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Abstract. In this paper, we explore the use of vehicle-to-vehicle (V2V)
communication to improve the perception and motion forecasting per-
formance of self-driving vehicles. By intelligently aggregating the infor-
mation received from multiple nearby vehicles, we can observe the same
scene from different viewpoints. This allows us to see through occlusions
and detect actors at long range, where the observations are very sparse
or non-existent. We also show that our approach of sending compressed
deep feature map activations achieves high accuracy while satisfying com-
munication bandwidth requirements.
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1 Introduction

While a world densely populated with self-driving vehicles (SDVs) might seem
futuristic, these vehicles will one day soon be the norm. They will provide safer,
cheaper and less congested transportation solutions for everyone, everywhere. A
core component of self-driving vehicles is their ability to perceive the world. From
sensor data, the SDV needs to reason about the scene in 3D, identify the other
agents, and forecast how their futures might play out. These tasks are commonly
referred to as perception and motion forecasting. Both strong perception and
motion forecasting are critical for the SDV to plan and maneuver through traffic
to get from one point to another safely.

The reliability of perception and motion forecasting algorithms has signifi-
cantly improved in the past few years due to the development of neural network
architectures that can reason in 3D and intelligently fuse multi-sensor data (e.g.,
images, LiDAR, maps) [28, 29]. Motion forecasting algorithm performance has
been further improved by building good multimodal distributions [4,6,12,19] that
capture diverse actor behaviour and by modelling actor interactions [3,25,36,37].
Recently, [5, 31] propose approaches that perform joint perception and mo-
tion forecasting, dubbed perception and prediction (P&P), further increasing
the accuracy while being computationally more efficient than classical two-step
pipelines.
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Fig. 1: Left: Safety critical scenario of a pedestrian coming out of occlusion. V2V
communication can be leveraged to use the fact that multiple self-driving vehicles
see the scene from different viewpoints, and thus see through occluders. Right:
Example V2VSim Scene. Virtual scene with occluded actor (blue) and SDVs
(red and green), Rendered LiDAR from each SDV in the scene.

Despite these advances, challenges remain. For example, objects that are
heavily occluded or far away result in sparse observations and pose a challenge for
modern computer vision systems. Failing to detect and predict the intention of
these hard-to-see actors might have catastrophic consequences in safety critical
situations when there are only a few miliseconds to react: imagine the SDV
driving along a road and a child chasing after a soccer ball runs into the street
from behind a parked car (Fig. 1, left). This situation is difficult for both SDVs
and human drivers to correctly perceive and adjust for. The crux of the problem
is that the SDV and the human can only see the scene from a single viewpoint.

However, SDVs could have super-human capabilities if we equip them with
the ability to transmit information and utilize the information received from
nearby vehicles to better perceive the world. Then the SDV could see behind the
occlusion and detect the child earlier, allowing for a safer avoidance maneuver.

In this paper, we consider the vehicle-to-vehicle (V2V) communication set-
ting, where each vehicle can broadcast and receive information to/from nearby
vehicles (within a 70m radius). Note that this broadcast range is realistic based
on existing communication protocols [21]. We show that to achieve the best com-
promise of having strong perception and motion forecasting performance while
also satisfying existing hardware transmission bandwidth capabilities, we should
send compressed intermediate representations of the P&P neural network. Thus,
we derive a novel P&P model, called V2VNet, which utilizes a spatially aware
graph neural network (GNN) to aggregate the information received from all the
nearby SDVs, allowing us to intelligently combine information from different
points in time and viewpoints in the scene.

To evaluate our approach, we require a dataset where multiple self-driving
vehicles are in the same local traffic scene. Unfortunately, no such dataset exists.
Therefore, our second contribution is a new dataset, dubbed V2V-Sim (see Fig.
1, right) that mimics the setting where there are multiple SDVs driving in the
area. Towards this goal, we use a high-fidelity LiDAR simulator [33], which uses a
large catalog of static 3D scenes and dynamic objects built from real-world data,
to simulate realistic LiDAR point clouds for a given traffic scene. With this simu-
lator, we can recreate traffic scenarios recorded from the real-world and simulate
them as if a percentage of the vehicles are SDVs in the network. We show that
V2VNet and other V2V methods significantly boosts performance relative to
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Fig. 2: Overview of V2VNet.

the single vehicle system, and that our compressed intermediate representations
reduce bandwidth requirements without sacrificing performance. We hope this
work brings attention to the potential benefits of the V2V setting for bringing
safer autonomous vehicles on the road. To enable this, we plan to release this
new dataset and make a challenge with a leaderboard and evaluation server.

