

Grivory HT

Enhanced Performance at High Temperatures

Contents

- Introduction 3
 - Grivory HT grades
 - Grivory HT nomenclature
- Characteristics of Grivory HT1 grades 4
- Characteristics of Grivory HT2 grades 5
- Characteristics of Grivory HT3 grades 6
- 8 Properties of Grivory HT1 grades
- Properties of Grivory HT2 grades 10
- Properties of Grivory HT3 grades 14
- 16 Design data – Short-term behaviour
- Design data Long-term behaviour 18
- Flexural fatigue strength Wöhler curves 19
- Resistance to weathering 20
- Resistance to heat ageing 21
- Resistance to chemicals 22
- Resistance to water and hydrolysis 23
- Resistance to automotive media 24
- 26 Comparison to other construction materials
- Approvals 28
- Fire behaviour 29
- Drying and storage 30
- Processing using injection-moulding methods 31
- Post treatment 32
- Machining / Use of reclaimed material 33
- 34 Customer services and technical support
- 35
- CAMPUS / EMS Material Database 36
- Quality standards **37** Delivery form Recycling of packaging material
- EMS-GRIVORY products 38
- Index 39
- EMS-GRIVORY worldwide 40

Introduction / Grivory HT grades / Grivory HT nomenclature

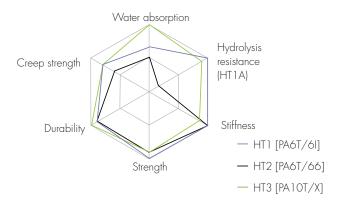
Introduction

Grivory® is the trade name of a group of engineering plastics manufactured and marketed by EMS-GRI-VORY. Grivory HT is a semi-crystalline thermoplastic construction material based on polyphthalamide (PPA).

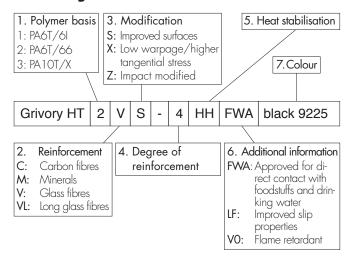
A completely new and specific process for the manufacture, polymerisation and compounding of Grivory HT in Domat/Ems (Switzerland) has been developed by EMS-GRIVORY. Production capacity was adjusted to meet the good demand and EMS-GRIVORY is now one of the most important manufacturers of polyphthalamides in the world and clear market leader in Europe.

Grivory HT is characterised by a high-performance property profile. Technical injection-moulding parts made of this material have impressive dimensional stability, even at high application temperatures. The property profile of Grivory HT overlaps well into the performance range of high-performance plastics. The values of Grivory HT for properties such as stiffness and strength at application temperatures up to 120°C - important for replacement of metals - surpass those of materials such as PPS or PEEK.

The Grivory FVVA grades are physiologically harmless and can also be used in sensitive application areas such as in direct contact with drinking water and foodstuffs.


Grivory HT is available as granules for processing using injection-moulding methods on conventionally available equipment and moulds. The different grades of material within this group result from the type and composition of the basic polymers and their modification with reinforcing materials (glass fibre, minerals), stabilisers and processing aids.

Givory HT is used for the efficient manufacture of high-performance technical components which are characterised by:


- stiffness and strength at high application temperatures
- property values which are influenced very little by absorption of water
- good dimensional stability and a low tendency to warp
- good resistance to chemicals
- good surface quality
- rational and cost-effective manufacture

Grivory HT grades

Grivory HT1: PA6T/6IGrivory HT2: PA6T/66Grivory HT3: PA10T/X

Grivory HT Nomenclature

Characteristics of Grivory HT1 grades

Grivory HT1 grades	Characteristics and properties	Application areas
HTV-3H1 HTV-4H1 HTV-45H1 HTV-5H1 HTV-6H1 HT1V-65H	Injection-moulding grade with 30-65 wt% glass-fibre reinforcement based on polyphthalamide PA 6T/61. Stiff and strong at high application temperatures. Heat stabilised, dimensionally stable, low water uptake, good resistance to chemicals and automotive media (fuel, oils, brake fluid) even at high temperatures.	Stiff, dimensionally accurate technical parts in mechanical engineering, automotive and electro applications. Functional parts in contact with chemicals and requiring good performance values at high application temperatures.
HT1V-3 FWA HT1V-4 FWA HT1V-5 FWA HT1V-6 FWA HT XE 10811 (HT1VA-4 FWA) HT XE 10812 (HT1VA-5 FWA)	Drinking water approved, heat stabilised injection-moulding grades with 30-60 wt% glass-fibre reinforcement, based on polyphthalamide PA6T/6I. Approved for direct contact with drinking water as per ACS, KTW, W270, WRAS and NSF standards. EU conformity for direct contact with foodstuffs and unlimited FDA approval for contact with all foodstuffs. UL listed.	Stiff, dimensionally accurate technical parts, functional parts in sanitary applications, foodstuff industry applications and domestic appliances in direct contact with drinking water and foodstuffs at high application temperatures. Grivory HT XE 10811 and HT XE 10812 are used for the highest hydrolysis requirements.
HTV-4X1 black 9205 HTV-5X1 black 9205 HTV-6X1 black 9205	Injection-moulding grade with 40-60 wt % glass-fibre reinforcement based on polyphthalamide PA 6T/61. Stiff and strong at high application temperatures. Heat stabilized, dimensionally stable, low water uptake, good resistance to chemicals and automotive media (fuel, oils, brake fluid) even at high temperatures.	Stiff, dimensionally accurate technical parts in mechanical engineering, automotive and electro applications which are under voltage and exposed at high temperature.
HT1V-3 HY HT1V-4 HY HT1V-5 HY HT XE 10814 (HT1VA-4 HY) HT XE 10815 (HT1VA-5 HY) HT XE 10827 (HT1VA-35 HYS)	Hydrolysis-optimised, heat stabilised injection-moulding grades with 30-50 wt% glass-fibre reinforcement, based on polyphthalamide PA6T/6I. Stiff and strong even at high application temperatures and in direct contact with hot water or automotive coolants.	Stiff, dimensionally accurate technical parts. Hot-water housings and functional components in automotive construction and sanitary and heating system applications. Grivory HT XE 10814, HT XE 10815 and HT XE 10827 are used for the highest hydrolysis requirements. HT XE 10827 (improved demolding) is used for complicated geometries or for parts with undercuts.
HTM-4H1	Mineral-reinforced (40 wt%) injection-moulding grade based on polyphthalamide PA6T/6I. Stiff and strong even at high application temperatures. Heat stabilised. Isotropic properties, low warpage, dimensionally stable, low thermal expansion. UL listed.	Stiff, dimensionally accurate parts with good dimensional stability and low thermal expansion. Functional and visible components in automotive applications with electrochemical surface coatings.
HT1V-33X LED white 6861	33 wt% glass-fibre reinforcement on a PA6T/61 basis. High light reflection, good flowability, good strength and stiffness values.	Thin-walled LED reflector housings.
HT1V-33X UV white 6861	33 wt% glass-fibre reinforcement on a PA6T/61 basis. High light reflection, good flowability, good strength and stiffness values, yellowing optimised.	Thin-walled LED reflector housings with reduced yellowing and longer life expectancy.

Characteristics of Grivory HT2 grades

Grivory HT2 grades	Characteristics and properties	Application areas
HT2V-3H HT2V-4H HT2V-45H HT2V-5H HT2V-6H	Injection-moulding grades with 30-60 wt% glass-fibre reinforcement based on polyphthalamide, PA6T/66. Simple to process. Stiff and strong at high application temperatures. Heat stabilised, dimensionally stable, good resistance to chemicals.	Stiff, dimensionally accurate technical parts in mechanical engineering, automotive and electro applications. Functional components in contact with chemicals and requiring good performance values at high application temperatures.
HT2V-3H LF	Material used for sliding bearings, PTFE-modified injection-moulding grade with 30 wt% glass-fibre reinforcement, based on polyphthalamide PA6T/66. Simple to process, stiff and strong at high application temperatures. Little wear, heat stabilised, dimensionally stable, good resistance to chemicals	Stiff, dimensionally accurate bearing components in mechanical engineering, automotive and electro applications. Tribologically stressed functional components (joint sleeves, bearing halves, guide channels, sliders) in contact with chemicals and requiring high performance values at high application temperatures.
HT2C-3X LF black 9833	Material used for sliding bearings, PTFE modified injection-moulding grade with 30 wt% carbon fibre reinforcement based on polyphthalamide, PA6T/66. Maximum stiffness and strength, conductive, very low density.	Bearing components to satisfy highest requirements.
HT2V-3X VO HT2V-4X VO HT2V-5X VO	Flame retardant, halogen-free injection-moulding grades with 30-50 wt% glass-fibre reinforcement, based on polyphthalamide PA6T/66. Self-extinguishing (UL 94 V-0). Good flow properties. Stiff and strong at high application temperatures. Light inherent colour, colourable. UL listed.	Self-extinguishing, stiff, dimensionally accurate technical parts in electro applications where the flammability classification of the material (as per UL 94 V-0) is a mandatory prerequisite. Suitable for thermal pulse loading commonly occurring in industrial soldering processes. RoHS: Parts made of these materials conform to the requirements as per RoHS (2002/95/EG and 2011/65/EU, Restriction of Hazardous Substances). WEEE: Parts made of these materials are exempt from the requirements governing "selective recycling" as per guideline 2002/96/EC concerned with disposal of used electro and electronic components
HT2C-3X	Carbon-fibre-reinforced (30 wt%) injection-moulding grade based on polyphthalamide PA6T/66. Very stiff and strong, low density, conductive.	Stiff, light, dimensionally accurate components in mechanical engineering and automotive applications. Tribologically stressed functional components in contact with chemicals and requiring high performance values at high application temperatures.
HT2VZ-15H HT2VZ-33H HT2VZ-25X	Injection-moulding grades with 15-33 wt% glass-fibre reinforcement based on polyphthalamide, PA6T/66. Easy to process. Stiff, impact resistance and strong at high working temperatures. Heat stabilised, dimensionally stable, good resistance to chemicals.	Stiff, impact resistance, dimensionally accurate technical parts in mechanical engineering, automotive and electro applications. Functional components in contact with chemicals and requiring good performance values at high application temperatures.
XE 4216 (HT2VS-3HH) XE 4217 (HT2VS-45HH)	Injection-moulding grades with 30 resp. 45 wt% glass-fib- re reinforcement based on polyphthalamide, PA6T/66 with optimised heat resistance and surface quality.	For components such as turbo-charger air ducts exposed to extremely high thermal stressing.

"Grivory XE..." designates the new, commercialised pilot products during the market introduction phase. The future standard product designation is shown in brackets, example: Grivory XE 4216 (HT2VS-3HH).

