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Special Issue on Recent Advances in Automotive Radar Signal Processing 
We witness today an enormous amount of activities in the automotive industry, in particular the 
development of Advanced Driver Assistance Systems, with the goal to make driving safer and more 
comfortable. Moreover, the introduction of the Highly Automated Driving is considered a topical 
technology challenge. The performance and reliability of these systems strongly depends on the 
capabilities of the environmental sensing, for which radar technology is considered as indispensable. 

Advantages of radar technologies when compared with LiDAR and camera technologies clearly are the 
robust and preferred operation in adverse weather conditions, higher range, direct measurement of 
relative velocity, and affordability. An active field of research and development is to mitigate limitations 
of automotive radar, which are mainly angular resolution and object classification capabilities. For 
instance, high-performance radar sensors can be developed using MIMO radar techniques and a plurality 
of highly integrated radio frequency components. Another trend is to exploit specific data features, e.g. 
micro-Doppler signatures, to improve the detection and classification of vulnerable road users. In 
particular, machine learning and deep learning applications are increasingly used. 

This special issue targets novel technical contributions. Topics of interest include, but are not limited to: 

● MIMO radar 
● 4D imaging radar 
● Model-based high-resolution parameter estimation 
● Online methods for calibration, performance monitoring and fault detection 
● Interference detection and mitigation 
● Enhanced object and scene classification 
● Machine learning and deep learning applications (point cloud segmentation, occupancy grid 

calculation, 3D object detection) 
● Hardware acceleration and integration 
● Radar and communications 
● Radar networks 
● Data fusion and target tracking 
● Prototyping, measurements and experimentation 

Guest editors: 

● Prof. Abdelhak Zoubir (Professor at Technische Universität Darmstadt) 
● Dr. Philipp Heidenreich (Advanced Technology Specialist, Opel Automobile GmbH) 
● Dr. Igal Bilik (Manager of Smart Sensing and Vision Systems Group, RnD Center Israel, 

General Motors) 
● Prof. Maria Greco (Professor at University of Pisa) 
● Prof. Murat Torlak (Professor at University of Texas at Dallas) 

Milestone dates: 

Manuscript submission due: 8-Aug-2020 
First review completed: 02-Nov-2020 
Revised manuscript due: 04-Jan-2021 
Second review completed: 15-Feb-2021 
Final manuscript due: 15-Mar-2021 
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This special issue on autonomous driving will be pre-
sented in two parts. Part 1: Sensing and Perception 
aims to  provide researchers and professionals with tuto-
rial-style articles that cover the current state of the art 
as well as emerging trends in the design, development, 
and deployment of sensing and perception technologies 
for autonomous and automated driving. Part 2: Learning 
and Cognition is scheduled for the January 2021 issue.
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The 2020 IEEE Radar Conference will take place in 
Florence, Italy, 21–25 September 2020.
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FROM THE EDITOR
Robert W. Heath Jr.  |  Editor-in-Chief  |   rheath@utexas.edu

L ike many of you, I am still working 
remotely, due to COVID-19, while 
writing this editorial. As in the past 

two years, I was planning to give an up-
date on the magazine from our editorial 
board meeting. However, since ICASSP 
was remote, we have not yet scheduled 
the board meeting. Instead, I have decided 
to talk about a topic of personal interest: 
connections between communications 
and sensing in the context of vehicular 
systems. I believe that this is an important 
signal processing topic that brings togeth-
er researchers from different technical 
committees and societies. This editorial is 
also relevant given the special issue arti-
cles and feature article found in this issue.

In past IEEE Signal Processing Maga-
zine (SPM) editorials, I have discussed ve-
hicular applications of signal processing, 
going toward 6G cellular communica-
tions, and new opportunities in communi-
cations as realized during a pandemic. In 
each of these articles I hinted at potential 
opportunities related to communications 
and sensing (especially radar). These 
topics have been featured in other SPM
content including a two-part series on ad-
vances in radar systems for modern civil-
ian and commercial applications (issues 4 
and 5 in 2019) and a two-part series on au-
tonomous vehicles (this issue and the up-
coming January 2021 issue). There is also 
alignment with the IEEE Signal Process-
ing Society (SPS) Autonomous Systems 

Initiative. In this editorial, I expand on the 
potential of combining communications 
and sensing in different ways.

Vehicles are being equipped with 
more sensors to support higher levels of 
automation. These sensors form a net-
work on the vehicle, whose information 
is fused for tasks like trajectory planning 
and obstacle avoidance. Perhaps even 
more interesting, though, is the combina-
tion of sensing and communications that 
turns a network of vehicles into a cooper-
ative perception system. The sensor data 
from each vehicle can be exchanged and 
fused to create a more accurate picture 
of the environment, leveraging the mul-
timodality of the sensors and their dif-
ferent perspectives. Imagine the contrast 
with sensor networking research from 
two decades ago [1], which envisioned 
networks of low-power, low-cost sensors 
with limited communication capabil-
ity. The networks of sensor networks in 
a transportation system has vastly more 
capable sensors, highly advanced signal 
processing, significant computational 
resources, automation, and much more 
communication capability.

For some of you, if you have read this 
far, you may be wondering why I have 
written another editorial that discusses  
communications. Where is the speech 
signal processing? Where is the biologi-
cal signal processing? What about fast 
implementation of algorithms? In short, 
despite what I usually claim to my fam-
ily, I do not know everything. On the 
aforementioned topics, I am work-

ing with SPM’s area editors to encour-
age more content in those areas as well. 
Apologies for—yet again—not straying 
from my core research area. This is an 
interesting time where communications 
and sensing are being combined in new 
ways in automotive, aerial, and other ap-
plications for consumers.

Using communication signals 
for radar
Radar and wireless communications 
share the same electromagnetic spec-
trum and have some common features in 
their waveforms. The purpose though is 
drastically different. In radar, the infor-
mation (e.g., about a target) is captured 
in the system that transforms the trans-
mitted signal to the observed received 
signal. For example, an observed Dop-
pler shift may be related to a target’s 
velocity. In wireless communication, the 
information (e.g., what is known at the 
transmitter but unknown to the receiver) 
is encoded into the transmit waveform, 
which is disrupted by a system (propaga-
tion channel, circuit impairments, noise) 
and observed at a receiver. The receiver 
removes the effects of the system (which 
normally involves tasks like channel esti-
mation and equalization) with the objec-
tive of discovering what was transmitted. 
While both radar and communications 
may estimate aspects of the propagation 
environment, they each use them for a 
different purpose. Further, a communi-
cation waveform does not make the best 
radar waveform and vice versa.

 Communications and Sensing: 
An Opportunity for Automotive Systems
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It is natural to consider ways that 
one type of signal can be used for the 
other type’s purpose. Here I highlight 
some examples where a communication 
signal is used for radar. In essence, the 
objective is to exploit the known parts of 
the communication signal to estimate the 
unknown parameters related to the envi-
ronment. It is an old idea. Early examples 
of bistatic radar using television signals 
are reviewed in [3]. What makes the topic 
current, though, is the use of low-power 
(relative to TV) access points, base sta-
tions, and devices for this purpose.

There are a number of recent ex-
amples involving Wi-Fi signals, much 
of it backed up with experimental data. 
For example, in [4] a Wi-Fi signal is 
used to perform through-wall imaging, 
for example, to detect the presence of a 
person. In [5], a Wi-Fi signal was used 
for gesture recognition. In essence, the 
micro-Doppler characteristics were used 
to train a machine learning method to 
classify different hand movements into 
one of a set of gestures. An application 
of this technology is whole-house audio 
volume control. In our work [6], we con-
sidered the use of the Wi-Fi for vehicles, 
known as dedicated short-range com-
munication, for radar. The performance 
was not as good as what can be achieved 
by millimeter-wave automotive radar, 
but the cost is potentially much lower. In 
our other work in [7], we considered the 
use of the IEEE 802.11ad millimeter-
wave communication signals for both 
communication (between two vehicles) 
and radar. The system gives high data 
rates and good radar performance, which 
gives extra robustness and provides addi-
tional security through diverse sources of 
information (the receiving vehicle broad-
casting back its position, and the trans-
mitting vehicle measuring the position of 
the receiving vehicle with radar).

Combining communications 
and radar together
In the aforementioned examples, a radar 
was designed to work with a given com-
munication waveform. While it might 
share the same hardware as communi-
cation, no attempt was made to modify 
the communication waveform to bet-
ter suit radar. It is possible to imagine, 

though, a system where tradeoffs are 
made, for example, that reduce commu-
nication throughput but increase radar 
system performance. Such tradeoffs have 
been a topic of recent work [8]. It is also 
the topic of a recent SPM article [9] as 
well as the article “Joint Radar-Commu-
nications Strategies for Autonomous Ve-
hicles” by Ma et al. in this issue.

There are different ways that tradeoffs 
could be accommodated in a system. 
One approach would be to time multiplex 
between a communication waveform 
and a radar waveform. The time dura-
tion could be varied depending on the 
desired operational performance targets. 
The advantage of this approach is hard-
ware reuse and potential ease of dealing 
with the full duplex problem (since radar 
waveforms are usually designed with that 
in mind). Another approach is a bit more 
integrated into the communication. The 
frequency of training symbols or pilots 
could be varied, for example to improve 
velocity estimation. The quality of the 
radar parameter estimates could improve 
and the channel estimate would be bet-
ter for communications, but the data 
rate would decrease due to fewer data 
symbols. Systems in the future could be 
designed with both communication and 
radar sensing combined together in dif-
ferent combinations of joint, active, and 
passive radar to create for example a per-
ceptive cellular network [10].

Leveraging sensors to 
aid communications
There has been a lot of work on using 
communication waveforms for radar. 
But can radar, or other sensors found 
in automated vehicles like cameras or 
lidar, be leveraged to support commu-
nications? This is interesting because 
such sensors use different spectrum 
than communications, and thus their 
use does not consume the limited and 
valuable communication resources. 
Further, they are already present on 
automated vehicles to support other 
automation tasks so their use does not 
necessarily have a cost or power pen-
alty. The key question then is whether 
a millimeter-wave radar, a visible light 
lidar, or a visible light camera can in-
fer something about the environment of 

relevance to the radio frequencies used 
by wireless communications?

A millimeter-wave radar has the po-
tential to provide relevant information 
about a millimeter-wave communication 
link given the proximity of the frequen-
cies. One early approach along these 
lines was presented in [11], where the 
radar was used to make an inference 
about good (or bad) communication di-
rections to aid in millimeter-wave beam 
training. Intuitively, a radar should be 
able to help in other ways as well. For 
example, in a cellular communication 
scenario, a radar could track a vehicle 
that is communicating with the base 
station, reducing the overheads due to 
channel tracking. This makes sense 
because a radar at the base station can 
provide situational awareness that can 
be broadcast to surrounding vehicles to 
improve vehicle automation [12].

In contrast to bistatic radar with tele-
vision transmissions, radar could also 
be used as a signal of opportunity. For 
example, work in [13] shows how milli-
meter-wave radar emissions from vehi-
cles can be collected at the cellular base 
station and used for millimeter-wave 
beam training, which is a completely 
passive approach.

Deep learning is a valuable tool for 
uncovering the correlations between the 
sensed environment and the communi-
cation actions. Besides radar,  automated 
vehicles have other sensors like lidar. 
Despite the drastic frequency differ-
ences, lidar data though can be used by 
a deep learning engine to detect if a link 
is in the line-of-sight state and also to re-
duce beam training overheads [14]. One 
could imagine that object detection and 
tracking via cameras (another topic with 
a significant deep learning component) 
could also be used in the same way.

Wrapping up
I believe that the interplay between 
sensing and communications has many 
opportunities for signal processing re-
searchers. Fundamentals play a role in 
developing intuition and building algo-
rithms to make good tradeoffs. Experi-
mental work takes the spotlight given 

(continued on page 13)
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Audere est Facere

e continue to live through a unique 
experience in history. Out of con-
cern for each other, we have volun-

tarily participated in essentially shutting 
down economic activities across the 
globe. We have discovered the interde-
pendencies and precariousness of our 
lives and livelihoods. We have learned 
who and what is essential or important 
and have simplified our lives. We have 
realized the virtue of patience and self-
kindness as we navigate the tremendous 
challenges of working from home and 
balancing our work obligations and 
family needs. Above all, we have sur-
prised ourselves by implementing inno-
vations that we had previously deemed 
too risky. Even more surprisingly, some 
of these innovations have allowed us to 
thrive in new ways and even enhance 
our effectiveness. 

Our flagship ICASSP conference, 
which concluded a couple of weeks 
before I wrote this column, is just an 
example of such innovation. For a long 
time, we debated adding a  virtual 
com  ponent to our conferences but 
shied away from taking action. The 
 COVID-19 pandemic forced us to turn 
ICASSP into a virtual event in a very 
short time. We all missed the impromptu 
discussions, networking, and chance 
encounters that ignite our creativity 
and make physical meetings so enrich-
ing. However, there is no question that 

the virtual experience was a success 
with surprising advantages. The follow-
ing two quotes from our colleagues 
summarize the overwhelming feedback 
we received: 
■ Naturally I am sure the value of meet-

ing colleagues in-person will never 
change even after the pandemic, but 
I think allowing participants to 
choose an option to attend conferenc-
es virtually would 
solve the inequal-
ity problem for 
those colleagues 
d i sadvan taged 
geographically 
and/or financially. 

■ In the opening 
ceremony,  Dr. 
Tewfik mentioned that in the future, 
when real (i.e., not virtual) ICASSP 
becomes possible again, they might 
consider making virtual attendance 
also available as an option. So, the 
entire conference can be attended 
either physically or virtually. Having 
such a choice is a great idea…With 
talks and papers available online, the 
learning experience is so great. 

These quotes eloquently make the case 
that the virtual aspect of ICASSP needs 
to become permanent and adopted by all 
our meetings.

I am happy to report that the Soci-
ety is actively reworking the physical 
aspect of our future conferences and 
adding a virtual component. Spe-
cifically, the Society is considering 

plans that aim to create a richer, more 
diverse, and connected innovation 
environment that can supercharge 
our creativity and enhance our profes-
sional development.

Virtual conferences aren’t the only 
aspect of the Society that we need to 
fundamentally rethink. Publications, 
our conference offerings, membership 
diversity, and services—including dif-

ferentiated educa-
tional offerings and 
business models—
are among the many 
challenges that we 
need to reinvent to 
build a true innova-
tion ecosystem. I 
briefly discuss publi-

cations and diversity in this column. We 
will visit other aspects in future columns. 

As a community, we have debated 
open-access publications for almost two 
decades. Our sister society, ACM, has 
de  monstrated unambiguously during 
the crisis how open access can unleash 
creativity and increase the visibility of 
peer-review  ed publications. It is time for 
us to implement open access across our 
publications and for our volunteer lead-
ers to devise and implement a solid fi-
nancial plan to support open access. This 
will necessarily involve support from 
industry and perhaps governments. In-
dustry support will force the Society to 
create a powerful platform that stimulates 
rich interactions between industry, start-
ups, and academia. Such an ecosystem 

Digital Object Identifier 10.1109/MSP.2020.2990329
Date of current version: 26 June 2020

I am happy to report that 
the Society is actively 
reworking the physical 
aspect of our future 
conferences and adding 
a virtual component. 

W



6 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

can turbocharge aca-
demic and industrial 
creativity and inno-
vation. It will also 
force the Society to 
seriously address the 
needs of the 50% of 
its members and 60% 
of its U.S. members, who are current-
ly underserved.

But we can’t always lag behind tech-
nology and trends. The challenge with 
publications isn’t only peer-reviewed 
open access. The success of arXiv es-
tablished the value of rapid open ac-
cess to preprints that have undergone 
moderation but not full peer review. 
Our open-access strategy will need to 
judiciously incorporate preprints that 
aren’t peer reviewed and anticipate, as 
opposed to wait for, the evolving nature 

of peer reviewi ng 
and authorship.

Finally, there can 
be no innovation eco-
system without diver-
sity. Innovation is the 
product of exchang-
es between brilliant 

minds with dissimilar experiences, 
backgrounds, genders, and belief 
systems. This is the time to address 
our unacceptably low racial and 
gender diversity. This is also the time to 
engage physically with our worldwide 
membership and expand in areas that we 
have neglected. We can only eliminate 
these fundamental weaknesses by in-
novating and implementing strategies 
that we had deemed hitherto unwork-
able or unrealistic. We need to empower 
and unleash our younger members, 

aggressively recruit members outside 
of academic circles, and adopt local 
and industry sector dependent strate-
gies. We must strive to be known as a 
welcoming and embracing Society that 
will always be there to give your pro-
fessional career a boost. 

In the next months, the Society will 
reach out to you to get your innovative 
suggestions, ideas, and feedback on 
plans before they are executed. This is 
YOUR Society and we all need to par-
ticipate in its governance. In the mean-
time, please email me your ideas and 
feedback at sps-president@ieee.org.

 SP

Innovation is the product 
of exchanges between 
brilliant minds with 
dissimilar experiences, 
backgrounds, genders, 
and belief systems.

Join the 5-Minute Video Clip Contest (5-MICC) at ICIP 2020 

Fight the Pandemic 
The IEEE Signal Processing Society is pleased to announce the 5-Minute Video Clip Contest (5-

MICC) at ICIP 2020 in United Arab Emirates (virtual conference) 25-28 October, 2020. 

 Topic: image and video processing tools for fighting the coronavirus (COVID-19) pandemic. The 
submitted video can cover any role that image and video processing may have in management 
of pandemics. Examples: detection of coronavirus, identifying and tracking infected people, 
COVID-19 detection from chest X-rays and CT images, and patients monitoring. The contest will 
also accept “open topic” video submissions, regarding image and video processing for medicine. 

 Eligibility: Any team composed of one faculty member, at most one graduate student and 3-5 
undergraduate students is welcomed to join the open competition  

 Website: The detailed guidelines are available on the official website: 
https://signalprocessingsociety.org/get-involved/five-minute-video-clip-contest 

 Prize: The three teams with highest performance in the open competition will be selected as 
finalists and will be invited to participate in the final competition at ICIP 2020 (virtual). The 
champion team will receive a grand prize of 5,000$. The first and the second runner-up will 
receive a prize of 2,500$ and 1,500$, respectively. 

  

An initiative of The IEEE Technical Committee for Signal Processing Theory and Methods (SPTM) 
Sponsored by the IEEE Signal Processing Society 

 

Important dates: 
1. Submission of 30-Second Trailers: August 20, 2020. 
2. Announcement of the best 10 teams: August 31, 2020. 
3. Submission of the Full 5-Minute Video: September 30, 2020. 
4.    Final Contest at ICIP:  25-28 October, 2020. 
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SPECIAL REPORTS
John Edwards
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Signal Processing Advances Undersea Research
Subsea research presents unique challenges that signal processing is helping to address

O ceans cover approximately 71% of 
Earth’s surface yet remain difficult to 
explore and monitor remotely. Com-

munication challenges, including lengthy 
propagation delays, Doppler effects due 
to vehicle and water movement, and the 
highly dynamic multipath nature of the 
undersea environment, can result in sig-
nificant errors and outliers in transmis-
sions, received data measurements, and 
image analysis.

Global research teams are now inves-
tigating methods incorporating signal 
processing that promise to make under-
sea communication and data interpreta-
tion faster and more reliable.

An undersea software-defined 
network
Dynamic, programmatically efficient 
software-defined networks (SDNs) are 
already widely deployed terrestrially. 
Now, researchers at Florida Atlantic 
University (FAU) are working to design, 
deploy, and test an SDN that reliably sup-
ports real-time undersea wireless com-
munications—data, voice, and video 
streaming—for monitoring, data collec-
tion, safety, surveillance, and other ser-
vices. The FAU Underwater Autonomous 
Network (UAN) project aims to create 
the foundation for a heterogeneous net-
work architecture that can serve auton-
omous undersea vehicles and enable 
seamless connectivity with autonomous 

water-surface vehicles, unmanned aerial 
vehicles (UAVs), and satellites.

Dimitris Pados, the project’s coprin-
cipal investigator, a professor in FAU’s 
Department of Computer and Electri-
cal Engineering and Computer Sci-
ence, and director of the FAU Center 
for Connected Autonomy and Artifi-
cial Intelligence, says UAN is being 
designed to support a variety of differ-
ent underwater acoustic and ultrasonic 
network devices and interface in radio 
frequency for over-the-air networking. 
In all domains, underwater or over air, 
the overall network system intelligently 
avoids intra- and internetwork spec-
trum interference, and, at the same time, 
optimizes data routing around physical 
interference and network bottlenecks to 
maximize data throughput.

The team, including coprincipal 
investigator Stella N. Batalama, 
dean of FAU’s College of Engineer-
ing and Computer Science, also aims 
to improve existing methods of under-
sea localization and tracking, which 
tend to be costly and power inten-
sive. “Underwater wireless commu-
nications and networking has a wide 
range of applications, yet remains a 
daunting task due to the very nature 
of the water propagation medium,” 
Pados observes. Lengthy propaga-
tion delays, Doppler effects created by 
vehicle and water movement, and the 
highly dynamic multipath nature of 
the undersea environment frequently 
result in significant errors and outliers 

in received data measurements. “There 
is a great need for modular software 
and hardware architectures that enable 
rapid deployment and evaluation of 
new robust protocol designs,” he says.

Pados notes that at least one aspect 
of the project can be classified as an 
underwater-connected autonomy initia-
tive. “Imagine a school of robotic fish, 
each with a tiny UAN modem on board 
its robotic body,” he suggests. “The fish 
can find each other and talk with each 
other to pursue multiagent robotic plan-
ning tasks underwater,” Pados explains, 
adding that project researchers are cur-
rently working with mechanical and 
ocean engineering colleagues at FAU to 
make schools of connected fish a real-
ity (Figure 1).

Digital signal processing (DSP) 
theory and practice is essential to the 
UAN operations in two important ways, 
Pados observes. For underwater network 
initialization and neighbor discovery, 
robust localization is necessary. “In the 
UAN, we carry out localization by novel 
L1-norm (absolute value) signal subspace 
analysis, followed by a conventional 
signal angle-of-arrival estimation—as 
has been in use for over 30 years in the 
signal processing literature—known as 
multiple signal classification (MUSIC)-
type estimation,” he explains.

Physical signal waveform shape opti-
mization, which is used to avoid sensed 
interference in space-time, is also accom-
plished by DSP signal/noise subspace 
analysis methods. “At each receiver 

Digital Object Identifier 10.1109/MSP.2020.2982856
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location, an estimate of the local in-space 
and time disturbance autocorrelation 
matrix is carried out,” Pados explains. 
“Then, conventional DSP eigenvector 
analysis of the disturbance matrix 
can point toward optimal interference-
avoiding waveforms.” More robust 
analysis of the disturbance autocorrela-
tion matrix by means of the L1-norm 
absolute value metric is also possible to 
guard against occasional faulty mea-
surements, he notes.

Subspace signal processing and track-
ing, using underwater miniaturized 
microphone arrays for localization, and 
subspace signal processing of distur-
bance measurements for maximum sig-
nal-to-interference-plus-noise waveform 
design are used to support the UAN’s 
interference-avoiding properties.

Pados says the goal is to create the 
ultimate autonomous, artificially intel-
ligent network structure, one that can 
maintain end-to-end connectivity at the 

highest possible data rate in extreme 
environments. “UAN can be the first-
ever, underwater autonomous cognitive 
network,” he states.

The project is already attracting sig-
nificant commercial interest, particu-
larly from the diving community. “The 
FAU UAV can support diver-to-diver-
to-surface-boat multihop connectivity 
with profound operational and safety 
implications,” Pados notes.

Improved seabed mapping
Satellite technology has led to precise, 
constant mapping of Earth’s entire 
surface. Accurate undersea mapping, 
however, remains frustratingly chal-
lenging. Research led by Blair Thorn-
ton, an associate professor at both the 
University of Southampton and the 
Institute of Industrial Science at the 
University of Tokyo, aims to show 
how combining autonomous robotics 
and artificial intelligence (AI) tech-
nologies can dramatically accelerate 
the exploration and study of hard-to-
reach deep-sea ecosystems.

In collaboration with researchers at 
the University of Southampton’s South-
ampton Marine and Maritime Institute, 
the Institute of Industrial Science at the 
University of Tokyo, the Australian Cen-
ter for Field Robotics at the University of 
Sydney, and the University of the Balearic 
Islands, Thornton has developed a meth-
od to identify and correlate features in 
georeferenced seafloor images by using 
autoencoders, an artificial neural network 
technology. “This is an unsupervised 
approach that allows us to cluster images 
into groups of similar-looking images and 
also query images based on their relative 
similarity to each other,” he explains. “If 
we find something that’s interesting on 
the seafloor, we can very quickly generate 
maps of where similar-looking areas exist 
in our maps.” The approach promises to 
help scientists respond to dynamic envi-
ronmental changes and to pinpoint areas 
leading to the most promising scientific, 
operational, or environmental-manage-
ment gains (Figure 2).

One of the key drawbacks with cur-
rent seabed imaging technologies is that 
observations are limited by the strong 
light attenuation that occurs underwater. 

FIGURE 1. A representation of undersea robotic probes monitoring a marine environment using a new 
type of SDN currently being developed by researchers at FAU. (Source: Florida Atlantic University.) 

FIGURE 2. The exploration vessel Falkor launches a probe designed to acquire images from the 
seabed for a research project aiming to show how combining autonomous robotics and AI technolo-
gies can dramatically accelerate the exploration and study of hard-to-reach deep-sea ecosystems. 
(Source: Schmidt Ocean Institute.)
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“We started working on extending the 
range of seafloor imaging from one or 
two meters to more like ten meters,” 
Thornton says. “We then developed a 
system that uses a combination of laser 
line projections and strobed stereo imag-
ery that can map about 50-times-larger 
areas of the seafloor than conventional 
visual mapping systems.” Meanwhile, 
Kalman filters are used to help accurate-
ly position the project’s sensor-equipped 
robots, a particularly important task 
given the fact that GPS signals cannot 
penetrate deeply underwater.

Many existing image processing tech-
niques excel at identifying patterns or 
objects within a single image frame yet 
are far less effective at handling features 
that are only apparent at larger spatial 
scales. “Underwater, the footprint of indi-
vidual images is small compared to the 
types of geological and ecological fea-
tures we are interested in characterizing, 
so we needed to develop new methods to 
identify these [objects],” Thornton notes.

Automating image analysis is a key 
project goal. “We use processing to cor-
rect the appearance of images that have 
been affected by strong, wavelength-
dependent attenuation, the scattering of 
light, and uneven illumination patterns to 
produce images that look like the water 
has been drained away and removed,” 
Thornton explains. “The automated 
interpretation of images, using autoen-
coders that we have adapted to take into 
account the location of observations, is 
critical in helping us quickly understand 
patterns in the data that occur on various 
spatial scales so that we can focus our 
observational efforts.”

Underwater images are strongly 
affected by the local environment, 
meaning that observations are frequent-
ly at the mercy of factors that lie beyond 
human control. “For instance, the range 
we image the seafloor from is relative-
ly near at about 10 meters,” Thornton 
states. At the same time, the seafloor 
terrain is often rugged, with protrusions 
of several meters, and strong currents 
mean that the project’s robots are easily 
displaced from their ideal trajectories 
by up to several meters in all directions.

Even a small variance in range to the 
seafloor creates a dramatic difference 

to an image footprint’s relative size, as 
well as the color balance and backscat-
ter. The types of features within the 
environment being observed, such as 
coral reefs, mineral deposits, and arti-
ficial infrastructure, also play a major 
role in determining image size and 
characteristics. “Therefore,” Thornton 
maintains, “it’s important that the tech-
niques we use are data driven to make 
our processing methods robust to all 
these factors.”

Thornton notes that the algorithms 
the researchers are developing to correct 
image appearance, and an unsupervised 
interpretation of imagery based on fea-
ture learning, are all data driven. They 
basically self-calibrate to adapt to envi-
ronmental conditions, such as the clarity 
of the seawater, and adapt to the types 
of features we see in the environment to 
form useful information summaries. The 
technology allows maps—which would 
ordinarily take up to several months to 

process and complete—to be rendered 
onboard a vessel within days to provide 
accurate and current seabed views.

The researchers are aiming to pro-
duce a system that is highly reliable, 
even in the most demanding marine envi-
ronments. “It’s happened in the past that 
we’ve deployed imaging systems where 
the images weren’t being properly saved, 
or that there has been an issue with the 
strobes we use to illuminate the seafloor 
not firing correctly,” Thornton explains. 
“We try to have our systems self-diag-
nose and report their status, where pos-
sible, to avoid these things happening.”

While the team’s focus is on acquir-
ing high-quality seabed imagery, 
Thornton says that the methods being 
developed to rapidly interpret large-
scale visual reconstructions are also 
readily applicable to terrestrial and 
extraterrestrial imaging. 

Thornton adds that the team also 
spends a considerable amount of time 

Training Data for Machine Learning
Magic Data Technology is an One-stop AI Data Service 
Solution provider. We are committed to providing a wild 
range of data services in the fields of automatic speech 
recognition (ASR), text to speech (TTS), computer vision 
recognition and Natural Language Processing (NLP). 

Why us:
 P Efficiency: Human-in-the-loop data processing, 
300,000+ professional annotators around the world
 P Pioneering: Task-segmentation process and strict 
project management; innovative data tool software  
 P Quality: Our value proposition is 97%-99% quality, 
speed and scale (50+ languages covered)
 P Professional: Multilingual & Multidomain; 
100,000+ hours of data acquisition and annotation; 

Two types of service:
 P Over 100,000-hour self-owned copyright training 
data sets for building AI models quickly
 P Customized data service solutions, including 
design, collection, annotation and processing.

Website: http://en.imagicdatatech.com 
Linkedin:https://www.linkedin.com/company/magicdata 

Business contact: +86 10-85527250
business@magicdatatech.com
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pondering what types of hardware 
issues might occur while out at sea and 
what kinds of spare parts may be need-
ed. “We often go out to sea for periods 
of several weeks to months, often with 
no access to the Internet,” he explains. 
Under such conditions, problems that 
can be addressed relatively easily on 
land by simply rushing off to a hardware 
store or downloading new software are 
unsolvable. “You have to be meticulous 
and well prepared and, even then, things 
still go wrong,” he notes.

Revealing the hidden information 
in sound waves
By lowering the pitch of sound waves, 
University of Michigan (UM) engineer-
ing researchers have developed a tech-
nique that is designed to unlock greater 
amounts of data from acoustic fields. The 
additional information that was revealed 
promises to enhance the performance of 
passive sonar and echolocation systems, 
both of which are used for detecting and 
tracking seagoing enemy vessels, as well 
as improve the performance of medical 
imaging devices, seismic surveying sys-
tems for locating oil and mineral depos-
its, and, potentially, radar systems.

David Dowling, a professor in UM’s 
Department of Mechanical Engineer-
ing, observes that many important mod-
ern remote sensing technologies are 
based on the analysis of recorded propa-
gating wave signals generated by, or 

scattered from, items of interest. “Mod-
ern implementations of these technolo-
gies primarily rely on signal processing 
schemes that extract information from 
within the frequency bandwidth of the 
recorded signals,” he explains. “The 
unconventional approach I’ve been 
working on for the last 10 or so years 
can extend the signal processing fre-
quency range to frequencies below and 
above the in-band range.”

With the help of a Fourier transform, 
sound amplitude versus time can be 
converted to sound amplitude versus 
frequency. The approach allows the 
researchers to combine any two fre-
quencies within the signal’s recorded 
frequency range to reveal information 
outside that range at a new, third fre-
quency that is the sum or difference of 
the two input frequencies. When used 
with a naval vessel’s sonar array, the 
additional information could reveal the 
presence of an enemy ship or underwater 
craft or device many kilometers away—
even over the horizon (Figure 3).

Dowling says the technique he has 
been working on for the past decade or 
so can extend the signal processing fre-
quency range to frequencies below and 
above the in-band range. “These tech-
niques are based on the formation and 
utilization of quadratic—nonlinear—
products of recorded signal-spectrum 
amplitudes from two different in-band 
frequencies,” he notes. Once formed, the 

autoproducts may be used in convention-
al-array signal processing schemes for 
remote sensing as if they were recorded 
wave signals at the difference or sum 
frequencies, even though the difference 
and sum frequencies may lie outside the 
bandwidth of the original recordings.

Both frequency-difference and fre-
quency-sum approaches can be used 
whenever underwater acoustic signals 
are recorded. “For nearly all of the 
work my group has undertaken, we have 
assumed that the acoustic signal of inter-
est has been recorded simultaneously 
at multiple locations [via a receiving 
array] and that some information about 
the absolute or relative location of the 
receivers is available,” Dowling reports. 
“This location information and relative 
timing information between receivers 
may be uncertain, too.”

Dowling believes that the frequency-
difference and frequency-sum approaches 
could eventually benefit all propagating 
wave-based remote sensing technologies, 
including sonar, ultrasonic imaging and 
inspection, radar, seismology, and struc-
tural health monitoring. Yet, he acknowl-
edges, more work lies ahead.

Author
John Edwards ( jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona, area. Follow 
him on Twitter @TechJohnEdwards.
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FIGURE 3. An example of what an acoustic system detects: (a) with traditional signal processing, and (b) with the new technique developed by UM engi-
neering researchers. Both images were created from the same sound recordings. (Source: University of Michigan Engineering.) 
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FROM THE GUEST EDITORS
Lina J. Karam, Jay Katupitiya, Vicente Milanés, Ioannis Pitas, and Jieping Ye

Autonomous Driving: Part 1–Sensing and Perception

T he integration of advanced sensing, 
signal processing, artificial intelli-
gence, and controls technologies into 

vehicles is enabling intelligent automated 
vehicles that can navigate autonomously 
in various environments. In particular, 
autonomous driving and, more general-
ly, automated driving are receiving more 
attention, with significantly increasing 
resources deployed to enable safe, reli-
able, and efficient automated mobility in 
complex, uncontrolled real-world envi-
ronments and for various applications 
ranging from automated transportation, 
and farming to public safety and environ-
mental exploration. Signal processing is a 
critical component of automated driving. 
Some of the needed enabling technolo-
gies include affordable sensing platforms 
that can acquire useful data under vary-
ing environmental conditions; reliable 
simultaneous localization and mapping; 
machine learning that can effectively 
handle varying real-world conditions 
and unforeseen events; “machine learn-
ing- friendly” signal processing to enable 
more effective classification and decision 
making; hardware and software code-
sign for efficient real-time performance; 
resilient and robust platforms that can 
withstand adversarial attacks and fail-
ures; and end-to-end system integration 
of sensing, signal processing, machine 
learning, and controls.

This special issue on autonomous 
driving will be presented in two parts: 

Part 1—Sensing and Perception and 
Part 2—Learning and Cognition [sched-
uled for publication in the January 
2021 issue of IEEE Signal Processing 
Magazine (SPM)].

In this issue
The goal of Part 1 is to provide research-
ers and professionals with tutorial-style 
articles covering the current state of the 
art as well as emerging trends in the 
design, development, and  deployment 
of sensing and percep-
tion technologies for 
autonomous and au -
tomated driving. Such 
technologies include 
camera, ultrasound, 
Global Navigation Sa -
tellite System-, lidar-,  
and radar-based plat-
forms integ ra t i ng 
signa l  processing 
components to process 
the acquired data and 
extract information to 
be used for recognition, navigation, and 
situational awareness. Despite recent 
advances in such sensing platforms, 
the performance of these sensors can 
be significantly constrained by their 
quality–cost tradeoff, excessive en -
ergy consumption, and inconsis-
tency under varying environmental 
conditions. Key concepts and the latest 
advances underlying the operation of 
such sensing technologies are dis-
cussed in Part 1 of this special issue. 
This special issue also sheds light 

on remaining challenges that need to be 
addressed to enable further perfor-
mance improvements.

Overview
Part 1 contains seven articles covering 
various aspects of sensing and percep-
tion for autonomous driving. The first 
two articles deal with problems related 
to robust sensing for autonomous driv-
ing, whereas the remaining five articles 
are each focused on a particular sens-

ing modality (camera, 
lidar, or radar).

Among the robust 
sensing articles, the 
first article, “Toward 
Robust Sensing for 
Autonomous Vehi-
cles,” by Modas et al., 
addresses the topic of 
adversarial attacks 
that take the form of 
crafted alterations of 
the physical environ-
ment or of the sen-

sory measurements with the objective 
of attacking and defeating the auto -
nomous vehicle. The authors provide 
an overview of adversarial attacks for 
various sensing modalities and discuss 
countermeasures and research direc-
tions to build and deploy safer autono-
mous driving systems. The second 
article, “Automated Vehicular Safety 
Systems,” by Stöckle et al., presents 
a methodology for jointly design-
ing the functions and sensors of au -
tomated vehicular safety systems, 
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while accounting for both sensor 
measurement errors and customers’ 
requirements.

Among the sensing modality articles, 
Chen et al. provide an overview of the 
emerging bio-inspired neuromorphic 
vision sensing in “Event-Based Neuro-
morphic Vision for Autonomous Driving,” 
including key concepts, underlying signal 
processing algorithms, application in auton-
omous driving, and remaining challenges. 
In “Lidar for Autonomous Driving,” Li and 
Ibanez-Guzman address the topic of auto-
motive lidar. They introduce the main com-
ponents of automotive lidar systems and 
present a review of the state of the art as well 
as challenges and trends. Rapp et al. present 
the working principles of single-photon lidar 
in “Advances in Single-Photon Lidar for 
Autonomous Vehicles” and discuss recent 
advances in signal processing tech-
niques for this modality, applications in 
autonomous vehicles, and challenges for 
vehicular lidar. Aydogdu et al. address the 
topic of automotive radar interference in 
“Radar Interference Mitigation for Auto-
mated Driving” and discuss methods to 
mitigate such interference with a focus on 
frequency-modulated continuous wave 
(FMCW) radar. The article also provides 
a review of automotive radar and an intro-
duction to the basics of FMCW radar. In 
“Joint Radar-Communications Strategies 
for Autonomous Vehicles,” Ma et al. pres-
ent a survey of dual-function radar-com-
munications methods within the context 
of autonomous vehicles. Main challenges 
and potential research directions are also 
discussed.
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the lack of models that connect different 
communication and sensing mecha-
nisms. Many kinds of sensors may play 
a role beyond just radar, cameras, or 
lidar. Biosensors could be used to adapt 
communication in a wearable commu-
nication network. I hope to see many 
contributions to SPM in the future.
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AUTONOMOUS DRIVING: PART 1

utonomous vehicles (AVs) rely on accurate and robust sen-
sor observations for safety-critical decision making in a 
variety of conditions. The fundamental building blocks 

of such systems are sensors and classifiers that process ultra-
sound, radar, GPS, lidar, and camera signals [1]. It is of pri-
mary importance that the resulting decisions are robust to 
perturbations, which can take the form of different types of 
nuisances and data transformations and can even be adversar-
ial perturbations (APs). 

Adversarial perturbations are purposefully crafted altera-
tions of the environment or of the sensory measurements, with 
the objective of attacking and defeating the autonomous sys-
tems. A careful evaluation of the vulnerabilities of their sensing 
system(s) is necessary to build and deploy safer systems in the 
fast-evolving domain of AVs. To this end, we survey the emerg-
ing field of sensing in adversarial settings: after reviewing adver-
sarial attacks on sensing modalities for autonomous systems, we 
discuss countermeasures and present future research directions.

Robust sensing
The robustness of a decision system refers to its capability of mak-
ing the correct decision, even when testing conditions are degrad-
ed. In particular, it is important that the decisions are not changed 
when small perturbations alter the input signal. The lack of robust-
ness poses critical safety threats for AVs, and it could even allow 
an attacker to design APs that defeat their sensing systems.

To formalize the concept of APs, let fm be a decision-mak-
ing system (e.g., a classifier or detector) for a sensing modality 
m, x an input signal of the same modality belonging to a data 
distribution , gX v  a function that applies a perturbation v on 
the input signal x, and D  a function that measures the dis-
tortion between the input and the perturbed signal. Then, v is 
called an AP, and, consequently, ( )xgv  is an adversarial attack 
that generates adversarial examples, if
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where U  is the legitimate domain of the original signal x, and 
e  limits the distortion of the input signal. This limitation re-
lates to the most common definition of adversarial attacks and 
implies that the information of the sensed signal is not con-
siderably changed, or even destroyed, by an attack. For exam-
ple, it is common to control the distortion with the constraint 
that the original (clean) and the adversarial signals should be 
close enough in an p, -norm sense, ( ) .x xgv p1 e-  While 
several adversarial methods focus on additive APs, where 

( ) ,x x vgv = +  the adversarial attack gv  can be any function 
that computes and applies a perturbation on a signal (e.g., 
transformation-based APs).

In general, adversarial attacks can be physical or on signal 
(see Figure 1). Physical adversarial attacks are perturbations 
that modify the environment in an adversarial manner, for 
example, to mislead in the interpretation of traffic signs [2]. 
Physical attacks can hide objects (i.e., causing false-negative 
detections), generate observations of inexistent objects (i.e., 
producing false-positive detections), induce misclassification 
of detected objects, or counterfeit signals. Physical APs are 
generally constructed under transformation-based constraints 
to be invariant to transformations that take place when cap-
tured in the physical world, such as the rotations, scaling, and 
illumination variations that can occur in cameras, for example. 

On-signal adversarial attacks modify the data captured 
by sensors within the decision system. These attacks, which 
expose the vulnerabilities of the classifiers or detectors, have 
been mostly used to evaluate, understand, and improve deci-
sion systems [3], [4]. However, the ability to design an on-
signal attack implies that the attacker already has complete 
access to the system and to the captured signal. As this scenar-
io relates to the (cyber)security of the AV, it is out of the scope 
of this article. An extensive overview of on-signal attacks is 
provided in [5].

We focus now on physical attacks that alter the behavior 
of AVs exclusively by external actions. For example, attacks 
that hide objects (jamming) may prevent AVs from detect-
ing pedestrians, possibly causing a collision. Attacks that add 
objects (spoofing) force AVs to detect inexistent objects, possi-
bly causing the AVs to suddenly stop. Misclassification attacks 
aim to change the decision of a classifier, such as interpreting 
a stop sign as a speed limit sign, thus inducing wrong actions. 
Finally, counterfeiting attacks mimic the properties of the orig-
inal signals with the aim of delivering adversarial measure-
ments to a sensor (e.g., delayed or wrong GPS signals).

We can distinguish attacks based on the means used by the 
attackers. Physical adversarial attacks can be perpetrated using 
devices, objects, or patches (see Figure 2). Devices (e.g., a laser 
pointer) directly target the sensor. An adversarial object, such 
as an adversarial traffic sign, can be constructed to mislead 
a classifier, even if its appearance may be similar to that of a 
benign object. Finally, a patch, such as a crafted sticker, can 
be placed on objects in the environment to mislead classifiers.

Next, depending on the attacker’s knowledge of the underly-
ing system, attacks can be categorized as white, gray, or black 
box. In white-box settings, the attacker has complete knowl-
edge of the system (e.g., its architecture and parameters). When 
machine learning models are used, the attacker also knows the 
training data used to generate the model. In black-box settings, 
the attacker has access only to the output of the system. Finally, 
in gray-box settings, the attacker has only partial information of 
the system, such as the architecture but not the parameters or the 
training data, or the architecture and the training data but not 
the parameters.

APs can also be categorized as data specific or data agnos-
tic. A data-specific AP is a perturbation v computed for a spe-
cific signal x of a sensing modality [10], and it can efficiently 
apply to that particular signal only (e.g., a specific stop sign). 
An attacker can also construct data-agnostic APs, commonly 
referred to as universal APs, which are applicable to any sig-
nal, ~ ,x X6  of a specific modality [11]. An example here is a 
single perturbation for any street sign that deceives a sensing 
system with high probability [2]. 

A subset of data-agnostic perturbations, called class uni-
versal, are data agnostic only for intraclass signals [12] (i.e., a 
single perturbation for every stop sign), that is, ~ ,x Xc6  where 
c is the corresponding class. Data-agnostic and class-univer-
sal APs are critical for the robustness of AVs, since a single 
AP added to the physical world could potentially mislead any 
classifier of a specific modality, thus posing a safety threat. 
This potential threat derives from the fact that a strong prop-
erty of data-agnostic and class-universal APs is their transfer-
ability: APs computed on a known model can also mislead an 
unknown model [11].

In the next sections, we analyze physical adversarial attacks 
and how they affect different sensors. We characterize each 
attack based on its type, goal (Figure 3), data dependency, 
system knowledge, and evaluation. To evaluate the attacks, 
we use the term attack success rate to denote the percentage 
of adversarial examples that successfully mislead the system. 

Sensor Classifier Actuator

Signal ActionDecision

Physical AP On-Signal AP Wrong Decision

Environment

FIGURE 1. The physical and on-signal adversarial attacks. 
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State-of-the-art methods are compared in Table 1 using the 
proposed taxonomy.

Attacks using devices
In this section, we discuss physical adversarial methods 
that use devices to attack ultrasonic sensors, radar, GPS, lidar, 
and cameras.

Ultrasonic and radar sensors
Black-box and data-agnostic jamming and spoofing attacks 
for both millimeter-wave radars and ultrasonic sensors aim 
to hide or add objects in tasks, such as automatic parking or 
moving in reverse gear [6]. The jamming transducer generates 
ultrasonic signals approximately around the sensor’s resonant 
frequency. The jamming signal exceeds the sensor’s threshold 
for the detection of returning echoes (it lowers the signal-to-
noise ratio) and prevents the sensor from detecting a parked 
vehicle. The spoofing attack must be executed in the interval 
between the end of the transmitted pulse and the start of the 
first echo; thus, the echoes are injected with a cycle time that 
is several milliseconds shorter than the sensor’s. 

This may cause unstable spoofed sensor readings, but it 
guarantees successful injection in the attack slot. During park-
ing, these attacks lead to collisions, as objects are successfully 
hidden. When AVs are moving in reverse gear, these attacks 
are successful at a distance of up to 10 m. However, these methods 
are applicable only to slowly moving vehicles.

Black-box and data-agnostic attacks for ultrasonic sen-
sors include random spoofing, adaptive spoofing, and jam-
ming [14]. These attacks aim to hide or add objects. Emitting 
spoofed signals once every few milliseconds causes the AV to 
stop moving as it detects inexistent objects. These false posi-
tives can only be created at distances closer than the distance 
between the spoofer device and the vehicle. 

To create inexistent objects at an arbitrary yet stationary 
distance, the adaptive spoofer pings a signal, listens and adjusts 
to the concurrent sensor signals adaptively, eliminates the 
existing echoes, and transmits the spoofed signal. Similarly to 
[6], the jamming attack continuously emits ultrasound waves 
around the resonant frequency of the sensors. Adaptive spoof-
ing can deceive the AV into detecting a nonexistent object at 
any distance within the sensor range. Jamming prevents an AV 

(a) (b) (c)

FIGURE 2. Examples of the three types of adversarial attacks: (a) with a spoofing device to hide objects from an ultrasonic sensor [6], (b) with an adver-
sarial object that is not detectable by lidar [7], and (c) with a patch on a traffic sign that causes misclassification with cameras [2]. 

(a) (b) (c)

FIGURE 3. Examples of three objectives for adversarial attacks: (a) a sign that is not visible to a camera (hidden object) [8], (b) a spoofing attack that adds 
nonexistent obstacles for lidar [9], and (c) patches on a traffic sign that cause a camera to misclassify the traffic sign [2]. 
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from detecting objects, thus potentially causing collisions dur-
ing automatic parking.

Finally, gray-box jamming and spoofing attacks can target 
radar sensors to hide objects (i.e., generate false negatives) or 
to add pseudo-objects (i.e., produce false positives) [6]. Using a 
signal analyzer to identify the center frequency of the (known) 
radar sensor, an attacker can generate a jamming waveform, 
the frequency of which is close to the center frequency of the 
sensor, thus preventing the detection of neighboring vehicles. 
For the spoofing attack, the adversarial signals are modulated 
as those of the automotive radar. 

However, since the spoofing attack must be executed in the 
interval between the end of the transmitted pulse and the start of 
the first echo, the slope of the ramp is tuned back and forth in 
a higher value range on the signal. This produces periodic dis-
tance changes in the estimations that lead to false identification 
of pseudo-objects. Similar to the attacks on ultrasonic sensors, 
these attacks are applicable only against slowly moving vehicles.

GPS
Attacks on GPS sensors usually aim to counterfeit the GNSS 
transmitted signals with an adversarial transmitter that emits 
signals identical to those sent by the satellites so that the loca-
tion computed by the GNSS receivers (i.e., GPS) is incorrect. 
Such attacks are data agnostic and, usually, white box, since 

the attacker must know the GNSS implementation of the re-
ceivers and transmitters.

The most common adversarial techniques are spoofing and 
replay attacks. An attacker must first transmit a sufficiently pow-
erful jamming GNSS signal to force the receivers to lose their 
lock on the satellite. Then, the attacker can forge and transmit 
spoof GNSS signals at the same frequency and with a higher 
power, at the receivers’ antennas, than those of the legitimate 
GNSS signals. If the lock of the attacked receivers on the spoofed 
signal persists, then the location estimation is under the influ-
ence of the attacker. An attacker can spoof a varying number 
of GPS receivers to any location while preserving their mutual 
time offsets. An analysis of the requirements, architecture, and 
application of a receiver-spoofing attack is given in [15].

Replay attacks can be characterized by the capability of the 
adversarial node to receive, record, and replay GNSS signals 
and to delay the time between reception and retransmission 
[13]. Since the attacker can replay recorded signals with any 
additional delay, the receivers will start receiving the replay -
ed navigation messages after some adversary-specific signal 
propagation delay, which is usually negligible. The delay, the 
most important feature, is used to control the shift in the posi-
tion, velocity, and time (PVT) computations by the receivers. 
The randomized replay attack can create (in simulations) loca-
tion offsets on the order of hundreds of kilometers.

Table 1. The physical adversarial attacks per sensing modality.

Sensor Reference

Type Goal Data Dependency Knowledge Evaluation

Device Object Patch H A M C DS CU DA WB GB BB Physical AVs 

Ultrasonic
[6] ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

[14] ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

Radar [6] ✓ ✓ ✓ ✓ ✓  ✓ 

GPS 
[15] ✓ ✓ ✓ ✓  ✓  

[13] ✓ ✓ ✓  ✓  

Lidar 

[9] ✓ ✓ ✓ ✓ ✓ ✓  

[16] ✓ ✓ ✓ ✓ ✓  ✓  

[17] ✓ ✓ ✓ ✓  ✓ 

[7] ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓  ✓ 

Camera 

[9] ✓ ✓ ✓ ✓ ✓  

[6] ✓ ✓ ✓ ✓ ✓  

[18] ✓ ✓ ✓  ✓  ✓  

[10] ✓ ✓ ✓  ✓  ✓  ✓ 

[19] ✓ ✓ ✓ ✓  ✓  ✓ 

[2] ✓ ✓ ✓ ✓ ✓  ✓  ✓ 

[8] ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ 

[20] ✓ ✓ ✓ ✓  ✓  

[12] ✓ ✓ ✓ ✓  ✓  
 [21] ✓ ✓ ✓ ✓  ✓  

A: adding objects; AVs: evaluation on AV settings; BB: black box; C: counterfeit signal; CU: class universal; DA: data agnostic; DS: data specific; GB: gray box; H: hiding objects; 
M: misclassifying objects; WB: white box. Note that [13] is evaluated only in simulations.
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Lidar
We can identify three types of attacks [9], namely, front/rear 
side (the attacker is an adversarial vehicle that moves close to 
the AV), roadside (the attacker installs malicious devices on 
the roadside), and mechanic (the attacker has limited time to 
place a malicious device on the AV). Relay and spoofing data-
agnostic and gray-box attacks can be used to hide or to add 
objects. Note that these attacks assume that the technical spec-
ifications and datasheets of the sensors are publicly known. 

During the relay attack, the original signal sent from the 
target vehicle lidar is relayed from another position to create 
fake echoes and make real objects appear closer or farther than 
their actual locations. The spoofing attack creates inexistent 
objects: the original signal is used as a trigger to actively spoof 
the lidar sensor, with the intention to relay or replay objects 
and control their positions. The relay attack can hide objects 
that are 1 m away while generating false-positive detections 
20–50 m away. The success of the replay attack is limited when 
generating pseudopoints (on the processed point clouds gen-
erated by the lidar sensor) closer than the attacker position. 
Spoofing attacks can also make an object appear closer or 
farther away, even beyond the range of the sensor, so that the 
actual object will not be considered as an obstacle.

In contrast to the replay attack of [9], the white-box and data-
agnostic attack of [16] can add pseudopoints (i.e., false positives) 
closer than the spoofer location. An adversarial device receives 
the lidar pulse signal, adds the required delay, and fires the 
delayed laser pulse back to the lidar sensor. Moreover, a satura-
tion attack can blind the sensors, thus hiding objects by illumi-
nating the lidar with a light of the same wavelength as that of the 
sensor. A weak light source produces randomly located pseudo-
points, whereas a strong light source directed to the lidar com-
pletely blinds the sensor or a part of its field of view. In addition, 
a strong light source oblique to the lidar generates fake points in 
a direction other than that of the light of source.

Finally, the adversarial robustness to spoofing attacks on 
lidar sensors with deep neural network (DNN) detectors is stud-
ied in [17]. A white-box and data-agnostic adversarial attack 
can strategically control the fake points to fool the machine 
learning model in the object-detection step. The method adds 
adversarial fake points at a specific location (distance, altitude, 
azimuth) with respect to the lidar sensor, with an attack suc-
cess rate of 75% in generating front-near false positives (5 m in 
front of an AV). Note that, in this case, all spoofed objects are 
detected as vehicles, even though this was not in the specific 
objectives of the attack’s formulation.

Camera
We can identify two types of gray-box and data-agnostic at-
tacks that emit light [9], namely, camera blinding and auto con-
trol confusion. The blinding attack shines light on the camera 
sensor, thus hiding any objects within its field of view. Blind-
ing, which can be full or partial, occurs when the camera is un-
able to tune down the autoexposure or the gain, thus generating 
overexposed images. The effectiveness of the blinding attack 
depends on the environmental light, the light source used to 

blind (i.e., wavelength), and the distance between the adversar-
ial light source and the camera. Experiments in bright and dark 
environments with different light sources at multiple distances 
show that 650-nm (red) lasers can efficiently hide objects. 

Regarding auto control confusion, in which the goal of the 
attack is to influence the autoexposure control of the camera, 
the attacker emits bursts of light toward the camera, and, during 
the stabilization to the new environmental conditions (typically 
between 1 and 6 s), the AV cannot detect objects. The attacker 
continuously switches the light on and off to confuse the auto 
controls, and, therefore, this attack differs from situations in 
which the camera can adapt more gradually to the new condi-
tions, such as when driving out of a tunnel. While the blinding 
attack could successfully blind—in a simulated evaluation with 
low-quality images—a widely used camera system at specific 
locations for up to 6 s when the attack is performed with burst 
lights from a 50-cm distance, this attack is only effective within 
a limited range (50–200 cm). Under similar settings as [9], the 
effect of different light sources on hiding objects and other use-
ful visual information is studied in [6]. Although attacking with 
infrared LED light does not affect the camera, laser beams 
pointed directly to the camera cause complete blindness for 
approximately 3 s.

To summarize, adversarial attacks with devices can cause 
significant problems in various tasks like automatic parking 
(ultrasound, radar), obstacle detection (lidar), or capturing of 
the surroundings (camera). However, they usually require the 
hardware specifications of the individual sensors to be known, 
while their effectiveness depends on the speed of the vehicles, 
the range of the attack, and the precision of the used devices.

Attacks with objects and patches
In this section, we discuss physical adversarial methods that 
use objects and patches to attack lidars and cameras. 

Lidar attacks with physical objects
Adversarial methods can generate physical 3D adversarial ob-
jects to mislead DNN-based lidar detection systems [7]. In the 
black-box settings, a data-specific evolutionary-based attack is 
used to hide a generated adversarial object that is placed in 
the environment. An iterative procedure is used to generate the 
object: from an initial mesh of vertices, a new population of 
vertices is generated at each iteration step by adding random 
perturbations drawn from a Gaussian distribution. However, 
when the object is placed in the environment, low attack suc-
cess rates are obtained. 

A data-agnostic method to hide an object or to misclassify 
a detected one is also proposed for white-box settings. The 
objective of the method is to generate a synthetic adversarial 
object by perturbing the vertices of an original one, such that 
the AV system makes incorrect predictions. For synthesizing 
the adversarial objects, a differentiable lidar renderer is first 
simulated; the feature aggregation is, then, formulated with a 
differentiable proxy function; and, finally, the smoothness of 
the generated adversarial objects is ensured by devising differ-
ent loss functions in the detection model. In white-box settings, the 



19IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

hiding attack creates an adversarial object that is not detected 
71% of the time, while the misclassification attack creates 
adversarial objects that are detected as another class (e.g., 
pedestrian) with high confidence.

Camera attacks with physical objects
The first white-box method for generating adversarial exam-
ples to misclassify the decisions of an image classifier even 
when transferred to the physical world was based on the ex-
pectation over transformation (EoT) framework [18]. EoT con-
structs APs that are robust to a set of physical transformations, 
such as random rotation, translation, additive noise, or 3D ren-
dering of a texture. The generated 3D objects remain adver-
sarial even when changing the viewpoint, translation and rota-
tion of the object, lighting conditions, camera noise, and other 
physical world factors, with a classification accuracy dropping 
from 68.8% to only 1.1%.

Adversarial traffic signs that cause misclassification can 
be generated with an out-of-distribution attack or a lenticular 
attack [10]. An out-of-distribution adversarial example can 
be generated in white-box and data-specific settings, start-
ing from an arbitrary non-traffic-sign image (i.e., a fast food 
chain logo), such that the arbitrary sign is classified as a traffic 
sign with high confidence. The AP is forced to lie only on the 
sign and not on the background and to be invariant to differ-
ent transformations, such as rotation, shearing, resizing, and 
randomized brightness. The lenticular attack relies on an opti-
cal phenomenon to deceive traffic sign DNN-based classifiers. 
The idea is based on the fact that the camera will capture the 
images from a different height and angle than the passengers 
within the vehicle; thus, the AP might be perceived only from 
the camera’s angle but not from the passengers’ points of view.

A white-box, class-universal (universal for any stop sign), 
object-based attack may target DNN-based classifiers by gener-
ating visual APs that are robust to different physical conditions, 
such as different distance, viewpoint, illumination, and rotation 
[2]. To ensure that such conditions exist in the image samples, 
real images were collected from the road, while synthetic ones 
were simulated using a set of transformations. To guarantee that 
the perturbations are only applied to the surface of the target 
object, a mask is used to project the computed perturbations to 
a physical region on the surface of the object (the road sign). In 
addition, the mask generates APs that are visible but inconspic-
uous to human observers (i.e., the mask looks like a graffiti). 

Also, since the position of the mask has an impact on the 
effectiveness of the attack, sparsity is enforced on the gener-
ated perturbations so that they are concentrated on regions 
where the system is more vulnerable. Finally, to account for 
fabrication errors, a term is added in the objective function to 
model color reproduction inaccuracies of the printing process. 
The generated adversarial stop signs were evaluated on a vehi-
cle, with an initial distance from the sign of 76 m, the speed 
of the vehicle varying up to 32 km/h, and the vehicle moving 
toward the sign. For two classifiers trained on different traffic 
sign data sets (achieving 91% and 95.7% classification accu-
racy), their accuracies dropped to zero.

A white-box and class-universal attack can generate robust 
physical APs against a DNN for object detection [19], in the 
sense that the generated APs remain adversarial under various 
physical condition changes (e.g., distance, angle). This attack 
focuses on the region proposal stage of the detector, which pro-
duces various candidate detection regions that are fed into the 
classifier stage. The method simultaneously attacks the classifi-
cation within each proposed candidate region by approximate-
ly maximizing, through backpropagation, the classification 
adversarial loss for every proposed region. After a forward 
pass on the region proposal network, the pruned region propos-
als are treated as constants for the classification. Then, the EoT 
framework is adopted for creating APs that are robust to physi-
cal transformations. Finally, the generated robust physical APs 
can be printed and applied on physical stop signs. 

With the goal of misclassification at the corresponding part 
of the model, the generated signs are printed and placed in an 
indoor scene with such distance and angle for mimicking driv-
ing conditions. When the attack aims at a specific misclassi-
fication label, such as a person (targeted attack), the success 
rate is 87%. When the attack does not target a specific label 
(untargeted attack), the success rate is 93%. The robustness of 
the untargeted attack is mostly affected by the distance incre-
ment, whereas the robustness of the targeted attack is affected 
by the view angle. Although the attack focuses on the clas-
sification task in a drive-by evaluation (a vehicle approaches 
the sign from 60.9 m away and with a speed between 8 and 
24 km/h), the adversarial examples are also able to affect the 
detection. A clean stop sign is always detected and classified 
correctly, but the adversarial signs, on most occasions, are not 
detected; and, when they are detected, they are misclassified 
most of the time.

Finally, based on [2], an adversarial attack to object detectors 
is proposed in [8] with the goal of hiding (preventing the detec-
tion of) stop signs. By defining a loss function that outputs the 
maximum probability of a stop sign occurring within the scene, 
the extended white-box and class-universal method minimizes 
this probability until it falls below the detection threshold of the 
classifier. The method is evaluated indoors and outdoors, with 
recordings beginning at 9.1 m away from a stop sign and ending 
when the sign is outside of the camera’s field of view. The attack 
success rate is 85.6% indoors and 72.5% outdoors, and, when 
the adversarial examples are evaluated on a different model, the 
attack success rate (transferability) for the indoor case remains 
high at 85.9%, while, for the outdoor case, it degrades and drops 
to 40.2%. 

