

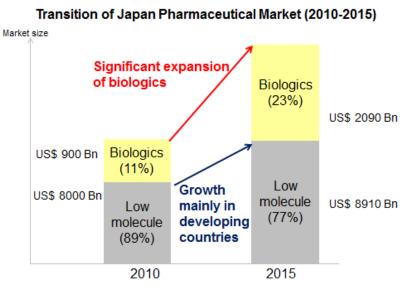
Care. Compassion. Science. It's Our Obligation.

Series of "World-leading Technology Seminar" Hosted by Citigroup Global Markets Japan

## Daiichi Sankyo ADC\*

ADC\*, antibody drug conjugate

Daiichi Sankyo Co., Ltd Biologics & Immuno-Oncology Laboratories Group Leader Yuki Abe, Ph.D.



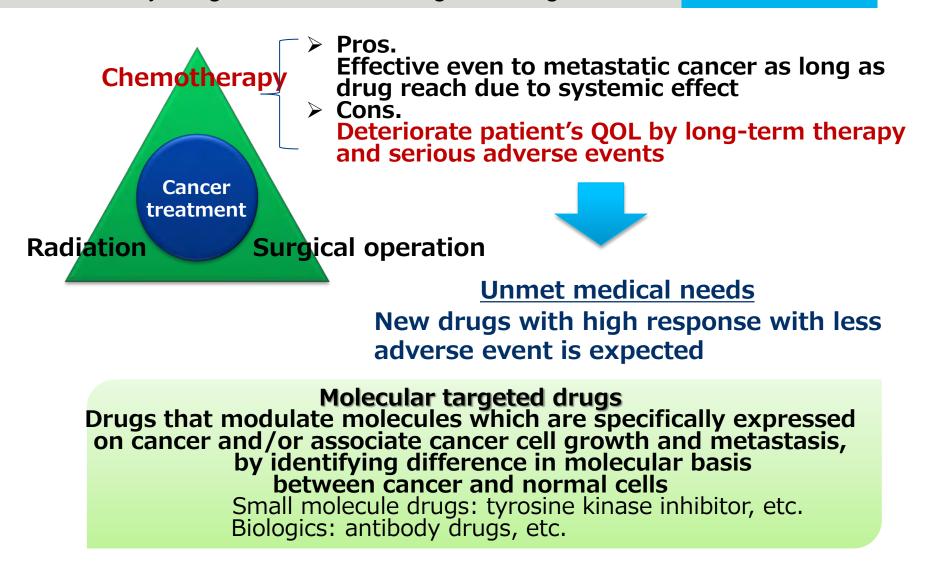

- Overview: trend of drug development, biologics and cancer treatment, about antibody drugs
- ✓ About antibody drug conjugate (ADC)
- ✓ Discovery of DS-8201a
- ✓ Characteristics and clinical results of DS-8201a
- ✓ Expansion of DXd-ADC technology



#### Drugs sales ranking in FY2015 (worldwide)

| Rank | Product name<br>(non-proprietary name) | Modality        | Therapeutic category               | Company<br>(Nationality) | 2015 sales<br>(US\$M) |
|------|----------------------------------------|-----------------|------------------------------------|--------------------------|-----------------------|
| 1    | Humira<br>Adalimumab                   | Biologics       | Antireumatic                       | Abbvie<br>US             | 14,012                |
| 2    | Harvoni<br>Sofosbuvir+ledipasvir       | Low<br>molecule |                                    | Gilead<br>US             | 13,864                |
| 3    | Enbrel<br>Etanercept                   | Biologics       | Antireumatic                       | Amgen/Pfizer<br>US       | 8,697                 |
| 4    | Remicade<br>Infliximab                 | Biologics       | Antireumatic/<br>Crohn disease     | Janssen/Merck<br>US      | 8,355                 |
| 5    | Rituxan<br>Rituximab                   | Biologics       | Anticancer drug                    | Roche<br>Switzerland     | 7,321                 |
| 6    | Lantus<br>Insulin                      | Biologics       | Insulin formulation                | Sanofi<br>France         | 7,090                 |
| 7    | Avastin<br>Bevacizumab                 | Biologics       | Anticancer drug                    | Roche<br>Switzerland     | 6,945                 |
| 8    | Herceptin<br>Trastuzumab               | Biologics       | Anticancer drug                    | Roche<br>Switzerland     | 6,794                 |
| 9    | Prevnar 13<br>Pneumococcus vaccine     | Biologics       | Pneumococcus<br>vaccine, pediatric | Pfizer<br>US             | 4,464                 |
| 10   | Revlimid<br>Lenalidomide               | Low<br>molecule | Anticancer drug                    | Celgene<br>US            | 5,801                 |
|      |                                        |                 | http://www.med<br>k.html           | lisearch.co.jp/d         | oukou_worl            |




View from Biologics related policy Information from Bio-industry Division of Ministry of Economy, Trade and Industry: May 2015 (citation translated)

- 8 biologics within top 10 of blockbuster drugs\*
- Transition to biologics from small molecule drug is apparent.
- Japan companies dedicated to small molecule drugs have fallen behind companies which pursue biologics in US/EU.

\*Blockbuster drugs: drugs with more than \$10Bn, 116 drugs in 2015

## Biologics and cancer treatment Antibody drugs as molecular targeted drugs







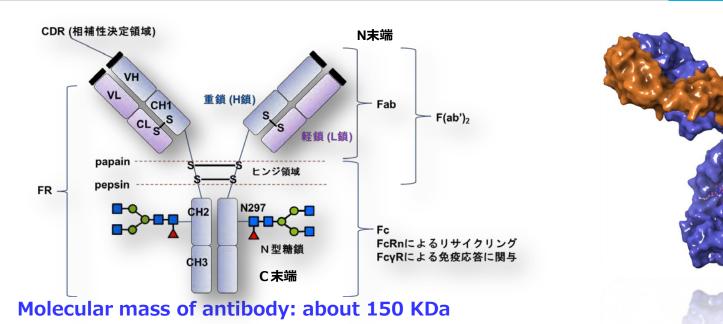
#### High efficacy, less adverse event, favorable drug retention in blood

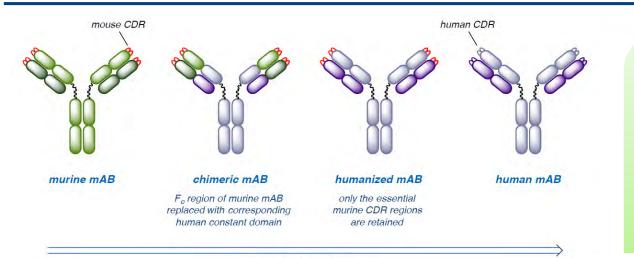
- > High specificity to target antigens (drug targets)
- Better safety profile due to molecular substances produced in a living body
- From once a week to once in several months administration due to favorable drug retention

#### □ Applicable to variety of drug discovery targets

- Possible to bind to variety of target antigens (drug targets)
- Variety of binding sites (epitope)
- ➤ Variety of MOA

#### Compatibility to precision medicine


- Antigen is candidate for biomarker
- Antibody itself can be used as a tool of Companion Diagnostics (CDx)




Antibody drugs having potential of blockbuster drugs as new molecular target drugs

## Antibody drugs ImmunoglobulinG1: IgG1 structure, high specificity and safety

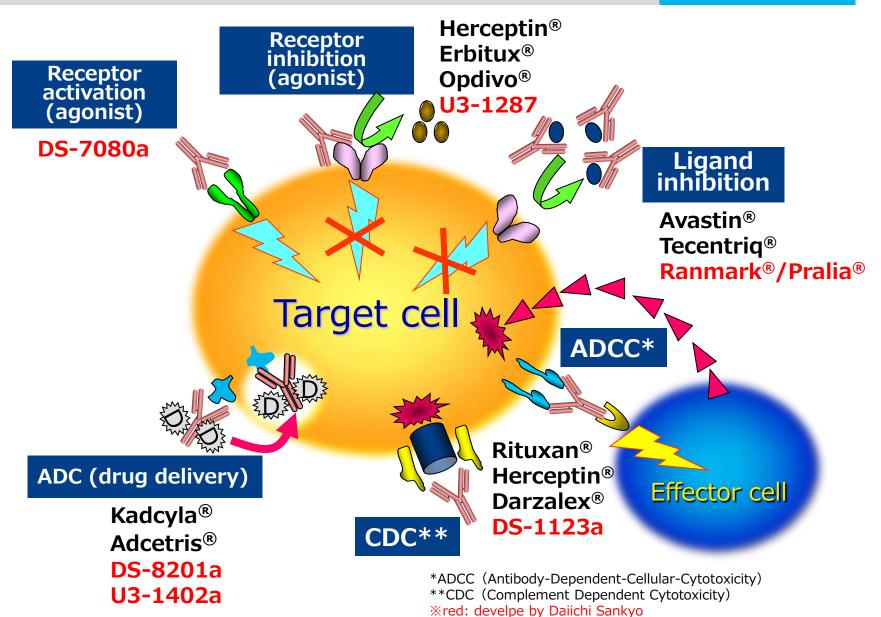






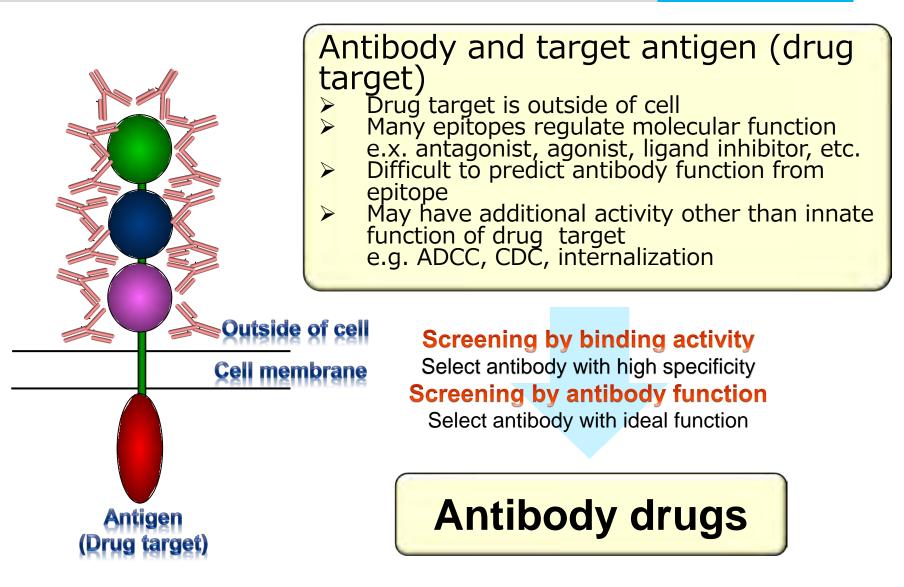
Murine mAb is considered foreign substance within human body and allergy reaction or anti-antibody may occur, which attenuates efficacy.

