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We study the identification and estimation of covariate-conditioned average
marginal effects of endogenous regressors in nonseparable structural systems
when the regressors are mismeasured. We control for the endogeneity by mak-
ing use of covariates as control variables; this ensures conditional independence
between the endogenous causes of interest and other unobservable drivers of
the dependent variable. Moreover, we recover distributions of the underlying true
causes from their error-laden measurements to deliver consistent estimators. We
obtain uniform convergence rates and asymptotic normality for estimators of
covariate-conditioned average marginal effects, faster convergence rates for es-
timators of their weighted averages over instruments, and root-n consistency and
asymptotic normality for estimators of their weighted averages over control vari-
ables and regressors. We investigate their finite-sample behavior using Monte
Carlo simulation and apply new methods to study the impact of family income
on child achievement measured by math and reading scores, using a matched
mother-child subsample of the National Longitudinal Survey of Youth. Our find-
ings suggest that these effects are considerably larger than previously recognized,
and depend on parental abilities and family income. This underscores the im-
portance of measurement errors, endogeneity of family income, nonlinearity of
income effects, and interactions between causes of child achievement.
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1. INTRODUCTION

Increasing attention is being devoted to more realistic economic models in which the
simplifying assumptions of linearity, separability, or exogeneity are not imposed (e.g.,
Chesher (2005), Altonji and Matzkin (2005), Chernozhukov and Hansen (2005), Imbens
(2007), Hoderlein and Mammen (2007), Florens, Heckman, Meghir, and Vytlacil (2008),
Chernozhukov, Imbens, and Newey (2007), Imbens and Newey (2009), Chalak and White
(2011a, 2011b), Hahn and Ridder (2011), Hoderlein (2011), and the references therein).
At the same time, increasingly powerful techniques to properly handle data problems
such as measurement error are being developed (e.g., Hausman, Newey, Ichimura, and
Powell (1991), Hausman, Newey, and Powell (1995), Hsiao and Wang (2000), Li (2002),
Schennach (2004a, 2004b, 2007), Hu and Ridder (2012), Chen, Hong, and Tamer (2005),
Mahajan (2006), Lewbel (2007), Chen, Hong, and Tarozzi (2008), Hu (2008), Hu and
Schennach (2008)). However, there is still a striking absence of methods able to simul-
taneously accommodate both endogeneity in nonseparable models and measurement
error. This is the gap this paper aims to fill. It is well known since the work of Amemiya
(1985) and Hsiao (1989) that correcting for both endogeneity and measurement error in
the same variable is not straightforward, since valid instruments to handle endogeneity
are typically insufficient to control for measurement error in nonlinear models.

To obtain our results, we rely on a conditional independence assumption between
the endogenous causes and other unobservable drivers of the dependent variable to en-
sure structural identification, as considered, for example, by Altonji and Matzkin (2005),
Hoderlein and Mammen (2007), Chalak and White (2011a,2011b), and Hoderlein (2011).
This framework shows that the identification of effects with a genuine structural inter-
pretation can be achieved via a suitable average of a nonparametric regression of the
outcome variable on the endogenous regressor and the “conditioning instruments.” We
generalize this approach to allow for mismeasured regressors, which we handle via re-
peated measurements (e.g., Hausman et al. (1991), Hausman, Newey, and Powell (1995),
Hsiao and Wang (2000), Li (2002), Schennach (2004a, 2004b, 2007)). The key goals of the
present work are (i) to determine the specific assumptions that enable identification of
structural effects (a task made nontrivial due to the interaction between the measure-
ment errors and the various disturbances in the model) and (ii) to develop suitable esti-
mators and corresponding asymptotic theory for inference (which is challenging due to
the large number of mutually interacting nonparametric quantities involved).

Examples of economic applications where endogeneity, nonseparability, and mea-
surement error are simultaneously present abound. Engel curves provide one typical ex-
ample, since purchased quantities may be endogenously determined and misreported,
and consumers may have preferences that do not obey a simple additive structure. More
generally, demand systems with heterogenous consumers exhibit similar features. The
study of treatment effects under potentially nonseparable heterogeneity is another area
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where our framework applies, in the case where the possible levels of treatment are con-
tinuous, are potentially mismeasured, and cannot be considered exogenous (because
the outcomes are correlated with determinants of the treatment level). We illustrate the
use of our methodology in this context via an application to the study of the impact of
family income on child achievement. Endogeneity arises because both child achieve-
ment and parental income are in part determined by innate abilities, which exhibit cor-
relation across generations. This problem is addressed by using a measure of parental
abilities as a conditioning instrument. In this application, income data are also notori-
ously mismeasured and outcomes may depend on individual heterogeneity in a non-
separable way.

Our framework is perhaps most related to that proposed in Altonji and Matzkin
(2005) for estimating nonseparable models with observable endogenous regressors and
unobservable errors in cross-section and panel data. One of their objects of interest is
a local average response, a type of average marginal effect. Here, we consider a similar
structure for cross-section data, but allow for the true endogenous cause of interest to be
unobservable. Instead, we suppose we have available two error-laden measurements of
the underlying true causes. We then recover distributions of the true causes from them.
Even though our structural relations are nonparametric and nonseparable, we show that
we can identify and estimate objects of interest, specifically, covariate-conditioned aver-
age marginal effects and weighted averages of covariate-conditioned average marginal
effects.

In arelated work, Schennach, White, and Chalak (2012) (SWC hereafter) study identi-
fication and estimation of average marginal effects in nonseparable structural systems.
They consider estimating causal effects from a nonseparable data generating process
using either an observed standard exogenous instrument or an unobserved exogenous
instrument for which two error-laden measurements are available. However, they as-
sume that the endogenous cause is observable. As SWC show, however, in the absence
of certain separability assumptions, local indirect least squares methods generally can-
not recover the average marginal effect. We complement the analysis of SWC by treat-
ing the case in which the instrument is no longer exogenous, but is instead a control
variable, and by allowing for measurement errors in an endogenous cause. Here, this
control variable is observable, but the endogenous cause of interest is unobservable.
Our approach is, therefore, complementary to SWC along more than one conceptual
dimension. It is worthwhile noting that, in contrast to the negative result obtained by
SWC for exogenous instruments, we show that use of the control variable enables the
recovery of various structurally meaningful objects. Furthermore, because of the use of
the conditional independence, our asymptotic treatment for the proposed estimator is
more challenging than SWC or Schennach (2004a, 2004b) for additively separable mod-
els; conditioning has nontrivial implications on the asymptotic treatment so that one
cannot merely invoke their approaches.

This paper is organized as follows. We first study nonparametric estimation of
generic aspects of the structure of interest; we then construct specific objects of interest
from them. This includes such objects as the average counterfactual response function,
the covariate-conditioned average marginal effect, Altonji and Matzkin’s (2005) “local
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average response,” corresponding to the effect of treatment on the treated for contin-
uous treatments (Florens et al. (2008)), and the average treatment effect. We estab-
lish uniform convergence rates and asymptotic normality for estimators of covariate-
conditioned average marginal effects, faster convergence rates for estimators of their
weighted averages over instruments, and /n consistency and asymptotic normality for
estimators of their weighted averages over instruments and regressors. We also propose
a practical procedure to select the optimal bandwidths.

The practical usefulness of the proposed estimator is illustrated by both Monte Carlo
experiments and an economic application to the study of the impact of family income
on child achievement. We estimate the effect of family income on child achievement
using our proposed estimator. Our findings suggest that correcting for endogeneity and
measurement errors in family income as well as considering a nonseparable model in
the relationship is critical to obtaining accurate estimates of the effect.

2. THE MODEL

We first specify the data generating process (DGP) for the structural system. There is an
inherent ordering of the variables in such systems: in the language of White and Chalak
(2009), “predecessor” variables may determine “successor” variables, but not vice versa.
For instance, when X causes Y, then Y cannot cause X. In such cases, we say that Y
succeeds X, and we write Y < X as a shorthand notation. (See also Chalak and White
(2011a, 2011b) and SWC.) Throughout, random variables are defined on a complete
probability space ({2, 7, P). We denote the support of a random variable by supp(-).
By convention, we take the value of any referenced function to be zero except when the
indicated random variable lies in supp(-). Also, we assume that any referenced condi-
tional density is regular.

AssumPTION 2.1. (i) Let (U,W,X,Y) be random variables such that E(|Y]|) < oo.
(i) The set (U,W,X,Y) is generated by a recursive structural system such that Y <
(U, X) and X < (U, W) with Y generated by the structural equation

Y =r(X, Uy),

where r is an unknown measurable scalar-valued function and Uy = vy (U) is a random
vector of countable dimension l,, with vy, a measurable function. (iii) The realizations of
Y and W are observed, whereas those of U, X, and U, are not.

In our general approach, U, X, and W can be viewed as random vectors, while we let
Y be scalar. Although X and W have finite dimension, the dimensions of U and U, may
be countably infinite. The restrictions that Y < (U, X) and X < (U, W) explicitly im-
pose the allowed recursive structure without having to specify its details. The specified
structural relations are directional causal links; thus, variations in X and Uy, structurally
determine Y, as in Strotz and Wold (1960). We do not assume that r is linear or mono-
tone in its arguments or is separable between X and U,. In line with a long tradition in
the sciences, we refer to r as a structural function or a response function (e.g., Manski
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(1997)).! As there is no restriction to the contrary, X and U, are generally dependent,
so that X is endogenous.2 Moreover, standard instrumental variables are absent here,
as the covariates W are also generally endogenous. However, identification of certain
average marginal effects is possible when X satisfies a particular conditional form of ex-
ogeneity. To state this, we follow Dawid (1979) and write X L U, | W to denote that X is
independent of Uy, given W = w.3

ASSUMPTION 2.2. Wehave X LU, |W.

Assumption 2.2 is analogous to structure imposed by Altonji and Matzkin (2005),
Hoderlein and Mammen (2007), White and Chalak (2009, 2013), Chalak and White
(20114, 2011b), and Hoderlein (2011). Following Chalak and White (2011a), we call W
“conditioning instruments.” We also synonymously employ the term “control variables”
(following the treatment effect or control function literature).

To fix the ideas, in the context of our empirical application to the impact of fam-
ily income on child achievement, Y represents child scholastic achievement on stan-
dardized tests, while X is family income and U), contains unobserved causes (individual
heterogeneity) of child achievement. As a conditioning instrument W, we use a mea-
sure of parental abilities via a standardized cognitive test. Thanks to the nonseparable
model, we can allow for nonlinearity in income effects and interactions between fam-
ily income and unobserved drivers of child achievement such as parental skills, abil-
ity, or personality. In general, family income and unobserved drivers of child achieve-
ment are correlated because earning potential and child ability passed from parental
abilities share common causes. This endogeneity makes it harder to recover features
of the causal relationship. When two causes X and Uy, are independent given parental
cognitive test, however, the causal impact of family income on child achievement can
be identified from the nonseparable model. In fact, we control for the indirect effect
via parental and child abilities by conditioning on the underlying cause of endogeneity
(parental abilities). It is thus plausible to expect that any other individual heterogeneity
in child achievement inside U, are independent from family income.

Primary parameters of interest are the conditional expectation of the response given
X and W,

X, WY=E(Y|X,W) (1

and its derivative B(x, w) = D,u(x, w), where D, = (d/dx). The functions exist whenever
E(]Y]) < o0, as ensured by Assumption 2.1(i), regardless of underlying structural rela-

1 This also comports with the notion of “best response function” in game theory. Thus, we refer to Y as
the response, since this is what the response function determines. This should not be confused with the
term “local response,” which refers to certain derivatives of r (e.g., Altonji and Matzkin (2005)).

2In classical treatments, the effects of endogenous variables are identified with the aid of instrumental
variables. These are “standard” or “proper” when they are (i) correlated with X and (ii) exogenous (i.e.,
uncorrelated with or independent of unobservables, corresponding to U, here).

3Conditional independence implies a similar “common support assumption” in Imbens and Newey
(2009). We can see this from the argument supp(U, | X = x,W =w)=(\{Se F: P[Uy eS| X =x,
W=wl=1}=(({SeF:PUy,eS|W=uw]=1}=supp(Uy | W = w), where the second equality follows
by X LUy |W.
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tions. With no further restrictions, these are purely stochastic objects. They provide no
information about the causal effect of X on Y. When X < (U, W) and Assumption 2.2
hold, pn(x, w) and B(x, w) acquire causal interpretations from a particular conditional
expectation and its derivative that have clear counterfactual meanings. Such objects are
defined as the average counterfactual response at x given W = w,

p(x |w)=E(r(x, Uy) | W =w),
and the covariate-conditioned average marginal effect of X on Y at x given W = w,
B*(x|w)=Dyp(x|w).