2 Related Work

Joint Perception and Prediction: Detection and motion forecasting play
a crucial role in any autonomous driving system. [3–5, 25, 30, 31] unified 3D
detection and motion forecasting for self-driving, gaining two key benefits: (1)
Sharing computation of both tasks achieves efficient memory usage and fast
inference time. (2) Jointly reasoning about detection and motion forecasting
improves accuracy and robustness. We build upon these existing P&P models
by incorporating V2V communication to share information from different SDVs,
enhancing detection and motion forecasting.

Vehicle-to-Vehicle Perception: For the perception task, prior work has uti-
lized messages encoding three types of data: raw sensor data, output detections,
or metadata messages that contain vehicle information such as location, heading
and speed. [34,38] associate the received V2V messages with outputs of local sen-
sors. [8] aggregate LiDAR point clouds from other vehicles, followed by a deep
network for detection. [35, 44] process sensor measurements via a deep network
and then generate perception outputs for cross-vehicle data sharing. In contrast,
we leverage the power of deep networks by transmitting a compressed intermedi-
ate representation. Furthermore, while previous works demonstrate results on a
limited number of simple and unrealistic scenarios, we showcase the effectiveness
of our model on a diverse large-scale self-driving V2V dataset.

Aggregation of Multiple Beliefs: In V2V setting, the receiver vehicle should
collect and aggregate information from an arbitrary number of sender vehicles
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Fig. 3: After SDVs communicate messages, each receiver SDV compensates for
time-delay of the received messages, and a GNN aggregates the spatial messages
to compute the final intermediate representation.

for downstream inference. A straightforward approach is to perform permutation
invariant operations such as pooling [10,40] over features from different vehicles.
However, this strategy ignores cross-vehicle relations (spatial locations, headings,
times) and fails to jointly reason about features from the sender and receiver.
On the other hand, recent work on graph neural networks (GNNs) has shown
success on processing graph-structured data [15,18,26,46]. MPNN [17] abstract
commonalities of GNNs with a message passing framework. GGNN [27] intro-
duce a gating mechanism for node update in the propagation step. Graph-neural
networks have also be effective in self-driving: [3, 25] propose a spatially-aware
GNN and an interaction transformer to model the interactions between actors
in self-driving scenes. [41] uses GNNs to estimate value functions of map nodes
and share vehicle information for coordinated route planning. We believe GNNs
are tailored for V2V communication, as each vehicle can be a node in the graph.
V2VNet leverages GNNs to aggregate and combine messages from other vehicles.

Active Perception: In V2V perception, the receiving vehicle should aggregate
information from different viewpoints such that its field of view is maximized,
trusting more the view that can see better. Our work is related to a long line
of work in active perception, which focuses on deciding what action the agent
should take to better perceive the environment. Active perception has been ef-
fective in localization and mapping [13,22], vision-based navigation [14], serving
as a learning signal [20, 48], and various other robotics applications [9]. In this
work, rather than actively steering SDVs to obtain better viewpoint and sending
information to the others, we consider a more realistic scenario where multiple
SDVs have their own routes but are currently in the same geographical area,
allowing the SDVs to see better by sharing perception messages.

3 Perceiving the World by Leveraging Multiple Vehicles

In this paper, we design a novel perception and motion forecasting model that
enables the self-driving vehicle to leverage the fact that several SDVs may be
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present in the same geographic area. Following the success of joint perception and
prediction algorithms [3, 5, 30, 31], which we call P&P, we design our approach
as a joint architecture to perform both tasks, which is enhanced to incorporate
information received from other vehicles. Specifically, we would like to devise
our P&P model to do the following: given sensor data the SDV should (1)
process this data, (2) broadcast it, (3) incorporate information received from
other nearby SDVs, and then (4) generate final estimates of where all traffic
participants are in the 3D space and their predicted future trajectories.

Two key questions arise in the V2V setting: (i) what information should each
vehicle broadcast to retain all the important information while minimizing the
transmission bandwidth required? (ii) how should each vehicle incorporate the
information received from other vehicles to increase the accuracy of its perception
and motion forecasting outputs? In this section we address these two questions.