Considering safety, chimeric, humanized, or human mAb are widely used as antibody drugs.


increasing humanization

Chari-RV., Angew. Chem. Int. Ed. 2014, 53, 3796.

## Antibody drugs Variety of MOA




7



## Antibody drugs Variety of binding sites (epitope)





## Antibody drugs Next generation



### **First-generation Antibody drugs**

- Difficult to find drug target molecules
- Aggressive competition for same drug targets
- May naked antibodies have less efficacy

## Expecting more potent efficacy and expansion of drug targets

### **Next-generation Antibody drugs**

- Optimized and highly functional antibody
- Bispecific antibody, one antibody with two antigen binding sites
- Antibody-Drug Conjugate (ADC), antibody conjugated to anticancer drug



Illustration by D. Simonds from E. Check, 2007, Nature

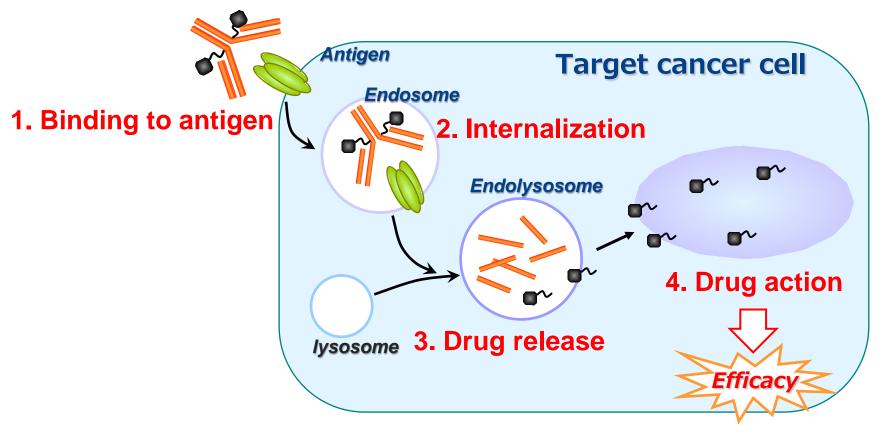
## Daiichi Sankyo ADC Contents



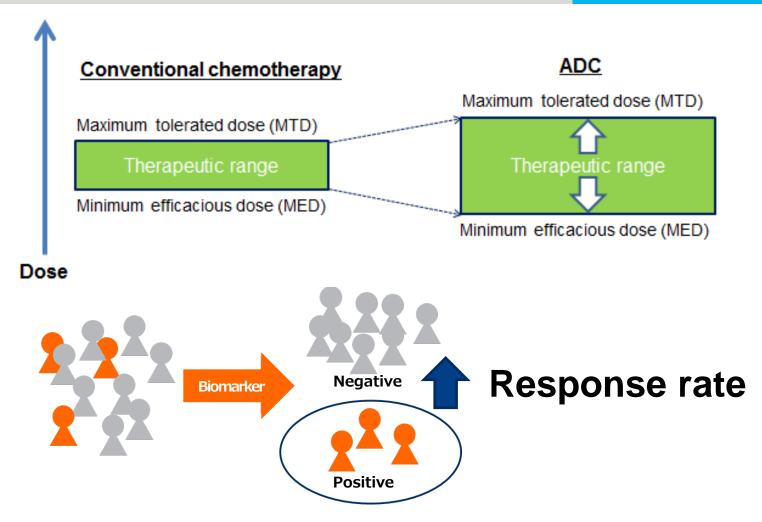
- Overview: trend of drug development, biologics and cancer treatment, about antibody drugs
- ✓ About antibody drug conjugate (ADC)
- ✓ Discovery of DS-8201a
- ✓ Characteristics and clinical results of DS-8201a
- ✓ Expansion of DXd-ADC technology





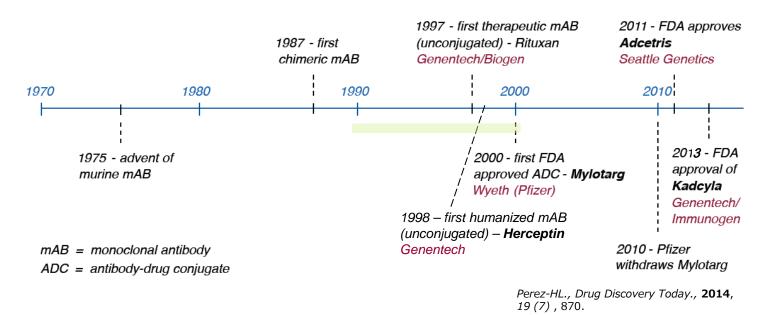



## Antibody Drug Conjugate; ADC


## ADC Antibody Drug Conjugate

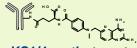


- ADC is drug which antibody and small molecule drug are conjugated with appropriate linker
- Armed antibody which antibody is used as target recognition and delivery and small molecule drug is in charge of efficacy

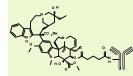




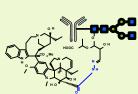




ADC is an attractive cancer drug with wider therapeutic window than chemotherapy



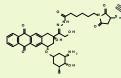



#### ADC in 90s


Lilly



KS1/4-methotrexate



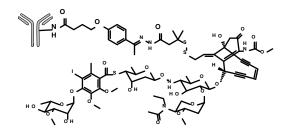

KS1/4-DAVLB



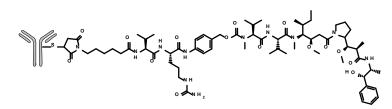
KS1/4-DAVLB HYD

Seattle Genentics / Bristol Myers Squibb

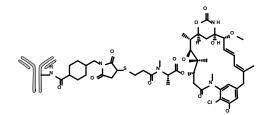



#### cBR96-doxorubicin

Anti-antibody Less efficacy Unstable linker Serious adverse event


- Establishment of chimeric and humanized mAb
- Maturity of antibody generation technology and production process
- Selection of antibody with high drug delivery function
- Selection of drug suitable for payload
- Designed stable linker in blood

*Elias-DJ., Am. J. Respir. Crit. Care Med.*, **1994**, *150*, 1114. *Shuneck-D.,Clin. Pharmacol. Ther.*, **1990**, *47*, 36. *Petersen-BH., Cancer Res.*, **1991**, *51*, 2286. *Tolcher –AW, J. Clin. Oncol.*, **1999**, *17*, 478.


## ADC ADC technology development



Mylotarg<sup>®</sup> (Gemtuzumab ozogamicin), 2000~2010



Adcetris<sup>®</sup> (Brentuximab vedotin, SGN-35), DAR\* 4.0 2012~



Kadcyla<sup>®</sup> (Trastuzumab emtansine, T-DM1), DAR\* 3.5  $_{\rm 2013\sim}$ 

✓ Serious hepatic disorder and fatal cases

✓ Withdrawn from US market in 2010

DAR\*~3 \*DAR, Drug to Antibody Ratio Average number of drugs on an antibody

> ✓ Enzyme cleavable type peptide linker Promptly cleaved by cathepsin up-

regulated in tumor cell Dispatch drug without linker residue from self-cleaved binding site, pABC residue

✓ Non cleavable type linker

 Released drug has less membrane permeability



# ADC ADC of today: approved drugs



- Launched: only two products
  - *Kadcyla*<sup>®</sup>: anti HER2 + **DM1**\* , breast cancer
  - Adcetris<sup>®</sup> :anti CD30+MMAE\*, Hodgking lymphoma

#### DM1 and MMAE are both potent microtubule inhibitors



\*DM1 : *N2'*-deacetyl-*N2'*-(3-Mercapto-1-oxopropyl)-Maytansine \*\*MMAE : MonoMethyl Auristatin E



- Under development: about 60 products\*
  - Ph3: 6 agent, Ph2: 18 agents, Ph1: 39 agents

#### Over 60% of ADC have microtubule inhibitors <u>Due to less efficacy and adverse events</u>, few projects moves to late stage development