Thatis, under X 1 Uy | W = w, we have

/r(x, uy) dF(uy | x,w) = / r(x, uy) dF(uy | w),

since X L Uy | W =wimplies dF(u, | x, w) = dF(uy | w). As aresult, we obtain u(x, w) =
p(x | w) so that B(x, w) = B*(x | w). Consistent with Hurwicz (1950), we call this a struc-
tural identification result because it identifies aspects of the causal structure, p and 8%,
with u and B, standard stochastic objects.* We formally state the result for structural
identification.

ProrosITION 2.1. Under Assumptions 2.1 and 2.2, u(x, w) and B(x, w) are structurally
identified as u(x, w) = p(x | w) and B(x, w) = B*(x | w), respectively.

In contrast to some of the literature on nonseparable models (e.g., Altonji and
Matzkin (2005)), we do not assume that X is observable. Instead, we suppose that we ob-
serve two error-contaminated measurements of X. The following assumption expresses
this formally.

AssumPTION 2.3. Observables X1 and X, are determined by the structural equations
X1 =X+ U and X, = X + Uy, where Uy = v1(U) and U, = vo(U) for measurable func-
tions vi and v;.

4Specifically, we have the representation

wm(x, w) =/r(x, uy) dF (uy | x, w),

where dF (uy | x, w) denotes the conditional density of Uy given X = x and W = w. This represents u(X, W)
as the average response Y given (X, W) = (x, w). The average counterfactual response at x given W = w is

p(x|w)=E(r(x,Uy) | W=w)= /r(x, uy) dF (uy | w),

where dF (uy | w) denotes the conditional density of U, given W = w. The function p(x | w) is a conditional
analog of the average structural function of Blundell and Powell (2004). The covariate-conditioned average
marginal effect of X on Y at x given W = w is

B*(Xlw)=Dx/r(x, uy)dF(uyIw)=/Dxr(x,My)dF(uy|w),

provided the derivative and integral can be interchanged. This function is a weighted average of the un-
observable marginal effect D,r(x, uy) over unobserved causes, given observed covariates. As described in
Appendix C, it can be used as a stepping stone to the analysis of various causally informative quantities.
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If X were observable, we could estimate the covariate-conditioned average marginal
effect B*(x | w) through u(x, w) or B(x, w). Since X is, however, not observable, such a
direct approach is not available. Instead, we estimate w(x, w) and its derivatives using
the Fourier transform approach based on X and X>. Given mild restrictions on the rela-
tions between the measurement errors and the other variables of the system, two mea-
surements of X are sufficient to identify parameters of interest. In our empirical applica-
tion, family income (X) is usually observed with errors due to the limitation of surveys
such as recall and rounding errors. We utilize the panel structure of the National Lon-
gitudinal Survey of Youth (NLSY) data by making use of 2-year reported family income
(X7 and X>). Given mild conditions introduced in the next section, it can be shown that
two error-laden measurements of true family income are sufficient to identify the causal
relationship.

3. IDENTIFICATION AND ESTIMATION

In the section, we provide identification conditions under which the parameters of inter-
est can be identified by observables, although true X is unobservable. We then propose
a consistent nonparametric estimator.

3.1 Identification

In what follows, we take X and W to be scalars for simplicity. Analogous to the approach
taken in SWC, we first focus on estimating quantities of the general form

gra(x,w)=DXEWV | X =x, W = wlfxw (x| w)),

where DX = (9" /dx*) denotes the derivative operator of degree A, I/ is a generic ran-
dom variable that will stand either for Y or for the constant (V' = 1), and fxw is the
conditional density of X given . For example, special cases of the general form above
are fxjw(x |w) =gi0(x, w), E[Y | X =x, W =w]fxjw(x | w) = gy,0(x, w), and u(x, w) =
8v.0(x,w)/g1,0(x, w). Thus, with structural identification, the covariate-conditioned av-
erage marginal effect of X on Y at x given W = w s

gy, 1(x, w)  gyolx, w) g1,1(x, w)

A, w)= gro(x,w)  grolx, w) gro(x,w)’

We analyze the asymptotic properties of estimators of gj- ) with generic I when we
observe two error-contaminated measurements of X, as in Assumption 2.3. We can
then straightforwardly obtain the asymptotic properties of estimators of B8(x, w) and
weighted averages of B(x,w). We impose the following conditions on Y, X, W, Uy,
and U,.

AssuMPTION 3.1. We have E[|X|] < oo and E[|U;]|] < cc.

AsSUMPTION 3.2. We have (i) E[U; | X,Uy] =0, (i) Uy, L (X, W), and (ii) E[Y |
X, U, WI=E[Y | X, W].
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AssUMPTION 3.3. We have (i) infyesuppw) fw (w) > 0 and (ii) SUP (. w)esupp(X, ) Fxw (x|
w) < 0.

AssumpPTION 3.4. For any finite { € R, |E[exp(i{X3)]| > 0.

Assumption 3.1 imposes mild conditions regarding the existence of the first mo-
ments of the cause of interest and the measurement error of the first error-laden ob-
servation. Assumption 3.4 is commonly imposed in the deconvolution literature (e.g.,
Fan (1991a), Fan and Truong (1993), Li and Vuong (1998), Li (2002), Schennach (2004a,
2004b)), which requires a nonvanishing characteristic function for X,. Assumptions 3.1,
3.3, and 3.4 jointly ensure that gy o(x, w) is well defined.

Assumption 3.2 has been imposed in a similar fashion in the repeated measure-
ments literature (e.g., Hausman et al. (1991), Schennach (2004a, 2004b)); however, the
presence of W is new here. Assumption 3.2(i) imposes a mild conditional moment re-
striction, while Assumption 3.2(ii) is crucial but plausible. The independence in As-
sumption 3.2(ii) seems difficult to avoid, given the nonlinearity of the model. On the
one hand, the first measurement only needs a conditional mean restriction (Assump-
tion 3.2(i)). Note that E[U; | U] = E[E[U; | X, U] | U] =0, so that U; is mean inde-
pendent of U,. On the other hand, the mean of U, does not have to be zero. These rel-
atively mild requirements on the measurement errors are plausible for many practical
applications, but are asymmetric between U; and U,. If both U; and U, satisfy Assump-
tion 3.2(i) and (ii), one can obtain analogous estimators, interchanging the roles of X
and X» and suitably averaging the two estimators for higher efficiency. In the example
of family income, the condition rules out the correlation between the error on the first
measurement and true family income, and the error on the second measurement. It al-
lows, nevertheless, other form of dependence between them. This structure of measure-
ment errors is particularly useful when each survey participant experiences common
shocks over surveys that affect her surveyed family income (e.g., habit persistence). It is
also interesting to note that the imposed condition tolerates a systematic drift in family
income (e.g., positive trend) since the error on the second measurement is allowed to
have nonzero mean.

LetN={0,1,...} and N=NU {o0}.

AssuMPTION 3.5. ForV e {1,Y}, gy o(-, w) is continuously differentiable of order A € N
on R for each w € supp(W).

This assumption imposes smoothness on gy . If g1\ can be defined solely in terms
of the joint distribution of observable variables V', X1, and X, we say it is stochastically
identified. This is shown in the next lemma.®

5Derivation of a part of the expression for ¢y is similar to that of an identity due to Kotlarski (see Prakasa
Rao (1992, p. 21)), which enables one to recover the densities of X, Uy, and U; from the joint density of
X1 and X, under the assumption that X, Uj, and U, are independent. Our identification strategy for the
density of X relies on weaker assumptions than independence. In fact, we only require E[U; | X, U;] =0
and U, L X for the result, instead of mutual independence of X, Uj, and U,. As a result, our setup allows
dependence between X and Uj, and between U; and U,.
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Lemma 3.1. Under Assumptions 2.1(i), 2.3, and 3.1-3.5, the set of observables {V, X1,
X,, W} stochastically identify

1
gvaCew) = f (=il by (£, w) exp(—iLx) dL

forV e {l,Y}and foreach A € {0, ..., A} and (x, w) € supp(X, W), where for each real {
and w € supp(W),

. E[V el | W = w) CIE[Xqe'tX2]
_ 1794 _ _ .
v (L w)=E[Ve' ™ |W=w]= EleidXa] (f E[eiéX2] d )

Thus, knowledge of E[V X2 | W = w], E[¢*X2], and E[Xe'¢X2] is sufficient to ob-
tain stochastic identification of gy . The identification result shows that the causal ef-
fect of family income on child achievement can be identified by observables, that is,
child test scores, 2-year reported family incomes, and a measure of parental skills, al-
though true family income is endogenous and mismeasured.

3.2 Estimation

Our nonparametric estimators of gy, make use of the following class of flat-top kernels
of infinite order proposed by Politis and Romano (1999).

AssuMPTION 3.6. A real-valued kernel x — k(x) is measurable and symmetric, satis-
fving [k(x)dx =1, and its Fourier transform ¢ — k(&) is compactly supported and
bounded.

Flat-top kernels of infinite order have the property that their Fourier transforms are
“flat” over an open neighborhood of the origin. When a flat-top kernel of infinite order
is used, the smoothness of the function to be estimated is the only factor controlling
the rate of decrease of the bias, whereas when a finite-order kernel is used, both the
smoothness of the function and the order of the kernel affect the rate of decrease of
the bias. Compact support of the Fourier transform of the kernel is a weak requirement
because one can transform any given kernel k into a modified kernel k with compact
Fourier support, having most of the properties of the original kernel. To construct the
modified Fourier transform « from the original Fourier transform & of k, put

k(&) =W(E)k(E),
2

1 ) : o, dflE=g
WO =1 (1+exp(1-B((1-1g) " —(1e1-9 )" itE=<le=1,
0 if 1 < |&|.

Here W(-) is a window function that is constant in the neighborhood of the origin and
vanishes beyond a given frequency, determined by ¢ € (0, 1).
The next lemma incorporates the Fourier transform of the kernel into the expression

for gy a(x, w).
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LEMmwMmA 3.2. ForV € {1, Y} and foreach A € {0, ..., A}, (x,w) € supp(X, W), and hy > 0,
let

1

X—x . -
gra(x, w; hl)E/_k — g2 (X, w)dX,
h h

where k satisfies Assumption 3.6. Then under Assumptions 2.1(i), 2.3, 3.1, and 3.3-3.5,
1 . .
gy a(x, w; hy) = E/(—lé)AK(hM)qbV({, w) exp(—i{x)d{.

Note that the kernel bandwidth or smoothing parameter is /.6 Because the denom-
inator of our estimator contains an asymptotically vanishing characteristic function as
frequency goes to infinity, we face the well known ill-posed inverse problem that occurs
when one tries to invert a convolution operation. This problem can be regularized by
estimating the associated numerator using the kernel whose Fourier transform is com-
pactly supported, which guarantees that the numerator will decay to zero before the
denominator causes the ratio to diverge.

We now define our estimator for gy (x, w) based on Lemma 3.2 by replacing ¢
with a sample analog <2>V as follows.

DErINITION 3.1. Let hy, = (hy,, ho,) — 0 as n — oco. The estimator for gy ) (x, w) is de-
fined as

1 R
gva(x, w; hy) = ﬁ/(—ié))‘K(hln{)d)V(é, w; hop) exp(—ilx) di,

where

v (L w; hyy) =

E[Ve"sz W=l (/l iEEX1 eiéX2) J )
E[eitX2] 0 E[ei¢X2]
EWVelXaky, (W —w)]
Elkpy, (W —w)]

EA[Ve’ZX2 | W =w]=

and where kj, (-) = hz_nlk(~/ hy,) and E[-] denotes a sample average.”

Here, ¢y (£, w) is replaced with its sample analog, ¢y (£, w; hay,), and E[Vei¢X2 |
W = w]is a kernel estimator of E[VVe!¢X2 | W = w]. Note that ¢} uses a bandwidth 4, dis-
tinct from 4. The proposed estimator can be extended to multivariate settings. When

6We define gv.a(x, w;0) = gy a(x,w) because limy _,o gy a(x, w; h1) = gy,A(x, w), as can be seen by a
direct application of Lebesgue’s dominated convergence theorem, under our assumptions (k(¢) is bounded
and the remaining terms are bounded by an integrable function).