Camera attacks with patches
Physical adversarial methods may also use a specific subcat-
egory of objects, namely, patches, to attack cameras for an im-
age-classification or an object-detection task. A data-agnostic, 
targeted adversarial attack can generate APs that force a DNN 
to misclassify objects by localizing a single perturbation on 
every image such that the resulting patch can be printed and 
installed on objects [20]. The patch is the result of training over 
a variety of images, where, to encourage the trained patch to 
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work regardless of the background, multiple transformations 
based on the EoT framework are applied on the patch in each 
image. Furthermore, an ensemble patch method is used in 
which a single patch is jointly crafted across five models. In 
simulated physical attacks (an adversarial patch is added to 
the image but not printed), for patches occupying only 10% 
of the image size, the single patch achieves an attack suc-
cess rate of around 89%, while the ensemble patch leads to 
an attack success rate of around 95% (averaging across all 
ensemble classifiers).

The patch-based method introduced in [2] (see the “Attacks 
With Objects and Patches” section) follows the same approach 
as the object-based one, with the difference that the AP is 
masked to take the form of black-and-white patches that are 
placed on traffic signs. The generated adversarial patches are 
evaluated on a vehicle with two classifiers, with the vehicle 
moving toward the sign from an initial distance from the sign 
of 76 m at a speed varying to up to 32 km/h. As the vehicle 
approaches the sign, the accuracies of both classifiers show a 
significant drop.

A white-box and data-agnostic physical patch generation 
method can add false-positive stop signs to the detector output 
[8]. To this end, a composite loss function is used such that it 
first creates a new object localization, followed by a targeted 
misclassification. A state-of-the-art detector identifies a non-
existent stop sign between 25% and 79% of the time when 
these patches are placed on a clean wall, where no actual stop 
sign exists, at 3 m from the camera.

Unlike attacks that focus on targets with no intraclass vari-
ety (i.e., only stop signs), target types with large intraclass vari-
ety (persons) are considered in [12]. The loss function to help 
hide people from detectors considers three factors, namely, a 
nonprintability score (how well the colors of a patch can be 
reproduced by a printer); the total variation of the image (favor-
ing a patch with smooth color transitions); and the maximum 
objectiveness score in the image (i.e., the effectiveness on hid-
ing a person), which aims to minimize the object or class score 
output by the detector. Operating in white-box settings and 
constraining the patch to lie in the neighborhood of the pre-
dicted bounding boxes of persons, the method is able to gener-
ate a class-universal adversarial patch for hiding persons. This 
adversarial example patch decreases the recall of the detector 
to 26.4% on a data set of images in which people were always 
detected in clean conditions.

Finally, a patch-based attack for object detectors can poten-
tially hide all of the objects to be detected in a scene without 
overlapping with any of them [21]. The patch can be placed 
anywhere in the field of view of the camera and cause all 
objects to disappear, even if they are far from the patch itself. 
This white-box and data-agnostic method generates the patch 
by maximizing the loss for the original targets, given a set of 
physical transformations that are applied on the patch using the 
EoT framework. The patch can hide most of the objects within 
the field of view: the mean average precision drops from 40.9% 
to 7.2% when the patch is randomly placed. The patch also 
disables the detection of objects that are moving as long as the 

patch itself is static with respect to the camera. The patch is, to 
some extent, invariant to location, but it has weaker influence 
on objects that are farther away.

Overall, adversarial attacks with objects pose a very serious 
threat for AVs, in particular, for the common cases of attack-
ing lidar and camera sensors that use DNN-based classifi-
ers and detectors. These attacks can generate 3D adversarial 
objects that are placed in the physical world or even take the 
form of small 2D stickers (patches) that can be placed on any 
object. They have the ability to cause wrong classification or 
false detection, while they can also be used to hide all of the 
other objects that are around them (even pedestrians). How-
ever, despite their success, such attacks are usually applied in 
white-box settings and, generally, show low transferability to 
unknown (black-box) models.

Countermeasures
In this section, we discuss countermeasures against adver-
sarial physical attacks. We also discuss general methods, such 
as adversarial training (AT), that are applied to mitigate the 
effects of on-signal attacks, and their adaptation to physical 
attacks is straightforward.

Ultrasonic and radar sensors
A method against spoofing and jamming attacks can use each 
ultrasonic sensor to separate spoofed echoes from real ones 
and report the real distance (resilient obstacle detection) [14]. 
Ultrasonic sensors transmit pings of the same signal through-
out their lifetimes and search for only the first echo. Since 
there is no bond between a ping and its echoes, to detect at-
tacks and possibly reject spoofed echoes, a physical signal 
authentication is achieved by shifting the signal parameters 
through a challenge-response scheme: first, by customizing 
the ping signal, and, then, by correlating the received echoes 
with the pings. In addition, a set of ultrasonic sensors can also 
collaboratively detect an attack using a single-transmitter, mul-
tiple-receiver sensor structure for resilient obstacle detection 
and attacker localization [14]. These approaches can be also 
adapted for radar sensors.

GPS
Detection mechanisms may defend against attacks on the lo-
cation, time, and Doppler shift parameters [22]. For a given 
parameter, the receiver first collects data during periods of 
time that are in normal mode (training data). Then, based on 
the normal-mode data, the receiver predicts the future values 
of the parameter and compares the predicted values with the 
ones obtained from the GNSS. If the difference with the pre-
dicted values exceeds a selected threshold, the receiver deems 
itself to be under attack, and all PVT solutions are discarded.

Two more spoofing countermeasures are described in [15]. 
The first one focuses on the latency between the spoofing and 
original data bitstreams, where the receiver looks for a data bit 
sign change between consecutive accumulations at the coarse 
acquisition code-length interval. If a sign change is detected 
anywhere other than at an expected data bit boundary, the 
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target receiver raises a flag. The second one focuses on de -
tecting the vestigial authentic signal. The receiver copies the 
incoming digitized front-end data into a buffer used only for ves-
tigial detection and selects one of the GPS signals being tracked, 
removes it from the data in the buffer, and performs acquisition 
for the same signal (the same pseudorandom noise identifier) on 
the buffered data. These steps are repeated for the same GPS sig-
nal, and the results are summed noncoherently until a probability 
of detection threshold is met. If a significant vestigial signal is 
present in the data, this technique will reveal it.

Finally, real-time GNSS spoofing detection can be achieved 
by processing beat carrier-phase measurements from an antenna 
pair [23]. Considering a spoofed and a nonspoofed signal model, 
the observed differential beat carrier phases are fit to either of 
the two models, and the estimates (along with their associated fit 
error costs) are used to develop a spoofing hypothesis test. Then, 
real-time spoofing detection can be achieved through a switched-
antenna version of the two-antenna system that determines a 
single-differenced beat carrier phase. Such a system can use a 
radio-frequency (RF) switch between the two antennas, a single 
RF front end, and a single receiver channel per tracked signal.

Lidar
Countermeasures can be applied at the hardware or at the soft-
ware level. At the hardware level, using multiple lidar sensors of 
different wavelengths, which collaboratively provide the scanned 
information, makes it harder for the attacker to manipulate every 
signal at the same time [9]. At the software level, an option is to 
(non)predictably skip certain emitting pulses, which is similar to 
varying the scan speed. If the system notices a response that cor-
responds to a skipped pulse, then this is an indication of a pos-
sible attack. Another option is to shorten the pulse period, which 
consequently reduces the attack window. However, lowering the 
pulse period also shortens the range of the sensor.

Defenses for DNNs can operate at the AV system, sensor, or 
machine learning model levels [17]. At the AV level, by study-
ing the spoofed 3D point clouds, it can be observed that points 
from ground reflection are clustered into obstacles due to the 
information loss introduced in the preprocessing phase. Map-
ping a 3D point cloud into a 2D matrix results in height infor-
mation loss, which facilitates an attack. To mitigate this effect, 
the ground reflection can be filtered out in the preprocessing 
phase, or, to reduce the information loss, the point cloud should 
not be transformed into an input feature matrix. At the sen-
sor level, similarly to [9], a possible defense consists of add-
ing some randomness in the lidar pulses: by firing a random 
grouping of laser pulses at each cycle, an attacker would not 
know which reflections the sensor would be expecting. Finally, 
at the machine learning model level, an option is to perform 
AT that, as we will discuss later, improves the robustness of 
DNN-based systems against adversarial attacks.

Camera
Increasing the robustness of DNN-based vision systems against 
APs is a very challenging and widely studied problem. We focus 
here on the tasks of image classification and object detection.

Most defenses are designed for specific or weak attacks 
(and, thus, stronger attacks can bypass them [24]) or just obscure 
the model (gradient masking) rather than making the classi-
fier robust against all attacks [25]. A defense that is empiri-
cally robust against all designed attacks is AT. AT aims to 
train robust models rather than defend against specific attacks: 
instead the model being trained only with the original (clean) 
data, it is trained along with the adversarial examples. AT has 
not been studied for physical APs yet, and we, therefore, pro-
vide here the results for on-signal attacks. Adaptation to physi-
cal APs is straightforward.

Formally, for a signal ~ ,x X!U  we define a set of allowed 
perturbations Sv 3 U  that formalizes the manipulative pow -
er of the attacker; that is, as described in the “Robust Sens-
ing” section, the distortion caused by gv  shall not considerably 
change or destroy the information of the signal. Assuming 
data targets ,y Y!  a loss function ,L  and model param-
eters ,Rp!i  the goal of AT is to solve the following minimax 
problem [26]:

[ ( ( ), , )],min max g x y   E L( , )~( , )x y
v

vX Y
Sv

i
!i

(2)

which corresponds to learning a model using signals (adversar-
ial examples) that maximize the adversarial loss of the model.

For the simple case of the MNIST image data set [34], AT 
is effective since the adversarial accuracy of the model (the 
accuracy of the model when given adversarial examples as 
inputs) remains close to 90%, without a significant impact 
on the accuracy with clean examples, which is almost 98%. 
For the slightly more complex CIFAR-10 image data set [35], 
though, the adversarial accuracy is almost 52%, while the clean 
accuracy drops to almost 80%. Robustness is, at the moment, 
at odds with accuracy [27], [28]: to increase robustness, one 
might have to sacrifice accuracy. In addition, the cost of com-
puting adversarial examples for the whole training procedure 
is very high, especially for high-dimensional data sets, such as 
ImageNet [36]. 

However, as AT decreases the curvature of the decision 
boundaries of the classifier [29], a regularization term can be 
added to the training loss to impose smoothness. The minimi-
zation of this loss during training produces results comparable 
to AT on MNIST and CIFAR-10 but much faster. Moreover, a 
fast AT process [30] updates both the model parameters and 
image perturbations using one simultaneous backward pass, 
thus, with almost no additional cost to natural training, result-
ing in ImageNet models with around 44% adversarial and 65% 
clean accuracy.

For the task of object detection, the authors in [31] focus on 
the design principles of existing adversarial attacks; an attack 
to a detector can be achieved with variants of individual 
task losses or their combinations (localization and/or clas-
sification), and, in fact, adversarial attacks dedicated to one 
of the tasks can reduce the performance of the model on the 
other task. Exploiting these interactions between different 
task losses, they generalize AT from classification to detec-
tion to form a new minimax training scheme, which combines 
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task-oriented adversarial examples that maximize the adver-
sarial loss of the detector. This scheme improves by 20–30% 
both the adversarial classification accuracy and the adversarial 
object-detection accuracy, which is the ratio between the cor-
rectly detected objects and the actual total number of objects. 

Discussion and outlook
In this section, we summarize the findings from the evaluation 
of the adversarial attacks and countermeasures, and identify 
four main research directions toward designing robust sensing 
for autonomous driving systems.

Evaluation
The evaluation of adversarial attacks has been limited to spe-
cific sensors or to machine learning models. When the decision 
process is based on machine learning models, many attacks are 
evaluated on a few models or on similar architectures and/or 
with models trained on the same or similar data sets. The corre-
sponding evaluation is, therefore, limited, as an attack that works 
well on a given data set and architecture might not generalize. 

In fact, increasing the variability of the data sets and archi-
tectures is important to evaluate the transferability of the attack, 
since the generated adversarial example might not transfer to 
models of different configurations. Also, most methods operate 
under white- or gray-box settings, which are unrealistic, as an 
attacker might not have (full) knowledge of the underlying sen-
sory systems or the machine learning models. To satisfactorily 
evaluate the robustness of AVs to APs, it is desirable to design 
attacks in black-box settings that are invariant to physical 
transformations, such as rotations, changes in viewing angle, 
and illumination variations. Simulators provide a promising 
direction to test a wide variety of situations [32].

Fusion
While adversarial vulnerabilities of individual sensory systems 
have been thoroughly investigated, the effect on fused signals 
is still not studied. In adversarial settings, determining the 
modalities that contribute more to incorrect inferences could 
provide new insights on how the information provided by the 
nonadversarial sensors can support the systems and help them 
to remain robust (adversarial robustness through signal fusion). 
Moreover, from the perspective of the robustness of the fused 
signal, the consideration of multimodal adversarial methods 
(attacking the fusion itself) is an exciting research area that 
could open new directions in understanding vulnerabilities in 
adversarial settings. It is, therefore, desirable to study the ef-
fect of each individual sensor (under adversarial attacks) to the 
fusion-based decision-making process.

AT
AT has been mostly studied for image classification and ob-
ject detection, especially for on-signal APs. AT is a general 
framework that can also be exploited to achieve robustness 
against any type of AP (e.g., patch based), including physical 
APs, by replacing on-signal adversarial examples with physi-
cal adversarial examples. Moreover, the principles of AT are 

applicable to any sensing modality when the underlying system 
is a machine learning model. However, current versions of AT 
schemes might saturate to some suboptimal solution, which 
could explain the increasing gap between adversarial and stan-
dard accuracy [27]. Finally, it is also important to focus on the 
dynamics of AT and explore how and why it improves adver-
sarial robustness [29].

Robustness
When evaluating the robustness of deep models against adver-
sarial attacks, it is not only important to ensure that the selected 
attacks are strong (to avoid overfitting to weak attacks [24]) but 
also to test the models using gradient-free black-box attacks 
[33] to ensure that the models are actually robust and that the 
gradients of the models are not just obfuscated (gradient mask-
ing), which gives a false sense of robustness [25]. Ultimately, 
a key question is to determine why APs exist. Their existence 
is expected to be due to a combination of causes related to the 
data, the architecture, and the training/learning scheme. 

With AT, robustness is an effect of the modified data and 
learning scheme. When studying the architectures, increas-
ing the capacity of the model seems to help AT to increase 
robustness [26]. Important open questions include the follow-
ing. What would be the effect of other network elements (e.g., 
the size of the learned filters)? What are the interactions of all 
of these entities that cause (or can prevent) such adversarial 
vulnerabilities? In that sense, for building and deploying safer 
systems, instead of black-box ones, more transparent models 
that allow us to interpret and explain their functionalities and 
reasoning are certainly desirable. Understanding how these 
systems work might, indeed, shed light on the underlying causes 
of their adversarial vulnerabilities.
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utomated vehicular safety functions that intervene in dan-
gerous driving situations, e.g., by emergency braking, 
use sensor measurements for the interpretation of the 

driving situation. As a consequence, they are typically very 
vulnerable to sensor imperfections, and unavoidable mea-
surement errors have a negative impact on both the safety 
and the satisfaction of the customer, which has to be taken 
into account when designing automated vehicular safety 
systems, such as an automatic emergency braking (AEB) 
system, for example.

The first approach for a general design methodology with 
which both sensors and functions for a variety of automated 
vehicular safety systems can be designed, while taking both 
the unavoidable sensor measurement errors and the customer 
satisfaction into account, tries to benefit from integrated cir-
cuit design. This article reviews a well-established worst-case 
design approach for integrated circuits and explains how ideas 
from integrated circuit design can be transferred to the design 
of automated vehicular safety systems. It also discusses how 
the resulting methodology allows the systematic design of both 
functions and sensors such that the customer requirements are 
fulfilled in a robust manner despite unavoidable sensor mea-
surement errors.

Introduction
Although much research is still required to make the vision 
of a fully autonomous car come true, several advanced driver 
assistance systems (ADASs) that perform, at least temporarily, 
single aspects of the driving task are already available. Au-
tomated vehicular safety functions that intervene in danger-
ous driving situations the driver is not able to control form an 
important class of those ADASs. As depicted in Figure 1, they 
use the measurements of sensors perceiving the environment 
of the vehicle to interpret the driving situation and trigger ap-
propriate actions in dangerous driving situations, e.g., an emer-
gency brake intervention. Consequently, they are, typically, 
very vulnerable to sensor imperfections, and unavoidable mea-
surement errors have a negative impact on both the safety and 
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the satisfaction of the customer. Therefore, these unavoidable 
sensor measurement errors have to be taken into account.

The following works deal with the uncertainty vehicular 
safety systems are exposed to as caused by sensor measure-
ment errors and errors in the prediction of the unknown future 
evolution of a situation, and they represent the state of the art. 
For calculating the collision probability under measurement 
and prediction uncertainty, [1]–[6] present Monte Carlo-based 
methods, whereas [7] replaces the expensive Monte Carlo sam-
pling by the unscented transformation (UT), and [8] and [9]
provide analytical solutions. 

Collision-detection algorithms using the collision prob-
ability computed by Monte Carlo-, UT-, and machine learn-
ing-based methods are compared in [10]. Hruschka et al. 
[11] present a criticality measure that can be used for trajec-
tory planning, including collision avoidance in the presence 
of measurement and prediction errors; in [12], a method for 
motion planning in automated driving under measurement and 
prediction uncertainty is discussed, while [13]–[15] discuss 
collision avoidance systems whose decision for an intervention 
explicitly takes the measurement and prediction uncertainty 
into account. Methods for identifying the optimal emergency 
maneuver considering the pedestrian’s injury risk, position-
ing errors, and uncertain future movements are described in 
[16] and [17]. On the other hand, [18] tackles the problem of 
predicting the location uncertainty resulting from the sensor 
measurement errors in the form of covariance matrices based 
on a neural network.

Based on Monte Carlo simulations, [19] investigates the 
effect of sensor measurement errors on the uncertainty of 
collision-warning criteria used in collision-warning systems, 
[20] examines their impact on the performance of a situation 
assessment algorithm for a collision-prevention assistant, and 
[21] analyzes their influence on the accuracy of predicted col-
lision parameters, such as the time to collision (TTC) used in 
predictive passive safety systems. The authors of [7] also use 
the UT for computing the probability distribution of the TTC 
under measurement uncertainty in [22].

Closed-form expressions for the probability distributions of 
criticality measures used in ADASs, such as the TTC, which 
are subject to prediction and measurement uncertainty, are 
derived in [23]. The framework presented there is applied in 
[24] to analyze the impact of prediction uncertainty and sen-
sor measurement errors on the performance of AEB systems. 
While closed-form expressions for the worst-case performance 
of a collision avoidance system in the presence of prediction 
and measurement errors are derived in [25], [26] presents a sta-

tistical analysis of the vehicle motion estimation from features 
in the environment under the influence of sensor measurement 
errors using closed-form expressions, and [27] obtains analyti-
cal results for the relationship between sensor measurement 
errors and the resulting errors in the pose of the vehicle deter-
mined by odometry.

A methodology for setting the parameters of rear-end col-
lision-warning and avoidance algorithms based on statistical 
performance metrics that allow the measurement and predic-
tion uncertainty to be taken into account is proposed by the 
authors of [28]. In [29], a measure for the robustness of decision 
functions used in active safety systems for deciding on inter-
ventions to sensor measurement errors is introduced, which 
can also help to derive requirements for the errors and tune 
the decision functions, i.e., adjust the values of their param-
eters. In [30], Stellet et al. use analytic statistical modeling 
to investigate object detection with stereo vision for collision 
warning, which makes it possible to predict the uncertainty in 
object location and obtain optimal thresholds in the presence 
of measurement errors. In [31] and [32], sensor parameters are 
derived from requirements for the vehicle localization accura-
cy based on a probabilistic model taking sensor measurement 
errors into account.

However, there is still no general methodology with which 
both sensors and functions for a variety of automated vehicular 
safety systems can be designed while taking both the unavoid-
able sensor measurement errors and the customer satisfac-
tion into account. In other areas of engineering science, e.g., 
civil and mechanical engineering as well as integrated circuit 
design, general design procedures were introduced early on to 
deal with unavoidable parameter tolerances and deficiencies 
and their influence on the system performance [33]–[39]. In 
contrast, the first approach for such a design methodology in 
the area of automated vehicular safety systems, is proposed in 
[40] and [41] and is based on the well-established worst-case 
design approach for integrated circuits presented in [35]–[39].  
Although applied to an AEB system, it can be generalized eas-
ily to design other automated vehicular safety systems as well.

This article starts by reviewing the design approach for 
integrated circuits in [35]–[39] and explains, in a tutorial-style 
way, using a simple AEB system as an illustrative example, 
how ideas from integrated circuit design, a completely differ-
ent application area, can be transferred to the design of auto-
mated vehicular safety systems, which marks a paradigm shift. 
It also describes how the resulting methodology in [40] and 
[41] allows the systematic design of both functions and sensors 
such that the customer requirements are fulfilled in a robust 
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FIGURE 1. The general setting in which a vehicular safety function is embedded.
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manner, despite unavoidable sensor measurement errors, by 
solving optimization problems. Furthermore, the article explains 
how the design task can be performed solely based on simula-
tions of the automated vehicular safety system under design, 
which makes the design methodology easily applicable to vari-
ous automated vehicular safety systems, and, finally, concludes 
with open research questions and challenges to be addressed 
by future work.

Integrated circuit design

Problem formulation for integrated circuit design
The well-established worst-case design approach for integrated 
circuits presented in [35]–[39] measures the performance of an 
integrated circuit in terms of performance properties f, which 
are quantities of interest that have to lie in certain acceptance 
intervals such that the integrated circuit is considered to oper-
ate in a proper or acceptable way, e.g., the minimum output 
voltage. The performance properties f are dependent on the 
parameters p of the integrated circuit (e.g., the oxide thickness 
and length and width of the transistors) and, thus, are a func-
tion of them.  For this function, there is usually no closed-form 
expression due to the high complexity of the integrated circuit, 
such that the evaluation of it requires a numerical simulation 
of the integrated circuit. It maps the given parameter values p
to the respective values of the performance properties f.

Due to unavoidable manufacturing tolerances, the values of 
some parameters p fluctuate. These parameters, such as the 
oxide thickness and perturbations of the length and width of 
transistors, are modeled by Gaussian random variables and are, 
thus, called statistical parameters s, in contrast to the deter-
ministic design parameters d, which include the length and 
width of transistors. As a consequence, the performance prop-
erties f are random variables as well and may or may not lie in 
the acceptance intervals such that the performance specifica-
tions defined by the acceptance intervals might be fulfilled 
or violated. The probability that a manufactured integrated 

circuit fulfills the given performance specifications, i.e., the 
yield Y, can be used as the quality measure to be maximized 
for circuit optimization, i.e., for determining the optimal val-
ues for d.

Besides the classes of deterministic design parameters d
and statistical parameters s, there is a third class of parameters, 
namely, operating parameters ,i  e.g., the temperature, which 
might have an influence on the performance of integrated cir-
cuits and make the yield Y a function of them. In contrast to the 
statistical parameters s, the operating parameters i  are rang-
ing parameters for which no statistical knowledge in the form 
of a probability distribution is available, but only a range .Ti
To take this into account, the worst-case yield, i.e., the mini-
mum yield min YT!i i  in the whole range ,Ti  can be used as 
the quality measure to be maximized for circuit optimization.

Simulation-based integrated circuit design
The maximization of the quality measure requires several 
evaluations of the yield Y. As there is usually no closed-form 
expression for the performance properties f as a function of 
the parameters p, and it can be evaluated only by numerical 
simulations of the integrated circuit, this is also the case for 
the yield Y as a function of the deterministic design parameters 
d and operating parameters .i  A straightforward possibility 
for obtaining a value of the yield Y, at least approximately, is 
estimating it by a Monte Carlo simulation. 

In the Monte Carlo simulation, M realizations , , ,s s sM1 2 f

of all involved random variables, i.e., the statistical parameters 
s, are generated at random according to their probability dis-
tribution. Each realization si  together with given deterministic 
design parameters d and operating parameters i  is mapped to 
the respective values fi  of the performance properties by a cir-
cuit simulation. In these M random experiments, it is counted 
how often the values fi  of the performance properties lie in 
the acceptance intervals to obtain the frequency of fulfilling 
the performance specifications, which is an estimate for the 
probability of fulfilling the performance specifications, i.e., 
the yield Y.

To obtain an accurate estimate for this probability, a large 
number M of circuit simulations must be performed, which 
might lead to a prohibitively large computational complexity 
in practice. However, it is equivalent to the probability that the 
statistical parameters s lie in the acceptance region, i.e., the set 
of all s mapped to performance properties f lying in the accep-
tance intervals. An example of such an acceptance region in the 
case of one performance property f that is a function of only 
two statistical parameters s1 and s2, and has to lie in the accep-
tance interval , ,fmax3-^ @  is the green area in Figure 2, where 

,f fmax1  including the orange boundary, where .f fmax=

Although the boundary is typically considered to be smooth, 
this does not have to be the case. The probability that the sta-
tistical parameters s lie in the acceptance region could theo-
retically be obtained by integrating their probability density 
function (pdf) in the acceptance region. Unfortunately, the 
boundary of the acceptance region can only be determined by 
many circuit simulations, and the integration of the pdf in the 
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f > fmaxf < fmax
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FIGURE 2. The acceptance region (green area including orange boundary) 
and worst-case distance .WCb
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acceptance region with a possibly highly nonlinear boundary 
can only be performed numerically, which comes with a high 
computational complexity. Both problems can be overcome by 
so-called worst-case distances.

The worst-case distance ,WCb  which is also illustrated 
in Figure 2, is defined as the smallest distance between the 
mean s0  of the statistical parameters s and the boundary of 
the acceptance region. The Mahalanobis distance is chosen as 
distance measure .b  As a consequence, the set of all s that have 
the same distance b = constant from their mean s0  is the set of 
all s for which their pdf has the same value. In Figure 2, these 
sets are the ellipses with the center .s0  The points representing 
the statistical parameter values s1 and s2 on the largest of the 
shown ellipses, which intersects the boundary of the accep-
tance region in two points, have the largest distance b  from 
their mean .s0  If the ellipse is decreased such that the resulting 
smaller ellipse still intersects the boundary in two points, these 
two points have a smaller distance b  from .s0  If this proce-
dure is continued, the two points where the decreasing ellipse 
and the boundary intersect converge to one point, where they 
touch. The magenta cross represents this point, which is the 
point on the boundary with the smallest distance b  from ,s0

the worst-case distance .WCb

The boundary of the acceptance region can be approximat-
ed by linearizing it with a tangential hyperplane that touches 
it where the statistical parameters s have the smallest distance 
from their mean ,s0  namely, the worst-case distance, and the 
probability that the statistical parameters s lie in the acceptance 
region by the probability that they lie in the resulting approxi-
mate acceptance region bounded by the tangential hyperplane. 
In Figure 2, the tangential hyperplane is the violet tangential 
line, and the resulting approximate acceptance region is the 
light green area bounded by this line. 

The peak of the multivariate Gaussian pdf of the statisti-
cal parameters s at their mean s0  has to lie in the acceptance 
region, and it must be rather concentrated around its peak to 
be able to achieve a large probability that the statistical param-
eters s lie in the acceptance region, and, thus, the performance 
specifications are fulfilled. In addition, its maximum along the 
boundary of the acceptance region occurs exactly where the 
hyperplane touches it, and, therefore, the approximation error 
between them is zero, as at all other possible points where they 
touch or intersect. Hence, the pdf is small where the approxi-
mation error between them is large, such that the approxima-
tion of the probability that the statistical parameters s lie in 
the acceptance region by the probability that they lie in the 
approximate acceptance region is accurate. The integration of 
the multivariate Gaussian pdf in this approximate acceptance 
region to obtain the approximate probability of fulfilling the 
performance specifications simplifies to one evaluation of the 
standard normal cumulative distribution function (cdf) at the 
worst-case distance. 

This worst-case distance can be determined by an optimi-
zation minimizing the distance between the statistical param-
eters s on the boundary of the acceptance region and their 
mean s0  without determining the whole boundary. This opti-

mization requires just a few circuit simulations, which are 
automatically chosen by an appropriate optimization method 
in a smart way, serving the achievement of the optimization 
goal, and, thus, replaces a computationally expensive Monte 
Carlo simulation, which simply chooses an extensive amount 
of simulations according to the underlying probability dis-
tribution in a brute-force way for estimating the probability 
of interest.

Robust design of automated vehicular 
safety systems

Mathematical model of automated vehicular 
safety systems
A general mathematical model of automated vehicular safe-
ty systems including sensor measurement errors is depicted 
in Figure 3. The state vector x n6 @ sufficiently describes the 
state of the dynamic system in the considered driving scenario, 
which consists of the ego vehicle equipped with the automated 
vehicular safety system under design and one or several stand-
ing or moving objects, such as other vehicles, at the time in-
stant tn. Figure 4 shows a relevant driving scenario for the de-
sign of a simple AEB system, where the ego vehicle approaches 
an object, namely, another vehicle driving in the same lane in 
front of it, with constant relative velocity. In this example, the 
state vector x n6 @ consists of the distance and the relative veloc-
ity between the ego vehicle and the object. In general, such a 
driving scenario can be characterized by some scenario param-
eters ,x0  e.g., the constant relative velocity v0 between the ego 
vehicle and the object in the example.

As the state vector x n6 @ is not directly available and can 
only be reconstructed from measurements, sensors are used 
to take measurements with a sampling rate .fs  At the time 
instant tn, the sensors deliver the measurements y n6 @ of the 
quantities observed by them based on the state vector x n6 @
under the influence of the measurement errors ne6 @ made 
by them. These unavoidable sensor measurement errors 

ne6 @ can be modeled as Gaussian random variables in cer-
tain scenarios [19]. 

Sensors Functionx [n]
y [n]

f (y [n]; ϕ )

ε [n]

FIGURE 3. The general mathematical model of automated vehicular safety 
systems, including sensor measurement errors.

Ego Vehicle Object

Acceptance
Interval

FIGURE 4. The relevant driving scenario for the design of a simple 
AEB system.
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Even if the Gaussian assumption is not valid in a specific 
scenario, one can still proceed with Gaussian random vari-
ables, as they can be transformed such that the resulting ran-
dom variables have the probability distribution of the actual 
sensor measurement errors, and this transformation can 
be considered to be part of the sensors. In case of the sim-
ple AEB system, the measurements y n6 @ are the measured 
distance and relative velocity, which are subject to additive 
independent and identically distributed zero-mean Gaussian 
measurement errors .ne6 @  In such a mathematical model, the 
sensors can be described by parameters ,v  such as their sam-
pling rate fs  and the standard deviations of their measure-
ment errors .ne6 @

The function derives safety-relevant information from the 
sensor measurements y n6 @ at the time instant tn to inter-
pret the current driving situation and uses a decision rule to 
decide on triggering an appropriate action for mitigating a 
dangerous driving situation, e.g., an emergency brake inter-
vention. Such a decision rule can be represented by a decision 
function ·; ,f {^ h  with adjustable parameters ,{  that maps the 
measurements y n6 @ to the function value y ; ,f n {^ h6 @  which 
can only be zero or one. As soon as the decision rule is ful-
filled, i.e., ; ,yf n 1{ =^ h6 @  the respective action is triggered. 
In case of the simple AEB system, an example for such a deci-
sion rule ·;f {^ h is to trigger the emergency brake intervention 
when the TTC computed from the measured distance and rela-
tive velocity for the interpretation of the current driving situa-
tion does not lie above a threshold x  anymore. The threshold x
of this TTC-based decision rule ;f ·TTC x^ h is a typical example 
for the adjustable function parameters .{

Once an action is triggered, this intervention is performed 
automatically, as it is assumed that the driver cannot handle the 
detected dangerous driving situation alone. If an emergency 
brake intervention is triggered by the function of the simple 
AEB system, for example, the velocity of the ego vehicle is 
reduced with constant deceleration a until the relative velocity 
is zero.

Problem formulation for robust design of automated 
vehicular safety systems
In the development of automated vehicular safety systems, 
application engineers are typically confronted with the three 

basic design problems, illustrated in Figure 5. In the func-
tion design, the goal is to adapt the function to given sensors 
such that it meets the requirements of the customers in a 
robust manner despite the unavoidable sensor measurement 
errors. Similar to the integrated circuit design, where the 
optimal values for the deterministic design parameters d
are determined by maximizing the quality measure, the best 
decision rule fopt  and the optimal function parameter values 

opt{  can be determined by maximizing a quality measure 
Q, which takes both the unavoidable sensor measurement 
errors and the customer satisfaction into account. Formally, 
this systematic approach for the function design can be for-
mulated as the following optimization problem:

, .argmaxf Q
,f

opt opt{ =
{

^ h (1)

Here, all predefined decision rules f are ranked with respect 
to the maximal quality level Q that they can achieve so that 
the best of them is chosen. At the top of Figure 6, an exem-
plary quality measure Q for the simple AEB system is plotted 
over the threshold x  of the TTC-based decision rule ;f ·TTC x^ h
for various standard deviations v  of the sensor measurement 
errors in the measured distance. The function is designed for 
given sensors, i.e., a given standard deviation ,v  by maximiz-
ing the quality measure Q with respect to the threshold ,x  the 
only adjustable parameter {  of the considered TTC-based 
decision rule ; .f ·TTC x^ h  This maximization of the quality 
measure Q results in the optimal threshold ,optx  which is high-
lighted in Figure 6(a) for the standard deviation .  0 3 mv =  as 
an example.

In the sensor design, the goal is to determine which re -
quirements the sensors have to fulfill such that a given func-
tion meets the specifications of the customers in a robust 
manner despite the unavoidable sensor measurement errors 
and appropriate sensors fulfilling them. The desired extent 
of this robust fulfillment can be expressed in the form of a 
required minimum quality level ,Qmin  and the set of all v  for 
which the quality measure Q is not smaller than Qmin  is the 
design space S  from which the application engineer has to 
choose the sensor parameter values v  and that, thus, repre-
sents the sensor requirements. 

An example of such a design space S  can be seen in Fig-
ure 6(b), where the exemplary quality measure Q for the simple 
AEB system is plotted over the standard deviation v  of the 
sensor measurement errors in the measured distance for vari-
ous thresholds x of the TTC-based decision rule ; .f ·TTC x^ h
This design space S  is the interval of the standard deviation 

,v  the only considered sensor parameter ,v  where the quality 
measure Q is not smaller than the required minimum qual-
ity level .Q 0 95min =  for the function given by the threshold 

.  .0 54 sx =

Inside such a design space S  costs C can be minimized 
to optimize a relevant objective, e.g., to minimize the costs of 
the sensors, and determine the optimal sensor parameter val-
ues .optv  Formally formulating this systematic approach for 

Sensors

Function

Function Design Sensor Design

Joint Function
and Sensor Design

FIGURE 5. The basic design problems in the development of automated 
vehicular safety systems.
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the sensor design leads to the following optimization problem, 
where the design space S  is incorporated by the constraint:

.. .argmin C Q Qs t minopt $v =
v

(2)

In case of the simple AEB system with the standard de-
viation v  of the measurement errors in the measured distance 
as the only considered sensor parameter ,v  the costs C might 
be chosen to be v-  such that they increase if the standard 
deviation v  is reduced. Alternatively, the costs C could also 
be chosen to be /1 v , which would lead to the same design re-
sults, as both cost functions C are minimal if and only if v  is 
maximal. This converts the minimization of C into the maxi-
mization of .v  The sensors are designed for a given function, 
i.e., the given TTC-based decision rule ;f ·TTC x^ h and a given 
threshold ,x  by determining the largest v  inside the design 
space ,S  the maximal tolerable standard deviation maxv  of the 
sensor measurement errors, which is highlighted in Figure 6(b)
for .  0 54 sx =  as an example.

The goal of the joint function and sensor design is to deter-
mine both the sensors and the function such that the function 
meets the requirements of the customers in a robust manner 
despite the unavoidable sensor measurement errors. Formally, 
the joint function and sensor design can also be formulated as 
an optimization problem:

, , .argminf C Q Qs.t.
, ,

min
f

opt opt opt $v { =
v {

^ h (3)

Solving this extension of the optimization problem for the 
sensor design determines the best decision rule fopt  by rank-
ing all predefined decision rules f with respect to the minimal 
costs C that they allow for a given required minimum quality 
level Qmin  along with the optimal function parameter values 

opt{  in addition to the optimal sensor parameter values optv

such that the costs C are minimal while its constraint is ful-
filled. The constraint again defines the design space ,S  which 
is the set of all sensor parameter values ,v  predefined decision 
rules f , and function parameter values {  for which the quality 
measure Q is not smaller than Qmin  and the customer require-
ments are fulfilled to the desired extent. 

Besides the contour lines of the exemplary quality measure 
Q for the simple AEB system, whose only sensor parameter v
is the standard deviation v  and whose only function parameter 
{  is the threshold x  of the considered TTC-based decision 
rule ; ,f ·TTC x^ h  an example of such a design space S  is illus-
trated in Figure 6(c). It is the region where all parameter value 
pairs ,v x^ h correspond to a quality measure Q that does not lie 
below . .Q 0 95min =  If the costs C are chosen to be v-  or /1 v
again, the minimization of C is converted to a maximization of 

.v  Hence, the optimal parameter value pair ,max optv x^ h high-
lighted by the green cross is the parameter value pair ,v x^ h
inside S  with the largest .v  This is the maximal tolerable 
standard deviation maxv  of the sensor measurement errors, and 
the corresponding x  is the optimal threshold optx  for the TTC-
based decision rule ; .f ·TTC x^ h

Quality measure for robust design of automated 
vehicular safety systems
In the integrated circuit design considering manufacturing tol-
erances, the yield is used as a quality measure. This can be 
translated to the robust design of automated vehicular safety 
systems considering sensor measurement errors to come up 
with an appropriate quality measure Q, which takes both the 
sensor measurement errors and the satisfaction of the custom-
ers into account and can be used in the formulated optimiza-
tion problems (1)–(3).

When an automated vehicular safety system intervenes by 
triggering an action, relevant quantities q have to lie in certain 
acceptance intervals such that the customer is satisfied with 
the system. These acceptance intervals can be chosen in a user-
specific way. The customer is satisfied with an AEB system as 
applied in the scenario from Figure 4, for example, if the final 
distance xend  between the ego vehicle and the object after an 
emergency brake intervention is neither too small nor too large. 
In other words, the final distance ,xend  which is one example 
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for such customer satisfaction properties q, has to lie in an 
acceptance interval from the minimal tolerable final distance 
xmin  to the maximal tolerable final distance xmax  shown by the 
violet area.

Similarly to the performance properties f of integrated 
circuits, which are subject to manufacturing tolerances mod-
eled by Gaussian random variables, namely, the statistical 
parameters s, and have to lie in certain acceptance intervals, 
the customer satisfaction properties q of automated vehicu-
lar safety systems are subject to sensor measurement errors 
modeled by Gaussian random variables ,ne6 @  and the spec-
ifications for them in the form of acceptance intervals are 
conceptually the same. As a consequence, the customer sat-
isfaction properties q, which are a function of these random 
sensor measurement errors ,ne6 @  are random variables as 
well and might lie inside or outside the acceptance intervals 
such that the specifications defined by the acceptance inter-
vals are fulfilled or violated. 

Finally, the probability P of fulfilling these specifications 
for the customer satisfaction by an automated vehicular safety 
system corresponds to the probability of fulfilling the perfor-
mance specifications by a manufactured integrated circuit, 
i.e., the yield Y. As the yield Y is used as a quality measure 
for deciding the optimal values for the deterministic design 
parameters d of an integrated circuit, the probability P of ful-
filling the specifications for the customer satisfaction can be 
used as quality measure Q for determining the best decision 
rule ,fopt  the optimal function parameter values ,opt{  and the 
optimal sensor parameter values optv  of an automated vehicu-
lar safety system. The exemplary quality measure Q for the 
simple AEB system that has been plotted in Figure 6 for the 
TTC-based decision rule ;f ·TTC x^ h and the constant relative 
velocity  v 10 m/s0 =-  is the probability P that the respective 
specification for the customer satisfaction is fulfilled, i.e., the 
final distance xend  lies in the acceptance interval from the 
minimal tolerable final distance xmin  to the maximal tolerable 
final distance .xmax

Which values the customer satisfaction properties q have 
and whether they fulfill the specifications depends not only on 
the sensor parameters ,v  the sensor measurement errors ,ne6 @
the decision rule ·; ,f {^ h  and the function parameters {  but 
also on the scenario parameters x0  characterizing the driving 
scenario, such as the constant relative velocity v0 in the scenar-
io from Figure 4, in which the simple AEB system is applied. 
This makes the probability P of fulfilling the specifications 
for the customer satisfaction a function of the scenario param-
eters .x0  An automated vehicular safety system is supposed 
to handle several driving scenarios described by the scenario 
parameters x0  from a set ,X  which might be a whole range of 
such scenario parameters .x0

Conceptually, these scenario parameters x0  can be han-
dled like the operating parameters i  from the range Ti  in the 
integrated circuit design. As the worst-case yield ,min YT!i i

i.e., the minimum yield in the whole range Ti  of the operat-
ing parameters ,i  is used as a quality measure for the inte-
grated circuit design, the worst-case probability min Px X0!  of 
fulfilling the specifications for the customer satisfaction, i.e., 
the minimum of the probability P that these specifications are 
fulfilled in all scenarios x0  from the scenario set ,X  can be 
used as quality measure Q. Consequently, the design space ,S
in which this quality measure Q does not lie below the required 
minimum quality level ,Qmin  is the intersection of the design 
spaces xS 0^ h for the individual scenarios x0  from ,X  in each 
of which the probability xP 0^ h of fulfilling the specifications 
for the customer satisfaction in the respective scenario x0  does 
not lie below .Qmin

This is illustrated in Figure 7 for two scenarios x1  and ,x2

corresponding to the scenario from Figure 4 that the simple 
AEB system is supposed to handle after the joint function and 
sensor design with constant relative velocity  v 10 m/s0 =-

and  ,v 20 m/s0 =-  respectively. Besides the TTC-based deci-
sion rule ; ,f ·TTC x^ h  two further decision rules—namely, an 
advanced TTC-based decision rule ;f ·adv.TTC x^ h taking the 
critical TTC at the latest time at which the emergency brake 
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intervention must be triggered to avoid a collision into account 
and a decision rule ;f ·BTN x^ h based on the brake-threat-num-
ber, i.e., the deceleration required for collision avoidance—are 
considered as decision rule f with a threshold x  as the only 
function parameter .{  The blue curve is 
the contour line along which the probability 

xP 1^ h of fulfilling the specification for the 
customer satisfaction in the scenario x1  is 
equal to the required minimum quality level 

.Q 0 99min =  and the boundary of the design 
space xS 1^ h highlighted by the blue area, 
in which xP 1^ h does not lie below .Qmin

Analogously, the yellow curve is the contour 
line along which the probability xP 2^ h of 
fulfilling the specification for the customer 
satisfaction in the scenario x2  is equal to 
Qmin  and the boundary of the design space xS 2^ h highlight-
ed by the yellow area, in which xP 2^ h does not lie below .Qmin

The intersection of the individual design spaces xS 1^ h
and xS 2^ h yields the overall design space S  highlighted by 
the magenta area, in which the quality measure Q, i.e., the 
minimum of the probabilities xP 1^ h and xP 2^ h of fulfill-
ing the specification for the customer satisfaction in the two 
scenarios x1  and ,x2  does not lie below .Qmin  The solution 

, ,fmax opt optv x^ h of the optimization problem (3) for the joint 
function and sensor design with the costs C v=-  or /C 1 v=

consisting of the maximal tolerable standard deviation ,maxv

the optimal decision rule ; ,f f ·opt BTN x= ^ h  and the optimal 
threshold optx  is also highlighted in Figure 7.

The constraint of the optimization problems (2) and (3) in 
the robust sensor as well as joint function and sensor design 
guarantees that the designed automated vehicular safety 
system fulfills the specifications for the customer satisfaction 
at least with the probability Qmin  in all considered scenarios, 
which determines the reliability and safety of the system 
and, thus, the customer satisfaction. Increasing the required 
minimum quality level Qmin  increases the reliability, safety, 
and customer satisfaction but might also increase the costs C. 
Therefore, a tradeoff has to be found by choosing Qmin  appro-
priately. This is a decision that must be made by the manage-
ment, which can be based on user studies or on the desired 
probability of fulfilling the specifications in system assess-
ment tests like those of the New Car Assessment Program.

Simulation-based robust design of automated 
vehicular safety systems
The customer satisfaction properties q are dependent on the 
sensor parameters ,v  the sensor measurement errors ,ne6 @  the 
decision rule ·; ,f {^ h  the function parameters ,{  and the sce-
nario parameters x0  and, thus, are a function of them. Apart 
from simple automated vehicular safety systems like the sim-
ple AEB system, there is usually no closed-form expression for 
this function due to the high complexity of automated vehicu-
lar safety systems in practice. As a consequence, the evalu-
ation of this function requires a numerical simulation of the 
automated vehicular safety system. 

This is the reason why there is usually no closed-form 
expression for the probability P that the customer satisfaction 
properties q lie in the acceptance intervals and, thus, fulfill the 
specifications for the customer satisfaction as a function of the 

sensor parameters ,v  the decision rule 
·; ,f {^ h  the function parameters ,{  and 

the scenario parameters x0 , which has 
to be evaluated several times for solving 
the optimization problems (1)–(3) of the 
robust function and sensor design. Only 
for simple automated vehicular safety sys-
tems can such closed-form expressions be 
derived as in [40] and [41] for the simple 
AEB system applied in the idealized sce-
nario from Figure 4, but not in general.

As in integrated circuit design, the Monte 
Carlo simulation can be used as an estimator for the prob-
ability P that the specifications for the customer satisfaction 
are fulfilled. In the Monte Carlo simulation, M realizations 

, , ,n n nM1 2 fe e e6 6 6@ @ @ of all involved random variables, i.e., 
the sensor measurement errors ne6 @ at all time instants tn, are 
generated at random according to their probability distribution. 
Each realization nie 6 @ of the sensor measurement errors ne6 @
at all time instants tn, together with given sensor parameters ,v
a given decision rule  ·; ,f {^ h   given function parameters ,{
and scenario parameters ,x0  is mapped to the respective values 
qi  of the customer satisfaction properties by a simulation of the 
automated vehicular safety system. In these M random experi-
ments, it is counted how often the values qi  of the customer 
satisfaction properties lie in the acceptance intervals to obtain 
the frequency of fulfilling the specifications for the customer 
satisfaction, which is an estimate for the probability P of ful-
filling the specifications for the customer satisfaction.

Challenges and future work
To obtain an accurate Monte Carlo-based estimate for the 
probability P of fulfilling the specifications for the customer 
satisfaction, a large number M of simulations of the automated 
vehicular safety system has to be performed, which might lead 
to prohibitively large computational complexity in practice. 
Reducing the computational complexity and guaranteeing a 
high accuracy of the obtained approximate value for the prob-
ability P are difficult tasks. These challenges have to be ad-
dressed by future work.

A promising future research direction is to learn from the 
integrated circuit design and consider acceptance regions, 
as illustrated by the green area including the orange bound-
ary in Figure 2, for two statistical parameters s1 and s2 of an 
integrated circuit corresponding to two sensor measurement 
errors [ ]n1 1e  and [ ]n2 2e  at time instants tn1  and tn2  in the case 
of an automated vehicular safety system. In this acceptance 
region, a performance property f of the integrated circuit or 
a customer satisfaction property q of the automated vehicular 
safety system lies in the acceptance interval , .fmax3-^ @  In 
general, the acceptance region is the set of all sensor measure-
ment errors ne6 @ at all time instants tn corresponding to the 

As in integrated circuit 
design, the Monte Carlo 
simulation can be used 
as an estimator for the 
probability P that the 
specifications for the 
customer satisfaction  
are fulfilled.
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statistical parameters s of integrated circuits that are mapped 
to the customer satisfaction properties q lying in the accep-
tance intervals such that the specifications for the customer 
satisfaction are fulfilled. Consequently, the probability that 
the sensor measurement errors ne6 @ lie in the acceptance 
region is equivalent to the probability P that the automated 
vehicular safety system fulfills the specifications for the cus-
tomer satisfaction. 

Hence, this probability P could theoretically be computed 
by integrating the pdf of the sensor measurement errors ne6 @
in the acceptance region. Unfortunately, this integration is 
intractable in practice due to the high computational complex-
ity of numerically determining the boundary of the acceptance 
region by many simulations of the automated vehicular safety 
system and numerically integrating the multivariate Gaussian 
pdf of the sensor measurement errors ne6 @ in the acceptance 
region, especially for a large number of sensor measurement 
errors ,ne6 @  at all time instants tn resulting from a high sam-
pling rate fs  of the sensors. As in the integrated circuit design, 
this problem can be overcome by approximating the boundary 
of the acceptance and integration regions by just a few simula-
tions of the automated vehicular safety system such that the 
integration of the multivariate Gaussian pdf in the resulting 
simplified integration region becomes easy while the approxi-
mation error is acceptable. 

To this end, the boundary of the acceptance region is linear-
ized by using worst-case distances introduced in the integrated 
circuit design, as illustrated by the violet line in Figure 2, for 
two statistical parameters s1 and s2 corresponding to two sen-
sor measurement errors [ ]n1 1e  and [ ] .n2 2e  This leads to an 
approximate acceptance region as highlighted by the light 
green area in Figure 2. The integration of the multivariate 
Gaussian pdf in such approximate acceptance regions to obtain 
an approximate probability of fulfilling the specifications for 
the customer satisfaction simplifies to evaluating the standard 
Gaussian cdf at worst-case distances. Thus, most of the effort 
lies in the determination of worst-case distances by minimiz-
ing the distance of the sensor measurement errors ne6 @ on the 
boundary of acceptance regions from their mean, which, how-
ever, might require significantly fewer simulations of automat-
ed vehicular safety systems under design than using expensive 
Monte Carlo simulations. For the simple AEB system applied 
in the scenario from Figure 4, [42] demonstrates that using 
worst-case distances can reduce the required number of simu-
lations of the AEB system under design by several orders of 
magnitude as compared to using Monte Carlo simulations with 
a comparable approximation accuracy.

Conclusions
Reviewing a well-established worst-case design approach for 
integrated circuits has shown that it has some parallels to the ro-
bust design of automated vehicular safety systems considering 
unavoidable sensor measurement errors, for which no general 
design methodology exists so far, although it is of high impor-
tance. The explanation of the first approach for such a design 
methodology using a simple AEB system as an illustrative ex-

ample has demonstrated how ideas from integrated circuit de-
sign, a completely different application area, can be transferred 
to the design of automated vehicular safety systems, which 
marks a paradigm shift, and how it allows the systematic de-
sign of both functions and sensors of automated vehicular safety 
systems such that the customer requirements are fulfilled in a 
robust manner despite unavoidable sensor measurement errors 
by solving optimization problems and providing design spaces.

The design task can be performed solely based on simula-
tions of the automated vehicular safety system under design, 
which makes the design methodology easily applicable to vari-
ous automated vehicular safety systems. One of the biggest 
challenges to be addressed by future work is making this first 
approach for such a general design methodology more efficient 
by reducing the required number of simulations of the auto-
mated vehicular safety system under design, for which insights 
gained in integrated circuit design can be utilized once again.
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AUTONOMOUS DRIVING: PART 1

s a bio-inspired and emerging sensor, an event-based neu-
romorphic vision sensor has a different working principle 
compared to the standard frame-based cameras, which 

leads to promising properties of low energy consumption, low 
latency, high dynamic range (HDR), and high temporal resolu-
tion. It poses a paradigm shift to sense and perceive the envi-
ronment by capturing local pixel-level light intensity changes 
and producing asynchronous event streams. Advanced tech-
nologies for the visual sensing system of autonomous vehicles 
from standard computer vision to event-based neuromorphic 
vision have been developed. In this tutorial-like article, a com-
prehensive review of the emerging technology is given. First, 
the course of the development of the neuromorphic vision sen-
sor that is derived from the understanding of biological retina 
is introduced. The signal processing techniques for event noise 
processing and event data representation are then discussed. 
Next, the signal processing algorithms and applications for 
event-based neuromorphic vision in autonomous driving and 
various assistance systems are reviewed. Finally, challenges 
and future research directions are pointed out. It is expected 
that this article will serve as a starting point for new research-
ers and engineers in the autonomous driving field and provide 
a bird’s-eye view to both neuromorphic vision and autonomous 
driving research communities.

Introduction
Over the past few decades, the rapid development of electron-
ics, information technologies, and artificial intelligence have 
made great progress in artificial visual sensing and percep-
tion systems. For example, the vision system of an autonomous 
vehicle becomes more intelligent by using deep learning tech-
nology. However, it still has some shortcomings compared 
with biological counterparts, such as the human and animal 
visual systems. Even small insects, such as bees, outperform 
the most advanced artificial vision systems such as high-qual-
ity cameras in routine functions, including real-time sensing 
and processing, low-latency motion control, and so on. More 
importantly, such biological neural systems can well perform 
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tasks with small energy consumption. In fact, biological neural 
systems usually consist of a large number of relatively simple 
elements. They operate in a massively parallel principle, which 
is different from the most common type of vision sensors such 
as CMOS cameras. Thus, some researchers and engineers have 
tried to mimic the working principles of the biological visual 
systems and come up with a new artificial visual system.

Recently, the developments of material technologies, litho-
graphic processes, very large-scale integration (VLSI) design 
techniques, neuroscience, and neuromorphic 
technologies have enabled the novel concep-
tion and fabrication of bio-inspired visual 
sensors and processors. These new sensors 
and processors provide different methods 
to sense and perceive the world. The event-
based neuromorphic vision sensor is such a 
bio-inspired vision sensor mimicking bio-
logical retina from both the system level and element level; 
it poses a paradigm shift in the way of visual information 
acquisition, processing, and modeling. The dynamic vision 
sensor (DVS) proposed by the group of Tobi Delbruck [1] is 
the first practicable event-based neuromorphic vision sensor 
based on the biological principle. DVS captures the per-pixel 
brightness changes (called events) asynchronously instead of 
measuring the absolute brightness of all pixels at constant 
rate, resulting in promising properties compared to standard 
frame-based cameras, such as low power consumption and 
low latency (in the order of microsecond), HDR (120 dB), and 
high temporal resolution [2]. Thus, an alternative visual sens-
ing and perception system for autonomous vehicles is pro-
vided in challenging scenarios that state-of-the-art standard 
frame-based cameras cannot well perform [3], [4], such as 
high-speed scenes of the autonomous highway driving, low 
latency of motion control, and low power consumption of the 
vehicle onboard system.

It is well known in the research of autonomous driving that 
radar, lidar, ultrasound, and cameras form the backbone of sen-
sor systems of the autonomous vehicle [5]–[7]. These sensors 
acquire the visual data as a sequence of snapshots recorded 
at discrete time stamps; therefore, visual information is com-
pressed and quantized at a predefined frame rate. Consequent-
ly, a problem that is often known from the signal processing 
domain (undersampling) arises due to the timescale of motions 
in the observed scenes and the frame-rate of the recording 
camera. Things occurring between the adjacent frames, along 
with the consequent information, would get lost. Generally, 
the advanced algorithms with multiple-sensor fusion are usu-
ally developed to compensate single-sensor shortcomings in 
demanding applications such as highly piloted driving systems 
with low-latency motion control and visual feedback loops. 
Rather than solving this problem from an algorithmic perspec-
tive, it is better to explore alternative methods from a novel 
sensing perspective, such as event-based neuromorphic vision 
sensors. This results in providing great value for promoting 
subsequent tasks to become more robust, accurate, and com-
plementary together with advanced algorithm development.

As an emerging sensing technology, the algorithms and 
applications of event-based neuromorphic vision are in the 
preliminary stage. Some works have been summarized in [8]. 
Unlike [8], this article aims to provide a thorough overview 
of the event-based neuromorphic vision for autonomous driv-
ing, from a signal processing perspective with a focus on visual 
perception algorithms and applications (see Figure 1). Specifi-
cally, the introduction starts from the operation principle of 
this bio-inspired neuromorphic vision sensor; then, the unique 

advantages of the sensor and its connection 
with the perception system of autonomous 
vehicles are discussed. Taking these prom-
ising properties into consideration, the sig-
nal processing techniques about event noise 
processing, event data representation, and 
meaningful event-based neuromorphic vi -
sion algorithms of given autonomous driv-

ing tasks are illustrated. Afterward, the works of event-based 
neuromorphic vision that are dedicated to specific applications 
in autonomous driving are reviewed. Finally, we address the 
problems remaining to be tackled and the directions for fu -
ture research.

Bio-inspired vision

A biological retina
The retina of vertebrates, such as humans, is a highly devel-
oped multilayer neural system consisting of light sensitive cells 
which contain millions of photoreceptors. It is the place where 
the acquisition and preprocessing of the visual information 
happen. As shown in Figure 2(c), the retina has three primary 
layers including the photoreceptor layer, the outer plexiform 
layer, and the inner plexiform layer.

The photoreceptor layer consists of light-sensitive cells that 
convert incoming light into electrical signals and drive the 
horizontal cells and bipolar cells in the outer plexiform layer. 
There are two major types of bipolar cells: ON- and OFF-bipo-
lar cells. The ON- and OFF-bipolar cells are responsible for 
coding the bright and dark spatial-temporal contrast changes, 
respectively. Particularly, the firing rate of the ON-bipolar 
cells will increase while the OFF-bipolar cells will no longer 
generate spikes if the illumination is increasing. This, in turn, 
increases the firing rate of OFF-bipolar cells in the case of illu-
mination decreasing (such as getting darker). In the absence of 
a light stimulus, both cells generate few random spikes. This 
phenomenon is achieved by comparing the photoreceptor’s sig-
nals with the spatial-temporal values, which are determined by 
the mean value of the horizontal cells, facilitating the connec-
tion between photoreceptors and bipolar cells laterally. In the 
outer plexiform layer, the ON- and OFF-bipolar cells synapse 
onto the amacrine cells and ON- and OFF- ganglion cells in 
the inner plexiform layer. The amacrine cells mediate signal 
transmission between bipolar cells and ganglion cells. The 
ganglion cells carry information along with different parallel 
pathways in the retina, which is conveyed to the visual cortex. 
Thus, the retina is responsible for converting spatial-temporal 

As an emerging sensing 
technology, the algorithms 
and applications of event-
based neuromorphic vision 
are in the preliminary stage.
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illumination changes into pulses, which is transmitted to the 
visual cortex via the optic nerve.

Silicon retina
Silicon retinas are visuals that model the biological retina and 
follow neurobiological principles. Pioneers of silicon retinas 
are Mahowald and Mead, who introduced their silicon VLSI 
retina in 1991 [9]. This kind of sensor is equipped with adapt-
able photoreceptors and a chip with a 2D hexagonal grid of 
pixels. It replicates parts of cell types of biological retinas, in-
cluding the photoreceptors, bipolar cells, and horizontal cells. 
Therefore, this kind of sensor represents merely the photore-
ceptor layer and the outer plexiform layer. Later, Zaghloul and 

Boahen built the Parvo-Magno retina, which is superior to the 
silicon VLSI retina, by modeling five retina layers.

Despite the promising structure, many of the early silicon 
retinas originate from the biological sciences community and 
are mainly used to demonstrate neurobiological models and 
theories without considering real-world applications. Recently, 
an increasing amount of effort from Tobi Delbruck’s team has 
been put into the development of practicable silicon retina DVS 
based on biological principles [1]. In Figure 2, the three-layer 
model of a human retina [Figure 2(c)], and corresponding DVS 
pixel circuitry [Figure 2(a)] are presented. Typical signals of 
the pixel circuits are displayed in Figure 2(b). The upper trace 
denotes a voltage waveform at the node ,vlog  which tracks 

Event-Based Neuromorphic
Vision Sensor for Autonomous Driving

Event Noise Processing Event Data Representation

Event-Based Signal Preprocessing

Event-Based
Neuromorphic Vision Algorithms

Applications of
Autonomous Driving

Various
Event-Based Assistance Systems

(a) (b) (c) (d) (e) (f) (g) (h)

(i)

(j) (k) (l)

FIGURE 1. An overview of event-based neuromorphic vision sensors for autonomous driving, with representative examples for emerging systems and ap-
plications: (a) tracking (adapted from [22]), (b) optical flow (adapted from [29]), (c) depth estimation (adapted from [29]), (d) object detection (adapted 
from [52]), (e) semantic segmentation (adapted from [35]), (f) steering prediction (adapted from [3]), (g) image reconstruction (IR) (adapted from [45]), 
(h) panoramic stereo vision (adapted from [47]), (i) DET data set (adapted from [16]), (j) DDD17 data set [18] (adapted from [3]), (k) N-Cars data set 
(adapted from [17]), and (l) MVSEC data set (adapted from [4]).
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the photocurrent through the photoreceptor layer circuit. The 
outer plexiform layer circuit responds with spike events ( )vdiff

of different polarities to positive and negative changes of the 
photocurrent. Spikes are transported to the next processing 
stage by the inner plexiform layer circuit. A large number of 
log-intensity changes are encoded in the events. Figure 2(d) 
illustrates the accumulated events including ON event (illumi-
nation increased) and OFF event (illumination decreased) that 
are drawn as white and black dots. 