Characteristics of Grivory HT3 grades

Grivory HT3 grades	Characteristics and properties	Application areas
XE 4063 (HT3V-30H)	Injection-moulding grades with 30 resp. 50 wt% glass-fi- bre reinforcement, based on polyphthalamide, PA10T/X. Very good resistance to chemicals and dimensional sta-	Stiff and strong, dimensionally accurate technical parts in mechanical engineering, automotive and electro applications at high working temperatures.
XE 4065 (HT3V-50H)	bility. Made partly from renewable raw materials.	
XE 4095 (HT3V-50)	Injection-moulding grades with 50 wt% glass-fibre reinforcement, based on polyphthalamide, PA10T/X. Good flowability, very good resistance to chemicals and dimensional stability. Made partly from renewable raw materials.	Stiff and strong, thin-walled and dimensionally accurate technical parts in mechanical engineering and electro applications at high working temperatures.
XE 4101 black (HT3V-40 FVVA)	Drinking water approved injection-moulding grade with 40 wt% glass-fibre reinforcement, based on polyphthalamide, PA10T/X. Excellent dimensional stability. Made partly from renewable raw materials. Approved for direct contact with drinking water as per ACS, KTW, W270, WRAS and NSF directives. EU and FDA conform.	Stiff, dimensionally accurate technical parts, functional parts in sanitary applications, foodstuff industry applications and domestic appliances in direct contact with drinking water and foodstuffs at high application temperatures and requiring hydrolysis resistance.
XE 4102 (HT3C-30)	Carbon-fibre-reinforced (30 wt%) injection-moulding grade based on polyphthalamide PA10T/X66. Very stiff and strong, low density, conductive, very good resistance to chemicals. Made partly of renewable raw materials.	Stiff, light and dimensionally accurate technical parts in mechanical engineering and automotive applications. Tribologically stressed functional components in contact with chemicals and providing a good performance at high application temperatures.
HT3Z LF black	Non-reinforced injection-moulding grade, impact resistant, PTFE modified, based on polyphthalamide, PA10T/X. Very good resistance to chemicals and dimensional stability. Made partly of renewable raw materials.	Durable, dimensionally accurate bearing components in mechanical engineering, automotive and electro applications. Tribologically stressed functional components (joint sleeves, bearing halves, guide channels, sliders) in contact with chemicals and requiring high performance values at high application temperatures.
HT3Z black	Non-reinforced injection-moulding grade, impact resistant, PA10T/X. Very good resistance to chemicals and dimensional stability. Made partly of renewable raw materials.	Durable, dimensionally accurate bearing components in mechanical engineering, automotive and electro applications in contact with chemicals and requiring high performance values at high application temperatures.
XE 4202 black 9564	Extrusion grade unreinforced on polyphthalamide PA10T/X-HI.	Smooth and corrugated tubes requiring high chemical and temperature resistance (e.g. tubes for Urea, oil etc. under the bonnet).

Grivory HT3 grades	Characteristics and properties	Application areas
XE 4134 (HT3VX-30)	Injection-moulding grade with 30 wt% glass-fibre reinforcement, optimised against warpage, based on polyphthalamide, PA10T/X. Very good resistance to chemicals and dimensional stability. Made partly from renewable raw materials.	Stiff and durable, dimensionally accurate bearing components in mechanical engineering, automotive and electro applications at high operating temperatures. Components exposed to high internal pressure and those with high requirements regarding distortion.
XE 4027 (HT3V-30 VO)	Flame retardant, halogen-free injection-moulding grade with 30 wt% glass-fibre reinforcement, based on polyphthalamide PA10T/X. Self-extinguishing (UL 94 V-O), good flow properties. Stiff and strong at high application temperatures. Light inherent colour, colourable. UL listed including RTI. Optimised against corrosion. Satisfies RoHS regulations and WEEE requirements. Made partly of renewable raw materials.	Self-extinguishing, stiff, dimensionally accurate technical parts in electro applications where a V-O flammability classification of the material (as per UL 94) is a mandatory prerequisite. Suitable for lead-free SMT reflow soldering e.g. as per JEDEC J-STD-020C.
XE 4120 (HT3V30 V0 CO)	Flame retardant, halogen-free injection-moulding grades with 30 wt% glass-fibre reinforcement, based on polyphthalamide PA10T/X. Self-extinguishing (UL 94 V-0), good flow properties. Stiff and strong at high application temperatures. UL listed including. Satisfies RoHS regulations and WEEE requirements. Excellent suitability for soldering (SMT reflow soldering), optimised against corrosion.	Self-extinguishing, stiff, dimensionally accurate technical parts in electro applications where the V-O flammability classification of the material (as per UL 94) is a mandatory prerequisite. Excellent suitability for lead-free SMT reflow soldering e.g. STM plug connectors as per JEDEC J-STD-020C.
XE 4164 (HT3V-30 CO)	Injection-moulding grades with 30 wt% glass-fibre reinforcement, based on polyphthalamide, PA10T/X. Good flowability, very good resistance to chemicals and dimensional stability.	Stiff, light and dimensionally accurate technical parts in electro applications where a HB flammability classification of the material (as per UL 94) is sufficient. Excellent suitability for lead-free SMT reflow soldering e.g. SMT plug connectors as per JEDEC J-STD-020C.
XE 4185 (HT3 VO CO)	Flame retardant, halogen-free, non-reinforced injection-moulding grades based on polyphthalamide PA10T/X. Self-extinguishing (UL 94 V-0), good flow properties. Good strength values at high application temperatures. UL listed. Satisfies RoHS regulations and WEEE requirements. Excellent suitability for soldering (SMT reflow soldering), optimised against corrosion.	Self-extinguishing, dimensionally accurate and durable technical parts in electro applications where a V-O flammability classification of the material (as per UL 94) is a mandatory prerequisite. Excellently suited for lead-free SMT reflow soldering e.g. SMT plug connectors as per JE-DEC J-STD-020C.
XE 4221 black 9564 XE 4221 red 7325 (black appearance)	Injection-moulding grade with 30 wt % glass-fibre reinforcement based on polyphthalamide PA 10T/X.	Automotive connector requiring high chemical and temperature resistance. Grivory XE 4221 red 7325 is suitable for laser welding to Grivory XE 4202.

Properties of Grivory HT1 grades

Mechanical properties					HTV-3H1 black 9205	HTV-4H1 black 9205
Tensile E-modulus	l mm/min	ISO 527	MPa	dry cond.	11 000 11 000	14 500 14 000
Tensile stress at break	5 mm/min	ISO 527	MPa	dry cond.	190 170	220 210
Elongation at break	5 mm/min	ISO 527	%	dry cond.	2 2	2 2
Impact strength	Charpy, 23°C	ISO 179/2-1eU	kJ/m²	dry cond.	50 50	70 70
Impact strength	Charpy, -30°C	ISO 179/2-1eU	kJ/m²	dry cond.	50 50	70 70
Notched impact strength	Charpy, 23°C	ISO 179/2-1eA	kJ/m²	dry cond.	7 7	8 8
Notched impact strength	Charpy, -30°C	ISO 179/2-1eA	kJ/m²	dry cond.	7 7	8 8
Ball indentation hardness		ISO 2039-1	MPa	dry cond.	280 270	310 300
Thermal properties						
Melt temperature	DSC	ISO 11357	°C	dry	325	325
Heat deflection temperature HDT/A	1.8 MPa	ISO 75	°C	dry	>280	>280
Heat deflection temperature HDT/C	8.0 MPa	ISO 75	°C	dry	155	200
Thermal expansion longitudinal	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry	20	15
Thermal expansion transverse	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry	50	50
Maximum working temperature	long-term	ISO 2578	°C	dry	150	150
Maximum working temperature	short-term	EMS	°C	dry	260	260
Electrical properties						
Dielectric strength		IEC 60243-1	kV/mm	dry cond.	30 30	30 30
Comparative tracking index		IEC 60112	-	cond.	575	600
Specific volume resistance		IEC 60093	$\Omega \cdot m$	dry cond.	1.0E+11 1.0E+11	1.0E+11 1.0E+11
Specific surface resistance		IEC 60093	Ω	cond.	1.0E+12	1.0E+12
General properties						
Density		ISO 1183	g/cm³	dry	1.44	1.53
Flammability (UL 94)		IEC 60695-11-10	Rating	-	HB	HB
Water absorption	23°C/saturated	ISO 62	%	-	3.5	3.5
Moisture absorption	23°C/50% r.h.	ISO 62	%	-	1.8	1.5
Linear mould shrinkage	longitudinal	ISO 294	%	dry	0.20	0.10
Linear mould shrinkage	transverse	ISO 294	%	dry	0.75	0.70
Product designation as per ISO 16396					PA6T/6I MH, 12-110, GF30	PA6T/61 MH, 12-140, GF40

	1	1	1					1	ı
HTV-45H1 black 9205	HTV-5H1 black 9205	HTV-6H1 black 9205	HT1V-65H black 9205	HT1V-3 FVVA black 9225	HT1V-4 FVVA black 9225	HT1V-5 FVVA black 9225	HT1V-6 FVVA black 9225	HT XE 10811 (HT1VA-4 FVVA)	HT XE 10812 (HT1VA-5 FVVA)
16 500	18 000	23 000	25 500	11 000	14 500	18 000	23 000	14 500	18 000
16 000	17 500	22 500	25 500	11 000	14 000	17 500	22 500	14 500	18 000
235	250	260	280	190	220	250	260	250	275
230	240	250	270	170	210	240	250	230	260
2	2	1.5	1.5	2	2	2	1.5	2	2
2	2	1.5	1.5	2	2	2	1.5	2	2
75	80	75	60	50	70	80	75	70	70
75	80	75	60	50	70	80	75	70	70
75	80	75	60	50	70	80	75	65	70
75	80	75	60	50	70	80	75	65	70
12	11	11	12	7	8	11]]	11	12
12	11	11	12	7	8	11	11	11	12
12	10	10]]	7	8	10	10]]	12
12	10	10	11	7	8	10	10	11	12
325	340	360	420	280	310	340	360	300	340
320	340	360	420	270	300	340	360	300	340
325	325	325	325	325	325	325	325	325	325
>280	>280	>280	>280	>280	>280	>280	>280	280	280
205	210	215	240	155	200	210	215	160	185
15	15	15	15	20	15	15	15	15	15
45	40	40	40	50	50	40	40	45	45
150	150	150	150	140	140	140	140	140	140
265	265	270	280	260	260	265	270	250	250
	200	2, 0	200	200		200	2, 0	200	200
30	30	30	30	30	30	30	30	30	32
30	30	30	30	30	30	30	30	30	31
600	600	600	600	575	600	600	600	600	600
1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+10	1.0E+10
1.0E+11	1.0E+11	1.OE+11	1.0E+11	1.OE+11	1.OE+11	1.0E+11	1.0E+11	1.0E+10	1.0E+10
1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+10	1.0E+10
1.59	1.65	1.78	1.85	1.44	1.53	1.65	1.78	1.53	1.64
НВ	НВ	НВ	НВ	НВ	НВ	НВ	НВ	НВ	НВ
3.3	3.0	3.0	2.8	3.5	3.5	3.0	3.0	3.5	3.0
1.4	1.3	1.2	1.1	1.8	1.5	1.3	1.2	1.5	1.3
0.10	0.10	0.10	0.10	0.20	0.10	0.05	0.05	0.1	0.05
0.65	0.50	0.45	0.40	0.70	0.55	0.45	0.25	0.55	0.45
PA6T/6I MH, 12-160,	PA6T/6I MH, 12-190,	PA6T/6I MH, 12-220,	PA6T/6I MH, 12-250,	PA6T/6I MH, 12-110,	PA6T/6I MH, 12-140,	PA6T/6I MH, 12-190	PA6T/6I MH, 12-220,	PA 6T/6I MH, C12-140,	PA 6T/6I MH, C12-140,
GF45	GF50	GF60	GF65	GF30	GF40	GF50	GF60	GF 40	GF 50