“There are two kernels in the expression for 8v a(x,w, hy): one is associated with the cause X and the
other with the conditioning instrument . Although for notational convenience we do not explicitly use
different notations, these could be different (note that we do use different bandwidths for different kernels).
Thus, «(-) is the Fourier transform of a flat-top kernel associated with X and k(-) is another flat-top kernel
for . Indeed, we employ different flat-top kernels in the empirical section.
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X is multivariate, X, X,, and { become multivariate as well. Then the identification
and estimation of gy ) (x, w) are the same as the univariate case, except that multivari-
ate Fourier transforms should be used so that the integral of ¢ is now multidimensional
(except the integral over ¢, which becomes a path integral in analogy with Theorem 1 in
Cunha, Heckman, and Schennach (2010)). When W is multivariate, the kernel estima-
tion of E[Ve!¢X2 | W = w] involves a multidimensional covariate, in which case a curse
of dimensionality is to be expected as in usual nonparametric estimation of the condi-
tional mean. Practitioners would instead use semiparametric single index models if the
dimension of W is large (see Ichimura (1993) for more details).

4., ASYMPTOTICS

We now establish asymptotic properties of the general form gy ) (x, w; ) in Section 4.1
and of covariate-conditioned average marginal effects 3(x, w; &) in Section 4.2. In the
empirical application, we estimate the impact of family income on child achievement by
B(x, w; h) in the presence of endogenous and mismeasured family income. The section
thus provides regularity conditions under which the proposed estimator exhibits nice
asymptotic behaviors. The covariate-conditioned average marginal effects B(x, w; h)
depend on levels of family income and a measure of parental skills. This estimator thus
delivers a nonlinear shape of the causal effect over different levels of family income given
the measure of parental skills. In many empirical examples, weighted averages have also
been of interest. In Appendix C, we provide asymptotics for estimators of weighted av-
erages of B(x,w) such as the derivative of the average structural function in Blundell
and Powell (2004), (the weighted average of) the local average response in Altonji and
Matzkin (2005), and the average continuous treatment effect (on the treated) in Florens
et al. (2008).8 The results would be useful when an empirical researcher wants to esti-
mate average effects over either a measure of parental skills or both family income and
a measure of parental skills.

4.1 Asymptotics for the general form

SWC generalize Schennach (2004a, 2004b) to encompass (i) the A # 0 case, (ii) uniform
convergence results, and (iii) general semiparametric functionals of g~ ,. Here, we use
an approach similar to Schennach (2004a, 2004b) to obtain counterparts of these three
results in the context of models where endogeneity is handled with conditional inde-
pendence, as in the treatment effect literature, and where the cause of interest is con-
taminated by measurement error. The analysis of the properties of our estimator is, nev-
ertheless, more complex due to the presence of the kernel estimator of the conditional
expectation. Note that conditioning has nontrivial implications on the asymptotic treat-
ment so that one cannot merely invoke Schennach (2004a, 2004b) or SWC. It adds a
nonparametric aspect along another dimension, which interacts with the measurement
error through numerous remainder terms that have to be carefully analyzed. We begin

8See also Heckman and Vytlacil (2005) for possible various treatment effect parameters in the literature.
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by deriving the asymptotic behavior of the estimator for quantities of the general form
gva(x, w; hy). ' '

Letting 6 4({) = E[AeX2] for A € {1, X1} and xyp (£, w) = E[V " X2 | W = w]fy (w),
we define
1 ibx, () [*

qu,l(z,x,w:hﬂf‘ﬁ(el(g))z ¢

(—i&) k(h1 &) exp(—iéx) Py (€, w) dé

1 Y . ¢V(§a w)
—%(—lg) K(hlf)exp(—lfx)To,
: +o00

Wy x, (X, wi hy) = %ﬁ g (—ié) k(h1 &) exp(—iéx) by (£, w) dE,

1 L br(Lw)
Wy pyy (£ X, w3 hy) = E(—zz)%(moexp(—zgx)m,

1 b

lIIV,)\,]CW(g’ X, w; hl) = _E(_lg))lK(hlg) eXp(_igx)%a

where for a given function & — f(&), ffoo f(&)dé =lims f;g f(&)dé. Then gy (x,
w; h) can be defined as the linearization of gy ,(x,w; k) in terms of (E[e!{¥2] —
E[e/tX2]), (E[X1€'¢X2] — E[X,e/X2)), (E[V e X2k, (W — w)] — E[V X2k, (W — w)]),
and (E[khz(W —w)] — E[kj,(W —w)]). We then have

g, wi h) — gy (x, wi hy) = B[ty a(x,w, bV, X1, Xo, W)],
where

Ly A (x, w, by v, x1, X2, W)

E/‘I’V,,\,l(f,X, w; hy)(e'4*2 — E[e"X2]) d¢
+ / Wy ax, (& x, w; hy)(x1e%2 — E[Xqe%%2]) d¢

+ / Y axr (& X, w; hy) (ve' 2k, (0 — w) — E[VeigXZkhZ(W —w)])d¢

+ / Wy, f (& X, w3 By (K, (W — w) — E[kp, (W —w)]) d¢.

The first result decomposes the estimation error into a “bias term,” a “variance
term,” and a “remainder term.”

LEMwMA 4.1. Suppose that {U;, W;, X;, Y;} is an independent and identically distributed
(IID) sequence satisfying Assumptions 2.1(i), 2.3, and 3.1-3.6 hold. Then for V € {1, Y}
and foreach A € {0, ..., A}, (x,w) € supp(X, W), and h = (hy, hy) > 0,

gua(x,w; h) — gy a(x,w) =By \(x,w; h1) + Ly y(x, w; h) + Ry \(x, w; h),
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where By ) (x,w; hy) is a nonrandom bias term defined as

By a(x, w; hy) = gy a(x, w; h) — gy a(x, w),

Ly A\ (x,w; h) is a variance term admitting the linear representation
Ly a(x, w; h) =gy a(x, w; h) — gy A (x, w; hy),

and Ry ) (x,w; h) is a remainder term
Ry \(x, w; h) = gy A (x, w; h) — gy A (x, w; h).

Because gy, (x, w; k) is a nonlinear functional of the data generating process, the
above linearization facilitates the analysis of the asymptotic behavior of the estima-
tor. In fact, the limiting distribution of gy \(x, w; h) — g\ (x, w) is equivalent to that
of Ly \(x,w; h), as long as By ,(x, w; h1) and Ry »(x, w; h) are asymptotically negligi-
ble. Thus, we first establish bounds on the bias, the variance, and the remainder terms;
we then establish the asymptotic normality of the variance term.

Bounds on the tail behavior of the Fourier transforms are needed to obtain the
specific rate of convergence results for our kernel estimators. These conditions corre-
spond to smoothness constraints on the corresponding densities. The deconvolution
literature (e.g., Fan (1991a), Fan and Truong (1993), Li and Vuong (1998), Li (2002),
Schennach (2004a), and Carroll, Ruppert, Stefanski, and Crainiceanu (2006)) commonly
distinguishes between “ordinarily smooth” and “supersmooth” functions. Specifically,
ordinarily smooth functions admit a finite number of continuous derivatives and have
a Fourier transform whose tail decays to zero at a geometric rate, |{|”, v < 0, as the fre-
quency, |£|, goes to infinity (e.g., uniform, gamma, and double exponential), whereas
supersmooth functions admit an infinite number of continuous derivatives and have a
Fourier transform whose tail decays to zero at an exponential rate as exp(«|{|”), @ <0,
v > 0 as the frequency goes to infinity (e.g., Cauchy and normal). For conciseness,
our smoothness restrictions encompass both the ordinarily smooth and supersmooth
cases; thus, our regularity conditions are expressed in terms of (1 + |£])” exp(«|{]”). Let

b1() = E[e"*X].
AssuMPTION 4.1. (i) There exist constants C; > 0 and y, > 0 such that

D¢p1({)
b1()

(ii) There exist constants Cy > 0, ay <0, vy, >0, and yy € R such that vyyy > 0 and
forVe{l,Y},

|DsInd1(0)| =‘ <Ci(1+12)™.

sup [y (& w)| < Cy(1+1£1)" exp(aplZl™),
wesupp(W)

andifagy =0, then vy, < —A —1 forgiven A € {0, ..., A}.
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(iii) Thereexistconstants Co >0, ag <0,v9 > vy >0, and yg € R such thatvgyg > 0 and
forV e{l,Y},

min{ _inf (2wl 0]} = Co(1 +12)™ exp(anlz)”).

We omit a term exp(aq|{|”1) in Assumption 4.1(i) with only a small loss of generality
because In ¢ (¢) is typically a power of { for large ¢, even when the density of ¢ ({) is su-
persmooth, as pointed out in Schennach (2004a) and SWC. Note that the rate of decay of
¢y ({, w) is governed by the smoothness of g o(x, w) = E[V | X =x, W = wlfxjw(x | w),
as ¢y (L, w)= [ grox, w)e!t* dx. Note that a lower bound, instead of an upper bound,
is imposed on yp ({, w) and 601({), because these appear in the denominator of the
expression for gy )(x, w; h). Individual lower bounds on the modulus of the charac-
teristic functions of X and U, imply the lower bound on 6;(¢), as 6;({) = E[e?X2] =
E[e'*X1E[e!¢Y2] by Assumption 3.2(ii). We group together xj (£, w) and 6;({) (in fact,
E[e'¢X] and E[¢/¢V2]) in a single assumption for the lower bound for notational conve-
nience. We explicitly impose v¢ > v4 because

Co(1+1£1)" exp(agll]™)

z sup {d)l(g) 'l,U){ = sup |E[€l§X | W:w]|
wesupp (W) wesupp(W)

=

/ E[e | W = w]fir (w) dw| = |E[*X]|

> [E[e"]||E[e%]] = |E[e¥2]]
=1601(0)| = Co(1+1£1)" exp(eal{]™).

Requiring both upper and lower bounds on various Fourier transforms is a common
occurrence in the deconvolution literature (e.g., Fan (1991a), Fan and Truong (1993), Li
and Vuong (1998), Li (2002), Schennach (2004a, 2004b)). One condition that is perhaps
slightly different here is the requirement that quantities related to conditional charac-
teristic functions weighted by a density (such as yp ({, w) = E[VelWX2 | W = w]fw(w))
be bounded below. This will typically require the weighting density (e.g., fir(w)) to be
bounded away from zero on its support.

Lemma B.1 in Appendix B describes the asymptotic properties of the bias term
defined in Lemma 4.1. We note that the bias term behaves identically to that of a
conventional kernel estimator employed when X is measurement error-free, because
By )(x,w; hp) only involves the kernel and error-free variables.?

9When X is perfectly observed, one can estimate gy, using a similar Fourier transform as

A 1 . 5 .
gva(x, w; hy) = ' /(—IZ)AK(hm{)(bV(Z, w; hop) exp(—idx) d{

for h, — 0 as n — oo, where

_EWVe Nk, (W —w))

Sy (& wi hoy) = E[VesX |W = w i
Y ’ : ] Elkp, (W —w)]
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To establish a convergence rate and asymptotic normality for the variance term,
Ly A(x,w; h), we impose some regularity conditions. We first impose conditions imply-
ing finite variance of Ly, (x, w; h).

ASSUMPTION 4.2. We have E[|X1|?] < oo and E[|Y |?] < oo.

We next impose conditional moment bounds that are important for establishing
asymptotic normality of Ly ) (x, w; h).

AssumpTIiON 4.3. For some & > 0, supx2€supp(X2)E[|X1|2+5 | X, = x2] < 0o and
Supwesupp(W) E[|Y|2+8 | W = w] < o0.

We also suitably control the bandwidth to establish asymptotic normality.

AssumPTION 4.4. The bandwidth sequence h, — 0 as n — oo, such that if vg #0 in
Assumption 4.1(ii), then h}' = O((Inn)/**=") and h;! = O(n'/*=") for some 1 > 0;

otherwise, for each X € {0,...,A}, hy! = O "GP/ Gs+37=v+3) and hyl =
O(n(('yl +2)/2)(3/2)/('yd)+/\+71_79+3))f0r some n > O.

The bandwidth sequences given above were designed to ensure that a regularity
condition in Lemma B.3 holds (see Lemma B.3 and the proof of Lemma B.4 in the Ap-
pendix B). The bandwidth sequences for /; imply that if densities appearing in quan-
tities in the denominator (yy ({, w) and 6;) are supersmooth, one must choose a larger
bandwidth than in the case of ordinary smoothness. The achievable convergence rates
will thus be slower than for ordinary smoothness. Similar but simpler results have also
been observed in the kernel deconvolution literature (see Fan (1991a), Fan and Truong
(1993), Li and Vuong (1998), Li (2002), Schennach (2004a)).