Today’s representatives of silicon retinas are mainly from 
pioneers Tobi Delbruck and Christoph Posch and represent 
a compromise between biological and technical aspects. In 
their development, one prominent challenge posed is usually 
regarded as a wiring problem, indicating that each pixel of the 
silicon retina needs its own cable, which is impossible for chip 
wiring. A key technique for the solution, named address event 
representation (AER) was originally from the Caltech group of 
Carver Mead; it is used as an event-controlled and asynchro-
nous point-to-point communication protocol for prototypes of 
the silicon retina.

As illustrated in Figure 3, the basic functionality of AER 
is implemented by an address encoder (AE), an address de -
coder (AD), and a digital bus. All neurons and pixels could 
transmit the time-coded information on the same line because 
the digital bus implements a multiplex strategy. The AE of 

the sending chip generates a unique binary address for each 
neuron or pixel in case of a change. The bus transmits the 
address at high speed to the receiver chip. Then, the AD 
determines the position and generates a spike on the receiver 
neuron. Event streams are employed in AER to communi-
cate among chips. An event is a tuple ( , , , );x y t p x and y
are pixel addresses; t is the time stamp; and p represents the 
polarity. The polarity indicates the increase and decrease 
in the lighting intensity, corresponding to an ON event and 
OFF event, respectively.

This article focuses mainly on the first practically usable 
silicon retina, the DVS, which follows the natural, frame-free, 
and event-driven approach that triggers a plethora of research 
in event-based neuromorphic vision and autonomous driving. 
[A recent approach by Tobi Delbruck is the so-called dynamic 
and active pixel vision sensor (DAVIS) that combines dynamic 
and static visual information into a single pixel.] The DVS pixel 
models a simplified three-layer biological retina by mimicking 
the information flow of the photoreceptor–bipolar–ganglion 
cells (see Figure 2). Pixels operate independently and attach 
special importance to the temporal development of the local 
lighting intensity. The DVS pixel would automatically trig-
ger an event (either ON event or OFF event) when the relative 
change in intensity exceeds the threshold. Therefore, the work-
ing principle of the DVS is fundamentally different from the 
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frame-based camera. There are three key properties of biologi-
cal vision that are kept in this silicon retina: the relative illu-
mination change, the sparse event data, and the separate output 
channels (ON/OFF). The major consequence of the DVS is that 
the acquisition of visual information is no longer controlled 
by any form of external timing signals such as frame clock or 
shutter, while the pixel itself controls its own visual informa-
tion individually and autonomously.

Advantages of bio-inspired vision sensors
Due to the fundamentally different working principle and the 
mimicking of the biological retina, the event-based neuro-
morphic vision sensors have several advantages over standard 
frame-based cameras.
■ Energy-friendly properties: Since event-based neuromor-

phic vision sensor transmits only events and autonomously 
filter redundant data, power is only used to process active 
pixels (e.g., the events triggered by illumination changes). 
Particularly, an energy-friendly sensor is more important 
than advanced algorithms for the onboard computers and 
devices in autonomous vehicles.

■ Low latency: There is no need for the global exposure of 
the frame because each pixel works independently. Ideally, 
the minimal latency is 10 s.n  The low-latency control of 
the autonomous vehicle is highly dependent on the percep-
tion systems. A low-latency perception system such as an 
object-detection system based on an event-based neuro-
morphic vision sensor would save lots of time in avoiding  
obstacles for the control systems.

■ HDR: The event-based neuromorphic vision sensor such as 
DVS has an HDR (120 dB), which far exceeds that of the 
frame-based cameras (60 dB). Event-based neuromorphic 
vision sensors such as the DVS can simultaneously adapt 
to very dark and bright stimuli ensuring a highly robust 
perception system even in a light-changing scene such as 
an autonomous vehicle driving through a tunnel.

■ Microsecond resolution: The brightness changes can be cap-
tured quickly in analog circuity. With a 1-MHz clock, events 
can be detected and time-stamped with microsecond resolu-
tion. Considering the fast response requirement of the con-
troller in autonomous vehicles in emergency driving scenes, 
this property is quite useful in autonomous driving.

■ No motion blur: In the high-speed driving scenario, the 
motion blur problem occurs when the motion of the mov-
ing objects is beyond the sampling frequency of the frame-
based camera; this may cause the failure of the perception 
system. An event-based neuromorphic vision sensor can 
capture dynamic motion precisely with no motion blur; it 
is of great value to autonomous driving community.

Event noise processing
The preprocessing of the raw data is essential for extract-
ing meaningful information for sensor systems. An event-
based neuromorphic vision sensor not only captures the change in 
the light intensity caused by moving objects, it also generates 
some noise activities due to the movements of background 
objects and the sensor noise such as temporal noise and junc-
tion leakage currents [10]–[12]. As shown in Figure 4, the 
event noise processing technique is responsible for excluding 
the event noises from the event stream. Two commonly used 
methods in the literature, namely the spatial-temporal correla-
tion filter and the motion consistency filter, are illustrated 
as follows.

Spatial-temporal correlation filter
For a newly incoming event ( , , , ),e x y t pi i i i i=  the spatial-tempo-
ral filter searches the most recent neighborhood event around 
the current pixel location ( , )x yi i  within a distance D. The in-
coming event would be regarded as a nonnoise event if the time 
difference meets:

,t t di n t1- (1)
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FIGURE 3. The AER communication protocol: (a) three neurons on the sending chip generate spikes; (b) spikes are interpreted as binary events. A binary 
address is generated by the AE and transmitted to the receiver chip by the bus line; (c) the binary address is decoded to the binary event by the AD; and 
(d) spikes are emitted on the corresponding neurons of the receiver chip where the positions of the neurons are determined by the AD.
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where ti  is the time stamp of the event; tn  is the time stamp of 
the most recent neighborhood event; and dt  is the predefined 
threshold. The search for the most recent event checks eight 
neighborhood pixels around ( , ),x yi i  as shown in Figure 4. It 
lacks temporal correlation with events in their spatial neigh-
borhood because the event noise occurs randomly. Hence, 
the spatial-temporal correlation filter can effectively filter out 
event noise.

Motion consistency filter
In Figure 4, the principle of the motion consistency filter [13] is 
depicted. The blue dot denotes an incoming event caused by 
the object motion and the black dot represents an event noise. 
In the spatial-temporal domain, a newly incoming event 
should be consistent with the previous events (represented 
by red dots) caused by the same moving object. In a local 
region, the incoming event can be modeled as a consistent 
“moving plane” M. In this way, the velocity ( , ),v vx y  can be 
used to assess the motion consistency, and the event noise can 
be removed because the previous events (the red dots, signal) 
and the black dot are not on the same plane. Concretely, the 
motion consistency plane for each active event ei can be for-
mulated as

,ax by ct d 0i i i+ + + = (2)

where ( , , , )a b c d R4!  defines the plane M; ( , )x yi i  is the 
coordinate of event ;ei  and ti  is the time stamp of event 

.ei  The event noise processing is an essential step to ex-
tract useful information from unwanted noise data for bio-
inspired visual sensing and perception tasks of autonomous 
driving; it can promote the accuracy and speed of subse-
quent algorithms.

Event data representation
As an emerging sensing modality, event-based neuromorphic 
vision sensors only transmit local pixel-level changes caused 
by movement or light intensity change in a scene. The output 
data are sparse and asynchronous event streams which can-
not be directly processed by standard vision pipelines, such 
as convolutional neural network (CNN)-based architecture. 
Therefore, encoding methods are utilized to convert asyn-
chronous events into synchronous image- or grid-like repre-
sentations for subsequent tasks such as object detection and 
tracking. According to whether or not the methods contain 
temporal information in the converted representations, we 
introduce two state-of-the-art encoding methods: spatial en-
coding and spatial-temporal encoding methods.

Spatial encoding
The spatial encoding methods convert event streams into event 
frames by storing event data at pixel location ( , )x yi i  with ei-
ther fixed-time interval (e.g., 30 ms, constant time frame) or 
fixed number of events (e.g., 500 events, constant count frame). 
For an event frame, the value of the pixel is usually represented 
by the polarity of the last event (the positive event is 1 and the 
negative event is −1) or the statistical characteristics (such as the 
event count in a fixed-time interval, event count frame) of the 
events in the fixed interval. Assuming that ( , , , )e x y t p [ , ]i i i i i i N1!

represents event stream, typical approaches based on spatial 
encoding can be defined as follows:
1) Constant time frames:

( ( ) ),F e T j t T j1cardj
t

i i$ $; # #= - (3)

where F j
t  represents the jth frame of time interval T; 

card() is the cardinality of a set; and ei  is the ith event of 
the event stream.
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FIGURE 4. Event noise processing. The top branch is the spatial-temporal correlation filter; the bottom branch is the motion consistency filter. 
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2) Constant count frames:

( ( ) ) .F e E j i E j1cardj
e

i $ $; # #= - (4)

The constant count frame is defined similarly to constant 
time frame. F j

e  is the jth frame that contains E events.
3) Event count frames:

.( , ) ( , )Hist x y x x y y
,p t T

i i
1i i

d= - -
!

+

=+

/ (5)

Two separate histograms for positive and negative events 
are generated in a fixed-time interval T. ( , )Hist x y+  denotes 
the histogram for positive events, where d  is the Kronecker 
delta function. The same goes for the negative-events his-
togram, which is represented by Hist-  with .p 1i =-  The 
final representation of the events in the fixed-time interval 
T is an event frame, which consists of two histograms Hist+

and ,Hist-  as shown in Figure 5. Since the principle of the 
spatial encoding method is to project the events onto the 
spatial plane ( ,x y plane)-  it loses the temporal information 
of all of the events.

Spatial-temporal encoding
The microsecond temporal resolution of the event stream pro-
vides a highly precise recording and description of the scene 
dynamics, which is valuable in many perception tasks such 

as high-speed moving object detection (e.g., vehicles). Spatial-
temporal encoding methods combine spatial and temporal in-
formation of the events and convert events into a compact repre-
sentation. A comparison of spatial-temporal encoding methods 
is presented in Table 1. A detailed description of these methods 
is displayed as follows.

Surface of active events
The surface of active events (SAE) uses time-stamp values in-
stead of intensity values to represent the pixel values. For each 
incoming event :ei

: ( , ),SAE t P x yi i i7 (6)

where ti is the time stamp of the most recent event at each pixel, the 
pixel value P at ( , )x yi i  is directly determined by the occurrence 
time of the events. The disadvantage of the SAE method is that it 
completely ignores the information of previous events happening 
at ( , )x yi i  and only uses the time stamp of the most recent event.

Leaky integrate-and-fire
Leaky integrate-and-fire (LIF) is an artificial neuron in-
spired by biological perception principles and computation 
primitives. A neuron receives input spikes (events) generated 
from a DVS, which modifies its membrane potential. If the 
membrane potential exceeds a predefined threshold, a spike 
stimulus will be sent to the output. The LIF neuron can be 
modeled as

Hist +(x, y)

Hist –(x, y)

Hist +(x, y) + Hist –(x, y)

Asynchronous Event Stream

x

t

y

Integration Over Time T

Event Frame–Channel One

Event Frame–Channel Two

FIGURE 5. The process of converting asynchronous event data into an event frame. An event frame consists of two histograms from the positive events 
and negative events, respectively. 

Table 1. The comparison of different event data representations of spatial-temporal encoding. 

Representation Dimensions Polarity Channel Intensity Weakness 
SAE H # W 2 Time stamp of the most recent event Without temporal history 
LIF H # W 1 Event spikes Without polarity information 
Voxel grid B # H # W 1 Sum event polarities Without polarity information 
EST B # H # W 2 Sample event point-set into the grid Without the least amount of information

The polarity channel is 2 if the encoding method considers the polarities of events; otherwise, it is 1. H and W represent the image height and width dimensions, respectively;  
B denotes the number of temporal bins.
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( ( ) ) ( ),
dt
dV V t V RI tresetx =- - +  (7)

where, V(t) is the membrane potential, which is a function 
across time; I(t) is the total synaptic current; R is the membrane 
resistance; and x  is the membrane time constant. The neuron 
fires (produces an output spike) when the membrane potential 
reaches the threshold voltage ( )Vth  and then resets to reset volt-
age ( ).Vreset  As shown in Figure 6, the spatial-temporal events 
are encoded by an LIF neuron, in which each event updates 
membrane potential of the neuron and the final converted rep-
resentation is composed of the output spikes. An LIF neuron 
can not only transform event data into representation, it also 
serves as the basic unit of a spiking neural network (SNN) (see 
the section “SNNs”).

Voxel grid
Voxel grid is a novel event representation aiming to improve 
the resolution of event stream in the temporal domain. Giv-
en a set of N events ( , , , ) ,x y t p [ , ]i i i i i N1! B bins are used to 
split the time dimension; then, the time stamps of events 

are scaled to the range of [ , ].B0 1-  The event voxel grid 
is defined as

/( ) ( ) ( ),t B t t t t1 i N1 1= - - -t (8)

( , , ) ( ) ( ) ( ),V x y t p k x x k y y k t ti
i

N

i i= - - - t/ (9)

( ) ( , ),maxk z z0 1 ; ;= - (10)

where, k(z) is the trilinear voting kernel, which is equivalent 
to the definition in [14]. As shown in Figure 7, events are con-
verted into voxel grid representation with the fixed kernel. This 
representation retains the distribution of the events across the 
spatial-temporal dimensions.

Event spike tensor
Event spike tensor (EST) is an end-to-end learned repre-
sentation [15]. In a given time interval T, EST can be formed 
by sampling the convolved signal,

[ , , ] ( , , ) ( , , ),S x y t f x y t k x x y y t t
e p

i i i c i i i

i

= - - -! !

! !

/ (11)
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FIGURE 7. The process of converting asynchronous event data into grid-based representation with a fixed kernel [14] and a learnable kernel [15].
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FIGURE 6. An LIF representation: Asynchronous spatial-temporal events are converted into event data representation by LIF neurons.



42 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

where, ( , , )f x y ti i i!  is a measurement assigned to each event to 
represent the corresponding intensity value at the pixel loca-
tion; kc is the kernel convolution function to derive meaningful 
signal from the event stream. Generally, both the measurement 
and kernel are handcrafted functions in previous works, as il-
lustrated in Figure 7. Particularly, the EST deploys a multilayer 
perception replacing the handcrafted kernel function in (11) to 
fit the data with the purpose of finding the best function for 
event streams. Simultaneously, the measurement function is 
chosen from a set of fixed functions. Examples of such func-
tion are the event polarity ;f 1!=!  the event 
count ;f 1=!  the time stamp ;f t=!  and the 
normalized time stamp ( ) / .f t t T0= -!

Event-based neuromorphic vision 
algorithms and applications of 
autonomous driving
The fundamental algorithms are the basis of 
the perception system of autonomous driv-
ing. For emerging systems and applications of bio-inspired vi-
sion, event-based neuromorphic vision algorithms are designed 
to extract features from event streams to fulfill given tasks. These 
methods can run directly on the event stream or take event rep-
resentations as input (see the section “Event Data Representa-
tion”). They have been applied successfully in many vision tasks.

Event-based data sets of autonomous driving
In recent years, researchers have started to investigate the us-
age of event-based neuromorphic vision sensor such as DVS 
and DAVIS in the visual sensing and perception system of the 
autonomous driving system. There are many data sets that are 
built to promote the research of event-based neuromorphic vi-
sion, neurorobotics, and autonomous vehicles. In this section, 
four public event-based data sets dedicated to autonomous driv-
ing are discussed.

DET data sets
The performance of conventional lane extraction algorithms is 
limited because a frame-based camera cannot work well when 
the light is extremely dark or changes rapidly. To tackle this 
problem, [16] uses event-based neuromorphic vision sensors to 
build a high-resolution data set, called the DET data sets, for 
lane extraction. The DET data set containing various traffic 
scenes is collected by driving on tunnels, bridges, overpasses, 
and urban areas. The data set includes 5,424 event frames of 
1,280 × 800 pixels with corresponding labels and consists of 
a training set of 2,716 frames, a validation set of 873 frames, 
and a test set of 1,835 frames. Two kinds of labels (per-pixel 
label without distinguishing lanes and per-pixel label with dis-
tinguishing lanes) are provided. The DET data set is the first 
bio-inspired vision data set for lane detection—a fundamental 
problem in autonomous driving.

N-CARS data sets
The N-CARS data set introduced by [17] provides recording 
cars in urban environments with a DVS. The data set con-

sists of 12,336 car samples and 11,693 noncar (background) 
samples. Specifically, 7,940 car samples and 7,842 background 
samples are training samples, and others are testing samples. 
Each example is labeled by semiautomatic protocol with man-
ual correction of the wrong one.

MVSEC data sets
In [4], the multivehicle stereo event camera data set (MVSEC) 
created for 3D perception with multiple sensors was presented. 
The MVSEC is the first data set with a synchronized stereo 

event-based neuromorphic vision system. 
The ground-truth depth data are generated 
from a calibrated lidar system contributing 
to stereo depth estimation with the event-
based vision sensor. The MVSEC data set 
consists of long outdoor sequences in a va-
riety of illuminations and driving speeds, 
which can be used for the evaluation of 
event-based visual odometry, localization, 

obstacle avoidance, and 3D reconstruction in challenging and 
real-word driving scenes.

DDD17 data set
For self-driving applications, end-to-end learning of the control 
model is a fascinating direction. The DDD17 data set [18] is the 
first large-scale public data set with a DAVIS sensor. The data 
are recorded in highway and city scenes driving from Switzer-
land to Germany. It has more than 12 h of data collected under 
different weather, road, and light conditions, covering the dis-
tance of more than 1,000 km. Furthermore, vehicle data, such 
as speed, GPS position, driver steering, throttle, and brake are 
also recorded.

Handcrafted feature
The concept of time surface is proposed to track the activ-
ity of the object due to the lack of effective low-level feature 
representations and descriptors for an event-based vision 
mission. It represents temporal characteristics and describes 
the spatial-temporal context around an event. For an event 
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where ( , )C x yi i i=  is the pixel coordinates of the incoming 
event ,ei R is the radius of the spatial neighborhood around ,ei

( , )T C R Pi +  is the time stamp of the last event with polarity P
received from pixel ,C Ri +  and x  is a constant decay factor. 
The exponential decay expands the activity of past events and 
records history information of the activity in the neighbor-
hood. Time surface has been effectively used in various vision 
tasks, such as object recognition and feature tracking. Further, 
a hierarchy of time surface is introduced for object recogni-
tion [19]. Relying on a time-oriented approach, this model is 
used to extract valuable spatial-temporal features from event 

There are many data sets 
that are built to promote 
the research of event-
based neuromorphic 
vision, neurorobotics, and 
autonomous vehicles.
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streams. Based on the findings in [19], a sparse coding basis 
decomposition was used to reduce the number of prototypes 
in a hierarchy structure for lowering computational cost and 
memory need [20]. However, they only achieved better recog-
nition performance for simple shapes, such as numbers and 
letters, while they cannot well perform for complex objects, 
such as cars. Inspired by the histogram of orientation gra-
dient feature widely used in frame-based vision, an effective 
event descriptor named histogram of averaged time surfaces
(HATS) was constructed [17]. Then, better classification per-
formance and real-time computation were obtained. HATS 
convert event streams into local memory time surfaces and 
computes the histograms to formulate the final descriptor. After 
these features are extracted from event streams, a simple linear 
support vector machine classifier is used to recognize objects in 
the N-CARS data set. 

Clustering
A classical unsupervised learning approach is clustering. Given 
a set of data, the clustering algorithm can be used in this study 
to generate different groups. The data with different character-
istics are grouped into different clusters. The clustering meth-
ods can be applied directly to generate object proposals because 
the event stream from the DVS can be treated as sparse point 
cloud data where each point is an event. For example, a cluster-
ing method named Gaussian mixture models (GMMs) is used 
to track the pedestrian [22]. The method achieves accurate de-
tection and tracking of pedestrian objects by extending GMMs 
with a stochastic prediction of objects’ states. The goal of track-
ing is to estimate the state of one or multiple objects over time. 
In case of a possible collision with other traffic participants, the 
autonomous vehicle requires sufficient reaction time to ensure a 
safe brake distance. It is difficult to track a pedestrian because a 
pedestrian can suddenly change his or her moving direction. The 
results in [22] indicated that applying clustering to spatial-tem-
poral event data has a large potential for robust object tracking.

Bio-inspired feature learning

SNNs
An SNN is a bio-inspired approach that can operate directly 
on spatial-temporal event data. The computational pattern of 
SNNs mimics the working principle of receptive fields in the 
primary visual cortex. As basic building blocks of SNNs, LIF 
and adaptive exponential are both inspired by the biological 
neurons found in the visual cortex of mammalians, which en-
code temporal information and make them naturally fit asyn-
chronous event streams. The basic principle of SNN is that a 
neuron will not emit any spike if it has not received any in-
put spike from the preceding SNN layer. Moreover, the cor-
responding neuron will generate spikes that are fed to the next 
layer only if the membrane voltage caused by received spikes 
exceeds a predefined threshold. The predefined network units, 
such as the difference of Gaussians or Gabor filters, are usu-
ally used in the first layer of SNN to extract features. Features 
are transmitted from the first layer of SNN to the deeper lay-

ers in parallel [23]–[25]. The major disadvantage of conven-
tional SNNs is not differentiable, causing the popular training 
methods to be inapplicable. In the context of autonomous driv-
ing, a SNN architecture consisting of refractory, convolution, 
and clustering layers was presented [26]. It was designed with 
biorealistic LIF neurons and synapses. The LIF neurons are 
used as basic building blocks in the proposed algorithm, where 
the refractory layer filters off fraction of the input events to 
generate spike. Then, the spikes are convolved by convolution 
layer to produce region proposal boxes. Moreover, the cluster-
ing layer combines these boxes to cluster together to form the 
shapes of objects. This method is validated on object detection 
with real traffic scenes including humans, bikes, cars, vans, 
trucks, and buses.

SNN with backpropagation
SNN with handcrafted feature extractors (such as Gabor filters) 
cannot learn weights naturally from the data. To overcome this 
drawback, researchers established a novel architecture of SNN 
with LIF neuron and winner-takes-all (WTA) circuits [21]. The 
LIF neuron uses dynamic weights rather than a simpler refrac-
tory mechanism to update its membrane potential. In a WTA 
circuit, it would inhibit other neurons from spiking once an 
output spike occurs in a neuron. Furthermore, the lateral in-
hibition is employed to put the dynamic weights of all inhib-
ited neurons in the WTA circuit into the refractory state. The 
differentiable transfer functions are derived in the WTA con-
figuration to make SNN trainable with backpropagation; more-
over, the performance of SNN architecture is also improved. In 
Figure 8, an SNN network with backpropagation is illustrated. 
However, trainable SNN is only tested on simple data sets (such 
as MNIST) and has not been applied in specific autonomous 
driving scenarios. As the output of event-based neuromorphic 
vision sensor is a spatial temporal event stream which is fun-
damentally different from frame-based camera, it requires the 
design of specifically tailored algorithms to accommodate the 
nature of events, and [21] indicates the prospect of implement-
ing deep SNNs.

CNN
CNN is a popular feature extraction architecture, which is 
composed of three types of layers, including a convolutional 
layer, a pooling layer, and a fully connected layer. It uses spa-
tially localized convolutional filtering to capture local features 
of input image. Basic visual features, such as lines, edges, and 
corners, are learned in the first few layers, while more abstract 
features are learned in deeper layers. For an input image ma-
trix I, the correspondence activation map M is computed in the 
nth neuron of the CNN as follows
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where the image size is ,k2 1+ W is the nth convolutional 
filter, and v  is the nonlinear activation function. Generally, a 
max pooling layer follows each convolutional layer, in which 
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the local maximum is used to reduce the dimension of the 
matrix and prevent overfitting. Moreover, fully connected 
layers are usually added to learn the nonlinear combination 
of extracted features from previous layers. Over the decades, 
many variants of CNNs, such as fully CNNs and encoder–
decoder networks, have emerged. These networks have dif-
ferent structures from traditional CNNs, such as removing 
the full connection layer. The performance of CNNs has sur-
passed traditional machine learning methods in many vision 
tasks, relying on successful training algorithms and large 
amounts of data.

CNNs for optical flow, depth, and egomotion
Known as a 2D motion estimation, the optical flow is defined as 
the distribution of apparent velocities of movement of bright-
ness patterns between two images. It provides valuable infor-
mation about the scene and serves as input for several tasks, 
such as tracking and visual odometry. In the neuromorphic 
vision research community, some works attempt to estimate 
optical flow by taking advantage of high temporal resolution 
of event-based sensors [27]. EV-FlowNet, a self-supervised 
deep learning architecture for optical flow estimation for 
event-based sensors, is proposed in [28]. In this method, a 
four-channel event representation consisting of the histogram 
(5) and SAE (6) of different polarity is used to pass through a 
pipeline that is composed of four stride convolutional layers, 
two residual blocks, and four up-sampling convolutional layers 
for obtaining flow estimation. By evaluating an MVSEC data 
set, the network is able to accurately predict optical flow from 
event streams. In [29], a novel neural network framework is 
proposed to acquire motion information including optical flow, 
depth, and egomotion from a set of inputs (a voxel grid) that 
is an event data representation mentioned in the “Voxel Grid” 
section. The network architecture consists of encoder–decoder 
networks and pose models; among them, the encoder–decoder 
section is responsible for predicting optical flow and depth, 
while the pose model is responsible for estimating egomotion. 

Experimental results in the MVSEC data set indicate that the 
presented network can learn various motion information of 
events well. Recently, a lightweight evenly cascaded convo-
lutional network (ECN) using monocular event-based sensor 
input for dense depth, optical flow, and egomotion estimation 
was introduced in [30]. ECNs use an encoder network to pre-
dict pose; meanwhile, an encoder–decoder network is ap-
plied to obtain the scaled depth. The algorithm can operate at 
250 frames/s (fps) on a single NVIDIA 1,080 titanium GPU. 
Compared with previous works, it makes significant improve-
ments on the performance of the MVSEC data set. 

CNNs for object detection
Reliable object detection is essential to avoid accidents that 
might be life threatening because a self-driving car is shar-
ing the road with many traffic participants, such as vehicles 
and pedestrians. For instance, a supervised learning method 
is applied on event data for object detection under egomo-
tion [31]. The data set used in this article is DDD17, which is 
a large event-based data set applying DAVIS to record vari-
ous challenging scenarios under egomotion. The DAVIS is 
a sensor consisting of an event-based neuromorphic sensor 
and a synchronized gray-scale frame-based camera. In [31], 
gray-scale images are fed into a state-of-the-art frame-based 
CNN to generate outputs (pseudolabels), which are used as 
ground truths for subsequent training on event-based data. 
This method achieves high-speed detection (100 fps) in a real 
outdoor scenario within various backgrounds such as day and 
night. As pseudolabels are not explicit enough, the authors 
manually labeled the DDD17 data set to explore the poten-
tial of event-based neuromorphic sensor for vehicle detection 
in autonomous driving [32]. A convolutional SNN is utilized 
to generate visual attention maps for synchronizing with the 
frame-based stream. Two separate event-based and frame-
based streams are incorporated into a CNN detector to obtain 
detection output. With a joint decision model to postprocess 
the output, the algorithm outperforms the state-of-the-art 

Layer n –1 Layer n +1Layer n

Spikes

Input

Reset

Lateral
Inhibition

Spikes

Spikes

Spiking Neuron

Spike Propagation

Membrane Potential Reset

Lateral Inhibition

Backpropagation Path

FIGURE 8. An example of how an SNN network works with backpropagation [21]. 
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methods that only employ frame-based cameras. The detec-
tion for stationary and moving people around a self-driving 
car has attracted the attention of researchers. Specifically, a 
multicue event information fusion for pedestrian detection 
was proposed [33]; it was evaluated on the data set recorded 
by a neuromorphic vision sensor. Based on the advantages 
of leveraging various properties of event streams, this article 
performed better on positioning and recognition of pedes-
trians. Recently, a cross-modal approach was presented in 
[34]; wormhole learning was utilized to pair red, green, blue 
(RGB) camera and event-based neuromorphic vision sensors 
to improve the object detection performance under the sce-
nario of urban driving. This method is different from transfer 
learning as it can be transferred back to the original domain 
to improve performance on the task. The experimental results 
of wormhole learning reveal that there are many innovative 
approaches to combine data from different heterogeneous 
sensors, such as RGB cameras, infrared cameras and neuro-
morphic vision sensors.

CNNs for semantic segmentation
In the sensing and perception system of autonomous driving, a 
comprehensive understanding of the surrounding environment 
is provided by semantic segmentation. The first CNN-based 
baseline for semantic segmentation with an event-based neu-
romorphic vision sensor is introduced in [35]. In this article, 
the authors build an event-segmentation data set (Ev-Seg) that 
is an extended version of DDD17 for semantic segmentation. 
Inspired by the study in [31], the labels of Ev-Seg are gener-
ated by running a trained CNN on gray-scale images. Then, 
an Xception-based CNN architecture is trained to learn gener-
alization ability from event streams. Finally, the complemen-
tarity between the frame-based camera and event-based neu-
romorphic vision sensor is presented through comparing the 
semantic segmentation results produced from event data and 
corresponding gray-scale images.

CNNs for active perception
Controlling the autonomous vehicle in challenging scenes such 
as highway driving requires a low-latency perception system. 
Hence, researchers try to tackle this tough problem by unlock-
ing the low-latency potential of event-based neuromorphic vi-
sion sensors. An end-to-end autonomous driving system, map-
ping from the event streams to the driving actions, is proposed 
in [3]. This system converts events to event count frames (his-
togram of different polarities) mentioned in (5), which are fed 
into a residual neural network (ResNet)-inspired network to 
predict the steering angle of the vehicle. The proposed method 
can accurately predict the steering angle of vehicles and per-
forms better on DDD17 data sets than the state-of-the-art 
systems using gray-scale images.

CNNs-to-SNNs
CNNs have demonstrated their ability to deal with many difficult 
vision problems, such as object detection. SNNs have present-
ed their potential for low-power event-driven neuromorphic 

hardware. However, the applications of SNNs are limited due 
to their shallow neural network architecture. Furthermore, the 
CNN-to-SNN model is developed to combine the benefits of 
deep architecture in CNNs with the bio-inspired mechanism 
of SNNs. References [36]–[38] illustrate that widely used CNNs, 
such as VGG, ResNet, and Inception-V3 can be converted 
into spiking networks. It is worth mentioning that the network 
can achieve a more robust performance via conversion from 
CNNs, although the conversion process would lose some pre-
cision and increase computation. Some works have been re-
viewed in [39].

Transfer learning via pretrained network
Transfer learning is a very effective method to improve the 
training performance of the deep neural network. Knowledge 
learned from a different domain can be exploited to initial-
ize the weights of a deep neural network. The availability of 
event-based data sets collected with a DVS sensor is limited 
compared with the data set recorded by frame-based cameras. 
Thus, by starting the supervised training process from a bet-
ter set of initial weights, the requirement of the training data 
can be reduced, and the generalization ability of the network 
can be improved. Pretrained models, such as VGGnet and 
ResNet, can be applied to bio-inspired sensing and percep-
tion tasks of autonomous driving. Specifically, event streams 
can be transformed into a three-channel image-like represen-
tation to serve as input to pretrained CNNs. In [40], the au-
thors combined an inceptive event time surface (IETS) with 
transfer learning to improve performance of object classifica-
tion. IETSs are generated to utilized transfer learning from 
the GoogLeNet that is pretrained on ImageNet, including the 
millions of real-world images. Nearly 100% classification ac-
curacy on the event-based N-CARS data set is achieved by 
the algorithm. In [41], a robust event stream object tracking 
method is presented. A VGG-16 model pretrained on Ima-
geNet is used to extract features to represent the appearance 
of the object. Based on correlative filter mechanism, the cor-
relation response map is computed on the extracted features. 
The proposed approach performs well in various challenging 
visual scenarios.

Event-based assistance systems
After the basics of event-based perception system of autono-
mous driving are covered, the event-based assistance systems 
are discussed.

Image reconstruction
The event-based neuromorphic vision sensor generates HDR 
event data even in extreme illumination conditions and also 
avoids motion blur under rapid motion. Reconstructing HDR 
intensity images from event streams facilitates the adoption of 
mature computer vision techniques. Previous works focus on 
exploiting the low latency of neuromorphic vision sensor by 
directly processing event data (such as SNNs) or transferring 
events to image-like or grid-like representations as mentioned 
in the section “Event Data Representation.” However, the deep 
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neural network trained on real image data (such as ImageNet) 
cannot be effectively transferred to these representations, even 
though it achieves some performance improvements (see the 
section “Transfer Learning via Pretrained Network”). As an 
alternative method, image reconstruction (IR) from event 
streams is first proposed in [42]. IR can achieve both high 
frame-rate images and high-quality images with no motion 
blur. In [43], the authors utilize the time stamp of new events 
to define a manifold for IR. With consid-
ering IR as an energy minimization prob-
lem, the proposed method is optimized and 
achieves real-time performance on a GPU. 
Furthermore, an asynchronous comple-
mentary filter is presented to reconstruct 
event streams for continuous-time intensity 
estimate [44]. In this article, the gray-scale 
frames and events produced by DAVIS are fused into an im-
age with high temporal resolution and HDR. In addition, a 
new framework for IR, named E2VID, is introduced in [45]. 
E2VID converts event stream into 3D spatial-temporal voxel 
grid sequences (see the “Voxel Grid” section), which are taken 
as the input of the network. The algorithm is trained on a large 
synthetic event data simulated with ESIM [46] to generate re-
constructed image frames. The reconstructed image data from 
event streams can be used for various applications such as ob-
ject recognition, SLAM, and optical flow estimation.

Panoramic stereo vision
Panoramic vision in 3D offers a full 360° surrounding view 
which facilitates the navigation and localization tasks for au-
tonomous driving. A novel multiperspective panoramic ste-
reo event-based vision system is proposed in [47]. It is composed 
of a pair of line event-based neuromorphic vision sensors. The 
authors present a novel event-driven stereo matching approach 
for 3D panoramic vision. The process steps of the event-driv-
en stereo matchintg algorithm include event map generation, 
event distribution measure, cost calculation, disparity estima-
tion and refinement. The experimental results indicate that the 
tailored event-driven stereo method achieves accurately 3D re-
construction in real time out of 360° panoramic views.

Visual odometry
The goal of the visual odometry is to estimate the position 
and orientation of a vehicle with vision sensors. The visual 
odometry system of an autonomous vehicle with a traditional 
frame-based camera has been developed for many years, 
while the method based on an event-based neuromorphic vi-
sion sensor is still in the preliminary stage. For example, an 
event-based visual odometry system for intelligent vehicle 
applications is proposed in [48]. The events generated from 
a DAVIS sensor are aggregated into constant time frame de-
fined in (3) to serve as input to subsequent algorithms. The 
feature tracking is used by visual odometry system to de-
velop parallel pose estimation and mapping. The feasibility 
of event-based neuromorphic vision sensors for bio-inspired 
visual odometry systems in real-word outdoor driving scenes 

is confirmed by the results of their experiment on the MVSEC 
data set.

Drowsiness driving monitoring
Drowsiness driving monitoring is important to ensure that 
the autonomous driving vehicle is under the supervision of 
the drivers. In [49], an event-based drowsiness driving de-
tection system is proposed. The event-based neuromorphic 

vision sensor is considered as an efficient 
and effective detector for the drowsiness 
driving-related motions due to the unique 
output. [49] proposes to recognize and lo-
calize the driver’s eyes and mouth motions 
from event streams, and extracts event-
based drowsiness-related features directly 
from the event streams caused by eye and 

mouth motions. Experiments in [49] demonstrate the high ef-
ficiency and accuracy under different illumination conditions 
such as subjects wearing sunglasses.

Spike compression
The event data compression is particularly important for main-
taining the real-time performance of the sensing system of au-
tonomous vehicles because both the data storage and transmis-
sion bandwidth of on-board event-based neuromorphic visions 
sensors equipped on the autonomous vehicles are limited. To ad-
dress this problem, a cube-based spike coding framework is pro-
posed by [50]. In the spatial-temporal dimension, an octree-based 
structure is put forward to adaptively cut the event (spike) stream 
into coding cubes, then address-prior mode and time-prior mode 
are designed to exploit the spatial and temporal characteristics of 
events for data compression. The proposed spike coding frame-
work is evaluated on the DDD17 data set. Experimental results 
indicate that it can achieve a better compression ratio against the 
raw event data. Reference [51] proposes to use mixture density 
autoencoder to learn a low-dimensional representation from an 
event stream, which preserves the nature of event-based data bet-
ter while being easy to feed to a sequence classifier.

Challenges and future directions 
in autonomous driving
Event-based neuromorphic vision is an emerging technique 
in the era of mature sensor hardware of autonomous driving. 
Comparing it with lidar, radar, and cameras is unfair because 
event-based sensors such as DVS are not at the same matu-
rity level as others. Conversely, there is substantial room for 
the development and improvement in the cross-research of 
event-based neuromorphic vision and autonomous driving. 
Challenges and future directions closely related to autono-
mous driving are pointed out in numerous opportunities, as 
described later.

Sensor fusion in perception system of autonomous driving
To fuse the event-based neuromorphic vision sensor with 
others, there is an unavoidable problem that the sensor fu-
sion brings back the disadvantages of providing a redundant, 

Event-based neuromorphic 
vision is an emerging 
technique in the era of 
mature sensor hardware 
of autonomous driving.
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sampled intensity output with linear encoding of intensity. 
On the contrary, the advantages are also obvious; that is, 
different kinds of sensors are complementary. For example, 
DVS contains no color information, which is provided by 
frame-based cameras. The distance and speed information 
can be provided by lidar and radar. It remains to be seen 
whether the DVS output can be used to 
trigger frame captures of other sensors. If 
it is, the DVS and other sensors can op-
erate together with mixed conventional 
machine vision, bio-inspired, and event-
based neuromorphic vision-based approach-
es. Therefore, some of the limitations of a 
traditional sensor-based perception system 
may be overcome; moreover, new scenari-
os that were previously inaccessible in the visual sensing and 
perception of autonomous vehicles might be reached.

Active vision system of autonomous driving
In robotics, the ability to directly fuse the perception with its 
motoric ability is often referred to as active perception. In au-
tonomous driving, it is found that the perception and action 
are often kept in separated spaces; this is a consequence of 
state-of-the-art sensors equipped on the autonomous vehicle 
being frame-based. The sensing and perception only exist in a 
discrete moment while the motion is a continuous entity. It can 
be argued that the event-based neuromorphic vision sensor can 
see the motion, which has the potential to cross the bridge be-
tween perception and motor control. New methods of encoding 
perceptions and actions could be meaningful to the active per-
ception system of autonomous driving. Moreover, this would 
create new opportunities for real-time navigation and obstacle 
avoidance for autonomous driving if the visual perception can 
be bound with the system dynamic to enable dynamic environ-
ment perception.

Large-scale autonomous driving benchmark based on an 
event-based neuromorphic vision sensor
It is well known that rapid development of autonomous driv-
ing is promoted by standardized benchmarks. For example, 
the growing popularity of deep neural networks in intelligent 
vehicles and large-scale benchmarks such as KITTI, Cityscale, 
and ImageNet, is interconnected and mutually reinforced. In 
the earlier days of event-based neuromorphic vison, most of 
the research work was done in an indoor environment due to 
the low resolution of sensors. Until recently, the event-based 
neuromorphic vision sensor has been expanded to outdoor 
scenarios, such as autonomous driving, by the teams of Tobi 
Debruck, Kostas Daniilidis, and David Scaramuzzsa. There is 
an emerging need for high-quality benchmarks in the fields of 
event-based neuromorphic vision and autonomous driving. A 
standard platform would bring the mainstream of computer vi-
sion-based intelligent vehicle research to pay attention to event-
based neuromorphic vision; furthermore, the unique strengths 
of bio-inspired vision would be leveraged to attract research 
interests in new sensing techniques for autonomous driving.

From simulated event data to real-world 
autonomous driving
Labeling the asynchronous event data is always a challenging 
problem because almost all of the annotation tools are developed 
for frame-based cameras. Additionally, there is not a standard 
format for the annotations. From one perspective, developing an 

easy-to-use tool for recording and labeling 
event data would make a significant con-
tribution to the community; from another 
perspective, the adoption of event-based 
neuromorphic vision technology would 
also be facilitated by developing simula-
tors. Particularly, the corresponding event 
streams, intensity frames, and depth infor-
mation could be generated by a simulator 

based on the working principle of the sensor. Simultaneously, 
the basic facts of all recording data including the trajectory of 
the sensor, the label of the object, and even the optical flow are 
also generated without the need for annotation. With photo-
realistic virtual driving scenes and realistic sensor models, 
the development of event-based visual sensing and perception 
system in autonomous vehicles will be accelerated by proto-
typing on simulated event data with transfer learning methods 
in the future.

Limitations that may exist as event-based neuromorphic 
vision sensors mature
There is no appearance feature such as color and texture be-
cause an event-based neuromorphic vision sensor only trans-
mits local pixel-level changes, making it perform poorly in 
some applications with high requirements for appearance fea-
tures. Although researchers have used the method of IR (men-
tioned in the section “Spatial Encoding”) to reconstruct image 
frames from event streams, the quality of reconstructed image 
frames is still not comparable to the output data produced by 
RGB cameras. The application of an event-based neuromor-
phic vision sensor is limited in some scenarios where energy, 
latency, and dynamic range are not important, especially in 
high-resolution complex scenarios.

Conclusions
Innovative solutions will emerge due to the challenges re-
maining on the road to fully autonomous driving. Concur-
rently, sophisticated signal processing techniques have been 
successfully applied to autonomous driving hardware such 
as cameras, lidars, and radars. Exploring alternative methods 
of visual sensing such as event-based neuromorphic vision is 
promising for promoting subsequent tasks to be more robust 
and complementary. It is reasonable to say that the research 
and development of an event-based neuromorphic vision for 
autonomous driving is still in its infancy. In this article, the 
advantages, signal processing techniques, emerging applica-
tions and systems, and future directions of an event-based 
neuromorphic vision for autonomous driving have been in-
troduced and analyzed. This article helps researchers and 
engineers take the first step in developing innovative signal 

There is an emerging 
need for high-quality 
benchmarks in the 
fields of event-based 
neuromorphic vision and 
autonomous driving.
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processing techniques toward bio-inspired visual sensing and 
perception of autonomous vehicles.
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AUTONOMOUS DRIVING: PART 1

You Li and Javier Ibanez-Guzman

utonomous vehicles rely on their perception systems to ac-
quire information about their immediate surroundings. It 
is necessary to detect the presence of other vehicles, pe-

destrians, and other relevant entities. Safety concerns and the 
need for accurate estimations have led to the introduction of 
lidar systems to complement camera- or radar-based percep-
tion systems. This article presents a review of state-of-the-art 
automotive lidar technologies and the perception algorithms 
used with those technologies. Lidar systems are introduced 
first by analyzing such a system’s main components, from la-
ser transmitter to beamscanning mechanism. The advantages/
disadvantages and the current status of various solutions are 
introduced and compared. Then, the specific perception pipe-
line for lidar data processing is detailed from an autonomous 
vehicle perspective. The model-driven approaches and emerg-
ing deep learning (DL) solutions are reviewed. Finally, we pro-
vide an overview of the limitations, challenges, and trends for 
automotive lidars and perception systems.

Introduction
Autonomous driving is entering a preindustrialization phase, 
with significant progress attained over the past years. Sen-
sors initially capture data representations of the environment, 
which are processed by perception algorithms to build the 
vehicle’s immediate environment used for autonomous ve-
hicle navigation. A perception system for autonomous vehicle 
navigation consists of a combination of active and passive sen-
sors, namely, cameras, radars, and lidars [1]. Lidars are active 
sensors that illuminate the surroundings by emitting lasers. 
Ranges are measured precisely by processing the received la-
ser returns from the reflecting surfaces. As stated in [2], lidars 
are “poised to significantly alter the balance in commercial, 
military, and intelligence operations, as radar has done over 
the past seven decades.” 

Despite much progress in camera-based perception, image 
processing methods estimate distances. This approach encoun-
ters difficulties when estimating distances for cross-traffic enti-
ties, particularly for monocular solutions. The 2007 DARPA 
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Grand Challenge, a milestone in autonomous driving, demon-
strated the potential of lidar perception systems. The top three 
teams were all equipped with multiple lidars. A 64-layer lidar, 
the Velodyne HDL64 [55], played a critical central role for the 
winning and runner-up teams [3], [4]. 

Currently, many high-level autonomous vehicles use lidars 
as part of their perception systems despite their high cost and 
moving parts. A typical example is their incorporation into 
the autonomous vehicles being tested as robovehicles in dif-
ferent countries, e.g., the Eco-Mobility by Autonomous Vehi-
cles in the Paris-Saclay area (EVAPS) field operational test in 
France [56], where several participants (e.g., Renault, Trans-
dev, Vedecom, and so forth) collaborate to exploit mobility 
services based on autonomous vehicles in the Saclay area of 
Paris. One of the prototypes developed by Renault is shown 
in Figure 1. As a result, there are more than 20 companies 
developing distinctive lidar systems for autonomous driving 
systems, ranging from low level to high end, a sort of “big 
bang.” Which lidar type(s) will dominate autonomous driving 
in the future remains to be seen. 

On the other hand, lidar-based algorithms also entered 
into a fast track. For an autonomous vehicle, lidars are main-
ly used for perception and localization. Due to space con-
straints, this article focuses only on perception usages. In the 
context of autonomous driving, a perception system provides 
a machine-interpretable representation of the environment 
around the vehicle. From a user’s perspective, the output of 
a perception system comprises the following three levels 
of information.
■ Physical description: the pose, velocity, and shape of 

objects
■ Semantic description: the categories of objects
■ Intention prediction: the likelihood of an object’s behavior.

Therefore, the lidar outputs are used for the object detection, 
classification, tracking, and intention prediction, correspond-
ing to the various layers of information. Due to lidar’s superi-
ority in ranging accuracy, the provided physical information is 
highly reliable. Although the semantic information carried by 
lidar is more or less difficult than that which is acquired from 
a camera, a contextual sensor is good at object recognition. 
In practice, lidars are combined with cameras to complement 
each other [5]: a camera is poor in distance estimation, while 
lidar is inadequate for object recognition. Precise physical and 
semantic information, together with map information, will 
improve intention prediction without any doubts. With many 
years of progress, a lidar-centric perception system will mature 
for model-based processing algorithms; however, emerging 
DL methods are changing this domain. Traditional model-
based lidar data processing methods are computation friendly 
and explicable. Data-driven DL methods have demonstrated 
extraordinary capabilities in providing semantic information, 
which is the weak point of traditional methods. 

Lidar technologies
A typical lidar operates by scanning its field of view (FoV) with 
one or several laser beams. This is done through a delicately 
designed beamsteering system. The laser beam is generated by 
an amplitude-modulated laser diode that emits at near-infrared 
(NIR) wavelength. The laser beam is reflected by the environ-
ment back to the scanner, with the returned signal received by 
a photodetector. Fast electronics filter the signal and measure 
the difference between the transmitted and received signals, 
which are proportional to the distance. The range is estimated 
from the sensor model based on this difference. The difference 
in variations of reflected energy due to surface materials as well 
as state of the milieu between the transmitter and receiver are 

FIGURE 1. The autonomous vehicle prototype developed by Groupe RENAULT for the EVAPS project. The most evident sensor is the Velodyne UltraPuck 
lidar on top. 
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compensated for through signal processing. The lidar outputs 
include 3D point clouds that correspond to the scanned environ-
ments and the intensities that correspond to the reflected laser 
energies. Figure 2 shows a conceptual representation of this op-
erating principle.

A lidar system can be partitioned into the laser rangefinder 
system and the scanning system. The laser rangefinder com-
prises 1) the laser transmitter, which illuminates the target 
via a modulated wave; 2) the photodetector, which generates 
the electronic signal from the reflected photons after opti-
cal processing and photoelectric conversion; 3) the optics, 
which collimate the emitted laser and focus the reflected 
signal onto the photodetector; and 4) signal processing elec-
tronics, which estimate the distance between the laser source 
and the reflecting surface, based on the received signal. The 
scanning system typically will steer laser beams at different 
azimuths and vertical angles, denoted by , ,i iz i  where i is 
an index that determines the direction at which the beam is 
being pointed.

This section initially addresses the principles of a range-
finder to understand its measurement process and limitations, 
then, it introduces the scanning systems that define the sensor 
FoV. It is then possible to classify lidars based on the technolo-
gies they use. This classification is then applied to examine the 
commercially available automotive type lidars.

Laser rangefinder principles
A rangefinder that measures the distance to an object by a laser 
beam is known as a laser rangefinder. The manner in which 
they operate depends on the type of signal modulation used 
in the laser beam. Pulsed lasers are used so that their time of 
flight (ToF) can be measured, these are known as direct-detec-
tion laser rangefinders. The laser signal can also be a frequen-
cy-modulated continuous wave (FMCW), which indirectly 
measures the distance and velocity from the Doppler effect. 
These are known as coherent-detection laser rangefinders.

Lidar power equation
The transmitted laser is first attenuated through the transmis-
sion medium, then diffused as it reflects from the target sur-
face. It is partially captured by the receiving optics and finally 
transformed into an electrical signal by a photodetector. For 
a target at distance r, the amount of received power Pr by 
the photodetector based from a pulsed-laser emitter can be ap-
proximately modeled as [6]
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h
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where Ep is the total energy of a transmitted pulse laser and c
is the light speed. Ar represents the area of receive aperture at 
range ,r h  is the overall system efficiency, and b  is the reflec-
tance of the target’s surface, which is decided by the surface 
properties and the incident angle. In a simple case of Lam-
bertian reflection with a reflectivity of ,0 11 1C  it is given 
by / .b rC=  The final part, Tr, denotes the transmission loss 
through the transmission medium. When the lidar works un-
der adverse conditions (e.g., fog, rain, dust, snow, and so on), 
the particles in the air scatter and absorb the photons. Equation 
(1) reveals that the received power pr decreases quadratically 
with respect to distance r: an object at hundreds of meters away 
is order of magnitudes “darker” than at tens of meters. Simply 
increasing the power of the laser transmitter is restricted by eye-
safety standard IEC 60825 [7]. To overcome this, the overall 
system efficiency must be improved through optics, photode-
tectors, and more advanced signal processing algorithms. For 
an FMCW laser, (1) still holds, except for slight differences.

ToF
A ToF laser rangefinder measures the range by calculating the 
time difference between the transmitted and received lasers

,r
n

c t
2
1 D= (2)

FIGURE 2. An example of a ToF laser rangefinder. The rangefinder uses either a direct or coherent method to measure the distance at a certain direction 
controlled by the scanning system. Tx: transmitter; Rx: receiver.
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where c is the light speed and n is the index of refraction of the 
propagation medium (. 1 for air). tD  is the time gap between 
the transmitted and received lasers. ToF lidars prevail in the 
current automotive lidar market because of their simple struc-
ture and signal processing methods. However, the potential 
for increasing their maximum range is constrained by limited 
transmit power due to eye-safety requirements. In ToF lidar, 
the return signal can be interference from strong sunlight or 
laser beams from other ToF lidars.

Coherent detection
By mixing the local carrier signal with the received signal, 
it is possible to demodulate the received signal and thus it is 
possible to obtain the phase and frequency shift of the laser 
signal, hence acquiring the distance and velocity from the re-
flecting surface. This can be regarded as the optical version of 
FMCW radars, which are popular in today’s passenger vehicles’ 
advanced driver assistant systems. FMCW lidars continuously 
emit a frequency-modulated laser signal (e.g., linearly chirped 
laser) to a target, while keeping a reference signal, also known 
as a local oscillator. The common modulation functions are 
sawtooth or triangle waves. 

Because a FMCW lidar continuously illuminates objects 
using less emitted power for this purpose, thus complying with 
eye-safety requirements and opening the possibility to use 
more power to extend their FoV. The signals used for coherent 
detection are shown in Figure 3. The intermediate frequency 
[(IF) in red] can be generated by mixing the local oscillator 
signal (a linearly chirped triangular modulation function) 
from the laser transmitter (in green) with the laser signal 
reflected from observed surfaces (in blue). The processing of 
the resulting signal generates IF fif, shown in red in Figure 3. 
By assuming that the Doppler frequency shift fd is less than IF 
fif, we have

, ( ),f
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rB f f
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f f
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where B, r, and t are the modulation bandwidth, waveform pe-
riod, and light speed, respectively. The velocity is obtained as

,v
f
2
dm

= (4)

where m  is the laser wavelength.
FMCW lidar is able to directly measure the distance and 

velocity at the same time, while for ToF lidar, the speed is 
obtained from indirect estimation through several con-
secutive sensor readings. By using a FMCW laser signal, 
it is possible to reduce the interference effect from other 
laser sources and strong sunlight; however, FMCW lidars 
require high-quality laser generators that possess long co -
herent distances.

Laser transmission and reception
The generation of the laser signals and their emission as well as 
the receiver electronics of the reflected signals also character-
ize the performance and cost of the laser rangefinders.

Laser sources
ToF lidars need a pulsed- (amplitude-modulated) laser signal, 
which is generated using a pulsed-laser diode or a fiber laser. A 
diode laser causes laser oscillation by flowing an electric cur-
rent to the diode’s junction. Diode lasers can be grouped into 
two classes: edge-emitting lasers (EELs) and vertical-cavity 
surface-emitting lasers (VCSELs). EELs have been applied 
in the telecommunication industry for a long time. VCSELs 
output a circular beam, while EELs transmit an elliptical laser 
beam, requiring additional beamshaping optics. In a VCSEL, 
forming a 2D laser array on a single chip is easier than for an 
EEL, which is important because it increases the lidar reso-
lution. By contrast, the range for a VCSEL is shorter due to 
power limitations. 

The pulsed-laser diodes used in automotive applications are 
hybrid devices; that is, a laser chip is mounted with capacitors 
that are triggered by a MOSFET transistor. Thus, at every gate 
opening, the electric charge accumulated in the capacitors will 
be discharged into the chip, which emits the optical pulse in 
a controlled manner. These sources are cost-effective, as their 
905-nm output can be detected by economical silicon (Si) 
detectors; however, these diodes have a limited pulse-repetition 
rate and lower peak power, possibly requiring cooling. Laser 
diode sources for 3D flash lidar use diode stack technology, 
with several edge-emitting bars assembled into a vertical stack. 
Heat dissipation becomes an issue, hence the need for heat sinks 
as well as the accumulation of emitted power beyond eye-safe 
requirements. Fiber lasers can have higher output power, which 
is useful when operating at high wavelengths. Their output 
beams can be split and routed to multiple sensor locations using 
optical fiber, resulting in better pulse-repetition frequency, bet-
ter beam quality, and so forth. However, they can be bulky and 
thus resulting in noncompact systems that are difficult to be 
integrated in vehicles. 

Laser wavelength
Selecting an appropriate wavelength of laser should have a 
comprehensive consideration of atmospheric windows, eye-
safety requirements, and cost. The 850–950-nm (NIR) and 
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FIGURE 3. The principle of coherent detection: the distance is estimated by 
the intermediate frequency (red line) generated by mixing transmitted and 
received light waves [8]. 
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1,550-nm [short-wave infrared (SWIR)] lasers are mostly 
utilized because of their popularity in industry. Either a low-
price diode laser or a more powerful fiber laser at a wave-
length of 850–950 nm or 1,550 nm is easily purchased from 
the market. The maximum power permitted by eye-safety 
standards for a 1,550-nm laser is higher than that of la-
sers in the 850–950-nm range, which means a larger range 
could be achieved. However, expensive indium gallium ar-
senide (InGaAs)-based photodiodes are required to detect 
laser returns at 1,550 nm. The efficiency of InGaAs-based 
photodiodes is lower than that of mature Si ones for NIR 
lasers. In addition, the atmospheric water absorption for 
1,550 nm is stronger than that of 850–950 nm; therefore, 
lidar systems at NIR wavelengths (905 nm, for instance) are 
still commonplace.

Photo detector
A photo detector converts optical power to electrical power 
using the photoelectric effect. Photosensitivity that describes 
a photodetector’s response when receiving photons is one of 
the most critical characteristics. The photosensitivity depends 
on the wavelength of the received laser; therefore, selecting a 
photodetector for a lidar system is closely related to the choice 
of laser wavelength. The most popular detectors are p-i-n pho-
todiodes, avalanche photodiodes (APDs), single-photon ava-
lanche diodes (SPADs), and Si photomultipliers (SiPMs).

P-i-n photodiodes
These diodes are formed by a p-i-n junction, which creates a 
depletion region free from mobile charge carriers. By applying 
a reverse bias to a photodiode, absorbing a photon will gener-
ate a current flow in the reverse-biased photodiode.

APD
An APD is a photodiode that applies reverse voltage to multiply 
photocurrent through the avalanche effect. The APD’s ability 
to multiply signals reduces the effect of noise and achieves a 
higher internal current gain (roughly 100) and signal-to-noise 
ratio (SNR) than does the p-i-n photodiode. As a result, APDs 
are quite common in contemporary lidar systems. Si-based 
APDs are sensitive through the visible spectral region until 
the NIR is approximately 1,000 nm. At longer wavelengths 
up to 1,700 nm, InGaAs APDs are available, although at a 
higher cost.

SPAD
A SPAD is an APD that is designed to operate with a reverse-
bias voltage above the breakdown voltage (Geiger mode), 
which allows the detection of very few photons in a very short 
time. SPADs can achieve a gain of 106, which is significantly 
higher than that of APDs; this characteristic allows the SPAD 
to detect extremely weak light at long distance. Furthermore, 
the CMOS technology used for a SPAD fabrication enables 
an integrated array of photodiodes on one chip. This is desir-
able for increasing lidar’s resolution, while cutting the cost and 
power consumption.

SiPM
An SiPM is based on a SPAD and enables photon counting. The 
Geiger mode, in which a SPAD operates, is a photon-trigger 
mode, from which a SPAD cannot distinguish the magnitude of 
received photo flux. To overcome this issue, the SiPM integrates 
a dense array of “microcells” (a pair of SPADs and a quench re-
sistor) working identically and independently. The SiPM’s output 
is, in essence, a combination of the photocurrents detected from 
each microcell. Using this approach, an SiPM is capable of giving 
information on the magnitude of an instantaneous photon flux.

Scanning system
A scanning system (or beamsteering system) is designed to en-
able the transmitted lasers to rapidly explore a large area. The 
existing scanning approaches are usually classified as either 
mechanical spinning or solid state. The former usually con-
tains a bulky rotating mirror system like the Velodyne HDL64 
[55] used in the early stages of autonomous driving history. 
Solid state refers to a scanning system without moving parts 
(even though some are still steered by micromirrors), which is 
preferred by the automotive industry.

Mechanical spinning
Currently, the most popular scanning solution for automo-
tive lidar is the mechanical spinning system [10], which steers 
the laser beams through a rotating assembly (e.g., mirror, 
prism, and so on) controlled by a motor to create a large FoV. 
Conventionally, nodding-mirror and polygonal-mirror systems 
[11] are the main types applied. For example, for the mechani-
cal spinning scheme shown in Figure 4(a), an embedded nod-
ding-mirror system tilts the lasers to generate a vertical FoV. 
Then, a 360° horizontal FoV is achieved by rotating the lidar 
base. State-of-the-art lidars use multiple beams to reduce the 
movable mechanism. For instance, the Velodyne VLP series 
uses arrays of laser diodes and photodiodes to increase point-
cloud densities. The mechanical spinning system offers the 
advantage of a high SNR over a wide FOV; however, the ro-
tating mechanism is bulky for integration inside a vehicle 
and is fragile in harsh conditions such as during vibration, 
which is quite common in automotive applications. A typical 
product example is Velodyne’s HDL64.

Microelectromechanical systems microscanning
Microelectromechanical systems (MEMS) technology allows 
for the fabrication of miniature mechanical and electrome-
chanical devices using Si fabrication techniques. In essence, 
a MEMS mirror is a mirror embedded on a chip [12]. The 
MEMS mirror is rotated by balancing between two oppos-
ing forces: an electromagnetic force (Lorentz force) produced 
by the conductive coil around the mirror and an elastic force 
from a torsion bar, which serves as the axis of rotation. This 
principle is shown in Figure 4(b). The MEMS mirrors can ei-
ther be single axis for 1D movement [13] or dual axis for 2D 
movement. Also, a MEMS mirror can work in resonant mode 
at its characteristic oscillation frequency to obtain a large de-
flection angle and high operating frequency. In nonresonant 
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mode, a MEMS scanning mirror can be controlled to follow 
a programmed scan trajectory. For example, for a MEMS-
based AEye lidar, the lidar can dynamically change the FoV 
and scanning path to focus on some critical parts. Although 
MEMS lidars still contain moving parts, this near-solid-state 
technology is still promising because the mature techniques 
in the integrated circuit industry are able to satisfy the strict 
cost requirements. 

Flash
Originally applied for spacecraft in autonomous landing and 
docking with satellites, 3D flash lidars [14] totally remove the 
rotating parts within scanning systems. Hence, they are truly 
solid state. A flash lidar behaves as a camera, in that a single 
laser is spread by an optical diffuser to illuminate the whole 
scene at once. Then, it uses a 2D array of photodiodes (similar 
to the CMOS/charge-coupled device for the camera) to capture 
the laser returns, which are finally processed to form 3D point 
clouds, as shown in Figure 4(c). 