Properties of Grivory HT1 and HT2 grades

Mechanical properties					HT1V-3 HY black 9205
Tensile E-modulus	1 mm/min	ISO 527	MPa	dry cond.	11 000
Tensile stress at break	5 mm/min	ISO 527	MPa	dry cond.	190 170
Elongation at break	5 mm/min	ISO 527	%	dry cond.	2 2
Impact strength	Charpy, 23°C	ISO 179/2-1eU	kJ/m²	dry cond.	50 50
Impact strength	Charpy, -30°C	ISO 179/2-1eU	kJ/m²	dry cond.	50 50
Notched impact strength	Charpy, 23°C	ISO 179/2-1eA	kJ/m²	dry cond.	7 7
Notched impact strength	Charpy, -30°C	ISO 179/2-1eA	kJ/m²	dry cond.	7 7
Ball indentation hardness		ISO 2039-1	MPa	dry cond.	280 270
Thermal properties					
Melt temperature	DSC	ISO 11357	°C	dry	325
Heat deflection temperature HDT/A	1.8 MPa	ISO 75	°C	dry	>280
Heat deflection temperature HDT/C	8.0 MPa	ISO 75	°C	dry	155
Thermal expansion longitudinal	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry	20
Thermal expansion transverse	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry	50
Maximum working temperature	long-term	ISO 2578	°C	dry	150
Maximum working temperature	short-term	EMS	°C	dry	260
Electrical properties					
Dielectric strength		IEC 60243-1	kV/mm	dry cond.	30 30
Comparative tracking index		IEC 60112		cond.	575
Specific volume resistance		IEC 60093	$\Omega\cdot$ m	dry cond.	1.0E+11 1.0E+11
Specific surface resistance		IEC 60093	Ω	cond.	1.0E+12
General properties					
Density		ISO 1183	g/cm³	dry	1.44
Flammability (UL 94)		IEC 60695-11-10	Rating	-	НВ
Water absorption	23°C/saturated	ISO 62	%	-	3.5
Moisture absorption	23°C/50% r.h.	ISO 62	%	-	1.8
Linear mould shrinkage	longitudinal	ISO 294	%	dry	0.20
Linear mould shrinkage	transverse	ISO 294	%	dry	0.70
Product designation as per ISO 16396					PA6T/6I MH, 14-110, GF30

Grivory	Н	Ti	

HTIV4 HY Hole 900										
14 000			HTM-4H1				HT2V-3H			HT2V-45H
220	14 500	18 000	7 500	14 500	18 000	13 500	11 000	11 000	15 000	16 000
210	14 000	17 500	7 500	14 500	18 000	13 500	11 000	9 600	13 000	15 500
2 2 1.5 2.0 2.0 2.5 2.0 2.7 2.7 2 2 2 1.5 2.0 2.0 2.5 2.0 2.7 2.7 2 70 80 50 70 70 50 45 55 70 75 70 80 20 65 70 45 40 45 60 60 70 80 25 65 70 45 40 45 60 60 8 11 5 11 12 11 9 9 11 12 11<	220	250	105	250	275	230	180	190	230	240
2	210	240	105	230	260	220	165	150	165	215
70		2	1.5	2.0	2.0	2.5	2.0	2.7	2.7	
70										
70 80 25 65 70 45 40 45 60 60 60 80 8 11 5 11 12 11 9 9 11 11 11 8 11 5 11 12 11 9 9 11 11 11 8 10 3 11 12 10 9 7 9 10 3 10 8 10 3 11 12 10 9 7 9 10 3 10 3 10 3 10 9 7 9 10 3 10 3 10 3 10 12 10 9 7 9 10 3 10 3 10 3 10 3 10 9 7 9 10 3 10 3 10 3 10 260 300 340 295 265 260 270 315 300 340 260 300 340 295 255 255 210 250 310 310 320 340 260 300 340 295 255 255 210 250 310 310 325 325 325 325 325 325 325 325 320 280 275 280 280 280 275 280 280 280 280 280 280 280 280 280 280								1		
70							45			
S								1		
8 11 5 11 12 11 9 9 11 11 8 10 3 11 12 10 9 7 9 10 310 340 260 300 340 295 265 260 270 315 300 340 260 300 340 295 265 260 270 315 300 340 260 300 340 295 255 210 250 310 325 325 325 325 325 320 280 200 20 </td <td></td>										
R								1		
8 10 4 11 12 10 9 7 9 10 310 340 260 300 340 295 265 260 270 315 300 340 260 300 340 295 255 210 250 310 325 325 325 325 325 325 325 326 280 280 280 280 ≥280 145 280 280 275 280 280 280 ≥280 200 210 1115 160 185 155 200 200 200 235 15 15 50 15 15 20 20 20 20 15 50 40 50 45 45 45 60 70 80 70 60 150 150 140 140 140 140 140 150 150 140 260 265 250 250 250 250 230 260 250 250 265 30 30 32 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+11 1.0E+10 1.										
310 340 260 300 340 295 265 260 270 315 300 340 295 255 210 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 310 250 250 250 250 250 250 250 250 250 25										
300 340 260 300 340 295 255 210 250 310 325 325 325 325 325 325 320 280 280 280 280 280 280 200 210 115 160 185 155 200 200 200 235 15 15 50 40 50 45 45 60 70 80 70 60 150 150 140 140 140 140 140 150 150 150 260 265 250 250 250 230 260 250 250 250 265 30 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10 1.0E			· ·				-			
325 325 325 325 325 325 325 310 310 300 300 310								1		
S280 S280 145 280 280 275 280 280 280 S280	300	340	260	300	340	295	255	210	250	310
S280 S280 145 280 280 275 280 280 280 S280										
S280 S280 145 280 280 275 280 280 280 S280										
200			-							
15 15 50 15 15 20 20 20 20 15 50 40 50 45 45 60 70 80 70 60 150 150 140 140 140 140 150 150 140 260 265 250 250 250 230 260 250 250 265 30 30 32 30 32 31 38 45 45 38 30 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10 1.0E+12 1.0E+12 1.0E+1										
50 40 50 45 45 60 70 80 70 60 150 150 140 140 140 140 140 150 150 140 260 265 250 250 250 230 260 250 250 265 30 30 32 30 31 31 38 45 45 38 30 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10 1.0E+12 1.0E+12 1.0E+12 1.0E+12 1.0E+12 1.0E+12 1.0E			115	160			200	200	200	
150	15	15	50	15	15	20	20	20	20	15
260 265 250 250 250 230 260 250 250 265 30 30 32 30 31 31 38 45 45 38 30 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10 1.	50	40	50	45	45	60	70	80	70	60
30 30 32 30 31 31 38 45 45 38 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+11 1.0E+10 1.0E+	150	150	140	140	140	140	140	150	150	140
30 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10	260	265	250	250	250	230	260	250	250	265
30 30 32 30 31 31 38 45 45 37 600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10										
600 600 575 600 600 575 600 525 600 600 1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10	30	30	32	30	32	31	38	45	45	38
1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10 1.0E+12 1.0E+12 <t< td=""><td>30</td><td>30</td><td>32</td><td>30</td><td>31</td><td>31</td><td>38</td><td>45</td><td>45</td><td>37</td></t<>	30	30	32	30	31	31	38	45	45	37
1.0E+11 1.0E+11 1.0E+10 1.0E+10 1.0E+09 1.0E+10 1.0E+12 1.0E+12 <t< td=""><td>600</td><td>600</td><td>575</td><td>600</td><td>600</td><td>575</td><td>600</td><td>525</td><td>600</td><td>600</td></t<>	600	600	575	600	600	575	600	525	600	600
1.0E+11 1.0E+11 1.0E+10 1.0E+12 1.0E+12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1.53 1.65 1.55 1.53 1.64 1.47 1.42 1.43 1.58 1.56 HB						1.0E+10				
HB HB<	1.0E+12	1.0E+12	1.0E+12	1.0E+10	1.0E+10	1.0E+10	1.0E+12	1.0E+12	1.0E+12	1.0E+12
HB HB<										
HB HB<	1.53	1.65	1.55	1.53	1.64	1.47	1.42	1.43	1.58	1.56
3.5 3.0 3.5 3.5 3.0 4.5 5.0 5.4 4.3 4.0 1.5 1.3 1.5 1.5 1.3 2.0 1.8 2.1 1.7 1.4 0.10 0.05 0.70 0.10 0.05 0.20 0.15 0.20 0.15 0.10 0.55 0.60 0.85 0.55 0.45 0.90 0.80 0.90 0.80 0.75 PA6T/6I MH, 14-190, MH, 12-070, MH, 12-070, MH, C12-140, MH, C12-140, MH, C12-140, MH, C14-140, MH, 14-110, MH, 14-160, MH, 14-										
1.5 1.3 1.5 1.5 1.3 2.0 1.8 2.1 1.7 1.4 0.10 0.05 0.70 0.10 0.05 0.20 0.15 0.20 0.15 0.10 0.55 0.60 0.85 0.55 0.45 0.90 0.80 0.90 0.80 0.75 PA6T/6I PA6T/6I PA6T/6I PA 6T/6I			<u> </u>							
0.55 0.60 0.85 0.55 0.45 0.90 0.80 0.90 0.80 0.75 PA6T/6I MH, 14-140, PA6T/6I MH, 14-190, PA6T/6I MH, 12-070, PA6T/6I MH, C12-140, PA6T/6I MH, C12-140, PA6T/66 MH, C12-140, P	1.5	1.3	1.5	1.5	1.3	2.0	1.8	2.1	1.7	1.4
PA6T/6I PA6T/6I PA6T/6I PA 6T/6I PA 6T/6I PA 6T/6I PA 6T/X PA6T/66 PA6T/66+X PA6T/66+X PA6T/66 MH, 14-140, MH, 14-190, MH, 12-070, MH, C12-140, MH, C12-140, MH, C14-140, MH, 14-110, MH, 14-110, MH, 14-110, MH, 14-160,	0.10	0.05	0.70	0.10	0.05	0.20	0.15	0.20	0.15	0.10
MH, 14-140, MH, 14-190, MH, 12-070, MH, C12-140, MH, C12-140, MH, C14-140, MH, 14-110, MH,	0.55	0.60	0.85	0.55	0.45	0.90	0.80	0.90	0.80	0.75
	MH, 14-140,		1 '	MH, C12-140,						

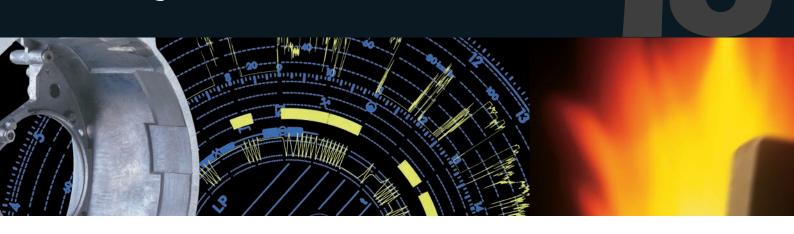
Properties of Grivory HT2 grades

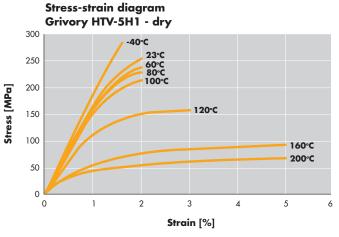
Tensile E-modulus	l mm/min	ISO 527	MPa	dry
	<u> </u>			cond. dry
Tensile stress at break	5 mm/min	ISO 527	MPa	cond.
Elongation at break	5 mm/min	ISO 527	%	dry
				cond.
Impact strength	Charpy, 23°C	ISO 179/2-1eU	kJ/m^2	dry
		100 1== /=	11.7.	cond. dry
Impact strength	Charpy, -30°C	ISO 179/2-1eU	kJ/m²	cond.
Notched impact strength	Charpy, 23°C	ISO 1 <i>7</i> 9/2-1eA	 kJ/m²	dry
Training impact strongth	Charpy, 20 C	100 17 7/ 2 10/ (ייו /עי	cond.
Notched impact strength	Charpy, -30°C	ISO 179/2-1eA	kJ/m^2	dry
				cond. dry
Ball indentation hardness		ISO 2039-1	MPa	cond.
Thermal properties				
Melt temperature	DSC	ISO 11357	°C	dry
Heat deflection temperature HDT/A	1.8 MPa	ISO 75	°C	dry
Heat deflection temperature HDT/C	8.0 MPa	ISO 75	°C	dry
Thermal expansion longitudinal	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry
Thermal expansion transverse	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry
Maximum working temperature	long-term	ISO 2578	°C	dry
Maximum working temperature	short-term	EMS	°C	dry
Electrical properties				
Dialoctric strongth		IEC 60243-1	kV/mm	dry
Dielectric strength		ILC 00243-1	KV / [[][[]	cond.
Comparative tracking index		IEC 60112	-	cond.
Specific volume resistance		IEC 60093	$\Omega\cdot$ m	dry
·				cond.
Specific surface resistance		IEC 60093	Ω	CONG.
General properties				
Density		ISO 1183	g/cm³	dry
Flammability (UL 94)		IEC 60695-11-10	Rating	-
Water absorption	23°C/saturated	ISO 62	%	-
Moisture absorption	23°C/50% r.h.	ISO 62	%	-
Linear mould shrinkage	longitudinal	ISO 294	%	dry
Linear mould shrinkage	transverse	ISO 294	%	dry