## ADC ADC of today: under development

| Name        | Company          | Target      | Toxin target              | Status   |
|-------------|------------------|-------------|---------------------------|----------|
| SGN35       | Takeda           | CD30        | Tubulin                   | Launched |
| T-DM1       | Genentech        | HER2        | Tubulin                   | Launched |
| CMC-544     | Pfizer           | CD22        | DNA                       | Ph3      |
| SGN-CD33A   | Seattle Genetics | CD33A       | DNA                       | Ph3      |
| IMGN853     | ImmunoGen        | FOLR1       | Tubulin                   | Ph3      |
| CDX-011     | Celdex           | gpNMD       | Tubulin                   | Ph3      |
| RG7596      | Genentech        | CD79b       | Tubulin                   | Ph2      |
| SAR3419     | Sanofi           | CD19        | Tubulin                   | Ph2      |
| PSMA ADC    | Progenics        | PSMA        | Tubulin                   | Ph2      |
| BT062       | Biotest          | CD138       | Tubulin                   | Ph2      |
| BAY 94-9343 | Bayer            | methothelin | Tubulin                   | Ph2      |
| SGN-CD19A   | Seattle Genetics | CD19A       | Tubulin                   | Ph2      |
| IMMU-132    | Immunomedics     | TROP2       | Topoisomerase I<br>(SN38) | Ph2      |
| IMMU-130    | Immunomedics     | CEACAM5     | Topoisomerase I<br>(SN38) | Ph2      |
| AGS-16C3F   | Agensys          | ENPP3       | Tubulin                   | Ph2      |
| RG7450      | Genentech        | STEAP1      | Tubulin                   | Ph1      |
| SAR650984   | Sanofi           | CD38        | Tubulin                   | Ph1      |
| AMG 595     | Amgen            | EGFRvIII    | Tubulin                   | Ph1      |
| AMG 172     | Amgen            | CD27L       | Tubulin                   | Ph1      |
| ASG-22ME    | Agensys          | Nectin-4    | Tubulin                   | Ph1      |
| SGN-LIV1A   | Seattle Genetics | LIV1A       | Tubulin                   | Ph1      |
| SGN-CD70A   | Seattle Genetics | CD70        | DNA                       | Ph1      |
| DS-8201     | Daiichi Sankyo   | HER2        | Topoisomerase I<br>(DXd)  | Ph1      |
| U3-1402     | Daiichi Sankyo   | HER3        | Topoisomerase I<br>(DXd)  | Ph1      |
| SYD985      | Synthon          | HER2        | DNA                       | Ph1      |
| MEDI4276    | Astrazeneca      | HER2        | Tubulin                   | Ph1      |
| ABBV-838    | Abbvie           | SLAMF7      | Tubulin                   | Ph1      |
| BAY1187982  | Bayer            | FGFR2       | Tubulin                   | Ph1      |
|             | -                |             |                           |          |

# ADC ADC of today: discontinued



| Name        | Company             | Discontinued | Targets             | Toxins        |
|-------------|---------------------|--------------|---------------------|---------------|
| Mylotarg    | Pfizer              | Withdrawn    | CD33                | Calicheamycin |
| MLN-0246    | Seattle Genetics    | Ph2          | Guanylate cyclase C | ММАЕ          |
| RG-7599     | Roche/Genentech     | Ph2          | NaPi2b              | ММАЕ          |
| RG-7450     | Roche/Genentech     | Ph2          | STEAP-1             | ММАЕ          |
| SAR3419     | ImmunoGen           | Ph2          | CD19                | DM4           |
| IMGN901     | ImmunoGen           | Ph2          | CD56                | DM1           |
| DCDT2980S   | Roche/Genentech     | Ph1          | CD22                | MMAE          |
| RG-7600     | Roche<br>/Genentech | Ph1          | Mesothelin          | MMAE          |
| RG-7636     | Roche<br>/Genentech | Ph1          | ETBR                | MMAE          |
| PF-06263507 | Pfizer              | Ph1          | 5T4                 | MMAF          |
| MEDI 547    | Medimmune           | Ph1          | EPHA2               | MMAF          |
| SGN-75      | Seattle Genetics    | Ph1          | CD70                | MMAF          |
| IMGN289     | ImmunoGen           | Ph1          | EGFR                | DM1           |
| AMG595      | Amgen               | Ph1          | EGFRvIII            | DM1           |
| AMG172      | Amgen               | Ph1          | CD70                | DM1           |
| IMMU-110    | Immunomedics        | Ph1          | CD74                | doxorubicin   |
| LOP628      | Novartis            | Ph1          | KIT                 | maitansine    |

## ADC Component and requirement for ADC





#### Antibody:

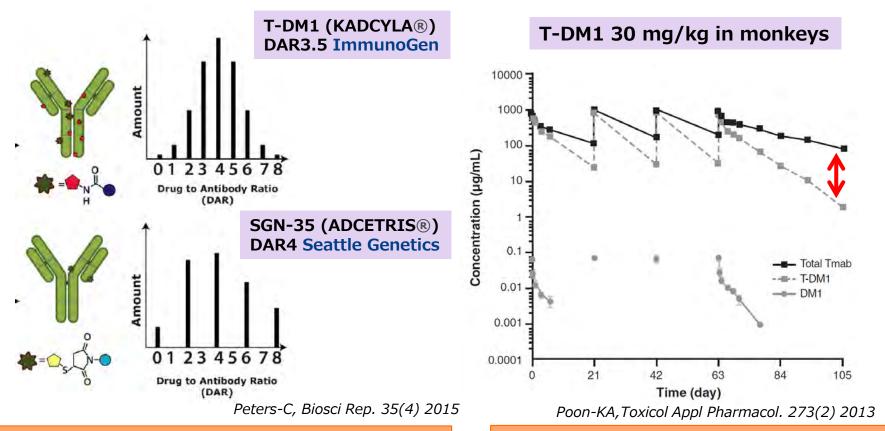
- Tumor selective and high expression 1. antigens
- 2. Internalization to target cell
- Minimized non-specific binding 3.

#### Attachment site:

- 1. Typically cysteine or lysine residue on antibody
- Control of drug to antibody ratio
   Control of drug distribution

#### Linker:

- 1. Cleavable and non-cleavable
- 2. Release active substance in target cell

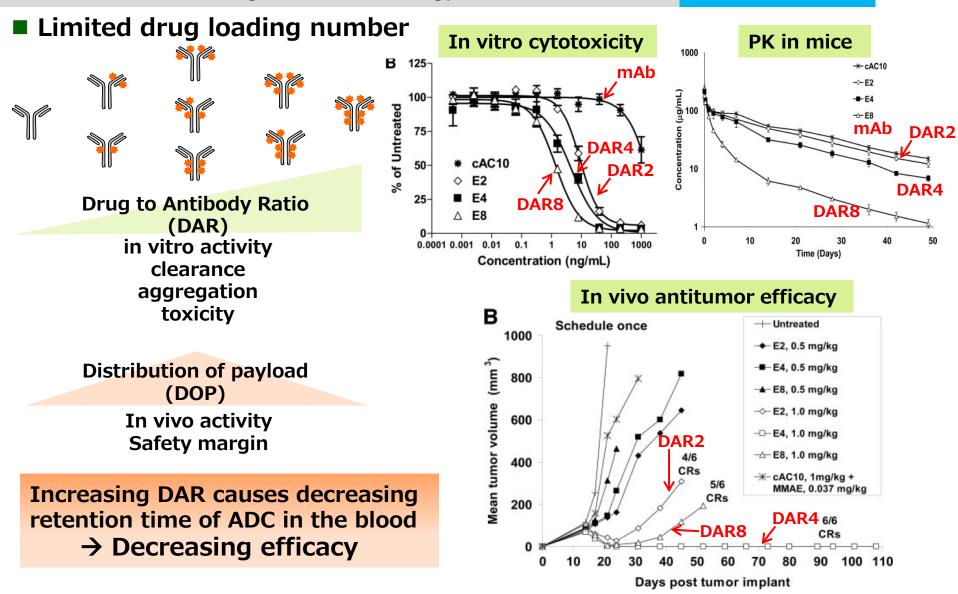

Drug:

- 1. Should have potent efficacy
- 2. Available linker binding site

## ADC Issues of existing ADC technology



#### Linker instability




A mixture of different DAR\* ADCs →Contains unfavorable DAR\* ADCs DAR\*; Drug to Antibody Ratio Free payload release in circulation →Free payload conc. ↑ Toxicity ↑ →ADC conc. ↓ Efficacy ↓



ADC

Issues of existing ADC technology







## Limited payload type

No further treatment for resistant/refractory tumors against existing ADCs

## Linker instability

- Toxicity derived from the increasing the blood concentration of free payloads
- Decreased efficacy by decreasing the concentration of ADC

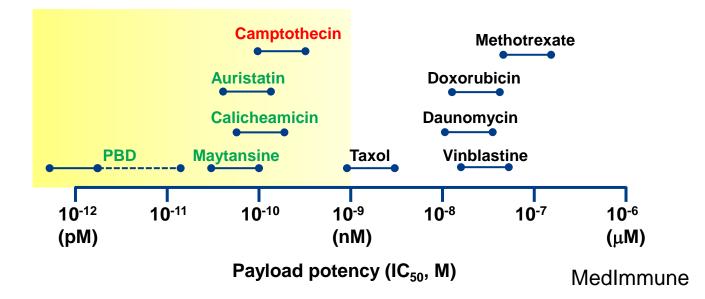
## Limited drug antibody ratio

Increasing DAR causes decreasing retention time of ADC in the blood
 Heterogenous drug load distribution



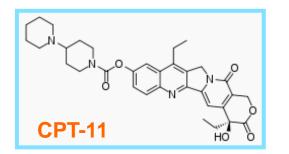
## Daiichi Sankyo ADC Contents




- Overview: trend of drug development, biologics and cancer treatment, about antibody drugs
- About antibody drug conjugate (ADC)
- ✓ Discovery of DS-8201a
- ✓ Characteristics and clinical results of DS-8201a
- ✓ Expansion of DXd-ADC technology

Development of Camptothecin derivatives as payload Payloads loaded on ADC and its cytotoxicity

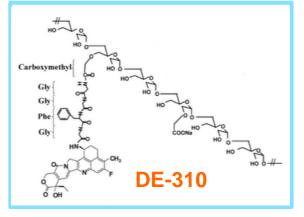



What drug properties are required for the payloads on ADC?

- > Potent activity (sub-nM level of  $GI_{50}$  for cytotoxicity)
- Elucidated structure activity relationship (SAR)
- Existence of functional groups conjugating with linker
- Enough supply for conducting research



Development of Camptothecin derivatives in Daiichi Sankyo






• DNA topoisomerase I inhibitor irinotecan CPT-11, a prodrug of SN-38, was approved for patients with refractory tumors in 1994.