Because all the pixels of flash lidar measure the ranges simul-
taneously, the issue of movement compensation caused by plat-
form motion is avoided. In addition, the semiconductor-based 
3D flash lidars facilitate fabrication and packaging for massive 
production, which leads to lower cost. However, the critical issue 
of 3D flash lidar is its limited detecting range (usually <100 m), 
because a single diffused laser is responsible for detecting the 
whole area under a small power threshold for eye safety. Another 
disadvantage is its limited FoV because it cannot rotate and scan 
the surroundings the way a scanning-type lidar does. 

Optical phased array 
As a type of true solid-state lidar, optical phased-array (OPA) 
lidars [15], [16] do not comprise moving components. Similar 
to phased-array radar, an OPA is able to steer the laser beams 
through various types of phase modulators. The speed of light 
can be changed using the optical phase modulators when the 
lasers are passing through the lens, as illustrated in Figure 4(d). 
Consequently, different light speeds in different paths allow for 
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control of the optical wavefront shape and hence, the steering 
angles. Although OPA was once seen as a promising technol-
ogy, there is not yet a commercial product in the market.

Current status of automotive lidar
Mechanical spinning lidar is the first venture into mass-pro-
duced cars. Announced in 2017, Audi released its latest luxury 
sedan, the A8, which equipped Valeo’s SCALA lidar for au-
tomated driving functions, the first commercially available 
vehicle carrying automotive-grade lidar in the world. Valeo’s 
SCALA [57] is a four-layer mechanical spinning lidar similar 
to its cousin, the IBEO Lux4. Empowered by SCALA, the 
A8 is able to achieve L3-level automated-driving functions 
without needing hands on the steering wheel (which requires 
legislative approval). In 2019, Valeo gained a €500 million 
order of its next-generation lidar, the SCALA2, from several 
car manufacturers.

At the same time, to reduce cost and improve robustness, 
many companies focus on solid-state scanning systems. As listed 
in Table. 1, Innoviz, Continental, and Quanergy are developing 
MEMS, flash, and OPA lidars, respectively. In 2018, Bavar-
ian Motor Works announced a collaboration with Innoviz for 
series production beginning in 2021. To increase the maximum 
detection range, some in the industry have used SPAD arrays 
working in a single-photon detection mode (Geiger mode). The 
Ouster OS-1 64 [58] adopted CMOS-based SPADs to detect 
850-nm lasers emitted by a 2D VCSEL array. Toyota made a 
lidar prototype containing a CMOS SPAD array (202 × 96 pix-
els) for receiving 905-nm lasers [17]. Princeton Lightwave, Inc. 
(acquired by Argo.ai) also realized a SPAD lidar prototype [59], 
although little information has been disclosed. As for SiPMs, a 
lidar prototype [18] was made by SensL (acquired by OmmniVi-
sion), while the commercial products are still under development.

Some companies have switched to SWIR lasers (e.g., 1,550 
nm) because of its higher power threshold allowed than that 
of NIR lasers such as Luminar (who announced a collabora-
tion with Toyota) and AEye. Coherent detection-based FMCW 
lidars are being targeted by car manufacturers and investors as 
well. Strobe and Blackmore, two representative FMCW lidar 
start-ups, were quickly acquired by Cruise and Aurora, respec-
tively. In Table 1, we classify and list several representative 
automotive lidar suppliers and their disclosed technologies.

Another lidar trend is that of overcoming adverse weath-
er conditions, such as rain, fog, snow, dust, and so forth [19], 
[20]. According to (1), adverse weather conditions increase the 

transmission loss Tr and weaken the reflectivity of an object 
b  so that the received energy becomes less. Because SWIR 
lasers (e.g., 1,550 nm) can achieve higher transmission power, 
lidars belonging to this wavelength are expected to have better 
performances in harsh weather.

Lidar perception system
For an autonomous vehicle, its perception system classifies the 
perceived environment into hierarchical object descriptions (i.e., 
physical, semantic, and intention awareness) from the percep-
tion sensor outputs, its localization, and map data. As depicted 
in Figure 5, a traditional pipeline [4], [21] of processing lidar 
data consists of four steps: object detection, tracking, recogni-
tion, and motion prediction. The recent rise of DL technologies 
is changing this classic flow, and we will introduce it after the 
classic approaches. Due to the popularity of Velodyne lidars in 
research communities, the reviewed data processing methods 
are mainly based on this mechanical spinning lidar.

Object detection
Object-detection algorithms extract the object candidates and 
estimate their physical information, namely, the positions and 
shapes of the detected objects. Because in most traffic scenes 
the targets are perpendicular to flat ground, object-detection 
algorithms usually comprise ground filtering and clustering. 
Ground filtering labels a point cloud either ground or non-
ground. Then, nonground points are grouped into different 
objects using clustering methods.

In early research [4], the point clouds from lidar are pro-
jected into polar grids, subdividing 360° around the lidar. The 
points inside each grid cell are treated consecutively to gen-
erate a virtual scan, which specifies the region as free, occu-
pied, and occluded. Occupied virtual scans are grouped into 
object clusters. The authors in [21] followed this method while 
utilizing a grid-based local plane-fitting approach instead of 
processing every point, as was done in [4]. The grids that are 
able to be fitted as a plane are classified as ground grids, and 
the remaining nonground grids are clustered by the connected 
component labeling. However, the polar grid-based methods 
always need a projection of 3D lidar points into discrete grids, 
which lose raw information from lidar measurements.

Processing lidar signals in spherical coordinates ( , , )r { i
provides a better approach. In this article, we used the Velo-
dyne UltraPuck, where the vertical angle for each laser beam is 
fixed and the azimuth angle is decided by the scanning time and 

Table 1. Representative lidar manufactures and the adopted technologies. 

Mechanical Spinning MEMS Flash OPA Undisclosed 

ToF lidar NIR Velodyne, IBEO, Valeo, Ouster,* 
Hesai, and Robosense

Innoviz Robosense Continental
Xenomatix 

Quanergy 

SWIR Luminar AEye and Hesai Argo* (Princeton  
Lightwave)

FMCW lidar Cruise (Strobe) Aurora (Blackmore,  
1,550 nm)

*The manufacturers that utilize single-photon Geiger-mode SPAD as a photodetector.
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motor speed. Therefore, every range reading can be represent-
ed by ( , , ,),P , ,i j i j i jt { i=  where i refers to a certain laser beam 
and j is the azimuth-angle index, as shown in Figure 6. This 
approach naturally fills the range readings into a predefined 
data buffer (range image) and thus allows for fast access to a 
point and its neighbors. Processing lidar data in range view 
has become popular in recent years; for instance, based on a 

range image, the authors in [22] segmented the ground points 
in each column. The remaining nonground points are grouped 
easily through criterions of distance and angle. For a 32-beam 
lidar, they reached 4 ms in an Intel i5 processor. 

Zermas et al. [23] processed the range image row by row. 
They applied the clustering in each scan line (actually, the row 
in the range image) and then merged the clusters scan line by 
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scan line. Figure 5 shows a sample result of ground filtering and 
clustering from our implementation based on the range image 
as well. The green lines are ground points, and the nonground 
points are grouped into object candidates (in blue polygons). 
Object detection provides the initial physical information, e.g., 
the position of an object. The following steps, such as recog-
nition and tracking, complement semantic and more physical 
information, e.g., the heading and speed to the detected objects. 

Object recognition
Machine learning (ML)-based object-recognition methods fur-
nish the semantic information (e.g., the classes of pedestrian, 
vehicle, truck, tree, building, and so on) to the detected objects. 
A typical recognition process employed in [21] comprises a 
feature-extraction step, calculating compact object descriptors, 
and a classification step, where pretrained classifiers predict 
the categories of objects based on the extracted features. As 
summarized in [24], the features proposed in literature can be 
roughly divided into two classes: the global features for the 
whole object or the local features for each point. An object’s 
size, radius, central moments, or maximum intensity [21], [25]
are the most basic global features. 

Applying principal component analysis (PCA) in 3D point 
clouds is another effective method used to acquire global shape 
features. As adopted in [26], three salience features (surface-
ness, linearness, and scatterness) can be acquired by analyzing 
the eigenvalues acquired from the PCA. As for local features, 
the authors in [21] calculated the three salience features for each 
point and its neighboring points. Three histograms, each con-
taining four bins spaced between 0 and 1 for the three salience 
features, are extracted as local features. A more complicated 
feature is the spin image (SI), introduced by Wang et al. [27]. 
An SI is created by spinning a grid around the normal surface n
of a given point p. The virtual pixels of an SI are the distances 
to either line through the n or to the plane defined by p and n. 
The authors in [26] transformed this individual pointwise fea-
ture into a global feature: for an object, only the SI of its central 
point is utilized as an object descriptor. In the literature, there 
are more sophisticated features, such as a global Fourier histo-
gram [24] descriptor; however, real-time requirements restrain 
the complexity of its features.

After feature extraction, the following classification is 
a typical supervised ML process: a classifier trained by a 
ground-truth data set predicts the class of input objects. Well-
known data sets such as KITTI [60] provide abundant resourc-
es. From the arsenal of ML, plenty of ML tools such as naive 
Bayes [25], support vector machines (SVMs) [21], [24], [28], 
k-nearest neighbor (NN) [26], random forest (RF), and gradi-
ent boosting trees [29] can be applied. An SVM with a radial 
basis function (RBF) kernel is still the most popular method 
due to its speed and accuracy. Figure 5 shows the recognition 
results on the detected on-road objects based on our implemen-
tations (an SVM with an RBF kernel). Recently, Capellier et al. 
[30] applied an evidential neural network to classify the lidar 
object. Evidential classifiers can better handle the unknown 
classes that are frequently encountered in practice.

Object tracking
Multiple object-tracking (MOT) algorithms correlate and locate 
the detected/recognized objects through spatiotemporal con-
sistency. MOT maintains the identities of detected objects and 
yields their physical states, e.g., trajectories, poses, and veloci-
ties. MOT is a classic engineering problem [31] that has been 
researched for a long time. A basic architecture mainly in-
cludes a single-object tracker, which “optimally” estimates the 
state of the tracked object, and data association, which assigns 
new detections to the trackers.

A single-object tracker models the movement as a dynamic 
state-space model and estimates its state under the Bayesian 
filtering framework. The Kalman filter (KF) family, the clas-
sic KF under Gaussian-linear assumption and its variants, the 
extended KF (EKF), and the unscented KF (UKF) make up 
the popular toolbox. The authors in [32] employed a KF with a 
constant velocity model to track lidar detections. As a nonlin-
ear version of KF, EKF is utilized for lidar object tracking in 
[33]. Extending the single dynamic model to multiple maneu-
ver models, the interacting multiple model (IMM) filter is able 
to handle more complicated cases. The IMM filter consists of 
several filters running in parallel, and each filter uses a differ-
ent motion model. For a single object, an IMM-UKF filter was 
applied in [34], where three UKFs work for three motion mod-
els: constant velocity, constant turn rate, and random motion.

As another common approach, a particle filter (PF) is de -
signed for more general cases that do not meet the Gauss-
ian-linear assumption. The application of PFs in lidar data 
processing can be traced back to the 2017 DARPA Grand 
Challenge [4], where a Rao–Blackwellized PF was used. How-
ever, PFs require a large number of particles, especially for 
high-dimensional state space. Hence, the KF family is more 
popular in real-time perception systems.

Data association connects the detections with the tracks. 
The simplest method used is the NN filter (implemented in 
[32]), which assigns the detections to their closest tracks based 
on the Euclidean or Mahalanobis distance between the detec-
tion and the track. The NN filter is insufficient for clutter sce-
narios. In contrast, the joint probabilistic data association filter 
(JPDAF) offers a soft, probabilistic approach for detection-
track association. JPDAF considers all of the possible detec-
tions (including no detection) in a gating window and estimates 
their assignment probabilities to the tracks, taking the weight-
ed average of all the association hypotheses. In [34], JPDAF 
was applied for data association and an IMM-UKF filter was 
used to track an individual object. 

In contrast to radar-based MOT, in which all of the detec-
tions are usually modeled as points, lidar-based MOT is dis-
tinctive in that it should track the shapes of detections as well. 
The simplest shape model is a 2D bounding box [4], which 
assumes that the detections are car-like objects. L-shape fit-
ting [35] is the most common approach used to estimate the 
bounding box’s center, width, height, and heading; however, a 
2D bounding box is insufficient for more general objects, such 
as a pedestrian, tree, building, and so on. A more sophisticat-
ed method [36] implemented multiple shape models: points, 
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polygons, L-shape, and lines for various objects. When track-
ing a moving object, its shape varies with the changes of pose 
and sensor viewpoint. Kraemer et al. [37] implemented a track-
ing method that simultaneously estimates the states of both 
poses and shapes represented by 2D polylines.

Object-intention prediction
The previously introduced modules provide the past and cur-
rent information of detected targets. While in autonomous 
driving systems the decision-making and path-planning algo-
rithms require future motion of the tracked targets, previous 
works based on certain kinematic models that are assumed to 
perfectly fit the detected objects are not applicable for long-
term predictions. To address this shortcoming, maneuver or 
behavior recognition is proposed based on ML methods. Com-
mon maneuvers for a vehicle are cutting in, changing lanes, 
braking, overtaking, and so forth. The authors in [38] mod-
eled the behaviors of car following and lane changing using 
a Gaussian mixture model (GMM) or hidden Markov model 
(HMM). Based on the maneuver classification realized by the 
HMM, the authors in [39] predicted the vehicles’ motions by 
VGMMs (variational GMMs) under the constraints of vehicle-
interaction models. With the success of recurrent neural net-
works (RNNs) in modeling temporal sequential data, long 
short-term memory (LSTM)-based methods are becoming 
more popular. Phillips et al. [40] used LSTM to classify the 
drivers’ intentions at intersections, and the results show that 
LSTM outperforms other traditional ML methods. The authors 
in [41] proposed an encoder–decoder LSTM model to recog-
nize maneuvers and predict trajectory. Beyond recognizing the 
maneuvers of a single object, social LSTM [42] was proposed 
to capture the interactions of all the objects. This is achieved 
by social pooling, which downsamples a target’s neighboring 
object’s LSTM states into a social tensor. The authors in [43]
and [44] applied and improved the original social-pooling part 
for the purpose of vehicle-trajectory prediction.

Emerging DL methods
After huge successes in computer vision and speech recognition, 
waves of DL arrived in lidar data processing as well. DL [45] is a 
subset of ML algorithms that mainly uses multilayer neural net-
works. In contrast to traditional ML methods such as SVMs, DL 
technologies are able to automatically extract features from the 
raw input. Convolutional neural networks (CNNs) and RNNs 
such as LSTM are the most frequently used tools.

The basic components of perception system, ground segmen-
tation, object detection, tracking, and recognition can all be real-
ized using deep neural networks (DNNs). For instance, in [46], 
ground points were segmented by applying CNNs to lidar points 
represented by multichannel range images. In contrast to the 
object detection based on clustering in which arbitrary targets 
can be detected, DNN-based solutions achieve object detection 
using recognition, thanks to the paradigm of supervised learn-
ing. As in [47], vehicles can be detected using CNN-based neu-
ral networks in a bird’s-eye view (BEV) representation of lidar 
points. A more complex neural network was proposed in [48], 

where CNNs are utilized in both a range image and BEV of lidar 
data and then fused with camera detections. However, due to 
the physical limitations of lidar, only vehicles can be effectively 
detected by lidar, with the best achieving results of only 52.4% 
average precision pedestrian detection in a KITTI benchmark 
of (using the DENFIDet method when writing this article) [61]. 

The authors in [49] integrated evidential theory into DL 
architecture for lidar-based road segmentation and mapping. 
Object tracking has been realized by DL as well. Different 
from the tracking-by-filtering framework described in tradi-
tional tracking algorithms, the authors in [50] proposed a deep 
structural model under tracking by a detection framework. 
A detection net first processes a sequence of lidar data and 
images to generate detection proposals. Then, tracks are esti-
mated by finding the best associations of detections, which are 
achieved by a marching net and scoring net.

Apart from improving the traditional perception compo-
nents, pointwise semantic segmentation, which was hard to 
realize before, is now achievable using deep learning. A well-
known method, PointNet, was proposed in [52] to semantically 
segment 3D point clouds for general use. However, due to the 
sparsity of lidar data with respect to distance, the method does 
not work well for autonomous driving scenarios. SqueezeSeg 
[53] achieved real-time segmentation by applying CNNs in the 
range view of lidar points. Due to a lack of massive annotated 
data sets, the performances of these two methods are not ready 
for deployment in real situations, although this situation has 
been changed by SemanticKITTI [54], [62], the latest and big-
gest pointwise annotated data set based on KITTI. Based on 
this data set, RangeNet [51] demonstrated a fascinating perfor-
mance and speed from a simple DNN structure. Figure 7 shows 
its structure and a sample result of RangeNet. With more anno-
tated data sets, we have sufficient reason to expect lidar-based 
semantic segmentation will have better performance.

Conclusions and future directions
In this article, a review of lidar technologies was presented. 
How a lidar “sees” the world and what constitutes a lidar were 
introduced, and the main development directions of lidar tech-
nologies were analyzed as well. In summary, current automo-
tive lidars face the following constraints or challenges: 1) cost; 
2) meeting automotive reliability and safety standards (e.g., 
ISO 26262 and IEC 61508); 3) a long measuring distance (e.g., 
>200 m for highway applications); 4) adverse weather condi-
tions, e.g., rain, fog, snow, and so on; 5) image-level resolution; 
and 6) its smaller size, which facilitates integration. At pres-
ent, all of the possible solutions, varying from laser sources 
(905 nm versus 1,550 nm), scanning methods (spinning/
MEMS/OPA/flash), or ranging principles (ToF or FMCW) 
have been exploited to overcome several or all of these dif-
ficulties. Although it is very difficult to predict which auto-
motive lidar solution(s) will dominate in the future, one thing 
is certain: automotive lidars are walking out of experimental 
platforms, entering more and more mass-produced cars.

Then, a compact tutorial of the lidar-based perception sys-
tems for autonomous driving was presented. Three levels of 
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information providing by-perception systems along with typi-
cal processing pipelines were introduced. Generally, com-
pared to cameras or radar, lidar is the most precise sensor 
used to measure range; therefore, the physical information (the 
objects’ positions, headings, shapes, and so on) evaluated by 
lidar-based algorithms is highly reliable. However, semantic 
description is the shortcoming of lidar; this is caused by the 
lidar’s poor resolution and its essence as a distance-measuring 
sensor, not a contextual sensor. Its fusion with cameras rem-
edies lidar’s weakness in recognition. 

The intention-prediction level is independent of specific 
sensors, although it is strengthened by the precise physical 
information brought by lidar. Applying DL in lidar’s 3D data 
will be one of the most important directions in the future. Lack-
ing a huge number of annotated 3D point-cloud data sets was 
the bottleneck for successfully applying DL methods; however, 
things are changing. The aforementioned SemanticKITTI ini-
tiated a good start, and the results achieved by RangeNet++ are 
quite impressive. From our point of view, the algorithms used 
for extracting more accurate physical information and squeez-
ing lidar’s potential in semantic estimation are future direc-
tions. And, of course, with the swift progress of new lidars, 
new algorithms adapted to specific lidars will emerge.
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AUTONOMOUS DRIVING: PART 1

The safety and success of autonomous vehicles (AVs) depend 
on their ability to accurately map and respond to their sur-
roundings in real time. One of the most promising recent 

technologies for depth mapping is single-photon lidar (SPL), 
which measures the time of flight of individual photons. The 
long-range capabilities (kilometers), excellent depth resolution 
(centimeters), and use of low-power (eye-safe) laser sources 
renders this modality a strong candidate for use in AVs. While 
presenting unique opportunities, the remarkable sensitivity 
of single-photon detectors introduces several signal process-
ing challenges. The discrete nature of photon counting and the 
particular design of the detection devices means the acquired 
signals cannot be treated as arising in a linear system with ad-
ditive Gaussian noise. Moreover, the number of useful photon 
detections may be small despite a large data volume, thus re-
quiring careful modeling and algorithmic design for real-time 
performance. This article discusses the main working principles 
of SPL and summarizes recent advances in signal processing 
techniques for this modality, highlighting promising applica-
tions in AVs as well as a number of challenges for vehicular lidar 
that cannot be solved by better hardware alone.

Introduction
Humans are not particularly good drivers. When operating 
multiton vehicles at high speeds, any impairment, fatigue, or 
other diversion of the driver’s attention can lead to catastrophic 
results. More than 35,000 deaths and 2.4 million injuries result-
ed from automotive accidents in 2015 in the United States alone 
[1]. AVs thus offer the promise of a revolution in transportation, 
with the significant potential benefit of improved safety on the 
road. Countless other aspects of society will likewise be affect-
ed by no longer needing human drivers to control vehicles. Mo-
bility can be improved for those unable to drive themselves due 
to age, inexperience, medical conditions, or lack of confidence. 
The economics of vehicle ownership will likely be transformed 
as humans transition from operators to passengers.

Before AVs can reshape the transportation landscape, numer-
ous challenges have to be addressed. Engineers must first 
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demonstrate the ability of AVs to perform basic driving func-
tions safely and reliably. While driving, AVs must translate 
high-level goals—such as route planning, safe driving, efficient 
energy consumption, and adherence to rules of the road—into 
low-level decisions about the mechanics required to follow a 
planned trajectory. To achieve these goals, the complex control 
systems determining driving decisions must rely on informa-
tion from sensing systems that are as good as, or preferably 
better than, human perception.

Autonomous system designs usually propose some form 
of sensor fusion, combining the strengths of various sensing 
modalities to overcome their individual limi-
tations [2], [3]. In addition to classical GPS 
receivers, future commercial AVs are likely 
to include video cameras for identifying 
road signs and objects, short-range ultra-
sound sensors as currently used for parking 
assistance, and weather-robust radar for low-
resolution position and velocity estimation. 
However, the centerpiece of most AV sensing systems is the lidar 
unit. Just as radar detects echoes from radio-frequency electro-
magnetic waves, lidar detects reflections from optical-frequen-
cy laser illumination to generate a long-range, high-resolution 
point cloud corresponding to the positions and reflectivity 
values of millions of points in the surrounding environment. 
Since optical wavelengths can be easily focused into narrow 
beams, lidar can distinguish much smaller objects than radar, 
which is crucial for navigating alongside pedestrians, cyclists, 
and other potential hazards. Although laser ranging has been 
under development since the 1960s, mostly for military use, 
terrain mapping, and atmospheric monitoring [4], commercial 
lidar development has greatly accelerated since 2005, when all 
vehicles that completed the DARPA autonomous driving Grand 
Challenge employed lidar for depth mapping.

Sensing systems for AVs are evaluated on several crite-
ria considered necessary for reliable real-time performance, 
including the maximum operating range, transverse and lon-
gitudinal resolution, field of view, refresh rate, transmit power 
(especially with respect to eye safety), robustness to ambient 
light and weather conditions, processing requirements, and 
cost [2], [5]. Many of these factors are determined, in part, 
by hardware and manufacturing constraints, such as the qual-
ity and capability of lasers, detectors, and scanning mecha-
nisms, which have improved through continuous investment 
and refinement. For instance, the cost of a lidar unit was long 
considered a barrier to widespread deployment in AVs since 
the Velodyne systems originally used in the Grand Challenge 
cost upward of US$75,000 [6], but after more than a decade 
of development, lidar manufacturers such as Luminar have 
announced units priced at less than US$1,000.

On the other hand, the maximum range is one of the most 
crucial aspects that cannot be solved through hardware alone. 
The range capability is important because it affects driving 
performance directly: early identification of a potential hazard 
gives the vehicle more time to make safe driving decisions. 
At American highway speeds of approximately 105 km/h, 

for instance, a range extension of 30 m provides an additional 
second of reaction time. The baseline performance neces-
sary for AVs is generally listed as the ability to detect dark 
objects with a reflectivity of 10% from a distance of at least 
200 m. Amplitude-modulated continuous-wave and frequency-
modulated continuous-wave lidar methods have fundamental 
challenges restricting the maximum range of most implemen-
tations to fewer than 100 m [5]. Although the maximum range 
of pulsed lidar can be extended by simply increasing the laser 
power, the vehicle power and eye-safety constraints limit the 
feasibility of this approach.

The rapidly evolving technology of SPL 
has the potential to overcome the range prob-
lem. Instead of trying to sample the full-
waveform transient response from a pulsed 
lidar illumination, SPL uses detectors that 
are sensitive to individual photons, enabling 
the sensing of objects from extremely weak 
reflections. Such extreme sensitivity enables 

SPL to use eye-safe lasers and fast acquisitions while tolerating 
large attenuations due to very long distances or fog. For example, 
experiments with SPL have been used to form point clouds from 
standoff distances of several hundred meters up to 45 km [7], 
[8]. SPL is currently under commercial development for AVs by 
companies such as Ouster and Argo AI, which has partnered 
with both Ford and Volkswagen.

Beyond the specialized hardware required to detect and 
time stamp individual photons, imaging with so little signal 
relies heavily on advanced signal processing techniques tai-
lored to the acquisition system. Importantly, SPL systems do 
not conform to standard signal processing assumptions: SPL 
measurements are neither linear nor time-invariant, and the 
inherent randomness of the observations cannot be simply 
described by Gaussian noise models. In 2014, Kirmani et al. 
[9] introduced the concept of photon-efficient imaging, show-
ing that it is possible to form accurate 3D and reflectivity maps 
from only one photon detection for each transverse pixel loca-
tion, even with half of the detected photons due to uninforma-
tive ambient light. From a computational viewpoint, successful 
point cloud reconstruction from very few photons requires two 
main components:
1) an acquisition system model, used to determine the proba-

bilistic nature of any photon detection time
2) a scene model, employed to reconstruct a point cloud by 

taking advantage of useful priors.
This article focuses on these two components in the context 
of SPL for AVs. We begin with a description of the physi-
cal hardware, which is used to inform the acquisition system 
model. We then survey a number of challenges for vehicular 
lidar that cannot be solved by better hardware alone, includ-
ing low photon counts, obscuring media, partial occlusions, 
and so forth, and we present state-of-the-art signal processing 
solutions. Finally, we look ahead to functionalities that can be 
developed for SPL beyond the capabilities of the human visual 
system, such as anticipatory route planning enabled by seeing 
around corners.

More than 35,000 deaths 
and 2.4 million injuries 
resulted from automotive 
accidents in 2015 in the 
United States alone.
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Basics of SPL systems
SPL comprises three main components: an illumination source, 
a singe-photon detector, and fast timing electronics. Diode lasers 
are relatively inexpensive to manufacture and can achieve 
root-mean-square pulse widths on the order of a few dozens of 
picoseconds. The most common choice of detector for SPL is 
the solid-state single-photon avalanche diode (SPAD), which 
consists of a reverse-biased photodiode biased above the break-
down voltage so that an individual photon incident on the SPAD 
can cause an avalanche of electrical charge carriers that is di-
rectly detectable as a digital signal.

SPL is performed using a technique called time-correlated 
single-photon counting (TCSPC), originally developed for 
fluorescence lifetime imaging microscopy. The basic idea of 
TCSPC is that of a stopwatch: the laser starts a timer with 
each illumination pulse, and the timer is stopped with the 
detection of a photon. The time difference between the stop 
and start signals gives the photon’s time of flight, which is 
easily converted to a measurement of the round-trip distance 
through multiplication by the speed of light. Due to timing 
uncertainty and the presence of nuisance detections of ambi-
ent light, illumination is repeated to build up a histogram of 
photon detection times, from which more reliable depth esti-
mates can be determined.

Transverse resolution is achieved using the illumination 
or detection or both, each approach presenting different 
advantages and drawbacks. SPL systems have conventionally 
employed raster-scanned illumination, as illustrated in Fig-
ure 1. A laser aimed at one spot in a scene repeatedly pulses 
for a certain dwell time before being redirected to the next 
spot. While laboratory experiments typically use a simple 

pair of XY galvo mirrors, and the original Velodyne systems 
physically rotate the lasers and detectors for a 360º field of 
view, rugged beam steering with fewer mechanical compo-
nents is an area of ongoing industrial development, with cur-
rent approaches employing spatial light modulators, such as 
optical phased arrays, microelectromechanical systems mir-
rors, and liquid crystal metasurfaces [6]. Scanned illumina-
tion enables the use of a single-pixel or bucket detector, which 
is often in a confocal configuration (focused and coaxially 
aligned with the laser) to limit the number of photons under-
going multiple bounces or originating from ambient sources 
from being detected.

Unfortunately, raster scanning is an inherently slow, serial 
process. A more desirable approach is to broadly illuminate a 
swath of the scene and achieve spatial resolution with an array 
of single-photon-sensitive elements [10]. While detector arrays 
promise faster, parallelized acquisition, existing arrays are still 
limited in their resolution, and the laser power broadly diffused 
across a larger area further reduces the signal strength received 
at each pixel location. One compromise is the use of a line 
illumination and line array detector, which reduces the spatial 
scanning to a single dimension and limits the diffusion of the 
laser power [11].

Acquisition modeling
Despite the variations in acquisition hardware, each pixel, 
in general, will be associated with a stream of photon detec-
tion times. The time of arrival of a photon at the detector and 
whether that photon will be registered are inherently random 
processes, so the first step in making use of SPL data is to 
understand the probability distribution of the detection times. 

Timing
Electronics

SPAD

Collection
Optics

Laser

Beamsplitter

Control
Computer

Scanning
Mirrors Laser Pulses

Reflected Photons

FIGURE 1. An example SPL system in a raster-scanned confocal configuration. The laser illuminates one point in the environment at a time, directed by a 
pair of scanning mirrors. Light reflecting back from illuminated surfaces is directed toward a single-photon-sensitive SPAD detector. The time difference 
between the illumination and the photon detection is recorded and processed.
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Factors affecting the detection time distribution can be divided 
into two groups based on optical or electrical interactions.

Optical interactions
Optical factors encompass all influences on the light reach-
ing the sensor, including the laser illumination, atmospheric 
attenuation, surface reflections, and ambient light. We consid-
er the optical model for a single point in a raster-scanned lidar 
implementation, which is mostly analogous to light reach-
ing a single pixel in a detector array. The laser illuminates a 
short-duration pulse with shape h(t). Any surface within the 
beamwidth will reflect some light back, delayed by a time de-
pendent on the distance dm  to surface m and attenuated by 
the reflectivity ,rm  which includes the effects of the surface 
albedo, view angle, and optical illumination intensity. In ad-
dition, ambient light at the same wavelength as the laser (or 
more generally, within the spectral range of the detector) will 
reach the detector, although the timing of that incident light 
does not contain any depth information. The timing of pho-
tons incident on a detector is well understood to be described 
by a Poisson process. Because the illumination is periodic, 
with the period denoted ,tr  the process intensity in one period 
is approximately given as

/( ) ( ), [ , ),t r h t d c t t2 0forb m
m

M

m
1

r!m m= + -
=

/ (1)

where bm  is the intensity of the ambient light at the illumina-
tion wavelength (assumed to be constant for the duration of the 
acquisition), M is the number of surfaces present in the field of 
view, and c is the speed of light (roughly 3 10 m/s8#  in air). 
We refer to the first term as uninformative background noise, 
while the contributions combined in the sum are denoted as the 
informative signal intensity.

Acquisition electronics
The acquisition electronics determine which photon detec-
tion events are registered and what time information is stored 
for each event. For instance, not all photons incident on 
the SPAD actually cause the generation of a photoelectron, 
whereas thermal noise may cause spurious detections known 
as dark counts. Furthermore, the timing jitter of the circuitry 
in response to an incident photon will effectively increase the 
pulsewidth of h(t). These effects tend to be minor in practice 
and do not affect the processing approach. We thus typically 
consider ( )tm  to describe the detection process. The photon 
flux, or the expected number of photons incident in one cycle, 
is given by y ( ) ,t dttrmK =

0
 so the number of photon detections 

after nr  illumination cycles is a Poisson random variable 
( ) .N nP r+ K  As described in the “Detector Dead Times” 

section, this model is only sufficiently accurate in the low-
flux regime (i.e., ) .1%K

More fundamental to the acquisition process is the effect of 
temporal quantization. Each photon detected by the SPAD is 
assigned a time stamp, where the resolution tT  is dictated by the 
TCSPC electronics. Rather than processing each of the N photon 

detection times , ,t tN1 f  separately, a histogram [ , , ]y yN1 kf  of 
Nk  time bins is typically constructed using the detection times 
at each pixel (i, j). Then the observation model for each time bin 
is a Poisson random variable, where the parameter integrates the 
Poisson process intensity across that bin:

( ) , , , .y n t dt k N1forP
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k
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When considered together, forming a histogram for each of the 
N Ni j#  transverse pixel locations yields a 3D data cube.

Estimation basics
Reflectivity, depth, and background information can be esti-
mated from the photon detections according to model (2). The 
standard estimation procedure assumes a single surface within 
each pixel ( )M 1=  and known background rate .b b tTm=  Un-
der these assumptions, the maximum likelihood (ML) reflec-
tivity estimate rt  is easily given as

( )
.r

h t dt

N bN
t

k

0

r
= -t
#

(3)

Finally, the ML depth estimator dt  is given by cross-correlating 
the detection time histogram with the logarithm of h(t), also 
known as the log-matched filter:

( ) .argmax logd c y rh k b
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Challenging estimation conditions
Unfortunately, the widely varying environments encountered 
by an AV and the need for fast acquisition often result in con-
ditions that can make reflectivity and depth estimation more 
challenging. In many cases, the conventional pixel-wise es-
timation (3) and (4) fails under these conditions, motivating 
the algorithms described later in this article. A number of 
these conditions are depicted in Figure 2 and described as 
follows.

Few photons
The number of detected photons N may be small or even zero 
for several reasons: the number of illuminations nr  is kept low 
for real-time acquisition, the surface reflects very little light 
because it is weakly reflective or far away, and so on. Demon-
strations of photon-efficient SPL used exactly one photon per 
pixel (ppp) [9] or an average near 1 ppp [12], [13], resulting in 
many pixels with no detections.

Strong ambient light
Estimation is particularly challenging if the ratio between the 
number of photons due to the laser and ambient illuminations, 
referred to as the signal-to-background ratio (SBR), is low. 
Even though optical methods (e.g., confocal configurations 
and bandpass filters) are used to limit the amount of ambi-
ent light that reaches the detector, strong daylight, especially 
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when combined with a weak surface reflection, can result in 
far more detection events associated with background photons 
than from signal photons.

Absence of surfaces
The most basic 3D reconstruction methods assume a single 
surface at each pixel location. If a pixel has no object in its line 
of sight ( ),M 0=  then the histogram contains only background 
detection events.

Multiple surfaces
On the other hand, there may be reflections from multiple sur-
faces present at one pixel ( ) .M 12  This may occur because the 
light passes through a semitransparent material, such as glass. 
Alternatively, the pixel size or field of view increases with dis-
tance (e.g., due to the laser divergence in a scanned setting), so 
the spot is more likely to cover multiple surfaces. This same 
principle is often used in foliage-penetrating airborne lidar for 
terrain mapping.

Pulse broadening
Surfaces are generally assumed to be opaque and approxi-
mately normal to the illumination beam so that the reflected 
temporal response closely resembles the shape of the illumina-
tion pulse. However, subsurface scattering or oblique-angled 
surfaces, especially at long distances, will return broadened 
pulse profiles [14].

Attenuating media
Particles in the beam path, such as fog, smoke, rain, and snow, 
affect the acquired light by scattering photons in different direc-
tions after both the illumination (forward path) and reflection 
(return path). To some extent, the result is similar to that of a 
signal weakened by additional attenuation and increased back-
ground due to scattered photons [15], although the near-range 

effects of scattering also reshape the temporal distribution of the 
background, with more detections at earlier times [16].

Challenges due to nonideal acquisition electronics
Although the effects of the electronics have thus far been treated 
as minor, further challenges requiring more careful modeling 
arise if the actual electronics significantly deviate from the ideal.

Coarse temporal quantization
The ability to accurately resolve transient information depends 
on the duration of the histogram bins. For raster-scanning 
systems, the bin resolution that can be achieved currently is on 
the order of picoseconds, which is typically much less than the 
duration of pulse h(t), so quantization effects on the depth es-
timation can be neglected. However, the timing resolution of 
detector arrays is usually coarser for each element than for a 
single-pixel device due to hardware and readout constraints. 
Whereas the single-photon-sensitive elements and timing elec-
tronics for a single pixel can easily be constructed as separate 
elements, the timing electronics in 2D arrays must be integrated 
on-chip for each pixel, resulting in a tradeoff between the fill 
factor of the photo-sensitive detector and timing components.

This becomes particularly problematic if the bin size ,tT
which is the least significant bit of the temporal quantization, 
is larger than the duration of pulse h(t). In that case, the depth 
resolution that can be achieved is quantization limited and 
can make object detection and recognition more difficult [see 
Figure 2(h)]. One proposed solution is to use longer-duration 
illumination pulses, which distributes photon detection events 
from the same surface across multiple time bins [10]. This acts 
as a sort of nonsubtractive dithering, which, through the aver-
aging of enough detections, can provide sub-bin resolution. 
A more photon-efficient strategy is to take advantage of the 
short pulse durations and implement subtractive dithering via 
time shifts in the system synchronization. By inserting sub-bin 
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FIGURE 2. Examples of recorded histograms: (a) the ideal case, (b) few photons, (c) strong background illumination, (d) the absence of a target, (e) multiple 
surfaces per imaged pixel, (f) the broadening of the impulse response, (g) highly attenuating media, (h) coarse quantization, and (i) dead-time effects. The 
observed photon counts are shown in blue, whereas the a priori unknown Poisson intensity from (1) is in red.
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delays into the synchronization signal between the laser pulse 
and the detection timing, efficient estimators can recover 
depths with sub-bin resolution [17].

Additional array considerations
Another current limitation of array manufacturing constraints 
is spatial nonuniformity. While raster-scanning imaging with 
a single-pixel detector has essentially identical system prop-
erties for each laser location, array elements have neither 
the same light sensitivity nor identical noise characteristics 
across the device. In particular, arrays often present hot pix-
els with overwhelming numbers of dark counts or dead pixels 
with inadequate light sensitivity. The inputs from these pixels 
must be omitted, or at least accounted for, in the reconstruc-
tion process.

Detector dead times
Unfortunately, the circuitry required for SPADs to be single-
photon sensitive both precludes the ability to resolve numbers 
of photons and requires a reset period, or dead time, following 
each detection. Photons incident on a SPAD during a dead time 
are missed, and the dependence of a detection on the most re-
cent detection time means the sequence of detection times can 
no longer be described by a Poisson process. Missed detections 
occur most frequently in the high-flux regime when 1%K  is no 
longer valid (e.g., when imaging bright objects, such as retrore-
flective street signs that reflect many photons), and they cause 
distortions of the detection time histogram that may result in 
erroneous depth and reflectivity estimates, thereby making ac-
curate localization and object recognition more difficult.

The simplest way to avoid dead-time distortions is to atten-
uate the incident light to reduce the probability of missed pho-
tons, but attenuation is impractical for automotive lidar since 
it is already a challenge to recognize dark and distant objects 

in real time without additionally weakening the input signal. 
Instead, dead time can be mitigated by recognizing that the 
sequence of detection times forms a Markov chain [18]. A good 
approximation of the dead-time distorted detection time dis-
tribution is given by the stationary distribution of the Markov 
chain, which can be precomputed and tabulated for different 
light-intensity values. Additional methods exist for correcting 
histograms when range gating can also be used [19]. Thus, the 
distributions for both bright and dark objects can be accommo-
dated and correctly matched, resulting in accurate point clouds.

Scene reconstruction
So far, we have discussed the acquisition process and associated 
challenges for individual SPL histograms. Here, we consider 
the problem of processing the complete data cube of N Ni j#

pixels with Nk  histogram bins, indicated in tensor form as 
.y ZN N Ni j k! # #

+  We denote the set of depth positions, reflectivity 
values, and background levels as d, r, and b. The 3D recon-
struction task consists of recovering a 3D point cloud ( , )d r
and background levels b from the photon detection events y, as 
illustrated in Figure 3. This task is a difficult inverse problem 
due to the random noise affecting the measurements, the depth 
uncertainty related to the breadth of the impulse response, and 
potentially missing data issues, such as the presence of hot or 
dead pixels. The classical ML estimate using cross correlation 
(4) does not provide robust estimates when very few photons 
are collected by the detector. To improve these estimates, we 
can exploit a priori knowledge on the scene’s structure, restrict-
ing the reconstructed scene to a set of plausible point clouds. 
This knowledge is incorporated using regularization functions 
by solving

( , , ) ( , , ) ( ) ( ) ( ),argmin logd r b y d r b d r bp
, ,d r b

1 2 3; t t t= - + + +t t t

(5)

Scene Reconstruction

(a) (b)

FIGURE 3. An SPL data set containing two surfaces (the man behind camouflage netting from [20]). The (a) photon detections and (b) 3D point cloud. 
The graph on the left shows the histogram of a given pixel. The limited number of collected photons and the high background level make the reconstruc-
tion task extremely challenging. In this case, processing the pixels independently yields poor results, while it can be improved by considering a priori 
knowledge about the scene’s structure. Figure adapted from [24]; used with permission.
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where ( , , )y d r bp ;  is given by the observation model [e.g., (2)] 
and ,1t ,2t  and 3t  are interpreted as the regularization terms 
for the depth, reflectivity, and background, respectively. In the 
context of Bayesian statistics, these terms are interpreted as 
negative log-prior distributions. The objective in (5) assumes 
that depth, reflectivity, and background parameters are a priori 
independent; however, some models also capture dependencies 
between them by using a nonseparable ( , , ) .d r bt

The 3D reconstruction task is challenging for several rea-
sons. First, the cost function in (5) is generally nonconvex and 
even multimodal. Second, meaningful and well-defined priors 
that capture correlations of 2D manifolds (surfaces) are dif-
ficult to construct. Third, making an all-encompassing algo-
rithm that can handle varying scenarios, such as those shown 
in Figure 2, is a difficult task. Finally, the algorithms have to 
be able to process very large volumes of data while providing 
fast estimates for any posterior decision making.

The SPL literature contains a wide variety of 3D recon-
struction algorithms, differing both in the assumptions about 
the signal model (1) and the regularization assigned to the 
unknown parameters (5). We distinguish two main families 
of algorithms. The first group assumes exactly one object per 

pixel ( ),M 1=   reducing the 3D reconstruction problem to the 
estimation of depth, reflectivity, and background images. Most 
methods in this group use total variation regularization for 
both the depth and reflectivity images [9], [12], [21]. The sec-
ond group, namely, multidepth methods, relaxes this assump-
tion and attempts to infer a more general 3D point cloud, 
relying on priors defined in 3D space. In the following, we dis-
cuss different approaches to reconstruction, from robustness to 
background illumination and the real-time scene reconstruc-
tion of multiple surfaces per pixel. Figure 4 compares classical 
cross-correlation estimation and advanced 3D reconstruction 
algorithms in several challenging scenarios.

Robust imaging
SPL systems in AVs must be able to handle conditions with both 
weak signals and strong ambient light simultaneously. A fun-
damental goal of scene reconstruction algorithms is thus to 
provide accurate depth estimates for a low SBR. Initial pho-
ton-efficient methods emphasized censoring background de-
tections by comparing detection times at neighboring pixels 
before applying background-free estimation techniques [9], 
[12]. More recent algorithms take advantage of two additional 
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FIGURE 4. Examples of 3D reconstructions in challenging imaging conditions: The top row shows ML estimates by cross correlation, whereas the second 
row shows restorations using advanced methods that also incorporate spatial priors. See [7] and [23] for acquisition details. (a) High-ambient illumination. 
Robust single-depth algorithms (e.g., [21]) can form accurate point clouds for targets such as the mannequin head at 325 m, even when short acquisi-
tion times and strong ambient illumination result in few signal photons and an extremely low SBR. (b) Complex scenes. Multidepth algorithms, including 
ManiPoP [14], can handle complex scenes, such as in the 3-km acquisition depicted here, which has some pixels with zero or multiple surfaces. The 
estimated degree of impulse response broadening could be used in computing surface normals. (c) Real-time imaging. A real-time multidepth algorithm 
[24] is designed to process 3D data at video rates. 
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observations. At a pixel level, photons due to ambient illumi-
nation are uniformly distributed across the histogram, where-
as photons due to a target are clustered following the shape 
of the impulse response of the device. At an image level, 
background intensities resemble a passive image of the scene, 
enabling reconstruction algorithms to benefit from additional 
spatial correlation. The single-depth method introduced in 
[21] uses the first idea of discarding nonclustered photon de-
tections. Following an iterative multiscale approach, pixels 
with a very low SBR are integrated with neighboring pixels, 
increasing the probability of finding a cluster of signal pho-
tons [see Figure 4(a)]. Alternatively, an SPL data cube can 
be fused with a high-resolution 2D photograph via a convo-
lutional neural network to improve the detail of depth and 
reflectivity reconstructions [22].

Imaging complex scenes
In a general setting, an a priori unknown, but usually reduced, 
number of surfaces can be found at each imaged pixel. Target 
detection algorithms focus on cases where at most one surface 
is present ( ),M 1#  which encompass a wide range of practical 
scenes. In contrast, multidepth algorithms relax assumptions 
about the number of surfaces, estimating the quantity of ob-
jects M at each pixel.

In the target detection setting, simply thresholding the reflec-
tivity estimates obtained by a single-depth algorithm is generally 
not robust to background illumination. Hence, specific target 
detection algorithms estimate an additional binary image indi-
cating the per-pixel presence or absence of a target. In [23], 
spatial correlations are promoted using an Ising model, and 
inference is performed using a reversible-jump Markov chain 
Monte Carlo algorithm (RJ-MCMC). While being fully unsu-
pervised (the hyperparameters are estimated within the algo-
rithm), this method requires execution times on the order of 
hours. Recent alternatives achieve faster results by computing 
a per-pixel posterior probability of the target presence and pro-
cessing the pixels independently in parallel.

The general multidepth assumption includes the previously 
discussed algorithms as special cases, at the expense of solving 
a harder problem. We identify two main strategies. The first 
approach aims at estimating a 3D volume of reflectivity values, 
where only a few nonzero values correspond to the 3D points, 
rewriting (2) for each pixel as

( ),y Hr b1P Nk+ + (6)

where H is the convolution matrix of h(t), 1Nk  is a length-Nk

vector of ones, and [ , , ]r r rN
T

1 kf=  is the reflectivity vector, 
which has small 0,  pseudonorm .r M0< < =  In this direction, 
different convex relaxations combine the 1,  and 2,  norms to 
promote sparsity within histograms and take advantage of 
correlations across pixels (e.g., [20]). These formulations have 
the advantage of possessing a unique solution, which can be 
obtained using the standard proximal-gradient or alternating-
direction method of multipliers optimization techniques. The 
downsides are the expensive memory requirements (at least 

one dense 3D cube has to be stored in memory) and the lack of 
exactly sparse solutions, generally relying on a postprocessing 
step to further sparsify the output.

A second strategy directly estimates a 3D point cloud, 
where the dimension of the parameter space (i.e., the number 
of 3D points) is a priori unknown. The first step in this di-
rection was the algorithm in [25], which infers the point po-
sitions using an RJ-MCMC algorithm to handle the varying 
dimensions but does not consider spatial correlations between 
the point positions. The more recent ManiPoP model [26] in-
cludes spatial correlations, using a spatial point process prior 
to model the manifold structure of 3D surfaces. Inference is 
again performed with an RJ-MCMC algorithm, but the overall 
computational cost is significantly reduced by the use of care-
fully tailored proposals. In [14], ManiPoP was extended to an 
even more general observation model, including the effects of 
attenuating media and impulse response broadening [see Fig-
ure 4(b)]. While being robust to a wide range of conditions, 
these algorithms still require execution times on the order of 
seconds or minutes, hindering any real-time decision making 
in AVs. This shortfall is addressed by algorithms tackling real-
time performance.

Real-time imaging
While the offline processing of scanned stationary targets has 
offered compelling evidence for the potential of SPL sys-
tems, practical vehicular deployment requires real-time per-
formance. Crucial to speeding up the point cloud formation 
is the parallelization of both the acquisition and processing 
procedures. Initial real-time lidar development at the Massa-
chusetts Institute of Technology Lincoln Laboratory requir -
ed expensive computation to be run on a large server cluster 
[27]. More recently, a single-pixel SPL device illuminating 
short-range scenes with structured (Hadamard) patterns from 
a digital micromirror device was shown to be capable of pro-
cessing up to 12 frames/s enabled by direct inversion of the 
patterns [28]. As SPAD arrays have improved to capture very 
high rates of time-stamped photon detections in parallel, the 
bottleneck for real-time performance has moved to the recon-
struction algorithms.

New algorithms are designed to take advantage of the paral-
lel computations in general-purpose GPUs, which are compact 
and inexpensive enough for use in AVs. Under a single-depth 
assumption, the algorithm in [29] avoids the construction of 
histograms, updating the depth and reflectivity estimates with 
each new photon arrival. The multidepth algorithm in [24] uses 
off-the-shelf point cloud denoisers from the computer graphics 
community as part of a proximal-gradient optimization algo-
rithm similar to plug-and-play strategies in image processing. 
The combination of fast parallel denoisers and parallel gradi-
ent updates enables the acquisition and processing of up to 
50 frames/s [see Figure 4(c)]. In this direction, future methods 
will have to incorporate other prior knowledge without slowing 
down the reconstruction process significantly, relying on an 
efficient combination of algorithmic structure and comput-
ing hardware.
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Anticipatory imaging
In addition to the fast and precise formation of point clouds, 
which is the primary goal of lidar systems, SPL has the poten-
tial to extend its functionality beyond the capacity of human 
vision. A growing research area is non-line-of-sight (NLOS) 
imaging: forming images of, or at least detecting, objects out-
side the direct field of view (see Figure 5). The principle behind 
such work is that, even after multiple bounces, the intensity and 
transient measurements of light may retain some information 
about each interaction between the source and detector. Thus, 
diffuse surfaces, such as roads and walls, could act as mirrors, 
enabling vision around obstacles.

There are two main challenges to NLOS imaging: 1) diffuse 
reflectors scatter light in all directions, scrambling directional 
information about the light paths, and 2) the light returning to a 
detector after multiple diffuse bounces is extremely weak. The 
single-photon sensitivity of SPL systems has made them a popu-
lar choice for tackling the second challenge. The first problem 
continues to be a hot topic of research, with novel computational 
strategies (e.g., [31] and [32]) employed to make the most of the 
weak signals.

One recent approach uses a standard coaxial SPL configu-
ration to scan a grid of points on a visible wall [30]. While 
the strong first peaks contain the usual LOS lidar signal, later 
parts of the temporal histogram contain contributions from 
light that has undergone multiple bounces before reaching the 
detector. Clever manipulation of the image formation model 
reveals that the photon detection time histogram measurements 
can be expressed as a 3D convolution, enabling a straightfor-
ward, closed-form solution that can be implemented with a fast 
Fourier transform. The resulting algorithm has lower compu-
tational and memory requirements than previous approaches 
using back projection or linear inverse formulations, thus even 
enabling some real-time demonstrations. The method is espe-
cially powerful for use with hidden retroreflective surfaces, 
which return much more light than diffuse surfaces do. Since 
retroreflective coatings are already in widespread use on roads, 
including on street signs and within bicycle reflectors, NLOS 
imaging with SPL may one day be capable of alerting an AV to 
potential road hazards occluded from view.

Future directions for SPL
SPL is already a promising tool for providing fast, high-res-
olution depth sensing for AVs. Ongoing hardware develop-
ment of the illumination and detection systems will continue 
to bring down costs and improve acquisition performance. 
Nonetheless, signal processing for future SPL systems will 
still need to address the main questions of how to model the 
acquisition process and how to incorporate prior knowledge of 
3D structures for point cloud formation. Future extensions to 
SPL will incorporate more information from alternative lidar 
acquisitions, e.g., using multiple wavelengths or polarizations, 
or from other sensing modalities, such as standard red–green–
blue images and radar. These other sources of information 
could improve the robustness of the imaging system, gener-
ally at the cost of longer or more complex acquisitions and 
reconstructions. Deep neural networks will likely play an im-
portant role in identifying correlated information and fusing 
the various modalities.

The ever-growing demand for better spatial (array size and 
timing) and spectral resolution can only be met with highly-
scalable signal acquisition and processing techniques. Devel-
oping compressed sensing techniques for photon-counting 
lidar, following single-pixel SPL, wavelength-time coding, 
and color-coded apertures, could potentially reduce both the 
acquisition and reconstruction time. These methods will contin-
ue to require a better understanding of the tradeoffs between 
the acquisition (photon budget, laser power, and acquisition 
model), reconstruction complexity (memory requirements, 
parallel or serial architecture, and execution time) and esti-
mation performance. Given the success demonstrated thus 
far and the available opportunities for improvement, SPL 
will ultimately be one of the factors enabling autonomous 
driving and the transformation of the transportation industry 
and beyond.
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AUTONOMOUS DRIVING: PART 1

utonomous driving relies on a variety of sensors, especially 
radars, which have unique robustness under heavy rain/
fog/snow and poor light conditions. With the rapid in-

crease of the amount of radars used on modern vehicles, where 
most radars operate in the same frequency band, the risk of 
radar interference becomes a compelling issue. This article 
analyzes automotive radar interference and proposes several 
new approaches that combine industrial and academic exper-
tise toward the goal of achieving interference-free autonomous 
driving (AD).

Introduction and motivation
Radar is becoming standard equipment in all modern cars, 
supporting, e.g., cruise control and collision avoidance in most 
weather conditions while providing high-resolution detec-
tions on the order of centimeters in the millimeter-wave 
(mm-wave) band. The next generation of advanced driver as-
sistance (ADAS) and AD vehicles will have a multitude of ra-
dars covering numerous safety and comfort applications 
such as crash avoidance, self-parking, in-cabin monitoring, 
cooperative driving, collective situational awareness, and so 
on. Because automotive radar transmissions are uncoordinat-
ed, there is a nonnegligible probability of interference among 
vehicles, as shown in Figure 1. Although current automotive 
radars have already been impacted by interference to some 
extent, today, they are unlikely to raise customer awareness 
because state-of-the-art automotive radars are continuously 
updated and improved upon at many system levels.

However, the mutual interference problem is expected 
to become more challenging if not properly handled, as more 
vehicles are equipped with a greater number of radars pro-
viding 360° situational awareness at various distances that 
enable more advanced future ADAS and AD functionalities. 
This is evidenced by multiple international studies, such as the 
MOSARIM project [1] and the more recent IMIKO radar proj-
ect. All of the major players in the automotive sensor market, 
such as Volvo and Veoneer, are studying the next genera-
tion of “interference-free radars.” This includes, for example, 

Digital Object Identifier 10.1109/MSP.2020.2969319 
Date of current version: 26 June 2020

Radar Interference Mitigation for Automated Driving
Exploring proactive strategies

A

©ISTOCKPHOTO.COM/OONAL



73IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

enhancing models to determine the impact of a larger density 
of radars, simulating new interference scenarios, and inves-
tigating different medium access control (MAC) models and 
methods to coordinate radar transceivers, both decentralized 
and centralized. 

At this point, the automotive industry is ready to consider 
novel designs and approaches, which may impact standardiza-
tion bodies before a new frequency spectrum is made available 
in the higher radio-frequency (RF) bands. Signal processing 
can provide ways to reduce or mitigate interference, both at the 
raw signal level as well as at the postdetection/target-tracking 
level. The particular properties and requirements of automotive 
radar impose significant challenges in terms of signal process-
ing. This includes the combination of radar and communica-
tion waveforms, which brings up further possibilities regarding 
ultrareliable low-latency communications in vehicular ad hoc 
networks (VANETs). It is therefore important and timely to 
review what has been done, what the reasonable approaches are, 
and what the future holds.

The focus of this article is on frequency-modulated con-
tinuous wave (FMCW) radar because it is the most com-
mon and robust automotive radar. We provide an analysis of 
the impact of interference in FMCW both quantitatively and 
qualitatively, in terms of their probability, severity, and effects. 
Then, we cover different ways to mitigate interference, rang-
ing from changing FMCW parameters to new signal structures 
and the explicit coordination between vehicles. We also study 
new techniques that are potentially more robust toward inter-
ference, including stepped-frequency orthogonal frequency-
division multiplexing (OFDM). Finally, we describe what we 
believe will be the long-term evolution of automotive radar and 
its relation to mobile communication.

Automotive radar

History and future of automotive radar
Radar has been used in automotive applications for a long time. 
In 1949, unfortunate car drivers were issued speeding tickets 
based on speed measurements obtained from the radar speed 
gun, recently invented by John L. Barker. However, on-board 
automotive radar was not made commercially available until 

1999, when it was introduced for collision warning and au-
tomatic cruise control (ACC). See [2] for an early history of 
automotive radar with some entertaining vintage photography. 
Over the years, there has been a strong push to increase the 
integration level of mm-wave electronics used for automotive 
radar and industrial radar sensors. The early discrete hardware 
designs have been replaced by a few chips in III–V-materials,
and now, CMOS single-chip solutions are available. CMOS 
technology provides the ability to fully integrate analog and 
digital electronics, making very advanced protocols and detection 
schemes possible at low cost and low power. Consequently, 
radar is becoming more and more common for supporting 
various automotive applications. ADAS systems based on ra-
dar are today standard equipment in most new vehicles. Ve-
hicles capable of some level of AD are also expected to rely, 
at least to some degree, on radar systems for monitoring vehi-
cle surroundings. The number of radar transceivers operating 
throughout the traffic environment is foreseen to increase rap-
idly over the coming years. As the number of radar transceiv-
ers in the traffic infrastructure increases, radar interference is 
also expected to increase. 

Today, most radar transmissions are uncoordinated, mean-
ing that there is no a priori agreement on who is allowed to 
transmit and when. A number of recent studies have identi-
fied the interference situations that are likely to arise as the 
automotive radar transceiver market penetration increases [1], 
[3]. FMCW waveforms can, up to a point, be relatively eas-
ily repaired in the event they are intermittently corrupted by 
interference [4], which is why they are still operational. Future 
radar systems are expected to occupy frequency bands that 
are higher and higher in frequency. Transceivers operating 
around 77 GHz are available today, and transceivers operating 
at carrier frequencies beyond 100 GHz are expected. Frequen-
cies as high as 300 GHz and beyond are being considered for 
some applications, such as synthetic aperture radar mapping. 
Operation at such high frequencies brings the obvious benefits 
of improved miniaturization, but also presents challenges in 
terms of hardware complexity and signal attenuation. More-
over, interference-free operation will require radar transmis-
sion standardization. A standardized transmission scheduling 
system resembling today’s cellular communication system 

Weak Backscattered Signal

Strong Interference Signal

Impact
• Ghost Targets, False Alarms
• Increased Noise Floor, Missed Detections 

FIGURE 1. Interference is generally much stronger than the desired radar signal, due to its one-way propagation. Interference increases with more interfering 
radars and leads to false alarms and missed detections. 
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would present a solution to the interference problem, but it is 
not without challenges, both technical and political.

Basics of FMCW radar
In a general FMCW radar, a frequency sweep, i.e., a chirp, is 
generated by a voltage-controlled oscillator operated by a digi-
tal synthesizer. The generated chirp signal is split and sent into 
two different signal paths: one path is directed to the transmit-
ter (Tx) antenna, while the other path is directed to the mixer 
correlator. Before the chirp is sent out on the Tx antenna it 
passes a power amplifier (PA), which boosts the transmitted 
energy. Here we assume that there are no idle periods between 
consecutive chirps. It is also possible to introduce random in-
terchirp idle periods to reduce the probability of mutual in-
terference between FMCW radars. The transmit waveform 
of an FMCW radar with K  consecutive linear FM chirps (or 
sweeps) can be expressed as [5] 

( ) ( ),s t x t kT
k

K

0

1

= -
=

-

/ (1)

where the individual chirps are given by

( ) , ( ) ( . ) .( )x t e t f t tt 2 0 5rect( )j t
T c

2{ r a= = +{ (2)

Here, /B Ta =  is the chirp slope, B  denotes the sweep band-
width, T  represents the chirp duration, fc  is the carrier fre-
quency, and ( )trectT  is square pulse of duration T  with an 
amplitude of 1. The received reflected signal from a target is 
very weak due to its two-way free-space propagation path loss 
and the losses incurred during reflection and thus needs to be 
amplified with a low-noise amplifier (LNA) to maintain an 
acceptable signal-to-noise-ratio (SNR). The amplified signal 
from the target reflection is correlated with the Tx signal in 
the mixer correlator, which is called dechirping. The low-pass 
filter at the output of the correlating mixer offers some interfer-
ence rejection. The round-trip delay and Doppler shift caused 
by the relative velocity of the target shifts the frequency of the 
received signal compared to that of the transmitted signal. As 
a result, the mixer creates a beat signal that will pass through a 

low-pass filter and be digitized, yielding delay and Doppler 
estimates after matched filtering. In modern automotive ra-
dars, it is also possible to estimate azimuth and elevation of 
targets using multiple antennas.

FMCW radar signal processing chain
Suppose there exists a single target of interest acting as a point 
scatterer, characterized by a complex channel gain c [including 
the effects of path loss, antenna gain, and radar cross section 
(RCS)], an (initial) round-trip propagation delay / ,R c2x =  and 
a normalized relative Doppler shift / ,v c2o =  where R  and v
denote, respectively, the distance and relative radial velocity 
between the radar and target, and c is the speed of wave propa-
gation. The received backscattered signal is now processed in 
three stages.

