ETS| TS 135 231 V13.0.0 (2016-01)

I" ETSI7Z7___\\\

- 5>

TECHNICAL éEIéCIFICATION

Universal Mobile Telecommunications System (UMTS);
LTE;
Specification of the TUAK algorithm set: A second example
algorithm set for the 3GPP authentication and
key generation functions f1, f1*, 2, {3, f4, f5 and f5*;
Document 1: Algorithm specification
(3GPP TS 35.231 version 13.0.0 Release 13)

)

Advanced
Pro

e

= Cial |

A GLOBAL INITIATIVE

3GPP TS 35.231 version 13.0.0 Release 13 1 ETSI TS 135 231 V13.0.0 (2016-01)

Reference
RTS/TSGS-0335231vd00

Keywords
LTE,SECURITY,UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3GPP TS 35.231 version 13.0.0 Release 13 2 ETSI TS 135 231 V13.0.0 (2016-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETS! identities can be found under
http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
http://webapp.etsi.org/key/queryform.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

3GPP TS 35.231 version 13.0.0 Release 13 3 ETSI TS 135 231 V13.0.0 (2016-01)

Contents

Intellectual Property RIGNES.... ..ottt bbb e s 2
0 L= V1Y) (o SRS 2
Modal VErDS TEMINOIOQY.......ccveeeicie ettt et e st e e ae et e s aeete s se e e e steeneetesteensesseeneessesnenans 2
0= Yo o USRS 4
(o (1o 1o IS 4
1 o0 0L SR 5
2 L= = 1= SRS 5
3 D 1= T T (0] = 6
31 DEfINITIONS. ...t c e ettt e e e te e e be e be e beeabesaeesheesbeesbeesseeseesaeesaeeseenseeaseensesseesteeteentens 6
3.2 Y 1210 6
4 Preliminary iNfOrMELTONcooii e ettt sre et s aesae e eesreeneesreenes 7
4.1 1110 [o 1 oo SO 7
4.2 NN o o 1SS 7
421 =0 R 7
4.2.2 Bit-numbering for iNPUES 8N0 OULPULS.......cveuiriiieeiiiereecsie ettt eb e e b s en e e eene e 7
4.2.3 ASSIGNIMENE OPEIBLIONS. ...t ettt sttt sttt sttt st se e st sbe e eaesbese e bt ebeseeaeebe s e e aeebese e st ebe s e e st ebesbe st ebeneenesbenneneees 7
424 RV oo [P ORUN 8
4.3 RV o o FE OO STOSRRUPTRURONt 8
5 LT 1S3 To [U110 1SS 8
51 TUAK INPULS @NA OULPULSeeueeeeeeiee e st et ete et et e st e ste e e esteeaesseesseesaeesseesseanseessessaesseesseensesnsesnessanesseesseensennsenns 8
5.2 Keccak and itSTNPULS @N0 OULPULSeiueeiieiiesieesieeeeseeesteeste e e e e estessaesseesseesteessessessneesseesseenseenseansessanssenssenssnns 9
5.3 Other INPULS AN SUDSIITNGSeeuveeieeie e se ettt e see st e e e sreesteeeesseesseesseeseenseenteesaeeneensnesneas 10
6 Definition of the example algorithms..........ocoiiee e neeas 10
6.1 DENIVALHON OFf TOPGE ...ttt st e s e e st e te et e e ttesbeesbeesbeebeeasesaeesaeesaeabeenbesatesssesaeesbeesbeesesnsesanenans 10
6.2 Specification Of the FUNCIION FL ..o bbb e 11
6.3. Specification Of the FUNCLION Too e e e a e et e e e s naesraesreas 12
6.4 Specification of the functions 2, f3, 4 @Nd 5coo i 12
6.5 Specification Of the FUNCLION F5% ..o e e a e et e esnaesraesreas 14
7 Implementation CONSIAEIELIONS..........cccoiiieeie e ee et e e e st e sreensesreeseestesaaeseesreenaeresreas 14
7.1 TOP: computed 0N OF OFf thE UICC?........cuiiiieiiiieeere ettt st eb e r b 14
7.2 FUMNEr CUSIOMIZAITON.ecticieciece ettt st e st e e e s ae e e be e be e beeaseeaeeeaeesteesbeesseensennnenans 15
7.3 Resistance to Side ChanNEl @ttACKS.........c.eoiiiii ettt e b e e be e s be e s be e re e e e eaneenes 15
Annex A (normative): LIz Qo L= o =T £ S 16
Annex B (informative): TuakApplication Programme Interface (AP) in ANSI CIccceueeneee. 17
Annex C (normative): Specification of the Keccak permutation used within Tuak 18
Annex D (informative): Example source codefor Tuak (ANSI C) ..ocooveiiiiiinineereee e 20
Annex E (informative): Example sour ce codefor Keccak (ANSI C)....oovvvvrierienieniciciceeeeseeeeie 23
Annex F (informative): ChangE hiStOrYoueciceccce e s eaeas 27
11 (TSP P PR PRTORPRPROTN 28

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 4 ETSI TS 135 231 V13.0.0 (2016-01)

Foreword

This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where;
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

The present document is one of three, which between them form the entire specification of the example agorithms,
entitled:

- 3GPP TS 35.231: "Specification of the Tuak algorithm set: A second example algorithm set for the 3GPP
authentication and key generation functions f1, f1*, f2, f3, f4, f5 and f5*;
Document 1: Algorithm specification ".

- 3GPP TS 35.232: "Specification of the Tuak algorithm set: A second example algorithm set for the 3GPP
authentication and key generation functions f1, f1*, f2, f3, f4, f5 and f5*;
Document 2: Implementers” test data''.

- 3GPP TS 35.233: " Specification of the Tuak algorithm Set: A second example agorithm set for the 3GPP
authentication and key generation functions f1, f1*, f2, f3, f4, f5 and f5*;
Document 3: Design conformance test data".

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 5 ETSI TS 135 231 V13.0.0 (2016-01)

1 Scope

The present document and the other Technical Specificationsin the series, TS 35.232 [15] and 35.233 [16] contain an
example set of algorithms which could be used as the authentication and key generation functions f1, f1*, {2, {3, f4, f5
and f5* for 3GPP systems. All seven functions are operator-specifiable rather than being fully standardised and other
algorithms could be envisaged.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For aspecific reference, subsequent revisions do not apply.

- For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including
aGSM document), a non-specific reference implicitly refersto the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 33.102: "3G Security; Security Architecture3G Security; Specification of the
MILENAGE agorithm set: An example algorithm set for the 3GPP authentication and key
generation functions f1, f1*, f2, 3, f4, f5 and f5*; Document 2: Algorithm specification.[3] "The
KECCAK Reference", version 3.0, 14 January 2011, G. Bertoni, J. Daemen, M. Peeters, G. van
Aasche, (available at http://keccak.noekeon.org/K eccak-reference-3.0.pdf).

[4] "KECCAK Implementation Overview", version 3.2, 29 May 2012, G. Bertoni, J. Daemen, M.
Peeters, G. van Aasche, R. van Keer (available at http://keccak.noekeon.org/K eccak-
implementation-3.2.pdf).

[5] "SAKURA: aflexible coding for tree hashing”, 3 June 2013, G. Bertoni, J. Daemen, M. Pesters,
G. van Aasche, (available at http://keccak.noekeon.org/Sakura.pdf).

[6] "Securing the AES finalists against Power Analysis Attacks', in FSE 2000, Seventh Fast Software
Encryption Workshop, Thomas S. Messerges, ed. Schneier, Springer Verlag, 2000.

[7] "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems", P. C.
Kocher, in CRYPTQ'96, Lecture Notesin Computer Science #1109, Springer Verlag, 1996.