Lemma B.4 in Appendix B states a uniform rate and asymptotic normality for the
variance term. The rate of divergence of the variance term is controlled by the smooth-
ness of the density of the measurement error U, and E[¢(x2, w) | X7 = x3] (through vy,
ayg, and vg) as well as by the smoothness of the density of X and E[V | X = x, W = w]
(through vy, ag, v4, and y1), where ¢(x2, w) = [ vfy, x, w (v, X2, w) dv. As expected, the
order of the variance term is larger than that of a traditional kernel estimator with error-
free variables.!? As a result, the rate of convergence of the estimator gy, will be slower
than that of a standard kernel estimator, because the bias term is identical to that of a
standard kernel estimator with measurement error-free X.

We now establish a uniform convergence rate and asymptotic normality of the es-
timator gy, (x, w; h,). We first provide bounds on the remainder term that are used to

Then one can easily derive the order of the bias, which is the same as that in Lemma B.1. Note that this
estimator for gy ) has the same asymptotic properties as a traditional kernel estimator of g ) with the flat-
top kernel of infinite order when X is perfectly observed; but this estimator using the Fourier transform
approach makes easy comparisons possible with our estimator in Definition 3.1.

10with perfectly observed X, the order of the variance term of the estimator in footnote 6 can be derived
as n~V2h3 L (hp )76+ exp(ag (hy1)¥4). Thus, if vy > 0, vy, = vy > vy by construction and if v, = vy = vy =
0,theny, ; =14+7v4—vo+A > 14+v4+Asince (—yy) > 0and max{(h]’n1 yoL, hz’n1 } > hz’n1 .Then the order of the
variance term in Lemma B.4 is greater than that of the kernel estimator with perfectly observed variables.
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obtain a convergence rate. The next assumption puts restrictions on the moments of X,
(associated with X and Y), which are useful for establishing a bound on the remainder
term, Ry \(x, w; hy).

AssUMPTION 4.5. We have E[|X>|] < 0o, E[| X1X2|] < 00, and E[|Y X5|] < co.

The following assumption requires a uniform convergence rate for the kernel den-
sity estimator, fW(w), in the denominator of gy ) (x, w; /). This assumption is also used
to get the bound on the remainder term and is satisfied by density estimation with con-
ventional choice of kernel. Even though flat-top kernels of infinite order attain a faster
convergence rate than that below (e.g., Politis and Romano (1999)), the faster rate is not
necessary for our result. Primitive conditions for this assumption are given by Theo-
rem 3.2 (egs. (11) and (12)) in SWC.

ASSUMPTION 4.6. We have SUP e supp (W) |fW(w) — fw(w)| = 0p( LHTZ + h%).

The following assumption gives a lower bandwidth bound that slightly differs from
that of Assumption 4.4. Note that neither Assumption 4.4 nor 4.7 is necessarily stronger
than the other.

ASSUMPTION 4.7. Ifvg # 0 in Assumption 4.1(iii), then h}! = O((Inn)/**=") and h;} =
O(n"/*=") for some n > 0; otherwise hy! = O(n="n"/ 4 =14%)) and b1 = O(n'/7-") for
somen > 0.

The bandwidth sequences above were designed to ensure that the nonlinear remain-
der term, Ry ,(x, w; hy), is indeed asymptotically negligible so that the decomposition
of the estimation error into bias, variance, and remainder terms is justified, thus imply-
ing that the linear approximation of gy, (x, w; h,) — gr,A(x, w) using the variance term,
Ly A(x,w; hy), is appropriate. The basic intuition behind the selection of the bandwidth
is similar to that for Assumption 4.4.

We provide uniform bounds on the nonlinear remainder in Lemma B.6 in Ap-
pendix B. Lemma B.6(i) is used to establish the asymptotic normality of g, and
(ii) is relevant to obtaining a convergence rate. Conditioning on control variables
in gy a(x,w; hy,) interacts with the measurement error through numerous remainder
terms so that it complicates the analysis of the asymptotic properties; contrast to Schen-
nach (2004a, 2004b) or SWC.

The next theorem establishes a consistency and uniform convergence rate of the es-
timator that is a stepping stone to study covariate-conditioned average marginal effects.

THEOREM 4.2. Suppose the conditions of Lemma 4.1, together with Assumptions 4.1-4.3
and 4.5-4.7 hold. Then for V € {1, Y} and each A € {0, ..., A},

sup |8 a(x, w; hy) — gy a(x, w,0)]
(x,w)esupp(X,W)

= O((hy;)™" exp(ap(h},))"™))
+0p (2 (max{ (), hy!}) ()™ exp(ar (hy))™)).

1n
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In the next assumption, we ensure that the bias term and the remainder term do not
dominate the variance term for the linear representation.

AssuMPTION 4.8. The bandwidth sequence h, — 0 at a rate such that for V € {1, Y}
and for each A € {0,..., A} and (x,w) € supp(X, W), we have (i) Oy \(x,w; h,) > 0
for all n sufficiently large, (ii) n'/?(Qy \(x,w; hy))~? |By.a(x,w; hiy)| — 0, and
(i) 71/2(Qy \ (x, w3 hy)) V2 Ry A (x, w3 )| =2 0.

This assumption imposes alower bound on 2y, , (x, w; h,) such that the bias By (x,
w; hy,) and remainder Ry 5 (x, w; h,) are small relative to this lower bound. The bounds
on the bias and the nonlinear remainder (provided by Lemmas B.1 and B.6, respec-
tively) can be directly used to establish this assumption from more primitive condi-
tions. However, note that the bound on 2y ) (x, w; h,) given in Lemma B.4(i) is only
an upper bound on the convergence rate, so it is not sufficient to obtain our next re-
sult, Theorem 4.3. As a result, the bias term and the nonlinear remainder term must be
asymptotically negligible relative to n~VY Z(QV, A(x, w; hy))Y/2, the standard deviation of
Ly \(x,w; hy), so as to ensure that they have no effect on the limiting distribution of the
estimator. Although we provide this condition in high-level form for the benefit of con-
ciseness, more primitive conditions can be found via Theorem 3 in Schennach (2004a).
Essentially, the exact asymptotic rate of convergence of n=1/2(0y ) (x, w; h,))'/? can be
derived from the assumption that the limiting behavior (for large frequencies) of the
relevant Fourier transforms has a power law or an exponential form (instead of merely
being bounded above by such functional forms).!! A similar notion was also used in Fan
(1991b) to establish asymptotic normality of the kernel deconvolution estimator and
is directly related to the notion of functions that are “well behaved at infinity,” as in-
troduced by Lighthill (1962). One can construct simple examples where this assumption
holds by considering cases where quantities such as E[V | X, = x2, W = w), fx,w (x2|w),
E[V | X3 = x3], and fx,(x7) are extremely smooth (in x;), so that their Fourier transform
has compact support (uniformly in w). Functions such as powers of sin(u«)/u, polynomi-
als, and products thereof are simple examples of such functions. In such cases, below a
certain bandwidth, the bias term eventually vanishes while the variance and the non-
linear remainders lose their bandwidth dependence. It is then straightforward to see
that the bias is negligible and that the nonlinear remainder simply has an extra power
of n~1/? relative to the leading term of the asymptotic expansion. Typical functions, of
course, often do not have compactly supported Fourier transforms, but one can reason-
ably expect that Assumption 4.8 would still hold for data generating processes in the
neighborhood of this idealized case.

The following theorem establishes asymptotic normality.

THEOREM 4.3. Suppose the conditions of Lemma 4.1, together with Assumptions 4.1-4.6
and 4.8 hold. Then for V € {1,Y} and each A € {0, ..., A} and (x,w) € supp(X, W), we
have

“12,. d
n2(Qy 2w 1)~ (@0 w3 ) — g (x, w3 0)) —5 N(O, 1).

HOther technical but nonrestrictive conditions are needed to ensure no fortuitous cancellations be-
tween the different terms in the estimator’s asymptotic expansion.
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4.2 Asymptotics for covariate-conditioned average marginal effects

We now apply our previous general results to obtain the asymptotic properties of estima-
tors of the objects of interest here. First, consider the plug-in estimator for the covariate-
conditioned average marginal effect,

5 o 8valx,wih) o gy o(x, wih) §11(x, w; h)
B(x,w; h) == - = —
g1,0(x,w; h)  g10(x,w; h) g1,0(x, w; h)

for each (x, w) € supp(X, W), where the nonparametric estimators g are as given above.
In the empirical application, the covariate-conditioned average marginal effect of family
income on child’s reading and math scores can be estimated by B(x, w; k), which is a
functional of gy ) (x, w; h). Based on the convergence rate and asymptotic normality for
gv.a(x,w; h) from Theorems 4.2 and 4.3, we can obtain the asymptotic properties of

B(x,w; h).
Define
1
syi(x,w) = ——,
81,0(x, w)
g, w) 1
Sy, 0(x, w) =— ,
81,0(x, w) g1,0(x, w)
_ gyo(x,w) 1
s1,1(%, w) =— ,
81,0(x, w) g1,0(x, w)
_(,8v,0(x,w) gr1(x,w)  gy1(x,w) 1
s10(x,w)y=|(2 — .
81,0(x, w) gro(x,w)  g10(x, w) / g10(x, w)

The results above and a straightforward Taylor expansion yield the following result.

THEOREM 4.4. Suppose the conditions of Theorem 4.2 hold for A = 1 and that
Maxy (1, y} MAXA=0,1 SUP . u)esupp(X, W) 1§V, (X, w)| < 00. Further, for =1, > 0, define

L= {(x, w) e R?: fyw (x | w) = 7y}
Then

sup | B(x, w; hy) — Blx, )|

(x,w)el;
=O0(r > (hy, )" exp(an(hy,)™))
+ 0 (72 (max{ (h3,) ™, b D) ()™ explan (7)),

1n 1n

and there exists a sequence {1} such that 7,, > 0, 7, — 0 as n — oo, and

sup | B(x, w; hy) — Blx, w)| = 0p(1).

(x,w)el;
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The delta method gives us the next result.

THEOREM 4.5. Suppose the conditions of Theorem 4.3 hold for A = 1 and that

max max sup lgy A (x, w)| < co.
Ve{l,Y}A=0,1 (x,w)esupp(X,W)

Then for all (x, w) € supp(X, W),
12 } =1/2 A . d
n (Qﬁ(xawv hn)) (B(xawv hn)_B(xa 'LU)) _)N(O>1)a
provided that
2
0p(x,w; hy) = E[(€p(x, w, hy; V, X1, X2, W))]
is finite and positive for all n sufficiently large, where

Lg(x,w, h;v, x1, X2, W)
=sy,1(x, w)ly,1(x,w, h; y, X1, X2, W) + sy,o(x, w)lyo(x, w, h; y, x1, X2, W)

+ 51,106, w)ly 1(x, w, h; 1, xq, X2, W) + 51,0(x, w)lyo(x, w, h; 1, x1, x2, W)

and where Ly ) is as defined just before Lemma 4.1.

5. MONTE CARLO SIMULATIONS

This section investigates the finite-sample properties of the proposed estimator through
various Monte Carlo experiments. We consider the nonseparable data generating pro-
cess

Y=fX)Uy, X=05W+Us, Uy=FfHW)+U,
X1=X+U, Xo=X+U,,

where the distributions of each random variable and the explicit forms of fi, f, are spec-
ified below, and where Y, W, X1, and X, are standardized to have mean 0 and stan-
dard deviation 1. We assume U, L U, | W, which implies X L U, | W .12 The variables
(Y, X1, X», W) are used as an input for our estimator, and the variables (Y, X, W) are
used for the local linear estimator that neglects the measurement error. We also use the
variables (Y, X, W) to construct an infeasible local linear estimator, and (Y, X, X5, W)
and (Y, X1, X, W) to construct other infeasible versions of our estimator for purposes
of comparison. For those estimators, we consider flat-top kernels of infinite order. In
our estimators,!3 the Fourier transform, (-), associated with X is given in eq. (2) with
& =0.5. We use a different flat-top kernel for W, which was introduced in Politis and

12Tn the simulations, we assume U, L (U, W), which implies U, L U, | W by Lemma 4.3 of Dawid
(1979). Lemma 4.1 of Dawid then ensures that U, L U, | W implies X L U, | W.