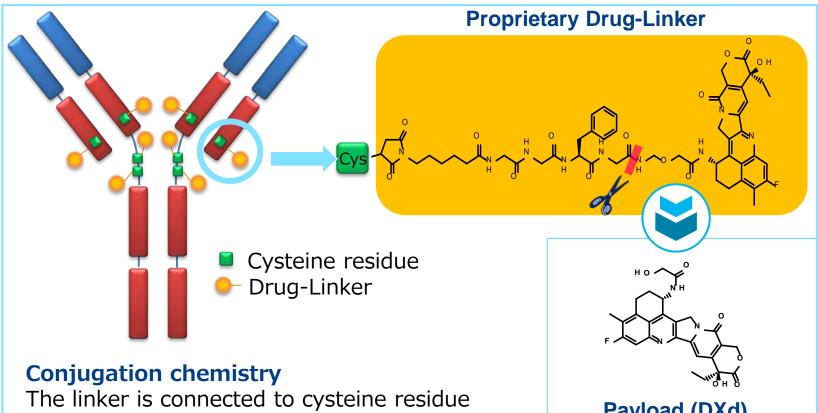



• About 10-fold more potent DX-8951f than SN-38 was developed and clinical study of pancreatic cancer was conducted, but clinical development was discontinued. (Ann N Y Acad Sci (2000) 922, 260-273)



 Macromolecule polymer conjugate DE-310 was synthesized with enzyme cleavable linker and DX-8951f and Enhanced Permeability and Retention (EPR) effect was observed in mouse. Clinical development was discontinued. (Clinical Cancer Research, (2005) 11, 703-711)

## Discovery of DS-8201a Research on the drug-linker for ADC



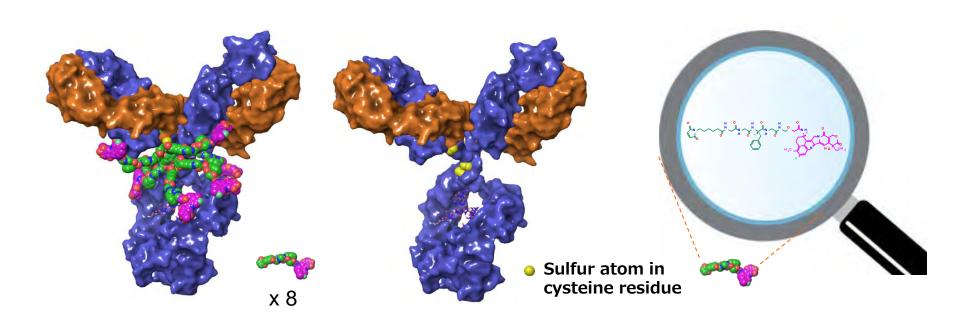



| Entry | X                                            | DAR | Aggregate (%) | KPL-4 IC <sub>50</sub> (nM) |
|-------|----------------------------------------------|-----|---------------|-----------------------------|
| 1     | None                                         | 3.4 | 26            | 0.33                        |
| 2     | -NH-CH <sub>2</sub> -(C=O)-                  | 3.2 | 3             | 0.39                        |
| 3     | -NH-(CH <sub>2</sub> ) <sub>2</sub> -(C=O)-  | 3.8 | 2             | 0.07                        |
| 4     | -NH-(CH <sub>2</sub> ) <sub>3</sub> -(C=O)-  | 2.6 | 3             | 0.05                        |
| 5     | -NH-(CH <sub>2</sub> ) <sub>4</sub> -(C=O)-  | 3.4 | 4             | 0.07                        |
| 6     | -NH-(CH <sub>2</sub> ) <sub>5</sub> -(C=O)-  | 2.5 | 20            | 0.11                        |
| 7     | -NH-CH <sub>2</sub> OCH <sub>2</sub> -C(=O)- | 7.7 | 0.6           | 0.19                        |

## Establishment of smart chemo ADC technology Structure of DS-8201a






of the antibody

#### Payload (DXd) DX-8951 derivative

- 1. Novel payload
- 2. High potency
- 3. Bystander effect
- 5. Stable linker-payload
- 6. Tumor selective cleavable-linker
- 7. High DAR and homogeneity
- 4. High clearance of the payload

## DS-8201a Three dimensional structure of DS-8201a





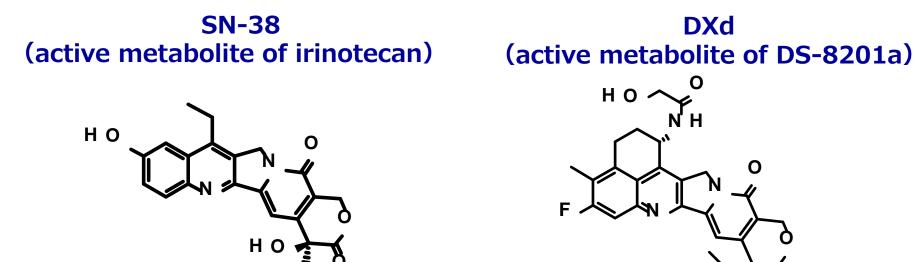
| ADC              | Antibody (IgG)  | Drug-Linker   |  |
|------------------|-----------------|---------------|--|
| MW*: ca. 156,000 | MW: ca. 148,000 | MW: ca. 1,000 |  |

\* : molecular weight

## DS-8201a Comparison with previous generation ADC



#### Prior generation ADCs


- Limited drug-toantibody ratio (3.5-4)
- Linker instability and lack of tumoral specificity result in toxicity
- Payload related to typical chemotherapy previously received

## Our smart chemo ADC technology

- Doubled drug-to-antibody ratio (7-8)
- High linker stability and more cancercell selective linker release
- Novel differentiated payload
  - Potent DNA topoisomerase I inhibitor
  - Effective in heterogeneous tumor microenvironment (bystander effect)
  - Very short systemic half-life

DS-8201a DXd payload





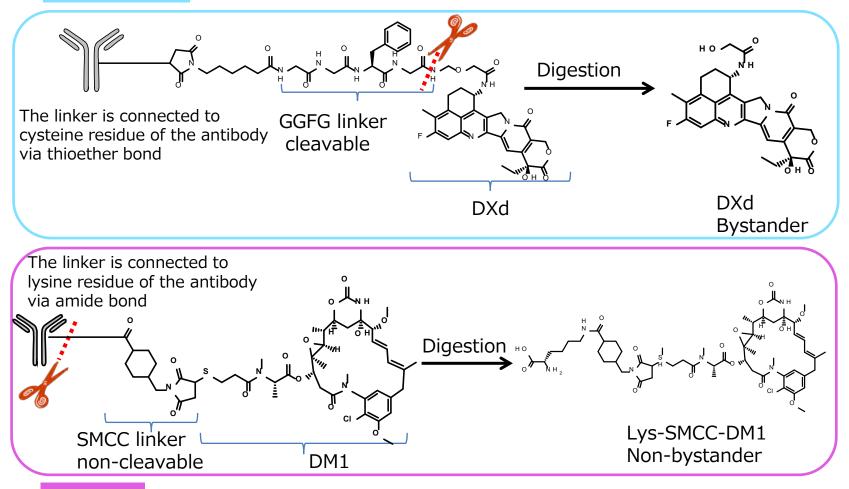
**Τορο Ι ΙC**<sub>50</sub>: 0.31 μM

DXd

ΗÖ

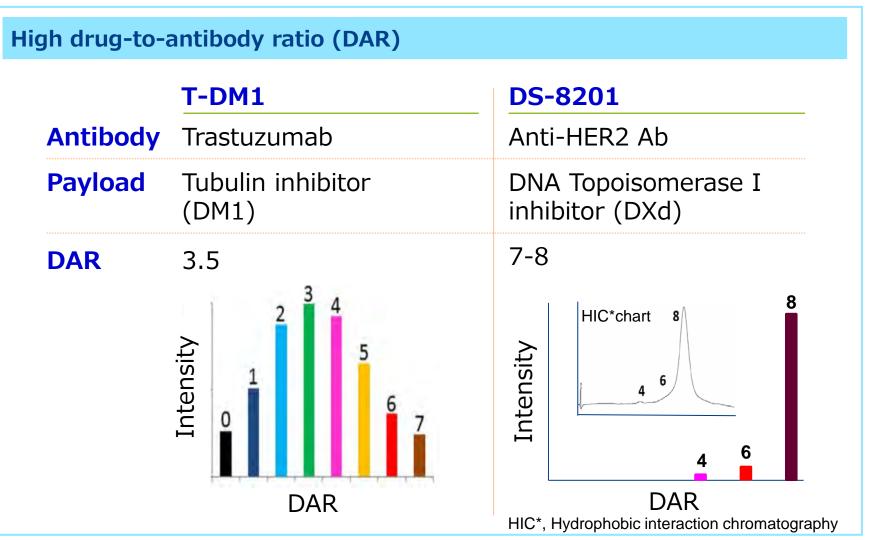
- **Τορο Ι ΙC**<sub>50</sub>: 2.78 μM
  - ✓ Novel topoisomerase I inhibitor
  - ✓ DXd has more potent effect than irinotecan

## Daiichi Sankyo ADC Contents




- Overview: trend of drug development, biologics and cancer treatment, about antibody drugs
- About antibody drug conjugate (ADC)
- ✓ Discovery of DS-8201a
- ✓ Characteristics and clinical results of DS-8201a
- Expansion of DXd-ADC technology