3.1 Which Information should be Transmitted

An SDV can choose to broadcast three types of information: (i) the raw sensor
data, (ii) the intermediate representations of its P&P system, or (iii) the output
detections and motion forecast trajectories. While all three message types are
valuable for improving performance, we would like to minimize the message sizes
while maximizing P&P accuracy gains. Note that small message sizes are critical
because we want to leverage cheap, low-bandwidth, decentralized communica-
tion devices. While sending raw measurements minimizes information loss, they
require more bandwidth. Furthermore, the receiving vehicle would need to pro-
cess all additional sensor data received, which might prevent it from meeting the
real-time inference requirements. On the other hand, transmitting the outputs of
the P&P system is very good in terms of bandwidth, as only a few numbers need
to be broadcasted. However, we may lose valuable scene context and uncertainty
information that could be very important to better fuse the information.

In this paper, we argue that sending intermediate representations of the P&P
network achieves the best of both worlds. First, each vehicle processes its own
sensor data and computes its intermediate feature representation. This is com-
pressed and broadcasted to nearby SDVs. Then, each SDV’s intermediate repre-
sentation is updated using the received messages from other SDVs. This is further
processed through additional network layers to produce the final perception and
motion forecasting outputs. This approach has two advantages: (1) Intermediate
representations in deep networks can be easily compressed [11,43], while retain-
ing important information for downstream tasks. (2) It has low computation
overhead, as the sensor data from other vehicles has already been pre-processed.

In the following, we first showcase how to compute the intermediate repre-
sentations and how to compress them. We then show how each vehicle should
incorporate the received information to increase the accuracy of its P&P outputs.
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Algorithm 1 Cross-vehicle Aggregation

1: input: representation ẑi, relative pose ∆pi, and time delay ∆ti→k for each SDV i
2: for each vehicle i do
3: h

(0)
i = CNN(ẑi,∆ti→k) ‖ 0 . Compensate time delay, init. node state

4: end for
5: for l iterations do . Message passing
6: for each vehicle i do . Processed in parallel
7: m

(l)
i→k = CNN(T (h

(l)
i , ξi→k), h

(l)
k ) ·Mi→k . Spatially transform message

8: h
(l+1)
i = ConvGRU(h

(l)
i , φM ([∀j∈N(i),m

(l)
j→i])) . Node state update

9: end for
10: end for
11: z

(L)
i = MLP (h

(L)
i ) . Output updated intermediate representation

3.2 Leveraging Multiple Vehicles

V2VNet has three main stages: (1) a convolutional network block that pro-
cesses raw sensor data and creates a compressible intermediate representation,
(2) a cross-vehicle aggregation stage, which aggregates information received from
multiple vehicles with the vehicle’s internal state (computed from its own sen-
sor data) to compute an updated intermediate representation, (3) an output
network that computes the final P&P outputs. We now describe these steps in
more details. We refer the reader to Fig. 2 for our V2VNet architecture.

LiDAR Convolution Block: Following the architecture from [45], we ex-
tract features from LiDAR data and transform them into bird’s-eye-view (BEV).
Specifically, we voxelize the past five LiDAR point cloud sweeps into 15.6cm3

voxels, apply several convolutional layers, and output feature maps of shape
H×W ×C, where H×W denotes the scene range in BEV, and C is the number
of feature channels. We use 3 layers of 3x3 convolution filters (with strides of 2,
1, 2) to produce a 4x downsampled spatial feature map. This is the intermediate
representation that we then compress and broadcast to other nearby SDVs.

Compression: We now describe how each vehicle compresses its intermediate
representations prior to transmission. We adapt Ballé et al.’s variational im-
age compression algorithm [2] to compress our intermediate representations; a
convolutional network learns to compress our representations with the help of
a learned hyperprior. The latent representation is then quantized and encoded
losslessly with very few bits via entropy encoding. Note that our compression
module is differentiable and therefore trainable, allowing our approach to learn
how to preserve the feature map information while minimizing bandwidth.

