

Top strategic technology themes through 2025

SYSTEM OPTIMIZING TECHNOLOGIES

New processors, persistent media, fabrics and data center architectures

Technologies that enable intelligent workload placement across different clouds, the development of cloud native apps and disparate clouds to work as an aggregated system

EDGE & DECENTRALIZED IT

Technologies, system designs, frameworks and security and management tools that drive the creation of edge-centric architectures and software

DATA MANAGEMENT

Tools and technologies that enable a holistic approach to the data lifecycle; e.g. metadata lifecycle management, automated data catalog and data-as-a-service

DATA SCIENCE (AI & ANALYTICS)

Analytics and Al/ML technologies that address the growing needs of data scientists and the ecosystems they leverage

INTRINSIC TRUST & SECURITY

Technologies and use cases enabling security to be built into all the components and layers of a solution in an increasingly automated way for foolproof, scalable and end-to-end protection of modern, distributed architectures

NEXT GENERATION COMMUNICATIONS

New high-performance wireless, wired and virtualized technologies to connect Things at the Edge and Apps across the multi-cloud

INTELLIGENT AUTOMATION & ORCHESTRATION

Machine learning and analytics embedded into systems combined with Automation/Orchestration systems to enable self-driving, self-optimizing and auto configuring infrastructures and systems

CITIZEN DEVELOPERS & DEVOPS

Technologies, frameworks and toolchains that democratize and automate application development and drive innovation from across an enterprise

AUGMENTATION

Comprises Augmented Perceptions, Interactions and Cognition and the underlying systems that enable them

SUSTAINABILITY

Emerging technologies and strategies that embrace and enable sustainable products, circular economy, energy efficiency and waste reduction

Partnering on the path to a green data center

ENERGY EFFICIENT HARDWARE

Dell's data center solutions are designed to deliver high performance per watt

PLATFORM POWER MANAGEMENT

Dell servers have built In BIOS And iDRAC settings to help reduce energy waste

WORKLOAD MIGRATION

Dell solutions can help customers manage workloads on premise and in the cloud

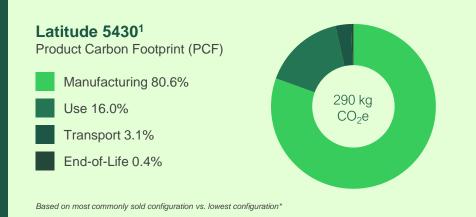
RESPONSIBLE RETIREMENT

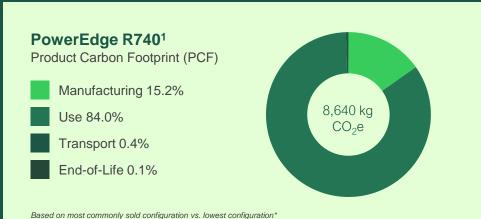
With Dell recovery and recycling services customers can retire equipment responsibly