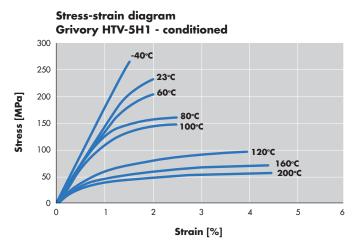
Grivory HT2 grades

		1				1	ı	Т		1
HT2V-5H	HT2V-6H	HT2VZ-15H	HT2VZ-33H	HT2VZ-25X	HT2V-3H LF	HT2V-3X VO	HT2V-4X VO	HT2V-5X VO	HT2C-3X	HT2C-3X LF
17 500	20 500	6 000	11 000	8 500	11 000	10 500	13 500	17 000	24 500	24 000
17 000	20 000	6 000	11 000	8 500	11 000	10 500	13 500	17 000	24 000	24 000
250	260	125	200	165	185	140	150	160	275	240
225	235	100	180	140	160	130	145	155	265	210
2	2	3.0	2.5	3	2	2	2	1.5	2	1.5
2	2	3.5	2.5	3	2	2	2	1.5	2	2
85	80	65	55	70	50	40	45	45	55	40
85	80	55	55	60	50	40	45	45	55	40
65	55	45	50	50	45	35	40	40	50	40
65	55	40	45	50	45	35	40	40	50	40
]]]]	10	10	9	7	7	9	10	8	7
11	11	10	10	9	7	7	9	10	8 7	<i>7</i> 5
11	11	5	9	7	6	6	9	10	7	5
325	340	175	260	200	270	240	270	295	300	290
325	330	-	240	180	260	230	260	275	290	260
						200		2, 0		200
310	310	310	310	310	310	310	310	310	310	310
>280	>280	265	>280	275	280	>280	>280	>280	>280	280
240	240	100	200	150	170	190	200	200	245	210
15	20	30	20	25	20	25	15	15	15	10
55	35	75	60	65	70	45	50	50	75	70
140	140	140	140	140	140	140	140	140	140	140
265	265	245	265	255	260	270	270	270	270	240
38	38	33	38	32	37	34	34	34	-	3
37	37	32	37	31	37	34	34	34	-	3
600	600	575	600	600	575	600	600	600	-	-
1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	<50	<50
1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10	<50	<50
1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+12	1.0E+11	1.0E+11	1.0E+11	100	10
1.62	1.73	1.24	1.44	1.33	1.47	1.43	1.53	1.65	1.32	1.40
HB	HB	HB	НВ	HB	НВ	VO	VO	VO	HB	НВ
3.5	3.0	5.5	5.0	5.3	4.5	3.5	3.5	3.0	4.5	4.3
1.2	1.1	2.0	2.0	1.7	2	1.3	1.2	1.0	1.5	1.5
0.10	0.10	0.40	0.10	0.40	0.20	0.10	0.10	0.05	0.05	0.10
0.70	0.70	0.90	0.90	0.80	0.80	0.90	0.80	0.60	0.65	0.30
PA6T/66 MH,14-190, GF50	PA6T/66 MH, 14-190, GF60	PA6T/66 MH,12-060, GF15	PA6T/66 MH,14-110, GF33	PA6T/66 MH,12-090, GF30	PA6T/66 MH,12-110, GF30	PA6T/66 MHF, 11-120, GF30	PA6T/66 MHF, 11-120, GF40	PA6T/66 MHF, 11-160, GF50	PA6T/66 MH,14:250, CF30	PA6T/66 MHS, 14-250, CF30+Z

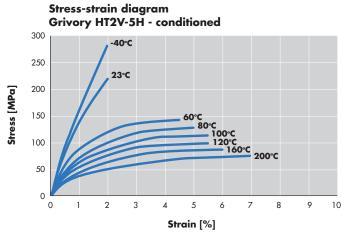
Properties of Grivory HT3 grades

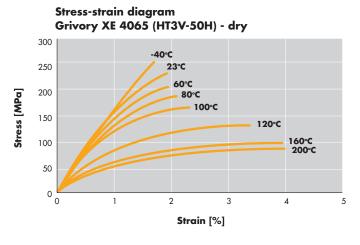

Mechanical properties					XE4063 (HT3V-30H)
Tensile E-modulus	l mm/min	ISO 527 MPa	MPa	dry	9 500 9 500
				cond. dry	180
Tensile stress at break	5 mm/min	ISO 527 MPa	MPa	cond.	165
Elongation at break	5 mm/min	ISO 527 MPa	%	dry cond.	3
Impact strength	Charpy, 23°C	ISO 179/2-1eU kJ/m2	kJ/m²	dry cond.	80 70
Impact strength	Charpy, -30°C	ISO 179/2-1eU kJ/m2	kJ/m²	dry	70
1 0				cond. dry	60
Notched impact strength	Charpy, 23°C	ISO 179/2-1eA kJ/m2	kJ/m^2	cond.	10
Notched impact strength	Charpy, -30°C	ISO 179/2-1eA kJ/m2	kJ/m²	dry cond.	9 8
Ball indentation hardness		ISO 2039-1	MPa	dry cond.	210
Thermal properties					2.0
Melt temperature	DSC	ISO 113 <i>57</i>	°C	dry	295
Heat deflection temperature HDT/A	1.8 MPa	ISO 75	°C	dry	260
Heat deflection temperature HDT/C	8.0 MPa	ISO 75	°C	dry	150
Thermal expansion longitudinal	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry	20
Thermal expansion transverse	23 - 55°C	ISO 11359	10 ⁻⁶ /K	dry	70
Maximum working temperature	long-term	ISO 2578	°C	dry	150
Maximum working temperature	short-term	EMS	°C	dry	250
Electrical properties					
Dielectric strength		IEC 60243-1	kV/mm	dry cond.	38 37
Comparative tracking index		IEC 60112	-	cond.	600
Specific volume resistance		IEC 60093	$\Omega\cdot$ m	dry	1010
Specific surface resistance		IEC 60093	Ω	cond.	1010
General properties		120 00070	22	cond.	1011
		ISO 1183	/ 3	1	1.07
Density Flammability (LIL 0.4)		IEC 60695-11-10	g/cm³ Rating	dry	1.37
Flammability (UL 94) Water absorption	23°C/saturated	ISO 62	%	-	HB 2.4
Moisture absorption	23°C/50% r.h.	ISO 62	<u>/</u> %	-	1
Linear mould shrinkage	longitudinal	ISO 294	%	dry	0.5
Linear mould shrinkage	transverse	ISO 294	%	dry	0.8
Product designation as per ISO 16390			,,,	1	PA 10T/X,MH 14-100, GF30

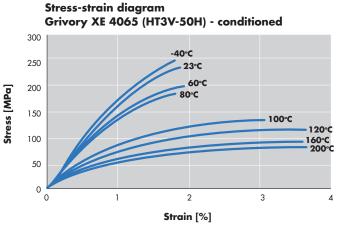

Grivory HT3 grades

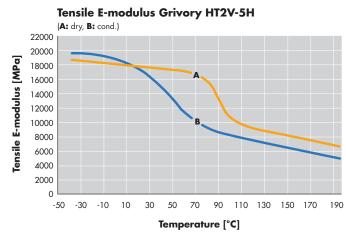

XE4065	XE4095	XE4101	XE4102	XE4221	XE4134	XE4164	XE4027	XE4120	XE4185	HT3Z LF	HT3Z	XE 4202
(HT3V-50H)	HT3V-50)	(HT3V-40 FVVA)	(HT3C-30)	(HT3V-30/2)	(HT3VX-30)	(HT3V-30 CO)	(HT3V-30 VO)	(HT3V30 V0 CO)	(HT3 V0 CO)			Extrusion grade
16 000	17 000	13 000	23 000	9 500	10 000	10 500	10 000	11 500	3 000	2 800	2 600	1 300
16 000	16 500	13 000	23 000	9 500	10 000	10 500	10 000	11 500	3 000	2 800	2 600	1 300
230	220	190	250	160	145	150	130	150	60	80	80*	-
220	200	175	250	155	140	150	130	145	60	75	80*	-
2.5	2	3	2	2.5	2	2	2	2	6.5	6.5	6**	20
2.5	2	2.5	2	2.5	1.5	2	2	2	12	6.5	6**	20
90	80	85	60	40	30	35	50	55	40	100	no brake	no brake
80	70	75	60	40	30	35	50	50	35	95	no brake	no brake
90	75	80	60	40	30	35	50	45	35	95	80	no brake
80	70	70	60	40	30	35	50	45	30	90	50	no brake
12	11	10	8	8	11	10	8	8	5	6	12	60
12	11	10	8	8	11	10	8	8	5	6	12	60
12	10	9	6	7	11	8	7	6	3	6	12	30
12	10	8	6	7	11	8	7	6	3	6	12	20
245	280	220	250	205	240	270	235	255	150	140	140	80
245	280	220	250	205	240	265	235	255	150	140	140	80
295	295	295	295	265	295	315	295	315	315	295	295	265
270	270	265	270	220	280	275	260	280	130	110	115	75
225	240	190	210	105	165	140	155	155	-	-	-	-
15	15	20	10	20	20	20	20	20	80	80	80	130
65	60	70	80	70	65	70	70	55	80	80	80	140
150	150	150	150	150	150	150	150	150	140	140	140	-
260	260	255	260	210	260	260	250	270	260	240	240	-
32	32	32	3	33	35	32	33	33	30	33	33	32
31	31	31	3	33	35	30	33	33	30	33	33	32
600	600	600		600	600	600	600	600	600	400	600	600
1010	1010	1010	<50	109	1010	109	109	1010	109	1010	1010	109
1010	1010	1010	<50	109	1010	109	109	1010	109	1010	1010	109
1011	1011	1011	15	1010	1011	1010	1011	1011	1011	1011	1011	1010
1.58	1.58	1.49	1.26	1.34	1.38	1.4	1.41	1.43	1.18	1.19	1.13	1.04
НВ	НВ	НВ	НВ	НВ	НВ	НВ	V-O	V-O	V-O	НВ	НВ	НВ
1.7	1.7	2	2.5	2	2	3.5	2.3	2.2	4.5	2.9	3.4	2.2
0.8	0.8	0.9	1.2	0.9	0.9	1.6	0.9	1.3	1.7	1.4	1.5	1.2
0.5	0.2	0.5	0.1	0.5	0.2	0.2	0.3	0.2	2	1.75	2	-
0.9	0.7	0.9	0.6	0.8	0.7	0.7	1	0.8	2	1.2	1.75	-
		PA 10T/X, MH, 18-120, GF40		PA 10T/X, MH, C14-100, GF30		PA 10T/X, MHF, 11-100, GF30	PA 10T/X, MHF, 11-100, GF30	l I	PA 10T/X, MHF, 11-030	PA 10T/X, MH, 12-030	PA 10T/X, MH, 12-030	PA 10T/XHI, EH, X-10

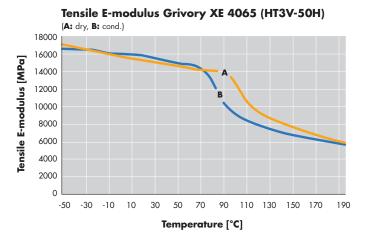

Tensile stress at yield Elongation at yield


Design data - Short-term behaviour



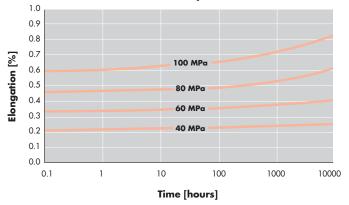


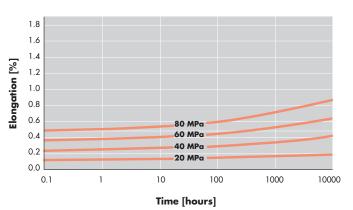




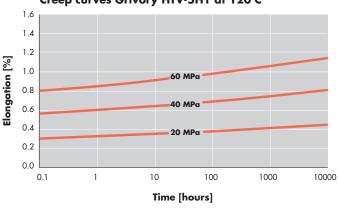
Design data - Short-term behaviour

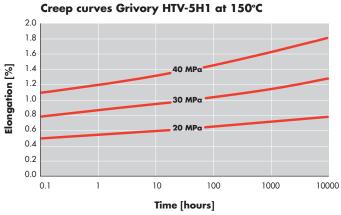
Tensile E-modulus Grivory HTV-5H1 (A: dry, B: cond.) Tensile E-modulus [MPa] -50 -30 -10 Temperature [°C]



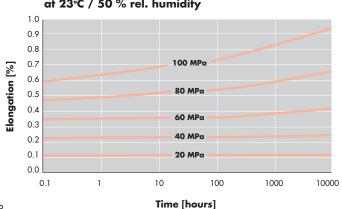

With static, long-term stressing of a material under different mechanical loads, characteristic creep curves can be obtained for plastic materials.