## DS-8201a Structures of DS-8201a and T-DM1 (Kadcyla®)



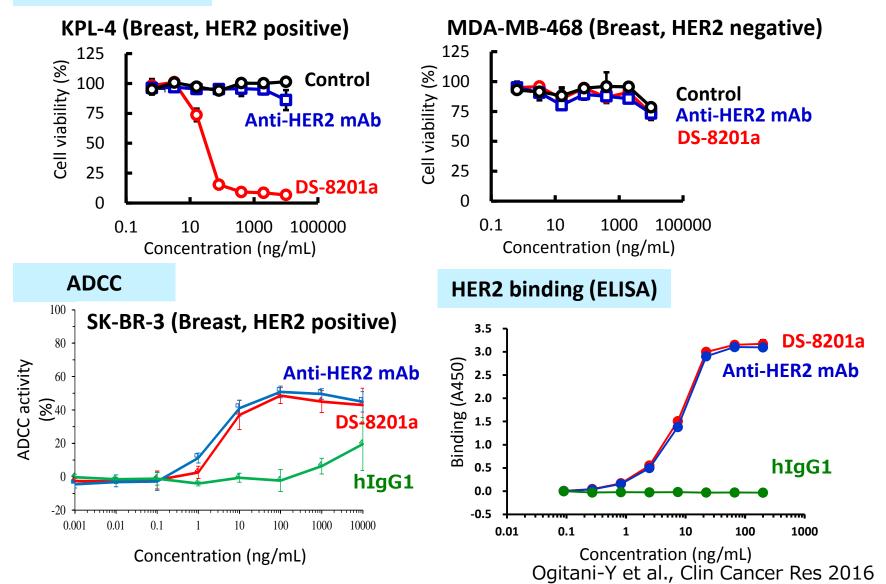

DS-8201a



T-DM1



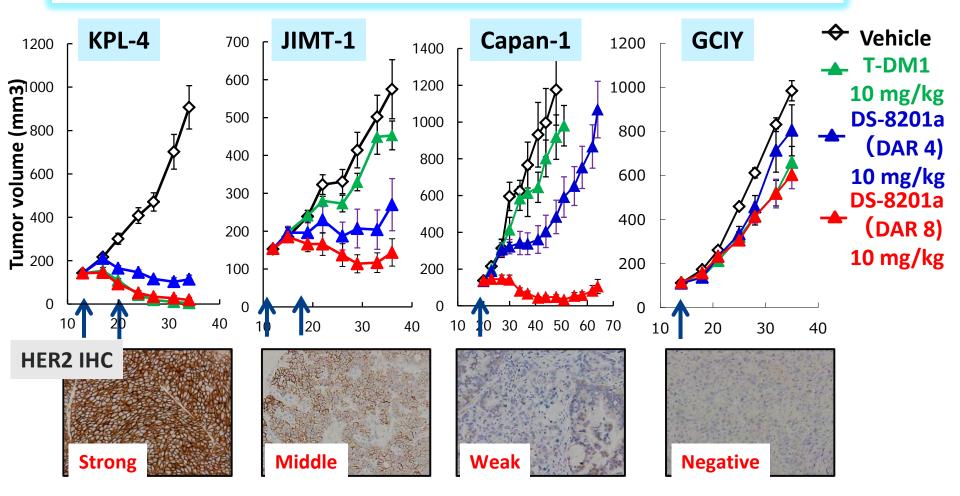



Source: Ogitani-Y et al., Clin. Cancer Res. 2016; 22:5097-5108, Marcoux-J et al., Protein Science 2015; 24:1210-1223

## DS-8201a in vitro assay



34

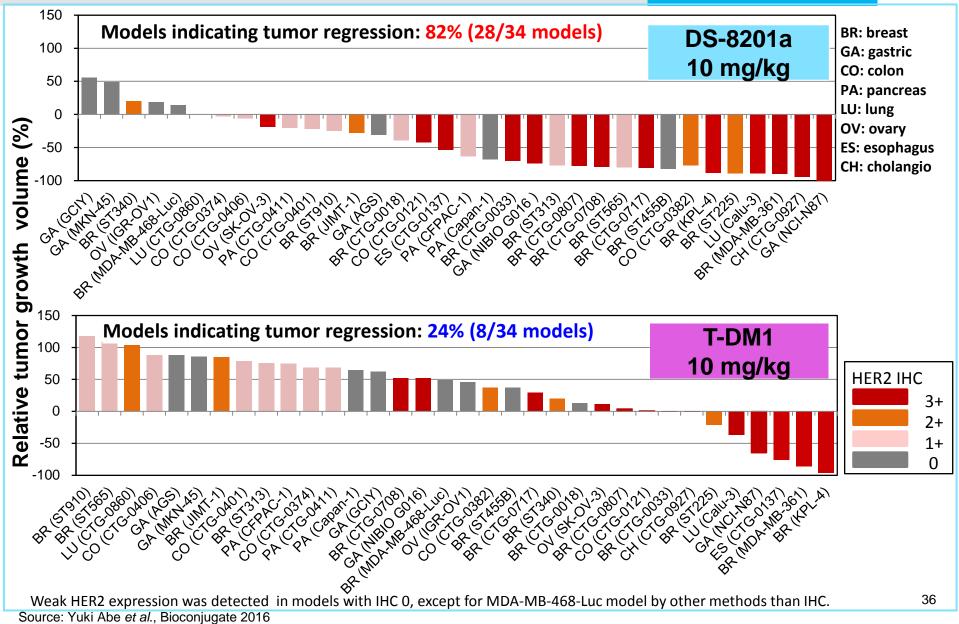

#### **Cell killing assay**

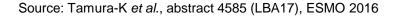


## DS-8201a DS-8201a vs T-DM1 antitumor effect (non-clinical study)



T-DM1 and DS-8201a (DAR8) showed efficacy against HER2 high models.
 DS-8201a (DAR8) showed more potent efficacy against HER2 low models.





Ogitani-Y et al., Clin Cancer Res 2016

## DS-8201a



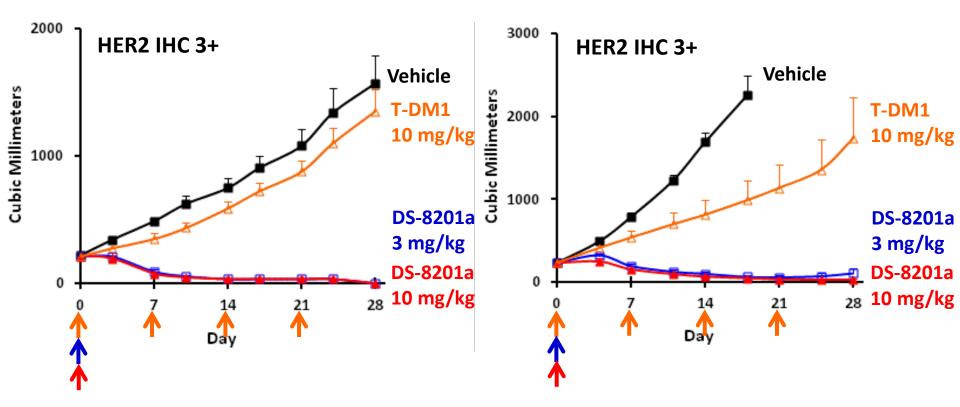
### DS-8201a vs T-DM1 antitumor effect (non-clinical study)





DS-8201a

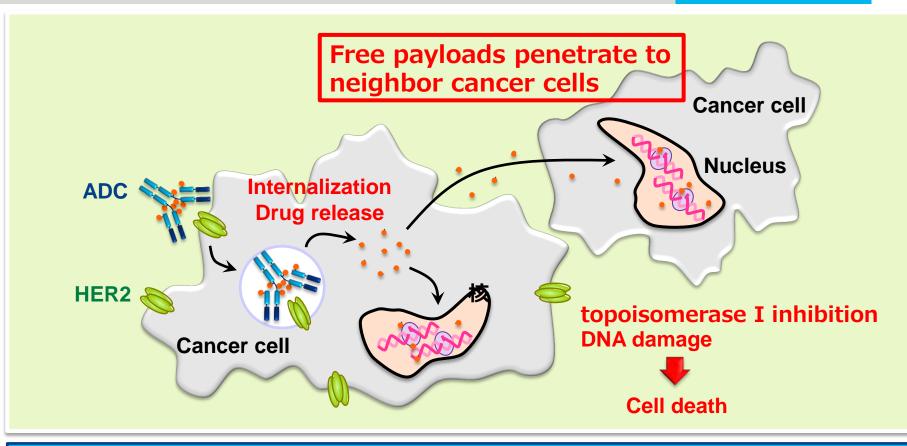
**ST1616B/TDR** 


(from 13-mo T-DM1 treated Pt)

37

## DS-8201a vs T-DM1 antitumor effect (non-clinical study)

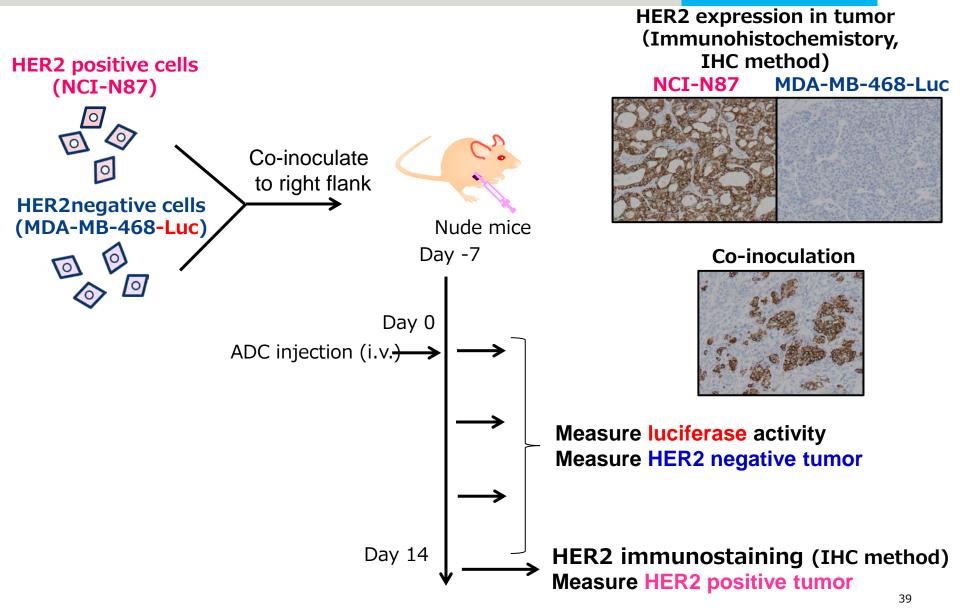
PDX, Patient Derived Xenograft


#### ST1360B/TDR (from 3-mo T-DM1 treated Pt)





## DS-8201a Bystander effect by DXd payload






Bystander effect of ADC; An effect that released payloads in cancer cells penetrate the cell membrane and show activity on neighboring dividing cancer cells. Through this effect, activity against target antigen-negative cancer cells, in other words, activity against tumors with antigen heterogeneity is observed.