DC POWER MANAGEMENT

OME power manager delivers telemetry to help lower customers carbon footprint

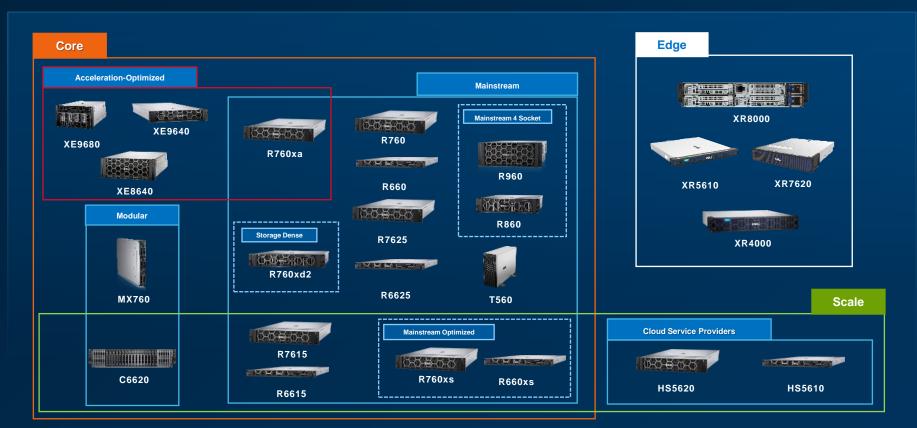
OPTIMIZED THERMALS


Dell designs hardware with optimized cooling and power capabilities


Reducing the carbon footprint of your IT hardware

Maximizing energy efficiency is critical to lowering Product Carbon Footprint in the data center

Key focus areas for reduction are:


- 1. Energy (Use)
- 2. Materials (Manufacturing)
- 3. Packaging (Transportation)
- Repairability & Upgradability (Manufacturing & End-of-Life)
- Reuse & Recycling (Manufacturing & End-of-Life)

D¢LLTechnologies

PowerEdge portfolio 2023

Industry Enabled Technologies Overview

Next Generation Intel & AMD Processors

- Intel 4th Gen Xeon (Sapphire Rapids)
 - ✓ Up to 60 cores/CPU*
 - √ 50% performance increase over Ice Lake
- AMD 4th Gen EPYC (Genoa)
 - ✓ Latest 5nm technology with up to 96 highperformance "Zen 4" cores
 - √ 1.5X & 1.25X the density and power over Milan

Memory: DDR5

- DDR5 (4800MT/s)
 - ✓ Latest DRAM technology with higher speed & bandwidth
 - ✓ Greater efficiency with 2 channels per DIMM
 - ✓ Improved RAS features with on-die ECC
 - ✓ Lower power
 - Enhanced telemetry for temperature reporting and systems management

PCIe Gen5 Capability

- Doubles throughput compared to PCIe Gen4
 - ✓ Benefits NVMe drives, GPUs, and some networking cards

EDSFF E3.S NVMe Gen5

- E3.S form factor will be introduced with PCIe Gen5 NVMe drives
 - Benefits density, thermals, and improved packaging in space constrained servers
- Double the performance over NVMe Gen4

Dell enabled Technologies Overview

Next Gen HWRAID (PERC12)

- New gen controller with 2X better performance over PERC11 and 4X better than PERC10
 - ✓ Supports all drive interfaces: SAS4, SATA & NVME
 - √ x16 connectivity to devices to take full advantage of PCIe Gen5 throughput

System Cooling & Efficiency

- Power Manager & Smart Cooling
- High Power Optimized Airflow chassis design to maximize air cooling capabilities
 - ✓ Support for XCC/HBM in air-cooled chassis
- Optional CPU direct liquid cooling (DLC) solutions

BOSS-N1

- Segregated RAID controller for OS with secure UEFI boot that is rear facing and hot-pluggable
 - ✓ Enterprise-class 2 x M.2 NVMe devices with strong endurance and high quality that provide increased performance over BOSS-S1 with SATA drives

Data Processing Unit (DPU)

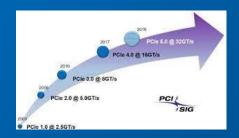
- SmartNIC with hardware accelerated networking and storage that enables customers to save CPU cycles
 - ✓ Improved security, running workloads and security software on different CPUs ("air gap")
 - ✓ Offload hypervisor, networking stack, and storage stack to the DPU making them OS independent

System Management

- Seamless integration of new 16G servers into your existing processes and tool set
- Complete iDRAC9 support for all components
 - ✓ PERC12, BOSS N-1, PCIe Gen5 devices, UEFI Secure Boot, Smart Cooling, DPU's, and more

Security

- TLS 1.3 with FIPS certification, SEKM 2.0 with support for NVMe drives and VxRail
- End-to-end threat management with Zero Trust approach
 - ✓ Silicon-based platform root of trust, multi-factor authentication (MFA), inventory and platform component tracking during delivery, tamper protection during shipping


