNO<sub>3</sub>. Avoid H<sub>2</sub>SO<sub>4</sub>. Stable with most metals and inorganic anions forming insoluble carbonate, borate, sulfate, sulfite, sulfide, phosphate, oxalate, chromate, tannate, iodate, and cyanide in neutral aqueous media.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5%  $HNO_3$  / LDPE container.

**Pb Containing Samples (Preparation & Solution):** Metal (best dissolved in 1:1  $H_2O$  /  $HNO_3$ ); Oxides (the many different Pb oxides are soluble in  $HNO_3$ , with the exception of  $PbO_2$  which is soluble in HCl or HF); Ores and Alloys (best attacked using 1:1  $H_2O$  /  $HNO_3$ ); Organic Matrices (dry ash and dissolve in dilute HCl. Do not heat when dissolving to avoid precipitation of  $SiO_2$ ).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                        |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------|
| ICP-OES 168.215 nm | 0.03/.003 μg/mL | 1     | ion  | Со                                                                   |
| ICP-OES 220.353 nm | 0.04/.006 μg/mL | 1     | ion  | Bi, Nb                                                               |
| ICP-OES 217.000 nm | 0.09/.03 μg/mL  | 1     | atom | W, Ir, Hf, Sb, Th                                                    |
| ICP-MS 208 amu     | 5 ppt           | n/a   | M+   | <sup>192</sup> Pt <sup>16</sup> O, <sup>192</sup> Os <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 83 208.980 1564 271.52 Bi [Xe]4f<sup>14</sup>5d<sup>10</sup>6s<sup>2</sup>6p<sup>3</sup> 9.75

### **Bismuth**

Location: Group 15, Period 6
Atomic Weight: 208.9804
Coordination Number: 6

Chemical Form in Solution: Bi(O)(H<sub>2</sub>O)<sub>x</sub><sup>1+</sup>

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Stable in HCl, HNO $_3$ , H $_2$ SO $_4$ , and HF. Avoid basic media forming insoluble hydroxide. Stable with most metals and inorganic anions in acidic media. Many salts that are insoluble in water are soluble in HCl, HNO $_3$  and HF. The major problem with Bi $^{3+}$  is its tendency to hydrolyze at higher concentrations or in dilute acid. Nitric acid solutions should be 5% to hold the Bi in solution in the 100 to 10000 µg/mL concentration range.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 5 - 7% HNO<sub>3</sub> / LDPE container.

**Bi Containing Samples (Preparation & Solution):** Metal (soluble in HNO<sub>3</sub>); Oxides (soluble in HNO<sub>3</sub>); Alloys (dissolve in conc. 4:1 HCl / HNO<sub>3</sub> - heating may be required.); Organic based (dry ash at 450°C and dissolve ash in HNO<sub>3</sub> or acid digestion with conc. hot sulfuric acid adding hydrogen peroxide *carefully dropwise* until clear).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 223.061 nm | 0.04/.005 μg/mL | 1     | atom | Th, Ir, Ti Cu                     |
| ICP-OES 306.772 nm | 0.08/.01 μg/mL  | 1     | atom | Th, U, Zr, Hf, Fe                 |
| ICP-OES 222.825 nm | 0.1/.02 μg/mL   | 1     | atom | Cr, Hf, Ce, Os                    |
| ICP-MS 209 amu     | 2 ppt           | n/a   | M+   | <sup>193</sup> Ir <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 58 140.12 3426 798 Ce

### Cerium

**Location:** Period 6 (lanthanoid)

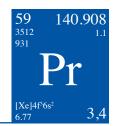
Atomic Weight: 140.12

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution: Ce(OH), (H,O), +4-y

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La - Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.


**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Ce Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O / HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                                                        |
|--------------------|------------------|-------|------|----------------------------------------------------------------------|
| ICP-OES 413.765 nm | 0.05/.0058 μg/mL | 1     | ion  | Ce**                                                                 |
| ICP-OES 418.660 nm | 0.05/.003 μg/mL  | 1     | ion  | Zr                                                                   |
| ICP-OES 453.975 nm | 0.06/.0063 μg/mL | 1     | ion  |                                                                      |
| ICP-MS 140 amu     | 1 ppt            | n/a   | M+   | <sup>124</sup> Sn <sup>16</sup> O, <sup>124</sup> Te <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

<sup>\*\*413.747</sup> line may effect Bkg. Corr.