## DS-8201a Bystander effect in vivo experiment 1



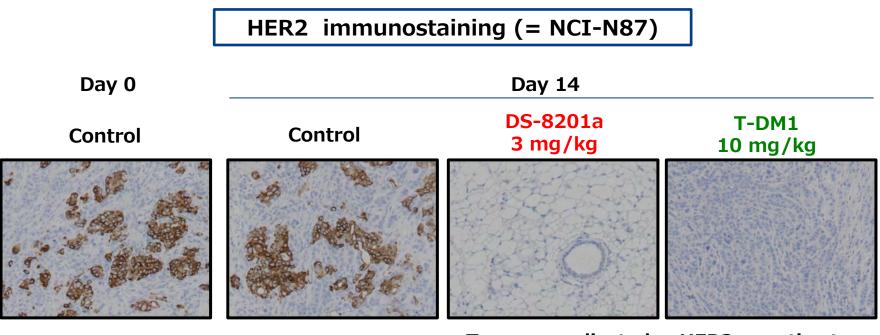


#### Luciferase imaging (= MDA-MB-468-Luc) Luciferase activity 1.E+10 0日目 14日目 Average radiance (p/s/cm<sup>2</sup>/sr) Γ-DΜ control 1.E+09 Vehicle control 1.E+08 1.E+07 **DS-8201**a 3 mg/kg 1.E+06 DS-8201a 1.E+05 10 5 15 **T-DM1** Time after treatment **10 mg/kg**

DS-8201a

Bystander effect in vivo experiment 1

Ogitani-Y et al., Clin Cancer Res 2016; 22:5097


i.v.

DS-8201a treatment clearly decreased luciferase signal
 → Luc-gene transfected MDA-MB-468-Luc (HER2-negative) cells was eliminated

**cancer**enterpris

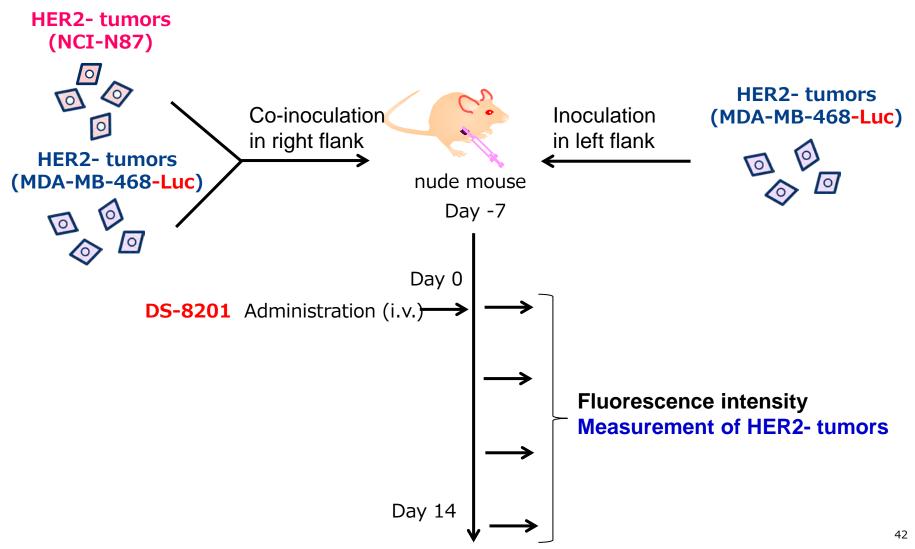
DS-8201a





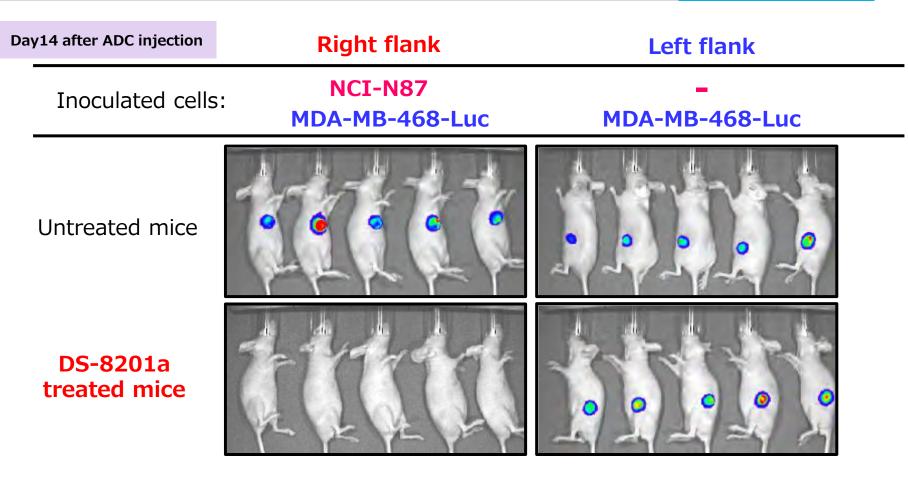
HER2 positive tumors and HER2 negative tumor cells

Tumors eradicated HER2 negative tumor cells alive


Ogitani-Y et al., Clin Cancer Res 2016; 22:5097

HER2 positive tumor cells were almost eradicated after given T-DM1 and HER2 negative tumor cell is alive.
 Both HER2 positive and HER2 negative cells eradicated after given DS-8201a.
 →Under the co-inoculated condition, DS-8201a showed antitumor activity against not only HER2 positive tumors, but also HER2 negative tumors.

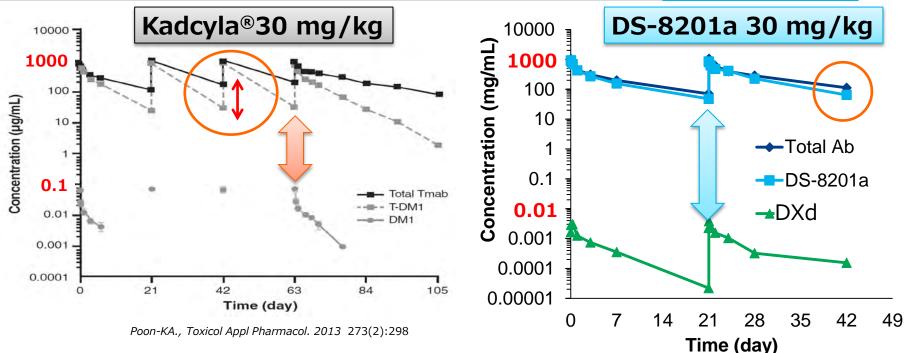
## DS-8201a Bystander effect in vivo experiment 2




Effect on HER2 negative tumor cells distant from HER2 positive tumor cells was evaluated



## DS-8201a Bystander effect in vivo experiment 2





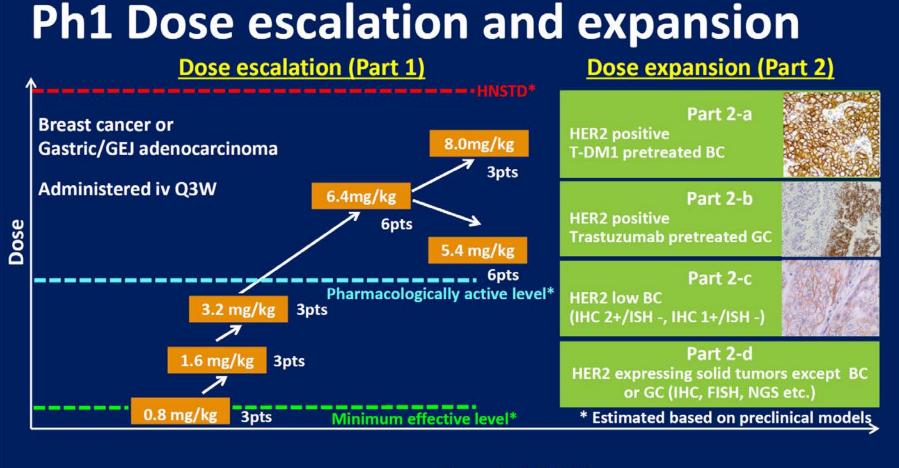

Ogitani-Y et al., Clin Cancer Res 2016; 22:5097

By giving DS-8201a, MDA-MB-468-Luc cell adjacent to NCI-N87 cell eradicated, but no effect to distant MDA MB-468-Luc cell.
 >Bystander effect is observed only in the case of cancer cells adjacent to HER2 positive cell.