Cross-vehicle Aggregation: After the SDV computes its intermediate repre-
sentation and transmits its compressed bitstream, it decodes the representation
received from other vehicles. Specifically, we apply entropy decoding to the bit
stream and apply a decoder CNN to extract the decompressed feature map. We
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Method
AP@IoU ↑ `2 Error (m) ↓ TCR ↓
0.5 0.7 1.0s 2.0s 3.0s τ =0.01

No Fusion 77.3 68.5 0.43 0.67 0.98 2.84
Output Fusion 90.8 86.3 0.29 0.50 0.80 3.00
LiDAR Fusion 92.2 88.5 0.29 0.50 0.79 2.31
V2VNet 93.1 89.9 0.29 0.50 0.78 2.25

Table 1: Detection Average Precision (AP) at IoU={0.5, 0.7}, prediction with `2
error at recall 0.9 at different timestamps, and Trajectory Collision Rate (TCR).

then aggregate the received information from other vehicles to produce an up-
dated intermediate representation. Our aggregation module has to handle the
fact that different SDVs are located at different spatial locations and see the
actors at different timestamps due to the rolling shutter of the LiDAR sensor
and the different triggering per vehicle of the sensors. This is important as the
intermediate feature representations are spatially aware.

Towards this goal, each vehicle uses a fully-connected graph neural network
(GNN) [39] as the aggregation module, where each node in the GNN is the state
representation of an SDV in the scene, including itself (see Fig. 3). Each SDV
maintains its own local graph based on which SDVs are within range (i.e., 70
m). GNNs are a natural choice as they handle dynamic graph topologies, which
arise in the V2V setting. GNNs are deep-learning models tailored to graph-
structured data: each node maintains a state representation, and for a fix number
of iterations, messages are sent between nodes and the node states are updated
based on the aggregated received information using a neural network. Note that
the GNN messages are different from the messages transmitted/received by the
SDVs: the GNN computation is done locally by the SDV. We design our GNN to
temporally warp and spatially transform the received messages to the receiver’s
coordinate system. We now describe the aggregation process that the receiving
vehicle performs. We refer the reader to Alg. 1 for pseudocode.

We first compensate for the time delay between the vehicles to create an
initial state for each node in the graph. Specifically, for each node, we apply
a convolutional neural network (CNN) that takes as input the received inter-
mediate representation ẑi, the relative 6DoF pose ∆pi between the receiving
and transmitting SDVs and the time delay ∆ti→k with respect to the receiv-
ing vehicle sensor time. Note that for the node representing the receiving car,
ẑ is directly its intermediate representation. The time delay is computed as the
time difference between the sweep start times of each vehicle, based on universal
GPS time. We then take the time-delay-compensated representation and con-
catenate with zeros to augment the capacity of the node state to aggregate the
information received from other vehicles after propagation (line 3 in Alg. 1).

Next we perform GNN message passing. The key insight is that because
the other SDVs are in the same local area, the node representations will have
overlapping fields of view. If we intelligently transform the representations and
share information between nodes where the fields-of-view overlap, we can en-
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Fig. 4: Left: Detection Precision-Recall (PR) Curve at IoU=0.7. Center/Right:
Recall as a function of L2 Error Prediction at 1.0s and 3.0s.

hance the SDV’s understanding of the scene and produce better output P&P.
Fig. 3 visually depicts our spatial aggregation module. We first apply a relative
spatial transformation ξi→k to warp the intermediate state of the i-th node to
send a GNN message to the k-th node. We then perform joint reasoning on the
spatially-aligned feature maps of both nodes using a CNN. The final modified
message is computed as in Alg. 1 line 7, where T applies the spatial transfor-
mation and resampling of the feature state via bilinear-interpolation, and Mi→k
masks out non-overlapping areas between the fields of view. Note that with this
design, our messages maintain the spatial awareness.

We next aggregate at each node the received messages via a mask-aware
permutation-invariant function φM and update the node state with a convolu-
tional gated recurrent unit (ConvGRU) (Alg. 1 line 8), where j ∈ N(i) are the
neighboring nodes in the network for node i and φM is the mean operator. The
mask-aware accumulation operator ensures only overlapping fields-of-view are
considered. In addition, the gating mechanism in the node update enables in-
formation selection for the accumulated received messages based on the current
belief of the receiving SDV. After the final iteration, a multilayer perceptron
outputs the updated intermediate representation (Alg. 1 Line 11). We repeat
this message propagation scheme for a fix number of iterations.

Output Network: After performing message passing, we apply a set of four
Inception-like [42] convolutional blocks to capture multi-scale context efficiently,
which is important for prediction. Finally, we take the feature map and exploit
two network branches to output detection and motion forecasting estimates re-
spectively. The detection output is (x, y, w, h, θ), denoting the position, size and
orientation of each object. The output of the motion forecast branch is parame-
terized as (xt, yt), which denotes the object’s location at future time step t. We
forecast the motion of the actors for the next 3 seconds at 0.5 s intervals. Please
see supplementary for additional architecture and implementation details.