Stage 1: Dechirping
Under the stop-and-hop assumption [6, Ch. 2.6.2], the kth chirp 
of the received signal is given by

( ) ( ( ) ) ( ),r t x t t kT w tk kc o x= + + - + (3)

where t T0 # #  denotes the time relative to the beginning of 
the kth chirp, and ( )w tk  is measurement noise. To obtain the 
beat signal at the intermediate frequency, the received signal 

( )r tk  in (3) is dechirped through conjugate mixing with the 
transmitted signal ( )tx  in (2). Here we ignore the terms whose 
total phase progression over a coherent processing interval 
(CPI) of K  chirps is smaller than /4r  for typical automotive 
FMCW settings [6, Ch. 2.6.3]:

( ) ( ) ( ) ( ) ( ) ( ).y t r t x t e e t w t x trect( )
k k

j f t kT j t
T k

2 2cc x= = - +) )r o rax+ -

(4)

Let maxx  denote the round-trip delay (see Figure 2) that corre-
sponds to a maximum target range of interest (i.e., ),max $x x

which is related to the radar bandwidth of interest Bs  as 
/ .Bmax sx a=  The analog-to-digital converter (ADC) band-

width B Badc s$  imposes a limit on Bs  and thus the maxi-
mum detectable range .maxx After low-pass filtering the beat 
signal in (4) with bandwidth ,Bs  sampling with a period of 
Ts  for ,t Tmax # #x  we rearrange into a slow-time fast-time 
data matrix, where the kth row contains the samples of the 
kth chirp (fast time), while the nth column contains the nth 
sample of each chirp (slow time). In other words, we have

,y e e w,
( )

,k n
j f nT j f kT

k n
2 2c s cc= +r ax o r o- + (5)

for , ,k K0 1f= -  and , , ,n n N 1max f= - / ,n Tmax max sx= 6 @
/ ,N T T 1s= +6 @  and w ,k n  are independent and identically dis-

tributed complex Gaussian noise samples with variance .2v

Stage 2: Target range-velocity estimation
To provide an estimate of target range and velocity, a 2D dis-
crete Fourier transform (DFT) can be applied across slow- and 
fast-time dimensions of the beat signal in (5), which yields the 

Time

Frequency

B

fc

Badc

Bs

max

T
Transmitted Chirp

Backscattered Chirp

Interference

FIGURE 2. Four consecutive chirps in time-frequency representation, with 
several key notations included. Backscattered and interfering signals are 
shown at the second chirp.
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FMCW delay-Doppler spectrum evaluated at a given delay-
Doppler pair ( , ):x ot t

( , ) .z y e e,k n
n n

N

k

K
j nT j f kT

1

0

1
2 2

max

s cx o = rax r o

=

-

=

-
-t t t t// (6)

The periodogram ( , )z 2; ;x ot t  corresponding to (6) yields a domi-
nant target peak at /( , ) ( , ),fcx o x o a o= -t t  which can be re-
covered using, for example, constant false alarm rate (CFAR) 
detectors [6, Ch. 6]. The peak value of ( , )z; ;x ot t  is proportional 
to the processing gain ( ).G K N nmaxp = -  This frequency iden-
tification method is referred to as the periodogram spectral es-
timator [7, Ch. 2.2.1]. Here, the shift /fco a  in delay stems from 
range-Doppler coupling inherent in the FMCW waveform [6, 
Ch. 4.6.4]. To compensate for the coupling effect, the Doppler-
dependent term /fco a  can be added back to the delay estimate 
after delay-Doppler retrieval. When there are multiple objects 
in the radar field of view (FOV), (6) will have multiple peaks. 
To distinguish the different objects, each object pair must be 
separated by a certain minimum gap in delay and Doppler do-
mains, which is determined by the radar resolution. The range 
and velocity resolution of an FMCW radar can be derived from 
(6) (assuming )n Nmax %  as /( )R c B2T =  and /( ),v KT2cT m=

where cm  is the carrier wavelength [7, Ch. 2.4]. Therefore, high-
er sweep bandwidth leads to better range resolution, while a 
longer CPI duration means improved velocity resolution.

Stage 3: Tracking filter
At the final stage of the signal processing chain, the delay-
Doppler detections {( , )}p p p

P
0
1x o =
-  (along with the correspond-

ing azimuth-elevation pairs in the case of multiple antennas 
[5]) are fed to a data association and tracking filter to pro-
vide filtered 3D positions and the velocities of surrounding 
objects. Here, P  denotes the number of targets seen during 
one scan.

Is interference really a problem?
In the next section, we provide a theoretical analysis for the 
impact of interference on the radar signal processing. We 
start by studying a single link and then extend to a network 
of vehicles on a multilane highway to assess the impact of 
interference as a function of the vehicle and radar density as 
well as the deployment scenario. Our focus will be on direct 
interference from one radar to another. Indirect interference 
(i.e., scattered on objects) will be weaker and is ignored for 
conceptual simplicity.

Single-link interference
The interfering radar employs the FMCW waveform ( )s tint =
/ ( )x t kTintk

K
0
1 -=
- u  where ( ) ,( )x t e trect( . )

int
j f t t

T
2 0 5c

2

= r a+ u
u  while 

the victim radar utilizes the same waveform as specified in 
(1) and (2). Here, / ,B Ta =u u u Bu  and Tu  denote, the chirp slope, 
sweep bandwidth, and chirp duration of the interfering radar, 
respectively. The samples (5) then become

.y e e x w,
( )

, , ,int intk n
j f nT j f kT

k n k n
2 2c s cc c= + +r ax o r o- +

Interference is generally much stronger than the desired 
backscattered signal because they are governed by the Friis 
free-space propagation equation and the radar equation, 
respectively [8]:

( )
,

( )
,P

r
G P

d
G

4 4
int

2
2 2

2
2

3 4

2
trx trx; ; ; ;c
r

m
c

r

vm= = (7)

where r  is the distance between the interferer and the victim 
radar, d  is the distance between the radar and the target, P  is 
the transmit power, Gtrx  is the combined transmit and receive 
antenna gain, and v  is the RCS of the target. Hence, for similar 
d  and r  and typical values of ,v .int

2 2; ; & ; ;c c  The nature of the 
interference depends on the total interference power (i.e., the 
aggregate power of the interference samples) and the level of 
coherence between the victim and interfering radar [9].

The total interference power, which is a function of the radar 
waveform parameters and signal delays, depends on the statis-
tics of the samples .x , ,int k n  The samples satisfy { , }x 0 1, ,int k n

2; ; !

depending on whether or not the interference signal at time ( , )k n
is in the bandwidth of interest of the victim radar. As a result, 
the overall power of the interference is xE , , ,int intk n k n

2 2; ; ; ;/ c =" ,
,f Gint

2
p; ;c  where Gp  is the radar processing gain and f is the 

average interference probability. 
How this total interference power manifests itself depends 

on its radar parameters, and interference can be classified as 
coherent, incoherent, or partially coherent [10]. Coherent 
interference occurs when the interferer uses the same param-
eters ,(a ,T  and )B  as the victim radar. In that case, the inter-
fering radar signal leaking into the bandwidth of interest Bs

of the victim radar (i.e., )f 1=  leads to a ghost target, i.e., a 
peak in the delay-Doppler spectrum with very high power 
[11]. Ghost targets lead to false detections, which in turn may 
cause incorrect behavior of safety systems. Incoherent inter-
ference occurs when samples x , ,int k n  are independent random 
variables due to the interferer using very different waveform 
parameters (e.g., a different chirp pattern) so that the total 
interference power f Gint

2
p; ;c  ends up as an increased noise 

floor. A noise floor increase resulting from interference can 
lead to more severe degradation in detection performance than 
an equivalent increase in thermal noise floor due to the sid-
elobes of the interference spectrum [10]. In between these two 
extreme cases, partially coherent interference occurs due to a 
slight mismatch in chirp slope or chirp duration or in the pres-
ence of phase noise (PN). This causes the energy of the ghost 
target peak (caused by coherent interference) to spread over 
the delay-Doppler domain. For incoherent or partially coherent 
interference, where the interference manifests itself as a noise 
floor, the overall interference power [or, equivalently, the aver-
age signal-to-interference-plus-noise ratio (SINR)] is a reason-
able performance metric, while for fully coherent interference, 
percentiles are more meaningful.

To illustrate how a ghost target is spread out depending on the 
relative waveform parameters, Figure 3 shows the fast-time fast 
Fourier transform (FFT) output, i.e., the range FFT, correspond-
ing to an interfering radar signal as a function of distance. The 
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larger the difference in the chirp slope, the more the interfer-
ence is spread out, due to the decrease in coherence; this affects 
the detection of targets in various ways. Incoherent interference 
may hinder the detection of low RCS targets (such as pedestrians 

and cyclists) over a large fraction of the delay-Doppler domain, 
whereas a (partially) coherent interference can mask even high 
RCS targets (vehicles) but in a smaller fraction of the delay-
Doppler domain.

In practice, oscillators in FMCW radars do not have an 
ideal, impulse-like RF spectrum due to phase and frequen-
cy instabilities [12], [13]. In Figure 4, we demonstrate the 
effect of oscillator PN on the averaged range response of a 
victim FMCW radar when the oscillators of both the vic-
tim and interfering radars are subjected to phase noise pro-
cesses with parameters / L 70 dBc Hzp =-  (pedestal height) 
at W 200 kHzp =  (pedestal width) [13]. Range spectra are 
derived by computing the range FFTs of signal and inter-
ference powers averaged over the randomness of PN which 
is modeled as a zero-mean, wide-sense stationary random 
process under the assumption of white FM PN in the oscil-
lator [14, Sec. V]. As observed from Figure 4, the oscillator 
PN induces the spectral smearing of target and interference 
profiles, thereby causing a loss of details in the spectrum, 
which deteriorates detection performance and leads to the 
masking of weak targets.

Network interference
The aforementioned interference analysis can be extended 
to a complete network, for instance, on a multilane road, by 
employing a stochastic geometry approach [8]. As shown 
in Figure 5, consider a victim radar surrounded by L  lanes 
of traffic, with lane separation ,R  each modeled as a 1D 
Poisson point process ( )xU  with intensity /1 D  (so that D  is 
the expected distance between vehicles and x  is a vehicle 
location along a road) [3]. Radars (here, one per side of the 
vehicle) are incoherent and can have different chirp dura-
tions, but otherwise share the same bandwidth ,B  duty cycle 

[ , ]u 0 1!  (i.e., the fraction of time the radar is transmitting), 
and FOV. 

We recall that for antennas with a narrow FOV, the anten-
na gain is /( ),G 4. r zi  where z  is the beamwidth in the ele-
vation domain and i  the beamwidth in the azimuth domain. 
This means that a radar with 1 and 30° elevation and azi-
muth beamwidth, respectively, will have a gain of approxi-
mately 31.3 dBi. The expected value of the interference 
probability f  is easily found to be / .f u Bmaxax=  Here we 
made use of the following asymptotic results: 1) when ,a a=u

the probability of interference is /uB Bs  and the interference 
lasts an entire chirp duration; 2) when ,%a au  the probabil-
ity of interference is u  and the duration is /( );maxax a a-u u
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FIGURE 3. The FMCW range profiles in the presence of an interfering radar 
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radar waveform parameters are ,f 77 GHzc =  ,B 1GHz=  and .T 20 sn=  
The interfering radar has an identical chirp duration of T 20 sn=u  but a 
varying sweep bandwidth of Bu  (thus, ).au  The interference signal has a 
one-way propagation delay intx  corresponding to a range of ,R 100 mint =  
while the desired target is located at .R 70 m=  Due to an increased noise 
floor, the target may not be detected depending on its range and the chirp-
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FIGURE 5. Network interference on a six-lane highway. Interference from 
interfering radars is aggregated and depends on the properties of the 
individual radars as well as on the placement of vehicles on the road.
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and 3) when ,&a au  there are /a au  simultaneous interferers, 
each lasting for a duration of /( ).maxax a a-u As a result, 
the aggregate interference seen by the victim radar due to 
interference from lane Z, !  (indexed with reference to the 
victim radar) is

( )
( ) ( )

,I P f
r

G
4 x2 2

2

p
x (x) x FOV

trx,
r

m=
+! !U

/ (8)

where ( ) ,r R xx 2 2 2,= +  where x  is the 1D position along 
the road ranging from // tanR 2p, i^ h to .3+  Here, pi  is the 
minimum of the forward and backward FOV. Accordingly 
(with a slight abuse of notation), the interference averaged over 
the locations of the interferers is
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while for ,0, = ( ) ,r xx =  where we need a certain safety mar-
gin to avoid singularities, we set x  from D  to ,3+  leading to 

/ /( ) ( ) ( ).I P G f0 4 12 2 2
p trx, Tm r= = ^ h  An example of network 

interference on a six-lane highway is shown in Figure 6, as a 
function of the average intervehicle spacing D for a vehicle 
target 150-m away with an RCS of .10 m2  The analytical re-
sult shows the impact of the interference of nearby vehicles, 
leading to an orders of magnitude reduction of the SINR. For 
small ,D  the interference is larger from passing lanes, while 
for large ,D  oncoming traffic dominates. We also observe 
that, even though the interference power can be large, factor 
f  reduces its impact significantly. The example .f 0 01.

leads to a 20-dB reduction in interference. In this example, the 
target can be detected in spite of incoherent network interfer-
ence, while a pedestrian target with a smaller RCS (such as 

)0.1 1 m– 2  farther away than 50 m would be difficult to detect.

Intermediate conclusion
From the aforementioned analysis, we found that interference 
can manifest itself in different ways and increase the occur-
rence of both missed detections and false alarms. Due to the 
nature of FMCW signals (in particular, the small instantaneous 
bandwidth), there is a natural robustness to interference. Both 
the total received interference power and the mutual coherence 
between victim and interfering radar play an important role. As 
a rule of thumb, the signal-to-interference ratio (SIR) for a target 
at distance d  due to the power transferred by an interferer at 
distance r  to a victim radar can be determined as follows: the 
useful signal power (the peak of the periodogram) and the 
interference power are

, ,S G I f G Gint
2 2

p
2

p I; ; # ; ;c c= (10)

where [ , ]G G1I p!  depending on the level of coherence of 
the interference (i.e., G 1I =  for incoherent interference and 

G GI p=  for coherent interference). The level of coherence 
can be characterized through signal-to-interference mitigation 
gain, which is a function of FMCW waveform parameters of 
victim and interfering radars [10], [16]. Hence,
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The first factor is out of the designer’s control, while the sec-
ond factor can be optimized via the duty cycle (small u), chirp 
slope (small / ),B Bs  FOV (thereby reducing ),f  and effective 
processing gain (increase / )G Gp I  to ensure that the SIR is 
much large than 1. Our results indicate that incoherent inter-
ference leads to a significant increase in the noise floor (tens 
of dBs) so that it can reduce the ability to detect weak tar-
gets. Nevertheless, for nearby targets or targets with a high 
RCS, the SIR margin is sufficient to allow for reliable detec-
tion. When the interference is partially coherent this margin 
drops significantly.

Interference mitigation strategies
The impact of interference includes ghost targets and increases 
in noise floor. Both are detrimental to radar operations. Ap-
proaches that deal with interference can be grouped as either 
reactive, which aim to reduce the impact of interference af-
ter it has occurred, or proactive, which aim to avoid or reduce 
interference by design. In the next section, we describe various 
reactive strategies as well as three such proactive strategies: a 
quasi-orthogonal FMCW waveform, a low-rate data communi-
cation between radar Txs, and an OFDM radar approach. Each 
of these approaches lead to high interference suppression, with 
limited impact on radar performance. In addition, the OFDM 
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FIGURE 6. An incoherent network interference on a six-lane highway as a 
function of average vehicle spacing. The distance to the target is 150 m, 
with a 10- sn  chirp time, ,10 m2v =  and 10 dBm of transmit power. It 
features a 1-GHz bandwidth, ,T 03 sn= a 150-m maximum range, a 
50-MHz ADC bandwidth, 10 dBm of transmit power (the same for the 
front and back ends), a 20% duty cycle, a 100- sn  frame duration, and 
30 and 90° FOVs in the forward and backward directions, respectively.
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radar approach can enable high-rate communication links be-
tween vehicles.

Standard (reactive) approaches
Extensive studies have been conducted in the context of the 
MOSARIM project, where a broad range of time- or frequen-
cy-domain signal processing techniques were proposed to mit-
igate FMCW and pulsed-radar interference. These techniques 
are capable of deleting instantaneous interference, which 
exists for a limited time, or bandlimited interference, which 
pollutes a specific portion of the whole radar band (while no 
solution is offered for the worst-case recurring or wideband 
interference [1]). 

The current attitude toward interference mitigation in the 
industry focuses on various techniques, including pulse-to-
pulse processing and removing polluted pulses, sniffing and 
avoiding used frequencies, using frequency diversity, using 
narrow main beams, or sidelobe null steering [3]. Generally, 
these techniques are reactive strategies that focus on elimi-
nating interference after it occurs, making it infeasible for 
highly dynamic VANETs, which require for ultralow laten-
cies. Other reactive strategies exploit the sparsity of useful 
signal and interference components in different transform 
domains, namely, the DFT and short-time Fourier transform 
domains, respectively, to extract the desired signal compo-
nent [17] or to solve a sparse recovery problem that helps 
reconstruct the intervals in the range spectrum spoiled by 
interference [18], which belongs to a general class of time-
domain excision approaches [19]. Such strategies can retain 
the desired target response while eliminating the interfer-
ence, albeit at the cost of losing information and introduc-
ing artifacts [19]. 

In addition to these reactive strategies, there also exist cog-
nitive approaches that utilize idle time-frequency resources 
for FMCW transmission via slope and bandwidth adaptation 
[20]. Interference-avoidance techniques can also be more inva-
sive, such as notifying the driver, disabling the sensor feature, 
shifting functionality to another sensor, and reducing CFAR 
detection sensitivity [3]. However, these avoidance mecha-
nisms either decrease radar detection performance or disable 
the radar completely.

Quasi-orthogonal waveforms

Concept
From the interference analysis, we established that the interfer-
ence is proportional to / ,f u Bmaxax=  where u  is the radar 
duty cycle, a  is the chirp slope, maxx  is the maximum tar-
get round-trip time, and B  is the radar bandwidth. Accord-
ingly, by decreasing the chirp slope or, equivalently, in-
creasing the chirp duration, interference can be mitigated. 
We consider a class of signals containing linear chirps with 
the same chirp rate, a fixed frame rate, and a fixed duty 
cycle. A chirp ( )x t from (2) and a delayed chirp ( )x t Tx-

repeated with period T  have the following power leakage/
coupling for :0T !x
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Because /B TTx  is the instantaneous frequency difference be-
tween the chirps, the coupling is the same as two sinusoids 
with frequency difference / .B TTx  As a result, we conclude 
that these waveforms are quasi-orthogonal. As Tx  was arbi-
trary, this property is maintained under random starting and 
arrival times of FMCW waveforms. From (12), it is possible to 
derive the number of signals N  that cause acceptable interfer-
ence, i.e., smaller than the power backscattered from a typical 
target. Suppose chirp duration T  is divided into N  segments of 
duration ,Tx  so that / ;T NTx =  then, using (7), 
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if r  and d  take on similar values. For  ,r 500 m= B 1 GHz,=

and . ,0 1 m2v =  using one long chirp of duration  T 10 ms=

leads to more than 6,000 quasi-orthogonal waveforms (com-
pared to 12 for a conventional chirp with ).T 20 sn=  The 
challenges of retrieving velocity and range data as well as 
physically realizing such a radar is briefly described in the 
next section.

Signal processing
In (5), even though the speed and range appear in an ambigu-
ous combination in a single chirp, this expression is only an 
approximate representation of a Doppler shift because we ne-
glected several constants and small terms, which are negligible 
for small .T  For long chirps, these neglected values should be 
considered so that the range-speed ambiguity can be resolved 
within a single chirp. Formally,
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e e t e e w t x trectj f t j t j j t
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2

c x

=

= - +
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)r o rax { r oa-u (13)

where ( ) ( )r t r t0=  with ( )r tk  being defined in (3), cu  is a real quan-
tity denoting the target reflectivity, and /( )f2 c0{ rax x a= -

is an absolute phase. The Fourier transform ( )Y f of ( )ty  will 
have a maximum at ,f fco ax= -)  with

( ) .Y f e e tdj j tT 2

0

0
2

c=) { r oau # (14)

Hence, finding the maximum of ( )Y f 2; ;  yields an estimate of 
,fco ax-  which allows us to write /(( ) )f fc0 #{ r o a= - )

( ( ) ).f f2c o - - )  We can then invert (15) to solve for / .v c2o =

The solution must be found numerically, making use of the fact 
that the target reflectivity cu  is real and positive and that the 
complex angle of the integral increases monotonically with ve-
locity within a significant velocity span.

When comparing the outlined approach to that of the slow-/
fast-time FMCW radar case mentioned previously, note the 
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principal difference is that instantaneous velocity is deter-
mined by measuring the complex amplitude. For pulse-Dop-
pler radar, velocity is found by locating the target peak in the 
Doppler spectrum. The present approach assumes that just one 
target is present for any beat frequency, whereas pulse-Dop-
pler radar may handle several targets within the same range/
Doppler resolution cell. On the other hand, the attained beat-
frequency resolution is refined in proportion to the prolonged 
sweep. In effect, both methods exhibit the same low probabil-
ity that two separate targets should be superimposed within the 
same resolution bin.

The single slow-sweep method for obtaining nearly orthogo-
nal waveforms contains a further challenge compared to that 
of pulse-Doppler radar, apart from the novel signal processing 
required. Indeed, the steep ramps of pulse-Doppler FMCW fre-
quency offset the target response as compared to those of the 
transmit signal. Leakage between the Tx and receiver (Rx) will 
manifest itself at the mixer output as a high-amplitude low-fre-
quency peak. In a typical FMCW radar, this unwanted response 
is removed using a configurable analog electronic filter; however, 
the implementation of analog high-pass filters with very low cut-
off frequencies at the chip level is not feasible. Presently, radar is 
based on the subtraction of leakage appearing as a dc component 
with a feedback loop rather than filtering with respect to range 
and Doppler-frequency offsets. The conceived radar scheme in 
Figure 7 indicates that (15) can be slightly modified by digitally 
modifying the signal phase by some offset, thereby changing the 
unambiguous speed range for (15). To effectively cover a suf-
ficiently large velocity span, two or three such velocity channels 
should be processed in parallel. The overall processing burden 
still remains fully reasonable.

Implications
The freedom of multiple orthogonal radar channels can be brought 
into practice in different ways. The considered case with a very 
large number of channels allows for the convenient method of 
simply not requiring any common scheduling of the channels 
adopted (apart from the several radars that may be located in 
the same vehicle, in which case channel coordination is easy 
to achieve). The number of vehicles in such close proximity 
to each other that an interference conflict is imminent will be 
much smaller than the number of available channels. Just by se-
lecting the radar channels randomly, the chances are good that 
there will be no interference. In the case of interference, the 
individual vehicle will then randomly pick another channel and, 
with high probability, the conflict is thereby resolved.

Coordinated transmission via wireless communication
Another way to mitigate interference is by coordinating automo-
tive radars through communications so that radars are assigned 
disjointed frequency-time-space resources, making use of the 
fact that 1) radars receive over a small fraction /B Bs  of the 
available bandwidth, 2) radars are only active a fraction u  of the 
time, and 3) radar signals are blocked (mostly by other vehicles) 
and limited by the FOV. The assignment requires coordinating 
the allocation of frequency-time resources through distributed 
network communication. Such communication can be achieved 
either via a dedicated technology, such as the 802.11p standard 
or cellular vehicle-to-everything (C-V2X) communication. 

Alternatively, one can exploit the similarity of the radar cir-
cuitry to standard communication hardware and upgrade auto-
motive radars to joint radar communication units (RCUs), which 
use the same hardware both for radar and communications 
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FIGURE 7. The simplified scheme of a single slow-sweep FMCW radar, which allows for many orthogonal signals. The linear FM (LFM) waveform is 
obtained digitally at baseband and is upconverted in the analog domain. This upconverted signal is mixed with the receive signal yielding downconver-
sion to a signal with bandwidth essentially set by 50 MHz. The dominant power in the downconverted signal will come from the transmit signal which, 
however, appears as a dc component. This is removed by a dc canceler stage after which the signal is digitized. The canceler operates on the principle 
of minimizing at ADC output at some rate much slower than the sweep time and has the vital function of avoiding ADC saturation. In the digital domain 
further mixing with Doppler offsets may be required to cover a very wide range of target speeds. DAC: digital–analog converter.
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(implementing data link and physical layer functions). The 
radar and communication functionality are time multiplex -
ed, where communication occurs over a fixed and dedicated 
communication bandwidth (with the bandwidth limited by 
the ADC), which is free of radar transmissions. The time 
multiplexing is possible because of the idle period. As a 
result, when ,u 1.  RCUs cannot be used and 802.11p or 
C-V2X is more appropriate. Nevertheless, in this article, we 
consider the RCU approach, as it is readily modified when 
using another dedicated communication technology. As 
is typical in VANETs, communication is unacknowledged 
when using distributed MAC-based carrier-sense multiple 
access (CSMA). 

The goal of the communication is to assign radars to time 
slots so that different radars remain quasi-orthogonal. In con-
trast to the long chirps described previously, we consider stan-
dard short chirps, thus limiting the number of transmissions per 
chirp period. The frequency-time resources are shared for three 

RCUs, namely, ,ri ,rj  and ,rk  as illustrated in Figure 8. The basic 
principle is as follows. Each vehicle initially assigns starting 
times to the automotive RCUs mounted on this vehicle through 
a central processor. These starting times are broadcast to neigh-
boring vehicles during a communication slot. All the RCUs 
on a vehicle broadcast short control communication packets 
at the same time over the communication band. The broadcast 
communication packet includes information about the starting 
times used by all the RCUs on that vehicle. The other RCUs 
or vehicles that receive this information store it in a database 
and allocate themselves nonoverlapping starting times based on 
the stored information. A priority index is used to prioritize the 
dissemination of the resource allocation of a larger group of 
vehicles to avoid fluctuations in the distributed VANET.

A practical implementation requires synchronization among 
radars, which can be achieved through GPS or via a dedicated 
synchronization protocol. Using reasonable synchroniza-
tion requirements (around a 1–2- sn  error), the authors in [21] 
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demonstrated significant reductions in radar interference with-
in a few tens of ms. Figure 9 shows the interference probability 
(i.e., the expected value of )f  as a function of the number of 
interfering radars, with and without coordination. The potential 
of such protocols to adapt radar signals according to changing 
traffic conditions via communications offers intelligent radar 
sensing strategies, such as cooperative localization, disabling 
unnecessary sensing, and so on.

Joint radar and communication
A third, more forward-looking alternative is to exploit the fact 
that radar and communication systems operate in similar fre-
quencies and develop a system that can perform the dual role of 
radar and communication [22], called RadCom. Both the pilot 
and the data from the transmitted signal can be exploited for 
radar functions when processing the backscattered communi-
cation signal. A prominent candidate for this is OFDM, which 
is the de facto waveform for all cellular and Wi-Fi-based stan-
dards, due to its flexibility and robustness to wireless propa-
gation effects. OFDM has also been studied extensively as 
a radar waveform [24]–[28] but is limited by its ADC band-
width (generally orders of magnitude smaller than the radar 
bandwidth), which in turn limits radar resolution. Assuming 
a high-FMCW chirp slope, the OFDM and FMCW radars 
with identical waveform parameters exhibit similar perfor-
mance in terms of accuracy and resolution [23]. OFDM provides 
the additional capability of communications at the expense of 
increased hardware complexity due to OFDM modulator/de-
modulator operations [23]. 

A way around this problem is the use of stepped-frequen-
cy OFDM, which involves consecutive OFDM frames, each 
transmitted with a different carrier frequency [29], [30]. The 
main rationale behind the use of stepped-frequency OFDM as 
a RadCom waveform is to surpass the range-resolution limita-
tion of conventional OFDM radar (which is imposed by the ADC 
bandwidth) via frequency hopping across individual OFDM 
frames with low baseband bandwidth [30], while maintaining 
standard wideband OFDM as a special case. 

Figure 10(a) illustrates the exemplary time-frequency plot of 
a stepped-frequency OFDM waveform. To avoid interference, 
different vehicles are assigned orthogonal resources, as shown 
for three vehicles. Hence, the stepped-frequency OFDM can 
exploit high resolution offered by the large total bandwidth 
MN fT  using the joint processing of M  individual OFDM 
frames on different carriers, while simultaneously requiring 
a low-rate ADC to sample small baseband bandwidth ( )N fT
OFDM blocks. For each carrier, L  OFDM symbols of duration 
Tsym  are sent, constituting a frame. The choice of ,N ,M ,L  and 

fT  and the hopping pattern provides flexibility in the RadCom 
waveform and enables us to provide radar performance simi-
lar to that of an equivalent wideband OFDM radar but with 
low-rate, low-cost ADCs [30].

Signal processing and resource allocation
Under standard assumptions (i.e., a cyclic prefix longer than x
[26], [28] and a small Doppler approximation [24]), the received 

symbol on the nth subcarrier for the th,  symbol of the mth 
frame [considering the same radar environment with a single 
target as specified in (3)] can be written as [30] 

,y x e e w, , , ,
( ) ( )

, ,m n m n
j f n f j f mL T

m n
2 2 1m 0 symc= +, ,

,
,

Tr x r o- + + + (15)

where x , ,m n,  denotes the complex data or pilot symbol, c  is the 
complex channel gain, and w , ,m n,  is the additive noise term with 
variance .2v  Delay estimation can be performed by matched 
filtering the data cube y , ,m n,  across frame-frequency dimen-
sions (m  and n  directions), while processing along frame-time 
dimensions (m  and ,  directions) can provide a Doppler esti-
mate. Frequency hopping across consecutive OFDM frames 
introduces delay-Doppler coupling, which can be overcome by 
incorporating phase correction terms in the DFT implementa-
tion of matched filtering [30].
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A time-frequency resource allocation scheme coordinated 
by a central unit (e.g., a 5G base station) helps to alleviate 
mutual interference among radars on different vehicles, simi-
lar to that of conventional OFDM radar networks [26, Ch. 4]. 
Resources can be assigned to maximize the number of vehicles 
that can be fit into a given time-frequency block such that each 
vehicle meets preset radar accuracy requirements. To char-
acterize radar accuracy, we employ the Cramér–Rao bound 
[26] on variances of unbiased estimates of delay and Doppler 
parameters using the signal model in (15). 

Figure 11(a)–(c) presents exemplary results for the three dif-
ferent OFDM schemes [i.e., stepped frequency, narrowband, 
and wideband where, in the latter case, each vehicle uses the 
total bandwidth (and thus requires an ADC with a 1-GHz 
sampling rate)] for duration LTsym  and then remains silent 
for duration ).( )M LT1 sym-  As shown in the figure, the 
stepped-frequency OFDM radar can support more vehicles 
in a given spectral resource than it can in the conventional 
narrow-band OFDM radar using the same hardware require-
ments because the former offers the flexibility to trade off a 
decrease in Doppler accuracy for an improvement in ranging 
accuracy (frequency hopping increases ranging accuracy and 
reduces Doppler accuracy). In Figure 11(b), because wide-
band OFDM is essentially limited by the velocity accuracy 
constraint, relaxing the range accuracy constraint does not 
further improve its performance [similar to the narrow-band 
OFDM in Figure 11(c)].

Finally, we note that the stepped OFDM provides a design 
tradeoff between the narrow-band and wideband OFDM schemes, 
retaining the improved resolution and accuracy properties of the 
wideband OFDM using significantly reduced hardware require-
ments, as in the case of the narrow-band OFDM.

Outlook and challenges
In this section, we consider the primary research and develop-
ment challenges for the coming years. For communication-based 
interference mitigation strategies, the coexistence between ra-
dar and communication signals is an important challenge. For 
joint radar and communication signals, there is the potential 
of a revolution of cellular-type signals (e.g., 5G New Radio) to 
be reused for radar purposes [22], opening new synergies and 
avoiding the need for dedicated RF hardware all together. The 
extended frequency bands made available for 5G are interesting 
by themselves due to the possible improvement in radar resolu-
tion, which, together with the already standardized orthogonal 
signaling, establishes an exciting area for automotive sensing. 
The main challenge is to find solutions that will enable radar 
and communication functionalities with such a low information 
latency that vehicle safety is not compromised in any traffic sce-
nario. These solutions should include techniques for a fair distri-
bution of the available time and frequency space for all users. It 
must also secure a low data loss for both radar and communica-
tion, which, of course, is the aim of minimizing the possibility 
of interference.

For the generation and detection of slow chirps, new hard-
ware architectures will be necessary; this will push a migration 
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from analog toward digital electronics and signal processing, 
which will pave the way for technologies such as imaging 
radar. The other modulation waveforms proposed in this article 
will also require hardware that differs from the current radar 
designs. Analog-to-digital (and vice versa) conversion will be 
close to the RF front end, making more complex digitally gener-
ated and filtered waveforms possible. To move this development 
forward, we will implement a demonstrator platform, complete 
with mm-wave front ends, high-speed digital signal generation 
and acquisition, and the independent generation of arbitrary 
interference. The methods outlined in this article will be tested 
and evaluated on the demonstrator platform in a realistic environ-
ment. The intention is to use this demonstrator (see Figure 12) to 
verify the theoretical analysis regarding interference probability 
and SINR for different types of modulation, and verify the speed 
measurement method used for slow-ramp modulation.

Further development would include the integration of criti-
cal electronic components in CMOS technology to ensure that 
a complete solution is feasible to implement commercially. 
Advanced CMOS technologies can also facilitate the imple-
mentation of alternative waveforms on automotive radars, such 
as phase-modulated continuous wave (PMCW). Compared to 
the widely used FMCW radar, the PMCW waveform has the 
major disadvantage of requiring very high-rate ADCs to sam-
ple wideband code sequences. Conversely, it possesses several 
advantages that make it attractive for future deployments, 
including improved robustness to interference via proper code 
design, not requiring a highly linear frequency ramp synthe-
sizer, and the inherent applicability to multiple-input, multiple-
output radar configurations through code orthogonality across 
multiple antennas. From the perspective of radar interference 
mitigation and radar communications convergence, we expect 
that the main focus of the automotive industry in the coming 
years will be on the cost and integration of both analog and 
digital functions on the same silicon chip to reduce the likeli-
hood of hardware failure.

Vehicle radars can also be expected to operate in higher fre-
quency bands such as 100–300 GHz to enable more bandwidth, 
reduce costs, and miniaturize hardware. It is possible to influence 
regulators to include some level of standardization in automotive 
radars, which is needed for mitigating interference among dif-
ferent automobile brands [3], before a new frequency spectrum 
is made available in the higher RF bands. It is therefore timely 
to conduct research and discuss the developmental challenges of 
automotive radar interference before it becomes a problem.
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AUTONOMOUS DRIVING: PART 1

Dingyou Ma, Nir Shlezinger, Tianyao Huang,  
Yimin Liu, and Yonina C. Eldar

Self-driving cars constantly assess their environment to 
choose routes, comply with traffic regulations, and avoid 
hazards. To that aim, such vehicles are equipped with 

wireless communications transceivers as well as multiple sen-
sors, including automotive radars. The fact that autonomous 
vehicles implement both radar and communications motivates 
designing these functionalities in a joint manner. Such dual-
function radar-communications (DFRC) designs are the focus 
of a large body of recent work. These approaches can lead to 
substantial gains in size, cost, power consumption, robust-
ness, and performance, especially when both radar and com-
munications operate in the same range, which is the case in 
vehicular applications. 

This article surveys the broad range of DFRC strategies and 
their relevance to autonomous vehicles. We identify the unique 
characteristics of automotive radar technologies and their com-
bination with wireless communications requirements of self-
driving cars. Then, we map the existing DFRC methods along 
with their pros and cons in the context of autonomous vehicles 
and discuss the main challenges and possible research direc-
tions for realizing their full potential.

Sensing and communication in autonomous vehicles
Autonomous vehicles are required to navigate efficiently and 
safely in a wide variety of complex uncontrolled environments. 
To meet these requirements, such self-driving cars must be 
able to reliably sense and interact with their surroundings. This 
acquired sensory information as well as data communicated 
from neighboring vehicles and roadside units are essential to 
avoid obstacles, select routes, detect hazards, and comply with 
traffic regulations, all in real time.

To reliably sense the environment, autonomous vehicles 
are equipped with multiple sensing technologies, includ-
ing computer vision acquisition, i.e., cameras, lidar, laser-
based sensors, GPS, and radar transceivers. Each of these 
technologies has its advantages and disadvantages. To allow 
accurate sensing in a broad range of complex environments, 
self-driving cars should simultaneously utilize all of these 
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aforementioned sensors. Radar, for instance, provides the 
ability to accurately detect distant objects and is typically 
more robust to weather conditions and poor visibility com-
pared to other competing sensing technologies [1].

Radar systems, which detect the presence of distant objects 
by measuring the reflections of electromagnetic probing 
waves, have been in use for over a century. Radar has been 
most commonly used in military applications, aircraft sur-
veillance, and navigation systems. The application of radar 
for vehicles, referred to as automotive radar [2], is substan-
tially different from traditional radar systems: most notably, 
automotive radar systems, which are used by mass-produced 
vehicles, are far more limited in size, power, and cost. Fur-
thermore, while conventional radar aims to detect a relatively 
small number of distant targets, e.g., airplanes, automotive 
radar is required to sense in complex dense urban environ-
ments in which a multitude of scatterers at close ranges 
should be accurately detected. Despite these differences, 
today automotive radar is an established and common tech-
nology, and the vast majority of newly manufactured vehicles 
are equipped with radar-based autonomous driving assis-
tance systems (ADASs) [1].

In addition to their ability to sense their environment, au -
tonomous vehicles are also required to carry out various 
forms of communications, as illustrated in Figure 1: vehicle-
to-vehicle (V2V) transmissions allow self-driving cars to 
share their attributes with neighboring vehicles; vehicle-to-
infrastructure (V2I) messages facilitate intelligent road man-
agement by conveying information between cars and roadside 
units; vehicle-to-pedestrian (V2P) communications can be 
used to warn or alarm nearby pedestrians; and, finally, ser-
vice providers and cloud applications exchange possibly large 
amounts of data with self-driving cars via vehicle-to-network 
(V2N) and vehicle-to-cloud (V2C) links, respectively. The re   -
sulting broad range of different tasks, which substantially 
vary in their latency, throughput, and reliability requirements, 
can be implemented by using individual communications 
technologies for each application or by using a unified vehi-
cle-to-everything (V2X) strategy [3], possibly building upon 
the cellular infrastructure.

Automated cars, thus, implement two technologies that rely 
on the transmission and processing of electromagnetic sig-
nals: radar and wireless communications. A possible approach 
in designing self-driving cars is to use individual systems for 
radar and communications, each operating separately. An 
alternative strategy is to jointly design these functionalities 
as a DFRC system. Such schemes are the focus of extensive 
recent research attention [4]–[20]. In particular, it was shown 
that jointly implementing radar and communications con-
tributes to reducing the number of antennas [21], system 
size, weight, and power consumption [6] as well as alleviating 
concerns for electromagnetic compatibility and spectrum con-
gestion [5]. Utilizing such joint designs in vehicular systems 
can mitigate the mutual interference among neighboring cars, 
facilitate coordination, and improve pedestrian detection [22]. 
These benefits make DFRC systems an attractive technology 
for autonomous vehicles.

While the conceptual advantages of joint radar-communica-
tions designs for autonomous vehicles are clear, the prolifera-
tion of different DFRC strategies makes it difficult to identify 
what scheme is most suitable for which scenario. For exam-
ple, some DFRC methods use existing V2X communications 
waveforms as radar probing signals, thus allowing high com-
munication throughput with relatively limited sensing capa-
bilities [17], [18]. Alternative schemes embed digital messages 
in the radar probing signals [15], [16], thus supporting low 
data rates, which may be more suitable to serve as an addi-
tional channel to the standard communications functionalities 
of autonomous vehicles.

The goal of this article is to review DFRC technologies in 
light of the unique requirements and constraints of self-driv-
ing cars, facilitating the identification of the proper technol-
ogy for different scenarios. We begin by reviewing the basics 
of automotive radar, identifying its main challenges, recent 
advances, and fundamental differences from convention-
al radar systems. We then survey DFRC methods, dividing 
previously proposed approaches into four main categories: 
coordinated signals transmission methods utilizing indi-
vidual signals for each functionality; communications wave-
form-based schemes, which use the communications signal 
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FIGURE 1. The autonomous vehicle communications links.
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as a radar probing waveform; radar waveform-based tech-
niques, which embed the digital message into the parameters 
of the radar signal; and the design of dedicated dual-function 
waveforms. We detail a representative set of DFRC methods 
for each category and provide a map of the existing strate-
gies in terms of their radar capabilities, information rates, 
and complexity.

Basics of automotive radar
Past decades have witnessed growing interest in automotive 
radar to improve the safety and comfort of drivers. A typical 
ADAS implements various radar subsystems that enable func-
tions including adaptive cruise control, blind-spot detection, 
and parking assistance [1]. To understand the benefits of com-
bining automotive radar with digital communications, we first 
review the basics of automotive radar.

Automotive radars operate under different requirements 
and constraints compared to conventional radars, such as 
those utilized in military applications and air traffic con-
trol. First, conventional radar systems are required to detect 
a relatively small number of targets in ranges on the order 
of tens or hundreds of kilometers, while automotive radars 
must detect a multitude of objects in short ranges on the order 
of a few tens of meters. Furthermore, automotive radars are 
incorporated into mass-produced vehicles and, hence, have 
more strict constraints on cost, size, power consumption, and 
spectral efficiency compared to conventional radar. Finally, 
automotive radars are densely deployed in urban environments; 

thus, they must be robust to interference while inducing mini-
mal interference with neighboring radar systems.

Various techniques have been proposed to overcome the 
aforementioned challenges. In Table 1, we summarize the 
main challenges along with the leading methods to tackle 
them. It is noted that no single radar scheme is suitable to 
handle the complete set of requirements. For example, the 
popular frequency-modulated continuous-wave (FMCW) 
waveform (see “Frequency-Modulated Continuous-Wave 
Radar”), which can be operated using simplified hardware 
components, suffers from high sensitivity to interference; 

Frequency-modulated continuous-wave (FMCW) radar is a 
continuous constant modulus radar waveform with a linearly 
modulated frequency, which can be generated and detect-
ed using simplified hardware. To present FMCW, we con-
sider a radar system equipped with a single transmit 
antenna and a uniform linear array with LR  elements for 
receiving. In each radar coherent processing interval, M
FMCW pulses of duration Tp  are periodically transmitted 
with a pulse repetition interval (PRI) denoted by ,TPRI  where 
TPRI  is slightly larger than .Tp  The mth pulse is given by 

( ) ,s t em
j f t j t2 c

2
= r rc+  [ , ],t mT mT TpPRI PRI! +  where ,fc  is the car-

rier frequency, and c is the frequency modulation rate.
To formulate the received signal, assume P targets are 

located in the far field. The distance, velocity, and angle of 
the pth target are denoted as ,rp  ,vp  and ,pi  respectively. 
For the pth target, with the far-field assumption, the round 
time delay between the transmit antenna and the lth re -
ceiver is ( ) ,( )/sinr v t ld c2,l p p p px i= + -  where d is the dis-
tance between adjacent elements in the receiving array, 
and c is the speed of light. The radar echo received in the 
lth receiving antenna during the mth transmit pulse is 
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pa  is the complex reflective factor of the pth target, and 
( )w tl  is additive white Gaussian noise.

To process the received signal, ( )r t,m l  is mixed with the 
transmit signal. This procedure, referred to as dechirp, yields 
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After dechirp, the waveform frequency is typically much 
smaller compared to the bandwidth of the transmitted 
waveform, and it can be sampled with low-speed analog-
to-digital converters. It follows from (S1) that the targets’ 
range, velocity, and direction can then be recovered 
from the 3D discrete Fourier transform of the sampled 
y ,m l  in the fast time domain (within a pulse), slow time 
domain (between pulses), and spatial domain (over anten-
nas), respectively.

Frequency-Modulated Continuous-Wave Radar

Table 1. Automotive radar requirements.

Requirements Possible Solutions
Operating in short 
ranges 

Utilize separate transmit and receive antennas to 
process short-range echoes.

Limited antenna size Operate at mm-wave bands using patch antennas. 
Increase virtual aperture (see “Multiple-Input, 
 Multiple-Output Radar”). 

Simplified hardware Constant envelope signaling. 
Low-complexity dechirp recovery, e.g., FMCW (see 
“Frequency-Modulated Continuous-Wave Radar”). 

Low-power 
 amplifiers 

Continuous or high duty cycle waveform, e.g., 
FMCW. 

Interference 
 robustness 

Divide spectrum using OFDM (see “Orthogonal 
 Frequency-Division Multiplexing Waveform Radar”).
Introduce agility (see “Frequency Agile Radar”) to 
increase survivability. 

mm-wave: millimeter-wave.
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orthogonal frequency-division multiplexing (OFDM) radar 
(described in “Orthogonal Frequency-Division Multiplexing 
Waveform Radar”), which is suitable for multiuser scenarios, 
tends to require relatively costly hardware compared to alterna-
tive radars. An additional aspect that should be considered in 
selecting an automotive radar scheme is its capability to be com-
bined with wireless communications. The fact that self-driving 
cars utilize both radar and digital communications motivates 
their joint design as a DFRC system, as discussed in the follow-
ing section.

Overview of dual-function systems
Since DFRC systems implement both radar and communica-
tions using a single device, these functionalities inherently 
share some of the system resources, such as spectrum, anten-
nas, and power. Broadly speaking, existing DFRC methods can 
be divided into four main categories as illustrated in Figure 2: 
coordinated separated signals transmission, communications 
waveform-based approaches, radar waveform-based schemes, 
and joint dual-function waveform designs. In the following, 
we review each of these categories and discuss their pros and 
cons in the context of autonomous vehicles. Throughout this 
section, we consider a DFRC system jointly implementing a 
radar transceiver as well as the transmission of digital mes-
sages using LT  transmit antennas (for both radar and commu-
nications) and LR  receive antennas (for radar). For simplicity, 

we assume a single communications receiver equipped with a 
single antenna.

Separate coordinated signals
A common DFRC approach is to utilize different signals for 
radar and communications, designing the functionalities to 
mitigate their cross interference, as illustrated in Figure 2(a). 
Here, the L 1T #  transmitted signal can be written as

( ) ( ) ( ),s s st t t( ) ( )r c= + (1)

where ( )s t( )r  is the radar probing waveform, and ( )s t( )c  is the 
continuous-time communications signal. The ability to jointly 
transmit two dedicated signals with limited cross interference 
is typically achieved using either orthogonality boosting by di-
vision in time and/or frequency or via spatial beamforming.

Time–frequency division
Arguably, the most simple method to mitigate cross interfer-
ence is to allocate a different frequency band to each wave-
form, commonly dictated by regulated spectrum allocation, 
or, alternatively, a different time slot. In such cases, the sig-
nals ( )s t( )r  and ( )s t( )c  in (1) either reside in different bands 
(for frequency division) or satisfy ( ) ( )s st t 0( ) ( )r c T

=^ h  at each 
time instance (for time division). Since system resources 
are allocated between both subsystems, these strategies 
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FIGURE 2. An illustration of DFRC strategies for autonomous vehicles: (a) coordinated signals, (b) communications waveform based, (c) dual-function 
waveform, and (d) radar waveform based. The blue, green, and red waveforms represent communications signals, radar beams, and dedicated dual-
function waveforms, respectively.
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inevitably result in a tradeoff between radar and communica-
tions performance [19].

A straightforward approach is to allocate the resources in a 
fixed or arbitrary manner. For instance, in [21], a DFRC system 
is achieved by using fixed nonoverlapping bands and antennas. 
A random antenna allocation scheme is proposed in [14], jointly 
enhancing the radar angular resolution and the communication 
rates. The work [20] proposed a media access protocol for automo-
tive DFRC systems with time and frequency division to mitigate 
interference with neighboring radars. These approaches assume 
that each functionality has its own frequency band. Using OFDM 
signaling, i.e., letting the entries of ( )s t( )r  and ( )s t( )c  represent 
OFDM radar and communications waveforms (see “Orthogonal 
Frequency-Division Multiplexing Waveform Radar”), respective-
ly, allows the division of the spectrum in an optimized manner, as 
we detail next.

Consider a frequency band divided into N subbands. The 
discrete-time transmitted signal from the lth transmit antenna 
can be written as the N 1#  vector .sl  Since the spectrum is 
divided into radar and communications, sl  is given by

,s F U s I U s( ) ( )
l

H
l l

r
l l

c
= + -^ h6 @ (2)

where FH  is the inverse discrete Fourier transform (DFT) ma-
trix; the N 1#  vectors s( )

l
r  and s( )

l
c  denote the OFDM radar and 

communications symbols, respectively, in the frequency domain; 
and Ul  is a diagonal matrix of size N N#  with elements zero or 
one, representing the subcarrier selection at the lth element.

Setting the matrix Ul  in (2) determines how the bandwidth 
is divided. The work [23] showed that when Ul  represents 
spectral interleaving, i.e., the support of its diagonal consists 
of multiple bulks of zeros and ones, radar resolution is com-
parable to that using the complete spectrum. When the DFRC 
system has a priori knowledge of the statistical model of the 
radar target response and the communications channel, the 
subcarrier selection matrix Ul  can be set to optimize a linear 
combination of the radar target-echo mutual information and 
the communications input–output mutual information, as pro-
posed in [13].

Spatial beamforming
The utilization of multiple antennas enables the mitigation 
of mutual interference through spatial beamforming, for ex-
ample, by projecting the radar waveform into the null space 
of its channel to the communications receiver [24], resulting 
in a zero forcing beamformer. While such beamforming was 
originally proposed for separate systems, it can also be utilized 
for a DFRC system.

In this model, the communications and radar signals are 
beamformed using the matrices U ( )c  and ,U ( )r  respectively, to 
mitigate the mutual interference while satisfying the perfor-
mance constraints. The signals received at the communica-
tions receiver and the radar target with direction i  are, thus,

,
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where h is the channel response from the DFRC transmit-
ter to the communications receiver, and a ( )i  is the steering 
vector of the DFRC transmitter to the radar target in direc-
tion .i  Using (3), the beamforming matrices U( )c  and U( )r  are 
jointly designed to mitigate cross interference while satisfying 
the performance requirements, e.g., maximizing the signal-to-
interference-plus-noise ratio (SINR) at the communications 
receiver while meeting a given radar beampattern [25].

A clear advantage of the separated signals transmission 
strategy is that it can provide a wide variety of possible perfor-
mance combinations. For time–frequency division schemes, 
the performance is determined by how the system resources, 
such as spectrum and time slots, are allocated to each function-
ality. The performance tradeoffs may be potentially improved 
using spatial beamforming, allowing each functionality to uti-
lize the full bandwidth and operate simultaneously at all time 
slots. However, the spatial beamformer is designed based on a 
priori channel knowledge, which may be unavailable for fast-
moving vehicles. According to the previously given discussion, 
time–frequency division-based schemes are likely to be more 
attractive in automotive applications. Since properly optimiz-
ing the resource allocation to achieve a desired performance 
tradeoff requires considerable computation, fixed suboptimal 
allocations, such as spectral interleaving, may be preferable.

Communications waveform-based schemes
Another common DFRC strategy is to utilize standard com-
munications signals for probing, as illustrated in Figure 2(b). 
The majority of communications waveform-based designs in 
the literature utilize OFDM signaling, especially for automo-
tive applications. In the sequel, we first briefly review spread 
spectrum-based DFRC systems, followed by a more detailed 
presentation of shared OFDM waveforms and a description 
of how structured vehicular communications protocols can be 
used for sensing.

Spread spectrum waveforms
Spread spectrum techniques transmit a communications signal 
with a given bandwidth over a much larger spectral band, typi-
cally using spread coding or frequency hopping. The usage of 
spread spectrum signals for radar probing was studied in [9]. 
The main drawback of spread spectrum DFRC design is that 
the radar dynamic range is limited, which is a by-product of the 
imperfect autocorrelation properties of the spreading sequences 
[9]. In addition, accurately recovering the target velocity from 
spread spectrum echoes is typically computationally com-
plex, limiting the applicability of such DFRC systems. Finally, 
high-speed analog-to-digital converters (ADCs) are required 
for wideband spectrum spread waveforms, as dechirp used in 
FMCW is not applicable, increasing cost and complexity.

OFDM waveforms
The most common communications waveform-based approach 
is to utilize OFDM signaling. OFDM is a popular digital com-
munications scheme due to its spectral efficiency, inherent 
ability to handle intersymbol interference, and the fact that it 
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can be implemented using relatively simple hardware compo-
nents. Since first proposed in [29], OFDM has received exten-
sive attention as a radar waveform, especially for automotive 
radar, due to its high flexibility and adaptability in transmis-
sion and since, unlike FMCW, it does not suffer from range–
Doppler coupling [30]. The fact that OFDM is commonly uti-
lized in both radar and communications indicates its potential 
for DFRC systems.

Compared with the case where the coefficients { }a ,m n  in 
the OFDM waveform are specifically designed for radar 
(see “Orthogonal Frequency-Division Multiplexing Waveform 
Radar”), the complex weights of the dual-function OFDM 
waveform are the communications symbols. The setting of 
the waveform parameters can have a notable effect on each 
functionality. The work [31] designed the subcarrier spacing 
according to the maximum unambiguous range and the maxi-
mum velocity. In [6], channel knowledge was used to allocate 
power between the subcarriers to maximize the sum of the data 
rate and the mutual information between the received echoes 
and the target impulse response. Radar processing of OFDM 
waveforms utilizes matched filtering, which depends on the 
transmitted data, causing high-level sidelobes. This data depen-
dency can be eliminated by dividing each subcarrier by its cor-
responding symbol [9]. The range and velocity of each target 
are then estimated using a 2D DFT in the carrier domain and 
slow time domain (between different symbols), respectively.

OFDM can be naturally combined with multiple-input, 
multiple-output (MIMO) radar, which transmits orthogonal 
waveforms from each antenna (see “Multiple-Input, Multiple-
Output Radar”) by assigning different subcarriers to different 
transmit elements. Several works have studied how to divide 
the subcarriers among the elements. The proposed meth-
ods include division by equidistant subcarrier interleaving 
[23], nonequidistant subcarrier interleaving [32], and random 
assignments [33].

A drawback of using shared OFDM waveforms in vehicular 
systems stems from the fact that, when utilized from moving 
vehicles, OFDM exhibits subcarrier misalignment, degrading 
the maximal radar unambiguous range [30]. Additional draw-
backs are related to hardware constraints: wideband OFDM 
waveforms require high-rate ADCs, affecting the system cost and 
power consumption. Another hardware limitation of OFDM 
compared to monotone waveforms is its high peak-to-average-
power ratio, inducing distortion in the presence of practical 
nonlinear amplifiers. A weighted OFDM method was pro-
posed to control the maximum peak-to-average power ratio 
[26], [27]. To utilize OFDM with narrowband transmissions, 
one can apply stepped frequency methods, as proposed in [33].

Protocol-oriented DFRC methods
An alternative strategy is to exploit the existing communica-
tions protocols, utilizing them as an automotive radar wave-
form. Here, there is no compromise in the communications 
part, and the radar functionality is a byproduct of the protocol, 
which is typically IEEE 802.11p or IEEE 802.11ad [17], [18], 
[35], [36]. The IEEE 802.11p standard focuses on vehicular 
communications and supports short-range device-to-device 
transmissions for safety applications. This protocol operates in 
the 5.9-GHz band and uses OFDM signaling. Consequently, its 
transmissions realize a DFRC system with an OFDM shared 
waveform, as proposed in [17].

IEEE 802.11ad is a generic standard for short-range millimeter-
wave (mm-wave) communications operating at 60 GHz. Its 
large bandwidth enables higher data rates for communications 
and better accuracy/resolution for radar operation. To avoid 
the usage of data-dependent waveforms, it has been proposed 
that the a priori known IEEE 802.11ad preamble be used for 
radar probing [18]. As the preamble now affects radar per-
formance, the work [36] studied the design of radar-suitable 
preamble sequences. In such mm-wave communications, highly 

For an orthogonal frequency-division multiplexing (OFDM) 
waveform radar with N subcarriers, the transmit signal at 
the mth pulse is
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gular window of unity support; T T TO S CP= +  is the OFDM 
symbol duration; TS is the elementary symbol duration; TCP is 
the duration of the cyclic prefix; and .( ) ( / )f n T1 1n S= -  Using 
the notations in (S1), the radar echo from P targets observed 
by the lth receive antenna can be approximated by
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OFDM radar processing is based on matched filtering [S1]. 
Its performance is determined by the complex weights, 
which can be optimally designed according to some 
requirements, e.g., the maximum peak-to-average ratio of 
the transmit signal [26] or the Cramér–Rao bound [27].
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directional beams are used. Once the communications data 
link is established, radar can only reliably detect targets 
located in the assigned beam direction. Several approaches 
have been proposed to extend the scanning area at the cost of 
power reduction in [36].

The main benefit of protocol-based DFRC designs is that 
they implement radar with minimal effect on the communica-
tions functionality. As such, their radar capabilities are quite 
limited. The radar coverage area is restricted by the direction-
ally beamformed mm-wave transmission. In addition to its 
restricted coverage area, the scheme has a relatively low radar 
duty cycle as only the preamble is utilized for probing, limiting 
its detection range in vehicular systems operating under peak 
power constraints.

To conclude, communications waveform-based DFRC 
approaches, and particularly those using shared OFDM sig-
naling, enable the transmission of high data rates by utiliz-
ing conventional digital communications schemes. The fact 
that OFDM is widely studied for both radar and communica-
tions makes it an attractive DFRC design. In the context of 
autonomous vehicles, several drawbacks must be accounted 
for: first, to radiate enough power on the target, radar wave-
forms are typically beamformed to be directional. The com-
munications receivers should, thus, be located in the radar 
beam to observe high signal-to-noise ratios. Such transmis-
sions may, thus, be more suitable to serve as a secondary com-
munications channel in addition to a possible cellular-based 
V2X technology, which can communicate with the receivers 
in the omnidirection. Similarly, protocol-oriented schemes, 
which utilize standard communications transmission while 
exploiting its structure for probing, are more likely to pro-
vide additional sensing capabilities to a dedicated automo-

tive radar. Finally, relatively costly hardware components are 
required for generating wideband waveforms and sampling 
their reflections. Despite these drawbacks, sensing using 
communications waveforms is considered to be a promising 
DFRC approach for autonomous vehicles [1].

Radar waveform-based techniques
DFRC systems can also be designed by embedding the com-
munication message in conventional radar waveforms, as il-
lustrated in Figure 2(d). These techniques are divided into two 
categories: the first approach modifies the radar waveform to 
incorporate digital modulations; the second method utilizes 
index modulation (IM), conveying data bits via the indices of 
certain radar parameters.

Modified radar waveforms
A possible approach to embed digital communications into an 
existing radar system is to modify the waveform to include mod-
ulated symbols. For example, the traditional FMCW (see “Fre-
quency-Modulated Continuous-Wave Radar”) can be modified 
to include phase-modulated symbols by replacing the mth pulse 

( ),s tm  defined in “Frequency-Modulated Continuous-Wave 
Radar,” with ( ) ,s t em

j mz  where mz  encapsulates the informa-
tion message in the form of, e.g., continuous phase modulation 
as proposed in [37]. Alternatively, the linear frequency of the 
pulse can convey information via frequency modulation [39], 
for example, by using a positive frequency modulation rate c  to 
transmit the bit one and a negative value for zero. While these 
schemes are typically power efficient [9] and have low complex-
ity, their communication rate is very limited.

Higher communication rates can be obtained by utilizing 
multiple orthogonal waveforms and beamforming. Assume J

Multiple-input, multiple-output (MIMO) radar uses multiple trans-
mit and receive antennas. By transmitting orthogonal wave-
forms from each antenna, one can generate a virtual array 
with larger aperture, increasing the angular resolution with-
out requiring additional hardware elements. While MIMO 
radar can also be combined with nonorthogonal waveforms, 
we focus on such systems transmitting orthogonal wave-
forms, which is the common practice in MIMO radar [34].