13For the local linear estimator, the same flat-top kernel is used for X and W since estimation results are
not sensitive to the choice of the kernel.
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Romano (1999):

isin2(27rx/h) — sinz(ﬂ-x/h)

k() = 2 m2x2

All estimates are constructed for the values x = 0 and w = 1. For our estimators, we scan
a set of bandwidths!“ ranging from 7 to 12.5 for X and from 3.5 to 6 for W in increments
of 0.05 so as to find the optimal bandwidth minimizing the root mean squared error
(RMSE). For both local linear estimators, we scan a set of bandwidths ranging from 2.5
to 6 for X and from 1.5 to 3.5 for W, with the same increments. All simulations draw 500
samples of 1000, 2000, or 8000 observations.

We examine a total of 16 combinations of ordinary and supersmooth distributions
for random variables and functions f; and f,, as given in Table 1. As in Schennach
(2004a), we consider the Laplace distribution as an example of an ordinarily smooth
distribution. The Laplace distribution density, denoted by L(t; u, 0%), is defined by

1
a2

exp(—alt — pulv2)

for any ¢ € R with mean p and variance o2. Its characteristic function has a tail of the

form |¢|~2. The normal distribution with variance o

smooth distribution. The tail of the characteristic function of the normal distribution is

is used as an example of a super-

TaBLE 1. Monte Carlo simulation designs.

Example Uy w U, Uy Uy f1(X) L)
1 N(0,0.5) N, 1) N(0,0.25) N(0,0.09) erf(x) S(w)
2 N(0,0.5) N(@©,1) N(0,0.25) N(0,0.09) erf(x) erf(w)
3 N(0,0.5) N0, 1) L(0,0.25) N(0,0.09) erf(x) erf(w)
4 N(0,0.5) N, 1) L(0,0.25) N(0,0.09) erf(x) S(w)
5 N(0,0.5) L(0,1) N(0,0.25) N(0,0.09) erf(x) erf(w)
6 N(0,0.5) L0, 1) N(0,0.25) N(0,0.09) erf(x) S(w)
7 N(0,0.5) L0, 1) L(0,0.25) N(0, 0.09) erf(x) erf(w)
8 N(0,0.5) L0,1) L(0,0.25) N(0,0.09) erf(x) S(w)
9 L(0,0.5) N, 1) N(0,0.25) N(0,0.09) erf(x) erf(w)

10 £(0,0.5) N, 1) N(0,0.25) N(0,0.09) erf(x) S(w)

11 L(0,0.5) N(@,1) L(0,0.25) N(0,0.09) erf(x) erf(w)

12 L(0,0.5) N, 1) L(0,0.25) N(0,0.09) erf(x) S(w)

13 £(0,0.5) L(0,1) N(0,0.25) N(0,0.09) erf(x) erf(w)

14 L(0,0.5) L(0,1) N(0,0.25) N(0,0.09) erf(x) S(w)

15 L(0,0.5) L0, 1) L(0,0.25) N(0,0.09) erf(x) erf(w)

16 L(0,0.5) L(0,1) L(0,0.25) N(0,0.09) erf(x) S(w)

14Note that the flat-top kernel has a very narrow central peak, so that even moderately large bandwidths
result in highly local smoothing.
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of the form exp(—(o-2 /2)1£)1%). Our example of an ordinarily smooth function for f, (W) is
a piecewise linear continuous function with a discontinuous first derivative

-1 ifW<-1,
SWy=yw ifwel-1,1],
1 ifws>1,

whose Fourier transform decays at the rate |£|~2 as |{| — oco. As an example of a super-
smooth function for f;(X) or f,(W), we consider the error function

2 v 2
erf(V) = ﬁ 0 e dt,

which has a Fourier transform decaying at the rate | |1 exp(— }—ng 12) as || — oo for V =
XorW.

Table 2 reports the bias squared, variance, and RMSE of the five estimators, which
are functions of bandwidth for a sample size of 1000, for Example 1.!° The headings
“Fourier 1, 2, and 3” refer to our estimators, which are based on variables (Y, X1, X5, W),
(Y, X, X, W), and (Y, X1, X, W), respectively. The headings “Local Linear” and “No
Measurement Error” refer to local linear estimators that use variables (Y, X, W) and
(Y, X, W), respectively. We show results from only a subset of the bandwidths for con-
ciseness. For each choice of bandwidth, the bias squared, variance, and RMSE are re-
ported in the first, second, and third rows, respectively. The results for the optimal band-
width are reported at the bottom of each estimator.

A few remarks are in order. We find that our estimator is as effective in reducing
bias as the infeasible local linear estimator using the true covariate X. In contrast and
as expected, the bias from the feasible local linear estimator ignoring the measure-
ment error does not shrink toward zero as bandwidth decreases. Our estimator also
gives smaller variance than the error-contaminated local linear estimator. As a result,
our estimator outperforms the feasible local linear estimator in terms of RMSE. Inter-
estingly, all Fourier estimators perform better than the infeasible local linear estima-
tor using X . A useful direction for further research is to investigate under what condi-
tions and why Fourier-based estimators outperform local linear estimators. Comparing
the Fourier estimators, we can see the role of clean data as well as the asymmetry be-
tween two measurement errors in Assumption 3.2. Interestingly, Fourier 1 and Fourier
2 obtain quite similar estimation results, but Fourier 3 outperforms them. Thus, it ap-
pears that one would want to choose X3 to be the less mismeasured of the two measures
of X.

Table 3 reports Monte Carlo simulation results for the convergence rate as a function
of sample size for each example. The RMSE’s in all examples decrease as expected as
sample size increases, corroborating our theoretical results.

15We only report this example due to space limitations, but the performance of the estimators is similar
for all the examples.



TABLE 2. Monte Carlo simulation results for Example 1.

Fourier 1

i\ hy 4 4.25 4.5 4.75 5 5.25 5.5
9.5 Bias? 0.01753 0.00433 0.00041 0.00289 0.02462 0.05118 0.11600
Variance 0.48058 0.49628 0.42267 0.38406 0.38546 0.30834 0.31586
RMSE 0.70577 0.70753 0.65044 0.62205 0.64038 0.59959 0.65716
9.75 Bias? 0.00666 0.00226 0.00018 0.00834 0.03165 0.07544 0.13614
Variance 0.46158 0.40620 0.37223 0.34772 0.32196 0.30496 0.27895
RMSE 0.68428 0.63911 0.61025 0.59670 0.59465 0.61676 0.64427
10 Bias? 0.00347 0.00036 0.00211 0.01624 0.04329 0.08934 0.15408
Variance 0.42542 0.38354 0.36214 0.34860 0.31326 0.28803 0.26343
RMSE 0.65490 0.61959 0.60353 0.60402 0.59712 0.61430 0.64615
10.25 Bias? 0.00115 0.00010 0.00544 0.02394 0.05677 0.10781 0.17322
Variance 0.40351 0.37447 0.35360 0.34020 0.31521 0.28968 0.25723
RMSE 0.63613 0.61202 0.59920 0.60344 0.60990 0.63047 0.65609
10.5 Bias? 0.00000 0.00281 0.01131 0.03279 0.06980 0.12437 0.20091
Variance 0.39215 0.38599 0.34373 0.32113 0.29737 0.27343 0.25757
RMSE 0.62622 0.62353 0.59586 0.59492 0.60595 0.63072 0.67712
10.75 Bias? 0.00125 0.00762 0.02094 0.04758 0.08990 0.14961 0.23111
Variance 0.36811 0.36257 0.33230 0.31047 0.28750 0.26437 0.24904
RMSE 0.60775 0.60843 0.59434 0.59837 0.61433 0.64341 0.69293
11 Bias? 0.00658 0.01626 0.03543 0.06770 0.11861 0.18107 0.26360
Variance 0.35396 0.33839 0.31956 0.29858 0.28493 0.25426 0.23256
RMSE 0.60045 0.59552 0.59581 0.60521 0.63525 0.65980 0.70439

Optimal
hn hy Bias? Variance RMSE
9.75 4.9 0.02029 0.33234 0.59382

(Continues)
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TABLE 2. Continued.

Local Linear

i\ 2 2.25 2.5 2.75 3 3.25 3.5
3 Bias? 0.32857 0.46799 0.47779 0.55940 0.57653 0.80000 1.30221
Variance 18.22160 23.44127 12.40588 12.52235 6.33969 9.20820 8.23076
RMSE 4.30699 4.88971 3.58938 3.61687 2.62987 3.16357 3.08755
3.25 Bias? 0.17816 0.13128 0.38641 0.59926 0.88147 0.87869 1.14468
Variance 13.89843 8.14524 2.36372 2.23755 4.67790 0.96041 1.13249
RMSE 3.75188 2.87689 1.65835 1.68428 2.35783 1.35613 1.50903
35 Bias? 0.60058 0.76277 0.89476 0.87785 0.99725 0.99212 1.55899
Variance 5.34878 0.65439 1.83879 0.66070 1.13176 3.89185 2.75340
RMSE 2.43913 1.19044 1.65334 1.24038 1.45912 2.20997 2.07663
3.75 Bias? 1.03708 0.82405 1.01636 0.99417 1.22282 1.41411 1.55216
Variance 2.28356 2.11708 0.43360 0.56335 0.27968 0.56551 1.04877
RMSE 1.82226 1.71497 1.20414 1.24801 1.22577 1.40699 1.61274
4 Bias? 1.04103 1.06472 1.20429 1.18884 1.25602 1.56423 1.71529
Variance 0.62326 1.20819 0.22532 0.48526 1.37113 0.60255 0.36498
RMSE 1.29007 1.50762 1.19566 1.29387 1.62085 1.47200 1.44231
4.25 Bias? 1.16685 1.27326 1.14203 1.46695 1.41502 1.39306 1.87139
Variance 0.29115 0.16609 2.47443 1.10869 0.63847 2.81544 1.67206
RMSE 1.20748 1.19973 1.90170 1.60488 1.43300 2.05146 1.88241
4.5 Bias? 1.33409 1.35225 1.39334 1.38871 1.60060 1.74283 1.94063
Variance 0.25767 0.26342 0.16547 0.85056 0.21279 0.64793 0.97151
RMSE 1.26165 1.27109 1.24853 1.49642 1.34662 1.54621 1.70650

Optimal
hy hy Bias? Variance RMSE
3.5 2.55 0.78695 0.44977 1.11208

(Continues)
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TAaBLE 2. Continued.

No Measurement Error

i\ hy 2 2.25 2.5 2.75 3 3.25 3.5
3 Bias? 0.86469 0.53839 0.42244 0.22939 0.12645 0.02125 0.00891
Variance 10.73736 4.36472 3.03947 4.04071 3.18704 1.00666 0.90149
RMSE 3.40618 2.21430 1.86062 2.06642 1.82030 1.01386 0.95415
3.25 Bias? 0.03877 0.08256 0.04476 0.01467 0.00120 0.02553 0.12702
Variance 5.37811 1.13461 0.70957 0.58603 1.61839 0.43638 0.86019
RMSE 2.32742 1.10326 0.86852 0.77505 1.27263 0.67964 0.99358
3.5 Bias? 0.00421 0.00020 0.00430 0.01584 0.03653 0.10939 0.20268
Variance 4.98230 0.57077 0.41955 0.41517 0.68762 0.32481 0.79210
RMSE 2.23305 0.75563 0.65104 0.65651 0.85097 0.65894 0.99738
3.75 Bias? 0.03600 0.04366 0.07150 0.08675 0.13417 0.21329 0.32440
Variance 0.54931 0.41812 0.68290 0.36188 0.30962 0.27867 0.45446
RMSE 0.76505 0.67955 0.86856 0.66980 0.66618 0.70139 0.88253
4 Bias? 0.08723 0.12965 0.13026 0.14728 0.19202 0.30910 0.44513
Variance 1.40275 0.36412 0.29826 0.44403 0.84644 0.23775 0.54903
RMSE 1.22064 0.70269 0.65461 0.76897 1.01905 0.73949 0.99708
4.25 Bias? 0.18980 0.20088 0.23143 0.24291 0.24317 0.40123 0.42689
Variance 0.46710 0.42852 0.34077 0.25060 2.37821 0.21447 1.71866
RMSE 0.81049 0.79334 0.75644 0.70250 1.61907 0.78467 1.46477
4.5 Bias? 0.17285 0.31214 0.29557 0.32417 0.39853 0.48788 0.71452
Variance 4.72205 3.71663 0.22839 0.22542 0.21802 0.20143 3.08174
RMSE 2.21244 2.00718 0.72386 0.74135 0.78521 0.83025 1.94840

Optimal
hy hy Bias? Variance RMSE
3.7 2.55 0.04578 0.33558 0.61754

(Continues)
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TABLE 2. Continued.