These materials creep as a result of the effects of stress and temperature.

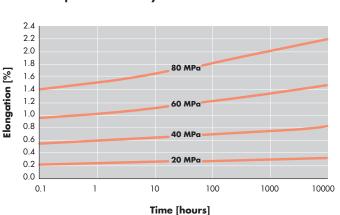

Creep curves Grivory HTV-5H1 at 23°C / 50 % rel. humidity



Creep curves Grivory HTV-5H1 at 80°C



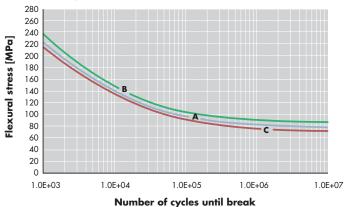
Creep curves Grivory HTV-5H1 at 120°C



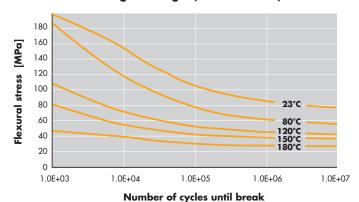
Creep curves Grivory HT2V-5H at 23°C / 50 % rel. humidity

Creep curves Grivory HT2V-5H at 80°C

Flexural fatigue strength - Wöhler curves


Dynamic long-term stressing may lead to failure of a construction material. Breakage occurs after a certain number of stress cycles depending on the intensity of the mechanical flexural stress.

Comparison Grivory HTV-5H1, Grivory HT2V-5H, Grivory XE 4065 (HT3V-50H), Flexural fatigue strength (Wöhler Curves) at 23°C


A: Grivory HT2V-5H black

B: Grivory HTV-5H1 black

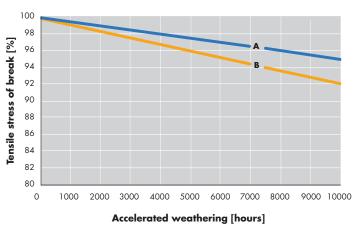
C: Grivory XE 4065 (HT3V-50H)

Grivory HTV-6H1 at different temperatures Flexural fatigue strength (Wöhler curves)

As per DIN 53442 Frequency of load cycles (reinforced) = 5 Hz

The influence of UV radiation causes a change in physical and chemical properties of all plastic materials. In particular, the combination of radiation, oxygen in the air, moisture and temperature may lead to a reduction in the working life of construction materials due to chain fission, cross-linking and other oxidative processes.

Resistance to weathering is dependent on the structure of the polymers and the kind of filling used (glass, mineral, carbon black etc.). As the plastic usually suffers mainly from weathering of the surface area, the service life of a component is largely dependent on its thickness.


The working life of polyamide parts is determined using both accelerated weathering apparatus (filtered Xenon rays according to ISO 4892-2) and in open-air weathering tests (alpine climate at EMS).

In order to test weathering stability, 4-mm-thick test bars are exposed to accelerated weathering and their stress at break tested by our material testing department after determined periods of time.

Grivory HT exhibits very good resistance to weathering and is suitable for long-term exterior applications. After 10,000 hours of accelerated weathering (acceleration factor 3-4) the stress at break values for HTV-5H1 black 9205 are more than 95% and for Grivory HT2V-5H black 9205, more than 90% of the original figures.

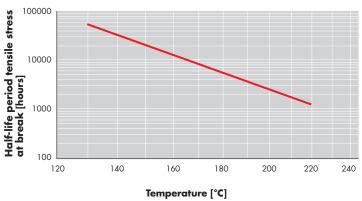
Tensile stress at break of Grivory HT after weathering ISO 4892-2

A: Grivory HTV-5H1 black 9205 B: Grivory HT2V-5H black 9233

Resistance to heat ageing

At raised temperatures, indications of ageing become apparent for all plastic materials. Over time, this ageing has a negative effect on the properties of the material.

These processes are of a chemical nature, e.g. oxidation reactions, but may also be caused by physical phenomena such as post-crystallisation or changes in morphology.


In practice, specification of a temperature-time limit, within which the properties of the thermally stressed plastic material must remain at an acceptable level, is of great importance.

In order to determine these temperature-time limits, extensive testing is carried out in our material testing department. This ensures that Grivory HT can be used successfully, even at high temperatures, through the correct choice of product and grade.

The maximum time or temperature at which the material has a remaining 50% of ultimate tensile strength compared to the original value, can be read from the data presented in an Arrhenius curve (scale: $\log[t]/[1/T]$).

Resistance to heat ageing Arrhenius curve of Grivory HT

Grivory HTV-5H1

Testmethod: ISO 2578

Test samples: ISO 20753 Type A1, tensile bar 4 mm

Criterion: 50 % residual tensile strength

Grivory HT exhibits very good resistance to a variety of chemicals: organic solvents, fuels, oels, fats and alkalis. Strong acids such as sulphuric acid, nitric acid or formic acid cause hydrolytic degradation of all polyamides; Grivory HT, however, has good resistance to diluted acids at room temperature. Aggressive chemicals such as cresol, hexafluorisopropanol

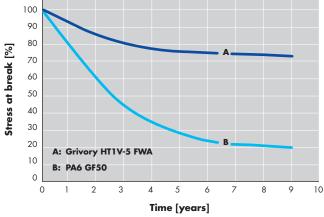
or trifluoroacetic acid can cause polyamides to dissolve completely. Glycols and other alcohols as well as water, however, only attack these materials aggressively at high temperatures. The following list refers to resistance at room temperature. Depending on the type of chemical involved, higher temperatures may have an influence on the degree of resistance.

•	Acetic acid, conc.	••	Lactic acid conc.
• • •	Acetone	• • •	Lubricating oils, grease
• • •	Acrylate adhesives	• • •	Magnesium chloride satt.
	AdBlue (32.5% urea in water)		Methane
•••	Ammonia, 10% aqueous	•••	Methanol
• • •	Amyl acetate	•••	Methyl ethyl ketone
• •	Aniline	• •	Methylene chloride
• • •	Antifreeze (ethylene glycol)	• • •	Mineral oil
	Benzene	0	Nitric acid, 65% aqueous
		• •	
•	Benzyl alcohol	•••	Nitrobenzene
•••	Biodiésel (e.g. RME, SME, B20)	0	Oleum
•	Bromine, bromine water	• •	Oxalic acid 10% aqueous
• • •	Butane	•	Ozone
	Butanol	•••	Perchlorethylene
•••	Calium chloride, satt.	•••	Petrol
•••	Calcium salts, satt., aqueous	• • •	Petroleum ether
• • •	Carbon tetrachloride	•	Phenole, aqueous
0	Chlorine, gaseous	•	Phosphoric acid 10% aqueous
• • •	Chlorobenzene	• • •	Potash (potash salts) satt.
•	Chloroform		Potassium permanganate, 1% aqueous
•••	Citric acid, conc.	•••	Propane
•••	Copper sulphate, satt., copper salts, 10% aqueous	•••	Pyridine
0	Cresol	0	Résorcinol, alcoholic
• • •	Crude oil	• • •	Salicylic acid (saturated).
	Diesel fuel		Sea water
•••	Diethyl ether	•••	Silicon oil
• • •	Engine oil	•••	Soap solution
• • •	E10, E85 (fuels containing ethanol)	• • •	Soda lye 50%, aqueous
• • •	Ethanol	•••	Soda solution, satt.
• • •	Ethylene oxide	•••	Sodium carbonate, 50% aqueous
•••	Fats, oils and lubricants		Sodium salts, aqueous
0	Fluorine	•	Sodium hypochlorite 5% aqueous
• •	Formaldehyde, formalin, 40% aqueous	•••	Styrene
• •	Formic acid 10% aqueous	•••	Súlphur
0	Formic acid, conc.	• •	Sulphur dioxide <5% gaseous
• • •	Glycerine	•	Sulphuric acid, 10% aqueous
	Olyceline	•	
••	Halogenated hydrocarbons	0	Sulphuric acid, 50% aqueous
• • •	Heptane	• •	Tartaric acid, 10% aqueous
• • •	Hydraulic oil	• • •	Terpentine
• •	Hydrochloric acid 1%	•••	Tetralin
•	Hydrochloric acid 10%		Toluol
•			
0	Hydrochloric acid (37%, aqueous)	•••	Transformer oil
• •	Hydrogenperoxide 2%	• •	Trichlorethane
•	Hydrogenperoxide 10%	• •	Trichlorethylene
•	Hydrogenperoxide 30%	•••	Triethanolámine
•••	Hydrogen sulphide, 25% aqueous	• • •	Uric acid, conc.
•••		•••	
••	lodine tincture, alcholic	••	Vinegar, 9% aqueous
•••	Isooctane	•••	Water
•••	Isopropanol	•••	Wine
•••	Kerosene	•••	Xylol
• •	Lactic acid conc.	• • •	Zinc chloride 50% aqueous
	200.0 00.0 00.00.		2c conac 50% aque000

- ••• resistant; no or only slight, reversible changes in weight and dimension.
- •• limited resistance; appreciable changes in dimension and possible irreversible changes in property values occur after longer periods of exposure. Consultation advisable before use.
- not resistant may be used under certain conditions (short exposure time)
- soluble or already strongly attacked after only a short exposure time

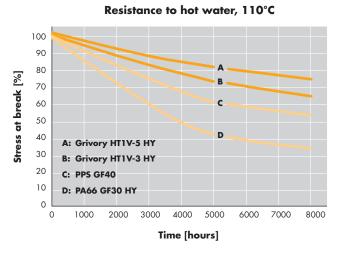
conc. concentrated

Resistance to water and hydrolysis



Resistance to hot water and hydrolysis

Even at high temperatures, parts made of Grivory HTV take up less water and this significantly more slowly, than parts made of polyamide 6 (PA6 GF) or polyamide 66 (PA66 GF). Compared to these materials, Grivory HTV shows clearly better resistance to water.

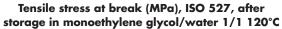

The following graph shows measured values of tensile test pieces (ISO 527, 4x10 mm) made of Grivory HT1V-5 FWA and PA6 GF50 after several years storage in cold water at 23°C. After 9 years storage in water, strength values of parts made of Grivory HT1V-5 FWA are 180 MPa, much higher compared to parts made of glass-fibre reinforced polyamide 6.