[8] "Side Channel Cryptanalysis of Product Ciphers’, in ESORICS'98, Lecture Notes in Computer
Science #1485, Springer Verlag, 1998, J. Kelsey, B. Schneier, D. Wagner, C. Hall.

[9] "DES and differential power analysis', in CHES99, Lecture Notesin Computer Science #1717,
Springer Verlag, 1999, L. Goubin, J. Patarin.

[10] "Differential Power Analysis', in CRY PTO'99, Lecture Notes in Computer Science #1666,
Springer Verlag, 1999, P. Kocher, J. Jaffe, B. Jun.

[11] "On Boolean and Arithmetic Masking against Differential Power Analysis’, in CHESQO0, Lecture
Notes in Computer Science series, Springer Verlag, 2000, L. Goubin, J.-S. Coron.

[12] 3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture”.

[13] ETSI TS 103 383: "Smart Cards; Embedded UICC; Requirements Specification”.

[14] 3GPP TR 21.905: "Vocabulary for 3GPP specifications’.

[15] 3GPP TS 35.232: "3G Security; Specification of the Tuak Algorithm Set: a Second example

algorithm set for the 3GPP authentication and key generation functions 1, f1*, f2, f3, f4, f5 and
f5*; Document 2: Implementers' test data".

ETSI

http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Sakura.pdf

3GPP TS 35.231 version 13.0.0 Release 13 6 ETSI TS 135 231 V13.0.0 (2016-01)

[16]

3GPP TS 35.233: "3G Security; Specification of the Tuak Algorithm Set: a second example
agorithm set for the 3GPP authentication and key generation functionsfl, f1*, f2, 3, f4, f5 and
f5*; Document 3: Design conformance test data”".

3 Definitions

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [14] and the following apply. A
term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [14].

Tuak: The name of thisalgorithm set is"Tuak". It should be pronounced like "too-ack".

3.2 Symbols

X[i]
I

The assignment operator

The bitwise exclusive-OR operation

The concatenation of the two operands

Thei™ bit of the variable X. (X = X[0] || X[1] | X[2] | -....)
the permutation Keccak-f[1600] (See clause 5.2 and annex C)

The following represent variables used in the al gorithm:

AK
AMF
CK
IK
IN

INSTANCE
K

MAC-A
MAC-S

OoP
ouT

RAND
RES

SON

SQNws
TOP

TOP:

a 48-bit anonymity key that is the output of either of the functions f5 and f5*

a 16-bit authentication management field that is an input to the functions f1 and f1*

a 128-hit or 256-bit confidentiality key that isthe output of the function f3

a 128-hit or 256-bit integrity key that isthe output of the function f4

a1600-bit value that is used as the input to the permutation IT when computing the functions 1,
f1*, 2, 3, f4, f5 and f5*

an 8-bit value that is used to specify different modes of operation and different parameter lengths
within the algorithm set

a 128-bit or 256-bit subscriber key that is an input to the functions f1, f1*, {2, {3, f4, f5 and f5*

a 64-bit, 128-hit or 256-bit network authentication code that is the output of the function f1

a 64-bit, 128-hit or 256-bit resynchronization authentication code that is the output of the function
f1*

Operator Variant Algorithm Configuration Field (used in MILENAGE)

a 1600-bit value that is taken as the output of the permutation IT when computing the functions f1,
f1*, 2, 3, f4, f5 and f5*

a128-bit random challenge that is an input to the functions f1, f1*, f2, {3, f4, f5 and f5*

a 32-bit, 64-bit, 128-hit or 256-bit signed response that is the output of the function f2

a 48-bit sequence number that is an input to either of the functions f1 and f1*. (For f1* thisinput
is more precisely called SQNys.) See informative Annex C of [1] for methods of encoding
sequence numbers

(See SON)

a 256-bit Operator Variant Algorithm Configuration Field that is a component of the functionsfl,
f1*, 12, {3, f4, 5 and f5*

a 256-bit value derived from TOP and K and used within the computation of the functions

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 7 ETSI TS 135 231 V13.0.0 (2016-01)

4 Preliminary information

4.1 Introduction

Within the security architecture of the 3GPP system there are seven security functions related to authentication and key
agreement: f1, f1*, f2, 3, f4, f5 and f5*. The operation of these functions falls within the domain of one operator, and
the functions are therefore to be specified by each operator rather than being fully standardized. The algorithms
specified in the present document are examples that may be used by an operator who does not wish to design his own.

The algorithm specified is called Tuak (pronounced "too-ack").
It is not mandatory that the particular al gorithms specified in the present document are used.

Theinputs and outputs of all seven algorithms are defined in clause 4.4.

4.2 Notation

4.2.1 Radix

The prefix Ox is used to indicate hexadecimal numbers.

4.2.2 Bit-numbering for inputs and outputs

3GPP TS 33.102 [1] includes the following convention. (Thereis similar text in the specification of MILENAGE, as
defined in 3GPP TS 35.206 [2]):

All data variables in the present document are presented with the most significant substring on the left hand side and the
least significant substring on the right hand side. A substring may be a bit, byte or other arbitrary length bit string.
Where a variable is broken down into a number of substrings, the left-most (most significant) substring is numbered 0,
the next most significant is numbered 1, and so on through to the least significant.

So, for example, RANDIQ] is the most-significant bit of RAND and RAND[127] is the |east significant bit of RAND.
This convention appliesto all inputs and outputs to Tuak, aslisted in tables 1 to 9 below.

However, internally to the Tuak specification variables are simply treated as indexed bit strings, without a specific
indication of bit, byte or word order.

4.2.3 Assignment operations

The assignment operator '='is used in many programming languages. Thus:
<variable> = <expression>

It means that <variable> assumes the value that <expression> had before the assignment took place. For instance,
X=X+y+3

means:

(new value of x) becomes (old value of x) + (old value of y) + 3.

Also
<variables> = <expressions>

for lists of variables and expressions, then the left-most variable assumes the value the | eft-most expression had before
the assignment took place, the next left-most variabl e assumes the value the next left-most expression had before the
assignment took place, and so on.

For instance,

ETSI

3GPP TS 35.231 version 13.0.0 Release 13

X[0]..x[2] =3,4,5
means

(new value of x[0]) becomes 3,
(new value of x[1]) becomes 4,
(new value of x[2]) becomes 5.

Whereas:
X[0].x[2] =y[2]..y[O]
means

(new value of x[0]) becomes (old value of y[2]),
(new value of x[1]) becomes (old value of y[1]),
(new value of x[2]) becomes (old value of y[Q]).

ETSI TS 135 231 V13.0.0 (2016-01)

4.2.4 Void
4.3 Void
5 Inputs and outputs

5.1 Tuak inputs and outputs

The inputsto Tuak are given in tables 1 and 2, the outputs in tables 3 to 9 below.

There are afew differences from the inputs and outputs to MILENAGE [2].

Weallow tThe key K may be 128 bits or 256 bits. MAC-A and MAC-S may be 64, 128 or 256 bits. RES may be 32, 64,
128 or 256 bits. CK and IK may be 128 or 256 bits. Existing 3GPP specifications (see [1] and [12]) do not support all
these possibilities, but they are included in Tuak for future flexibility in case future releases of these specifications may

want to support them.

NOTE 1: The 3G security architecture specification [1] callsthe output of the f1 function 'MAC' while the present

document and [2] call it ' MAC-A".

Any sizes for the parameters K, MAC-A, MAC-S, RES, CK and IK mentioned in the present document shall not be
supported nor used in entities defined in 3GPP specifications until these specifications explicitly allow their use.

In any particular implementation, the parameters shall have afixed length, chosen in advance. For example an operator
may fix K at length 256 bits, RES at length 64 bits, CK and IK at length 128 bits. Asthe lengths do not vary with input,

they are not specified as formal input parameters.