DYLL TECHNOLOGIES

Future technology disjunction

Power consumption of current CPU and GPU gen increases massively (>350 / 500 Watt TDP)

Cooling will increase and need new technology (non-air cooled) New AI and ML applications will eat up those resources

Power and Cooling of existing Datacenters almost stays the same and is often limited to ~10-15 kw/rack*

Density is not longer possible with legacy environments

Compute power required is not increasing massively for existing workloads

New methods of power management might mitigate some of the requirements

DPUs can perform some tasks at lower power consumption

Cooling

Our world class engineers designed PowerEdge servers for ultimate thermal performance.

With a new layout and highperformance fans, hot air exits the system quickly and efficiently.

- Latest Intelligent thermal algorithms minimize fan and system power consumption while maintaining component reliability
- Enables custom cooling options that can be managed via iDRAC GUI

3rd generation DLC solutions enable dense configs with high TDP CPUs

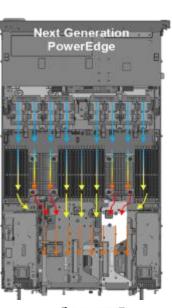
- expanding to cover more platforms, with solutions backed by Dell Services
- New 2U 4-way DLC-cooled GPU system in CY23

PowerEdge Smart Cooling Solutions

Overview

- Next generation technologies are driving power and heat higher and higher
- PowerEdge ensures no-compromise system performance through innovative cooling solutions, while also offering customers options that fit their facility or usage model needs (one size does not fit all!)

Air Cooling


- 16G delivers innovations that extend the range of air-cooled configurations
- Advanced designs airflow pathways are streamlined within the server, directing the right amount of air to where it's needed
- Latest generation fan and heat sinks to manage the latest high-TDP CPUs and other key components
- Intelligent thermal controls automatically adjusts airflow during workload or environmental changes, seamless support for channel add-in cards, plus enhanced customer control options for temp/power/acoustics

Direct Liquid Cooling (DLC)

- For high performance CPU & GPU options in dense configurations, Dell DLC effectively manages heat while improving overall system efficiency
- DLC options available for C-series, select R-series, 4S and MX platforms
- New: purpose-built liquid-cooled 2U 4-way GPU accelerator system

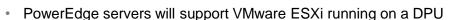
Edge Cooling

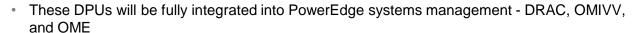
 New XR edge platforms deliver performance with extended temperature range support from -5°C to 55°C

Cooling Technology Comparisons

	Air cooling	Air + Supplemental	Direct Liquid Cooling (DLC)	Immersion	
Cooling Solution Options	ဤ	<u> </u>		Coolant Pump Coolant-to-Water Heat Exchange Cooling Tower Dry Cooler Exapositive Cooling Tower Dry Cooler Existing Chilled Water Loop	
Products	Traditional air-cooling & air-handling equipment Containment	In-row coolers Rear Door Heat Exchangers (RDHx) Containment (hot & cold aisle)	CPU/GPU Cold-plate loops Rack/facility level DLC products required	Single-phase (1P) and Two-phase (2P) Immersion tank solutions	
Environments	Traditional data centers	Traditional data centers, with facility water	Traditional data centers, with facility water	Non-traditional spaces, no conditioned air required (ex warehouse) Note: facility water required	
Main usage model	Low to Mid-density racks Up to ~ 15kW/rack	Mid to High-density racks Up to ~30kW/rack	Systems with high TDP parts High-density racks, up to ~80kW/rack	Limited/no air cooling available High-density racks, or high TDP parts	
Typical Cost Adder	NA	+	+ +	Single phase (1P): + + Two-phase (2P): + + +	
Availability	Standard cooling	Standard server cooling + 3 rd party supplemental cooling solutions	Dell factory supported configurations	Dell OEM project engagement	

Data Processing Unit


(DPU aka SmartNIC)