Fourier 2

i\ 4 425 4.5 4.75 5 5.25 5.5
9.5 Bias? 0.01755 0.00434 0.00041 0.00288 0.02459 0.05114 0.11595
Variance 0.48055 0.49628 0.42266 0.38406 0.38548 0.30835 0.31588
RMSE 0.70576 0.70755 0.65044 0.62205 0.64037 0.59958 0.65714
9.75 Bias? 0.00667 0.00227 0.00018 0.00832 0.03162 0.07540 0.13608
Variance 0.46156 0.40618 0.37223 0.34772 0.32197 0.30497 0.27896
RMSE 0.68428 0.63911 0.61025 0.59669 0.59463 0.61674 0.64424
10 Bias? 0.00348 0.00036 0.00210 0.01622 0.04325 0.08929 0.15402
Variance 0.42540 0.38353 0.36214 0.34860 0.31327 0.28805 0.26345
RMSE 0.65489 0.61959 0.60352 0.60400 0.59709 0.61428 0.64611
10.25 Bias? 0.00116 0.00009 0.00543 0.02391 0.05674 0.10776 0.17315
Variance 0.40351 0.37447 0.35360 0.34021 0.31522 0.28970 0.25725
RMSE 0.63613 0.61201 0.59919 0.60342 0.60988 0.63044 0.65605
10.5 Bias? 0.00000 0.00279 0.01129 0.03276 0.06976 0.12432 0.20085
Variance 0.39214 0.38599 0.34374 0.32114 0.29738 0.27345 0.25759
RMSE 0.62621 0.62352 0.59584 0.59489 0.60592 0.63069 0.67708
10.75 Bias? 0.00124 0.00760 0.02091 0.04754 0.08984 0.14954 0.23103
Variance 0.36810 0.36257 0.33231 0.31048 0.28751 0.26438 0.24906
RMSE 0.60774 0.60842 0.59432 0.59835 0.61430 0.64337 0.69288
11 Bias? 0.00657 0.01624 0.03539 0.06766 0.11855 0.18100 0.26352
Variance 0.35395 0.33839 0.31957 0.29859 0.28495 0.25428 0.23258
RMSE 0.60043 0.59550 0.59579 0.60518 0.63522 0.65975 0.70434

Optimal
hy hy Bias? Variance RMSE
9.7 4.95 0.02318 0.32942 0.59380

(Continues)
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TABLE 2. Continued.

Fourier 3

h\ hy 4 4.25 4.5 4.75 5 5.25 5.5
9.5 Bias? 0.01718 0.00402 0.00034 0.00309 0.02540 0.05223 0.11746
Variance 0.47176 0.48737 0.41483 0.37669 0.37827 0.30180 0.30948
RMSE 0.69925 0.70100 0.64434 0.61626 0.63535 0.59500 0.65341
9.75 Bias? 0.00628 0.00209 0.00024 0.00872 0.03243 0.07676 0.13761
Variance 0.45267 0.39809 0.36465 0.34060 0.31528 0.29859 0.27294
RMSE 0.67746 0.63260 0.60406 0.59104 0.58966 0.61266 0.64074
10 Bias? 0.00325 0.00029 0.00229 0.01677 0.04418 0.09067 0.15586
Variance 0.41696 0.37567 0.35477 0.34165 0.30676 0.28192 0.25767
RMSE 0.64824 0.61316 0.59754 0.59868 0.59240 0.61040 0.64306
10.25 Bias® 0.00107 0.00013 0.00572 0.02445 0.05770 0.10913 0.17508
Variance 0.39536 0.36680 0.34640 0.33360 0.30883 0.28377 0.25161
RMSE 0.62962 0.60575 0.59340 0.59837 0.60542 0.62682 0.65322
10.5 Bias? 0.00000 0.00300 0.01171 0.03351 0.07090 0.12590 0.20265
Variance 0.38428 0.37847 0.33674 0.31457 0.29121 0.26763 0.25218
RMSE 0.61990 0.61763 0.59030 0.58999 0.60176 0.62732 0.67441
10.75 Bias? 0.00136 0.00792 0.02146 0.04843 0.09112 0.15124 0.23294
Variance 0.36041 0.35536 0.32555 0.30413 0.28155 0.25876 0.24383
RMSE 0.60147 0.60272 0.58908 0.59377 0.61047 0.64032 0.69048
1 Bias? 0.00682 0.01668 0.03610 0.06869 0.11988 0.18283 0.26578
Variance 0.34657 0.33147 0.31308 0.29249 0.27918 0.24887 0.22748
RMSE 0.59446 0.59004 0.59091 0.60098 0.63171 0.65704 0.70233

Optimal
h hy Bias? Variance RMSE
9.75 4.9 0.02090 0.32549 0.58855
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TaBLE 3. Monte Carlo simulation results as a function of sample size.

Sample Size 1000 2000 8000
Example 1
Bandwidth hy 9.75 9.55 9.85
hy 4.9 4.9 4.85
Bias? 0.02029 0.00149 0.00004
Variance 0.33234 0.09040 0.01433
RMSE 0.59382 0.30314 0.11987
Example 2
Bandwidth hy 11.7 11.35 11.05
hy 4.75 4.85 5
Bias? 0.01025 0.00062 0.00049
Variance 0.20523 0.05342 0.04740
RMSE 0.46420 0.23247 0.21885
Example 3
Bandwidth hy 11.2 11.55 11.25
hy 5.05 4.9 4.9
Bias? 0.00968 0.00044 0.00016
Variance 0.19729 0.04240 0.02930
RMSE 0.45493 0.20699 0.17164
Example 4
Bandwidth hy 9.5 9.55 9.7
hy 5 5 4.4
Bias? 0.01226 0.00167 0.00004
Variance 0.25057 0.09960 0.01405
RMSE 0.51267 0.31823 0.11870
Example 5
Bandwidth hy 9.75 9.45 9.3
hy 4.35 4.4 4.4
Bias? 0.01764 0.00145 0.00070
Variance 0.28277 0.09061 0.05482
RMSE 0.54809 0.30342 0.23562
Example 6
Bandwidth hy 8.4 8.6 8.75
hy 4.6 4.4 4.35
Bias? 0.02251 0.00490 0.00031
Variance 0.34412 0.18187 0.04241
RMSE 0.60550 0.43216 0.20669
Example 7
Bandwidth h 9.1 9.25 9.4
hy 4.6 4.5 4.45
Bias? 0.01697 0.00080 0.00010
Variance 0.28118 0.06201 0.02290
RMSE 0.54604 0.25061 0.15167
Example 8
Bandwidth h 8.25 8.25 8.25
hy 4.75 4.5 4.7
Bias? 0.01510 0.00117 0.00009
Variance 0.29672 0.09851 0.01682
RMSE 0.55841 0.31571 0.13004

(Continues)
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TABLE 3. Continued.

Sample Size 1000 2000 8000
Example 9
Bandwidth hy 9.4 9.65 9.9
hy 5.05 4.95 5
Bias? 0.00927 0.00310 0.00002
Variance 0.22173 0.12096 0.01247
RMSE 0.48062 0.35221 0.11172
Example 10
Bandwidth hy 8.8 8.65 8.85
hy 5.05 5.05 5
Bias® 0.01473 0.003151 0.00083
Variance 0.27797 0.155258 0.06535
RMSE 0.54101 0.398006 0.25726
Example 11
Bandwidth h 9.55 9.55 9.8
hy 5.1 5.05 5
Bias® 0.00629 0.00120 0.00005
Variance 0.17604 0.07214 0.01288
RMSE 0.42700 0.27080 0.11372
Example 12
Bandwidth hy 8.85 8.75 8.55
hy 4.95 52 5.15
Bias® 0.02034 0.00231 0.00134
Variance 0.32799 0.12246 0.09321
RMSE 0.59020 0.35324 0.30749
Example 13
Bandwidth hy 8.45 8.45 8.35
hy 4.7 4.75 4.8
Bias® 0.01659 0.00259 0.00010
Variance 0.28442 0.11723 0.02484
RMSE 0.54864 0.34615 0.15793
Example 14
Bandwidth hy 7.25 7.65 7.2
hy 4.7 4.6 4.8
Bias® 0.02838 0.00128 0.00102
Variance 0.40722 0.09167 0.07542
RMSE 0.66000 0.30487 0.27648
Example 15
Bandwidth h 8.4 8.6 8.3
hy 4.7 4.6 4.7
Bias® 0.01968 0.00131 0.00037
Variance 0.30630 0.07827 0.04837
RMSE 0.57094 0.28210 0.22078
Example 16
Bandwidth hy 7.4 7.65 7.65
hy 4.8 4.65 4.6
Bias® 0.01692 0.00159 0.00085
Variance 0.32160 0.10115 0.07403

RMSE 0.58182 0.32054 0.27364
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6. APPLICATION: THE IMPACT OF FAMILY INCOME ON CHILD ACHIEVEMENT

This section applies our estimator to study the causal effect of family income on child
achievement. We also discuss practical methods for the optimal bandwidth choices in
Appendix A, since estimation results depend crucially on this choice.

6.1 The model

The association between family income and child development is a contentious issue
in economics, sociology, and developmental psychology. Even though it has been exam-
ined in a number of studies, there is no consensus on the relative effectiveness of income
transfers and direct intervention in augmenting the human capital of children. Income
transfers could have a significant impact on the economic well-being of children grow-
ing up in poor families if family income plays a substantial role in child development. If
not, then direct interventions, such as the Head Start program, to improve child health,
education, and parenting may be more effective.

Using data from the Panel Study of Income Dynamics (PSID), Duncan, Yeung,
Brooks-Gunn, and Smith (1998) find that family income in early childhood has the great-
est impact on completed schooling, especially among children in families with low in-
comes, regardless of whether they control for fixed family effects. Blau (1999) uses the
matched mother—child subsample of the National Longitudinal Survey of Youth (NLSY)
to estimate the impact of parental income on children’s cognitive, social, and emotional
development. He finds that ordinary least squares (OLS) estimates of income effects are
generally statistically significant and positive, but that they are smaller and insignificant
when he uses either random- or fixed-effect methods. In addition, his findings indicate
that the effect of permanent income is much larger, but not large enough to make in-
come transfer a feasible approach to achieving substantial improvements in child out-
comes. He also finds that there is no evidence for any systematic indication of diminish-
ing returns to income, that is, income effects that are larger at lower levels of income.

Aughinbaugh and Gittleman (2003) examine the relationship between child devel-
opment and income in Great Britain and compare it with that in the United States. Using
the NLSY and Great Britain’s National Child Development Study, they find that the rela-
tionship between income and child development is quite similar in the two countries.
Income tends to improve cognitive test scores, but the magnitude of the impact is small.
Using participants from the National Institute of Child Health and Human Development
(NICHD) study of early child care, Taylor, Dearing, and McCartney (2004) estimate the
impact of family economic resources on developmental outcomes in early childhood.
They find that economic resources are important when properly compared with other
important variables, such as maternal verbal intelligence, and when compared with es-
tablished interventions, such as Early Head Start. Their findings also indicate that there
are significant nonlinear effects of permanent (but not current) income, implying that
income effects are larger for children living in poor families.

Dahl and Lochner (2012) address both omitted variables bias and attenuation bias
due to measurement error on family income using fixed-effect (parametric) instrumen-
tal variables estimation. They use panel data on over 6000 children matched to their
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mothers in the NLSY data. They find that estimates from the fixed-effect instrumental
variables approach are larger than cross-section OLS or standard fixed-effects estimates,
so that current income has a significant effect on a child’s math and reading test scores.
Here we examine the effect of family income on child achievement, as measured by
scores on math and reading assessments. We accommodate measurement errors, en-
dogeneity of family income, nonlinearity of income effects, and interactions between
drivers of child achievement by considering a data generating process of the form

er(X, Uy),

where Y is the child’s scholastic achievement, X is family income, and Uy, represents
other unobserved drivers of child achievement; r is an unknown measurable scalar-
valued function. Because unobserved parental abilities could be common causes of
both family incomes and child achievement, X is generally correlated with the unob-
served Uy. Moreover, income is noisily measured in most surveys, and the data used
here are no exception.