Table 1: Inputs to f1 and f1*

Parameter | Size (bits) Comment
K 128 or 256 |Subscriber key KJ0]...K[127] or K[0O]...K[255]
RAND 128 Random challenge RANDJ0]...RAND[127]
SQN 48 Sequence number SQNJ0]...SQN[47] (for f1* this input is more

precisely called SQNwms)
AMF 16 Authentication management field AMF[0]...AMF[15]
Table 2: Inputs to f2, f3, f4, f5 and f5*

Parameter | Size (bits) Comment
K 128 or 256 |Subscriber key KJ0]...K[127] or K[0]...K[255]
RAND 128 Random challenge RANDJ0]...RAND[127]

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 9

Table 3: f1 output

Parameter | Size (bits) Comment
MAC-A 64, 128 or |Network authentication code MAC-A[0]...MAC-A[63] or MAC-
256 A[0]...MAC-A[127] or MAC-A[0]...MAC-A[255]
Table 4: f1* output
Parameter | Size (bits) Comment
MAC-S 64, 128 or |Resynch authentication code MAC-S[0]...MAC-S[63] or MAC-
256 S[0]...MAC-S[127] or MAC-S[0]...MAC-S[255]
Table 5: f2 output
Parameter | Size (bits) Comment
RES 32, 64, 128 |Response RES[0]...RES[31] or RES|0]...RES[63] or
or 256 |RESI0]...RES[127] or RES[0]...RES[255]
Table 6: f3 output
Parameter | Size (bits) Comment
CK 128 or 256 |Confidentiality key CK][0]...CK[127] or CK|0]...CK[255]
Table 7: f4 output
Parameter | Size (bits) Comment
IK 128 or 256 |Integrity key IK[O0]...IK[127] or IK[0]...IK[255]
Table 8: f5 output
Parameter | Size (bits) Comment
AK 48 Anonymity key AKJ[0]...AK[47]
Table 9: f5* output
Parameter | Size (bits) Comment
AK 48 Resynch anonymity key AKJ[O0]...AK[47]

ETSI TS 135 231 V13.0.0 (2016-01)

NOTE 2: Both f5 and f5* outputs are called AK according to [1]. In practice only one of them at atime will be
calculated in any given call to the authentication and key agreement algorithms.

5.2

This clause refers to the Keccak reference specification [3]. Use is made of the permutation Keccak-f[1600], whichis
abbreviated to I1, and defined formally in Annex C.

Keccak and its inputs and outputs

We use Strings IN[0] .. IN[1599] and OUTI[0] .. OUT[1599] are used to represent the input and output of I1. Asin [3],
these are treated as simple bit strings. However, to support efficient implementations of Keccak (see [4]), inputs are
mapped to IN and outputs are extracted from OUT in such away that bits of input and output should not need to be
reversed within bytes for such implementations.

The Keccak specification includes the concept of a security parameter which the designers call "capacity". Based on the
designers recommendations, aformal capacity of 512 bitsisused: al input stringsto the Keccak permutation shall be
padded to 1088 bits, and then have 512 zero bits appended. The padding used to extend the input string to 1088 bitsis
the"1 0* 1" padding defined in [3], immediately preceded by "1 1 1 1" for consistency with Sakura coding and domain
separation (seee.g. " SAKURA: aflexible coding for tree hashing" [5], start of section 6 for the Sakura coding, and

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 10 ETSI TS 135 231 V13.0.0 (2016-01)

Table 4 for the domain separation coding). Note that our input strings before padding are always shorter than 832 bits,
with the remaining bits of IN always the samein all modes, and output is only ever extracted from the first 832 bits of
OUT - s0 in practice the effective capacity of the construction is at least 1600 - 832 = 768 hits.

5.3 Other inputs and substrings

MILENAGE uses a 128-bit value OP, and derives a 128-bit value OP.. OP isan Operator Variant Algorithm
Configuration Field.

For Tuak a 256-bit Operator Variant Algorithm Configuration Field is specified, TOP; and a derived 256-bit value
TOP..

The following internal variables are defined in the algorithm definition:

- A 56-bit string ALGONAME[Q] .. ALGONAM E[55], with an arbitrary fixed value. Thisis specified asthe
ASCII representation of the string "TUAK1.0": to be explicit, ALGONAMEJ0] .. ALGONAME[55] =
0,1,0,1,01,0,0, 0,1,0,1,0,1,0,1, 0,1,0,0,0,0,0,1, 0,1,0,0,1,0,1,1, 0,0,1,1,0,0,0,1, 0,0,1,0,1,1,1,0, 0,0,1,1,0,0,0,0

- An8-bit string INSTANCE[O0] .. INSTANCE[7] which will be given different values for different algorithms
within the set.

Theinternal variable INSTANCE is coded using the following schema (sections 6 gives the exact details) :
INSTANCEIQ] .. INSTANCE[1] indicate which function is being implemented
INSTANCE[2]...INSTANCE[4] indicate the length of the MAC-A/MAC-S or RES output,

or they are all set to zero when deriving TOP¢
INSTANCE[5] .. INSTANCE[7] indicate whether the CK/IK/K lengths are 256 bit.

6 Definition of the example algorithms

6.1 Derivation of TOP¢

The INSTANCE variable is constructed as follows:
INSTANCE]Q] .. INSTANCE[6] =0,0,0,0,0,0,0

INSTANCE[7] =0if thelength of K is 128 bits
= 1if thelength of K is 256 bits
The 1600-bit value I N isthen constructed as follows:
IN[O] .. IN[255] = TOP[255] .. TOP[0]
IN[256] .. IN[263] = INSTANCEJ[7] .. INSTANCE[(]
IN[264] .. IN[319] = ALGONAME[55] .. ALGONAME[0]
IN[i] =0for 320 <i <511
IN[512] .. IN[767] = K[255] .. K [0Q] if thelength of K is 256 bits
IN[512] .. IN[639] = K[127] .. K [0] if thelength of K is 128 bits
IN[i] =0for 640 <i <767 if the length of K is 128 bits
IN[i] = 1for 768 <i <772
IN[i] =0for 773 <i <1086

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 11 ETSI TS 135 231 V13.0.0 (2016-01)

IN[1087] = 1
IN[i] = O for 1088 < i < 1599

Then apply the permutation:
OUT =TI(IN)

And extract TOP¢ asfollows:
TOPc[Q] .. TOP¢[255] = OUT[255] .. OUTI(]

6.2 Specification of the function f1

The internal INSTANCE variable is constructed as follows:
INSTANCE[Q] .. INSTANCE[1] = 0,0
INSTANCE[2] .. INSTANCE[4] =0,0,1 if the MAC-A length is 64 bits
=0,1,0 if the MAC-A length is 128 bits
=1,0,0 if the MAC-A length is 256 bits
INSTANCE[5] .. INSTANCE[6] = 0,0
INSTANCE[7] =0if thelength of K is 128 bits

=1if thelength of K is 256 bits
The 1600-bit value I N isthen constructed as follows:
IN[O] .. IN[255] = TOP.[255] .. TOP[O]
IN[256] .. IN[263] = INSTANCE[7] .. INSTANCE[0]
IN[264] .. IN[319] = ALGONAME[55] .. ALGONAME[0]
IN[320] .. IN[447] = RAND[127] .. RAND[O]
IN[448] .. IN[463] = AMF[15] .. AMF[0]
IN[464] .. IN[511] = SQN[47] .. SQN[O]
IN[512] .. IN[767] = K[255] .. K [0] if thelength of K is 256 bits
IN[512] .. IN[639] =K[127] .. K [Q] if thelength of K is 128 bits
IN[i] =0for 640 <i <767 if the length of K is 128 bits
IN[i]=1for 768 <i <772
IN[i] =0for 773 <i < 1086
IN[1087] = 1
IN[i] = O for 1088 <i < 1599