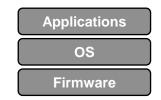

- Save CPU cycles with hardware accelerated networking and storage
- Improve security by running workloads and security software on different CPUs ("air gap")
- Offload hypervisor, networking stack, and storage stack to the DPU making them OS independent
- Enable landlord/tenant models by isolating tenants not just with software, but also through hardware

DPU Definition

- DPU is a combination of ARM Cores and a NIC ASIC
 - ARM cores run an OS and applications
 - NIC ASIC has hardware accelerate networking and storage
- PCIe form factor only

VMware ESXi 8.0 Distributed Services Engine on DPUs (formerly VMware's Project Monterrey)

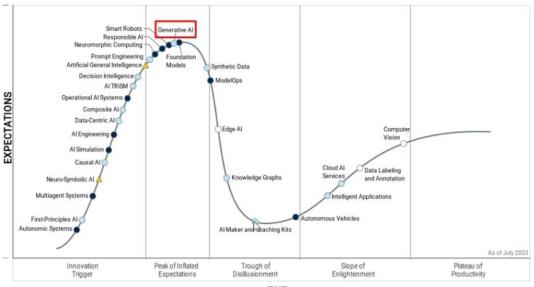




- This solution will be supported with VxRail
- This solution has special hardware integrations
 - A cable that provides a serial connection as well as a high-speed connection to the iDRAC (same type of connection that a LOM has)
 - In 16G support for "Always On" where the DPU can be powered on and off independently from the server. This is necessary for the DPU "landlord-tenant" model

NVIDIA Channel DPUs

- PowerEdge supports NVIDIA channel DPUs that will run Linux
- Channel DPUs will have limited systems management integration (i.e., the server cools the DPU)
- Channel DPUs will not support VMware ESXi



Accelerated portfolio

Gartner Hype Cycle

Hype Cycle for Artificial Intelligence, 2023

TIME

Gartner

PowerEdge.Next GPU Acceleration Server Portfolio

PCle Optimized

4-way SXM

4-way Dense

XE9640

8-way SXM

R760XA

- 2U monolithic
- 2-socket Sapphire Rapids CPU
- Up to 4 x double-wide GPUs
- Up to 12 x single-wide GPUs
- Full PCle GPU portfolio supported
- Air cooled with optional liquid cooling for CPU

XE8640

- 4U monolithic
- · 2-socket Sapphire Rapids CPU
- 4 x Nvidia H100 SXM NVLink GPUs;
- · Air cooled

...

- 2U monolithic
- 2-socket Sapphire Rapids CPU
- 4 x Nvidia H100 SXM NVLink GPUs (Q3 availability);
- 4 x Intel Data Center Max 1550 OAM XeLink GPUs (Q2 availability)
- · Direct liquid cooled CPUs and GPUs

XE9680

- 6U monolithic
- · 2-socket Sapphire Rapids CPU
- 8 x Nvidia H100 SXM NVLink GPUs -or-
- 8 x Nvidia A100 SXM NVLink GPUs
- · Air cooled

High performance 2U server purpose built for dense PCIe GPU acceleration.

Maximize AI, HPC, VDI and performance graphics supporting multiple GPU choices.

Use cases:

- AI/ML Inferencing
- AI/ML Training
- Rendering/Perf. Gfx

VDI

Accelerate and automate analysis into insights.

Maximize AI initiatives performance in a 4-way GPU, 4U server.

Use cases:

- AI/ML Training
- · HPC Modeling & Simulation

Push performance boundaries with a dense form-factor, liquid cooled approach to Al initiatives.

Smallest form factor 4-way GPU, dense 2U AI/ML/DL & HPC server.

Use cases:

- AI/ML Training
- HPC Modeling & Simulation

Modernize operations and infrastructure to drive new Al initiatives.