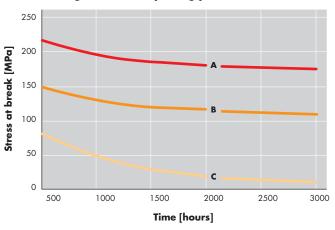
Resistance to cold water, 23°C 90

The relative initial values (100%) refer to the tensile stress at break of freshly injected, dry parts.

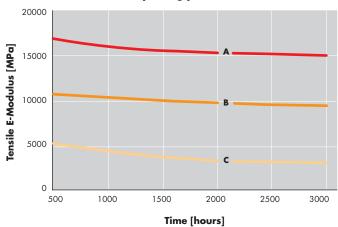
The following graph shows the results of storage of Grivory HT1V-3 HY, HT1V-5 HY, PA66 GF30 (hydrolysis stabilised) and PPS GF40 at 110°C. (Specimens used were tensile bars as per ISO 527, 3x3 mm)

The relative initial values (100%) refer to the tensile stress at break of test bars conditioned as per ISO 1110.

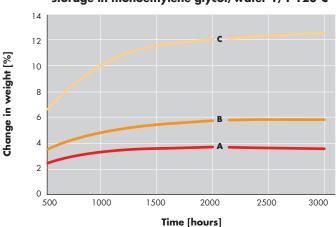



Grivory HT1 and HT2 exhibit excellent resistance to all common automotive media such as coolants, fuels, oils and lubricants.

Both PPA grades are characterised by their resistance to mineral oil products and synthetic oils at high temperatures.

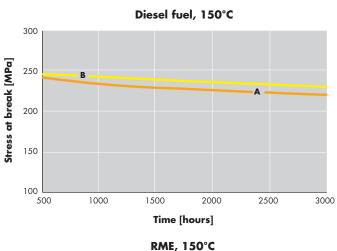

Resistance to coolants

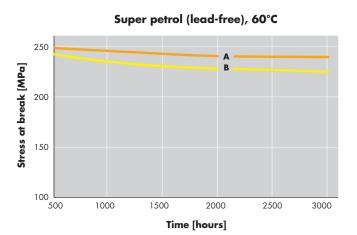
- A: Grivory HT1V-5 HY
- **B:** Grivory HT1V-3 HY
- C: PA66 GF30 HY

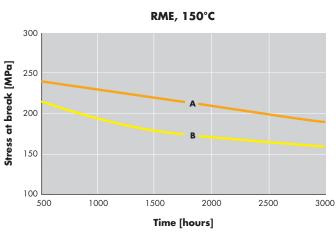


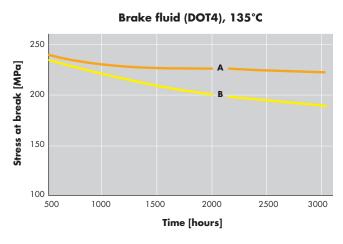
Tensile E-modulus (MPa), ISO 527, after storage in monoethylene glycol/water 1/1 120°C

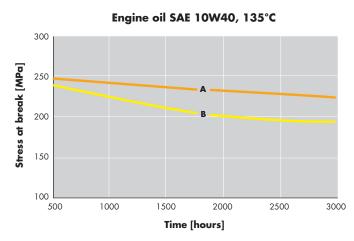
Weight change (%), tensile bars 3x3 mm, after storage in monoethylene glycol/water 1/1 120°C

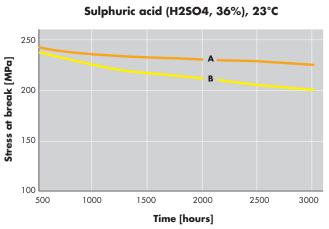



Resistance to automotive media

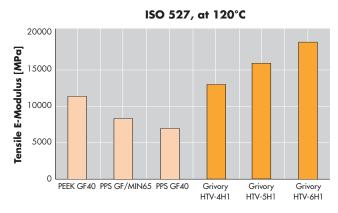



Stress at break [ISO 527] after storage in:


A: Grivory HTV-5H1 black 9205 B: Grivory HT2V-5H black 9205



Comparison to other construction materials


- Thermoplastic materials

Among thermoplastic materials, Grivory HT is positioned in the transition area between high-quality engineering plastics and high-performance plastics.

Fundamentally, the polyphthalamide Grivory HT has the property characteristics of polyamide. Compared to traditional materials based on polyamide (PA6) or polyamide 66 (PA66), Grivory HT is characterised by the fact that its mechanical property values are hardly influenced by the absorption of water typical of all polyamides. Stiffness, strength and heat deflection temperature values remain at a very high level.

- High-performance thermoplastic materials

At high application temperatures, Grivory HT achieves and exceeds the performance of PPS or PEEK with regard to hardness, strength and stiffness. At the same time and also under high temperatures, Grivory HT offers good resistance to a wide range of chemicals, dimensional stability and high strength values even after long-term use. The long-term working temperature for parts made of Grivory HT lies between 140°C and 150°C. Parts made of Grivory HT1 can also resist short-term thermal impulses of up to 300°C.

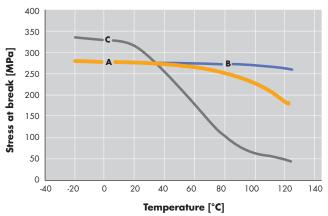
- Thermosets

Even though processing technologies (thermoset/thermoplastic) are different, quality of the finished products with regard to mechanical-thermal properties can be compared.

Material	Tensile stress at break (MPa)	E-Modulus (MPa)	Heat deflection temperature HDT/A (°C)
Grivory HTV-3H1 (GF30) Grivory HTV-6H1 (GF60) Melamine formaldehyde Melamine phenol	170 250 50 – 90 55 – 85	11000 21000 7000 - 9000 7000 - 16000	280 290 155 – 215 155 – 200
Phenolic resins	35 – 70	8000 – 12000	110 – 250

The thermoplastic Grivory HT has better values for core properties such as stiffness, strength and heat deflection temperature than most thermoset injection-moulding compounds. The advantage of thermosets having less costly raw materials is more than compensated by outlay for post-treatment (deflashing). Another point in the favour of themoplastic Grivory HT is the fact that it can be used as regranulate or recycled without problem.

Comparison to other construction materials


- Die-cast alloys

Grivory HT is excellently suited for the substitution of metal, particularly for parts previously made of diecast alloys.

When used as a substitute for metal the mechanical-thermal properties of Grivory HT are usually sufficient to ensure reliable working of the part. Parts made of Grivory HT offer significant weight advantages and are resistant to corrosion without post-treatment of surfaces.

Strength of Grivory HT in comparison to die-cast alloys

A: Grivory HT1V-65H, B: Aluminium, C: Zinc

Using Grivory HT in place of metals allows manufacturing costs to be reduced by 30 - 50 %. Post-treatment processes typical for die-cast alloys - deflashing, coating (colouring) or subsequent cutting of threads - are no longer necessary.

These advantages may already become apparent simply through changes in manufacturing technology due to the use of a different material.

Further, in some cases substantial, cost reductions can be achieved through integration of design. Composite (metal/plastic) parts can be made of one material using Grivory HT, several components of an assembly can be combined, metal inserts (e.g. thread bushing) can sometimes be eliminated.

Approvals

Grivory HT in contact with foodstuffs:

EU: Grivory HT FWA grades satisfy the relevant requirements of the EU directive No. 1935/2004 including its supplements, as well as the requirements of the EU directive no. 10/2011 dated January 14, 2011 as amended.

USA (FDA): According to the American Food and Drug Administration (FDA), Grivory HT "FWA" grades are approved for repeated direct contact with foodstuffs. Further details for each product can be found in the "Supplier Compliance Statement for Applications in Food Contact".

Grivory HT "FVVA" is also certified by NSF to NSF/ANSI Standard 51 (Food Equipment Materials) for contact with foodstuffs.

Grivory HT in contact with drinking water

Germany (KTW, W 270): The Grivory HT "FWA" grades have been tested according to KTW recommendations of the German Federal Environmental Authority and are approved for applications in contact with hot drinking water (85°C).

In addition, they also satisfy the requirements of the DVGW worksheet W 270 "Multiplication of microorganisms on construction materials for drinking water applications - Test and evaluation" governing protection of drinking water from micro-organisms.

France (ACS): The Grivory HT "FWA" grades have been tested according to AFNOR XP P 41-250 and are approved in France for contact with drinking water ("Attestation de Conformité Sanitaire").

UK (WRAS): The Grivory HT "FVVA" grades have been certified by the British Water Regulations Advisory Scheme (WRAS). They are approved for applications in contact with both cold and hot drinking water at temperatures up to 85° C.

USA (NSF 61): The Grivory HT "FWA" grades are certified for hot water applications (82°C) by NSF to NSF/AINSI, Standard 61 ("Drinking Water System Components – Health Effects").

Grivory HT FWA grades:

Grivory HT1V-3 FWA natural + Grivory HT1V-3 FWA black 9225 Grivory HT1V-4 FWA natural + Grivory HT1V-4 FWA black 9225 Grivory HT1V-5 FWA natural + Grivory HT1V-5 FWA black 9225 Grivory HT1V-6 FWA natural + Grivory HT1V-6 FWA black 9225 Grivory XE 4101 (HT3V-4 FWA) natural + Grivory XE 4101 (HT3V-4 FWA) black 9225

Requirements made of plastic materials with regard to their fire behaviour are varied and follow the national regulations of each country and legislation governing the field of application. For electronic applications, an approval from the Underwriters Laboratories (UL approval) for both the plastic material and finished part is required in the USA and in some European countries. The current "Yellow Cards" of the products are also available via internet at: www.ul.com

Flame resistant standard products:

The following Grivory HT products are listed under the reference number EMS-CHEMIE E53898 in the flammability class UL 94 HB:

Grivory HTV-3H1

Grivory HTV-4H1

Grivory HTV-5H1

Grivory HTM-4H1

Grivory HT1V-3 FWA

Grivory HT1V-4 FWA

Grivory HT1V-5 FWA

Grivory HT1V-6 FWA

Grivory HT2V-3H

Grivory HT2V-45H

Grivory HT2V-5H

XE 4164 (HT3V-30 CO),

30 wt% glass-fibre reinforcement

Flame retardant, self-extinguishing products:

The flame-retardant, glass-fibre reinforced Grivory HT "UL 94 V-0" grades contain no halogens or red phosporous. They are self-extinguishing and correspond to the classification UL 94 V-0. The "Yellow Cards"

show the properties listed by UL and are available via internet at: www.ul.com

The following Grivory HT products are listed under the reference number EMS-CHEMIE E53898 in the flammability class UL 94 V-O:

Grivory HT2V-3X VO,

30 wt% glass-fibre reinforcement

Grivory HT2V-4X VO,

40 wt% glass-fibre reinforcement

Grivory HT2V-5X VO,

50 wt% glass-fibre reinforcement

Grivory XE 4027 (HT3V-30 VO),

30 wt% glass-fibre reinforcement

Grivory XE 4120 (HT3V-30 V0 CO)

30 wt% glass-fibre reinforcement

XE 4185 (HT3-VO CO), non-reinforced

RoHS: The products Grivory HT2V-3X VO, HT2V-4X VO, HT2V-5X VO, XE 4027, XE 4120 and XE 4185 satisfy the RoHS requirements Directive 2011/65/EU, Restriction of Hazardous Substances).

WEEE: Parts manufactured from Grivory HT2V-3X VO, HT2V-4X VO, HT2V-5X VO, XE 4027, XE 4120, XE 4185 are exempt from requirements concerning "selective recycling" according to Directive 2012/19/EU governing recycling of electrical and electronic waste.