Then apply the permutation:
OUT =TI(IN)
And extract function output as follows.
Output of f1 =MAC-A, where
MAC-A[0] .. MAC-A[63] =OUT[63]..OUT[0] if the MAC-A lengthis 64 bits
MAC-A[0] .. MAC-A[127] = OUT[127] .. OUT[Q] if the MAC-A lengthis 128 bits
[0] .. MAC-A[255] = OUT[255] .. OUT[0] if the MAC-A lengthis 256 bits

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 12 ETSI TS 135 231 V13.0.0 (2016-01)

6.3. Specification of the function f1*

Theinternal INSTANCE variableis constructed as follows. The construction is very similar to f1, except that
INSTANCE[Q] is 1 rather than O:

INSTANCE[0] .. INSTANCE[1] = 1,0
INSTANCE[2] .. INSTANCE[4] =0,0,1 if the MAC-Slengthis 64 bits
=0,1,0 if the MAC-Slengthis 128 bits
=1,0,0 if the MAC-Slengthis 256 bits
INSTANCE[5] .. INSTANCE[6] = 0,0
INSTANCE[7] = 0if thelength of K is 128 bits
= 1if thelength of K is 256 bits
The 1600-bit value I N is then constructed in exactly the same way as for f1 (but note IN[263] will be 1 rather than 0).
Then the permutation:
OUT =TI(IN)
is applied and the function output is extracted as follows.
Output of f1* = M AC-S, where
MAC-5[0] .. MAC-§[63] =OUT[63] .. OUT[0] if theMAC-S lengthis 64 bits
MAC-S[0] .. MAC-§[127] = OUT[127] .. OUTI[O] if the MAC-S length is 128 bits
MAC-5[0] .. MAC-S[255] = OUT[255] .. OUT[0] if the MAC-S length is 256 bits

6.4 Specification of the functions 2, f3, f4 and 5

Theinterna INSTANCE variableis constructed as follows:
INSTANCE[OQ] .. INSTANCE[1] = 0,1

INSTANCE[2] .. INSTANCE[4] =0,0,0 if thelength of RESis 32 bits
=0,0,1 if thelength of RESis 64 bits
=0,1,0 if thelength of RESis 128 bits
=1,0,0 if thelength of RESis 256 bits

INSTANCE[5] =0if thelength of CK is 128 bits

= 1if thelength of CK is 256 bits

INSTANCE[6] = 0if thelength of IK is 128 bits

=1if thelength of IK is 256 hits

INSTANCE[7] =0if thelength of K is 128 bits

=1if thelength of K is 256 bits

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 13 ETSI TS 135 231 V13.0.0 (2016-01)

The 1600-bit value I N isthen constructed as follows:
IN[Q] .. IN[255] = TOP.[255] .. TOP[O]
IN[256] .. IN[263] = INSTANCE[7] .. INSTANCE[0]
IN[264] .. IN[319] = ALGONAME[55] .. ALGONAME[0]
IN[320] .. IN[447] = RAND[127] .. RAND[O]
IN[i]=0for 448<i <511
IN[512] .. IN[767] = K[255] .. K [0] if thelength of K is 256 bits
IN[512] .. IN[639] =K[127] .. K [Q] if thelength of K is 128 bits
IN[i] =0for 640 <i <767 if the length of K is 128 bits
IN[i]=1for 768<i <772
IN[i] =0for 773 <i <1086
IN[1087] = 1
IN[i] = O for 1088 <i < 1599

Then the permutation:
OUT =TI(IN)

is applied and the function outputs are extracted as follows:
Output of f2 = RES, where;
RES[0] .. RES[31] =OUT[31] ..OUT[0] if the RESlengthis 32 bits
RES0] .. RES[63] =0OUT[63] ..OUT[0] if the RESlengthis 64 bits
RES[0] .. RES[127] = OUT[127] .. OUT[(Q] if the RESIlengthis 128 bits
RES[0] .. RES[255] = OUT[255] .. OUT[0] if the RES length is 256 bits
Output of f3 = CK, where:
CK[0] .. CK[127] = OUT[383] .. OUT[256] if the CK length is 128 bits
CK[O] .. CK[255] = OUT[511] .. OUT[256] if the CK length is 256 bits
Output of f4 =K, where:
IK[O] .. IK[127] =OUT[639] .. OUT[512] if the IK length is 128 bits
IK[O] .. IK[255] =OUT[767] .. OUT[512] if the IK length is 256 bits
Output of f5 = AK, where:
AK[0] .. AK[47] = OUT[815] .. OUT[768]

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 14 ETSI TS 135 231 V13.0.0 (2016-01)

6.5 Specification of the function f5*

The internal INSTANCE variable is constructed as follows:
INSTANCE[0] .. INSTANCE[1] = 1,1
INSTANCE[2] .. INSTANCE[4] = 0,0,0
INSTANCE[5] .. INSTANCE[6] = 0,0
INSTANCE[7] =0if thelength of K is 128 bits

=1if thelength of K is 256 bits

The 1600-bit value I N isthen constructed in exactly the same way as for f2, f3, f4, and f5 (but note that | N[263] will be
1 rather than O, and that I N[257], IN[258], IN[259], IN[260] , IN[261] will all be 0).

Then the permutation:
OUT =TI(IN)
is applied and the function output is extracted as follows:

Output of f5* = AK, where:
AKIQ] .. AK[47] = OUT[815] .. OUT[768]

7 Implementation considerations

7.1 TOP¢ computed on or off the UICC?

It will be seenin clause 6.1 that TOP ¢ is computed from OP and K, and that it isonly TOP ¢, not TOP, that is ever
used in subsequent computations.

Asfor OPc in MILENAGE, it isrecommended that TOP. be computed off the UICC where possible, and that TOP¢
rather than TOP be loaded to the UICC for use in subsequent computations. This should also apply when updating an
embedded UICC (eUICC) as defined in [13]: the value of TOP¢ (and not TOP) should be loaded to the eUICC in
conjunction with the new K and other operator customization parameters.

This gives the following benefits:

- The complexity of the algorithms run on the UICC is reduced.

- Itismorelikely that TOP can be kept secret. (If TOP is stored on the UICC, it only takes one UICC to be
reverse engineered for TOP to be discovered and published. But it should be difficult for someone who has
discovered even alarge number of (TOPc, K) pairsto deduce TOP. That means that the TOP associated with
any other value of K will be unknown, which may make it harder to mount some kinds of cryptanalytic and
forgery attacks. The algorithms are designed to be secure whether or not TOP is known to the attacker, but a
secret TOP is one more hurdle in the attacker"s path.)

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 15 ETSI TS 135 231 V13.0.0 (2016-01)

7.2 Further customization

TOP obviously allows for some degree of operator customization.

Further, as described in clause 5.1, the lengths of K, and of MAC-A/MAC-S, RES, CK and IK can be chosen by the
operator, although they have to be fixed in each particular implementation of Tuak. In aflexible implementation (e.g.
UICC), these operator-chosen parameter lengths could be loaded to the UICC in conjunction with the associated K and
TOPc.

Where compatibility is required with existing 3GPP specifications, the operator shall set the length of the K to 128 bits,
the length of the RES to between 32 and 128 bits, the length of the M AC-A/M AC-Sto 64 bits, the length of CK to 128
bits, and the length of 1K to 128 bits.

If an even more secure version of this algorithm is required, this could be done by adding extra applications of the
Keccak permutation before extracting output. These would be used in the derivation of TOP ¢ (clause 6.1), and each of
the algorithms f1, f1*, f2-f5, f5* (clauses 6.2 to 6.5). In each case, instead of:

Construct IN
OUT =TI(IN)
Extract outputs
the approach could be
Construct IN
OUT = II(TI(IN))
Extract outputs
or
Construct IN
OUT = I(I(TT(IN)))
Extract outputs

or however many extra applications of the permutation are required. Again, in aflexible implementation (e.g. UICC),
the number of iterations of IT may be loaded to the UICC as an operator-chosen parameter.