Optimized for demanding Al/Machine Learning & Deep Learning applications

Use cases:

Large AI/ML/DL Training

NVIDIA GPU portfolio

		H100			A 100	A30	L4	A2	L40S	L40	A40	A10	A16
Design		Highest Perf A LLM, HPC, DA			gh Perf ompute	Mainstream Compute	Universal AI, Video, and Graphics	Entry-Level Small Footprint	Gen Al	Powerful Graphics + Al	High Perf Graphics	Mainstream Graphics & Video with Al	High Density Virtual Desktop
Form Factor	SXM5	x16 PCle Gen5 2 Slot FHFL 3 NVlink Bridge	X16 PCle Gen5 Dual 2 Slot FHFL using 3 NVLink Bridges	SXM4	x16 PCle Gen4 2 Slot FHFL 3 NVLink Bridge	x16 PCle Gen4 2 Slot FHFL 1 NVLink Bridge	X16 PCle Gen4 1 slot LP	x8 PCle Gen4 1 Slot LP	x16 PCle Gen4 2 Slot FHFL	x16 PCle Gen4 2 Slot FHFL	x16 PCle Gen4 2 Slot FHFL 1 NVLink Bridge	x16 PCle Gen4 1 slot FHFL	x16 PCle Gen4 2 Slot FHFL
Max Power	700W	350W	2x 400W	500W	300W	165W	72W	60W	350W	300W	300W	150W	250W
FP64 TC FP32 TFLOPS ²	67 67	51 51	134 134	19	.5 19.5	10 10	NA 30	NA 4.5	NA 91.6	NA 90	NA 37	NA 31	NA 4x4.5
TF32 TC FP16 TC TFLOPS ²	989 1979	756 1513	1979 3958	3	2 624	165 330	120 242	18 36	183 366	90 181	150 300	125 250	4x18 4x36
FP8 TC INT8 TC TFLOPS/TOPS ²	3958 3958	3026 3026	7916 7916	N	A 1248	NA 661	485 485	NA 72	733 734	362 724	NA 600	NA 500	NA 4x72
GPU Memory	80GB HBM3 3350 GB/s	80GB HBM2e 2000 GB/s	188GB HBM3 7600 GB/s		B HBM2e 1935 GB/s	24GB HBM2 933GB/s	24GB GDDR6 300GB/s	16GB GDDR6 200 GB/s	48GB GDDR6 864 GB/s	48GB GDDR6 864 GB/s	48GB GDDR6 696GB/s	24GB GDDR6 600GB/s	4x 16GB GDDR6 4x 232 GB/s
Multi-Instance GPU (MIG)	Up t	:0 7	UP to 14	ι	Jp to 7	Up to 4		-	-	-	-	-	-
Media Acceleration	7 JPEG [7 Video I		14 JPED Decoder 14 Video Decoder			1 JPEG Decoder 4 Video Decoder	2 Video Encoder ³ 4 Video Decoder ³ 4 JPEG Decode	1 Video Encoder 2 Video Decoder (+AV1 decode)	3 Video Decoder	r 3 Video Encoder r 3 Video Decoder r 4 JPEG Decoder (+AV1 decode)		Decoder	4 Video Encoder 8 Video Decoder (+AV1 decode)
Ray Tracing			-	-			Yes	Yes		Yes			
Transformer Engine	Ye	es	Yes	-			FP8	-	FP8	FP8		-	-
DPX Instructions	Ye	es	Yes									-	
Graphics		r in-situ visualiza VIDIA vPC or RT				Better	Good	Top-of-Line	Top-of-Line	Best	Better	Good	
vGPU	Yes			Yes					Yes				
Hardware Root of Trust	Internal and External			Internal with Option for External				Internal	Internal Internal with Option for External			External	
Confidential Computing		Yes			(1)	-	-	-	-	-	-	-	-
NVIDIA AI Enterprise	Add-on Included Add-on			Add-on				Add-on					