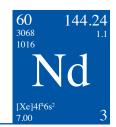
## Praseodymium

**Location:** Period 6 (lanthanoid) **Atomic Weight:** 140.9077

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Pr(OH)_{v}(H_{2}O)_{x}^{+3-y}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La - Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Pr Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O / HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                     |
|--------------------|-----------------|-------|------|-----------------------------------|
| ICP-OES 414.311 nm | 0.04/.004 μg/mL | 1     | ion  | Ce                                |
| ICP-OES 417.939 nm | 0.04/.004 μg/mL | 1     | ion  | Cr, Ce                            |
| ICP-OES 422.535 nm | 0.04/.004 μg/mL | 1     | ion  | V, U                              |
| ICP-MS 141 amu     | 0.3 ppt         | n/a   | M+   | <sup>125</sup> Te <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



## Neodymium

**Location:** Period 6 (lanthanoid)

Atomic Weight: 144.24

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution: Nd(OH),(H2O), +3-y

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La - Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO $_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO $_3$  / LDPE container.

**Nd Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O / HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                     |
|--------------------|-------------------|-------|------|-----------------------------------|
| ICP-OES 401.225 nm | 0.05/.002 μg/mL   | 1     | ion  | Ti, Cr                            |
| ICP-OES 430.358 nm | 0.075/.0014 μg/mL | 1     | ion  |                                   |
| ICP-OES 406.109 nm | 0.1/.002 μg/mL    | 1     | ion  | Се                                |
| ICP-MS 146 amu     | 2 ppt             | n/a   | M+   | <sup>130</sup> Te <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 62 150.36 1791 1.1 Sm

## Samarium

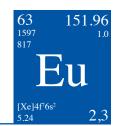
**Location:** Period 6 (lanthanoid)

Atomic Weight: 150.36

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Sm(OH)_{v}(H_{2}O)_{x}^{+3-y}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.


**Chemical Compatibility:** Soluble in HCl, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La - Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

Sm Containing Samples (Preparation & Solution): Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCI dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCI or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.*       | Order | Туре | Interferences                                                                           |
|--------------------|-----------------------|-------|------|-----------------------------------------------------------------------------------------|
| ICP-OES 359.260 nm | 0.05/.002 μg/mL       | 1     | ion  | W, Th                                                                                   |
| ICP-OES 442.434 nm | 0.075/.0014 μg/<br>mL | 1     | ion  | Ce, Ca                                                                                  |
| ICP-OES 428.079 nm | 0.1/.002 μg/mL        | 1     | ion  | Ce, Cr                                                                                  |
| ICP-MS 152 amu     | 2 ppt                 | n/a   | M+   | <sup>136</sup> Ce <sup>16</sup> O, <sup>136</sup> Ba <sup>16</sup> O, <sup>152</sup> Gd |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



## **Europium**

**Location:** Period 6 (lanthanoid)

Atomic Weight: 151.96

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Eu(OH)_v(H_2O)_x^{+3-y}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La - Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Eu Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O / HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                     |
|--------------------|-------------------|-------|------|-----------------------------------|
| ICP-OES 381.967 nm | 0.003/.0003 μg/mL | 1     | ion  | Cr, V                             |
| ICP-OES 412.970 nm | 0.004/.0004 μg/mL | 1     | ion  | Nb                                |
| ICP-OES 420.505 nm | 0.004/.0004 μg/mL | 1     | ion  | Ce, V                             |
| ICP-MS 153 amu     | 1 ppt             | n/a   | M+   | <sup>137</sup> Ba <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 64 157.25 3266 1312 Gd [Xe]4f'5d6s² 7.92 3

## Gadolinium

**Location:** Period 6 (lanthanoid)

Atomic Weight: 157.25

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Gd(OH)_x(H_2O)_y^{+3-x}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5%  $HNO_3$  / LDPE container.