3.3 Learning

We first pretrain the LiDAR backbone and output headers, bypassing the cross-
vehicle aggregation stage. Our loss function is cross-entropy on the vehicle clas-
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Fig. 5: Compression: Detection (AP at IoU 0.7), Prediction (`2 error at recall
0.9 at 3.0s), and Trajectory Collision Rate (τ = 0.01) performance on models
with compression module.

sification output and smooth `1 on the bounding box parameters. We apply
hard-negative mining to improve performance. We then finetune jointly the Li-
DAR backbone, cross-vehicle aggregation, and output header modules on our
novel V2V dataset (see Sec. 4) with synchronized inputs (no time delay) using
the same loss function. We do not use the temporal warping function at this
stage. During training, for every example in the mini-batch, we randomly sam-
ple the number of connected vehicles uniformly on [0,min(c, 6)], where c is the
number of candidate vehicles available. This is to make sure V2VNet can han-
dle arbitrary graph connectivity while also making sure the fraction of vehicles
on the V2V network remains within the GPU memory constraints. Finally, the
temporal warping function is trained to compensate for time delay with asyn-
chronous inputs, where all other parts of the network are fixed. We uniformly
sample time delay between 0.0s and 0.1s (time of one 10Hz LiDAR sweep). We
then train the compression module with the main network (backbone, aggre-
gation, output header) fixed. We use a rate-distortion objective, which aims to
maximize the bit rate in transmission while minimizing the distortion between
uncompressed and decompressed data. We define the rate objective as the en-
tropy of the transmitted code, and the distortion objective as the reconstruction
loss (between the decompressed and uncompressed feature maps).

4 V2V-Sim: a dataset for V2V communication

No realistic dataset for V2V communication exists in the literature. Some ap-
proaches simulate the V2V setting by using different frames from KITTI [16] to
emulate multiple vehicles [8,32,44]. However, this is unrealistic since sensor mea-
surements are at different timestamps, so moving objects may be at completely
different locations (e.g., a 1 sec. time difference can cause 20 m change in posi-
tion). Other approaches utilize a platoon strategy for data collection [7,23,35,47],
where each vehicle follows behind the previous one closely. While more realistic
than using KITTI, this data collection is biased: the perspectives of different
vehicles are highly correlated with each other, and the data does not provide the
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Fig. 6: Density of SDV: AP at IoU=0.7 and `2 error at {1s, 3s} at highest
recall rate at IoU=0.5 wrt % of SDVs in the scene.

richness of different V2V scenarios. For example, we will never see SDVs coming
in the opposite direction, or SDVs turning from other lanes at intersections.

To address these deficiencies, we use a high-fidelity LiDAR simulator, Li-
DARsim [33], to generate our large-scale V2V communication dataset, which we
call V2V-Sim. LiDARsim is a simulation system that uses a large catalog of 3D
static scenes and dynamic objects that are built from real-world data collections
to simulate new scenarios. Given a scenario (i.e., scene, vehicle assets and their
trajectories), LiDARsim applies raycasting followed by a deep neural network to
generate a realistic LIDAR point cloud for each frame in the scenario.

We leverage traffic scenarios captured in the real world ATG4D dataset [45]
to generate our simulations. We recreate the snippets in LiDARsim’s virtual
world using the ground-truth 3D tracks provided in ATG4D. By using the same
scenario layouts and agent trajectories recorded from the real world, we can
replicate realistic traffic. In particular, at each timestep, we place the actor 3D-
assets into the virtual scene according to the real-world labels and generate the
simulated LiDAR point cloud seen from the different candidate vehicles (see
Fig. 1, right). We define the candidate vehicles to be non-parked vehicles that
are within the 70-meter broadcast range of the vehicle that recorded the real-
world snippet. We generate 5500 25s snippets collected from multiple cities. We
subsample the frames in the snippets to produce our final 46,796/4,404 frames for
train/test splits for the V2V-Sim dataset. V2V-Sim has on average 10 candidate
vehicles that could be in the V2V network per sample, with a maximum of 63
and a variance of 7, demonstrating the traffic diversity. The fraction of vehicles
that are candidates increases linearly w.r.t broadcast range.