To formulate MIMO radar transmission, let LT and LR be 
the numbers of transmit and receive antenna elements, 
respectively. The adjacent distances of the transmit  
antenna and the receive antenna are dT and dR, respec-
tively. A common practice is to set .d L dT R R=  We use 

, , ,s t s t s t s tL
T

1 2 Tg=^ ^ ^ ^h h h h6 @  for the transmit waveforms, 
which are orthogonal, namely, ( ) ,( ) ( )ts s dt l lty l l d= -) ll  
where ·d^ h is the Kronecker delta. For simplicity, we con-
sider a single pulse and targets associated with a particu-
lar range and Doppler bin. The received signal is
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p p
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where ( ) : [ , , , ]a e e1 / ( ) /sin sinj f d c j f L d c T2 2 1c T c T Tfi = r i r i-  is the trans-
mit steering vector, ( ) : [ , , , ]b e e1 / /sin sinj f d c j f L d c T2 2 1c R c R Rfi = r i r i-^ h   
is the receive steering vector in direction ,i  and w t^ h is 
white Gaussian noise. Applying matched filtering and 
vectorization yields
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p p
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where vec ·^ h  is the vectorization operator, :w =u  
( ) ( )),w sy t tvec( H  and 7  is the Kronecker product. Since 

( ) ( ) [ , , , ]a b e e1 / /sin sin
p p

j f d c j f L L d c T2 2 1c R p c T R R p7 fi i = r i r i-^ h  it 
holds that MIMO radar achieves an equivalent angle res-
olution of a phased array radar with L LT R  receive anten-
nas in this configuration, effectively enhancing the 
angular resolution by a factor of .LT

Multiple-Input, Multiple-Output Radar
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orthogonal waveforms ( )s tj j
J

1=" ,  are simultaneously transmit-
ted from an antenna array, and let u j j

J
1=" ,  be the correspond-

ing beamforming vectors. The transmit signal is expressed 
as /( ) ( ) .s ut tsJ

j j j1= =  In the communications receiver, the 
received signal is ( ) ( ) ( ),g st t ty w( ) ( )c

c
T c= +  where gc  and 

( )tw( )c  are the channel response and additive noise, respective-
ly. By applying matched filtering with the orthogonal wave-
forms, the receiver obtains the vector , , , ,y y y y( ) ( ) ( ) ( )c c c

J
c T

1 2 f= 6 @
where ( ) .g uy w t( ) ( )

j
c

c
T

j j
c

= +  The communication data bits can 
be conveyed by modulating the amplitude [7] or phase [8] of 

.g uc
T

j  Although the communication rates are improved by 
transmitting multiple waveforms, the system complexity is also 
increased, and the transmitter must have a priori knowledge of 
the communications channel .gc  Furthermore, it is difficult to 
guarantee that the envelope of the transmit signal is constant 
modulus, which may reduce power efficiency in transmission.

IM-based techniques
IM is a promising communications technique, gaining grow-
ing interest due to its high energy and spectral efficiency [40]. 
Instead of using conventional modulations, IM embeds data 
bits into the indices of certain transmission building blocks 
[40]. These building blocks, including spatial allocation and 
frequency division, are also important waveform parameters 
for radar. IM-based DFRC techniques, thus, embed the digi-
tal message into the combination of radar waveform param-
eters. The term index represents the radar parameters, such as 
carrier frequency, time slot, antenna allocation, or orthogonal 
waveforms in MIMO radar with orthogonal waveforms. Con-
sequently, such DFRC systems use unmodified conventional 
radar schemes, and the ability to communicate is encapsu-
lated in the parameters of the transmission. While IM-based 

DFRC schemes are the focus of ongoing research, existing 
methods typically build upon either MIMO radar or frequen-
cy agile radar (FAR) schemes. While MIMO radar can, in 
general, utilize orthogonal or nonorthogonal waveforms, we 
henceforth use the term MIMO radar for such schemes utiliz-
ing orthogonal waveforms, which is the typical approach in 
MIMO radar [35].

IM for MIMO radar
The work [40] proposed to combine MIMO radar with IM by 
embedding the bits in the assignment of the orthogonal wave-
forms across the transmit antennas. For a MIMO radar with 
LT  transmitting antennas, there are !LT  possible arrange-
ments in each pulse repetition interval (PRI), supporting a 
maximal rate of !log LT  bits per PRI. In [41], this approach was 
extended to sparse array MIMO radar configurations, where 
only K out of LT  transmit elements are active in each PRI. As 
a consequence, it requires only K transmit orthogonal wave-
forms, represented (with a slight notation abuse) by the vector 

( ), ( ), , ( )( ) .s t t ts s st K
T

1 2 f= 6 @  The transmitted L 1T #  vector 
,( )s m tu  in the mth PRI is a permutation of ( ),s t  i.e., it is given 

by ( , ) ( ) ( ),s sm t m tT T
MX K=u  where ( )mK  is a K K#  permuta-

tion matrix, and ( ) ,m 0 1 K L
M

T!X #" ,  is the antenna selection 
matrix, which has a single nonzero entry in each row. When 
the channel is memoryless, the signal received at the commu-
nications receiver is

,( , ) ( ) ( , ) ( , )g sy wm t m m t m t( )( )
c
T cc = +u (4)

where gc  is the L 1T #  channel vector, and ( , ),w m t( )c  is the ad-
ditive noise. After matched filtering with the orthogonal wave-
forms, the obtained vector can be written as

A promising approach to tackle mutual interference between 
radars is to utilize frequency agile radar (FAR) [S2]. Here, a 
subband waveform (of a much narrower bandwidth com-
pared to the available band) is transmitted in each cycle, 
and its central frequency varies randomly from cycle to 
cycle. These random variations reduce the spectral collision 
probability from neighboring radars.

To formulate the signal model, we use ( ) uf n f n1F c T= + - ="
, , ,N1 2 f , to denote the carrier frequency set, where fT

is the carrier spacing. During the mth transmit pulse, the 
transmitted signal is ( ) ,ts em

j f t2 m= r where fm  is randomly 
chosen from .F  After demodulation, the signal observed at 
the l th receive antenna can be expressed using the nota-
tions of (S1) as
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Using matched filtering, FAR can synthesize a large 
bandwidth and enables the generation of high range 
resolution profiles. However, the random changing of 
carrier frequency leads to a high sidelobe level, which 
affects the detection of weak targets. To mitigate the 
sidelobe problem, compressed sensing methods can 
be applied for range–Doppler processing [S3], while 
recovery guarantees for such methods are provid-
ed in  [S4] under sparse and block-sparse target 
scenes, respectively.
References
[S2] S. R. J. Axelsson, “Analysis of random step frequency radar and com-
parison with experiments,” IEEE Trans. Geosci. Remote Sens., vol. 45, 
no. 4, pp. 890–904, Apr. 2007. doi: 10.1109/TGRS.2006.888865.

[S3] T. Huang, Y. Liu, H. Meng, and X. Wang, “Cognitive random stepped 
frequency radar with sparse recovery,” IEEE Aerosp. Electron. Syst. Mag., 
vol. 50, no. 2, pp. 858–870, Apr. 2014. doi: 10.1109/TAES.2013.120443. 

[S4] T. Huang, Y. Liu, X. Xu, Y. C. Eldar, and X. Wang, “Analysis of frequen-
cy agile radar via compressed sensing,” IEEE Trans. Signal Process., vol. 66, 
no. 23, pp. 6228–6240, Dec. 2018. doi: 10.1109/TSP.2018.2876301

Frequency Agile Radar



93IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

( ) ( , ) ( ) ( ) ( ) ( ) .y s g wm y t m t m m mdt( ) ( )c c
cMK X= = +#  (5)

The communication message can be embedded in ( )m #K
( )mMX  in (5), i.e., the product of the permutation matrix 

and selection matrix. As there are K
LT` j kinds of antenna 

selection patterns and !K  kinds of waveform permuta-
tions, up to !log log K

K
LT

2 2+` j  bits can be encapsulated in 
each PRI.

IM via FAR
FAR (see “Frequency Agile Radar”) is a radar scheme design -
ed for congested environments. The carrier frequencies of 
FAR change randomly from pulse to pulse, allowing the 
achievement of an ergodic wideband coverage, while utiliz-
ing narrowband waveforms and enabling the mitigation of 
interference from neighboring radars. The work [42] pro-
posed a DFRC system that embeds a digital message into the 
permutation of the agile carrier frequencies. For a carrier set 
with N different carrier frequencies, there are !N  different 
carrier frequency permutations that can be utilized for infor-
mation embedding.

In [15] and [16], a DFRC system is proposed based on mul-
ticarrier agile waveforms and IM. Unlike traditional FAR, 
here, multiple carriers are simultaneously sent from several 
subarrays of transmit antennas. For a DFRC system with LT

transmit antenna elements and a possible carrier frequency set 
F  of cardinality N, the corresponding information embed-
ding consists of two stages: in the mth pulse, K N1 carriers, 
denoted by the set , , ,f f, ,m m K1 f" ,  are first selected from .F
Then, the antenna array is divided into K subarrays, where each 
subarray has /L L KK T=  elements. The transmitted signal of 
the multicarrier frequency agile DFRC system in the mth PRI 
is expressed as

, ,( , )( , ) (us f
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t mT
em km t rect),

( )

k

K

m k
p

p j f t mT

1

2
F

,m k piX=
- r

=

-u c m/
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where i  is the beamsteered direction; ,( )u f ,m ki  is the radar 
beamforming vector for the kth carrier with frequency ;f ,m k

and ( , )m kFX  is the selection matrix, which determines the 
transmit antennas of carrier with frequency .f ,m k  The commu-
nication message is embedded into the antenna allocation pat-
tern as well as the selection of carrier frequencies. The num-
ber of antenna allocation patterns is /( ) ,! !L LT

K
K  and there 

are 
K
N` j possible combinations of carrier selections. Hence, 

the total number of transmission patterns that can be used for 
information embedding is /( )! ! .

K
N L LT K

K$` j  An illustration 
of this scheme as well as a hardware prototype designed in 
[14] to demonstrate its feasibility are shown in Figure 3.

Since IM-based DFRC systems utilize conventional radar 
waveforms, radar detection is carried out using standard 
methods. For example, FAR detection is based on matched fil-
tering followed by compressed sensing recovery [43]. Symbol 
detection at the communications receiver can be realized using 
the maximum likelihood rule or, alternatively, via a reduced 
complexity IM detector; see, e.g., [15].

The main advantage of radar waveforms-based DFRC 
methods is that they provide the ability to communicate with 
minimal degradation to the performance of the radar scheme 
from which the technique originates. For example, the radar 
performance of MIMO radar as well as FAR combined with 
IM are roughly equivalent to their radar-only counterparts 
[16], respectively. In particular, FAR is attractive for automo-
tive radar due to its inherent applicability in congested setups 
and compliance with simplified hardware. Nonetheless, the 
communications functionality of radar waveform-based DFRC 
systems is relatively limited in throughput and typically results 
in increased decoding complexity, making it more suitable 
to serve as an alternative channel in addition to existing, e.g., 
cellular-based, vehicular communications, rather than replac-
ing the latter.

Joint waveform design
The approaches detailed so far are all based on traditional 
radar and/or communications signaling. A DFRC system is 
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then obtained by either designing the conventional waveforms 
to coexist, as detailed in the “Separate Coordinated Signals” 
section, or alternatively, by using only one standard waveform 
while extending it to be dual functional. Using traditional sig-
naling techniques has clear advantages due to their established 
performance and applicability with existing hardware devices. 
Nonetheless, the fact that these waveforms were not originally 
designed for DFRC scenarios implies that one can achieve im-
provement by deriving dedicated dual-function waveforms, as 
illustrated in Figure 2(c).

Dedicated joint waveforms, which do not originate from 
conventional radar/communications signaling, are designed 
according to a dual-function objective, which accounts for the 
performance of both radar and communications [10]–[12]. 
Here, the transmitted joint signal is denoted by the L JT #

matrix X, where J is the block length. We focus on a multiuser 
scenario with LU  single antenna receivers. The signal received 
at the receivers and at the radar target with direction i  can be 
expressed as

, ,( )Y HUX W y a UXand( ) ( )( ) Tc rc i= + =i (7)

where H is an L LU T#  channel matrix, U is the joint beam-
former, and W ( )c  is the additive noise term.

Using (8), one can design the joint waveform X to approach 
some desired observations at the communications receivers 
as well as the radar target, as proposed in [10]. A possible 
drawback is that the signals received in other directions are 
not constrained, and, thus, the radar transmit beampattern may 
have a high sidelobe level outside the main lobe. This can be 
overcome by restricting the radar beampattern [11], [12], which 
is, in turn, achieved by constraining the signal covariance. In 
particular, [11] considered X to be a communications signal and 
optimized the joint precoding to approach a predefined beam-
pattern while meeting a minimal SINR level at each receiver. 
The work [12] designed the joint waveform X to minimize the 
multiuser interference under specific radar constraints, such as 

omnidirectional or directional beampatterns, constant modu-
lus designs, and waveform similarity.

Dual-function waveforms specifically designed for DFRC 
offer the ability to balance radar and communications in a con-
trollable manner. Furthermore, using joint optimization, with-
out being restricted to conventional waveforms, can potentially 
yield any achievable performance tradeoff between radar and 
communications. Despite these clear theoretical benefits, their 
application in an automotive DFRC system is currently still 
limited due to practical considerations. For example, current 
joint waveform designs involve solving a relatively complex 
optimization problem, which depends on prior channel knowl-
edge. In fast-moving vehicles, accurate instantaneous channel 
knowledge is difficult to obtain, and even when it is available, 
the optimization process must be frequently repeated, inducing 
increased computational burden.

Discussion
The DFRC methods surveyed here vary significantly in their 
characteristics, such as radar performance, communication 
throughput, complexity, and hardware requirements. Although 
several efforts have been made in the literature to characterize 
the achievable radar-communications tradeoff in DFRC sys-
tems [4, Ch. 6], to date, there is no unified joint measure that 
allows the rigorous evaluation of different schemes.

To demonstrate the challenge in comparing DFRC methods, 
we numerically evaluate two promising schemes: OFDM wave-
forms, which utilize communications signaling for radar prob-
ing, and the radar-based IM via the FAR method. In particular, 
we consider a single-antenna automotive radar in the 24-GHz 
band divided into 1,024 bins, using the same configuration 
as in [9]. OFDM utilizes the complete frequency band, while 
IM-FAR uses a single subcarrier at each instance, embed-
ding the message in its selected index, i.e., a total of log2 1,024 = 
10 bits/symbol. To guarantee that both methods operate with 
the same data rate, we group the OFDM subcarriers into 10 
distinct blocks and assign a binary phase shift keying symbol 
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to each block. Both schemes use the same pulsewidth, PRI, and 
power, attempting to recover a point target with range 10 m and 
relative velocity 5 m/s, while communicating over a Rayleigh 
flat fading channel.

The resulting normalized mean-square error (MSE) in 
target range recovery as well as the communications bit error 
rate are depicted in Figure 4. Observing Figure 4, we note that 
OFDM achieves improved communications performance over 
IM-FAR, while their radar performance is relatively similar. 
The results in Figure 4, which are in favor of OFDM-based 
DFRC systems, are relevant for interference-free scenarios, 
where a single DFRC system probes the environment. In dense 
scenarios with multiple interfering devices, which model auto-
motive systems in urban settings, FAR is expected to be more 
capable of mitigating the mutual interference due to its random 
spectral sparsity [16].

Due to the difficulty in comparing DFRC schemes, we sche-
matically evaluate their radar versus communications perfor-
mance tradeoff in Figure 5. Separate coordinated transmission 
methods, which utilize individual signals for each functional-
ity, support a broad range of possible performance combina-
tions, determined by how the system resources are allocated 
between the functionalities. In particular, beamforming tech-
niques, which require a priori channel knowledge, allow the 
signals to utilize the full bandwidth and operation time and, 
thus, have the potential to achieve improved performance com-
pared to time–frequency division strategies. Nonetheless, in 
the presence of multiple scatterers and communications receiv-
ers, which is the case in vehicular applications, obtaining accu-
rate channel knowledge and mitigating mutual interference by 
beamforming may be infeasible, while spectral division can be 
applied with controllable complexity, regardless of the number 
of receivers and their physical location.

Communications waveform-based approaches, particular-
ly when using OFDM transmission, support high data rates by 
utilizing conventional digital commu-
nications signals. Specifically, OFDM 
is a digital communications scheme 
that has some of the characteristics of 
good radar waveforms. In the context 
of autonomous vehicles, a major limita-
tion of this approach is that, since a sin-
gle directed beam is used, the receiver 
should be located in the radar search 
area. Furthermore, OFDM transmission 
requires relatively costly hardware, and 
its radar capabilities are degraded when 
utilized by a moving vehicle.

Protocol-oriented approaches, which 
represent an extreme case of using a 
communications waveform for radar 
probing, offer the ability to utilize exist-
ing vehicular communications proto-
cols for sensing. They provide minimal 
communications degradation with lim-
ited radar capabilities. As such, these 

methods can be considered as an additional sensing technol-
ogy, which should not replace dedicated automotive radar.

Radar waveform-based schemes, especially IM-based DFRC 
systems, can be naturally integrated into automotive radar sys-
tems with minimal effect on their performance. While MIMO 
radar implementing instantaneous wideband waveforms offers 
improved radar performance over frequency agile waveforms, 
the latter may be preferable for vehicular applications due to 
their robustness to congested environments and reduced com-
plexity. Nonetheless, the limited bit rates of IM and its asso-
ciated decoding complexity make such DFRC schemes more 
suitable to provide an additional communications channel, 
independent of the cellular network. The usage of such chan-
nels for safety and emergency messages can be valuable in 
autonomous vehicles, increasing the probability of their suc-
cessful transmission.

Joint waveform design techniques optimize a dual-function 
waveform in light of a combined constraint on each func-
tionality. This joint approach has the potential of achieving 
any given tradeoff between radar and communications per-
formances. Nonetheless, being a relatively new field of study, 
current dual-function designs may not be suitable for automo-
tive applications. In particular, current designs require instan-
taneous channel knowledge, limiting their application for 
self-driving vehicles.

To conclude, there is no single DFRC method that is suit-
able for all scenarios and requirements encountered in auton-
omous vehicle applications. Understanding the advantages 
and disadvantages of each approach will allow engineers to 
properly select the technologies incorporated into future self-
driving cars.

Conclusions and future challenges
Autonomous vehicles implement wireless communications as 
well as automotive radar, which both require the transmission 
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and reception of electromagnetic signals. Jointly designing 
these functionalities as a DFRC system provides potential gains 
in performance, size, cost, power consumption, and robustness, 
making it an attractive approach for autonomous vehicles. In 
this survey, we reviewed state-of-the-art DFRC designs, focus-
ing on their application for autonomous vehicles. To that aim, 
we first reviewed the basics of automotive radars. Then, we 
mapped existing DFRC strategies, proposing their division into 
four main categories: coexistence schemes, which utilize in-
dependent waveforms for each functionality; communications 
waveform-based approaches, where conventional communica-
tions signals are used for radar probing; radar waveform-based 
schemes, which embed the digital message into standard radar 
technologies; and joint waveform design approaches, which 
achieve the DFRC system by deriving dedicated dual-function 
waveforms. The pros and cons of each category were analyzed 
according to the radar and communications requirements in 
vehicular scenarios. While we conclude that no single DFRC 
scheme is suitable for all of the scenarios in self-driving, our 
analysis can significantly facilitate the design of sensing and 
communications technologies for future autonomous vehicles.

While joint radar-communications designs have been studied 
for over a decade, they still give rise to a multitude of unexplored 
research directions, particularly in the context of autonomous 
vehicles. On the theoretical side, the lack of a unified perfor-
mance measure makes it difficult to compare approaches, and 
one must resort to heuristic arguments, as was done in this 
article. Such an analysis will also uncover the fundamental 
limits of DFRC designs, characterizing their optimal gain over 
well-studied separate systems. From an algorithmic perspective, 
the utilization of joint nonstandard radar and communications 
waveforms, utilized in some of the aforementioned strategies, 
can be facilitated by the development of dedicated recovery and 
decoding algorithms.

For conventional waveforms, such as OFDM signals, effi-
cient allocation of resources to optimize both functionalities 
is a relatively fresh area of study. Additionally, the presence of 
multiple sensing vehicular technologies, such as vision-based 
sensing and lidar, along with the ability to communicate with 
neighboring devices that also sense their environment, give 
rise to potential improved understanding of the surroundings 
by properly combining these technologies. Finally, on the prac-
tical side, future investigations are required to implement these 
strategies in vehicular platforms and test their performance in 
real road environments. Such combined studies should allow 
us to characterize the benefits and limitations of DFRC sys-
tems for self-driving cars, allowing their theoretical potential 
to be translated into performance gains in this emerging and 
exciting technology.
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I
mportant requirements for automotive radar are high re-
solution, low hardware cost, and small size. Multiple-input, 
multiple-output (MIMO) radar technology has been receiving 
considerable attention from automotive radar manufacturers 

because it can achieve a high angular resolution with relatively 
small numbers of antennas. For that ability, it has been exploited 
in the current-generation automotive radar for advanced driver-
assistance systems (ADAS) as well as in next-generation high-
resolution imaging radar for autonomous driving. This article 
reviews MIMO radar basics, highlighting the features that make 
this technology a good fit for automotive radar and reviewing 
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important theoretical results for increasing the angular resolu-
tion. The article also describes challenges arising during the ap-
plication of existing MIMO radar theory to automotive radar that 
provide interesting problems for signal processing researchers.

Introduction
Radar technology has been used in defense, civilian, and com-
mercial applications since World War II. Surveillance radars 
have been in service for a number of decades. Ground-based 
air surveillance radars, such as air traffic control radar, are usu-
ally pulse radar systems with maximum detectable ranges of 
more than 100 km [1]. Airborne surveillance radars carried by 
aircraft and unmanned aerial systems, such as the joint surveil-
lance target attack radar system, can run in ground moving 
target indication and synthetic aperture radar imagving modes 
[2] to detect moving and stationary targets on the ground at 
more than 250 km, respectively. To achieve a satisfactory 
return-signal power, the transmit power of such radar can be 
several kilowatts. Large phased-array antennas have been 
deployed to achieve electronic beam scanning. Since the late 
1990s, radar sensors have found widespread applications in 
ADASs, such as adaptive cruise control (ACC) and automatic 
emergency braking (AEB) [3], [4]. More recently, radar has 
emerged as one of the key technologies in autonomous driving 
systems, providing environmental perception in all weather 
conditions [5], [6]. Some of today’s self-driving cars, such 
as Zoox, have more than 10 radars, providing 360º surround 
sensing (see Figure 1). Differing from ground-based and air-
borne surveillance radars, automotive radars have a small size 
(multi-inch by multi-inch), short range (within multihundreds 
of meters), low power consumption (multiwatt), and low cost. 
They are integrated behind the vehicle bumper or windshield, 
operating in a highly dynamic environment with multipath, as 
shown in Figure 2.

Figure 3 presents a typical radar perception configuration 
for autonomous driving. Four short-range radar (SRR) sensors 
with an azimuth field of view (FoV) of °, °[ ]75 75-  and a detec-
tion range of 45 m are deployed at the four corners of the vehi-
cle for blind-spot detection, cross traffic alerts, and so forth. 
Two midrange radar (MRR) sensors with an azimuth FoV of 

°, °[ ]40 40-  and a detection range of 100 m are deployed at 
both the front and rear sides for lane-change assistance and 
AEB. A long-range radar (LRR) sensor with an azimuth FoV 
of °, °[ ]15 15-  and a detection range of 250 m is deployed at 
the front for the ACC. All radar sensors in a vehicle are con-
nected to an electronic control unit for further processing, such 
as radar tracking and sensor fusion [7].

FIGURE 1. A Zoox autonomous driving vehicle, exhibited at the 2019 Con-
ference on Computer Vision and Pattern Recognition, is equipped with 10 
millimeter-wave (mm-wave) automotive radar sensors (marked by white 
arrows) at the front, rear, left, and right sides.
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FIGURE 2. The requirements of automotive radar for ADAS and autono-
mous driving (indicated by outward-pointing arrows) and the challenges 
imposed by the environment (indicated by inward-pointing arrows).
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FIGURE 3. A typical radar-perception configuration [5] for autonomous 
driving contains four short-range radars (SRRs), deployed at the four 
corners of the car and providing 360° coverage; two midrange radars 
(MRRs) for both forward and rearward looking; and one LRR for  
forward looking.
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For control critical functions, such as AEB, distant obsta-
cles need to be detectable at a high angular resolution. There-
fore, automotive radar for ADAS and autonomous driving 
needs to have a high angle discrimination capability. Employ-
ing a large antenna array would improve 
the angular resolution; however, the result-
ing large package size would make inte-
gration on the vehicle difficult. While for 
conventional phased-array radar, a small 
package size implies a low angular resolu-
tion, for MIMO radar [8]–[10], the package 
size is not a limiting factor. This is because MIMO radar can 
synthesize virtual arrays with a large aperture using only a 
small number of transmit and receive antennas.

This advantage has been exploited by almost all major 
automotive suppliers in their different types of radar prod-
ucts, such as SRR, MRR, and LRR [11]–[14]. For Level 4 and 
Level 5 (L4/L5) autonomous driving, both the azimuth and 
elevation angular resolution of automotive radar need to be 
less than 1º. High-resolution imaging radar with hundreds of 
virtual array elements is currently being developed to pro-
duce the so-called point clouds, which are groups of points 
detected by radar that represent the object’s shape [11], [15], 
[16]. A variety of signal processing tools, e.g., the fast Fou-
rier transform (FFT), short-time Fourier transform, filtering, 
and beamforming, have been adopted in automotive radar to 
obtain target features, such as a micro-Doppler spectrum of 
pedestrians [17]–[20] and a range–Doppler spectrum of the 
surrounding environment. Machine learning algorithms and 
deep neural networks [21] have also been applied in automo-
tive radar for target recognition and classification.

In summary, to meet the requirement for ADAS and espe-
cially L4/L5 autonomous driving, automotive radar needs to 
have a high angular resolution, small package size, and low 
cost. Since it is meant to operate in highly dynamic envi-

ronments, it needs to detect obstacles fast, 
especially for time critical functions, such as 
AEB. In this article, we discuss MIMO radar 
with millimeter-wave (mm-wave) technol-
ogy as a means of achieving the aforemen-
tioned requirements. We review key issues 
in state-of-the-art frequency-modulated 

continuous-waveform (FMCW) MIMO radar, different strategies 
for achieving waveform orthogonality, virtual array synthesis, 
and high-resolution angle finding methods for both uniform 
linear arrays and sparse linear arrays. We discuss MIMO ra-
dar in the light of high-resolution imaging radar for L4/L5 
autonomous driving. We also highlight challenges in designing 
automotive MIMO radar, such as angle finding in the presence 
of multipath, waveform-orthogonality strategies in FMCW radar 
and pulse-modulated CW (PMCW) radar, and the mitigation 
of radar mutual interference. We hope this article serves as a 
tutorial on automotive MIMO radar and provides interesting 
research problems to signal processing researchers.

State-of-the-art automotive FMCW radar
Mm-wave technology has found great applicability in auto-
motive radar. The typical frequency band of mm-wave auto-
motive radar is 76–81 GHz. The high frequencies facilitate 
small enough antennas that can fit behind the bumper of the 
vehicle. Also, the wide available bandwidth enables a high 
target-range resolution [22]. State-of-the-art automotive radar 
transmits FMCW at mm-wave frequencies, which supports 
high-resolution target-range and velocity estimation at a much 
lower cost than lidar technology. Automotive MIMO radar 
uses FMCW waveforms along with some mechanism that 
guarantees waveform orthogonality. This section introduces 
the principles of FMCW. Strategies for achieving waveform 
orthogonality based on FMCW waveforms are discussed in 
the “Introduction of Automotive Radar With MIMO Radar 
Technology” section.

An FMCW waveform, also referred to as a chirp, is a com-
plex sinusoid whose frequency increases linearly with time 

[ , ],t T0!  i.e., /( ) ( ) ,t B Tf f tT c= +  where B is the signal band-
width and fc  is the carrier frequency. FMCW radar transmit 
chirps in a periodic fashion, with a period referred to as the 
pulse repetition interval (PRI). The frequency of an FMCW 
signal through multiple periods, with a PRI equal to T, is 
displayed in Figure 4. The target echo at the radar receiver 
contains a delayed and attenuated copy of the transmitted 
chirp. For a target at range R, moving with a radial speed 
of v, the delay equals /( ( )) ,cR vt2x = +  where time t spans 
multiple periods and c is the speed of light. The received sig-
nal is mixed with the transmitted chirp, which results in a 
complex sinusoid known as the beat signal. The beat-signal 
frequency equals ,f f fb R D= +  where /( )RBf Tc2R =  is the 
range frequency and /( )f v c f2D c=  is the Doppler frequency. 
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FIGURE 4. The FMCW radar chirps. The range and Doppler estimations 
are performed using a 2D FFT.

Important requirements for 
automotive radar are high 
resolution, low hardware 
cost, and small size.
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The process of obtaining the beat signal is implemented in the 
radio frequency domain by a mixer, followed by a bandpass 
filter (BPF) with the maximum cutoff frequency ;f max

b  the lat-
ter filter is used to remove signals with frequencies outside the 
band of interest, which also places a limit on the maximum 
detectable range.

The estimation of the beat frequency is implemented in the 
digital domain, after the sampling of the beat signal. In automotive 
scenarios, the maximum detectable range, ,Rmax  is hundreds 
of meters. It holds that /( ) ,cR T2 max %  and 
thus .f BR %  Since it typically holds that 

,f fD R%  the beat frequency is much smaller 
than B, and therefore a low-speed analog-
to-digital converter (ADC) can be used to 
sample the beat signal. The time during one 
period or chirp is usually referred to as the 
fast time, while the time across multiple 
periods or chirps is referred to as the slow time. Thus, if we 
sample the beat signal and put the samples of each chirp in the 
columns of a matrix, the row indices of that matrix correspond 
to the fast time and the column indices to the slow time (see 
Figure 4). In automotive scenarios, ;f fD R%  therefore, fD  can 
be taken as constant within each chirp. Thus, by applying FFTs 
on the sampled beat signal along the fast time, one can identify 
fR  based on which of the target’s ranges can be obtained as 

/( ).R cf T B2R=

To obtain the target’s Doppler frequency, a second FFT op-
eration is subsequently carried out along the slow time (the 
range frequency fR  is the same across the slow time). The PRF 
is / .f T1PRF PRI=  To avoid Doppler ambiguity, it is desired that 

.f f2 DPRF $  Thus, the maximum unambiguous detectable radial 
speed of FMCW radar is /( )v c f T4max c PRI=  [23]. The applica-
tion of these two FFTs is equivalent to a 2D FFT of the beat 
signal in the fast and slow times, and the result is called the 
range–Doppler spectrum. Range and Doppler detection can 
be performed using conventional thresholding-based methods 
applied to the 2D range–Doppler spectrum, such as the constant 
false alarm rate detector [24] or the recently proposed deep neu-
ral network-based detector [25]. Via the 2D FFT, the targets can 
be separated in the range and Doppler domains. Since the num-
ber of targets within the same range–Doppler bin is small, angle 
finding can be carried out using sparse sensing techniques, such 
as compressive sensing. The details of angle finding approaches 
will be covered in the “Angle Finding in Automotive MIMO 
Radar” section.

The 2D FFT operation used for beat-frequency estima-
tion can be computed with low-cost digital signal processors 
(DSPs) and field-programmable gate arrays. The range resolu-
tion depends on the beat-frequency resolution. Since the latter 
is estimated based on a signal of time duration approximately 
equal to T, the beat-frequency resolution is / ,T1  and thus the 
range resolution is /( ).c B2  One can see how the range reso-
lution benefits from a high bandwidth. Thus, the low hard-
ware cost, coupled with the high range resolution that can 
be achieved, make FMCW radar very popular in automotive 
radar applications.

As an example, an LRR FMCW radar operating at car-
rier frequency f 77 GHzc =  has a typical pulse duration of 
T 50 sn=  and bandwidth of B 150 MHz.= Assume the maxi-
mum detectable range is 250 m. Then, the maximum range fre-
quency is f 5 MHz.max

R =  For a moving target with a maximum 
speed of v 1 02 mi/h,=  the maximum Doppler frequency is 

.f 27 4 KHz.max
D =  The beat signal can be sampled with a low-

cost ADC with a sampling rate as low as f 12 MHz.s = For a PRI 
equal to T, and based on the preceding, the PRF is /f T1PRF PRI= =

20 KHz. It can be seen that, in this example, 
,f f2 max

DPRF1  and therefore the Doppler fre-
quency will be aliased, resulting in Doppler 
ambiguity. In practice, chirp sequences with 
different PRIs are transmitted to resolve the 
Doppler ambiguity.

As discussed, FMCW radar has the desir-
able ability to estimate the target range and 

Doppler at a low cost. However, FMCW radar also faces several 
challenges. Those include frequency sweep nonlinearity [26]–
[28] arising from the phase noise of the local oscillator (LO) and 
imperfect phase-locked loop circuits and voltage-control oscilla-
tors. Sweep nonlinearity has a significant impact on radar range 
estimation [26].

A challenge common to all radars is to maintain a high 
dynamic range, which is the ratio between the maximum and 
minimum possible successfully received power. Since the 
path loss is inversely proportional to the fourth order of the 
range, targets at long distances typically yield weaker reflec-
tions compared to targets at closer distances. Therefore, a high 
dynamic range is required to accommodate targets at a wide 
range of distances. In FMCW radar, because the waveforms 
are transmitted continuously, the receiver always receives the 
signals of the transmitters via a direct path, referred to as leak-
age. Leakage may saturate the low-noise amplifier in the front 
end of the radar receiver [29]. It can also cause high peaks at 
the first few bins of the range FFT, thus reducing the radar’s 
dynamic range.

In many pulse radars, sensitivity time control has been 
widely used to control the gain of targets at near and far dis-
tances by exploiting the relationship between the time delay 
and target range. As discussed, the range frequency of the beat 
signal is proportional to the target range. Therefore, in FMCW 
radar, an analog gain-control logic can be implemented in the 
frequency domain to reduce the receiver gain of close-range 
targets while continually increasing the gain as the target’s 
range increases [30]. Automatic gain-control logic can be 
implemented in a BPF so that the receiver gain increases 
within the detectable range [31]. Leakage between the trans-
mit and receive antennas can be suppressed via sufficient 
isolation between the transmit and receive antennas through 
antenna design in the analog domain [30], [32]. Further, the 
transmit antenna leakage effect in the mixer output can be 
suppressed via a BPF, with the lowest cutoff frequency cor-
responding to a range of tens of centimeters to 1 m. The BPF 
also helps suppress the multibounce signals between automo-
tive radar, the radome, and the vehicle bumper. Finally, in the 

Radar technology has 
been used in defense, 
civilian, and commercial 
applications since  
World War II.
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complete receiving chain, an N-bit ADC can provide an addi-
tional 6N-dB dynamic range.

In the signal processing chain of FMCW radar, a range FFT 
length of NR  and a Doppler FFT length of ND  can provide a 
signal-to-noise ratio (SNR) improvement of ( )log N N10 dBR D10

[33]. This SNR improvement is considered as a processing gain, 
which significantly benefits angle finding that will be discussed 
in the “Angle Finding in Automotive MIMO Radar” section.

Introduction of automotive radar with MIMO 
radar technology
In state-of-the-art automotive FMCW radar, the range and 
Doppler parameters of targets can be estimated by using a sin-
gle receive antenna. However, to estimate the angle parameter 
of targets, a receive antenna array is needed. In MIMO radar, 
the transmit antennas transmit FMCW sequences in a way 
that guarantees their orthogonality. At each receive antenna, 
the contribution of each transmit antenna is extracted by 
exploiting waveform orthogonality. For Mt  transmit anten-
nas and Mr  receive antennas, a virtual array with M Mt r  ele-
ments can be synthesized. The array response of the synthesized 
array, i.e., the array corresponding to a MIMO radar, can be 

expressed as ( ),( )a at t r r7i i  where ( )at ti  and ( )ar ri  are the 
transmit- and receive-array steering vectors corresponding to a 
direction of departure (DoD) ti  and direction of arrival (DoA) 

,ri  respectively. Here, 7 denotes the Kronecker product.
Figure 5 shows two MIMO radar configurations with 

M 2t =  transmit and Mr  receive antennas [23]. One is in 
interleaved mode with d d2r t=  and / ,d 2t m=  and the other is in 
stacked mode with d M dt r r=  and / .d 2r m=  Here, /c fcm =  is the 
wavelength. It can be verified that for both array configurations, 
the synthetic virtual arrays are equivalent to uniform linear arrays 
(ULAs) with M Mt r  elements and a spacing of dr  when .t ri i=

Because MIMO radar transmits orthogonal waveforms, 
when isotropic array elements are used, the array beampattern 
(also referred to as the MIMO radar array factor) is omnidi-
rectional. Thus, MIMO radar loses the coherent array-process-
ing-gain advantage enjoyed by traditional phased-array radar 
systems [10]; the SNR of the array response at a given angular 
direction is less than that of phased-array radar with transmit 
beamforming. Still, in the automotive application scenario, the 
high-resolution angle finding ability of MIMO radar coupled 
with its low cost are viewed as more important than the loss of 
coherent processing gain.

Virtual array synthesis in automotive FMCW radar 
using MIMO radar technology relies on the separability of 
the transmit signals of the different antennas. The separa-
tion is easier when the transmit signals of different anten-
nas are orthogonal. In the following, we review techniques 
to achieve waveform orthogonality while transmitting 
FMCW, such as TDM, DDM, and frequency-division 
multiplexing (FDM).

Waveform orthogonality via TDM
In TDM MIMO radar [23], [35]–[38], only one transmit an-
tenna is scheduled to transmit at each time slot. In Figure 6, a sig-
nal processing example of a MIMO radar in TDM is given by 
NXP Semiconductors [34], where M 2t =  transmit antennas 
emit FMCW chirps alternatively. The switch delay between 
transmit antennas is .t TPRIT =  At each receive antenna, 
range FFTs of length Nr  are conducted for each chirp, and 
the FFT outputs of N2 d  chirps are assembled in two matri-
ces corresponding to odd and even chirp sequences, respec-
tively. The receive array corresponding to the odd and even 
chirp sequences form two subarrays, which can be used to 
synthesize a virtual array according to interleaved or stack-
ed configurations.

For a moving target with a velocity of v, the switching delays 
of the transmit antennas introduce a target phase migration from 
chirp to chirp, which is defined as / .( )f t v t2 4DT Tz r r m= =

As a result, the virtual array pattern would be distorted [23]. 
In Figure 6, the phase difference between corresponding col-
umns in the two matrices is / .( )vT4 PRIz r m=  If .v v0 5 max=-

and ,v vmax=-  where vmax is the maximum unambiguous detect-
able radial speed and /( )cv f T4max c PRI=  (see the “State- of-
the-Art Automotive FMCW Radar” section), the phase shifts are 

/2z r=-  and ,z r=-  respectively. The array beampattern 
distortion is demonstrated in Figure 7 for a moving target 

dt

dt

dr

dr

θt θr

θr

θr

θr

θt

(a)

(b)

dr = 2dt

dt = Mrdr

…

…

…

… …

FIGURE 5. The different MIMO radar virtual array configurations [23] us-
ing the time-division multiplexing (TDM) or Doppler-division multiplexing 
(DDM) scheme with M 2t =  transmit antennas and Mr  receive antennas: 
(a) interleaved, with d d2r t=  and / ;d 2t m=  (b) stacked, wit d M dt r r=

and / .d 2r m=  Different colors indicate that the transmit antenna trans-
mits different time slots or codes.
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FIGURE 7. The examples of the MIMO radar range and azimuth images using TDM [23], with ,M 2t = M 8r =  for a single target with a range of 35 m and 
azimuth angle of .0°i =  Two MIMO array configurations, interleaved (left column) and stacked (right column), are considered. (a) and (b) The radial 
velocity of .v vmax=-  (c) and (d) The radial velocity of . .v v0 5 max=-  (e) and (f) The radial velocity of .v 0=

FFT FFT FFT FFT FFT FFT FFT FFT

Time

Look

FFT1 FFT2
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Nd Nd

FIGURE 6. An example of radar signal processing with the TDM scheme [34], where M 2t =  transmit antennas alternately transmit FMCW chirp se-
quences. The red and green colors denote the odd and even echo chirp sequences, respectively. The range FFTs are conducted for each chirp, and the 
FFT outputs are stored in two matrices corresponding to odd and even sequences, respectively, for further processing.
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with a range of 35 m and azimuth angle of °0i =  [23]. Here, 
MIMO radar with ,M 2t = M 8r =  operates in TDM fash-
ion. As stated in [23] and seen in Figure 7, for the inter-
leaved MIMO array configuration, when the target velocity 
increases, the grating lobes at the edge of the FoV show up, 
while the peak at the target direction decreases and totally 
disappears when .v vmax=-  For the stacked MIMO array 
configuration, as the target velocity increases, the peak is 
slightly off the boresight, with a mirror grating lobe at the 
opposite direction.

The phase migration introduced by every moving tar-
get in the virtual array response needs to be compensated 
for before angle finding. The phase-shift estimate zt  can be 
obtained after each target velocity has been estimated based 
on the 2D FFT of a single receive antenna or the noncoherent 
2D FFT integration of the same subarray. For instance, in 
the example of Figure 6, the phase in the beam vector of the 
subarray obtained from the even chirps needs to be compen-
sated for by multiplying it with ,e jz- t  while the phase in the 
beam vector of the subarray corresponding to the odd chirps 
is kept unchanged. It should be noted that in TDM MIMO 
radar, the pulse-repetition interval is enlarged by the transmit 
antenna number .Mt  As a result, the maximum unambiguous 
detectable velocity, which was defined in the “State-of-the-
Art Automotive FMCW Radar” section, will be reduced by 
a factor of Mt  [39].

Waveform orthogonality via DDM
In one look, a total of N chirps (i.e., pulses) are transmitted 
sequentially with pulse-repetition interval .TPRI  All transmit 
antennas simultaneously transmit the same FMCW waveform 
after multiplying it with a phase code that is different for each 
antenna and changes between pulses, i.e., ,( )x en ( )

m
j n2 m= ra

, , ,m M1 tf= , ,n N1 f=  [40]. To separate the hth transmit 
signal at the lth receiver, after the range FFT, a slow-time 

Doppler demodulation is applied to all range bins correspond-
ing to the same chirp. The Doppler demodulated outputs of N
chirps are assembled into a vector .sl

h  Then, the Doppler FFT 
is applied on the vector .sl

h  To separate the transmit signals in 
the Doppler domain, one of the two methods described next 
can be applied.

The first approach is to design phase codes such that the 
Doppler FFT of the interference e ( )( )( )j n n2 m hr a a-  is shifted to 
a frequency that is higher than the maximum detectable Dop-
pler frequency .f max

D  Therefore, a low-pass filter (LPF) can be 
applied to remove the interference [40]. One example of such 
phase codes is

, , , , ,( )n n m M n N1 1m m tf fa a= = = (1)

where the starting phase ma  is linear across different trans-
mit antennas, i.e., .a mm 0a = Figure 8(a) shows the range and 
Doppler spectra of a target with a range of 75 m and velocity 
of 10 m/s. Automotive MIMO radar has two transmit anten-
nas and the transmit phase codes given in (1), with a 10 =  and 

.N 512=  It can be seen that signals from different transmit 
antennas are shifted to a higher Doppler spectrum, which can 
be removed via an LPF in the Doppler domain. With this ap-
proach, the radar pulse repetition frequency fPRF  should be 
larger than M f max

t D  [41]. Thus, if the fPRF  is kept unchanged, 
the maximum detectable unambiguous Doppler frequency is 
reduced by a factor of .Mt  In practice, a Doppler unfolding, 
or de-aliasing, algorithm needs to be developed with different 
fPRF  in different looks.

The second approach is to design phase codes so that the 
Doppler FFT of the interference can be distributed into the 
entire Doppler spectrum as pseudo noise. It is desired to 
minimize the peak interference residual (PIR) in the Doppler 
spectrum [42], calculated using the discrete time Fourier trans-
form for , , ,m M1 tf=  i.e.,
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FIGURE 8. The range and Doppler spectra of a target with a range of 75 m and velocity of 10 m/s. The automotive MIMO radar has two transmit antennas, 
and a slow time phase coding of length N 251=  is applied for DDM. (a) The phase shift codes defined in (1) for the range-Doppler spectrum. (b) The 
two Chu sequences for the range-Doppler spectrum.
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,max e ePIR
,

( )( ( ) )n

f m h

j j fn

n

N
n2 2

1

m h=
!

r a a r-

=

/  (2)

where [ ( / ) , ( / ) ].f f f1 2 1 2PRF PRF! -  Following (2), the cross cor-
relation of the spectra of two codes needs to be flat [42] since 
the Fourier transform of multiplication of two codes in the time 
domain is equivalent to the convolution of the spectrum of one 
code with the time reversed and the complex conjugate of 
the other. The maximum autocorrelation 
value of an unimodular sequence of length 
N is N. The ideal cross correlation of two 
unimodular sequences of length N has a 
magnitude of .N  Thus, in the ideal case, 
according to [42], the maximum power gain 
of the currently transmitted signal over the 
other signals is .N  For example, the max-
imum achievable waveform attenuation is 
roughly 27.1 dB for a unimodular sequence set with .N 512=

Constant-amplitude zero-autocorrelation codes are good 
candidates for DDM. The discrete Fourier transform of 
a constant-amplitude zero autocorrelation code also has 
a constant amplitude and zero autocorrelation [43]. One 
such example is the Chu sequence [44], which is defined as 

( ) ,nx e /( ) ( )
m

j N m n n1= r + , , ,m M1 tf= , , ,n N1 f=  where N is 
a prime number. In practice, the Chu sequence of the prime 
length is first generated and then truncated into a length 
for an efficient FFT. For example, we generate Chu codes 
of prime length 521 and truncate them to length .N 512=

By calculation with the FFT, the peak interference resid-
ual defined in (2) is . .N1 08  Therefore, the waveform 
attenuation for a Chu sequence of length N 512=  is ap-
proximately 26.4  dB. In Figure 8(b), we show the range 
and Doppler spectra of a target with a range of 75 m and 
velocity of 10 m/s. The automotive radar has two transmit 
antennas, and two Chu sequences of length N 512=  are 
applied for the slow-time DDM. It can be seen that the 
waveform attenuation is roughly 26 dB. In practice, binary 
phase codes are used due to hardware constraints [45]. The 
binary phase-code sequences are obtained via an exhaus-
tive search such that the peak interference residual in (2) 
is low. As the code length increases, the search time will 
grow exponentially.

The benefit of slow time phase coding is that the interfer-
ence from other transmitters does not affect different range 
bins. The range resolution is determined only by the band-
width of the FMCW chirp. Therefore, it avoids the range sid-
elobe issue using fast time phase coding. However, the Doppler 
sidelobes would be high due to the residual of the slow time 
phase coding. As a result, targets with a low radar cross sec-
tion (RCS), e.g., pedestrians, that are close to targets that have 
strong reflections, e.g., trucks, might be masked by the wave-
form residual. In other words, the waveform residual reduces 
the radar dynamic range. Given the code length, the number 
of phase codes with good correlation properties is limited, or, 
equivalently, the number of antennas that can transmit simul-
taneously is limited.

Waveform orthogonality via FDM
In the FDM scheme, the transmitted signals are modulated 
by different carrier frequencies. According to [46], the sep-
aration of multiple transmit FMCW signals is achieved by 
shifting the mth transmit FMCW chirp by an offset fre-
quency .f ,moff  If the differences between all f ,moff  are larger 
than twice the cutoff frequency of the antialiasing BPF ,f max

b

which is determined by the maximum unambiguous detect-
able range and Doppler, the transmitted 
signals can be separated at the receive end. 
Specifically, the received signal at each 
receiver is first mixed with the same start-
ing carrier frequency .fc  The separation of 
transmit signals in the mixer output can be 
implemented by a frequency shift followed 
by an LPF with cutoff frequency f max

b  [46]. 
Each receiver needs to carry out such a fre-

quency shift and filtering operation Mt  times. As a result, a 
high range resolution can be realized using a typical FMCW 
chirp with a large bandwidth. Meanwhile, after the FMCW 
demodulation, frequency shift, and filtering operation, the 
FDM MIMO scheme can still utilize a low sampling rate de-
termined by the beat signal.

Let us consider the FDM scheme in the context of the exam-
ple in the “State-of-the-Art Automotive FMCW Radar” section, 
i.e., a FMCW LRR radar with a maximum detectable range of 
250 m and a maximum detectable velocity of 120 mi/h. For 
bandwidth B 150 MHz=  and chirp duration ,T 50 sn=  the 
maximum beat frequency is f f fmax max max

b R D= + = 5.0274 MHz. 
Therefore, the frequency shift for the mth transmit antenna in 
the FDM scheme can be chosen as ( )f m12 1 MHz.,moff = -

The intermediate frequency (IF) should have a bandwidth of 
M12 MHzt  to hold the mixer output.

Angle finding in automotive MIMO radar
In automotive MIMO radar with Mt  transmit and Mr  receive 
antennas, a virtual uniform linear array of M Mt r  elements 
can be synthesized with interelement spacing d. The array re-
sponse can be written as

( ) ,y A s ni= + (3)

where ( ), , ( )( ) [ ]A a a K1 fi i i=  is the virtual array steering 
matrix with

, , , .( ) e e1a // ( )( )( ) ( )( ) sin sin
k

j d j M M d T2 2 1k t r kfi = r m i r m i-6 @ (4)

Here, n is a noise term, and , , ,[ ]s K
T

1 fb b=  where kb  de-
notes the target reflection coefficient for the kth target. The 
array response at a particular time instance consisting of data 
obtained at all the virtual receivers and corresponding to the 
same range–Doppler bin is defined as the array snapshot. In 
highly dynamic automotive scenarios, usually only a small 
number of array snapshots, or even a single snapshot in the 
worst case, is available [47].

Radar has emerged as one 
of the key technologies 
in autonomous driving 
systems, providing 
environmental perception 
in all weather conditions.
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In automotive MIMO radar with a virtual ULA, angle 
finding can be done with digital beamforming (DBF) [12], 
[48], [49] by performing FFTs on snapshots taken across the 
array elements, i.e., y in (3) (see Figure 9). DBF can be imple-
mented efficiently in an embedded DSP with a single snap-
shot. However, DBF is not a high-resolution angle-finding 
method. Higher-resolution angle finding can be achieved 
with subspace-based methods, such as multiple signal clas-
sification (MUSIC) [50] and estimation of 
signal parameters via rational invariance 
techniques (ESPRIT) [51]–[54], sparse sens-
ing-based methods [55]–[63], and the iter-
ative adaptive approach (IAA) of [64] and 
[65]. The performance of subspace-based 
angle-finding methods relies on accurate 
estimation of the array covariance matrix 
with multiple snapshots, which is a challenging task in the 
highly nonstationary automotive radar scenarios. In such a 
context, spatial smoothing [66] is applied for introducing 
virtual snapshots for array covariance-matrix estimation. 
While sparse sensing-based methods and IAA have a high 
computational cost, they yield angle estimates based on a 
single snapshot, which is important for snapshot-limited auto-
motive radar.

Achieving a high angular resolution for the L4 and 
L5 autonomous driving requirement using a ULA with 

/d 2m=  is very expensive. According to [24], the 3-dB 
beamwidth of an antenna array with aperture size D is 

/(( . ).)arcsin D2 1 4d m r=i  To achieve a 3-dB beamwidth of 
1º, the antenna-array aperture should be roughly .D 51. m  If 
the antenna array is a ULA with its interelement spacing as 
one-half of a wavelength, it should be composed of approxi-
mately 100 array elements. Even with the help of MIMO 
radar technology, the cost of synthesizing such a large virtual 
ULA with half-wavelength element spacing is very high. One 
way to further reduce the cost without sacrificing the high 
angular resolution is via the use of nonuniform, or sparse lin-
ear arrays (SLAs) [67]–[72] synthesized with MIMO radar 
technology. In that context, selecting the locations of the 

array elements and carrying out angle finding with the vir-
tual sparse array are key problems.

High-resolution angle finding with ULAs

Subspace methods with spatial smoothing
The performance of subspace-based angle finding methods 
requires an estimate of the array covariance matrix. Such an 

estimate is typically obtained based on 
multiple snapshots. However, in the highly 
dynamic automotive environment, it is not 
possible to obtain enough snapshots before 
the model of (3) changes. In such scenarios, 
spatial smoothing [66] can introduce vir-
tual snapshots for array covariance-matrix 
estimation. In spatial smoothing, the array 

snapshot, ,y  is divided into overlapped subarrays of length L, 
and a new sampled array covariance matrix R CL L! #  is ob-
tained based on the subarray snapshots.

The eigenvalue decomposition of R, along with the Akaike 
information criteria metric [73] or the minimum description 
length metric [74], can be used to identify the number of tar-
gets. It should be noted, however, that many ideal assumptions 
in the deduction of these criteria (including additive white 
Gaussian noise that is uncorrelated with the source signal) and 
the availability of enough snapshots for an accurate covariance 
matrix estimation might not be satisfied in practice. The target 
angles can be found by identifying the locations of peaks of the 
MUSIC pseudospectrum [50], ,( )P ii  computed at all possible 

,sii  i.e.,

( )
( ) ( )

,P 1
a U U a

i
L
H

i
H

L in n
i

i i
= (5)

where Un  is the noise subspace of R  and ( )aL ii  is the ar-
ray steering vector of length L corresponding to search di-
rection .ii  The computation cost of the MUSIC algorithm 
is high due to the angle search process. Alternatively, the 
ESPRIT algorithm could be used for angle estimation [51]. 
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FIGURE 9. The DBF. 

MIMO radar can synthesize 
virtual arrays with a large 
aperture using only a 
small number of transmit 
and receive antennas.



107IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

ESPRIT is also a subspace method, which exploits the array 
shift-invariance properties, and has been widely used in prac-
tice. It has a lower complexity than MUSIC, which, however, 
comes at the cost of reduced angular resolution. ESPRIT 
requires 2L sensors, with .L K2  To achieve the same an-
gular resolution as MUSIC, ESPRIT needs twice as many 
sensors. Since 2D arrays are needed in automotive radar to 
estimate both the azimuth and elevation angles, 2D ESPRIT 
algorithms [54] can be applied if the array element spacing 
is uniform rectangular.

Compressive sensing
MIMO radars equipped with mm-wave technology offer a 
wide bandwidth, thus achieving a high range resolution. As 
a result, there are only a small number of targets that fall in 
the same range–Doppler bin, and thus the targets are sparse 
in the DoA space. This property can be exploited by sparse 
sensing-based high-resolution methods for target angle esti-
mation. To apply compressive sensing for DoA estimation, 
the whole DoA FoV is discretized into a fine grid. Assume 
that the DoA space is discretized on a fine grid with N points 
and that there are K targets on the grid. The array response in 
(3) can be rewritten as

,y Ax n= + (6)

where , , ( )[ ( ) ]A a a N1 fi i=  is the basis matrix, with ( )a ii

denoting the array steering vector corresponding to the ith 
grid point, and [ , , , ]x N

T
1 2 fb b b=  is a sparse vector with 

K nonzero elements. The value of ib  is nonzero if there is a 
target at the ith grid point. The coherence of the basis matrix, 
defined as

( ) ( )
,

( ) ( )
max

a a
a a

i l l

H
i l

i 2 2

_n
i i

i i

, ,!
(7)

needs to be low for obtaining uniform recovery guarantees 
[75]. When meeting the required coherence conditions, the 
DoA can be found by solving an norm-1,  optimization prob-
lem, such as the Dantzig selector [76], defined as

.

min

s.t. ( )

x

A y AxH

1

1 h-

,

,3 (8)

or greedy methods, such as orthogonal matching pursuit 
(OMP) [77].

In the preceding formulation, targets are assumed to be on 
the grid, which is not always possible in practice. While one 
can make the grid finer to capture the targets, the coherence 
of matrix A would increase, which would make the norm-1,

solution invalid [78]. Thus, the performance of compressive 
sensing-based methods is sensitive to targets appearing off the 
grid [79]. Sparse sensing and matrix completion-based meth-
ods [62], [63] can avoid grid issues without sacrificing the high-
resolution performance.

IAA
The covariance matrix of M array snapshots ,yl , , ,l M1f=

can be written as ( ),( )R A PAHi i=  where P is a K # K di-
agonal matrix whose diagonal elements contain the power of 
target reflections. Angle finding in the IAA algorithm [64], 
[65] is carried out by iteratively estimating the reflection coef-
ficient .kb  The estimate is found by minimizing the weighted 
least-square cost function / ,( )( )ly a ( )l

M
l k k1

2
Q k

1b i- i= -  where 
( )x x Q x( )

H
k

2 1
Q k

1 i=i
-

-  and the interference and noise co-
variance matrix ( ) ( ).( ) PQ R a ak k k

H
ki i i= - t  The solution is 

given by [64]:

.
( ) ( )

( )
( )

l
a R a

a R y
k H

k k

H
k l

1

1

b
i i

i
= -

-
t (9)

Then matrix P can be updated as //( ) ( ) .MP l1k l
M

k1
2

b= =
t t  In 

IAA algorithm implementation, the DoA space is discretized 
into a fine grid of N points, and steering matrix A is construct-
ed in the same way as in compressive sensing. In addition, a 
standard delay-and-sum beamformer is used to initialize P:

( ) ( )
.

( )
P

M a a

a y
k H

k k

H
k l

l

M

2

2

1

i i

i

= =t
/

(10)

High-resolution angle finding with SLAs
As stated before, the cost of synthesizing a large virtual ULA of 
D elements with half-wavelength element spacing is very high. 
One way to further reduce the cost without sacrificing the high 
angular resolution is via the use of nonuniform or SLAs [67], 
[68], [80]. With MIMO radar technology, M M Dt r1  virtual 
array elements can be synthesized. To make the SLA aperture 
the same as the ULA, two virtual-array elements should be 
deployed at the edge locations of the ULA. For the remaining 
virtual array elements, there are multiple possibilities to de-
ploy. The main issue with the SLA is that the grating lobes may 
introduce ambiguity into angle finding. In that context, the key 
problems are how to select the locations of the array elements 
such that the peak sidelobe level (PSL) of the virtual SLA be-
ampattern is low and how to carry out angle finding. There is 
no analytical solution to determining the antenna locations that 
achieve a minimum PSL for a given number of antennas [81]. 
Optimal sparse array design requires global optimization tech-
niques, such as particle-swarm optimization [68], [82], [83].

In automotive MIMO radar with a virtual SLA, angle 
finding can still be done with conventional FFT or ESPRIT 
methods if the holes in the virtual SLA can be filled via inter-
polation or extrapolation techniques to mitigate the grating 
lobes [16], [84]. Alternatively, instead of filling the holes, angle 
finding of the sparse array can be done using spatial compres-
sive sensing ideas [85]. In the SLA scenario, it can be easily 
verified that the coherence of the basis matrix [see (7)] is the 
PSL of the SLA array beampattern [67]. Therefore, the coher-
ence (or, equivalently, the PSL) of a sparse array plays a key 
role in obtaining uniform recovery guarantees for compressive 
sensing [75]. If the PSL of the SLAs is low, angle finding using 
SLAs can be done via compressive sensing or IAA.
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In Figure 10, we give an example of a virtual SLA with an 
aperture of ,19m  synthesized with MIMO radar technology 
using four transmit and four receive antennas. The first and 
fourth transmit/receive antennas are deployed at the edge of 
the physical aperture, while the remaining antennas are chosen 
such that the PSL is .9 1 dB.-  Angle estimation via the IAA 
when using the sparse linear array of Figure 10 is illustrated 

in Figure 11. The ground truth involves two targets with azi-
muths of 5 and 10°. The SNR of the received beam vector is 
set to 30 dB. For comparison, the FFT spectrum is also plotted. 
One can observe the sharper peaks around the target azimuth 
angles and the more attenuated sidelobe in the IAA spectrum as 
compared with the FFT spectrum.

High-resolution imaging radar for 
autonomous driving
Automotive radar with a small number of antennas has been 
used for ADAS purposes since the late 1990s. Such radar 
mostly sees point targets and obtains velocity information. 
However, the current generation of automotive radar for 
ADAS has a rather limited ability to resolve closely spaced 
targets. Lidar systems have better angular resolution (less than 
1º) and have been introduced into L4/L5 autonomous driving 
systems. Lidar can provide point clouds. Through the use of 
deep neural networks, such as PointNet [86] and PointNet++ 
[87], the point clouds can lead to target identification. How-
ever, due to its use of the light-spectrum wavelength, lidar is 
susceptible to bad weather conditions, such as fog, rain, snow, 
and dust in the air. In addition, the cost of lidar is high. On 
the other hand, automotive radar with mm-waveform technol-
ogy has the potential to provide point clouds at a much lower 
cost than lidar and with more robustness to weather condi-
tions. Such radar is referred to as high-end radar or imaging 
radar [88]. Computer vision techniques [86], [87] that were 
previously reserved for high-resolution camera sensors and 
lidar systems can be applied to imaging-radar data to identify 
targets. For example, a car can be identified based on the 2D 
radar points of an imaging radar using PointNet [89]. Imaging 
radar has been attracting the interest of major Tier-1 suppliers 
and automotive radar start-ups.

MIMO radar is a good candidate for high-resolution imag-
ing radar for autonomous driving. In MIMO radar using FMCW 
waveforms, the targets are first distinguished in the range and 
Doppler domains. Then, a large virtual array with hundreds 
of elements can be synthesized to provide a high resolution 
in both the azimuth and elevation. As a result, point clouds 
with performance similar to lidar can be generated at a much 
lower cost. In this section, we introduce the concept of imag-
ing radars using MIMO technology; present some examples 
for synthesizing hundreds of virtual array elements by cascad-
ing multiple radar transceivers, with each supporting a small 
number of antennas; and discuss design challenges.

Cascade of multiple radar transceivers
Today, most of the automotive radar transceivers designed for 
ADAS functionality, such as the MR3003 from NXP Semi-
conductor and AWR1243 from Texas Instruments, can support 
up to three transmit and four receive antennas. Therefore, using 
a single automotive radar transceiver with MIMO radar tech-
nology, only 12 virtual array elements can be synthesized. To 
meet the requirement for L4 and L5 autonomous driving, mul-
tiple automotive radar transceivers would need to be cascaded 
together, with all the transceivers synchronized as a single 
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FIGURE 10. A toy example of an SLA synthesized with MIMO radar technol-
ogy using four transmit and four receive antennas. The physical limitation 
of the array aperture is .10m  We fix the locations of the first and fourth 
transmit/receive antennas at ,0m  .0 5m  and ,10m  . ,59 m  respectively, such 
that a maximum virtual array aperture of 19m  is achieved. The remaining 
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using the SLA of Figure 10 synthesized by MIMO radar technology. There are 
two targets with azimuths of 5 and 10°. The SNR is set to 30 dB.
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unit. The received data from all the receive antennas would be 
processed coherently. Cascading provides a cost-effective and 
scalable solution to achieve a high angular resolution.