**Gd Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCI dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCI or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                                                                           |
|--------------------|------------------|-------|------|-----------------------------------------------------------------------------------------|
| ICP-OES 342.247 nm | 0.014/.001 μg/mL | 1     | ion  | Th, U                                                                                   |
| ICP-OES 336.223 nm | 0.02/.0002 μg/mL | 1     | ion  | Th, Ca                                                                                  |
| ICP-OES 335.047 nm | 0.02/.002 μg/mL  | 1     | ion  | Ce, Ca                                                                                  |
| ICP-MS 158 amu     | 2 ppt            | n/a   | M+   | <sup>142</sup> Ce <sup>16</sup> O, <sup>142</sup> Nd <sup>16</sup> O, <sup>158</sup> Dy |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 65 158.925 3223 1357 1.1 Tb

## **Terbium**

**Location:** Period 6 (lanthanoid)

Atomic Weight: 158.925

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Tb(OH)_x(H_2O)_y^{+3-x}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Tb Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCl or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                                    |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------------------|
| ICP-OES 350.917 nm | 0.02/.002 μg/mL | 1     | ion  | V, Th, Ce, Zr                                                                    |
| ICP-OES 367.635 nm | 0.06/.006 μg/mL | 1     | ion  | Ta, Ce, Co, U                                                                    |
| ICP-MS 159 amu     | 1 ppt           | n/a   | M+   | <sup>143</sup> Nd <sup>16</sup> O, <sup>127</sup> I <sup>16</sup> O <sub>2</sub> |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 66 162.50 2562 1409 Note: The second state of the second state of

## **Dysprosium**

**Location:** Period 6 (lanthanoid)

Atomic Weight: 162.50

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Dy(OH)_x(H_2O)_y^{+3-x}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub> and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO $_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO $_3$  / LDPE container.

**Dy Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O/ HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                     |
|--------------------|-------------------|-------|------|-----------------------------------|
| ICP-OES 340.780 nm | 0.007/.0007 μg/mL | 1     | ion  | Hf, Th, U, Zr                     |
| ICP-OES 353.170 nm | 0.013/.001 μg/mL  | 1     | ion  | Ce, Th                            |
| ICP-MS 163 amu     | 3 ppt             | n/a   | M+   | <sup>147</sup> Sm <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 67 164.930 2695 1470 HO [Xe]4f<sup>11</sup>6s<sup>2</sup> 8 80 3

### Holmium

**Location:** Period 6 (lanthanoid) **Atomic Weight:** 164.930

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution: Ho(OH),(H2O),+3-x

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Ho Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCI dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCI or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                     |
|--------------------|-------------------|-------|------|-----------------------------------|
| ICP-OES 345.600 nm | 0.006/.0001 µg/mL | 1     | ion  | U, Ti                             |
| ICP-OES 339.898 nm | 0.02/.002 μg/mL   | 1     | ion  | Ce, Re                            |
| ICP-MS 165 amu     | 1 ppt             | n/a   | M+   | <sup>149</sup> Sm <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 68 2863 1522 Er [Xe]4f<sup>12</sup>6s<sup>2</sup> 9 07 3

## **Erbium**

**Location:** Period 6 (lanthanoid)

Atomic Weight: 167.26

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution: Er(OH), (H,O), +3-x

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Er Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O/HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O/HCl$  or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                                        |
|--------------------|-----------------|-------|------|----------------------------------------------------------------------|
| ICP-OES 337.271 nm | 0.01/.001 μg/mL | 1     | ion  | Th, Ti                                                               |
| ICP-OES 349.910 nm | 0.02/.002 μg/mL | 1     | ion  | Ru, Th, U                                                            |
| ICP-MS 166 amu     | 1 ppt           | n/a   | M+   | <sup>150</sup> Sm <sup>16</sup> O, <sup>150</sup> Nd <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 69 168.934 1947 1.1 1545 Tm

### **Thulium**

**Location:** Period 6 (lanthanoid) **Atomic Weight:** 168.9342

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution:  $Tm(OH)_x(H2O)_y^{+3-x}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1%  $HNO_3$  / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5%  $HNO_3$  / LDPE container.