7.3 Resistance to side channel attacks

When these a gorithms are implemented on a UICC, consideration should be given to protecting them against side
channel attacks such as differential power analysis (DPA). [4, 6, 7, 8, 9, 10, 11] may be useful references.

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 16 ETSI TS 135 231 V13.0.0 (2016-01)

Annex A (normative):
Tuak diagrams

INSTANCE ZEROES

TOP | ALGONAME K PADDING 512 ZEROES
Keccak]

TOP.

INSTANCE RAND SQN

TOP; | ALGONAME | AMF K PADDING 512 ZEROES

! Il l
()

MAC

INSTANCE RAND

TOP¢ | ALGONAME |ZEROES K PADDING 512 ZEROES

15l e l l
(]
Lo

RES CK IK AK

Figure A.1 Tuak operation
Thefirst diagram illustrates the derivation of TOP.

The second diagram illustrates the derivation of either MAC-A (using the f1 function) or MAC-S (using the f1*
function), with different values of the INSTANCE byte in each case.

The third diagram illustrates the derivation of RES (using the f2 function), CK (using f3), IK (using f4) and AK (using
5) or alternatively the derivation of AK using f5* (in which case the other three outputs should be ignored).

Inall casesit is assumed that just one iteration of the Keccak permutation is used (see clause 7.2).

Note the 512-bit "capacity” of Keccak: only zeroes are input to the rightmost 512 bits, and no outputs are extracted from
the rightmost 512 bits.

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 17 ETSI TS 135 231 V13.0.0 (2016-01)

Annex B (informative):
TuakApplication Programme Interface (AP) in ANSI ClI

/* ___
Constants and Typedefs
*/
typedef unsigned char uint8;
static const uint8 ALGONAME[] = "TUAK1.0";
uints TOP [32] ; /* Operator's Configuration */
uints KEY sz; /* = 16/32 bytes */
uints RES sz; /* = 4/8/16/32 bytes */
uints CK_sz; /* = 16/32 bytes */
uint8 IK sz; /* = 16/32 bytes */
uints MAC sz; /* = 8/16/32 bytes */
uints KeccakIterations; /* >=1, number of iterations */
/* ___
TUAK API Declaration
*/
void TUAK ComputeTOPC(uint8 *key, /* in, uint8[KEY sz] */
uint8 *TOPC /* out, uint8([32] */
)i
void TUAK f1 (uint8 *key, /* in, uint8[KEY sz] */
uint8 *rand, /* in, uint8[16] */
uint8 *sqgn, /* in, uint8[6] */
uint8 *amf, /* in, uint8[2] */
uint8 *mac /* out, uint8[MAC sz] */
)i
void TUAK £2345 (uint8 *key, /* in, uint8[KEY sz] */
uint8 *rand, /* in, uint8[16] */
uint8 *res, /* out, uint8[RES_sz] */
uint8 *ck, /* out, uint8[CK sz] */
uint8 *ik, /* out, uint8[IK sz] */
uint8 *ak /* out, uintsg[6] */
)i
void TUAK fls (uint8 *key, /* in, uint8[KEY sz] */
uint8 *rand, /* in, uint8[16] */
uint8 *sqgn, /* in, uints8[é] */
uint8 *amf, /* in, uints8([2] */
uint8 *mac /* out, uint8[MAC sz] */
)i
void TUAK f5s (uint8 *key, /* in, uint8[KEY sz] */
uint8 *rand, /* in, uint8[16] */
uint8 *ak /* out, uintsg[6] */

)

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 18 ETSI TS 135 231 V13.0.0 (2016-01)

Annex C (normative):
Specification of the Keccak permutation used within Tuak

The following specification of the permutation IT is extracted from the Keccak reference specification [3], section 1.2.

The permutation I is described as a sequence of operations on a state a that is a three-dimensional 5 x 5 x 64 array of
elements of GF(2). The expression a[x][y][z] withX,y € Zs and z € Z¢,, denotes the bit in position (x, y, z), with the
indices starting from zero. The array a is mapped to the bits of an input and output string s by s[64.(5y + x) + 2] =
a[x][yl[z], so that s is a 1600-hit string, indexed from bit O up to bit 1599. Note that expressionsin the x and y
coordinates should be taken modulo 5 and expressionsin the z coordinate modulo 64. It is possible to omit the [z] index,
both the [y][z] indices, or al three indices, implying that the statement is valid for al values of the omitted indices.

[T isan iterated permutation, consisting of a sequence of 24 rounds R, indexed by i, from 0 to 23. Each round consists of
fivesteps, R=10y oo p o 0, performed in the following order:

0:a[X][yll2] — alxl[yl[2] + £'y=0 alx — Uly[z] + =0 alx + ly[z — 1],
p - alx]lyllz] < alx]lylz — (t+ 1)(t + 2)/2],

with t satisfying 0 <t <24 and

25 1);():()ineﬂsm

ort=-1ifx=y=0,
so that t is given by the following table: and (t + 1)(t + 2)/2 € Zgisgiven by:

x=|] o 1]2]3]a x=] o 1|2]3]a
y=0| -1 | o |18] 6 | 12 y=0| 0 | 1 | 62| 28] 27
y=1| 7 [23] 2 | 9 | 22 y=1 |36 |44 | 6 | 55| 20
y=2| 1| 3 [17| 16 | 20 y=2| 3 |10 | 43] 25 | 39
y=3| 13| 8 | 4] 5 |15 y=3| 41|45 | 15[21| 8
y=4 | 19 | 10 | 21 | 14 | 11 y=4 | 18 | 2 | 61 | 56 | 14

7. a[x][y] < a[x1[y], with

X 01 X'

y 23y,
xralx] «a[x] +(a[x + 1] + Da[x + 2],
1:a«—a+RC[i].

GF(2). With the exception of
the value of the round constants RCJ[i,], these rounds are identical.

The round constants are given by (with the first index denoting the round number):

RC[i,J[0][01[2' — 1] =rc][j + 7i,] forall 0<j <86,
RCIi,][X][y]l[z] = O for all other valuesof x, y, z

Thevaluesrc[t] € GF(2) are defined as the output of a binary linear feedback shift register (LFSR):
re[t] = (X' mod x& + x® + x* + x* + 1) mod x in GF(2)[x],

so that rc[j + 7i;] is given by the following table:

= 0 1 2 3 4 5 6 = 0 1 2 3 4 5 6

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 19 ETSI TS 135 231 V13.0.0 (2016-01)

i=0| 1| 0]o0o|lo0o|o0o]|o0]oO i=12| 1 | 1| 1] 1|1]1]o0
i=1| o|1]o0|1|1]|0]0 i=13| 1 | 1| 1] 1|0] 0] 1
=2 | 0| 1]1|1|1]|0]1 =14 1 | 0| 1] 1| 1|01
i=3| o0o|o]o|o|1]|1]1 i=15| 1 | 1| 0] 0| 1] 0] 1
=4 | 1| 1] 1|1|1]|0]0 i=16| 0 | 1| 0] 0| 1] 0] 1
=5 | 1| 0]o0o|lo|o0o]|1]o0 i=17| o | 0o| o0 | 1|0] o011
=6 | 1|00 |1|1]|1]1 i=18| 0 | 1| 1] 0| 1]0]oO
=7 | 1|0 1l0|1]|0]1 =19 o | 1| 1] 0|0 1]1
=8| 0| 1] 1|1l0]|0]o0 =20 1 | 0| o0 | 1| 1] 1]1
=9 | oo 1|1|0]|0]o0 i=21| 0| 0| 0| 1] 1] 0]1
=10 1| 0| 1|0 |1|1]0 i=22| 1| 0o|o0o]o|o0]|1]o0
i=11| 0| 1| 1|0 |0 | 1]|0 =23 o | 0| 1] 0| 1] 1]1

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 20 ETSI TS 135 231 V13.0.0 (2016-01)

Annex D (informative):
Example source code for Tuak (ANSI C)

Tuak is built on top of the Keccak function, as described in annex C. In the following example code, a Tuak
configuration is defined as a set of global variables, so that these can be initialized or modified at run-time, and thereis
no need to fix them in the code as static constants. The read/write data to the Keccak state, including the padding, will
depend on the Keccak state representation. Included in this example are 8-bit, 32-bit and 64-bit implementations of the
Keccak function, each having a different representation of the state.