## DS-8201a High linker stability and low free payload, preclinical



|              | Kadcyla®                                                                                                     | DS-8201a                                                               |
|--------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Dose         | 0, 3, 10, 30 mg/kg                                                                                           | 0, 10, 30, 78.8 mg/kg                                                  |
| Regimen      | i.v., q3w×4                                                                                                  | i.v., q3W×3                                                            |
| Target Organ | <ul> <li>≥3: liver, lymph, skin, lung</li> <li>≥10: kidney, thrombocytopenia, axonal degeneration</li> </ul> | ≥10: intestine, ≥30: lung, skin, testicle<br>78.8: bone marrow, kidney |
| HNSTD*       | 10 mg/kg                                                                                                     | 30 mg/kg                                                               |


#### \* HNSTD: highest non-severely toxic dose

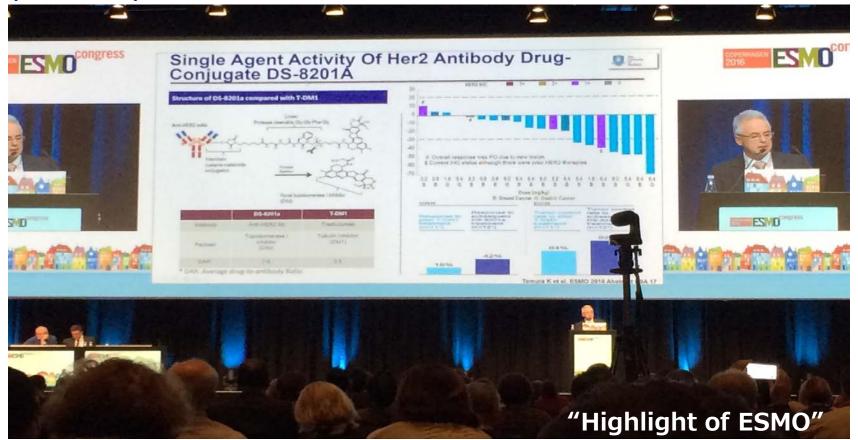
Tox profile cited in Kadcyla [pharmacology review(s)]. South San Francisco, CA: Genentech, Inc., 2013.

Daiichi-Sankvo

cancerenterprise

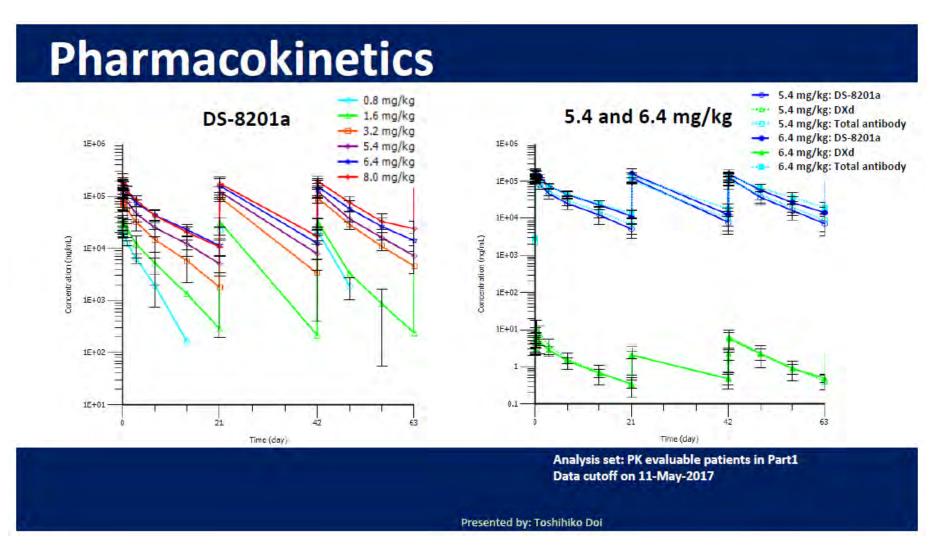
## DS-8201a Ph1 study design




Presented by: Toshihiko Doi



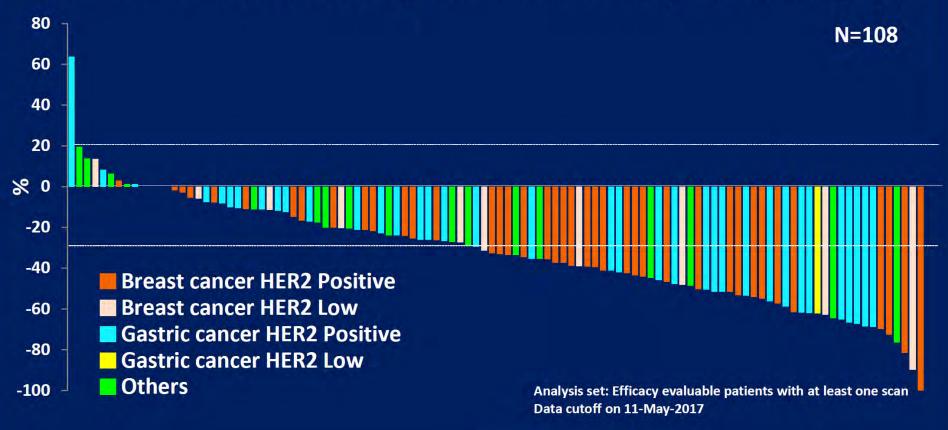
### DS-8201a Fast track designation




- Presented data in Late breaking session of European Society for Medical Oncology (ESMO) (Oct 2016)
- Fast track designation by FDA for HER2 positive metastatic breast cancer (Nov 2016)



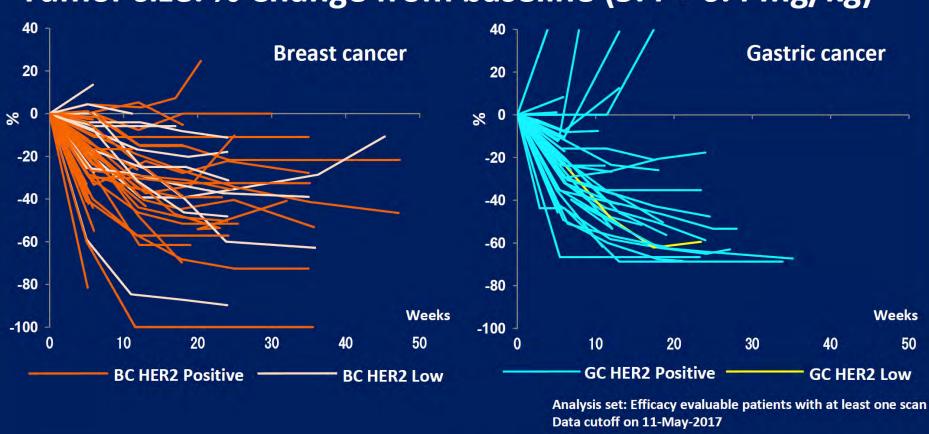
DS-8201a Ph1 PK data






## DS-8201a Ph1 Efficacy data (5.4+6.4mg/kg)




## Tumor size: best % change from baseline (5.4+6.4 mg/kg)



Presented by: Toshihiko Doi

## DS-8201a Ph1 Efficacy data (5.4+6.4mg/kg)





#### Tumor size: % Change from baseline (5.4 + 6.4 mg/kg)

Presented by: Toshihiko Doi



# Confirmed overall response rate (5.4+6.4 mg/kg)

|                           | ORR n (%)    | DCR n (%)     |  |
|---------------------------|--------------|---------------|--|
| Total                     | 39/97 (40.2) | 89/97 (91.8)  |  |
| Breast Cancer             | 19/45 (42.2) | 44/45 (97.8)  |  |
| BC Prior T-DM1            | 16/35 (45.7) | 35/35 (100.0) |  |
| BC Prior T-DM1+Pertuzumab | 14/30 (46.7) | 30/30 (100.0) |  |
| Gastric Cancer            | 16/36 (44.4) | 32/36 (88.9)  |  |
| GC Prior CPT-11           | 8/18 (44.4)  | 17/18 (94.4)  |  |

Analysis set: Efficacy evaluable patients for confirmed overall response Data cutoff on 11-May-2017

Presented by: Toshihiko Doi



# TEAE, any grade, >20% (No DLT observed)

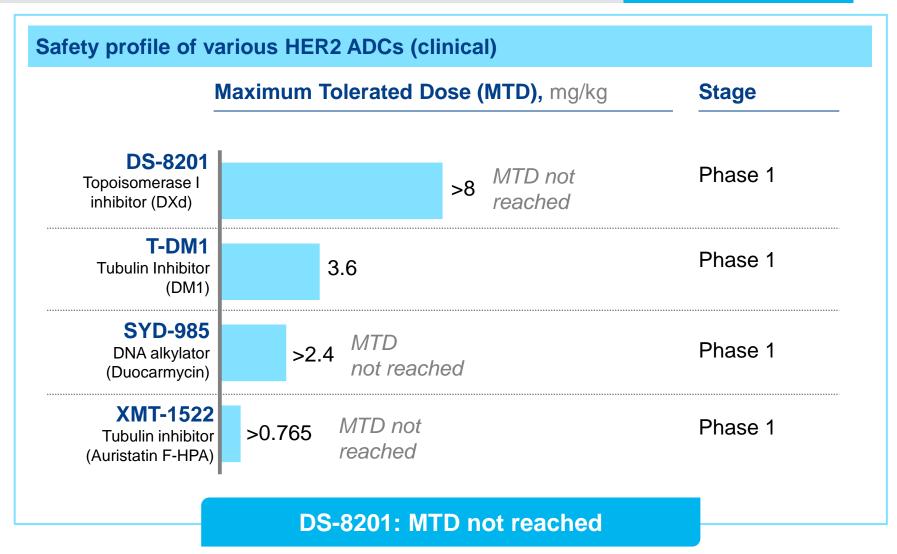
| Preferred Term (N=133)           | Grade 1 (%) | Grade 2 (%) | Grade 3 (%) | Grade 4 (%) | All (%) |  |
|----------------------------------|-------------|-------------|-------------|-------------|---------|--|
| Hematologic                      |             |             |             |             |         |  |
| Platelet count decreased         | 13.5        | 9.0         | 8.3         | 3.8         | 34.6    |  |
| Anaemia                          | 3.0         | 12.0        | 14.3        | 1.5         | 30.8    |  |
| Neutrophil count decreased       | 0.8         | 9.8         | 12.0        | 3.0         | 25.6    |  |
| White blood cell count decreased | 0.8         | 12.8        | 9.0         | 1.5         | 24.1    |  |
| Gastrointestinal disorders       |             |             |             |             |         |  |
| Nausea                           | 51.9        | 13.5        | 1.5         | 0.0         | 66.9    |  |
| Decreased appetite               | 33.8        | 20.3        | 3.8         | 0.0         | 57.9    |  |
| Vomiting                         | 31.6        | 3.8         | 1.5         | 0.0         | 36.8    |  |
| Diarrhoea                        | 19.5        | 5.3         | 0.8         | 0.0         | 25.6    |  |
| Constipation                     | 18.8        | 3.0         | 0.0         | 0.0         | 21.8    |  |
| Others                           |             |             |             |             |         |  |
| Alopecia                         | 21.1        | 6.0         | 0.0         | 0.0         | 27.1    |  |
| Malaise                          | 18.0        | 4.5         | 0.8         | 0.0         | 24.1    |  |