- 1. Supported on <u>Azure NVIDIA A 100</u> with reduced performance compared to A 100 without Confidential Computing or H100 with Confidential Computing.
- 2. All Tensor Core numbers with sparsity. Without sparsity is ½ the value.
- 3. Includes AV1 in addition to H.265, H.264, VP9, VP8, MPEG4

GPU Accelerators

PCle Adapter

4-way SXM / OAM Baseboard

- · Accelerate demanding AI/ML, HPC, data analytics workloads for faster value extraction and collaboration for VDI
- Drive enhanced workload outcomes with greater insights, inferencing and visualization

Brand	Model	Memory	Max Power	Form-Factor	2-way Bridge Capable	Recommended Workloads				
	DCIa form factor									
PCIe form factor										
AMD	MI210	64 GB HBM2e	300W	DW - FHHL	✓	HPC Al Training				
Intel	Max 1100*	48 GB HBM2e	300W	DW - FHHL	✓	HPC Al Training				
Intel	Flex 140*	12 GB GDDR6	75W	SW - HHHL FHHL		Al Training				
			0	AM form facto	r					
			0	AM form facto	or					
Intel	Max 1550*	80 GB HBM2e	600W	AM form facto	or	Al Training HPC				

To the edge

Accelerate anywhere

- Dell's 'built-for-the-edge' server portfolio
- Short-depth to fit in field cabinets & racks (<483mm/<19")
- Front-facing I/O to make servicing in tight spaces easier for field engineers
- Shock, vibration, dust, and thermally rated for harsh and unpredictable edge environments (MIL/NEBS)
- Dell ecosystem-enabled with iDRAC

Monolithic

472mm chassis 2U, 2S Intel® Xeon® Scalable Processors

XR7620

- Supports 2 x 300W GPUs for Al at Edge
- GPU and CPU-optimized configurations to handle multitude of edge-use cases
- -5C to 55C operating temperature

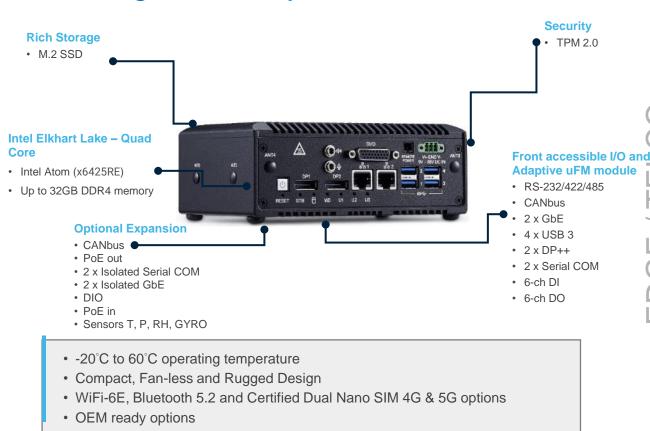
XR5610

- 463mm chassis 1U, 1S Intel® Xeon® Scalable Processor
- Right-sized for on-site dedicated workloads
- Telco-optimized configuration with time & sync card available
- -5C to 55C operating temperature

Multi-node

XR4000

- 2U multi-node with Intel® Xeon® D
- Dell shortest-depth server at 350mm
- Nano witness-node allows for VM-cluster in single box
- Rackable, stackable, and wall-mountable for ultimate deployment flexibility
- -5C to 55C operating temperature



XR8000

- 2U multi-node with 1S Intel® Xeon® Scalable with optional vRAN boost up to 4 nodes per chassis
- -20C to 65C operating temperature for select configurations
- Telco-optimized for DU and CU RAN deployments
- Extensible to multitude of enterprise edge use cases

Dell Edge Gateway 3200

TARGET WORKLOADS

Manufacturing

Simplify and automate data collection at every stage of the production cycle

Telecom

Accelerate innovation and revenue growth with new services

Retail

Personalize customer experience with data insights

Smart Cities

Improve quality of life by increasing the city's efficiency

Summary & Conclusion

Thank You