In [90], General Motors and Texas Instruments successful-
ly demonstrated that up to four Texas Instruments AWR1243 
radar chips can be cascaded together to provide 12 transmit 
and 16 receive antennas, enabling a synthesis of 192 virtual 
array elements. In [91], a prototype of five cascading Infineon 
radar chips was built to synthesize a virtual array of 128 # 4 ele-
ments. Such a high number of virtual array elements provides a 
lot of opportunities in array design. Several azimuth and eleva-
tion array configurations can be found in [16]. Usually, a trad-
eoff between balancing the angular resolution in the azimuth 
and elevation needs to be considered.

Examples of cascaded imaging radars
Figure 12 shows an imaging radar design reference board that 
has 12 transmit and 16 receive antennas, formed by cascad-
ing four Texas Instruments AWR1243 radar transceivers [92]. 
The azimuth FoV is °, .°70 70-6 @  One transceiver is select-
ed as the master and all the others as slaves for the clock 
distribution. In this way, synchronization can be achieved 
among four transceivers, enabling coherent FMCW transmis-
sion from the 12 transmit antennas and joint data process-
ing from the 16 receive antennas. The array configuration of 
cascaded imaging radar is illustrated in Figure 12. There are 
three transmit antennas placed along the vertical direction 
for elevation angle finding and nine transmit antennas placed 
along the horizontal direction for azimuth angle finding. The 
virtual array in the horizontal direction is a dense ULA with 
half-wavelength spacing, and it consists of 86 virtual array el-
ements (the overlapped virtual array elements are not shown). 
The array aperture in the azimuth direction is . .D 42 5x m=

In antenna theory, the 3-dB beamwidth defines the angular 
resolution. According to [24], the 3-dB beamwidth of the azi-
muth angle is

. . .°arcsin
D

2 1 4 1 2
x

AZT .i
r
m= c m (11)

In the vertical direction, the antennas in three elevation posi-
tions form multiple minimum redundancy arrays (MRAs) [93] 
along the horizontal direction. Angle finding in the MRAs re-
quires multiple snapshots. These MRAs along the horizontal 
direction can be used as snapshots for elevation angle finding. 
The elevation array aperture is ,D 3y m=  and the 3-dB beam-
width of elevation is

 . .°arcsin
D

2 1 4 17
y

ELT .i
r
m= c m  (12)

In the second example [94], an imaging radar testbed with 
,M 24t = M 24r =  antennas using a TDM scheme (see Fig-

ure 13) is presented. The virtual array apertures have been dou-
bled in both the azimuth and elevation directions. The missing 
elements in the vertical direction in the middle have been inter-
polated [84]. After filling the holes and removing the redundant 
elements, the virtual array is a uniform rectangular array with 
25 # 23 = 575 elements. Wider FoVs of ,[ ° °]25 25-  in both 
the azimuth and elevation were considered in [94]. However, 
for the forward-looking LRR sensors, the typical azimuth and 
elevation FoVs are [ , ]5 51 1° °-  and [ , ],5 5° °-  respectively [5]. 
Consequently, the array interelement spacing in horizontal and 
vertical directions can be set to .d 1 93x m=  and . ,d 5 73y m=

respectively. Since the interelement spacing is larger than one 
half wavelength, there are grating lobes in both the azimuth and 
elevation. However, the grating lobes out of the FoVs can be sup-
pressed through the antenna element design. If the carrier fre-
quency is ,f 77 GHzc =  the real size of the physical 2D antenna 
array is roughly 10 # 25 cm. Then, the 3-dB beamwidth of the 
azimuth and elevation beampattern is [24]:

. . ,arcsin
d

2
24
1 4 1 1°

x
AZT .i

r
m= c m (13)

. . .°arcsin
d

2
22

1 4 0 4
y

ELT .i
r
m= c m (14)

It is worth noting that the mutual coupling between array 
elements is reduced significantly if the interelement spacing 
is larger than one half wavelength, which reduces the burden 
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FIGURE 12. (a) The Texas Instruments AWR1243P imaging-radar board [92]. Four AWR1243P radar transceivers are cascaded together, providing (b) 12 
transmit and 16 receive antennas, enabling (c) the synthesis of 192 virtual array elements.
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for the array calibration [94]. If we want to keep the azimuth 
FoV unchanged and increase the azimuth angular resolution 
to roughly 0.4°, each horizontal receive array needs to add 21 
more antennas; i.e., the dimension of the new physical antenna 
array is 66 # 24 with size of approximately 25 # 25 cm. The 
angular resolution of 0.4° in both the azimuth and elevation 
directions provided by imaging radar is similar to the azimuth 
and elevation resolution of Velodyne’s lidar products, such as 
the HDL-64E, with a spin rate of 20 Hz [95].

Design challenges of imaging radar
Achieving waveform orthogonality in imaging radars using 
FMCW with a large number of transmit antennas is quite chal-
lenging. One strategy could be to divide the transmit antennas 
into several subgroups. In each subgroup, the transmit anten-
nas would transmit simultaneously with slow time phase cod-
ing (DDM), while antennas of different subgroups would be 
scheduled to transmit in different time slots (TDM).

Clock distribution among multiple cascaded transceivers is 
also challenging. For FMCW mixer operation, an LO is shared 
among the master and slaves, and the LO routing from the 
master to all the slaves in the circuit should be matched. Also, 
the additional ADC sampling and data transmission among 
different transceivers needs to be synchronized. It is desirable 
to develop an automotive radar transceiver that can incorporate 
a large number of transmit and receive antennas. For example, 
Uhnder has developed a radar system-on-chip (SoC) that has 
12 transmit and 16 receive antennas, enabling the synthesis of 
192 virtual array elements [96]. Thus, the four current automo-
tive radar transceivers in the cascaded imaging radar shown 

in Figure 12 can be replaced with a single SoC radar chip. 
The radar on chip developed by Vayyar has 48 transceivers at 
76–81 GHz, which can provide synthesis across 2,000 virtual-
array elements [97].

Challenges in automotive MIMO radar
In this section, we discuss signal processing challenges that 
cannot be addressed by the straightforward application of ex-
isting ideas and that could inspire new research.

Angle finding in the presence of multipath reflections
Automotive radar runs in multipath scenarios [98]. In general, 
radio propagation in the presence of multipath occurs along 
four possible routes, i.e., direct/direct, direct/indirect, indirect/
direct, and indirect/indirect routes. Figure 14 shows a vertical 
multipath scenario where the height of the radar and target are 
hS  and ,hT  respectively. The length of the direct/direct path 
is ;d r21 1=  the length of the direct/indirect or indirect/direct 
path is ;d d r r r2 3 1 2 3= = + +  and the length of the indirect/in-
direct path is .( )d r r24 2 3= +  The received signal, having gone 
through the four paths, can be written as

,y er i
j d

i

2

1

4
ib= m

r

=

/ (15)

where the amplitude term ib  is a function of the antenna 
gain, path loss, road-reflection coefficient, and target RCS. 
The signal from the indirect paths and that from the direct 
path may arrive out of phase and thus add up destructively. 
As a result, the power of the received signal would fluctuate 
with distance [98], and thus angle finding at SNR nulls would 
be unstable.

MIMO radar with colocated transmit and receive anten-
nas, also referred to as monostatic MIMO radar, is based on 
the assumption that the DoD and DoA are equal. However, in 
the presence of multipath, that assumption does not hold, and 
the system becomes bistatic [99], [100]; i.e., the transmit and 
receive antennas view the target from different aspect angles. 
Figure 15 shows a vehicle moving parallel to the guardrail, 
with an SRR sensor mounted at its front left corner. The length 
of the direct path of the radar signal is ,d r2r 11 =  correspond-
ing to .t r 1i i i= =  There are also multipath reflections due 
to the guardrail. The range of the first multipath reflection 
is ( )d r r r2r 1 2 32 = + + , corresponding to ,t 1i i= r 2i i=  or 

,t 2i i= .r 1i i=  The range of the second multipath reflection 
is ( ,)d r r2r 2 33 = +  corresponding to .t r 2i i i= =  Compared 
to the direct path, multipath reflections result in longer-
range and smaller Doppler. For the first type of multipath, 
the range and Doppler bin is the same as mirror-image target 
detection. However, as ,t r!i i  it turns out that the phase of 
each virtual array element is corrupted. In other words, the 
monostatic MIMO radar assumption does not hold, which 
results in a “ghost” target whose direction is different from 
the mirror target.

To solve this issue, some ideas have been proposed in [99]–[101]. 
For example, joint estimation of the DoD and DoA is proposed 
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FIGURE 15. A typical multipath reflection scenario along a guardrail for an 
SRR sensor mounted at the vehicle’s front left corner.

in [99]; however, by ignoring the structure of the transmit array, 
that method is not able to enjoy the benefit of the synthesized 
virtual array. Polarimetric features are exploited in [100] to sep-
arate objects in a multipath scenario. However, the approach in 
[100] can separate only certain real target cases from their mir-
ror targets; for example, when the real target is known and the 
polarization state change of the multipaths can be recognized. 
The method in [100] does not work when the ghost target direc-
tion is different than that of the mirror target. Doppler informa-
tion can be exploited to detect moving vehicles in urban areas 
under multipath [101]. However, Doppler information is not 
always available when both the objects and host vehicles are sta-
tionary. In general, there is a need for more research addressing 
the ghost target issue in MIMO radar due to multipath.

Waveform orthogonality in automotive MIMO radar
As stated in the “Introduction of Automotive Radar With 
MIMO Radar Technology” section, different strategies, such 
as TDM, DDM, and FDM, can be adopted in automotive 
FMCW radars to achieve waveform orthogonality. However, 
several challenges associated with each strategy need to be 
addressed. For example, in the TDM scheme, the scheduling 
delay between transmit antennas may introduce phase error 
for a moving target, which needs to be compensated for; oth-
erwise, the synthesized array beampattern will be distorted. 
Further, the maximum unambiguous detectable velocity un-
der TDM is reduced by a factor of .Mt  In the DDM scheme, 
the Doppler sidelobes are high due to the residual of the phase 
coding. As a result, targets with small RCSs, e.g., pedestrians, 
that are close to the target with strong reflections, e.g., trucks, 
might be masked. The search time for phase codes using sto-
chastic algorithms increases exponentially as the code length 
increases. Computationally efficient algorithms are needed 
to address this problem. In the FDM scheme, although a ran-
domization of the frequency shift among transmit antennas 
could reduce the range-angle coupling, a large number of 
transmit antennas would be needed for the improvement to 
be notable [41].

Recently, PMCW has been proposed for achieving ortho-
gonality [102]–[105]. Each antenna transmits a sequence of 
phase-coded pulses. Let , ,[ ( ) ( )]x x N1xm m m p

Tf=  be the 
complex unimodular code sequence of the mth transmit anten-
na, where ( )nx e ( )

m
j nm= z  is the nth code of xm  and Np  is the 

code length. Here, the phase ( )nmz  can be chosen arbitrarily in 
, .[ ]r r-  The duration of a single code sequence is ,T N Tp p c=

with Tc  being the duration of a subpulse. In practice, binary 
code sequences have been widely used due to their simplicity. 
The bandwidth of PMCW is / .B T1 c=  The time–bandwidth 
product of a code sequence is .BT Np p=  Since the pulses 
are transmitted continuously, the code sequences should have 
good periodic autocorrelation and cross-correlation properties 
[102]. The periodic cross correlation of two code sequences xm

and xl  at lag k is defined as

( ) ( ) (( ) ( )),modnr k x x n k Nml m l p
n

N

1

P = +)

=

/ (16)

when ,m l= ( )r kml
P  becomes the periodic autocorrelation func-

tion of .xm  Good correlation properties require that the values of 
the periodic autocorrelation at nonzero lag and that the values of 
the cross correlation at any lag be low. The Welch lower bound 
on the cross correlation between any pair of binary sequences 
with a period of Np  in a set of Mt  sequences equals [106]
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t
p

P $ .
-
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Good periodic cross-correlation properties help achieve wave-
form orthogonality, while good periodic autocorrelation prop-
erties make it easier to use matched filters to extract signals 
reflected from the range bin of interest and suppress signals 
reflected from other range bins.

As compared to FMCW, PMCW radar has several advan-
tages. PMCW radar is better suited for achieving waveform 
orthogonality in imaging radars with a large of number 
of transmit antennas. PMCW radar can take advantage of 
existing sequences with good autocorrelation and cross-cor-
relation properties that were previously developed for code-
division multiple accessing (CDMA) communications, such 
as Gold, Kasami, and m-sequences [107]–[109]. Further, 
in PMCW radar, each automotive radar sensor can have a 
unique digital sequence, which may help reduce the auto-
motive radar mutual interference. As a bonus, PMCW radar 
also provides certain communication capability [110] and 
thus can be explored as a dual-functional radar communica-
tion system [111].

However, PMCW radar has many implementation chal-
lenges. First, the sampling rate of the ADC should satisfy 
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the Nyquist rule; i.e., / .f B T2 2s c$ =  The high bandwidth 
required for a high range resolution necessitates a high-speed 
ADC and high-speed processing hardware. In practice, keep-
ing the resolution of the ADC as low as possible is required 
[112]. Second, according to the Welch bound of (17), the cross-
correlation lower bound of any pair of binary sequences is of 
the order of ,NO p^ h  which might not provide a sufficient 
separation of the transmit waveforms of different antennas. In 
practice, the autocorrelation and cross correlation of the code 
sequences are desired to have low sidelobes within a low cor-
relation zone. Furthermore, because there is no mapping rela-
tionship between the range and beat signal in PMCW, it would 
be difficult to use high-pass analog filters to reject or attenuate 
ultraclose-range return signals, including direct path signals 
from the transmit antennas, reflections from the radome, and 
vehicle bumpers. This escalates the dynamic-range challenge, 
especially when the resolution of the ADC must be kept as low 
as possible [112].

Mutual-interference mitigation
Automotive radar mutual interference is a challenging issue 
that needs to be addressed. The use of radar for ADAS and 
autonomous driving is climbing rapidly. As the number of 
vehicles equipped with automotive radar is escalating, with 
each vehicle deploying up to 10 automotive radar units, the 
probability of mutual interference between automotive radar 
units increases. Figure 16 shows an example of an automo-
tive radar interference scenario where two front-looking au-
tomotive radar sensors from two stopped cars illuminate each 
other. If the radar sensors operate at the same frequency band 
and transmit at the same time, they will interfere with each 
other. Without interference mitigation, automotive radar sen-
sors suffer from performance degradation [113]. Therefore, it 
is desired to optimize both the radar transmit- and receive side 
operations to mitigate the interference.

A typical mutual interference scenario for two automotive 
FMCW radars is given in Figure 17. The blue line indicates the 
chirp of an FMCW radar mounted on the host vehicle, with 
a faster sweep rate ,S1  referred to as the victim radar, while 
the red line denotes the chirp of an FMCW radar mounted on 
another vehicle, with a slower sweep rate ,S2  referred to as the 
interference radar. The interference radar is set to illuminate 
the FoV of the victim radar directly. At the receiver of the vic-
tim radar, the duration of the corrupted samples introduced by 

interference in one pulse is /( ) ,T f S S2int
max
b 1 2= -` j  where 

f max
b  is the highest cutoff frequency of the antialiasing BPF 

[114]. After mixing with the transmitted chirp, in addition to 
the beat frequency corresponding to real targets, the corrupted 
samples contain frequencies spanning the whole interval of 
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FIGURE 17. (a) Automotive radar interference exists when the victim and 
interference radars have different FMCW sweep rates. (b) After down-
conversion and passing through the BPF, the sequence sampled from one 
chirp is produced. (c) Since corrupted samples introduced by interfer-
ence have a much larger amplitude than the samples of the target echo, 
they can be clipped or gated.

FIGURE 16. An illustrative automotive radar interference scenario, where 
two front-looking automotive radar sensors illuminate each other.
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the BPF (see Figure 17). Further, since the interference signal 
arrives via a direct path, it is much stronger than the echoes of 
the target.

Intuitively, this type of corrupted samples introduces extra 
energy that spans the whole beat frequency band of inter-
est. As a result, after performing range and Doppler FFTs 
on the receive signal with interference, the noise floor in the 
range–Doppler spectrum would increase, 
as shown in Figure 18. As a result, targets 
with a small RCS might be masked. For 
example, the pedestrian in Figure 16 might 
be buried in the noise and may not be de-
tected by automotive radar when the in-
terference is strong.

The amount of interference energy can 
be viewed as an integral of corrupted sam-
ples through the interference duration inter-
val .Tint Therefore, the interference can be greatly suppressed 
by clipping, or gating, the corrupted samples. In particular, the 
corrupted samples with an amplitude larger than a threshold 
close to the amplitude of the target echo plus noise would be 
clipped (see Figure 17). However, gating does not completely 
remove the interference because the clipped corrupted samples 
still contain frequency components that occupy the whole beat 
frequency band of interest.

Figure 18 presents the simulated range and Doppler spectra 
of victim radar. Three scenarios have been simulated: target 
plus noise only, target plus noise plus interference, and target 

plus noise plus interference with gating. It can be seen that 
without gating, the target is masked by the increased noise that 
is due to the interference. Fast time-domain gating helps to 
recover the target in the range and Doppler domains. It should 
be noted that this type of interference needs to be mitigated in 
fast time after ADC sampling, and thus the mitigation algo-
rithms not only need to be effective but also efficient. Gating 

has a low computational cost, and it can 
significantly suppress the noise level in the 
range and Doppler spectra.

Other interference-mitigation approach-
es include repairing the corrupted samples 
in the time domain, frequency domain [115], 
or spatial domain using adaptive beam-
forming techniques [116]. However, if the 
FMCW sweep rates of the interference and 
victim radar are the same, the interference 

radar will create ghost targets [117], which makes interfer-
ence mitigation more challenging, since this scenario is diffi-
cult to detect.

With the introduction of PMCW radar, the mutual inter-
ference between automotive radar sensors can be greatly 
mitigated in the code domain. The PMCW code sequences 
used in different automotive radar sensors are typically not 
time aligned. Therefore, to suppress the mutual interference, 
the periodic cross correlation of any pair of sequences should 
be low at all lags. PMCW radar is similar to CDMA in com-
munication systems. In other words, the interference will be a 
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FIGURE 18. The range and Doppler spectra of the victim radar with and without time-domain gating. (a) The target plus noise. (b) The target plus interfer-
ence and noise, without gating. (c) The target plus interference and noise, with gating.

Table 1. The different DoA estimation algorithms in automotive radar scenarios.

Algorithm Resolution Snapshot Array Grid-Free Rank  Estimation Robustness Complexity
DBF Low Single ULA/SLA No No Strong Low
MUSIC High Multiple ULA No Yes Medium High
ESPRIT High Multiple ULA Yes Yes Medium Medium
OMP High Single ULA/SLA No No Medium High
IAA High Single ULA/SLA No No Strong High

Machine learning 
algorithms and deep 
neural networks have 
also been applied in 
automotive radar for 
target recognition and 
classification.
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wide-band pseudonoise signal. However, the mutual interfer-
ence mitigation using PMCW highly depends on the periodic 
cross-correlation properties of the code sequence. Therefore, 
designing code sequences with good periodic autocorrela-
tion and cross-correlation properties is of great interest. The 
other research problems include investigating the interference 
between FMCW and PMCW radars [118].

Efficient, high-resolution angle finding 
algorithms are needed
A typical duration of a look in automotive radar is roughly 
50 ms, corresponding to a detection update rate of 20 Hz [119]. 
In such a short duration, the current generation of automotive 
radar for ADAS can report a maximum of 64–200 detections. 
With high-resolution imaging radar, the 
number of cells that can be selected for an-
gle finding from the 2D range and Doppler 
spectrum is approximately 10,000 in a sin-
gle look for a typical road scenario [15]. To 
achieve point clouds for autonomous driv-
ing, angle finding needs to be performed 
thousands of times in a single look, which 
is a great challenge for imaging radar with 
hundreds of virtual array elements. Computationally efficient, 
high-resolution angle finding algorithms are highly desirable 
for real-time implementation in automotive radar.

To reduce the computation complexity, beamspace ESPRIT 
[52] and unitary ESPRIT [53] algorithms have been proposed. 
The idea of beamspace ESPRIT is to decompose the original 
ULA vector into several low-dimensional beamspaces via a 
transform, such as the FFT. Then, if the beamspace transform 
matrix has the same shift-invariance structure, angle finding 
can be carried out via ESPRIT on each beamspace in parallel, 
with a reduced computational time [52]. The unitary ESPRIT 
algorithm takes advantage of the unit-magnitude property 
of the phase factors representing the phase delays between 
the two subarrays and is formulated in terms of real-valued 
computations. As a result, it achieves a great reduction of the 
computational complexity [53].

The computation cost of each IAA iteration is NM2 2 +

,NM M3+  where M is the number of array snapshots and N
is the number of discretized grids. Fast and superfast IAA algo-
rithms have been proposed in [120]–[122], respectively. The fast 
IAA algorithm exploits the FFT operation as well as the Gohberg–
Semencul representation of matrix .R 1-  As a result, the computa-
tion cost of each fast IAA iteration is ,( ) ( )M M N12 2 32 g g+ +

where ( )Ng  stands for the computation cost of performing an 
FFT of size N, i.e., ( )logO N N [121]. The superfast IAA uses 
a conjugate-gradient algorithm to approximate the matrix ,R 1-

which further reduces the computation cost.
The strengths and limitations of each DoA estimation algo-

rithm discussed in the “Angle Finding in Automotive MIMO 
Radar” section when they are applied to the automotive radar 
scenario are summarized in Table 1. For subspace-based, 
high-resolution DoA estimation methods, such as MUSIC and 
ESPRIT, the automotive radar array needs to be a ULA, and 

multiple snapshots are required to estimate the array cova-
riance matrix accurately. However, automotive radar oper-
ating in a highly dynamic environment typically relies on a 
single snapshot. While multiple snapshots can be generated 
via spatial smoothing or by dividing a chirp into subchirps, 
the associated cost is a respectively reduced array aperture 
or reduced SNR. SLAs have been widely used in automotive 
radar to further reduce the hardware cost. However, it is not 
straightforward to apply MUSIC or ESPRIT to SLAs-based 
automotive radar.

On the other hand, DBF and sparsity-based, high-resolution 
methods, such as the OMP and IAA, apply to SLA-based as 
well as ULA-based automotive radar and work with a single 
snapshot. In the DBF method, the number of targets can be 

estimated by counting the number of peaks 
in the DoA spectrum. DBF is not sensi-
tive to coherent or correlated signals, which 
in subspace-based methods [123] need 
special preprocessing via spatial smooth-
ing. It has been shown that DBF is robust 
to array-element position errors and has a 
low computational cost [123]. However, 
DBF is not a high-resolution method. Also, 

since the OMP and IAA are iterative schemes, they involve a 
high computation cost, which limits their applicability in the 
low-cost embedded DSPs typically used in current-generation 
automotive radar. Further, the methods of DBF, MUSIC, OMP, 
and IAA assume targets are on the grid and suffer from errors 
when the targets arise between grid points. In summary, more 
research is needed on developing computationally efficient, 
high-resolution DoA estimation algorithms that are robust to 
noise and applicable to automotive radar using SLAs with a 
low PSL under a single snapshot.

Summary
We have reviewed the advantages of MIMO radar technology 
in increasing the angular resolution of commercial automotive 
radar while, at the same time, offering a low hardware cost and 
small package size. In particular, we have shown that MIMO 
radar technology plays a key role in high-resolution imaging-
radar systems for L4 and L5 autonomous driving. Automotive 
MIMO radar technologies, such as waveform orthogonality with 
slow time phase coding, time-division multiple access, and non-
uniform linear array synthesis with low-peak sidelobes have been 
discussed. High-resolution angle finding literature for snapshot-
limited automotive MIMO radar has been reviewed. In particu-
lar, high-resolution angle finding methods, including subspace 
methods with spatial smoothing, compressive sensing, and the 
IAA, have been discussed.

In particular, we have reviewed methods of cascading mul-
tiple automotive radar transceivers to synthesize hundreds or 
thousands of virtual array elements in high-resolution imaging 
radar systems and have discussed related design challenges. 
We have also addressed the challenges of MIMO radar tech-
nology in automotive applications, which would inspire further 
research for the signal processing community. In addition, we 

Achieving waveform 
orthogonality in imaging 
radars using FMCW 
with a large number of 
transmit antennas is quite 
challenging.
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have discussed angle finding issues in the presence of multipa-
th reflections, waveform orthogonality strategies, automotive 
mutual interference mitigation, and computationally efficient, 
high-resolution angle finding methods.
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PERSPECTIVES
Ulisses M. Braga-Neto and Edward R. Dougherty

Machine Learning Requires Probability and Statistics

The contemporary practice of ma -
chine learning often involves the 
application of deterministic, compu-

tationally intensive algorithms to itera-
tively minimize a criterion of fit between 
a discriminant and sample data. There is 
often little interest in using probability to 
model the uncertainty in the problem 
and statistics to characterize the behavior 
of predictors derived from data, with the 
emphasis being on computation and 
coding. It follows that little can be stat-
ed about performance on future data, 
beyond perhaps a simple error count on 
a given test set. In this article, we argue  
that the knowledge imparted by deter-
ministic computational methods is not 
rigorously related to the real world and, 
in particular, future events. This connec-
tion requires rigorous probabilistic mod-
eling and statistical inference as well as 
an understanding of the proper role of 
computation and an appreciation of epis-
temological issues.

Gauss and the least-squares 
method
We illustrate the issue with a brief his-
torical excursion into the development 
of the least-squares method, which is 
usually credited to an 1809 paper by 
Gauss [1]—even though Legendre pub-
lished it in 1805 [2]. Around 1795 (thus, 
before Legendre’s publication), Gauss 
became preoccupied with the inaccura-

cy of the classical model of planetary 
motion (due to Kepler and refined by 
Newton) in predicting the orbit of the 
asteroid Ceres. The classical planetary 
model does not take into account the 
uncertainty introduced by noise in 
the observations and the presence of 
unmodeled variables. Namely, astro-
nomical observations contain inaccura-
cies, such as human error, atmospheric 
interference, and optical imperfections 
in telescopes, and the orbits of planets 
are determined not only by the sun but 
also by a superposition of the effects of 
all the other planets, which creates an 
intractable analytical problem (known 
as the n-body problem). To address these 
issues, Gauss introduced the least-squares 
method, which can be summarized in 
the famous passage [1]: 

The most probable value of the 
unknown quantities will be that 
in which the sum of the squares 
of the differences between the 
actually observed and the com-
puted values multiplied by num-
bers that measure the degree of 
precision is a minimum.
Thus, the “most probable value” is the 

one that minimizes the sum of squared 
deviations between the observations 
and a candidate in a given family (for 
example, the family of all ellipses). The 
least-squares approach has proven to 
be extremely influential in science and 
engineering. However, its basic formula-
tion has a significant limitation—it can-
not say anything about the performance 

of the method on future data. This is be -
cause no knowledge about the proper-
ties of the noise in the model is assumed 
or sought. This makes the least-squares 
approach essentially deterministic.

Gauss was not unaware of this issue. 
In a later work [3], he gave the condi-
tions on the observation noise under 
which the approach is optimal: if the 
noise random variables are uncorrelated 
and have zero mean with constant vari-
ance across all observations, then the 
least-squares solution is unbiased and 
has minimum variance among all lin-
ear estimators; i.e., it is the best linear 
unbiased estimator (BLUE)—a result 
known today as the Gauss−Markov the-
orem. Even though Laplace also work-
ed on the theory of the least-squares 
method around the same time as Gauss, 
and Markov later clarified many of 
its issues, R. Plackett credits Gauss’ 
1821 paper fully for the Gauss−Markov 
theorem (which should perhaps then 
be called the Gauss theorem) [4]. 
Gauss’s 1821 approach is fully sto-
chastic, where the unmeasurable and 
uncontrollable disturbances are mod-
eled as random variables.

The contrast between the 1809 deter-
ministic least-squares method by Gauss 
and his 1821 fully stochastic approach 
represents a significant epistemologi-
cal transition and illuminates the entire 
issue we discuss in this article. The 1809 
result appeared to be a useful computa-
tional method that produced a “good-
looking” result given the data. However, 
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its properties could not be established 
until the result in 1821, which required 
conditions on the probability distribu-
tion of the noise to lead to the statistical 
optimality of the procedure on future 
data (and not optimality based merely 
on the minimization of a sum of squared 
errors on the current data). In a similar 
fashion, probability theory and statistics 
are indispensable components of statis-
tical signal processing, stochastic con-
trol, and information theory.

Computers: Thinking the 
unthinkable or not thinking 
at all?
Computers are fascinating because of 
their superhuman speed and accuracy in 
executing rote tasks. This feeling about 
automation is old and precedes comput-
ers. For example, Denis Diderot, who 
made the mechanical arts one of the 
central parts of the Encyclopedie, in-
cludes the following quote by a certain 
M. Perault in the famous article on the 
stocking machine [5], [6]:

When one sees stockings being 
knit, one marvels at the supple-
ness and dexterity of the work-
er’s hand, though he only makes 
one stitch at a time. What then 
when one sees a machine that 
makes hundreds of stitches at 
once, that is, makes in one 
moment all the diverse move-
ments that the human hands 
would take many hours to make? 
[…] and all that without the 
worker who operates the ma-
chine understanding anything, 
knowing anything, or even dream-
ing of it.
The impression that automation 

always produces results that are not just 
faster but superior to manual labor is 
very strong. The philosopher W. Barrett 
put it this way in his book The Illusion 
of Technique [7]:

In the popular imagination the 
faith in hardware expresses itself 
in the images of technological 
gigantism: just make the comput-
er mammoth enough and it will 
solve all problems. But the intrin-
sic logic of a problem remains 
what it is even if we had at our 

disposal a computer gigantic 
enough to cover a modern city. 
The absence of an intelligent idea 
in the grasp of a problem cannot 
be redeemed by the elaborate-
ness of the machinery one subse-
quently employs.
A purely data-driven approach is 

naturally computationally expensive, 
and this was a key reason why its use 
was not frequent before the advent of 
fast and cheap computers. Now compu-
tation and storage are relatively cheap 
and widely available, which makes it 
very attractive to apply computation 
indiscriminately. B. Efron put the mat-
ter thus in his paper, “Computers and 
the Theory of Statistics: Thinking the 
Unthinkable” [8]: “The ‘unthinkable’ 
mentioned in the title is simply the 
thought that one might be willing to 
perform 500,000 numerical operations 
in the analysis of 16 data points. Or 
one might be willing to perform a bil-
lion operations to analyze 500 numbers. 
Such statements would have seemed 
insane thirty years ago.”

The propensity of using computation 
indiscriminately was very much in the 
minds of the pioneers of the information 
age. The very first manual of the BASIC 
programming language, invented by J. 
Kemeny and T. Kurz at Dartmouth in 
1964, had a piece of advice from digi-
tal signal processing pioneer Richard 
Hamming of Bell Labs: “Typing is no 
substitute for thinking” [9].

Our point is not that computation 
should be avoided but that an exagger-
ated reliance on it can create an illu-
sion of excellence and independence 
of human supervision. In the case of 
machine learning, it has created the 
expectation that vast amounts of com-
putation can produce accurate predic-
tions from data, without a specification 
of conditions that provide the possibility 
of this knowledge.

On prediction, validation, and 
experimental design
We arrive at the fundamental question: 
How does one know that one has a pre-
dictive model that is strongly connected 
to the real world and future events? In 
classification, a model is predictive if 

the classification error rate is small. 
However, how do we know that we 
have a predictive classifier? This ques-
tion can only be answered in practice 
by estimating the classification error 
using an error-estimation rule applied to 
the training data, a distinct set of test 
data, or a mixture of training and test 
data [10]. The accuracy of the error esti-
mation rule must be measured by a 
validity criterion, the most common one 
being the root-mean-square error 
between estimated and true error, which 
in turn depends on the feature–label 
distribution, i.e., the joint probability 
distribution between the feature vector 
and the label. Without an underlying 
probability model, classification validi-
ty cannot be established. One could 
apply any existing error estimation rule, 
such as cross-validation or test-set error 
estimation, but this would simply pro-
vide a number that relates to the sample 
training and testing data used and has 
no quantifiable relation with future per-
formance of the classifier. One might 
claim to expect a proportion of errors 
on future applications that agree with 
the estimate, but this statement is not 
quantifiable in terms of prediction ver-
sus observation and therefore lacks sci-
entific content.

The next logical question is: How 
can one know that the feature–label dis-
tribution reflects the true relationship 
between feature vector and label? If one 
has the wrong feature–label distribu-
tion, then the trained model will per-
form poorly on future data. In practice, 
it is not possible to know completely the 
feature–label distribution at work in a 
specific problem. However, assump-
tions about the feature–label distribution 
can be enforced by sound experimental 
design, i.e., the way the data gathering 
process is planned and executed. In a 
recent paper, F. Mazzocchi character-
izes the issue as follows [11]:

Science does not collect data ran-
domly. Experiments are designed 
and carried out within theoretical, 
methodological and instrumen-
tal limitations. Instruments are 
designed based on prior theories 
and knowledge, which determine 
what these instruments indicate 
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with respect to the object under 
investigation. Research does not 
examine each possible manipula-
tion that could occur, but selects 
what is relevant in light of a given 
perspective, sometimes in order 
to match theoretical predictions 
with experience.
For instance, for the Gauss–Markov 

theorem to hold and the BLUE to be valid, 
the data must be acquired and condi-
tioned/transformed so that the disturbanc-
es are, at least approximately, uncorrelated 
and zero mean with constant variance. 
Another often overlooked example of an 
important experimental design issue is 
the requirement by many machine learn-
ing algorithms that the training data be 
independent and identically distributed. 
For example, cross-validation is approxi-
mately unbiased only under this assump-
tion: if it is violated, cross-validation can 
be grossly biased [12].

A last objection could be raised by 
a skeptic: How can we be sure that we 
can learn from the present data about 
events that will happen in the future? In 
other words, are we not always measur-
ing performance on existing test data, 
as it becomes available? This is the 
radical empiricist challenge to science, 
also known as the problem of induction, 
which was first raised by David Hume 
in the 18th century [13]. Many attempts 
have been made to answer this question 
in the affirmative, but this principle can-
not be proved logically. Instead, we must 
adopt it as a postulate. In the preface to 
“Scientific Inference,” Sir Harold Jef-
freys puts it this way [14]: “Discussions 
from the philosophical and logical point 
of view have tended to the conclusion 
that this principle cannot be proved by 
logic alone, which is true, and have left it 
at that. […] In the present work the prin-
ciple is frankly adopted as a primitive 
postulate and its consequences are devel-
oped.” As is the case in science at large, 
Jeffreys’ “primitive postulate” must also 
be adopted in machine learning to avoid 
the radical empiricist perspective.

Deep neural networks
Like other machine learning methods 
based on optimization, neural networks 
learn from data by iteratively adjusting 

the parameters of a discriminant to fit a 
set of labeled data points. The justifica-
tion often cited for such approaches is 
that the discriminant of a neural net-
work with a sufficiently large number 
of parameters can produce results that 
are arbitrarily close to the optimal pre-
dictor in a distribution-free manner; that 
is, neural networks are universal func-
tion approximators. If the large num-
ber of parameters is organized over a 
large number of layers, one has a deep 
neural network.

A classical theorem by G. Cybenko 
[15] shows that the classifiers produced 
by a neural network discriminant with 
continuous sigmoids are dense in the 
space of all classifiers, and therefore 
can be arbitrarily close to the optimal 
classifier. Cybenko’s theorem applies 
to depth-bound (“shallow”) neural net-
works, with a depth of 2 (one hidden 
layer and one output layer), but the num-
ber of neurons k in the hidden layer, i.e., 
the width of the neural network, must be 
allowed to increase without bound for 
arbitrary approximation. A recent result 
by Z. Lu and collaborators [16] pro-
vides a comparable denseness result for 
width-bound (“deep”) networks, where 
the maximum number of neurons per 
layer is fixed, but the number of layers 
must be allowed to increase freely.

However, these deterministic results 
do not address the performance of neu-
ral networks trained from data. In par-
ticular, they do not weigh directly on 
the issue of consistency, i.e., on the sto-
chastic convergence of the error of the 
trained classifier to the optimal error 
as sample size increases to infinity. To 
bear out the promise of distribution-
free classification, consistency has to 
be universal; i.e., it must hold under any 
feature–label distribution. The few uni-
versal consistency results of which we 
are aware apply to shallow neural net-
works and make unrealistic demands 
on training, such as the requirement of 
training error or L -1 error minimization 
(for which gradient descent cannot be 
applied); e.g., see Theorems 30.7 and 
30.9 in [17], respectively.

It turns out that even universal con-
sistency is not enough. It was shown by 
L. Devroye and collaborators [17, Th. 7.2] 

hat for any universally consistent clas-
sification rule, a feature–label distribution 
exists such that convergence of the clas-
sification error to the optimal error is as 
slow as desired. In other words, univer-
sal consistency can say nothing about 
the problem of selecting a good clas-
sifier using finite training data: under 
no assumptions about the feature–label 
distribution, any classification algorithm 
can be arbitrarily bad. The situation 
changes if assumptions are made about 
the feature–label distribution. For exam-
ple, it was shown by N. Glick [18, Th. A] 
that the difference between the ex-
pected and optimal classification error 
rates converges exponentially fast to 
zero in discrete histogram classification, 
with a rate that depends on the feature–
label distribution: the more separable 
the classes are under the feature–label 
distribution (in a precise sense), the 
faster the rate of convergence is guar-
anteed to be.

Bayesian deep learning provides 
an alternative to deterministic neural 
networks and has attracted significant 
attention in recent years [19], [20]. The 
classical approach to Bayesian neural 
networks has been based on placing 
prior distributions on the weights of the 
network [21], [22]. In [23], an alternative 
approach to Bayesian deep learning was 
developed where dropout training of 
deep neural networks was formulated as 
approximate Bayesian inference in deep 
Gaussian processes. These are welcome 
developments. However, we point out 
that these approaches to Bayesian deep 
learning are not probabilistically related 
to the feature–label distribution, nor do 
they even require a feature–label distri-
bution. The mechanism has a statistical 
dimension relative to the prior distribu-
tion, but the output is not necessarily 
statistically related to nature, only to 
the actual data. If there is an underly-
ing model distribution representing sci-
entific knowledge, then the issue arises 
as to the connection between it and the 
prior distribution. In the classical Bayes-
ian approach, there is none, the priors 
being chosen ad hoc, perhaps according 
to some general information–theoreti-
cal criteria. This disconnect has been 
referred to as a “scientific gap” in [24]. 
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In that reference, an alternative approach 
was proposed, where the model distri-
bution is treated as uncertain, with the 
uncertainty occurring in its parameters. 
This model uncertainty is propagated to 
uncertainty in the classifier or regressor, 
and so the latter uncertainty is directly 
related to the underlying model.

Conclusions
In this article, we have attempted to 
make the case that the success of machine 
learning in science and engineering 
depends essentially on the use of rigorous 
probabilistic modeling and statistics. We 
discussed the problem in the context of 
general machine learning and then looked 
more closely at the currently important 
topic of deep neural networks.

In our view, the issues discussed here 
concern not only the theoretician or sci-
entist but also affect the practitioner, 
because practical application requires 
consistency with the demands of the 
theory. This view is expressed this way 
by Y. Gal and Z. Ghahramani in [23]: 
“Model uncertainty is indispensable for 
the deep learning practitioner as well,” 
whereas N. Wiener put it this way in the 
context of biology [25]: “The physiolo-
gist need not be able to prove a certain 
mathematical theorem, but he must be 
able to grasp its physiological signifi-
cance and tell the mathematician for 
what he should look for.”

In the last few decades, however, 
there has been open opposition to 
the use of probability and statistics in 
predictive modeling. For example, this 
can be observed in the well-known 
polemic by L. Breiman [26], in which he 
writes: “The statistical community has 
been committed to the almost exclusive 
use of data models. This commitment 
has led to irrelevant theory, question-
able conclusions, and has kept statisti-
cians from working on a large range of 
interesting current problems.”

There is some evidence that this 
might be due to the lack of widespread 
mathematical literacy in the research 
community at large. For instance, J. 
Simon writes [27], “In the mid-1960’s, I 
noticed that most graduate students—
among them many who had had several 
advanced courses in statistics—were 

unable to apply statistical methods cor-
rectly in their social science research. I 
sympathized with them. Even many 
experts are unable to understand intui-
tively the formal mathematical approach 
to the subject. Clearly, we need a meth-
od free of the formulas that bewilder 
almost everyone.”

The authors have pondered on such 
issues elsewhere [28]–[31]; others have 
done so as well [11], [32]–[35]. The crucial 
question is: Do we want knowledge about 
the real world in the sense of modern 
engineering and science, or do we merely 
want knowledge of specific events, the 
latter being more understandable and 
requiring simpler mathematics? Before 
answering the question, one should 
consider the enormous benefits that we, 
as modern engineers, have accrued from 
the probabilistic-statistical approach, 
beginning with the Wiener–Kolmogorov 
theory of linear systems in the 1930s and 
flowing forward in the development of 
optimal filtering, stochastic control, sta-
tistical signal processing, and information 
theory. Deep thought should be given as 
to whether abandoning this epistemology 
is desirable.
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Neural Networks, Hypersurfaces,  
and the Generalized Radon Transform

rtificial neural networks (ANNs) have 
long been used as a mathematical 
modeling method and have recently 

found numerous applications in sci-
ence and technology, including com-
puter vision, signal processing, and 
machine learning [1], to name a few. 
Although notable function approxi-
mation results exist [2], theoretical ex-
planations have yet to catch up with 
newer developments, particularly with 
regard to (deep) hierarchical learning. 
As a consequence, numerous doubts 
often accompany NN practitioners, 
such as How many layers should one 
use? What is the effect of different acti-
vation functions? What are the effects of 
pooling? and many others.

This didactic lecture note is meant 
to highlight an alternative interpreta-
tion of NN-based techniques and their 
use in supervised learning problems. 
Here, we draw a connection between 
classification methods in machine learn-
ing and the integration geometry of 
classic and generalized Radon trans-
forms (GRTs). We explicitly show that 
the output distributions of the nodes 
in an NN are curvilinear projections 
of the input distribution (also known 
as the slices of the GRT). We then use 
these concepts to highlight different 
properties of NNs, which may help 
demystify certain of their properties 
as well as potentially provide a path 
for novel studies and developments. 

For brevity and to reduce  prerequisites, 
the derivations presented fall short of 
rigorous mathematical proofs. The Python 
code to reproduce all of the figures used 
here is available on GitHub [13].

Relevance
This article aims to establish a common 
language between NNs and  signal 
transformation methods typically used 
in inverse problems (e.g., image re   -
construction). More specifically, our 
goal is to show that, just like a linear 
classification boundary (e.g., linear 
logistic regression) can be thought of 
as a “straight-line projection” of the 
input data probability density func-
tion (PDF), certain types of NNs can 
be thought of as computing a “curved” 
projection over the input data PDF. By 
focusing on the geometry of integra-
tion, we also intend to visualize con-
cepts related to nonlinearity, the role 
of different activation functions, and 
adversarial attacks. In the end, we hope 
that this common language facilitates 
the exchange of ideas between the 
fields of machine learning and inverse 
problems, to the benefit of both.

Prerequisites
Linear algebra, basic probability, and 
basic concepts of machine  learning 
are helpful in understanding the con-
tent of this lecture note. Radon trans-
forms are also helpful and are reviewed 
as well.

Problem statement: Statistical 
regression and classification
Let x refer to an input digital signal or 
image that can be viewed as a point 
within a space X (e.g., the Rd  Euclid-
ean) space. Now, let h be a function 
that takes as input x and assigns a label 
to it. Mathematically, we write this 
as : ,h X Y"  with Y corresponding to 
the label space. In learning problems, 
y RK!  is usually a (given) vector for 
which the value of the kth element rep-
resents the probability that the sample x
belongs to the kth class, although other 
regression problems can also be formu-
lated with the same approach. The goal 
in regression (e.g., classification) prob-
lems is to utilize input training data to 
estimate a model ,fi  with i  a vector 
of parameters, such that f h+i ( fi
closely approximates h).
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Omitting here a measure of theoretic 
formulation (see [3] for a more complete 
development), let ,pX  ,pY  and p ,X Y

define the PDFs for random variables X
(input signal space) and Y (label space), 
respectively. The well-known random 
variable transformation (RVT) theorem
[4] links pX  and pY  via

( ) ( ) ( ( )) ,p y p x y h x dxY X
X

d= -#  (1)

where d  is the standard Dirac distribu-
tion (see the supplementary material for 
this article available in IEEE Xplore). 
Figure 1 shows the geometric interpre-
tation of (1), which is the topic of this 
note. The same transformation of the 
random variables technique can be used 
to derive

( ) ( ) ( ( )) .p z p x z f x dxf X
X

d= - ii #  (2)

The goal in a regression task is to esti-
mate fi  so that it accurately “predicts” the 
dependent variable y for each input x. In 
other words, we wish to find f h+i  over 
the distribution of the input space. To that 
end, goodness-of-fit measures are used 
to fit a model fi  to given labeled data 
(supervised learning). One popular model 
is to find i  that minimizes the expected 

discrepancy between ( )y h x=  and ( )f xi
according to a per-example dissimilarity 
measure L (i.e., loss function):

( , ( )).min y f xE L( , )x y p ,X Y+
i

i  (3)

The expected dissimilarity between h
and fi  is referred to as risk. Given 
that we often have access only to sam-
ples from the distribution, ,p ,X Y  in 
practice, we use the empirical distri-
bution, which leads to the empirical 
risk minimization:

( , ( )).min
N

y f x1 L
n

N

n n
1

i
i

=

/  (4)

The empirical risk minimization can 
be interpreted in relation to random 
variables ( )Y h X=  and fi  and their 
respective distributions. For instance, 
the cross-entropy-minimization strat-
egy /( / ) ( ( ))logN y f x1 k

N
k k1 $- i=  can be 

viewed as an estimate of ( ( )h xEx pX $+

),( ( ))log f xi  which is equivalent to mini-
mizing the Kullback–Leibler (KL)-diver-
gence between pY  and pfi [5].

Main objective
The goal of this note is to exploit the 
described relationships to clarify the 

role of an NN classifier ( )f xi  in linking 
the PDF of the input data pX  and the 
PDF of an output node .pfi  In particular, 
we work to show that ( , ),p pGf X $ i=i
where G  stands for the GRT operation 
discussed in the next section. Next, we 
consider the formulations for the stan-
dard Radon transform and its general-
ized version as well as demonstrate a 
connection between this transforma-
tion and the reviewed statistical learn-
ing concepts.

Radon transforms

The “standard” Radon transform
The standard Radon transform, ,R  maps 
distribution pX  to the infinite set of its 
1D marginal distributions. More pre-
cisely, the standard Radon transform 
integrates the distribution pX  along 
hyperplanes of ,Rd  and it is defined as

( , ) : ( ) ( ) ,p t p x t x dxR X X
X

$i d i= -# (5)

where d  is the 1D Dirac delta function. 
Each hyperplane is parameterized by a 
unit vector, ,Sd 1!i -  and an intercept 

,t R!  where Sd 1-  is the unit sphere 
in .Rd  In other words, each hyperplane 
can be written as

u( , ) ,H t x x tRd $!i i= =" , (6)

which, alternatively, could be thought of 
as the level set of the function ( , )g x i =

.x t$i =  For a fixed ,i  the integrals over 
all hyperplanes orthogonal to i  define a 
continuous function, ( , ) : ,p R RR X "$ i

that is a projection/slice of .pX Figure 2(a)
provides a visual representation of the 
Radon transform, the integration hyper-
planes ( , )H t i  (i.e., lines for ),d 2=  and 
the slices ( , ).pR X $ i

The Radon transform is an invertible 
linear transformation (i.e., linear bijec-
tion). The inverse of the Radon trans-
form denoted by R 1-  is defined as

( ) ( ( , ))

( ( , ) ( )) ( ) ,

x tp p

p x d

R R

R

X X

X

1

Sd 1
$ ) $ % $

i

i h i i

=

=

-

-
#

 (7)

where ( )$h  is a 1D high-pass filter 
with corresponding Fourier transform 

pX pX

z

z

pfθ (z) = RpX (z, θ ) pfθ (z) = GpX (z, θ )

x1

x2

x1

x2

z = θ . x
z = θ 3 . σ (Θ2σ (Θ1x))

(a) (b)

FIGURE 1. The PDFs of classifier outputs pfi  can be understood as (a) a straight-line or (b) a curvi-
linear projection of the input data PDF, .pX  In the case of linear classifiers (e.g., logistic regression), 
the PDF of the classifier’s output is a projection from the standard Radon transform of the data PDF, 
pX  [see (a)]. In the case of nonlinear classifiers (e.g., multilayer perceptrons with nonlinear activa-
tions), the PDF of the classifier’s output can be viewed as a projection obtained from the GRT of the 
data PDF.
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( ) cF d 1. ; ;h ~ ~ -  (it appears due to the 
Fourier slice theorem; see the supple-
mentary material for this article avail-
able in IEEE Xplore) and *` _ denotes 

the convolution operation. This defi-
nition of the inverse Radon transform 
is also known as the filtered back-
projection method, which is exten-

sively used in image reconstruction 
in the biomedical imaging commu-
nity. Intuitively, each 1D projection/
slice, ( , ),pR X $ i  is first filtered via 
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FIGURE 2. Linear versus curvilinear projections. A visualization of the Radon transforms projecting 2D Gaussian mixture density functions to 1D density functions. 
Each pair of figures shows the input density function pX  together with the integration lines (orange) and the resulting 1D density function, i.e., projection (blue). 
(a) The projections along straight lines (parameterized by different si  as indicated by red arrows). (b) The projections along polynomial curves.
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a high-pass filter and then smeared 
back into X along ( , )H $ i  to approxi-
mately .pX  The filtered summation 
of all smeared approximations then 
reconstructs .pX  We note that there 
are example works in the NN literature 
where these relationships are exploited 
to derive certain approximation results 
for one-hidden-layer NNs (see, for 
example, [6] and [7]).

We note that the classic Radon trans-
form establishes a unique correspon-
dence between smooth functions (PDFs) 
pX  and :pR X  each function pX  gets 
mapped to only one function ,pR X

and vice versa (bijective map). This 
concept is important since it enables 

one to define the inverse operation, as 
explained earlier, which has important 
tomographic applications, for instance, 
in medical imaging and synthetic aper-
ture radar, among others. Another in-
teresting application of the bijectivity 
concept is in statistics, where one com-
pares two distributions, pX  and ,qX

based on their marginals pR X  and 
,qR X  and invertibility indicates that 

if ( , ) ( , )p t q tR RX Xi i=  for t R6 !  and 
,S( )d 16 !i -  then .p qX X=  The com-

parison of 1D projections of high-
dimensional distributions is the basis 
for interesting metrics for distributions, 
including the sliced Wasserstein metric 
(see [8] for a recent example).

Estimating Radon projections 
numerically
As mentioned previously, in most ma-
chine learning applications, one does 
not have direct access to the actual dis-
tribution of the data but to its samples, 

.x pn X+  In such scenarios, the empiri-
cal distribution of the data is used as an 
approximation for :pX

( ) ( ) ( ),p x p x
N

x x1
X X

n

N

n
1

. d= -
=

t / (8)

where d  is the Dirac delta function in 
.Rd  Then, it is straightforward to show 

that the Radon transform of pXt  is

( , ) ( ).p t
N

t x1R X
n

N

n
1

$i d i= -
=

t / (9)

See the supplementary material for this 
article available in IEEE Xplore for de-
tailed derivations of (9).

Linear classification and the 
Radon transform
Now, let us consider the supervised learn-
ing of a linear binary classifier. Given 
the data samples x pn X n

N
1+ =" ,  and their 

corresponding labels , ,y 0 1n n
N

1! =" " ,,
the task is to learn a linear function of the 
input samples, ( )f x x$i=i  for ,Sd 1!i -

such that

.x b
y

y

1

0
$ Ui

=

=

Many methods exist to obtain the opti-
mal ,i  e.g., support vector machines or 
logistic regression [9]. While the projec-
tion ( )z f x x$i= =i  is applied to each 
sample, we can consider the distribution 
of the numerical output of the classifier 

( ).f xi  By combining the transformation 
of random variables formula (2) with 
the Radon transform formula (5), we 
then have

( ) ( ) ( ( ))

( ) ( )

( , ).

p z p x z f x dx

p x z x dx

p zR

f X
X

X
X

X

$

d

d i

i

= -

= -

=

ii #
#

It is clear that the output distribution 
of a particular linear classifier defined 
by ( )f x x $ i=i  can be viewed as a 
slice of the standard Radon transform 
of the distribution of the input data 
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FIGURE 3. A linear classifier provides a linear projection of the distribution of the input high-
dimensional data pX  at an optimal ,i  for which the data can be best discriminated. Therefore, one 
can think of the distribution of the output of the classifier as a slice of the classic Radon transform 
of the distribution .pX  (a) The PDF of the input data, where the blue and orange colors denote the 
conditional distributions (· )p y 0X ; =  and (· )p y 1X ; =  for the two classes. The blue crosses and 
orange circles show samples from the conditional distributions. (b) The empirical distribution 

/( / ) ( )N z x1 n
N

n1 $d i-=  of the output of a linear classifier. (c) The Radon transform of ,pX ( , )pR X $ i

at the optimal .i
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.pX Figure 3 depicts this relationship. 
Note that these results are not exclu-
sive to a binary classifier, and one can 
readily extend them to multiclass clas-
sification problems via one- versus-one 
or one- versus-all strategies [9].

The GRT
The GRT extends the original idea of 
the classic Radon transform introdu-
ced by J. Radon [10] from integration 
over hyperplanes of Rd  to integra-
tion over hypersurfaces [11] [i.e., ( )d 1- -
dimensional manifolds]. The GRT has 
various applications, including ther-
moacoustic tomography, where the 
hypersurfaces are spheres, and elec-
trical impedance tomography, where 
integration over hyperbolic surfaces 
appears. Figure 2(b) demonstrates the 
concept of integration along hypersur-
faces (i.e., curves for )d 2=  of our dis-
tribution domain .X R23

To define the GRT, we first introduce 
the family of real-valued parametric func-
tions ( , ):g X R"$ i  for \0Rn6 !i " ,
(the vector 0i =  is excluded) and with 

.X Rd3  Then, the GRT is a linear opera-
tor, ,G  defined as

( , ) : ( ) ( ( , )) .p t p x t g x dxG X X
X

i d i= -#
(10)

From a geometrical perspective and 
for a fixed t, ( , )p tG X i  is the integral of 
pX  along the hypersurface ( , )H t i =

u ( , ) .x X g x t! i =" ,  Note that the clas-
sic Radon transform is a special case of 
the GRT where ( , ) .g x x$i i=

As with the standard Radon trans-
form discussed previously, a natural 
question to ask is whether the GRT 
defines a bijective map that can be 
used to define interesting metrics for 
high-dimensional distributions as 
well as potentially develop an inverse 
transformation formula. As we men-
tioned before, invertibility is a desirable 
characteristic for Radon transforms, 
and it significantly empowers these 
transformations to be used in tomo-
graphic applications and statistical 
analysis, e.g., defining probability met-
rics. Here, we enumerate some neces-
sary conditions for invertibility of the 
GRT. Invertibility of G  necessitates 

the class of our real-valued functions, 
g, to satisfy four conditions [12]:
1) ( , )g $ i  is a real-valued C3  function, 

\ ,0Rn6 !i  which ensures smooth-
ness of hypersurfaces.

2) ( , )g x i  is homogeneous of degree 
one in ,i  i.e., ,R6 !m ( , )g x mi =

( , ).g xm i  Homogeneity is needed to 
ensure unique parametrization of 
hypersurfaces,

3) g is nondegenerate in the sense that 
( , )g x 0xd !i  in \ .X 0Rn# " ,  The 

nondegenerate assumption ensures 
that the ( )d 1- -dimensional hyper-
surfaces do not collapse to points and 
that the integrals are well defined.

4) The mixed Hessian of g is strictly 
positive, i.e., /( ) .det g x 0i j22 2 2 2i
This condition is a local form of the 
Bolker’s condition (see [12]), which 
allows one to locally identify ( , )x i  with 
the covector /( , ) ( , )( ) .g x g xx xd d< <i i

The investigation of the sufficient and 
necessary conditions for showing the 
invertibility of GRTs is a long-stand-
ing topic [11], [12]. Conditions 1–4 for 
a defining function, g, enumerated in 
this section, are necessary conditions for 
injectivity but are not sufficient. Though 
the topic related to inversion of the GRT 
is beyond the scope of this didactic note, 
an inversion approach is given in [12].

GRT examples
Here, we list a few examples of known 
defining functions that lead to injec-
tive GRTs. The circular defining func-
tion, ( , ) ,g x x r 2)< <i i= -  with r R! +

and ,Sd 1X =i -  was shown to provide 
an injective GRT. More interesting-
ly, homogeneous polynomials with 
an odd degree also yield an injec-
tive GRT [11], i.e., /( , ) ,g x xmi i= ; ;a a

a
=

where we use the multi-index notation 
( , , ) ,Nd

d
1 f !a a a= a

a / ,i
d

i1; ;a a= =
a

and .x xi
d

i1
iP=a a

=
a  Here, the summation 

iterates over all possible multi-indices 
,a  such that ,m; ;a =  where m denotes the 

degree of the polynomial and .R!ia
The parameter set for homogeneous 
polynomials is then set to .Sd 1X =i -a

We can observe that choosing m 1=
reduces to the linear case ( , ) ,g x x$i i=

since the set of the multi-indices with 
1; ;a =  becomes {( , , );d1 fa a 1ia =  for 

a single g , ,ki d1!  and ,0ja = },j i6 !

and contains d elements. Figure 2(b)
shows random slices for homogeneous 
polynomials of degree five.

NNs and the GRT
An NN with a fixed architecture pro-
vides a family of nonlinear parametric 
functions. Here, we look at this family 
of functions through the lens of GRT. To 
illustrate the relationship between deep 
NNs and the GRT transform, we start 
by describing the link between the basic 
units of a deep NN (i.e., perceptron  +
activation function) and the standard 
Radon transform.

Single perceptron + activation
Let ( ),z x$v i=  with ,1< <i =  define 
a perceptron with an added activation 

( )$v  for input data ,x pX+  where we 
incorporated the bias, b, into .i  Such 
perceptron + activation functions con-
struct the basic unit of NNs. Treating 
z pZ+  as a random variable and using 
the RVT in (1), it is straightforward to 
show that pZ  is isomorphic to a sin-
gle slice of ,pX ( , ),pR X $ i  when v  is 
invertible (see the supplementary mate-
rial in IEEE Xplore for a proof). The 
isomorphic relationship provides a fresh 
perspective on perceptrons, stating that 
the distribution of the perceptron’s out-
put, ( ),z f x= i  is equivalent to integra-
tion of the original data distribution pX

along hyperplanes {( , )H z x x$;i i= =

}( ) ,z1v- z3 31 1-  [see (6)]. In addi-
tion, one can show that the distribution 
of the output of a perceptron is equal to 
the GRT with ( , ) ( ):g x f xi = i

( ) ( , )

( ) ( ( )) .

p z p z

p x z x dx

Gf X

X
X

$

i

d v i

=

= -

i

# (11)

An important and distinctive point 
is that, here, we are interested in the 
distribution of the output of a percep-
tron, ( , ),p zG X i  and its relationship to 
the original distribution of the data, ,pX

as opposed to the individual responses 
of the perceptron, ( , ).z g xn n i= Fig-
ure 4(a) and (b) demonstrates the level 
sets (or level curves, since )d 2=  and 
the line integrals for ( , )g x x$i i=  and 

( , ) ( ),g x x$i v i=  where .1< <i =  Note 
that samples that lie on the same level 
set will be mapped to same value z. 
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In  other words, the samples that lie 
on the same level sets of ( , )g x i  are 
indistinguishable in the range of the 
perceptron. Next, we discuss the case 
of having multiple perceptrons, i.e., a 
multilayer perceptron with activations.

Multilayer (deep) NNs
To obtain a hierarchical (multilayer) 
model, the concept of a perceptron can 
be applied recursively. As before, let 1H
and 2H  correspond to two matrices 
whose rows contain a set of projec-
tion vectors (different si  in the preced-
ing section): e.g., [ , , ],T T1

1
1

2
1 fi iH =

where i
T1i  is the t ranspose of the 

projection vector corresponding to 
the ith node/perceptron in layer 1. A 
two-layer NN model can be written 
as ( ) .x2 1v vH H^ h  Expanding the idea 
further, we then may define a general 
formula for a K-layer NN as

( , ) ( ( (

( ( ))))).

g x

x

·K K K
1

1 2

1# f

i v i v v

v

H H

H

= - -

 
(12 )

Note that K
1i  in (12) refers to a column vec-

tor, which collapses the output of the NN 
to one node, and that , , ,k k

L
k

1 kfi iH = 6 @
where Lk  is the number of neurons in the 
kth layer of a deep NN.