Any Grade 3/4 – 43.6%

Analysis set: Safety evaluable patients who received at least one dose of DS-8201a Data cutoff on 11-May-2017

Presented by: Toshihiko Doi

#### DS-8201a Comparison with other HER2 ADCs




|                                         | T-DM1          | DS-8201a         | SYD-985          | XMT-1522         | MEDI4276            |
|-----------------------------------------|----------------|------------------|------------------|------------------|---------------------|
| Company                                 | Genentech      | Daiichi Sankyo   | Synthon          | Mersana          | Medimmune           |
| Payload                                 | DM1            | DXd              | Duocarmicine     | AF-HPA           | Tubulysin           |
| MOA                                     | Tubulin        | Topoisomerase I  | DNA alkylator    | Tubulin          | Tubulin             |
| Linker                                  | Undissociated  | Dissociated      | Dissociated      | Dissociated      | Dissociated         |
| Attachment site                         | Lysine residue | Cysteine residue | Cysteine residue | Cysteine residue | Engineered cysteine |
| Drug-to-<br>antibody ratio<br>(average) | 3.5            | 7-8              | 2                | 12-15            | 4                   |
| Human Dose<br>(Ph1)                     | 3.6mg/kg*      | 6.4mg/kg         | 1.8mg/kg**       | 0.765mg/kg***    | NA                  |

\*Yamamoto-H, Jpn J Clin Oncol. 2015 Jan;45(1):12-8 \*\*Herpen-CML, ESMO poster 333 \*\*\*Buris-HA, Mersana homepage TPS2606

## DS-8201a MTD comparison with other HER2 ADC projects



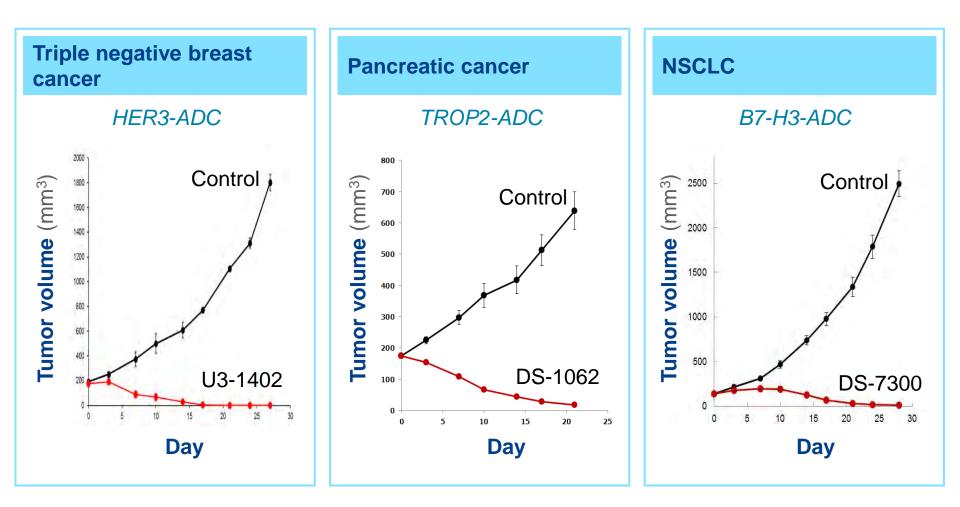


Source: Krop-I et. al., J. Clin. Oncol. 2010; 28:2698-2704, Bergstrom-DA et al., AACR LBA-231 2015, Herpen-CML et al., ESMO Poster 333 2015, Tamura-K et al. abstract 4585 (LBA17), ESMO 2016, Mersana homepage

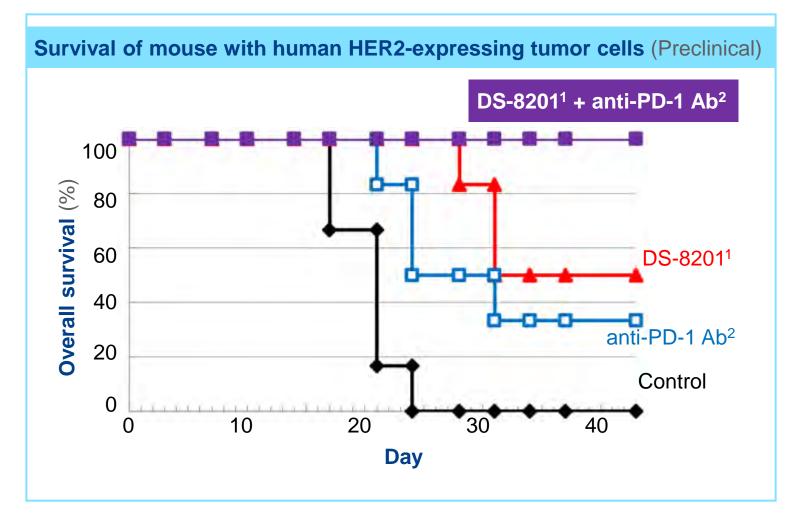
## Daiichi Sankyo ADC Contents



- Overview: trend of drug development, biologics and cancer treatment, about antibody drugs
- About antibody drug conjugate (ADC)
- ✓ Discovery of DS-8201a
- ✓ Characteristics and clinical results of DS-8201a
- ✓ Expansion of DXd-ADC technology


#### **DXd-ADC:** Our pipeline

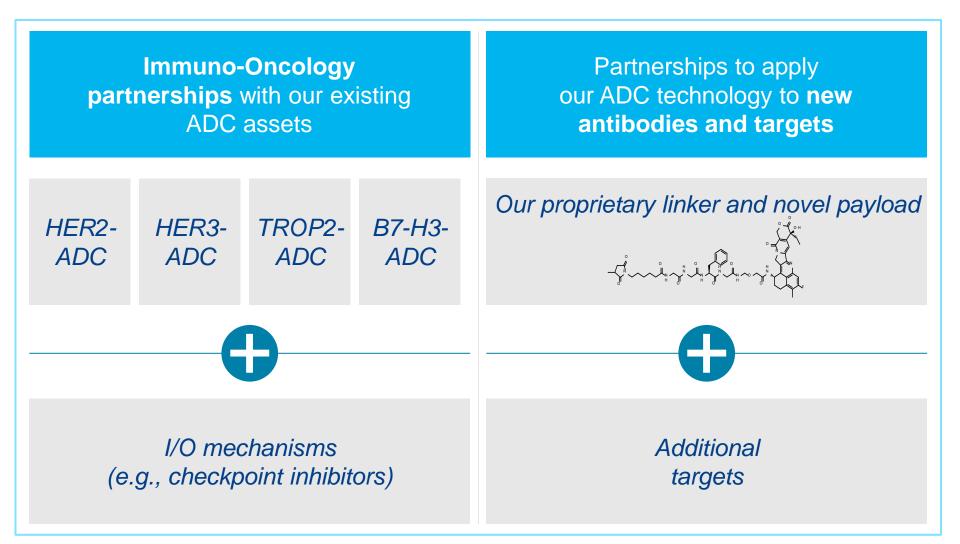



|                    |                       |           |             |        | Clinical stage |
|--------------------|-----------------------|-----------|-------------|--------|----------------|
| Antibody<br>target | Potential indications | Discovery | Preclinical | Phase1 |                |
| HER2<br>(DS-8201)  | Breast,<br>Gastric    |           |             |        |                |
| HER3<br>(U3-1402)  | ,                     |           |             |        |                |
| TROP2<br>(DS-1062) | Solid<br>Tumors       |           |             |        |                |
| B7-H3<br>(DS-7300) | Solid<br>Tumors       |           |             |        |                |
| Project 5          | Solid<br>Tumors       |           |             |        |                |
| Project 6          | Solid<br>Tumors       |           |             |        |                |

Note: Compounds under discussion are investigational agents and are not approved by the FDA or any other regulatory agency worldwide as a treatment for indications under investigation. Efficacy and safety have not been established in areas under investigation. There are no guarantee that these compounds will become commercially available in indications under investigation.






#### DS-8201–I/O: Potential I/O benefit, Preclinical data





#### **DXd-ADC:** Partnerships





# Summary



- Developed new ADC technology with the derivative of DX-8951 which is a novel potent DNA topoisomerase I inhibitor.
- Our smart chemo ADC technology has seven unique features such as novel payload, high potency, bystander effect, high clearance of the payload, stable linker, tumor selective cleavage and high DAR.
- DS-8201a with promising antitumor activity and favorable safety profile in patients was granted First Track Designation treatment for HER2 positive metastasis breast cancer by FDA.
- Actively looking for partnerships with our ADC technology.

# References



•Bioorg. Med. Chem. Lett 2016 26 (20):5069-5072. Wide application of a novel topoisomerase I inhibitor-based drug conjugation technology. Ogitani Y, Abe Y, Iguchi T, Yamaguchi J, Terauchi T, Kitamura M, Goto K, Goto M, Oitate M, Yukinaga H, Yabe Y, Nakada T, Masuda T, Morita K, Agatsuma T

#### •Bioorg. Med. Chem. Lett 2016 26 (6):1542-1545.

Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K, Miyazaki H, Kasuya Y, Ogitani Y, Yamaguchi J, Abe Y, Honda T

#### ·Clin Cancer Res. 2016 22(20):5097-5108.

**DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibior, Demonstrates a promising antitumor efficacy with differentiation from T-DM1.** Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T.

#### •Cancer Sci. 2016 (7):1039-1046.

Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity.

Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T.



# Q&A