The Tuak f-functions do similar calculationsin their core, therefore, it was possible to combine most of the
computations in one function called TUAK _Main(). Lengths are given in bytes, rather than bits, in order to support 8-
bit environments (e.g., length=256 does not fit in type uint8). All the example codes are endianness-free, i.e. can be
used on both big and little endian machines.

/* This code may be freely used or adapted.

This implementation of TUAK is endianness-free.
It supports 64-bit, 32-bit and 8-bit environments.

*/

/* ___
Constants, typedefs, macros, compilation settings

*/

/* This macro selects Keccak f implementation instance - 8/32/64-bit version */

#define KECCAK_VERSION BITS 32

/* Depending on the version of Keccak we do:
- map KECCAK F macro to relevant Keccak f (8/32/64-bit) instance
- declare Keccak"s state INOUT[] as global, for simplicity
- define method for TUAK padding TUAK ADD_ PADDING ()

*

/

#if KECCAK VERSION BITS==64
static uinté4 INOUT [25]; /* state to Keccak f for 64-bit version */
extern void Keccak f 64 (uint64 *s);

define KECCAK_F Keccak f_64

define TUAK ADD_PADDING () INOUT[12] = Ox1FULL, INOUT[16] = (0x01ULL<<63)

#elif KECCAK VERSION BITS==32
static uint32 INOUT [50]; /* state to Keccak f for 32-bit version */
extern void Keccak f 32(uint32 *s);

define KECCAK_F Keccak f_32

define TUAK ADD PADDING () INOUT [24] = 0x1FUL, INOUT[33] = 0x80000000

#elif KECCAK VERSION_ BITS==
static uint8 INOUT [200]; /* state to Keccak f for 8-bit version */
extern void Keccak f 8 (uint8 s[200]);

define KECCAK F Keccak f 8

define TUAK ADD PADDING () INOUT [96] = 0x1F, INOUT[135] = 0x80

#else

error The requested version of Keccak f is not implemented!

#endif

static const uint8 ALGONAME[] = "TUAK1.0";

void TUAK ComputeTOPC (uint8*, uint8*);

TUAK Instance Configuration
if dynamic => can be set/modified on run-time
if constants => fixed instance of the algorithm

*

/

uints TOP [32] ; /* Operator's Configuration */

uints KEY sz = 16; /* = 16/32 bytes */
uints RES sz = 8; /* = 4/8/16/32 bytes */

uints CK_sz = 32; /* = 16/32 bytes */
uint8 IK sz = 32; /* = 16/32 bytes */
uints MAC sz = 16; /* = 8/16/32 bytes */

uint8 KeccakIterations =1; /* >=1, number of Keccak f iterations */

/* ___

PUSH DATA / PULL_DATA, TUAK Main()

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 21

*/

void PUSH DATA (const uint8 * data, uint8 n, uint8 location)
{ while (n--)

#if KECCAK_VERSION_BITS==64

INOUT [location>>3] |= ((uinté4)dataln]) << ((location++ & 7)<<3);
#elif KECCAK VERSION BITS==32

INOUT [location>>2] |= ((uint32)dataln]) << ((location++ & 3)<<3);
#elif KECCAK_VERSION_BITS==8

INOUT [location++] = dataln]; /* Note: reversed order of bytes */

#endif

}

void PULL_DATA (uint8 * data, uint8 n, uint8 location)

{ while (n--)
#if KECCAK_VERSION_BITS==64

data[n] = (uint8) (INOUT[location>>3] >> ((location++ & 7)<<3));
#elif KECCAK VERSION BITS==32

data[n] = (uint8) (INOUT [location>>2] >> ((location++ & 3)<<3));
#elif KECCAK_VERSION_BITS==

data[n] = INOUT[location++]; /* Note: reversed order of bytes */
#endif

}

/* Universal function used by TUAK API functions */

*/

*/
*/
*/

*/

*/

void TUAK Main (uint8 instance, /* in, uints8 */
uint8 *rand, /* in, uint8[16]
uint8 *amf, /* in, uints8[2] */
uint8 *sqgn, /* in, uint8|[6] */
uint8 *key /* in, uint8[16/32]
)
{ uint8 i, TOPC[32];
TUAK_ComputeTOPC (key, TOPC) ; /* compute TOPC */
memset ((uint8+*) INOUT , 0, 200); /* clean INOUT */
PUSH_DATA (TOPC , 32, 0) ; /* TOPC */
PUSH_DATA(&instance , 1, 32); /* INSTANCE */
PUSH DATA(ALGONAME , 7 , 33); /* ALGONAME */
PUSH_DATA (rand , 16, 40); /* RAND */
if (amf) PUSH_DATA(amf, 2 , 56); /* AMF , if !=NULL */
if (sqn) PUSH DATA(sqgn, 6 , 58); /* SON , if !=NULL */
PUSH_DATA (key, (instance & 1)?32:16, 64); /* KEY-128/256 bits */
TUAK_ADD_PADDING () ; /* Padding bits 768-1087 */
for(i=0; i<KeccakIterations; ++1)
KECCAK_F (INOUT) ;
!
/* ___
TUAK API Definition
*/
void TUAK ComputeTOPC(uint8 *key, /* in, uint8[16/32] */
uint8 *TOPC /* out, uint8[32]
)
{ uint8 i, inst = KEY sz>>5;
memset (INOUT, 0, 200);
PUSH_DATA (TOP , 32, 0); /* TOP
PUSH_DATA (&inst , 1, 32); /* INSTANCE for TOPC
PUSH DATA (ALGONAME , 7 , 33); /* ALGONAME
PUSH DATA (key , KEY sz, 64); /* KEY-128/256
TUAK_ADD PADDING () ; /* Padding bits 768-1087
for(i=0; i<KeccakIterations; ++i)
KECCAK_F(INOUT);
PULL_DATA (TOPC, 32, 0); /* get the result
1
void TUAK f1 (uint8 *key, /* in, uint8[KEY sz]
uint8 *rand, /* in, uint8[16]
uint8 *sqgn, /* in, uints8[6]
uint8 *amf, /* in, uints8[2]
uint8 *mac /* out, uint8[MAC sz]
)
{ TUAK Main((KEY sz>>5) | MAC sz, rand, amf, sgn, key);

PULL DATA (mac, MAC_sz, 0);

ETSI

*/

*/

*/

*/

ETSI TS 135 231 V13.0.0 (2016-01)

*/
*/
*/
*/

3GPP TS 35.231 version 13.0.0 Release 13 22 ETSI TS 135 231 V13.0.0 (2016-01)