FMVSS: All Grivory HT products satisfy the requirements of FMVSS 302 (ISO 3795, DIN 75200). Their burning rates, measured by a flammability test, are lower than 100 mm/min at wall thicknesses > 1 mm.

Grivory HT is delivered dried and ready for use in air-tight sacks. Pre-drying is not necessary if it is handled and stored correctly.

Sealed, undamaged sacks can be stored for years if sheltered from the weather. A dry room where sacks are protected from damage is recommended as storage space. Sacks which do become damaged should be resealed air-tight, or the material placed in an air-tight metal container. It is important that material to be used is stored for some days at processing temperature so that condensation does not form on the surface of the granules when the sacks are opened.

The packaging should be opened shortly before processing begins. Material which is in contact with the air for any length of time may reach a critical content of more than 0.1% in the top layer of granules. During long dwell times with granules in the hopper, a hopper heating system or hopper dryer should be used.

Following manufacture, Grivory HT is dried to a content of less than 0.1 % and packed in air-tight sacks. If the packaging is damaged or the material stored in contact with the air for too long, the granules will need to be dried again. An excessive water content may become apparent through bubbles or foam in the melt cake during free ejection or silvery streaking on the surface of the moulded parts.

Drying can be carried out using the following methods:

Desiccant dryer

Temperature: max. 80°C
Time: 4 - 12 hours
Dew point of the dry air: -40°C

Vacuum oven

Temperature: max. 100°C
Time: 4 - 12 hours

Circulating air ovens are not recommended as they tend to cause moistening of the granules at a high ambient temperature and with high air humidity.

The drying time is dependent to a great degree on the moisture content. In case of doubt, drying should be carried out for about 12 hours.

Drying temperatures above 80°C in a desiccant dryer can lead to yellowing of light-coloured granules. A higher temperature can be used (100°C) in a vacuum oven with lower partial oxygen pressure.

Processing using injection-moulding methods

The processing latitude for Grivory HT1 grades lies between 330° and 350°C; for Grivory HT2 grades between 310°C und 340°C and for Grivory HT3 grades between 300° and 330°C. The recommended processing temperature for each Grivory HT grade is given in the respective data sheet.

Screw

Grivory HT can be processed efficiently using a single-flighted universal three-zone screw equipped with a non-return valve. The effective screw length should be between 18 D and 22 D.

Use of a wear-resistant screw is recommended for the processing of Grivory HT grades with high levels of glass-fibre reinforcement.

Heating

At least three separately regulated heating zones should be able to achieve barrel temperatures of up to 350°C. A separate nozzle heating system is also necessary. The temperature of the barrel flange must also be controllable.

Die

An open die may be used when processing Grivory HT, as such a die allows free flowing of the material and is very long-lasting due to its simple structure. Needle valve nozzles have proved useful if the melt tends to flow out of the die.

Mould design

Design rules typical for thermoplastic materials are also valid for mould design. Basically, all kinds of sprue system can be used for processing Grivory HT. Conventional wear-resistant tool steel, hardened to approx. 56 - 65 HRC, is sufficient for the shaping

surfaces of the mould. Additional abrasion protection is recommended for areas with a higher flow speed.

The mould cavity must have large-scale venting, particularly in the vicinity of the joint lines. Additional machined ejectors and venting slits (0.02 mm) must be planned on the mould parting line.

Basically, all sprue and gating systems can be used for processing of Grivory HT grades. As these materials set over a relatively narrow range of temperatures, the sprue must be large enough to compensate for volume reduction during cooling in the holding pressure phase.

Mould temperature

A good heating system combined with a correct mould temperature is a prerequisite for the manufacture of high-quality injection-moulded articles. The mould temperature influences the setting behaviour and the degree of crystallinity of the article and, therefore, the surface quality, shrinkage behaviour, warpage, mass tolerance and level of internal stressing.

Grivory HT1 grades are processed at mould temperatures >=140°C, Grivory HT2 grades at mould temperatures between 100°C and 140°C and Grivory HT3 grades between 110° and 160°C. The required mould wall temperature is dependant on the geometry and wall strength (wall thickness) of the component. As a rule of thumb it can be said that the lower the wall strength of the component, the higher the mould wall temperature should be. Mould wall temperatures of up to 190°C are normal for low wall strengths.

Bonding

The most common reaction adhesives are:

Single-component systems:

- Cyano acrylate or methacrylate adhesives are well suited for bonding Grivory HT to metal.

Two-component systems:

- Epoxy resin adhesives with a long pot life (curing time) are suitable for use on large bonding areas and can be used to fill gaps.

Kinds of pre-treatment:

- Degreasing: use of organic solvents such as acetone, for example
- Mechanical removal: brushing, grinding, sand blasting
- Electro-chemical: Corona discharge, low-pressure plasma
- Thermal: flaming
- Chemical: treatment with caustic substances or primers. Suitable systems are available from adhesive manufacturers.

Our customer advice department will be happy to supply you with further information regarding choice of adhesive and suppliers.

Welding

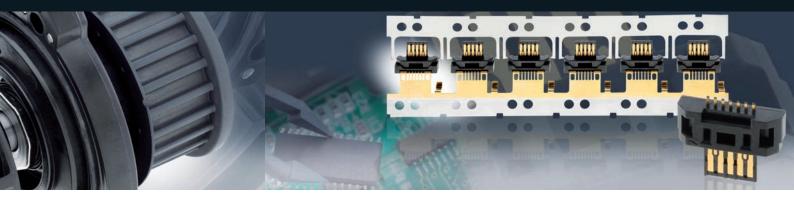
Good welding results can be achieved for all highly reinforced Grivory HT grades using friction welding methods such as ultra-sonic and vibration welding. During design work the maximum possible size of joint area should be planned for parts to be welded. During welding, the contact pressure must be selected and adjusted according to the type of material and the geometry of the parts being welded. This pressure may lie between 1 MPa and 3 MPa.

Injection, infra-red and hot-plate welding methods can only be used in a limited way to weld Grivory HT

Screw fastening

Parts made of Grivory HT can be fastened well with self-tapping screws. Metrical threads can be integrated directly into the finished components.

Painting


Grivory HT can be painted with different kinds of paint without impairing the mechanical properties. Single and two-component paints are suitable.

Pre-treatment: Refer to "Bonding".

Laser printing

Grivory HT grades can be modified for inscribing with laser-printing by the addition of special pigments such as black 9219 LW or masterbatches.

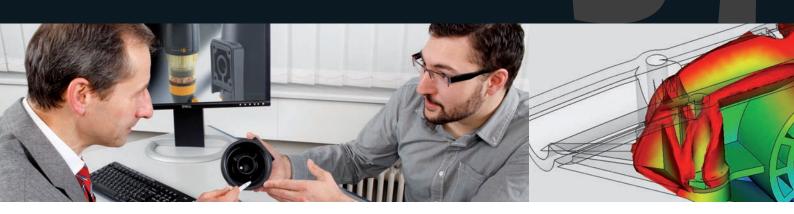
Machining / Use of reclaimed material

Machining

For economical reasons, it should be ensured that the design of a component makes machining unnecessary. If machining is used to make prototypes, it should be remembered that the properties will not necessarily be identical to those of an injection-moulded component.

Method						
	Unit	Turning	Milling	Sawing	Drilling	
Clearance angle	degrees	5-10	3-15	15-30	5-10	
Rake angle	degrees	2-10	5-15	3-6	6-15	
Cutting speed	m/min	200-400	300-800	200-500	50-120	
Rate of feed	mm/U	0.1-0.5	0.1-0.5	-	0.1-0.5	
Tip	degrees	-	-	-	90-120	
Circular pitch	mm	-	2-8	-	-	

Use of carbide-tipped tools is recommended due to the large amount of reinforcing material in reinforced Grivory HT grades.


Use of reclaimed material

Being a thermoplastic material, it is possible to reprocess faulty parts made of Grivory HT and recycle a certain amount of reclaimed material during the injection-moulding process. The following points should, however, be taken into consideration:

- Water already absorbed
- Dust content and grain size distribution
- Pollution from other polymers, dust, oil etc.
- Quantity ratio, percentage added to original material
- Changes in colour
- Changes of the mechanical properties

Particular care must be taken by the operator during addition of the reclaimed material.

Customer services and technical support

We provide advice and support for our customers, starting from the development right through to serial production of a part. We also offer quality, reliability and technical support as part of our customer services.

- We create an optimal material recommendation for your application.
- Our customer service centre is equipped with modern injection-moulding machinery and extruders to find solutions to problems which may arise.
- The high quality of our materials is constantly subjected to tests and quality assurance in order to provide you with high-performance products.
- Our up-to-date testing laboratories are at your disposal for testing of mechanical, thermal, electrical and chemical properties.

CAE

Using computer-aided simulation calculation systems, the application development department of EMS-GRI-VORY is capable of providing customers with optimal mould design support. The CAE systems used allow the moulded parts to be designed using Finite Element (FE) programmes. The filling process is then described by rheological simulation.

An FE analysis provides information about mechanical loading and stresses on the moulded part. Based on this calculated stress distribution, specific modifications can be implemented and tested directly with a new FE calculation.

As soon as satisfactory structural properties have been achieved using FE analysis, a rheological simulation can be used to evaluate the optimal sprue position and to provide qualitative statements about fibre alignment, shrinkage and warpage of the parts.

Through use of modern FE and rheological simulation tools, the EMS-GRIVORY team of experts is able to provide customers with optimal mould design support using virtual 3D data.

Prototype moulds and Selective Laser Sintering (SLS)

Quick realisation and rapid implementation of a good idea is the key to success. With construction of prototype moulds, EMS-GRIVORY helps minimise the risk, save valuable time and reduce costs. Prototypes of moulded parts can also be optimised through use of FE analysis and rheological simulation. The prototype moulds can then be used to manufacture a small series of moulded parts at minimum expense, thus allowing practical tests to be carried out before the serial production is started. This preparation work reduces outlay and helps avoid expensive modifications to manufacturing moulds.

The Business Unit EMS-GRIVORY has state of the art equipped laboratories at its disposal in the material testing and quality control departments.

Our equipment infrastructure allows us not only to determine the conventional mechanical, thermal and electrical properties of our construction materials for data sheets and homologation, but also to carry out research and development work and to support application development work with practical tests.

- The mechanical testing laboratory is equipped with universal testing machines, impact testing apparatus (both automated and instrumented pendulum) as well as servo-hydraulic and dynamic mechanical test equipment.
- The rheology laboratory of material testing is capable of providing key material data necessary for simulation of injection-moulding processes.
- Tests to determine the resistance to chemicals, heat and weathering provide us with information about application possibilities for our materials under extreme conditions.
- Chemical and processing-technical tests allow us to check the quality of our products and to ensure consistent quality levels.
- Our analytics laboratories can carry out analysis over the whole spectrum of modern analysis methods such as, for example, chromatography, infrared spectroscopy, x-ray fluorescence, emissions spectroscopy, CHNS analysis, electro-microsco-py/ EDX, TOC, DSC and TGA.

We can also help customers with specific questions. In order to provide support in monitoring of fatigue behaviour of our products, flexural bending or flexural stress tests can be carried out and Wöhler curves drawn up over a wide range of temperatures In addition, we also have special equipment at our disposal such as a hot water circulation unit for testing the working life under practical conditions of plastic parts through which water flows, sterilisation equipment and many others.

With these services we offer our customers active support in the choice of material and material development as well as with design and testing.

CAMPUS stands for Computer Aided Material Preselection by Uniformed Standards.

The data bank contains a chosen selection of expressive test results which accurately describe the property profile of a material. Test bars from which the test data is obtained, are manufactured under standardised injection conditions. Determination of the characteristic figures is carried out according to the standards ISO 10350 and ISO 11403.