Figure 1 depicts structural relations consistent with Assumptions 2.1-2.3. Arrows
denote direct causal relationships. Dashed circles denote unobservables and complete
circles denote observables. A line without an arrow denotes dependence arising from
a causal relation in either direction or the existence of an underlying common cause.
Mother’s cognitive ability is a common cause for family earning potential and child abil-
ity. The fact that earning potential and child ability share a common cause induces a cor-
relation between family income and child ability. Nevertheless, the conditional inde-
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FiGure 1. Impact of family income on child achievement. Due to a common cause, mother’s
cognitive ability, family income, and child achievement are correlated. The AFQT score, a proxy
for the common cause, plays a key role as a control variable ensuring conditional independence
between family income and child’s achievement. Two error-laden measurements of family in-
come are used to remove attenuation bias due to measurement error in family income.
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pendence assumption makes it possible to recover features of the causal relationship.
Because mother’s Armed Forces Qualifying Test (AFQT) scores, a proxy for mother’s cog-
nitive ability, are observable, they can serve as control variables or conditioning instru-
ments to ensure the conditional independence between family income and unobserved
child ability. In essence, by fixing (or conditioning on) the underlying cause of endo-
geneity (parental ability), we can “turn off” the indirect effect via parental and children
abilities, and study the direct effect of parental income on children’s scholastic achieve-
ments. As aresult, any residual heterogeneity in achievements (as modeled by Uy) would
plausibly be expected to be unrelated (i.e., independent) to parental income. A separate
issue is that true family income is unobservable because income is noisily measured in
survey data. Without correcting for the measurement error, estimates would be biased.
Fortunately, we observe two error-laden measurements of true family income. This per-
mits us to recover the desired effect measures using our new estimator.

It is worth noting that the use of parental skills as control variables has been com-
mon in the literature on human development (e.g., Cunha and Heckman (2007), Cunha,
Heckman, and Schennach (2010)). It would be ideal to include father’s skills and even
other control variables such as location and parental education level. Due to the lim-
itation of the data availability, however, we only include mother’s AFQT scores. To the
extent that father’s and mother’s skills are correlated, the omission of father’s skills is not
too detrimental. Our limited choice of control variables is clearly not ideal, but it should
nevertheless capture a large part of the endogeneity. Apparently, testing the conditional
independence using control variables would be useful for the empirical works. Since it
is beyond the scope of the current paper, we leave it to future research.

We use the matched mother—child subsample of the NLSY from Dahl and Lochner
(2012) in the cross-sectional nonparametric model.'® The dependent variables (i.e.,
child scholastic achievement (Y)) are measures of achievement in math and reading
based on standardized scores of the Peabody Individual Achievement Tests (PIAT). Math
achievement is measured by mathematics scores, and reading achievement is measured
by a simple average of the reading recognition and reading comprehension scores. Our
error-laden measurement of family income (X7) is the natural logarithm (log) of re-
ported family income in 1998. The log of reported family income in year 2000 is used
as an additional error-laden measurement of family income (X3). Income in each year
is after tax and after transfer. Because the assumptions regarding the measurement er-
ror do allow for a systematic drift in income (Assumption 3.2(ii) does not impose zero
conditional mean on the second measurement, X;), family income in year 2000 (X>) is
allowed to have a nonzero deterministic trend. The control variable (W) is the mother’s
AFQT score; see Tables 4(a) and 4(b) for descriptive statistics, and see Dahl and Lochner
(2012) for further details. We assume true family incomes and unobserved drivers of
child achievement are independent, conditional on AFQT scores (i.e., X L Uy | W). Ob-
serve that this type of conditioning instrument is conceptually rather different from con-
ventional instruments satisfying standard exclusion restrictions. We create standardized

16we thank Gordon Dabhl for providing the NLSY data.
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TaBLE 4. Descriptive statistics.

Mean SD

(a) Impact of family income on math score

Math score 0.07510 1.03763
Family income (year 1998) 2.42646 1.65861
Family income (year 2000) 2.51579 1.78155
Mother’s AFQT —0.07766 0.99484
Observations 1544

(b) Impact of family income on reading score

Reading score 0.06053 0.91971
Family income (year 1998) 2.37502 1.57405
Family income (year 2000) 2.47168 1.67452
Mother’s AFQT —0.08737 0.98670
Observations 1274

TABLE 5. Optimal choice of smoothing parameters.

el hy hy
Math Fourier 10-13 6.8 5.7
Local linear 5% 1074 6.8 7
Reading Fourier 10-12 7.5
Local linear 101! 7.1 6.9

test scores, AFQT scores, and family incomes having mean 0 and standard deviation 1.7
For later reference, let the scaling constant for X be denoted o.

We apply leave-one-out cross-validation to estimate optimal bandwidths. Since true
X is unobserved, modifications of the original method in Wahba (1990) are necessary.
Details on the new method can be found in the Appendix A. Table 5 reports the esti-
mated optimal bandwidths # and a smoothing parameter « associated with penaliza-
tion on the smoothness of the nonparametric estimate of the expectation of response
function p;,, measured by the second derivative of 1. The selection rules of the optimal
smoothing parameters are applied to our proposed Fourier estimator and conventional
local linear estimator neglecting measurement errors. For the local linear methods, we
use a second-order local polynomial estimator to obtain the smoothing parameters be-
cause this automatically estimates the second derivatives of fi;, and both local linear
and local polynomial estimators are first-order identical. Since the Fourier estimator al-
lows greater roughness in @, this results in a larger penalty for given «. The estimated
choice of « here is consequently fairly small.

17Since the log of family incomes for 1998 and 2000 share similar sample means and standard deviations,
we standardize them using the average of their means and the square root of the average of the their vari-
ances. This common standardization conforms to Assumption 2.3, whereas standardizing separately would
not.
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6.2 Estimation results

Tables 6 and 7 show estimation results obtained by our new estimator and a local linear
estimator ignoring the family income measurement error. These results use the smooth-
ing parameters given in Table 5. Each estimate is evaluated at given values of standard-
ized family income (X) ranging from —2.8 to 1.6 and standardized mother’s AFQT score
(W) ranging from —1.2 to 1.2 in increments of 0.2. Estimates for only a subset of the
covariate values are reported for conciseness. We report bootstrap standard error esti-
mates. As Gongalves and White (2005) note, one must formally justify using the boot-
strap to compute standard errors, because the consistency of the bootstrap distribution
does not guarantee the consistency of the variance of the bootstrap distribution as an
estimator of the asymptotic variance. Nevertheless, the bootstrap should give us stan-
dard errors with first-order accuracy, sufficient for our purposes.

Table 6 reports the estimated impact of family income on children’s math achieve-
ment. The covariate-conditioned average marginal effects!® of family income on chil-
dren’s math achievement from our estimator are positive over all ranges of x and w, and
are large and significant for most values. The average marginal effect is about 3.8099 at
x = —2.8 and w = —0.6. This implies that the expected effect of a 1% increase in stan-
dardized family income is to increase a child’s math score by about 2.2% of a standard
deviation.!® For a given mother’s AFQT score, w, effects decrease as standardized fam-
ily income, x, increases toward about 0, but increase again when standardized family
income is above 0. Significantly, the covariate-conditioned average marginal effects es-
timated from the local linear estimator are much smaller than those from our estima-
tor for all (x, w) values. The effects appear insignificant for most poor families.?’ The
gap between the two estimators is especially large for low-income families with high
standardized mother’s AFQT score (around 0.6). Note that the average marginal effect
from the local linear estimator is about —0.4724 at x = —2.8 and w = —0.6, whereas that
from our estimator is 3.8099, a difference of about 4.2823. It follows that measurement
errors in family income have an important impact on estimated effects on child achieve-
ment; properly handling these errors is critical to obtaining accurate estimates of these
effects.

Table 7 shows the impact of family income on children’s reading achievement. The
covariate-conditioned average marginal effects of family income on reading score from
our estimator are also much larger than those from the local linear estimator in all ranges
of (x, w). The average marginal effect from our estimator, for instance, is about 3.0323
at x = —2.8 and w = —0.6, whereas that from the local linear estimator is —0.3037. Our
Fourier estimate implies that the expected effect of a 1% increase in standardized family

18Note that because of the conditioning, covariate-conditioned average marginal effects provide more
accurate estimates of unknown marginal effects than their unconditional analogs.

9With o, = 1.72118, 3.8099 x In(1.01)/a, = 0.022025.

20Near the boundary values for family incomes, the local linear estimated marginal effects are extremely
irregular, showing huge fluctuations in marginal effects for small changes in family income.



TaBLE 6. Impact of family income on children’s math achievement.

w\ x -2.8 -2.6 -2 —-14 -0.8 -0.2 0.4 1 1.6

-1.2 Fourier 3.1105 2.7091 1.9599 1.5823 1.3978 1.3389 1.3876 1.5627 1.9358
(0.3801) (0.3524) (0.3110) (0.2837) (0.2629) (0.2501) (0.2405) (0.2348) (0.2376)

Local linear 0.0563 0.0784 —0.0164 0.1046 0.1396 0.1772 0.2324 0.4018 0.0527

(0.0537) (0.0516) (0.1978) (0.0571) (0.0527) (0.0614) (0.0771) (0.1905) (0.2583)

-1 Fourier 3.3676 2.9194 2.0892 1.6731 1.4682 1.3979 1.4401 1.6113 1.9806
(0.2593) (0.2695) (0.2773) (0.2719) (0.2646) (0.2576) (0.2513) (0.2467) (0.2458)

Local linear —0.0306 0.0224 —0.2071 0.0933 0.1355 0.1786 0.2379 0.3859 —0.1320

(0.0769) (0.0609) (0.4812) (0.0573) (0.0535) (0.0550) (0.0719) (0.1421) (0.2494)

-0.6 Fourier 3.8099 3.2708 2.2882 1.8020 1.5598 1.4670 1.4933 1.6496 1.9973
(0.2813) (0.2918) (0.3011) (0.2999) (0.2961) (0.2921) (0.2882) (0.2851) (0.2844)

Local linear —0.4724 -0.1210 0.2064 0.0670 0.1255 0.1802 0.2480 0.3689 25.6584
(0.2267) (0.0942) (0.1884) (0.0559) (0.0472) (0.0531) (0.0616) (0.1040) (16.0568)

-0.2 Fourier 4.1645 3.5378 2.4162 1.8699 1.5959 1.4824 1.4911 1.6268 1.9419
(0.3252) (0.3347) (0.3445) (0.3438) (0.3409) (0.3375) (0.3342) (0.3312) (0.3294)

Local linear 10.4756 -0.3270 0.1124 0.0338 0.1144 0.1826 0.2578 0.3593 0.7088

(3.4989) (0.1338) (0.0795) (0.0563) (0.0490) (0.0490) (0.0593) (0.0893) (0.2494)
(Continues)
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TABLE 6. Continued.

w\ x -2.8 -2.6 -2 -1.4 -0.8 -0.2 0.4 1 1.6
0.2 Fourier 4.4192 3.7109 2.4693 1.8761 1.5781 1.4475 1.4389 1.5511 1.8266
(0.3640) (0.3717) (0.3781) (0.3768) (0.3740) (0.3711) (0.3683) (0.3656) (0.3632)
Local linear 0.7923 —0.7679 0.0808 —0.0114 0.1023 0.1867 0.2680 0.3524 0.4907
(0.2153) (0.2685) (0.0669) (0.0593) (0.0479) (0.0471) (0.0573) (0.0794) (0.1461)
0.6 Fourier 4.5305 3.7547 2.4277 1.8086 1.4985 1.3572 1.3335 1.4207 1.6517
(0.3802) (0.3836) (0.3847) (0.3827) (0.3808) (0.3791) (0.3776) (0.3760) (0.3742)
Local linear 0.3040 2.0879 0.0617 —0.0807 0.0887 0.1935 0.2790 0.3465 0.4104
(0.0823) (0.7247) (0.0642) (0.0695) (0.0514) (0.0540) (0.0604) (0.0737) (0.1024)
1 Fourier 4.3967 3.5884 2.2466 1.6391 1.3374 1.1963 1.1625 1.2252 1.4078
(0.3770) (0.3781) (0.3797) (0.3809) (0.3821) (0.3833) (0.3843) (0.3853) (0.3858)
Local linear 0.0142 0.0647 0.0391 —0.2165 0.0722 0.2048 0.2917 0.3405 0.3634
(0.0507) (0.0516) (0.0729) (0.0937) (0.0615) (0.0633) (0.0582) (0.0685) (0.0951)
1.2 Fourier 4.1714 3.3752 2.0767 1.4992 1.2144 1.0802 1.0448 1.0961 1.2533
(0.9049) (0.8068) (0.6417) (0.5463) (0.4896) (0.4484) (0.4172) (0.3931) (0.3743)
Local linear —0.0890 —0.0635 0.5561 —0.3910 0.0605 0.2131 0.2991 0.3372 0.3449
(0.0708) (0.0606) (0.6878) (0.1540) (0.0724) (0.0660) (0.0667) (0.0747) (0.0868)
Observations 1544