}

void TUAK £2345 (uint8 *key, /* in, uint8I[KEY_ sz] */
uint8 *rand, /* in, uints8[16] */
uint8 *res, /* out, uint8[RES_sz] */
uint8 *ck, /* out, uint8[CK sz] */
uint8 *ik, /* out, uint8[IK sz] */
uint8 *ak /* out, uint8([6] */
)
{ TUAK Main((KEY sz>>5) | ((IK sz>>4)&0x02) | ((CK _sz>>3)&0x04)
| (RES_sz&0x38) | 0x40, rand, 0, 0, key);
PULL_DATA(res, RES sz, 0);
PULL_DATA(Ck , CK_sz , 32);
PULL DATA(ik , IK sz , 64);
PULL DATA(ak , 6 , 96);
1
void TUAK fls (uint8 *key, /* in, uint8[KEY sz] */
uint8 *rand, /* in, uint8[16] */
uint8 *sqgn, /* in, uints8[é] */
uint8 *amf, /* in, uint8[2] */
uint8 *mac /* out, uint8[MAC sz] */
)
{ TUAK Main((KEY_sz>>5) | MAC_sz | 0x80, rand, amf, sqgn, key);

PULL_DATA (mac, MAC_sz, 0);

}

void TUAK f5s (uint8 *key, /* in, uint8[KEY sz] */
uint8 *rand, /* in, uint8[16] */
uint8 *ak /* out, uints8[é] */
)
{ TUAK Main((KEY sz>>5) | 0xc0, rand, 0, 0, key);

PULL DATA(ak, 6, 96);

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 23 ETSI TS 135 231 V13.0.0 (2016-01)

Annex E (informative):
Example source code for Keccak (ANSI C)

Commentsto the example code for a 64-bit implementation of K eccak

This 64-bit implementation of the Keccak permutation follows the specification in annex C. It has 24 rounds of 5 basic
stepsin the order Theta, Rho, Pi, Chi, lota. The state of Keccak is 1600 hits, represented as 25 blocks of 64 bits each
(uinte4 s[25]). Suchablock isreferred to asa'lane" in the Keccak reference specification [3].

In the example code, bit n=0..1599 of Keccak state is mapped to the state representation array as.

bit(n) = (4n/64]>>(n%64))& 1. The mapping between gw] and a[x][y][Z] is. AX][y][Z] = (I5y+X]>>2)& 1, for any triple
X, y=0..4, z=0..63 (and w=5y+x).

An efficient way to implement Keccak isto code it as an update function. For the purpose of efficiency, there are three
pre-computed constant tables Rho[25], Pi[25], lota]24] (74 bytesin total). Run-time requires 43+sizeof (uint64*) bytes
of stack, excluding possible alignment of input arguments.

In the Theta function, it is necessary to perform the following computation:

0 a[X][yll2] < alxllyll2] + £'y=0 alx — Uly[2] + =%y=0alx + 1y][z — 1].

To do this, first compute 5 sums E“y,:o a[x][y1[z] for each x=0..4 (and all z=0..63) and store them in five temporary 64-
bit variables (uint64 t[5]). Such an operation as a[x][y][z] € a[X][y][z-1] isjust arotation of the corresponding 64-
bit value of sby 1 to theleft, and a[x][y][Z] <&[x][y'][Z] is a corresponding assignment gw] <s[w']. Thisway, in the
second loop of Theta, run over y=0..4 and update 25 words of s based on pre-computed temporary sums.

The Rho function isjust acircular rotation of bits for each of 64-bit words individually of the state §25]. The number of
bits aword s[n] isto be rotated by is Rho[n].

The Pi function is afull-cycle permutation of 24 words of s, excluding s[0]. To avoid duplicating the state for this
operation, remember the first word in the permutation chain §1] somewhere in atemporary variable T, then perform
9q1] < gPi[1]], where the value Pi[1] isthe index of the word that hasto go to §[1]. In the next step, assign

qPi[1]] <9 Pi[Pi[1]]], and so on. After 23 such steps the permutation is almost compl ete, except that the saved value
should be located to the last referenced place Pi”23[1]] < T.

In the Chi function, reuse 5 temporary 64-bit words to compute somewhat mixed Boolean expressions; the functionis
straightforward to implement.

The lota function updates 7 bitsindexed by 0O, 1, 3, 7, 15, 31, 63, of only one word §0], by XORing them with some
constant val ues that depend on the current round index (r=0..23). Each cell of the pre-computed constant table lota]24]
encodes those 7 bitsin one byte (uint8) in the following way.

Bitsrelated toindices 0, 1, 3, 7 stay in their correct place of the byte lota[r]. Bitsrelated to indices 15, 31, 63 are
mapped to bits 4, 5, 6 of the byte lota[r], correspondingly. When XORing, the lower bits 0-7 appear well mapped
(Tota[round]&0x8B), and the upper bits 31-63 are received by the relevant three shifts of that byte to the left to
certain positions (note, the byte lota[r] isfirst converted to uint64). It is also possibleto OR al the shifts first, and then
to mask those 7 bits before X ORing the result to §[0]. Thistrick is possible since ORing does not overlap those 7 bits,
but the result of ORing will, however, interfere some of the other 57 bits, and by the final masking with the constant
0x800000008000808BUL L, remove that unwanted influence.

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 24 ETSI TS 135 231 V13.0.0 (2016-01)

Commentsto the example code for an 8-bit implementation of K eccak

The 8-hit implementation of Keccak isbasically a step-by-step refactored version of the 64-bit version. The state of
Keccak is now represented as 200 bytes of 8 bitseach (uint8 s[200]). Each block of 8 bytesisamapping of a
relevant 64-bit word in the 64-bit version. The Keccak state is mapped to the state representation array as.

bit(n) = (§n/8]>>(n%8))& 1, for n=0..1599.

A 64-bit word (that is now represented as 8 bytes) can be rotated by 1-7 bits easily just save the first byte of the 8-byte
block, then shift and propagate 1-7 bits from one byte to the next, and, finally, complete the operation at the end by
using the saved byte.

However, in the Rho function, the rotation parameter - r bits - can be any value in the range 1..63. Then perform the
following technique. Split r as r=8* A+B, where A isthe number of full bytes of a 64-bit word to be rotated, and B is
the remaining number of bits of the rotation value r. In the first loop, rotate an 8-byte block of sby A bytes, and store
the result in some other temporary 8-byte block (int[@. .7]). In the second step. copy that temporary block t[0. .7]
back to the relevant location of the state s, and, in parallel, perform the rotation of the block by B bits in the way
mentioned earlier.

Commentsto the example code for a 32-bit implementation of K eccak

The 32-bit implementation of Keccak is yet another step-by-step refactoring of the 64-bit version. The state of Keccak
isrepresented asuint32[50], where each two 32-bit consecutive words are mapped to one 64-bit word. i.e.,
stateb4[K] = (state32[2*k+1]<<32) | state32[2* kK], for k=0..24.

In the Rho function, every such pair of 32-bit words (A; B), where A=state32[2*k] and B=state32[2*k+1], for some
k=0..24, needs to be rotated by n=0..63 bits. The resulting pair will be (A'; B) = (A<<n | B>>(32-n); B<<n | A>>(32-
n)), if n<32. In case n>=32 then take n%32 as the shifting parameter for each of the 32-bit words, and the resulting A’
and B' are swapped. The refactoring of other functionsis straightforward.

/* This code may be freely used or adapted.