**Tm Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCI dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCI or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.*  | Order | Туре | Interferences                     |
|--------------------|------------------|-------|------|-----------------------------------|
| ICP-OES 313.126 nm | 0.005/.003 μg/mL | 1     | ion  | U, Th, Be                         |
| ICP-OES 346.220 nm | 0.008/.006 μg/mL | 1     | ion  | Rh, U                             |
| ICP-MS 169 amu     | 1 ppt            | n/a   | M+   | <sup>153</sup> Eu <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 70 1194 824 Yb [Xe]4f<sup>14</sup>6s<sup>2</sup> 6.97 2.3

### Ytterbium

**Location:** Period 6 (lanthanoid)

Atomic Weight: 173.04

Coordination Number: 6 to 9, 10 for some compounds

Chemical Form in Solution: Yb(OH)<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub>+3-x

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl, H<sub>2</sub>SO<sub>4</sub>, and HNO<sub>3</sub>. Avoid HF, H<sub>3</sub>PO<sub>4</sub>, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Yb Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in H<sub>2</sub>O / HNO<sub>3</sub>); Ores (carbonate fusion in Pt<sup>0</sup> followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1 H<sub>2</sub>O / HCl or HNO<sub>3</sub>).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                                                                           |
|--------------------|-------------------|-------|------|-----------------------------------------------------------------------------------------|
| ICP-OES 328.937 nm | 0.002/.0003 μg/mL | 1     | ion  | U, Ce, V                                                                                |
| ICP-OES 369.419 nm | 0.003/.0006 μg/mL | 1     | ion  | Fe                                                                                      |
| ICP-MS 174 amu     | 2 ppt             | n/a   | M+   | <sup>158</sup> Gd <sup>16</sup> O, <sup>158</sup> Dy <sup>16</sup> O, <sup>174</sup> Hf |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

# 71 174.967 3395 1663 LU [Xe]4f<sup>14</sup>5d6s<sup>2</sup> 9,84 1

### Lutetium

**Location:** Group 13, Period 5 **Atomic Weight:** 174.967 **Coordination Number:** 6

Chemical Form in Solution:  $Lu(OH)_x(H_2O)_y^{+3-x}$ 

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl,  $H_2SO_4$ , and HNO $_3$ . Avoid HF,  $H_3PO_4$ , and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

**Stability:** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

**Lu Containing Samples (Preparation & Solution):** Metal (soluble in acids); Oxide (dissolved by heating in  $H_2O$  /  $HNO_3$ ); Ores (carbonate fusion in  $Pt^0$  followed by HCl dissolution); Organic Matrices (dry ash and dissolve in 1:1  $H_2O$  / HCl or  $HNO_3$ ).

| Technique / Line   | Estimated D.L.*   | Order | Туре | Interferences                     |
|--------------------|-------------------|-------|------|-----------------------------------|
| ICP-OES 261.542 nm | 0.001/.0003 μg/mL | 1     | ion  | Th, Mo, V, W                      |
| ICP-OES 291.139 nm | 0.006/.0006 μg/mL | 1     | ion  | Cr, U                             |
| ICP-MS 175 amu     | 1 ppt             | n/a   | M+   | <sup>159</sup> Tb <sup>16</sup> O |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