EMS-GRIVORY has worked actively on the formation of the CAMPUS data bank since 1989. At the moment, our test laboratories have characterised around 300 construction materials according to the CAMPUS profile with regard to physical, chemical and process-technical properties. These are available both in table form (mechanical, thermal, rheological and electrical property values) and in graph form (stress-strain curves, creep curves, shear loss modulus, viscosity and pvT).

Material descriptions, resistance to chemicals, typical applications and process-ing notes supplement the product profile.

The EMS Material Database makes it possible to carry out a simple, quick product search for numerical property values or features, markets and approvals. A technical data sheet and safety data sheet is available for each product.

Simple access to the EMS Material Database and CAMPUS is possible on our homepage www.ems-grivory.com.

Quality standards

The world wide production sites of EMS-GRIVORY follow the rules of our common quality management system based on the international standards ISO 9001:2008 and ISO/TS 16949:2009. They are certified by the Swiss Association for Quality & Management Systems (SQS).

The regulations of ISO/TS 16949 were compiled by the international automotive industry and, compared to ISO 9001 which is applied globally, these requirements are more far-reaching and stricter.

Our management system is process-oriented towards the primary goal of customer satisfaction. Our efforts are concentrated on conformance with quality requirements and appropriate use of resources.

The quality planning cycle starts with market research and ends with customer services. In the intermediate development phase, research and manufacturing teams face particularly challenging tasks. Development projects are tackled by interdepartmental teams working according to processes of simultaneous engineering, where team members are not limited to thinking and acting solely within the categories of their own departments, but work towards a mutual objective. During this work, up-to-date technologies (such as statistical experimental design) and preventive methods (such as failure mode and effect analysis) play a central role. The guiding principle of project management is to avoid faults before solving them.

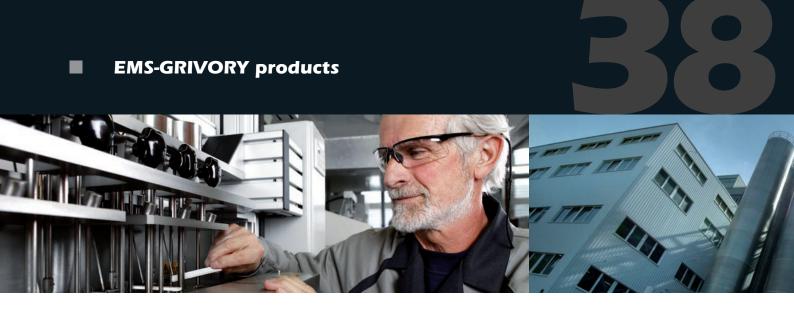
Statistical process control is used to monitor and improve our manufacturing processes. The accuracy of our equipment is monitored in measurement system analyses.

Continuous improvement of products, services and productivity is the subject of an official improvement program to which all our employees are committed.

Our quality management system serves first and foremost our customers, with main focus placed on their actual requirements and not on burocratical processes

Delivery form

Grivory is delivered as dry, cylindrical granules packed in moisture-tight sacks.


Pre-drying is not necessary if the sacks remain unopened and undamaged. A wide variety of Grivory grades are available from stock in the colours natural and black.

Special colours or bulk deliveries are available on request. Our sales engineers will be happy to advise you further.

Recycling of packaging material

The disposal markings on our packaging materials provide a criterion for sorting and ensure segregated disposal.

In some European countries EMS-GRIVORY pays a disposal charge e.g. with RIGK for return of empty containers free of charge.

Grivory Link

Further information can be found on our homepage:

www.emsgrivory.com

EMS-GRIVORY products

Grivory HT

Enhanced performance at high temperatures

Grivory® is the trade name for a group of engineering plastic materials. Grivory HT, manufactured and sold by EMS-GRIVORY, is a construction material based on polyphthalamide (copolyamide PA6T61, PA6T/66, PA10T/X).

Grivory GV

The proven material for metal replacement

Grivory® GV is the trade name for a group of engineering plastic materials manufactured and sold by EMS-GRIVORY. Grivory GV is based on a combination of semi-crystalline and partially aromatic polyamide. Grivory is available in granulate form for processing using injection-moulding methods.

Grilon

Premium polyamide

Grilon® is the trade name for engineering plastics from EMS-GRIVORY based on polyamide 6, polyamide 66 and polyamide 66/6 alloys. The construction materials in this product family are semicrystalline polyamides and are characterised by many groundbreaking properties.

Grilamid

Technical polymer for highest demands.

Grilamid® is the brand name given by EMS-GRIVORY

to its polyamide 12 products. These engineering plastics have been successfully tried and tested for more than 30 years in a wide variety of challenging applications.

Grilamid TR

Transparent polyamides for highest requirements

The trade name Grilamid TR designates transparent polyamides manufactured by EMS-GRIVORY. Grilamid TR grades are transparent, thermoplastically processable polyamides based on alliphatic and cycloaliphatic components.

Disclaimer

The information contained in this publication is based on our present knowledge and experience. The given figures and data are guidance values and do not represent binding material specifications. No warranties of any kind, either express or implied, including warranties of merchantability or fitness for a particular purpose, are given regarding products, design, data and information. The customer is not released from his obligation to investigate the products fitness and the suitability for the intended application, compliance with legal requirements and intellectual property rights. We reserve the right to change the information at any time and without prior notice. The information in this publication is not to be considered a contractual obligation and any liability whatsoever is expressly declined. For further questions about our products please contact our experts. Note: EMS-GRI-VORY cannot assess possible future health risks which may result from direct contact of its products with blood or tissue. For this reason, EMS-GRIVORY cannot promote medical applications which involve long-term contact of plastic with blood or tissue.

Domat/Ems, October 2016

Abrasion protection
Ball indentation hardness
Campus
Delivery form. 37 Density. 8, 10, 12, 14 Desiccant dryer. 30 Design data. 16, 18 Die-cast alloys. 27 Dielectric strength. 8, 10, 12, 14 Diesel fuel. 22, 25 Disposal markings. 37 Drinking water. 3, 4, 6 Drying. 30
Elongation at break
Fats
Glass-fibre reinforcement
Half-life period
Heat distortion temperature HDT/C
Heating

Impact strength
Joint line31
KTW recommendations28
Laser printing 32 Long-term behaviour 18,19 Long-term working temperature 26 Lubricants 22, 24
Machining33Material testing35Mechanical engineering4-7Mechanical properties8, 10, 12, 14Melamine formaldehyde26Melamine phenol26Melt temperature8, 10, 12, 14Metal replacement38Mineral reinforcement3, 4Moldflow34Mould design31Mould shrinkage8, 10, 12, 14Mould temperature31
Nomenclature
Oils22, 24, 25
Open-air weathering20
Painting 32 PEEK 26 Petrol 22, 25 Phenolic resins 26 Polyphthalamide 4-7 Post treatment 26, 27 PPS 23 Processing 3, 31 Product designation as per ISO 16396 8, 10, 12, 14 Prototype moulds 34
Painting. 32 PEEK. 26 Petrol. 22, 25 Phenolic resins. 26 Polyphthalamide. 4-7 Post treatment. 26, 27 PPS. 23 Processing. 3, 31 Product designation as per ISO 16396. 8 10 12 14
Painting 32 PEEK 26 Petrol 22, 25 Phenolic resins 26 Post Ireatment 26, 27 Post Ireatment 26, 27 Processing 3, 31 Product designation as per ISO 16396 8, 10, 12, 14 Prototype moulds 34 Quality control 35 Quality standards 37 Rake angle 33 Reclaimed material 33 Reclaimed material 33 Resistance to automotive media 24 Resistance to chemicals 22 Resistance to chemicals 22 Resistance to heat ageing 21 Resistance to hot water 23
Painting

Shore D hardness. Solvents. Special colours. Sprue systems. Storage in water. Storage. Surface coating. Surface resistance.				. 37 . 31 . 23 . 30
Technical support Temperature-time limit Tensile E-modulus.		10.	12.	.34 2
Tensile stress at break	14, 8,	21, 10,	23, 12, 12,	24
Thermoplastic materialsThermosets Tip				. Z(
UK (WRAS)			.4, 5	.28 .29 5, 7
Vacuum oven				.3
Water absorption				.30
Wöhler curves. Working life. Working temperature	8,	10,	20, 12,	35

EMS-GRIVORY worldwide

www.emsgrivory.com

EMS-GRIVORY - The leading manufacturer of high-performance polyamides

EMS-GRIVORY is the leading manufacturer of high-performance polyamides and the supplier with the widest range of polyamide materials. Our products are well-known throughout the world under the trade marks Grilamid, Grivory and Grilon.

We offer our customers a comprehensive package of high-capacity and high-quality products along with segment-specific advisory competence in distribution and application development. We maintain our market leadership through continual product and application development in all segments.

EMS-GRIVORY Europe

Switzerland

EMS-CHEMIE AG
Business Unit EMS-GRIVORY Europe
Via Innovativa 1
7013 Domat/Ems
Switzerland
Phone +41 81 632 78 88
Fax +41 81 632 76 65
welcome@emsgrivory.com

Germany

EMS-CHEMIE (Deutschland) Vertriebs GmbH Warthweg 14
64823 Gross-Umstadt
Germany
Phone +49 6078 783 0
Fax +49 6078 783 416
welcome@de.emsgrivory.com

France

EMS-CHEMIE (France) S.A. 855 Avenue Roger Salengro Boîte postale 16 92370 Chaville France Phone +33 1 41 10 06 10 Fax +33 1 48 25 56 07 welcome@fr.emsgrivory.com

Great Britain

EMS-CHEMIE (UK) Ltd.
Darfin House, Priestly Court
Staffordshire Technology Park
Stafford ST18 OLQ
Great Britain
Phone +44 1785 283 739
Fax +44 1785 283 722
welcome@uk.emsgrivory.com

EMS-GRIVORY, a business unit of the EMS Group

Italy

EMS-CHEMIE (Italia) S.r.I. Via Carloni 56 22100 Como (CO) Italia Tel. +39 011 0604522 Fax +39 011 0604522 welcome@it.emsgrivory.com

EMS-GRIVORY Asia China

EMS-CHEMIE (China) Ltd.
227 Songbei Road
Suzhou Industrial Park
Suzhou City 215126
Jiangsu Province
P.R. China
Phone +86 512 8666 8180
Fax +86 512 8666 8210
welcome@cn.emsgrivory.com

EMS-CHEMIE (Suzhou) Ltd.
227 Songbei Road
Suzhou Industrial Park
Suzhou City 215126
Jiangsu Province
P.R. China
Phone +86 512 8666 8181
Fax +86 512 8666 8183
welcome@cn.emsgrivory.com

Taiwan

EMS-CHEMIE (Taiwan) Ltd.
36, Kwang Fu South Road
Hsin Chu Industrial Park
Fu Kou Hsiang
Hsin Chu Hsien 30351
Taiwan, R.O.C.
Phone +886 3 598 5335
Fax +886 3 598 5345
welcome@tw.emsgrivory.com

Korea

EMS-CHEMIE (Korea) Ltd. #817 Doosan Venturedigm, 415 Heungan Daero, Dongan-gu, Anyang-si, Gyeonggi-do, 431-755 Republic of Korea Phone +82 31 478 3159 Fax +82 31 478 3157 welcome@kr.emsgrivory.com

Japan

EMS-CHEMIE (Japan) Ltd.
EMS Building
2-11-20 Higashi-koujiya
Ota-ku, Tokyo 144-0033
Japan
Phone +81 3 5735 0611
Fax +81 3 5735 0614
welcome@jp.emsgrivory.com

EMS-GRIVORY America

United States

EMS-CHEMIE (North America) Inc. 2060 Corporate Way P.O. Box 1717 Sumter, SC 29151 USA Phone +1 803 481 61 71 Fax +1 803 481 61 21 welcome@us.emsgrivory.com