5 Experimental Evaluation

In this section we showcase the performance of our approach compared to other
transmission and aggregation strategies as well as single vehicle P&P.

Metrics: We evaluate both detection and motion forecasting around the ego-
vehicle with a range of: x ∈ [−100, 100]m, y ∈ [−40, 40]m. We include com-
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Fig. 7: Performance on objects with (fist two columns) different number of Li-
DAR point observation (last two columns) different velocities.

pletely occluded objects (0 LiDAR points hit the object), making the task
much more challenging and realistic than standard benchmarks. For object de-
tection, we compute Average Precision (AP) and Precision-Recall (PR) Curve
at Intersection-over-Union (IoU) threshold of 0.7. For motion forecasting, we
compute absolute `2 displacement error of the object center’s location at future
timestamps (3s prediction horizon with 0.5s interval) on true positive detections.
We set the IoU threshold to 0.5 and recall to 0.9 (we pick the highest recall if 0.9
cannot be reached) to obtain the true positives. These values were chosen such
that we retrieve most objects, which is critical for safety in self-driving. Note
that most self-driving systems adopt this high recall as operating point. We also
compute Trajectory Collision Rate (TCR), defined as the collision rate between
the predicted trajectories of detected objects, where collision occurs when two
cars overlap with each other more than a specific IoU (i.e., collision threshold τ).
This metric evaluates whether the predictions are consistent with each other. We
exclude the other SDVs during evaluation, as those can be trivially predicted.

Baselines: We evaluate the single vehicle setting, dubbed No Fusion, which con-
sists of LiDAR backbone network and output headers only, without V2V com-
munication. We also introduce two baselines for V2V communication: LiDAR
Fusion and Output Fusion. LiDAR Fusion warps all received LiDAR sweeps from
other vehicles to the coordinate frame of the receiver via the relative transforma-
tion between vehicles (which is known, as all SDVs are assume to be localized)
and performs direct aggregation. We use the state-of-the-art LiDAR compression
algorithm Draco [1] to compress LiDAR Fusion messages. For Output Fusion,
each vehicle sends post-processed outputs, i.e., bounding boxes with confidence
scores, and predicted future trajectories after non-maximum suppression (NMS).
At the receiver end, all bounding boxes and future trajectories are first trans-
formed to the ego-vehicle coordinate system and then aggregated across vehicles.
NMS is then applied again to produce the final results.

Experimental Details: For all analysis we set the maximum number of SDVs
per scene to be 7 (except for an ablation study measuring how the number of
SDVs affect V2V performance in Fig. 6). All models are trained with Adam [24].
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Fig. 8: Robustness on noisy vehicles’ relative pose estimates.

Comparison to Existing Approaches: As shown in Table. 1, V2V-based
models significantly outperform No Fusion on detection (∼20% at IoU 0.7) and
prediction (∼0.2 m `2 error reduction at 3 sec.). LiDAR Fusion and V2VNet
also show strong reduction (20% at 0.01 collision threshold) in TCR. These
results demonstrate that all types of V2V communication provide substantial
performance gains. Among all V2V approaches, V2VNet is either on-par with
LiDAR Fusion (which has no information loss) or achieves the best performance.
V2VNet’s slight performance gain over LiDAR Fusion may come from using the
GNN in the cross-vehicle aggregation stage to reason about different vehicles’
feature maps more intelligently than naive aggregation. Output Fusion’s drop
in performance for TCR is due to the large number of false positives relative to
other V2V methods (see detection PR curve Fig. 4, left, at recall > 0.6). Fig. 4
shows the percentage of objects with an `2 error at 3s smaller than a constant.
This metric shows similar trends consistent with Table. 1.

Compression: Fig. 5 shows the tradeoff between transmission bandwidth and
accuracy for different V2V methods with and without compression. Draco [1]
achieves 33x compression for LiDAR Fusion, while our compressed intermedi-
ate representations achieved a 417x compression rate. Note that compression
marginally affects the performance. This shows that the intermediate P&P rep-
resentations are much easier to compress than LiDAR. Given the message size for
one timestamp with a sensor capture rate of 10Hz, we compute the transmission
delay based on V2V communication protocol [21]. At the broadcast range 120
meters, the data rate is roughly 25 Mbps. This means sending V2VNet messages
may induce roughly 9ms delay, which is very low.