Note: Standard errors obtained by bootstrap methods are given in parentheses. Data are from the children of the NLSY linked to their mothers in the main NLSY79. All variables are
standardized, having means of 0 and standard deviations of 1. Mother’s AFQT is used as a control variable. Income is after tax and after transfer. The error-laden measurement of family
income is family income in 1998. Family income in 2000 is used as an additional error-laden measurement of family income. Year refers to the NLSY survey year; income refers to the previous
year’s income.
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TaBLE 7. Impact of family income on children’s reading achievement.

w\ x -2.8 -2.6 -2 —-14 -0.8 -0.2 0.4 1 1.6

-1.2 Fourier 2.5034 2.2364 1.7091 1.4258 1.2816 1.2335 1.2698 1.4029 1.6788
(0.3243) (0.3066) (0.2756) (0.2591) (0.2477) (0.2380) (0.2289) (0.2212) (0.2170)
Local linear 0.1189 0.1655 0.0599 0.1752 0.2068 0.2246 0.2403 0.2886 —0.6218
(0.0714) (0.0765) (0.1607) (0.0867) (0.0785) (0.0881) (0.1147) (0.2453) (0.8483)

-1 Fourier 2.7152 2.4166 1.8302 1.5162 1.3548 1.2970 1.3279 1.4585 1.7331
(0.2391) (0.2487) (0.2520) (0.2457) (0.2392) (0.2333) (0.2281) (0.2236) (0.2209)

Local linear 0.0331 0.0972 0.0371 0.1691 0.2060 0.2301 0.2533 0.3009 0.0306
(0.0988) (0.0827) (0.1949) (0.0810) (0.0802) (0.0815) (0.1026) (0.2023) (0.5488)

-0.6 Fourier 3.0323 2.6770 1.9881 1.6221 1.4309 1.3538 1.3702 1.4866 1.7416
(0.2406) (0.2475) (0.2526) (0.2505) (0.2472) (0.2440) (0.2409) (0.2381) (0.2361)

Local linear —0.3037 —0.0429 —0.0883 0.1542 0.1975 0.2263 0.2502 0.2794 0.7104
(0.2351) (0.1197) (0.4426) (0.0773) (0.0698) (0.0793) (0.0930) (0.1549) (2.0220)

-0.2 Fourier 3.2047 2.8040 2.0382 1.6359 1.4234 1.3303 1.3305 1.4256 1.6471
(0.2523) (0.2575) (0.2620) (0.2607) (0.2584) (0.2561) (0.2538) (0.2517) (0.2499)

Local linear —3.8050 —0.2060 0.2788 0.1358 0.1851 0.2172 0.2405 0.2584 0.2808
(1.9608) (0.1758) (0.5248) (0.0764) (0.0686) (0.0771) (0.0838) (0.1280) (0.3516)
(Continues)

91IYM pue ‘yoruuayds ‘3uos g/

(G102) 9 SOIWOU0DY dAneIuEn()



TABLE 7. Continued.

w\ x -2.8 -2.6 -2 -14 -0.8 —0.2 0.4 1 1.6
0.2 Fourier 3.1964 2.7691 1.9663 1.5509 1.3303 1.2277 1.2134 1.2845 1.4642
(0.2638) (0.2680) (0.2711) (0.2698) (0.2680) (0.2664) (0.2648) (0.2632) (0.2616)
Local linear 0.9619 —0.4772 0.1234 0.1125 0.1692 0.2049 0.2279 0.2388 0.2313
(0.4082) (0.3072) (0.1663) (0.0793) (0.0736) (0.0759) (0.0878) (0.1227) (0.2047)
0.6 Fourier 2.9272 2.5080 1.7365 1.3450 1.1373 1.0369 1.0132 1.0606 1.1943
(0.2696) (0.2723) (0.2734) (0.2723) (0.2711) (0.2702) (0.2694) (0.2686) (0.2676)
Local linear 0.3479 —54.7943 0.0848 0.0800 0.1483 0.1888 0.2123 0.2191 0.2055
(0.1425) (31.5205) (0.1143) (0.0875) (0.0780) (0.0767) (0.0853) (0.1145) (0.1721)
1 Fourier 2.2369 1.8945 1.2794 0.9750 0.8150 0.7362 0.7136 0.7412 0.8277
(0.2710) (0.2716) (0.2714) (0.2709) (0.2708) (0.2712) (0.2718) (0.2723) (0.2725)
Local linear 0.0592 0.1187 0.0573 0.0252 0.1174 0.1663 0.1925 0.1981 0.1848
(0.0841) (0.0874) (0.1167) (0.1171) (0.0897) (0.0863) (0.0975) (0.1204) (0.1524)
Fourier 1.6394 1.3825 0.9270 0.7048 0.5890 0.5325 0.5170 0.5377 0.6011
1.2 (0.2732) (0.2734) (0.2735) (0.2741) (0.2753) (0.2768) (0.2782) (0.2796) (0.2806)
Local linear —0.0373 —0.0112 —0.1813 —0.0351 0.0923 0.1500 0.1798 0.1864 0.1750
(0.1184) (0.0987) (1.1729) (0.1484) (0.0937) (0.0967) (0.1031) (0.1198) (0.1461)
Observations 1274

Note: Standard errors obtained by bootstrap methods are given in parentheses. Data are from the children of the NLSY linked to their mothers in the main NLSY79. All variables are
standardized, having means of 0 and standard deviations of 1. Mother’s AFQT is used as a control variable. Income is after tax and after transfer. The error-laden measurement of family
income is family income in 1998. Family income in 2000 is used as an additional error-laden measurement of family income. The reading score is obtained by taking a simple average of the
reading recognition and reading comprehension scores. Year refers to the NLSY survey year; income refers to the previous year’s income.
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income is to increase a child’s reading score by about 1.9% of a standard deviation.?!

Interestingly, estimated effects from the local linear estimator appear to be statistically
insignificant over all ranges of (x, w), with few exceptions.??

Figure 2 shows a graph of the covariate-conditioned average marginal effect (top)
and average counterfactual response (bottom) of family income on children’s math
scores at various values of standardized family income ranging from —2.8 to 1.6 and
standardized mother’s AFQT ranging from —1.2 to 1.2. These are obtained using our es-
timator with the bandwidths in Table 5. All estimates of the average marginal effect are
positive over the ranges of both family income and AFQT score. In general, the impact
of family income at a given AFQT value increases as standardized family income moves
from 0 to —2.8 or 1.6, making a broad U-shape. As a result, we find slightly increasing
returns to family income for children in higher-income families. However, diminishing
returns to family income are also observed at standardized income levels below x = 0.
We also note that the shape of the income effect varies over different levels of mother’s
AFQT score. For instance, at w = 0.6, the average marginal effect is quite variable, while
that at —1.2 is flat. Thus, the average marginal effect depends on the level of mother’s
AFQT. Imposing separability would mask this feature of the relationship, illustrating the
usefulness of the nonseparability allowed here.

Figure 3 shows a graph based on the local linear estimator of the apparent causal ef-
fect (top) and average counterfactual response (bottom) of family income on children’s
math scores.?® This shows much smaller marginal effects than those from our estima-
tor, and we see apparent negative marginal effects for poor families with high mother’s
AFQT. Indeed, the results from the local linear estimator indicate increasing returns to
income, that is, income effects that are larger at higher levels of family income, at odds
with economic intuition.

Figure 4 shows the covariate-conditioned average marginal effect (top) and average
counterfactual response (bottom) of family income on children’s reading scores at var-
ious values of standardized family income ranging from —2.8 to 1.6 and standardized
AFQT ranging from —1.2 to 1.2. These are obtained using our estimator with the band-
widths of Table 5. The effects are positive over the full range of both family income and
AFQT score. Children in poorer families are likely to have a higher effect of family in-
come at a given AFQT value. Thus, the results show diminishing returns to income over
all ranges of family income at a given value of AFQT. We also observe the dependence of
the average marginal effect on mother’s AFQT.

Figure 5 depicts the apparent causal effect (top) and average counterfactual re-
sponse (bottom) of family income on children’s reading scores obtained using the local
linear estimator. The results indicate much smaller income effects than those from our
estimator. We also see counterintuitive increasing returns to family income.

21With o, = 1.62506, 3.0323 x In(1.01) /0 = 0.018567.

22 Again, marginal effects on children’s reading achievement from the local linear estimator near bound-
ary values of family income can be extremely irregular.

23Because of the irregular behavior of the local linear estimator, we truncate the results to remove the
extreme values of family income and plot only the results for standardized family income ranging from
—1.4tol.
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F1GURrE 2. Impact of family income on children’s math scores (Fourier). Our estimator is used for
the covariate-conditioned average marginal effect (upper panel) and the average counterfactual
response (lower panel). The error-laden measurement of family income is family income in 1998.
Family income in 2000 is used as an additional error-laden measurement of family income.

Taken as a whole, these results suggest that measurement error in family income
matters considerably and that using an estimator that properly accommodates the pres-
ence of measurement error reveals important effects that are obscured by estimators
that ignore measurement error, such as the local linear estimator. For math scores, we
find that the effects of family income are positive and that the magnitudes of the in-
come effects are substantially larger than those obtained from the local linear estimator.
Although the local linear estimates appear statistically significant for nonpoor families,
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F1Gure 3. Impact of family income on children’s math scores (local linear). The local linear es-
timator is used for the covariate-conditioned average marginal effect (upper panel) and the av-
erage counterfactual response (lower panel). The error-laden measurement of family income is
family income in 1998.

they are rather modest, as seen in previous studies. For reading scores, the Fourier esti-
mated effects are positive, large, and significant for poorer families, whereas those from
the local linear estimator are tiny and statistically insignificant over most ranges of fam-
ily income and mother’s AFQT score. It follows that, contrary to previous thinking, in-
come transfers could have a significant impact on the development of children growing
up in poor families.

Our results also demonstrate that the relation between family income and child’s
achievement is nuanced. We find nonlinearity in income effects over family income.
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F1GURE 4. Impact of family income on children’s reading scores (Fourier). Our estimator is used
for the covariate-conditioned average marginal effect (upper panel) and the average counter-
factual response (lower panel). The error-laden measurement of current family income is family
income in 1998. Family income in 2000 is used as an additional error-laden measurement of

family income.

Specifically, both effects on math scores and effects on reading scores show diminishing
returns to income for families with standardized income levels below x = 0, but show a
wide U-shape overall. Moreover, we observe that the expected income effect depends on
the level of mother’s AFQT score, a feature that would not be apparent using a method
that enforced additive separability between the drivers of child achievement, thereby

ruling out interactions.
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FiGuRre 5. Impact of family income on children’s reading scores (local linear). The local linear
estimator is used for the covariate-conditioned average marginal effect (upper panel) and the
average counterfactual response (lower panel). The error-laden measurement of current family
income is family income in 1998.

7. SUMMARY AND CONCLUDING REMARKS

We examine the identification and estimation of covariate-conditioned average margin-
al effects in a nonseparable data generating process with an endogenous and mismea-
sured cause of interest. This is the first study to simultaneously address these issues. We
use control variables to ensure the conditional independence between the cause of in-
terest and other unobservable drivers, permitting identification of the causal effects of
interest. Although the endogenous cause of interest is unobserved, two error-laden mea-
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surements are available. We extend methods of the deconvolution literature for nonlin-
ear measurement errors to obtain estimates of the distribution functions of the under-
lying cause of interest from its error-laden measurements and to recover parameters of
interest. These parameters include covariate-conditioned average marginal effects and
weighted averages of them. We obtain uniform convergence rates and asymptotic nor-
mality for estimators of covariate-conditioned average marginal effects, faster conver-
gence rates for estimators of their weighted averages over control variables, and </ con-
sistency and asymptotic normality for estimators of their weighted averages over control
variables and causes. We investigate the finite-sample behavior of our estimators using
Monte Carlo simulations, and we apply our new methods to study the impact of fam-
ily income on child achievement. There we find interesting new results, suggesting that
these effects are considerably larger than previously recognized.

MATHEMATICAL APPENDIX

Additional material and mathematical proofs of the results are presented in the Ap-
pendixes available in supplementary files on the journal website, http://geconomics.
org/supp/275/supplement.pdf and http://qeconomics.org/supp/275/code_and_data.
Zip.
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