The set of functions defined by 
such a multilayer perceptron, ( , )g $ i  in
(12), provides a GRT for the input dis-
tribution, .pX  Note, however, that the 
invertibility of such a transformation 
depends on the choice of the activa-
tion function v  (i.e., it should satisfy 
the necessary conditions enumerated 
before). Therefore, from the definition 
in (1), we have that the distribution over 
the output node pfi  can be considered 
as a projection (slice) of the GRT of pX

evaluated at ( , ),: p pGf X $i i=i  with

( , ) ( ) ( (

( ( )))) .

p z p x z

x dx

G X X
X

K

K

1

1 1$ f

i d v i

v vH H

= -

-

#

(13)

Figure 4 (c) and (d) demonstrates the 
level sets and the generalized slices (i.e., 

the line integrals) of pX using a multi-
layer perceptron as ( , ).g x i Figure 4(c)
is initialized randomly, and Figure 4(d)
shows ( , )g x i  after the network param-
eters are trained in a supervised classifi-
cation setting to discriminate the modes 
of the half-moons distribution. It can be 
seen that, after training, the level sets 

( , )H z i  traverse only a single mode of 
the half-moons distribution, which indi-
cates that the samples from different 
modes are not projected onto the same 
point (i.e., the distribution is not inte-
grated across different modes). 

The facility with which NNs gener-
ate highly nonlinear functions becomes 
readily apparent, even with relatively 
few parameters. (In later sections, we 
compare these to other polynomials.) 
We note that with just one layer, NNs 
can form nonlinear decision boundar-
ies, as the superposition of surfaces 
formed by ( ) ( )x x1

1
2
1$ $ gv i v i+ +  can 

add curvature to the resulting surface. 
Note also that, generally speaking, the 
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FIGURE 4. The relationship between NNs with different numbers of layers and the types of projections they compute. Curve integrals for the half-moons 
data set for (a) a random linear projection, which is equivalent to a slice of the classic Radon transform; (b) one-layer perceptron + activation with 
random initialization, which is isomorphic to the linear projection; (c) a two-layer perceptron with random initialization; and (d) a trained multilayer per-
ceptron (with activations). The weights of all perceptrons are forced to be normalized so that .i i 1i

j
i =  As one can see, adding nonlinear projections yields 

curved projection paths, and the objective of training is to discover the integration path that best separates the two distributions.
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integration streamlines (hypersurfaces 
for higher-dimensional data) have the 
ability to become more curved (nonlinear) 
as the number of layers increases. Figure 5 
compares linear projections, circular pro-
jections, a homogeneous polynomial of 
degree five, and an ANN of depth one, all 
trained to minimize the logistic regres-

sion cost function. While it is clear that 
linear and circular projections don’t have 
enough “flexibility” to solve the separa-
tion problem, a polynomial degree of 
degree five seems to emulate the behavior 
of an ANN of depth one. It is possible that 
in the future, the point of view provided 
by analyzing the nonlinear projections 

associated with different NNs can pro-
vide inspiration for alternative models as 
well as insights with which to understand 
different properties of NNs.

Activation functions
It has been noted recently that NNs [e.g., 
convolutional NNs (CNNs)] can, at times, 

RpX(., θ )

"

GpX(., θ )

"

GpX(., θ )

"

GpX(., θ )

"

–1.5 –1 –0.5 0 0.5 1 1.5
t

–1.5 –1 –0.5 0 0.5 1 1.5
t

–1.5 –1 –0.5 0 0.5 1 1.5
t

t

xn 
.θ, yn = 0

xn 
.θ, yn = 1

1.2

–1.2 0 1.2
–1.2

0

1.2

–1.2 0 1.2 –1.2 0 1.2
–1.2

0

1.2

–1.2

0

1.2

–1.2 0 1.2
–1.2

0

1 2 3 4 5 6

g(xn 
.θ), yn = 0

g(xn 
.θ), yn = 1

g(xn 
.θ), yn = 0

g(xn 
.θ), yn = 1

g(xn 
.θ), yn = 0

g(xn 
.θ), yn = 1

(a) (b)

(c) (d)

FIGURE 5. The optimally discriminant curvilinear projections, with different defining function ( , ):g $ i  (a) linear (i.e., the standard Radon transform), 
(b) circular, (c) homogeneous polynomial of degree five, and (d) a multilayer perceptron with LeakyReLU activations. The bottom panel for each quadrant 
shows the empirical generalized Radon projections, /( / ) ( )( ).,N xgt1 n

N
1d i-=  Also, for an NN with LeakyReLU activations, note that the hypersurfaces 

(shown in orange) demonstrate some kinks, which are due to nondifferentiability at the origin.
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work better when v is chosen to be the 
rectified linear unit (ReLU) function, 
as opposed the sigmoid option [5]. The 
experience has encouraged others to try 
different activation functions, such as the 
LeakyReLU [5]. While theory describing 
which type of activation function should 
be used with which type of learning prob-
lem has yet to emerge, the interpretation 
of NNs as nonlinear projections can help 
highlight the differences between activa-
tion function types. Specifically, Figure 6
can help visualize the effects of different 

activation functions on the integration 
geometry over the input data space X.

First, note that the ReLU is a nonin-
vertible map, given that negative values all 
map to zero. This will cause the surface 
generated by a perceptron constructed 
with ReLU to have a region over X that is 
flat, whereby all points in that region are 
integrated and mapped to the same value 
(zero) in the output space. This ability 
may provide ReLU NNs with the flexibil-
ity to construct adaptable characteristic 
function-type models for different regions 

in the data space. However, the outcome 
of the optimization procedure will dictate 
whether such regions would emerge in the 
final model. Finally, note that both ReLU 
and the LeakyReLU activation functions 
contain nondifferentiable points, which 
are also imparted on the surface function 
(hence, the sharp “kinks” that appear over 
isosurfaces lines).

Pooling
Pooling (e.g., average or maximum sam-
pling) [5] operations are typically used 

FIGURE 6. The level curves of ( , )g x i  introduced by different activation functions. Parameters ,R1
2!i  R1 50 2!H #  and R1

2 50!i  are randomly initial-
ized (with the same seed) for demonstrations in (a)–(c). Parameters for (d) ,R1 50 2!H #  ,R2 100 50!H #  R1

3 100!i  are optimized by minimizing a binary 
classification loss. It is clear that ReLU-type functions yield generating functions with sharp transitions, which, in turn, yield integration paths that are more 
“flexible” than sigmoid and TanH activation functions.
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in large NNs, especially CNNs. The rea-
sons are often practical, as subsampling 
can be used as a way to control and reduce 
the dimension (number of parameters) of 
the model. Another often-stated reason 
is that pooling can also add a certain 
amount of invariance (e.g., translation) 
to the NN model. In the case of average 
pooling, it is clear that the operation can 
also be written as a linear operator kH  in 
(12), where the pooling operation can be 
performed by replacing a particular row 
of kH  by the desired linear combination 
between two rows of ,kH  for example. 

Maximum pooling (max pooling), 
on the other hand, selects the maximum 
surface value (perceptron response), over 
all surfaces (each generated by different 
perceptrons) in a given layer. Figure  7
shows a graphical description of the con-
cept, though it should be noted that, as 
defined earlier, the integration lines are 
not being added. Rather, the underlying 
“level” surfaces are being added. This 
illustration (see accompanying code) can 
help clarify the role of nonlinear pooling 
operations in introducing curves in the 
projection/slice being computed.

Adversarial examples
It has often been noted that highly flex-
ible nonlinear learning systems, such as 

CNNs, can be “brittle” in the sense that 
a seemingly small perturbation of the 
input data can cause the learning system 
to produce confident, but erroneous, 
outputs. Such perturbed examples are 
often termed adversarial examples. The 
fields of adversarial attacks, i.e., gener-
ating adversarial examples, and defens-
es against such attacks have attracted 
increasing attention from the commu-
nity in recent years. 

Figure 8 utilizes the integral geomet-
ric perspective described previously to 
provide a visualization of how NNs (as 
well as other classification systems) can 
be fooled by small perturbations. To find 
the minimum displacement that could 
cause misclassification, using the blue 
point as the starting point ,x0  we perform 
gradient ascent ( , )x x g xn n n1 dc i= ++

until we reach the other side of the deci-
sion boundary (which is indicated by the 
orange point). We limit the magnitude 
of the displacement small enough so 
that the two points belong to the same 
distribution. 

However, once integrated along the 
isosurfaces corresponding to the NN 
drawn in Figure 8, due to the uneven cur-
vature of the corresponding surface, the 
two points are projected onto opposite 
ends of the output node, thus fooling the 

classifier into making a confident, but 
erroneous, prediction. This geometric 
interpretation further sheds light on the 
importance of regularization techniques 
on NN parameters to avoid obtaining 
hypersurfaces with high curvature.

What we have learned
In this note, we showed that the PDF 
associated with the numerical output z
of any perceptron or node [call it ( )]p zfi

within a hierarchical NN can be inter-
preted as a particular hypersurface inte-
gration operation over the distribution pX

(the PDF of the input data). More specifi-
cally, we’ve learned that by combining (2)
from the “Problem Statement: Statistical 
Regression and Classification” section 
(transformation of random variables) with 
(12) from the “NNs and the GRT” section 
(formula for an NN), we have

( ) ( , ),p z p zGf X i=i

where ( , )p zG X i  is given in (10) and spec-
ifies the GRT [12]. The conditions on the 
NN architecture ensuring this equation are 
outlined in the “The GRT” section.

Geometrically, one can interpret pfi  as 
a projection (path integral) of ,pX  where 
the path is specified by the isosurfaces of 

( )f xi  (node formula). The projections can 
be computed over straight lines (in the 

1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1
1

0

0 1
–1

–1

1

0

0 1
–1

–1
1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1

1

0

0 1
–1

–1

–1
.5 –1

–0
.5 0

0.
5 1

1.
5

Linear Slices Nonlinearity
Sigmoid

Max
Pooling

Final
Generalized 

Slice

Integration Along
Hypersurfaces

∗ α1

∗ α2
g(xn 

.θ), yn = 0
g(xn 

.θ), yn = 1

GpX(., θ )

"

FIGURE 7. A demonstration of the max-pooling operation: an illustration of how max-pooling operations can help reduce the dimension of the output, 
while at the same time introducing curvature in the curvilinear projection/slice being computed. The level surfaces corresponding to perceptron outputs 
for a given input sample x are selected for maximum response. (See text for more details.) Also, note that the projections in inner nodes of an NN carry 
essential information about the input distribution; however, modern applications often discard this information.



132 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

case of simple linear logistic regression) 
or “curved” hypersurfaces in the case of 
a deep NN. The analogy has limitations, 
however, given that the GRT formalism 
[12] depends on generating functions that 
satisfy certain properties (e.g., nondegen-
eracy). Depending on the choice of acti-
vation function, for example, these may 
or may not be satisfied.

Despite these limitations, the anal-
ogy is useful to provide an alternative 
interpretation of NNs as operators that 
project the PDF of the input data over 
specific hypersurfaces generated by the 
level sets of the function for each node. 
Specifically, we highlight the following 
“take-home” points.

Linearity
We highlight that while the multilayer 
NN function ( )f xi  is nonlinear when 
the activation function v  being used is 
nonlinear, the PDF of the numerical out-

put of a node [denoted as ( )]p zfi  can be 
obtained by applying a linear operator 
(the GRT) to the input data PDF ( ).p xX

To see that this is a linear relationship, let 
( )p x1  and ( )p x2  define two distinct PDFs 

for the same data space .x X!  Define a 
convex combination between p1  and p2

such as ( ) ( ) ( ) ( ),p x p x p x1X 1 2a a= + -

[ , ].0 1!a  It is easy to show [simply 
plug the definitions into equation (2)] that 

( ) ( , ) ( ) ( , ).p z p z p z1 GGf 1 2a i a i= + -i

Thus, whether the classifier is consid-
ered as linear (in the case analogous to 
the standard Radon transform) or as a 
nonlinear NN (in the case analogous to 
the GRTs), they are both linear opera-
tions when the numerical PDF of output 
nodes is considered.

Geometric interpretation of 
NN properties
The interpretation of an ANN node out-
put PDF as an integration over hyper-

surfaces defined as level sets of the node 
function fi  can be used to demystify 
different properties of ANNs. Earlier, we 
showed how different types of activa-
tion functions (e.g., ReLU, sigmoid, and 
others) can affect the geometry of the 
hypersurfaces involved. ReLU-type acti-
vation functions, for instance, can cause 
sharp changes (kinks) along the integra-
tion path. We also discussed how the pool-
ing operation can introduce new features 
in the isosurface map and can themselves 
add different types of nonlinearities to 
the aforementioned isosurfaces. Finally, 
we can also use this geometric interpre-
tation to explain how opportunities for 
adversarial attacks may come from NNs 
that generate high-curvature isosurfaces 
that fail to approximate the input data 
PDF ( ),p xX  leading to high-confidence 
but erroneous predictions.

Inspiring future developments
It is common to focus on NN output 
nodes as the main objective of an ANN, 
as they identify the boundaries between 
classes (assuming successful training). 
As demonstrated here, the informa-
tion content of other nodes in an ANN 
can be interpreted geometrically. This 
connection could be useful, as it could 
lead to new methods for maximum 
likelihood classifiers based on density 
estimation as the GRT theory may pro-
vide ways to “reconstruct” information 
about ( )p xx  from multiple “projections” 

( ), ( ), .p z p zf f1 2 fi i

Yet another benefit of the link between 
ANNs and the mathematics of the GRT 
is that it can provide a useful framework 
for devising and applying projection-
based distances of statistical distributions. 
Wasserstein-based distances (optimal 
transport, earth movers), for example, 
were recently proposed as metrics for 
a variety of data analysis problems [8]. 
ANNs (e.g., multilayer perceptrons, CNNs) 
could be used, thus, as a set of “trained” 
projections that one could use to compare 
different data distributions for solving 
problems related to transfer learning 
and others.
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An Observer-Based Adaptive Fourier Analysis

Recently, an observer-based algorithm 
was reviewed that is able to perform 
recursive sliding discrete Fourier 

transform (SDFT) [1]. DFT is the basic 
algorithm used for Fourier analysis 
[2], but it provides unbiased estimates 
only if the sampling is coherent, i.e., 
the ratio of the sampling frequency fs

and the input signal frequency fin  is a 
rational number. Coherent sampling of 
real-life periodic signals (e.g., mains 
voltage) can only be achieved if fin  and 
fs are synchronized.

Noncoherent sampling results in picket 
fence effect and leakage. Such phenom-
ena can be reduced by windowing [3] but 
not completely suppressed. The problem 
is especially interesting if speech or mu-
sic signals are to be processed. Another 
important application is order analysis 
or order tracking [4], where the spectral 
components are calculated as a function 
of the harmonic indices, rather than fre-
quency. Order analysis is often applied 
to vibration signals of rotating machin-
ery with a changing speed of revolution. 
The problem is generally solved by us-
ing digital resampling [5], [6].

In this article, we show that the ob-
server-based approach, similar to [1], 
can be used for the analysis of nonco-
herently sampled periodic signals as 
well as for order tracking. To achieve 
this, only the so-called basis vectors of 

the DFT are to be substituted by har-
monic complex exponentials having the 
same fundamental frequency as that 
of the input signal. However, this fun-
damental frequency is generally un-
known; thus, it has to be estimated. We 
show that the fundamental frequency 
can be estimated using the observer 
itself, resulting in a nonlinear observer 
that is able to estimate both the funda-
mental frequency and the spectrum of 
the input signal simultaneously. This 
observer is called the adaptive Fourier 
analyzer (AFA).

The AFA was first published in [7]
for the case of unknown but constant 
fundamental frequencies. Later, in 
[8], the observer has been extended 
for the error-free reconstruction of 
periodic signals of linear, logarithmic 
as well as hyperbolic time–frequen-
cy function.

The novelty of our article is that it 
introduces the design of the AFA in de-
tail, addresses its stability issues, and 
compares it to other methods. As an 
illustration, the order analysis problem 
is used, where periodic signals with 
constant and linearly changing funda-
mental frequencies are to be analyzed. 
Additionally, the analysis of a violin 
sound record is presented. Through 
the analysis of these signals, we dem-
onstrate that the AFA is a competi-
tive tool if periodic signals of arbitrary 
constant or changing frequency are to 
be analyzed.

Observer-based FA

Observer-based recursive SDFT
First, we briefly review the observer-
based algorithm as it appears in [1]. Its 
detailed derivation can be found in 
[9]. The DFT of a signal [ ]x n  can be 
defined as

[ ] ,  ,X x n W k N0 1k
n

N

N
kn

0

1

f= = -
=

-
-/ (1)

where the rotating unit is defined by

,W eN
j

N
2

=
r

(2)

with j being the imaginary unit. The 
SDFT can be defined using a slight 
modification of the indices:

[ ] [ ] ,

 ,

X n x q m W

k N

1

10

k
C

m

N

N
km

0

1

f

+ = +

= -

=

-
-/

(3)

where .q n N 1= - +  The SDFT re-
sult differs from the DFT result only in 
phase, and they are identical at every N
step, i.e.,

[ ] ,  ,

, , , ,

X n X k N

n N N

0 1

0 2

k
C

k f

f

= = -

= (4)

The root of the observer-based ap-
proach is the so-called conceptual sig-
nal model:

[ ] [ ],x n
N

X c n1
k

k

N

k
0

1

=
=

-

/ (5)

where [ ]c nk  is the kth basis vector and 
Xk is its weighting factor. The notation 
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Xk is intentionally used, as it equals the 
result of the DFT if

[ ] ,  ,c n W k N0 1k N
kn f= = - (6)

i.e., if the basis vectors consist of coher-
ent samples of complex exponentials. 
The weighting factors in the signal model 
are state variables, and the correspond-
ing observer is designed to follow these 
state variables. The equations of the ob-
server are

[ ] [ ] [ ]

[ ]

[ ] [ ] [ ]( [ ] [ ]),

,

y n
N

X n c n

N
X n

X n X n g n y n x n

k N

1

1

1

0 1

k
k

N

k

k
C

k

N

k k k

0

1

0

1

f

=

=

+ = + -

= -

=

-

=

-

t

t

t t

/

/

(7)

where [ ]y n  denotes the reconstructed 
signal, and the operator .t  stands for es-
timation. The functions [ ]g nk  are the 
reciprocal basis vectors that can be ex-
pressed easily if (6) holds:

[ ] [ ] ,

 ,

g n c n W

k N0 1

k k N
kn

f

= =

= -

-r
(8)

where the bar denotes the complex con-
jugation. The derived observer, shown 
in Figure 1, is deadbeat and reach-
es steady state in N steps. In steady 
state, [ ]X n Xk k=t ( )k N0 1f= -  and 

[ ] [ ],y n x n=  so the error signal [ ]e n  also 
equals zero. The figure clearly shows 
the connection between the DFT Xk and 
SDFT results [ ] .X nk

Ct

Observer for noncoherently sampled 
periodic signals
First, the signal model is to be redefined. 
The conceptual signal model can be de-
scribed by using (5), with a slight modi-
fication of the indices:

[ ] [ ] .x n
N

X c n1
k

k L

L

k=
=-

/ (9)

In this case, the weighting factors Xk are 
the Fourier coefficients. The [ ]c nk  and 

[ ]g nk  values, generally, are not coher-
ent samples:

[ ] ,

[ ] [ ], ,

c n e W

g n c n k L L

k
j f kn kn

k k

2
1

1

f

= =

= =-

r

r (10)

where f1 is the fundamental (relative) 
frequency of [ ]x n . Now, the number of 
the components is ,N L2 1= +  and W1

is a new rotating unit. As the periodic 
signal [ ]x n  is band limited, the number 
of harmonic components is limited in 
the following way:

. ( ) .Lf L f0 5 11 11 1 + (11)

Note that no component at the half of 
the sampling rate (relative frequency 

. )f 0 5=  is modeled. For real period-
ic signals, it is not a restriction. The 
structure of the observer is the same 
as that which can be seen in Figure 1, 
and the system is a lso descr ibed 
by using (7).

In steady state, the state variables of 
the observer equal those of the signal 
model, i.e., [ ]X n Xk k=t ,k L Lf=-^ h
so the input signal is perfectly re-
constructed. Now the steady state is 
reached in an infinite number of steps, 
but if (11) also holds, the system is fair -
ly fast.

The observer provides the Fourier 
coefficients of the input signal, the only 
requirement is that the fundamental fre-
quency has to be known. From now on, 
the general observer for periodic signals 
without the ability to estimate the fun-
damental frequency will be labeled as 
the FA.

Transfer functions
There are some transfer functions that 
play an important role in AFA design. 
Each internal channel of the observer 
performs a down-converting—integrat-
ing—up-converting sequence and has 
the following transfer function:

( )
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H z
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X z
W z

W z
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k
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1
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FIGURE 1. An observer for periodic signals. 
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The expressions ( )X zk
Ct  and E(z) denote 

the z transform of the signals [ ]X nk
Ct  and 

[ ],e n  respectively. The gain of ( )H zk  is 
infinite if the input of the channel has a 
frequency equal to the frequency of the 
basis function [ ] .c n Wk

kn
1=  Thus each 

internal channel of the observer is a 
resonator, and the frequency of [ ]c nk  is 
the so-called resonator frequency. The 
closed-loop transfer function from the 
input signal [ ]x n  to the signal compo-
nent [ ]X nk

Ct  is

( )
( )
( )

( )

( )
,

 ,

H z
X z
X z

N
H z

H z

k L L

1 1

,k
k
C

i
i L

L
k

obs

f

=

=
+

=-

=-

t

/
(13)

where ( )X zt  is the z transform of the in-
put signal [ ].x n  The closed-loop transfer 
function from the input signal [ ]x n  to 
the error signal [ ]e n  is also important:

( )
( )
( )

( )
.

H z
X z
E z

N
H z1 1

1

,

e

k
k L

L

obs

=

=
+

=-

/
(14)

When sampling is coherent, i.e., the 
observer performs the SDFT, the afore-
mentioned transfer functions have a 

much simpler form. Equation (13) can 
be reduced as follows:

( ) ,

 ,

H z z
W z

W z

k L L

1
1

,k
N

N
k

N
k

1

1
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f

= -
-

=-

-
-

-

^ h
(15)

and its magnitude response is

( )
( )
( )

,

 ,
sin

sin
H f

f f
N f f

k L L

,k
k

k
obs

f

r

r
=

-
-

=- (16)

where f and fk denote the frequencies 
relative to the sampling frequency, 
i.e., , [ ] .f f 0 1k f!  Note that the mag-
nitude is zero at all of the resonator fre-
quencies, with the exception of ,f fk=

where it equals N. For coherent sam-
pling, the error-transfer function (14) is 
also much simpler:

( ) ,H z z1e
N= - - (17)

and its magnitude response is

( ) .sinH f N f2e r= (18)

Note that the gain is zero at all of the reso-
nator frequencies, without exception. The 
magnitude responses of ( / ) ( )N H f1 ,1 obs

and ( )H ze  for the N 255=  case are de -
picted in Figure 2 with blue and red 
lines, respectively.

In the case of noncoherent sampling, 
no simple forms exist, but the main 

features of the magnitude responses are 
maintained: 1) ( )H fk  has infinite gain 
at the resonator frequency, 2) ( )H f,k obs

has zeros at all of the resonator frequen-
cies, with the exception of ,f fk=  where 
its gain equals N, and 3) ( )H fe  has ze-
ros at all of the resonator frequencies. If 
the condition (11) holds, the actual mag-
nitude curves are very similar to those 
shown in Figure 2.

The AFA

Derivation of the AFA

The AFA primer with separate 
frequency estimator
To present the idea behind the operation 
of the AFA, an auxiliary system that es-
timates the fundamental frequency of 
the input signal is introduced, as shown 
in Figure 3. The procedure is well known 
and can be found, e.g., in [10]. Let us as-
sume that we have an initial estimate of 
the fundamental frequency, f1, but the 
input signal has a slightly different fre-
quency, .f f1in !  First, the input signal 
is down-converted by f1 and the result-
ed complex signal is filtered by F(z), a 
narrow-band low-pass filter admitting 
only a single, complex exponential to 
the output. The operation is explained 
through the use of an illustrative signal 

[ ],x n  whose spectrum X( f) is shown in 
Figure 4. The result of the operation 
is depicted in Figure 5. Down-convert-
ing shifts the spectrum to the left, and 
in steady state the signal components 
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are filtered out, with the exception of 
one, at .f f f1inD = -  The magnitude res-
ponse of filter F(z) is drawn with a 
dashed line, while the original and re-
maining amplitudes of the signal com-
ponents are depicted by empty and 
filled circles, respectively. Under the 
spectrum, the signal [ ]x nu  is plotted in 
the time domain. It is a rotating com-
plex exponential with an approximate 
frequency of :fD

[ ] ( ) · ,x n F f X e j fn
1

2. D rDu (19)

where ( )F fD  is the filter response at 
.f fD=  The origin of the approximate 

equality is that other small signal com-
ponents, attenuated in the nonideal stop-
band of F(z), may also be present. These 
disturbing components are small rotat-
ing vectors superimposed to the end of 
the main vector, and their maximum range 
is depicted by a gray circle. Now the fre-
quency estimator can be updated in the 
following way:

· ( [ ], [ ]).f f G x n x n 1angle1 1. + -l u u (20)

The function angle returns the angle 
between the succeeding samples of [ ] .x nu
There is a gain G that controls the speed 
of the adaptation; if / ,G 1 2r= ^ h  the 
frequency is updated, theoretically, in 
one step. Due to the disturbing signal 
components and inevitable noise, in 
practice, G is chosen to be a smaller 
positive constant. Now Fourier analysis 
can be performed in the following way: 
Both the auxiliary system and the FA 
receives the input signal [ ],x n  and the 
former passes the frequency estimate to 
the latter. Note that (19) is true in steady 
state only; thus, between the frequency 
update steps (20), enough time should 
pass to allow for the transient of filter 
F(z) to decay.

Frequency estimation using the FA
Consider the FA derived in the “Ob-
server for Noncoherently Sampled Peri-
odic Signals” section with [ ]X n1t  as the 
output, as presented in Figure 6. By ob-
serving the structure of Figure 1 and using 
(13), the output signal [ ]X n1t  can be ex-
pressed as [ ] ( ) [ ] [ ],X n H z c n x n,1 1 1

1
obs= -t

where [ ]c n1
1-  can be considered a 

down-converting function. The opera-
tion is illustrated again by the signal 
depicted in Figure 4, and the signal 
transformation is explained in Figure 7. 
It is assumed again that the current esti-
mate of the fundamental frequency is f1, 
but the input signal has a slightly differ-
ent frequency, that is, .f f1in !  The mag-
nitude response of the filter is depicted 
in Figure 2 with a blue line and also ap-
pears in Figure 7 as a dashed line. Due 
to its down-converting, it is shifted to 
the left and acts as a sinc-like low-pass 
filter. The original and remaining am-
plitudes of the signal components are 
depicted again by empty and filled cir-
cles, respectively. Under the spectrum, 
the signal [ ]X n1t  is plotted in the time 
domain. It is again a rotating complex 
exponential with an approximate fre-
quency of :fD

[ ] ( ) · ,X n H f X e,
j fn

1 1 1
2

obs in. rDt (21)

where ( )H f,1 obs in  is the closed-loop re-
sponse of the first channel at .f fin=

Due to its nonideal filtering, disturbing 
components may be present at the out-
put, thus the equality is once again only 
approximate. The range of the disturb-
ing components is depicted again by a 
gray circle. The frequency estimator can 
be updated in the following way:

· ( [ ], [ ]).f f G X n X n1angle1 1 1 1. + +l t t

(22)

Now the angle is calculated by the 
updated and previous state variable 

[ ].X n1t  The frequency updates can be 
performed similarly to those of the 
AFA primer.

Frequency estimation using the FA 
seems to be advantageous, as no sepa-
rate system is needed. However, filter 

( )H z,1 obs  may seem to be less selec-
tive than a well-designed low-pass 
filter F(z), but in fact, it is very selec-
tive for the disturbing components. 
The (complex) spectral components of 
the signal [ ]x n  appear at the frequen-
cies ,  ,k f k L L· in f=-  while ( )H z,1 obs

is exactly zero at the frequencies 
,  , , .k f k L L0 2· 1 f f=-  As fin  differs 

only slightly from f1, the higher har-
monics of the signal are close to a zero 

of ( ),H z,1 obs  thus all of the spectral 
components of [ ]x n  are suppressed, 
with the exception of the fundamental 
one. Moreover, the closer the updated 
frequency estimator is to ,fin  the bet-
ter the suppression is of the disturbing 
components, and so is the estimation. 
Filter F(z) cannot offer this feature. 
Nevertheless, it is obviously supposed 
that the estimation process is stable. 
For more details, see “Overcoming 
the Nonlinear Convergence Analy-
sis Problem.”

Algorithm of the AFA
The AFA is, in fact, the FA complet-
ed by the frequency estimation de-
scribed previously, but there are some 
tricks in the design that make the 
system robust.

f0 ∆f

|X (f )|
~

x [n ]~

FIGURE 5. The operation of the auxiliary fre-
quency estimator.

x [n]
FA X1[n]

"

FIGURE 6. The frequency estimation by the FA.

0

|X1(f )|
~

x 1[n ]~
∆f

FIGURE 7. The signal transformation in the AFA.
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The first change is that the frequency 
estimator is updated at each time instant:

[ ]

[ ] · ( [ ], [ ]),

.

f n

f n G X n X n

G
N

1

1

2
1

angle

1

1 1 1

r

+

= + +

=

t t

(23)

The frequency estimator [ ]f n1  now acts as 
a new state variable of the observer. As the 
frequency [ ]f n1  is a variable, the functions 

[ ]c nk  are updated differently from (10):

[ ] [ ] ,

 .

c n c n e

k L L

1 [ ]
k k

j f n k2 11

f

+ =

=-

r +

(24)

Such an update ensures continuous 
phase transition. Function [ ]g nk  is set 
accordingly:

[ ] [ ],  ,g n c n k L L1 1k k f+ = + =-r

(25)

where the bar denotes the complex 
conjugation.

During the operation of the AFA, 
[ ]f n1  can be far from its initial value 

and (11) does not hold any longer, i.e., 
either too many or too few components 
are present. To avoid this, after each 
frequency update, the numbers of the 
components are recalculated. Another 
trick is that the highest component 
cannot be close to the relative fre-
quency . ,f 0 5=  thus the limit is some-
what smaller:

[ ] . ( ) [ ].L f n
N

L f n0 5
2
1 11 11 1- +

(26)

Such a rule warrants fast settling even 
if the highest component is near to the 
limit frequency. The components above 
the limit are simply to be canceled, while 

if new components are to be started, 
they are initialized as follows:

[ ] [ ]

[ ] [ ] .

X n X n

c n c n

1 1 0

1 1 1

L L

L L

+ = + =

+ = + =

-

-

t t

(27)

The latter procedure represents an 
important feature of the AFA: Its 
structure is also adaptive, and the 
number of  modeled components 
d e pends on the actual fundamen-
tal frequency.

Now the algorithm of the AFA can 
be summarized as follows:
■ initialization: L is arbitrary, N =

, /L f N2 1 11+ =

■ [ ] , [ ] , [ ] ,X c g0 0 0 1 0 1k k k= = =t

k L Lf=-

■ operation by using (7) and (23)
■ update of [ ], [ ],c n g nk k  according to 

(24) and (25)

The adaptive Fourier analyzer (AFA) intro-
duced in the “Algorithm of the AFA” sec-
tion is a robust and reliable analysis tool 
used for periodic signals. Unfortunately, main-
ly due to the highly nonlinear nature of the 
AFA, until now, only partial convergency 
analysis results are available (see, e.g., [S1]). 
The FA itself is stable for any f1, which can be 
proven using the Nyquist stability criterion 
(see, e.g., [S2]).

In the AFA, the spectral components and fre-
quency are estimated simultaneously. To overcome this 
problem, we first go back to the design described in the 
“Frequency Estimation Using the FA” section. There are two 
main assumptions: 1) The frequency update is made only in 
steady state of the FA and 2) the frequency of the input sig-
nal f in  differs only slightly from the actual estimate of f1, 
i.e., .f f f f1 1in %D = -  The frequency update is depicted in 
Figure S1. It is supposed that the FA reaches the steady 
state in M steps after each update of the frequency f1. This 
way, the frequency update does not influence the conver-
gence of the FA, thus the latter is stable for any f1. In steady 
state, the rotation between the succeeding samples of 

[ ]X n1
t  gives the output j . Note that j  is proportional to the 

frequency difference fD  if the estimated signal component 
is significantly higher than that of the other disturbing signal 
components. This is true if [ ]X n1

t  is not zero and if fD  is suf-
ficiently small; thus, the disturbing signal components are 

suppressed by ( ).H z,1 obs  If the gain G is a sufficiently small 
positive constant, the averaging is stable. 

Thus the system in Figure S1 is proved to be stable. The 
experiences show that the AFA, even without complying with 
the rules (update in steady state, and a small frequency dif-
ference) is stable in most cases. A special exception is when 
the fundamental component is missing or has much less 
power than do the other components (partials) of the signal. 
A signal processing engineer could be advised by display-
ing the error signal [ ]e n  of the observer. In the case of per-
fect reconstruction (i.e., a true estimate of the frequency), 

[ ]e n  tends to zero.
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FIGURE S1. The frequency update in steady state.
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■ cancellation or starting components, 
according to (27) and (26).
Download MATLAB reference imple-

mentations at http://mit.bme.hu/~sujbert/afa.

Improvements
The AFA introduced in the previous 
section is designed to reconstruct any 
periodic signal of constant fundamental 
frequency. If the frequency of the sig-
nal changes, there is an error in both 
frequency and spectral estimation. The 
AFA can follow the changes in frequen-
cy and the error can be small, but some 
applications require an exact analysis 
even if the frequency is not constant. 
The AFA has been improved to per-
fectly reconstruct the periodic signals of 
some typical time–frequency functions 
(sweep types) [8], such as linear, loga-
rithmic, and hyperbolic. Linear sweep 
is the most common type, logarithmic 
sweep is useful, e.g., for acoustic mea-
surements, while hyperbolic sweep is 
required by the vibration analysis of 
mechanical systems. Here the frequency 
estimation for linear sweep is recalled.

The frequency estimation (23) is com-
pleted by the estimation of the sweep rate:

[ . ] [ ] ·

( [ ], [ ])

[ ] [ ] . · [ ] ·

( [ ], [ ])

[ ] [ . ] [ ],

f n f n G

X n X n

v n v n G f n

X n X n

f n f n v n

0 5

1

1 0 4

1

1 0 5 1

angle

angle

1 1

1 1

1

1 1

1 1

+ = +

+

+ = +

+

+ = + + +

t t

t t

(28)

where variable [ ]v n  is the estimated 
sweep rate, and the coefficient 0.4 is 
set empirically to minimize the settling 
time. In this formula, [ . ]f n 0 51 +  is an 
intermediate variable, as the frequency 
estimator is updated two times.

All of the AFA algorithms work 
properly if the frequency is constant. 
Unfortunately, if the time–frequency 
function is unknown, the reconstruction 
is not necessarily perfect; however, if 
the algorithm includes some modeling 
of the time–frequency function, e.g., ap-
plies linear frequency tracking, the per-
formance will be reasonably better than 
it is for the constant frequency case.

Examples
First, the performance of the AFA is 
demonstrated by using an order-tracking 

example. The input signal is a band-
limited square wave made of the first 
four nonzero components. The duration 
of the signal is 3 s. In the first second, 
the frequency is 50 Hz, which linearly 
increases to 150 Hz between 1 and 2 s. 
In the last second, the frequency is con-
stant, that is, 150 Hz. The sampling 
frequency is set to  f 10 kHzs =  and the 
AFA is initialized using / ,f 1 2551 =  re-
sulting in L 127=  and .N 255=

Alternative methods are also check -
ed for the same problem. The order-
tracking algorithm of Potter [(Hewlett–
Packard (HP)] [5], [6] requires a 
tachometer signal that indicates the pe-
riods of the fundamental component 
(e.g., an impulse in each revolution of a 
rotating shaft), but the signal to be ana-
lyzed is sampled by a constant frequen-
cy. The spectrum is calculated by fast 
Fourier transform (FFT) of the signal, 
resampled at uniform angle increments: 
with N being the length of the FFT, 
samples at phase positions /k N2{ r= ^ h
( )k N0 1f= -  are calculated. The al-
gorithm estimates a constant or linearly 
sweeping frequency by the tachometer 
pulses, while the signal is interpolat-
ed by a polynomial. In this example, 

,N 256=  and the interpolation is made 
by a 10th-order polynomial. Note that 
the HP method needs an extra tachom-
eter signal, while the AFA uses the input 
signal itself for frequency estimation. 
The performance of the AFA primer, 
presented in “The AFA Primer With 

Separate Frequency Estimator” section, 
is also tested using a 1,025-tap finite 
impulse-response low-pass filter.

Interpolated DFT can also be used 
as an alternative method for frequency 
estimation [11], [12]. Here the frequency 
is calculated as the linear combination of 
the frequencies near to the peak, weighted 
by the measured amplitudes. The method 
is also developed for windowed data; 
for the tests we used a Hanning window.

Adaptive comb (or adaptive notch) 
filters were proposed to estimate the 
spectra of periodic signals with an un-
known frequency [13]. In our tests, the 
algorithm presented in IEEE Signal 
Processing Magazine [14] was used (the 
MATLAB code is available in [15]). The 
algorithm tunes the notch frequencies of 
cascaded second-order infinite impulse-
response filters to coincide with those of 
the signal to be analyzed. In case of con-
vergence, the fundamental frequency of 
the periodic signal is estimated by the 
first notch frequency. The estimation of 
the spectrum requires further steps, e.g., 
a recursive least-squares algorithm [13].

Figures 8 and 9 show the orders of the 
input signal calculated by the HP method 
and the AFA, respectively. Both methods 
produce a similar result: no picket fence nor 
leakage can be observed in steady state. 
Short transients can be observed in both 
cases at time instants t = 0, 1, and 2 s 
after initialization and when the linear 
sweep starts and stops. The quality of the 
estimation can be judged by the feedback 
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error of the AFA depicted in the logarith-
mic scale shown in Figure 10.

The estimation of the fundamental 
frequency can be followed in Figure 11. 
The result of the HP method is drawn 
with a red line, while the estimation of 
the AFA is depicted by a blue line. Due 
to the tachometer pulses, the HP method 
is almost perfect. The AFA needs some 
time to settle, but after the transient the 
estimation is precise. The zoomed-in 
view for the f = 50-Hz period can be 
seen in Figure 12. An observant reader 
can also notice an estimation error of the 
AFA when the linear sweep starts at t =
1 s. During this transient the sweep rate is 
adapted to the correct value.

The estimations of the AFA primer 
and the interpolated DFT are drawn with 
cyan and black lines, respectively. The 
AFA primer is very accurate for the con-
stant periods of frequency but has a long 
transient phase. This is because of the 
large delay of the filter, which is roughly 
0.05 s. The tracking error for the linear 
sweep period is large, as the method is 
not prepared for sweeping periodic sig-
nals. The interpolated DFT has a fair es-
timation, but the error is greater than that 
of the other methods. Averaging would 
reduce the error, but it would result in 
a longer transient phase. The green line 
shows the frequency estimation of the 
adaptive notch filter. The quality of the 
estimation is similar to that of the AFA, 
but the notch filter has an observable bias 
in case of linearly changing frequency.

The statistical properties of the fre-
quency estimators for the AFA, inter-
polated DFT, and adaptive notch filter 
are listed in Table 1. The mean error and 
standard deviation of the frequency esti-
mation is calculated for the steady state 
in each time interval. In the first and 
third second, the adaptive notch filter 
and the AFA have no bias, but the in-
terpolated DFT has a small error. In the 
sweeping phase, only the AFA can track 
the signal with no bias. As the test signal 
is noise-free, the standard deviation of 
the estimation is small for the adaptive 
notch filter and the AFA, while the es-
timation of the interpolated DFT varies 
slightly due to the leakage.

Next, the methods are compared to 
each other if the noisy input signal is 
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to be analyzed. The input signal is bur-
dened by Gaussian random noise with a 
signal-to-noise ratio of 20 dB. To be fair, 
the tachometer signal of the HP method 
is also noisy, having dt 20 sn=  standard 
deviation in zero crosses. Note that this is 
0.1% of the period time for the f = 50-Hz 
period. The result of the estimation can 
be seen in Figure 13. The transient phase 
of the AFA is similarly long as men-
tioned previously, and the estimation er-
rors in the steady state are approximately 
equal for the three competitive methods. 
Table 2 summarizes the statistical data 
for the test. The standard deviation of the 
estimation is nearly equal for the adap-
tive notch filter and AFA, but the bias of 
the adaptive notch filter in the sweeping 
phase is clear.

Another example shows the analysis 
of a violin open E5 string sound [16]
with a duration of approximately 3 s 
and a sampling frequency of 44.1 kHz. 
Both the sound level and frequency 
vary slightly in the record. The signal 
has a rich spectral content, as depicted 
in Figure 14. The solid black line is the 
result of the 1,024 FFT samples pre-
ceding time instant .  .t 1 5 s=  The blue 
circles in the figure indicate the result 
of the AFA estimation at the same time 
instant. It can clearly be seen that the 
AFA has found the right magnitudes. 
Figure 15 shows the frequency-estima-
tion curves. The progress of the fre-
quency estimator of the AFA is plotted 
with a blue line, while that of the adap-
tive notch filter with a green line. Both 
of them could find the fundamental 
frequency of the sound, which is close 
to its nominal value, i.e., 659.25 Hz, 
indicated with a red line in the figure. 
Note that the estimator of the AFA start-
ed far from the final value, but the adap-
tive notch filter required a good initial 
guess to converge.

It can be concluded that the AFA is 
a competitive tool for the fundamental 
frequency estimation of periodic sig-
nals. Moreover, it provides the spectrum 
of the signal simultaneously.

Summary
Recently, an observer-based algorithm 
was reviewed that is able to perform re-
cursive SDFT. Such an observer is able 

to reconstruct any coherently sampled, 
band-limited periodic signal. Because 
the observer’s output is identical to 
that of the SDFT, the reconstruction is 

not perfect for noncoherently sampled 
periodic signals.

This article began with a slight mo -
dification of the observer, which can 
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Table 1. The mean error and standard deviation of the frequency estimation  
of the noise-free test signal.

Mean Error (Hz) Standard Deviation (Hz)

Method
First  
Second

Second  
Second

Third  
Second

First  
Second

Second  
Second

Third 
Second

Notch filter 1.4e-07 −6.4e-01 2.7e-10 2.7e-06 8.3e-02 2.0e-09
DFT 3.8e-02 1.1e+00 −2.6e-04 4.1e-01 2.8e-01 1.1e-02
AFA −4.1e-16 1.6e-14 2.4e-15 3.1e-14 7.8e-13 8.3e-13
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FIGURE 13. The frequency-estimation results for a noisy input signal: The HP method (red), AFA 
(blue), interpolated DFT (black), and adaptive notch filter (green) (zoomed-in view).
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perfectly reconstruct any band-limited 
periodic signal. This can be achieved 
simply by the proper adjustment of 
the basis-reciprocal basis system, i.e., 

complex exponentials with the proper 
frequencies are to be utilized.

The main portion of the article intro-
duced the AFA. It was shown that, with 

an adequate modification of the observ-
er, both the fundamental frequency and 
the spectral content of the signal can be 
estimated simultaneously. It was also 
demonstrated that the AFA is capable of 
the error-free reconstruction of periodic 
signals using a varying time–frequency 
function. The signal-tracking properties 
of the AFA were illustrated and com-
pared to those of other algorithms using 
practical examples.

Supplementary material
This article has supplementary down-
loadable material provided by the author 
available in IEEE Xplore. The material 
includes MATLAB functions implement-
ing several versions of the AFA algorithm 
with test examples. The supplementary 
materials can also be downloaded at 
http://mit.bme.hu/~sujbert/afa.
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Table 2. The mean error and standard deviation of the frequency estimation  
of the noisy test signal.

Mean Error (Hz) Standard Deviation (Hz)

Method
First  
Second 

Second  
Second

Third  
Second

First  
Second 

Second  
Second

Third  
Second

Notch filter 1.7e-03 −6.5e-01 1.9e-03 8.5e-02 1.1e-01 8.2e-02
DFT −4.1e-02 1.1e+00 5.6e-02 4.2e-01 2.6e-01 2.5e-01
AFA −5.8e-03 −2.4e-03 4.2e-03 6.1e-02 4.6e-01 3.9e-01
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information without compromising sub-
sequent services that use the data. PETs 
may be applied once the data are trans-
ferred to a content management system 
or may be integrated within BWCs and 
transform the data in the device itself, 
prior to their transfer.

BWCs capture time-varying informa-
tion in audio, inertial measurements and 
video data, all of which are difficult to 
protect using standard privacy-preserv-
ing approaches, such as differentially 
private protocols [15]. PETs designed for 
BWCs should be protective, reliable, and 
operative (these properties are a selected 
subset from those listed in [16] and have 
been adapted to be specific to BWCs). A 
PET is protective if it safeguards private, 
secondary information that is not neces-
sary for the service, reliable if it does not 
affect the service and maintains perfor-
mance, and operative if it integrates eas-
ily with existing work practices and its 
functions are explainable.

The design of PETs also requires the 
identification of who or what the private 
information should be protected from: 
individuals observing the data or algo-
rithms extracting sensitive information. 
Although protection from individu-
als can be implemented using standard 
access control procedures, the pro-
tection from algorithms is a recent and 
growing challenge.

Algorithmic inferences on audio data 
can reveal a wide range of potentially 
private information, such as one’s height and 
weight [17], emotional state [18], [19], and 

health conditions [19]. Motion sensor 
data collected by inertial measurement 
units can also reveal information about 
an individual’s physical characteristics, 
such as height and weight [20], level of 
activity [21], and changes in behavioral 
patterns [22]. These data may be protect-
ed with PETs developed for other types 
of devices and that use transformations 
of the data [23]. Protecting BWC video 
data is, however, more challenging.

To preserve the privacy of bystanders 
captured in BWC videos, PETs designed 
for traditional stationary cameras could 
be adopted, but additional steps are 
required to ensure that the privacy-pre-
serving methods remain effective. In fact, 
the unique challenges associated with 
BWC videos [24], such as motion blur 
and poorly framed content (Figure  1), 
hinder the direct application of PETs 
designed for stationary cameras. Also, to 
preserve the privacy of the wearer, new 
solutions are needed for video data. This 
is a distinct challenge in BWCs, as they 
capture a unique first-person viewpoint 
[25], which may include the wearer han-
dling medications or close-ups of smart-
phone screens (Figure 2). Furthermore, 
BWCs indirectly disclose the activi-
ties of the wearer, which are captured 
through the motion of the camera itself 
[26]. Such motion information is difficult 
to disentangle from the primary visual 
information needed for the intended use 
of the video data, making the design of 
obfuscation or data-minimization tech-
niques that prevent the collection of this 

secondary information an important re -
search opportunity. 

In conclusion, the increasing adop-
tion of BWCs presents the research 
community with several new challenges 
associated with the development of 
PETs that are specific to the unique type 
of first-person data collected by BWCs. 
These PETs should not only operate 
on each modality (vision, sound, and 
inertial) independently, but also across 
modalities, as cross-modal correlations 
heighten the threat to privacy [27].

Acknowledgments
We wish to thank the Alan Turing Insti-
tute (EP/N510129/1), which is funded by 
the U.K. Engineering and Physical Sci-
ences Research Council, for its support 
throughout the project Privacy-Preserving 
Multimodal Learning for Activity Recog-
nition (PRIMULA).  

Authors
Maria S. Cross (m.s.cross@se18.qmul
.ac.uk) received her M.Sc. degree in 
artificial intelligence from Queen Mary 
University of London (QMUL), United 
Kingdom, and her Ph.D. degree in 
health informatics from the University 
College London, United Kingdom. She 
is currently a postdoctoral research 
assistant at the Centre for Intelligent 
Sensing, QMUL.

Andrea Cavallaro (a.cavallaro@qmul
.ac.uk) is a professor of multimedia signal 
processing at Queen Mary University of 
London (QMUL), United Kingdom, and a 

(a) (b)

FIGURE 1. The challenges of BWC video data include (a) poor framing and (b) low visual quality due, for example, to motion blur or overexposure.  
(Used with permission from [24] and [25].) 

IN THE SPOTLIGHT (continued from page 148)



146 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2020   |

Turing fellow with the Alan Turing 
Institute, the U.K. National Institute for 
Data Science and Artificial Intelligence. He 
is a fellow of the International Association 
for Pattern Recognition; director of the 
QMUL Centre for Intelligent Sensing; edi-
tor-in-chief of Signal Processing: Image 
Communication; senior area editor for 
IEEE Transactions on Image Processing; 
chair of the IEEE Image, Video, and 
Multidimensional Signal Processing 
Technical Committee; and an IEEE Signal 
Processing Society Distinguished Lecturer. 

References
[1] R. Adams, “Schools trial body cameras to aid 
safety and monitor behaviour,” The Guardian, Feb. 
7, 2020. Accessed on: Apr. 2, 2020. [Online]. Available: 
www.theguardian.com/education/2020/feb/07/
schools-trial-body-cameras-to-aid-safety-and-monitor
-behaviour

[2] C. Lum, M. Stoltz, C. S. Koper, and J. A. Scherer, 
“Research on body-worn cameras: What we know, what 
we need to know,” Criminol. Public Policy, vol. 18, no. 
1, pp. 93–118, 2019. doi: 10.1111/1745-9133.12412.

[3] B. Ariel, M. Newton, L. McEwan, G. A. 
Ashbridge, C. Weinborn, and H. Sabo Brants, 
“Reducing assaults against staff using body-worn 
cameras (BWCs) in railway stations,” Crim. Justice 
Rev., vol. 44, no. 1, pp. 76–93, 2019. doi: 10.1177/
0734016818814889.

[4] “Gartner says worldwide wearable device sales to 
grow 17 percent in 2017,” Gartner, Stamford, CT, 
Aug. 24, 2017. Accessed on: Apr. 6, 2020. [Online]. 
Available: https://www.gartner.com/en/newsroom/
press-releases/2017-08-24-gartner-says-worldwide
-wearable-device-sales-to-grow-17-percent-in-2017 

[5] “Wearable and body-worn cameras market: 
Growth, trends and forecast (2020–2025),” Mordor 
Intelligence, Hyderabad, India, 2019. Accessed on: 
Apr. 2, 2020. [Online]. Available: https://www
.mordorintelligence.com/industry-reports/wearable
-and-body-worn-cameras-market 

[6] T. Nortcliffe, “Safeguarding body worn video data,” 
Home Office, London, Rep. no. 011/18, Oct. 2018.

[7] Council of the European Union (EU), European 
Parliament. (2016, Apr. 27). 2016/679 of the 
European Parliament and of the Council of 27 
April 2016 on the protection of natural persons 
with regard to the processing of personal data and 
on the free movement of such data, and repealing 
Directive 95/46/EC (General Data Protection 

Regulation). OJ 2016 L 119/1, Article 4. Accessed 
on: May 3, 2020. [Online]. Available: https://eur
-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32016R0679 

[8] J. Finocchiaro, A. U. Khan, and A. Borji, 
“Egocentric height estimation,” in Proc. IEEE Winter 
Conf. Applications of Computer Vision (WACV), 
Santa Rosa, CA, Mar. 2017, pp. 1142–1150. doi: 
10.1109/WACV.2017.132.

[9] M. Nouredanesh, A.W. Li, A. Godfrey, J. Hoey, and 
J. Tung, “Chasing feet in the wild: A proposed egocentric 
motion-aware gait assessment tool,” in Proc. European 
Conf. Computer Vision (ECCV), Munich, Sept. 2018, 
pp. 176–192. doi: 10.1007/978-3-030-11024-6_12.

[10] H. Pirsiavash, and D. Ramanan, “Detecting 
activities of daily living in first-person camera views,” 
in Proc. IEEE Conf. Computer Vision and Pattern 
Recognition (CVPR), Providence, RI, June 2012, pp. 
2847–2854. doi: 10.1109/CVPR.2012.6248010.

[11] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, 
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro et al., 
“Scaling egocentric vision: The epic-kitchens dataset,” 
in Proc. European Conf. Computer Vision (ECCV), 
Munich, Sept. 2018, pp. 720–736.

[12] A. Fathi, J. K. Hodgins, and J. M. Rehg, “Social in -
teractions: A first-person perspective,” in Proc. IEEE 
Conf. Computer Vision and Pattern Recognition 
(CVPR), Providence, RI, June 2012, pp. 1226–1233. 
doi: 10.1109/CVPR.2012.6247805.

[13] C. Cadwalladr, “The great British Brexit rob-
bery: How our democracy was hijacked,” The 
Guardian, May 7, 2017. Accessed on: Apr. 6, 2020. 
[Online]. Available: https://www.theguardian.com/
technology/2017/may/07/the-great-british-brexit 
-robbery-hijacked- democracy

[14] A. Kofman and A. Tobin, “Facebook ads can still 
discriminate against women and older workers, despite a 
civil rights settlement,” ProPublica, New York, Dec. 13, 
2019. Accessed on: Apr. 6, 2020. [Online]. Available: 
https://www.propublica.org/article/facebook-ads-can 
-still-discriminate-against-women-and-older-workers 
-despite-a-civil-rights-settlement 

[15] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, 
and M. Naor, “Our data, ourselves: Privacy via distribut-
ed noise generation,” in Proc. Annu. Int. Conf. Theory 
and Applications of Cryptographic Techniques 
(EUROCRYPT), St. Petersburg, Russia, May–June 
2006, pp. 486–503. doi: 10.1007/11761679_29.

[16] M. Hansen, J. H. Hoepman, M. Jensen, and S. 
Schiffner. “Readiness analysis for the adoption and 
evolution of privacy enhancing technologies: 
Methodology, pilot assessment, and continuity plan,” 
European Union Agency for Network and Information 
Security (ENISA), Heraklion, Greece, Mar. 2016. 
Accessed on: May 3, 2020. [Online]. Available: https://
www.enisa.europa.eu/publications/pets

[17] R. M. Krauss, R. Freyberg, and E. Morsella, 
“Inferring speakers’ physical attributes from their voic-

es,” J. Experimental Soc. Psychol., vol. 38, no. 6, pp. 
618–625, 2002. doi: 10.1016/S0022-1031(02)00510-3.

[18] G. Trigeorgis, F. Ringeval, R. Brueckner, E. 
Marchi, M. A. Nicolaou, B. Schuller, and S. Zafeiriou, 
“Adieu features? End-to-end speech emotion recogni-
tion using a deep convolutional recurrent network,” in 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal 
Processing (ICASSP), Shanghai, China, Mar. 2016, 
pp. 5200–5204. doi: 10.1109/ICASSP.2016.7472669.

[19] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, 
K. Scherer, F. Ringeval, M. Chetouani, F. Weninger 
et al., “The INTERSPEECH 2013 computational 
paralinguistics challenge: Social signals, conflict, 
emotion, autism,” in Proc. INTERSPEECH, Lyon, 
France, Aug. 2013, pp. 148–152.

[20] A. Masuda and T. Maekawa, “Estimating physical 
characteristics with body-worn accelerometers based 
on activity similarities,” J. Inform. Process., vol. 24, 
no. 2, pp. 237–246, 2016. doi: 10.2197/ipsjjip.24.237.

[21] M. N. S. Zainudin, M. N. Sulaiman, N. 
Mustapha, and T. Perumal, “Monitoring daily fitness 
activity using accelerometer sensor fusion,” in Proc. 
IEEE Int. Symp. Consumer Electronics (ISCE), 
Kuala Lumpur, Malaysia, Nov. 2017, pp. 35–36. doi: 
10.1109/ISCE.2017.8355540.

[22] A. Gruenerbl, V. Osmani, G. Bahle, J. C. Carrasco, 
S. Oehler, O. Mayora, C. Haring, and P. Lukowicz, 
“Using smartphone mobility traces for the diagnosis 
of depressive and manic episodes in bipolar patients,” 
in Proc. Augmented Human Int. Conf., Kobe, 
Japan, Mar. 2014, pp. 1–8. doi: 10.1145/2582051. 
2582089. 

[23] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and 
H. Haddadi, “Privacy and utility preserving sensor-
data transformations,” Pervasive Mobile Comput., 
vol. 63, pp. 1–13, Mar. 2020. doi: 10.1016/j.pmcj. 
2020.101132. 

[24] A. Brutti and A. Cavallaro, “On-line cross-mod-
al adaptation for audio-visual person identification 
with wearable cameras,” IEEE Trans. Human-Mach. 
Syst., vol. 47, no. 1, pp. 40–51, Feb. 2017. doi: 
10.1109/THMS.2016.2620110.

[25] G. Abebe, A. Catala, and A. Cavallaro, “A first-
person vision dataset of office activities,” in Proc. Int. 
Workshop Multimodal Pattern Recognition Social 
Signals Human Computer Interaction, Beijing, Aug. 
2018, pp. 27–37. doi: 10.1007/978-3-030-20984-1_3.

[26] G. Abebe, and A. Cavallaro, “A long short-term 
memory convolutional neural network for first-person 
vision activity recognition,” in Proc. IEEE Int. Conf. 
Computer Vision Workshops, Venice, Italy, Oct. 2017, 
pp. 1339–1346. doi: 10.1109/ICCVW.2017.159.

[27] A. Cavallaro and A. Brutti, “Audio-visual learning 
for body-worn cameras,” in Multimodal Behaviour 
Analysis in the Wild, X. Alameda-Pineda, E. Ricci, and 
N. Sebe, Eds. New York: Academic, 2019, pp. 103–119.

 SP

(a) (b)

FIGURE 2. The unique first-person viewpoint captured by BWCs may include (a) smartphone screens and (b) personal documents. (Used with permission from [25].)
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Maria S. Cross and Andrea Cavallaro

Privacy as a Feature for Body-Worn Cameras

Body-worn cameras (BWCs) are 
becoming increasingly prevalent 
within today’s society. These devices 

are now commonly seen on supermarket 
assistants, shopping center security 
guards, and public transport staff. 
Schools are also trialling BWCs on 
teachers to monitor students’ behavior 
[1]. The use of BWCs is believed to 
promote the transparency and account-
ability of behaviors as well as the 
security of the wearer [2], [3]. With an ex -
pected shipment of more than 5 million 
units in the next year [4] and a com-
pounded annual growth rate of 16% in 
the next five years [5], BWCs will be -
come a permanent feature within every-
day life. Such an uptake of BWCs marks 
a transition from purposive to passive 
data collection.

In this article, we discuss the threat 
to privacy that this passive data collec-
tion creates, along with opportunities 
to mitigate this risk. Furthermore, we 
argue that the use case of BWCs at work 
will stimulate the development of solu-
tions that prevent the collection of data 
that could infringe upon the privacy of 
the wearer. Finally, we discuss the desir-
able properties of privacy-enhancing 
technologies (PETs) for BWCs.

BWCs record large quantities of audio-
visual and inertial data that, instead of 
collecting only select, primary informa-
tion that is relevant to the intended use, 
also capture secondary information that 
is irrelevant for the intended purpose [6]. 

The recording of an interaction with an 
aggressive customer is an example of pri-
mary information, whereas the identity 
of other customers waiting to be served 
is an example of secondary information. 
Collecting secondary information, which 
may be personally identifiable infor-
mation (i.e., information relating to an 
identified or identifiable natural person), 
goes against the principle of data mini-
mization prescribed in data-protection 
regulations [7].

Primary and secondary information 
captured by BWCs can be used to com-
prehensively describe the behaviors of 
the wearer. Such a description may be 
employed to profile wearers through 
their physical characteristics [8], [9], 
their activities [10], the foods they eat 
[11], and how they interact with others 
[12]. Each additional day of BWC usage 
marks the collation of more information, 
also enabling the inference of insights 
that are not directly observable. Exam-
ples of such insights are how active the 
wearers are, what motivates them, and 
their psychological profiles. In detail-
ing the condition of the wearer, these 
profiles are, in practice, also becoming 
health records, with potentially greater 
levels of detail than obtained through 
clinical interaction.

The exploitation of profiles derived 
from users’ online behaviors has already 
led to public controversies [13], [14]. 
This is due, in part, to the asymmetric 
power relation between users and pro-
viders who shift the responsibility of 
privacy choices to users through lengthy 
and complex privacy notices. These 

notices are often written more to pro-
tect the provider than to inform users, 
whose consent should be a “freely 
given, specific, informed and unam-
biguous indication of the data sub-
ject’s wishes” [7].

The situation changes when BWCs 
are used by employees (e.g., shop assis-
tants or security staff) because the 
dependence of the wearer upon the orga-
nizations collating their data (i.e., their 
employer) invalidates any consent pro-
cesses, as the consent cannot be assumed 
to be “freely given” [7]. It is, therefore, 
the responsibility of the employer to 
protect the privacy of employees wear-
ing BWCs and to safeguard BWC data 
(and any information therein) through a 
duty of confidentiality. 

Maintaining confidentiality becomes 
more challenging when the data are 
accessed by an external company. As 
each individual wearer generates large 
volumes of data, employers (i.e., data 
controllers [7]) must seek ways to store 
and manage the BWC data produced. 
These solutions and their operation are 
often beyond the capabilities of the or -
ganizations adopting the technology, 
encouraging the outsourcing of the han-
dling and curation of BWC data. This 
new landscape creates an urgent need 
for BWC solutions that offer privacy as 
a feature and enable employers to gov-
ern access to their employees’ private, 
secondary information.

PETs aim to minimize access to 
data representing personal, secondary 
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