## 90 232.038 4788 1.1 Th

### **Thorium**

**Location:** Period 7 (actinoid) **Atomic Weight:** 232.0381 **Coordination Number:** 8

Chemical Form in Solution: Th(OH)3+ and Th(OH)2+

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO $_3$ . Avoid H $_3$ PO $_4$ , H $_2$ SO $_4$ , and HF, although solubilities may not be a problem depending upon pH and matrix (i.e. - ThF $_4$  is soluble in acids). Avoid neutral to basic media. Th $^{4+}$  is stable with most metals and inorganic anions forming an insoluble carbonate, oxide, fluoride, oxalate, sulfate, and phosphate in neutral to slightly acidic media.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**Th Containing Samples (Preparation & Solution):** Metal (soluble in aqua regia); Oxide (the heated oxide is not soluble in acids except hot conc.  $H_2SO_4$ ); Ores  $(Na_2O_2$  fusion at  $480 \pm 20^{\circ}$ C for 7 minutes, cool, and treat sintered mass with 50 mL cold water and let stand until disintegrated. The mass is transferred to a beaker and acidified with HCl, with 25 mL excess HCl added. Any residue is collected on a Whatman No. 42 filter, dried and ignited to  $1000^{\circ}$ C in  $Pt^0$  crucible and ash treated with  $H_2SO_4$  / HF and fumed. If residue remains, then treat it by peroxide fusion as described above).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences         |
|--------------------|-----------------|-------|------|-----------------------|
| ICP-OES 283.730 nm | 0.07/.007 μg/mL | 1     | ion  | U, Zr                 |
| ICP-OES 283.231 nm | 0.07/.007 μg/mL | 1     | ion  | U, Mo, Ti, Fe, Cr     |
| ICP-OES 274.716 nm | 0.08/.008 μg/mL | 1     | ion  | Ti, Ta, <i>Fe</i> , V |
| ICP-MS 232 amu     | 1 ppt           | n/a   | M+   |                       |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view

#### 92 4134 1132 1132 1.2 1.2 [Rn]5f<sup>8</sup>6d7s<sup>2</sup> 19.0 3,4,5,6

## **Uranium**

Location: Period 7 (actinoid)
Atomic Weight: 238.0289
Coordination Number: 8

Chemical Form in Solution: UO<sub>2</sub><sup>2+</sup> (uranyl)

**Storage & Handling:** Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

**Chemical Compatibility:** Soluble in HCl and HNO $_3$ . Avoid H $_3$ PO $_4$ . H $_2$ SO $_4$  and HF matrices should not be a problem depending upon [U]. Although the UO $_2^{2+}$  ion is distinctly basic, any U $^{+4}$  will ppt. in basic media. UO $_2^{2+}$ salts are generally soluble in water and UO $_2^{2+}$  is stable with most metals and inorganic anions. The uranyl phosphate is insoluble in water. UF $_4$  and UF $_6$  are water soluble.

**Stability:** 2-100 ppb levels stable for months in 1% HNO<sub>3</sub> / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO<sub>3</sub> / LDPE container.

**U Containing Samples (Preparation & Solution):** Metal (dissolves rapidly in HCl and HNO<sub>3</sub>); Oxide (soluble in HNO<sub>3</sub>); Ores (digest for 1-2 hours with 1 gram of ore to 30 mL 1:1 HNO<sub>3</sub>. Silica insolubles are removed by filtration after bringing the sample to fumes with conc. H<sub>2</sub>SO<sub>4</sub>).

| Technique / Line   | Estimated D.L.* | Order | Туре | Interferences                                          |
|--------------------|-----------------|-------|------|--------------------------------------------------------|
| ICP-OES 385.958 nm | 0.3/.01 μg/mL   | 1     | ion  | Th, Fe                                                 |
| ICP-OES 367.007 nm | 0.3/.02 μg/mL   | 1     | ion  | Th, Ce                                                 |
| ICP-OES 263.553 nm | 0.3/.01 µg/mL   | 1     | ion  | Ce, Ir, Th, Rh, W, Zr,<br>Ta, Ti, V, Hf, Fe, Re,<br>Ru |
| ICP-MS 238 amu     | 2 ppt           | n/a   | M+   | <sup>206</sup> Pb <sup>16</sup> O <sub>2</sub>         |

<sup>\*</sup>ICP-OES D.L.'s are given as radial / axial view



Paul R. Gains, PhD

Dr. Paul R. Gaines has four decades of spectroscopic experience. After earning his PhD in chemistry at Iowa State University Dr. Gaines worked in the laboratories of Exxon Research and Engineering and Union Carbide.

Today, Dr. Gaines is the Senior Technical Advisor and CEO of Inorganic Ventures, as well as, an accomplished web author of many popular guides and papers for fellow spectroscopists.



Custom CRMs • Inorganic CRMs



300 Technology Drive Christiansburg, VA 24073 • USA tel: 800.669.6799 • 540.585.3030

fax: 540.585.3012

info@inorganicventures.com





inorganicventures.com