*/
typedef unsigned char uint8;
typedef unsigned long uint32;

typedef unsigned long long uinté64;

const uint8 Rho[25] = {0,1,62,28,27,36,44,6,55,20,3,10,43,25,39,41,45,
15,21,8,18,2,61,56,14};

const uint8 Pi[25] = {0,6,12,18,24,3,9,10,16,22,1,7,13,19,20,4,5,11,17,
23,2,8,14,15,21};

const uint8 Iotal24] = {1,146,218,112,155,33,241,89,138,136,57,42,187,203,
217,83,82,192,26,106,241,208,33,120};

#define ROTATE64 (value, n)
((((uinté64) (value))<<(n)) | (((uinté4) (value))>>(64-(n))))

*/
void Keccak_ f 64 (uinté64 *s)
{ uinté64 t([5];

uint8 i, j, round;

for (round=0; round<24; ++round)
{ /* Theta function */
for(i=0; 1i<5; ++1i)

t[i] = s[i] * s[5+i] * s[10+i] [15+i] s[20+1];
for(i=0; i<5; ++1i, s+=5)
{ s[0] “= t[4] ~ ROTATE64 (t[1], 1);
s[1] “= t[0] ~ ROTATE64 (t[2], 1);
s[2] "= t[1] * ROTATE64 (t[3], 1);
s[3] "= t[2] * ROTATE64 (t[4], 1);
s[4] "= t[3] ~ ROTATE64 (t[0], 1);
1
s -= 25

ETSI

3GPP TS 35.231 version 13.0.0 Release 13

/* Rho function */
for(i=1; 1i<25; ++1i)

s[i] = ROTATEG64 (s[i],
/* Pi function */
for(t[1] = s[i=1];
s[i] = t[1];

(§=Pilil) >

/* Chi function */
for(i=0; i<5; ++1i,

{ t[0]

R R R R RN

/* Iota function */

t[0] = Iotalround];

*s = (t[0] | (tl[0]l<<11) |
& 0x800000008000808BULL;

}

*/
void Keccak f 8(uint8 s[200])
{ uintg8 t[40], i, j, k, round;

for (round=0; round<24; ++round)
{ /* Theta function */
for(i=0; 1<40; ++1)

t[il=s[i]"s[40+i]"s[80+i]"s

Rho[i]) ;

(t[0]<<26
/* set & mask bits

25 ETSI TS 135 231 V13.0.0 (2016-01)

) | (£[0]1<<57))
0,1,3,7,15,31,63 */

[120+1] *s[160+1];

for(i=0; 1<200; 1i+=8)
for(j = (1+32)%40, k=0; k<8; ++k)
s[i+k] *= t[j+k];
for(i=0; 1i<40; t[i] = (t[il<<1)[|j, i+=8)
for(j = tli+7]1>>7, k=7; k; --k)
tli+k] = (tli+k]<<l) | (£[i+k-1]1>>7);
for(i=0; 1<200; i+=8)
for(j = (i+8)%40, k=0; k<8; ++k)
s[i+k] “= t[j+k];

/* Rho function */
for(i=8; 1<200; i+=8)

{ for(j = Rhol[i>>3]1>>3, k=0; k<8; ++k) /* j:=bytes to shift, s->t */
t[(k+3j)&7] = sl[i+k];
for(j = Rhol[i>>3]1&7, k=7; k; --k) /* j:=bits to shift, t-»>s */
s[i+k] = (t[kl<<j) | (t[k-11>>(8-3));
s[i] = (t[0l<<j) | (£[71>>(8-3));
1
/* Pi function */
for (k=8; k<16; ++k) tl[k] = sl[k]; /* =memcpy (t+8, s+8, 8) */
for(i=1; (j=Pil[il)>1; i=3)
for (k=0; k<8; ++k) * =memcpy (s+ (i<<3), s+(j<<3), 8) */
s[(i<<3)|k] = s[(j<<3)|k];
for (k=0; k<8; ++k) * =memcpy (s+ (i<<3), t+8, 8) */
s[(i<<3) |kl = t[k+8];

/* Chi function */
for (1=0; 1<200; i+=40)
{ for(j=0; j<40; ++3)

t[jl=(~s[i+(7+8)%40]) &

for(j=0; j<40; ++3j) sl[i+]j]
1
/* Iota function */
k = Iotalround];
s[0] "= k & 0x8B; /*
s[1] = (k<<3)&0x80; /*
s[3] "= (k<<2)&0x80; /*
s[7] "= (k<<1)&0x80; /*

s[i+(j+16)%40];
=t[j];
bits 0, 1, 3, 7 */
bit 15 */
bit 31 */
bit 63 */

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 26

ETSI TS 135 231 V13.0.0 (2016-01)

*/

void Keccak f 32 (uint32 *s)
{ uint32 t[10];
uint8 i, j, round, k;

for (round=0; round<24; ++round)

{

/* Theta function */
for(i=0; 1<10; ++1i)

t[i] = s[i] * s[10+1i]
for(i=0; 1i<5; ++1)

A

s[20+1] * s[30+i]

for(j=8, k=2; ; j%=10, k=(k+2)%10)
{ *s++ "= t[j++] * ((tlkl<<l) | (t[k+1]>>31));
*s++ “= t[j++] © ((t[k+1]l<<l) | (t [k]>>31));

if (j==8) break;
s -= 50;

/* Rho function */

for(i=2; 1<50; 1+=2)

{ k = Rhol[i>>1] & Ox1f;
t[0] = (s[i+1] << k) | (s[i] >> (32-k));
t[1] = (s[i] << k) | (s[i+1] >> (32-k));
k = Rho[i>>1] >> 5;
s[i] = tl[1-k]l, sli+1] = tlI[k]l;

R o

}

/* Pi function */

for(i=2, t[0]l=s[2], tl[1l]l=s[3]; (j=(Pili>>1]<<1))>2; i=3j)

s[il=s[j], sli+1l]l=s[j+1];
s[il=t[0], s[i+1l]l=t[1];

/* Chi function */
for(i=0; i<5; ++1i, s+=10)
{ for(j=0; j<10; ++3)
t[j] = (~s[(j+2)%10]) & s[(j+4)%10];
for(j=0; j<10; ++3)
| s3]l *= tljl;

s -= 50;

/* Iota function */

t[0] = Iotalround];

s[0] *= (t[o] | (t[0l<<1l) | (t[0l<<26)) & 0x8000808B;
s[1] "= (£t[0]1<<25) & 0x80000000;

ETSI

3GPP TS 35.231 version 13.0.0 Release 13 27 ETSI TS 135 231 V13.0.0 (2016-01)

Annex F (informative):
Change history

Change history
Date TSG # TSG Doc. |CR Rev [Subject/Comment Old New
Dec Version after approval 1.1.0 |12.00
2013
Dec Update in Introduction with the spec numbers 12.0.0 |12.0.1
2013
Sep- SP-64 |SP- 001 |2 |Overall editorial modification to the Tuak 12.0.1 |12.1.0
2014 140316 specification TS 35.231
2016-01 |- - - - Update to Rel-13 version (MCC) 12.1.0 |13.0.0

ETSI

3GPP TS 35.231 version 13.0.0 Release 13

28

ETSI TS 135 231 V13.0.0 (2016-01)

History

Document history

V13.0.0

January 2016

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions
	3.1 Definitions
	3.2 Symbols

	4 Preliminary information
	4.1 Introduction
	4.2 Notation
	4.2.1 Radix
	4.2.2 Bit-numbering for inputs and outputs
	4.2.3 Assignment operations
	4.2.4 Void

	4.3 Void

	5 Inputs and outputs
	5.1 Tuak inputs and outputs
	5.2 Keccak and its inputs and outputs
	5.3 Other inputs and substrings

	6 Definition of the example algorithms
	6.1 Derivation of TOPC
	6.2 Specification of the function f1
	6.3. Specification of the function f1*
	6.4 Specification of the functions f2, f3, f4 and f5
	6.5 Specification of the function f5*

	7 Implementation considerations
	7.1 TOPC computed on or off the UICC?
	7.2 Further customization
	7.3 Resistance to side channel attacks

	Annex A (normative): Tuak diagrams
	Annex B (informative): TuakApplication Programme Interface (AP) in ANSI CI
	Annex C (normative): Specification of the Keccak permutation used within Tuak
	Annex D (informative): Example source code for Tuak (ANSI C)
	Annex E (informative): Example source code for Keccak (ANSI C)
	Annex F (informative): Change history
	History