SDV Density: We now investigate how V2V performance changes as a function
of % of SDVs in the scene. To make this setting like the real world, for a given
25s snippet, we choose a fraction of candidate vehicles in the scene to be SDVs
for the whole snippet. As shown in Fig. 6, V2V performance increases linearly
with the % of SDVs in both detection and prediction.

Number of LiDAR points, Velocity: As shown in Fig. 7 (a) V2V meth-
ods boost the performance on completely- and mostly-occluded objects (0 and
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Fig. 9: Effect of time delay in data exchange.

1∼6 LiDAR points) by over 60% in AP. This is an extremely exciting result,
since the main challenges of perception and motion forecasting are objects with
very sparse observations. Fig. 7 (b) shows performance on objects with different
velocities. While other V2V methods drop in detection performance as object
velocity increases, V2VNet has consistent performance gains over No Fusion on
fast moving objects. Output Fusion and LiDAR Fusion may have deteriorated
due to the rolling shutter of the moving SDV and the motion blur of moving
agents during the temporal sweep of the LiDAR sensor. These effects are more
severe in the V2V setting, where SDVs may be moving in opposite directions at
high speeds while recording moving actors. Although not explicitly tackling such
issue, V2VNet performs contextual and iterative reasoning on information from
different vehicles, which may indirectly handle rolling shutter inconsistencies.

Imperfect Localization: We simulate inaccurate pose estimates by intro-
ducing different levels of Gaussian (σ = 0.4m) and von Mises (σ = 4◦; 1

κ =
4.873×10−3) noise to position and heading of the transmitting SDVs. As shown
in Fig. 8, on both noise types, V2VNet outperforms LiDAR Fusion and Output
Fusion in P&P performance. The only exception is Output Fusion `2 error with
heading noise larger than 3◦. We hypothesize that Output Fusion’s performance
is better at this setting due to its low-recall (fewer true positives) relative to
V2VNet (0.62 vs. 0.73 at 4◦ noise). Fewer true positives can cause lower `2 error
relative to higher recall methods. Degradation from heading noise is more severe
than position noise, as subtle rotation in the ego-view will cause substantial mis-
alignment for far-off objects; a vehicle bounding box (5m x 2m) rotated by 1◦

with respect to a pivot 70m away generates an IoU of 0.39 with the original.

Asynchronous Propagation: We simulate random time delay by delaying
the messages of other vehicles at random from U(0, t), where t = 0.1. We apply
a piece-wise linear velocity model (computed via finite differences) in Output
Fusion to compensate for time delay. We do not make adjustments for LiDAR
Fusion as it is non-trivial. As shown in Fig. 9, V2VNet demonstrates robustness
across different time delays. Output Fusion does not perform well at high time
delays as the piece-wise linear model used is sensitive to velocity estimates.
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Fig. 10: V2V-Net Qualitative Examples. Left: Occluded car detected; Middle:
Perception range increased; Right: Fast car detected.

Mixed Fleet: We also investigate the case that the SDV may receive differ-
ent types of perception messages (i.e., sensor data, intermediate representation
and P&P outputs). We analyze the setting where every SDV (other than the
receiving vehicle) has 1/3 chance to broadcast each measurement type. We then
perform Sensor Fusion, V2VNet, Output Fusion for the relevant set of messages
to generate the final output. The result is in between the three V2V approaches:
88.6 AP at IoU=0.7 for detection, 0.79 m error at 3.0s prediction, and 2.63 TCR.

Qualitative Results: As shown in Fig. 10, V2VNet can see further and handle
occlusion. For example, in Fig. 10 far right, we perceive and motion forecast a
high-speed vehicle in our right lane, which can give the downstream planning
system more information to better plan a safe maneuver for a lane change.
V2V-Net also detects many more vehicles in the scene that were originally not
detected by No Fusion (Fig. 10, middle).

6 Conclusion

In this paper, we have proposed a V2V approach for perception and predic-
tion that transmits compressed intermediate representations of the P&P neural
network, achieving the best compromise between accuracy improvements and
bandwidth requirements. To demonstrate the effectiveness of our approach we
have created a novel V2V-Sim dataset that realistically simulates the world when
SDVs will be ubiquitous. We hope that our findings will inspire future work in
V2V perception and motion forecasting strategies for safer self-driving cars.

Acknowledgments. We gratefully acknowledge James Tu for valuable contri-
butions in the final paper.
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