
Photo Navigator

Chi-Chang Hsieh1, Wen-Huang Cheng2, Chia-Hu Chang2, Yung-Yu Chuang1, Ja-Ling Wu2

1Department of Computer Science and Information Engineering
2Graduate Institute of Networking and Multimedia

National Taiwan University
Taipei 10617, Taiwan, R.O.C.

{nonrat, wisley, chchang, cyy, wjl}@cmlab.csie.ntu.edu.tw
project website: http://www.cmlab.csie.ntu.edu.tw/navigator

ABSTRACT
Nowadays, travel has become a popular activity for people
to relax their body and mind. Taking photos is then of-
ten an inevitable and frequent event during one’s trip for
recording the enjoyable experience. To help people to re-
live the wonderful travel experience they had recorded in
photos, this paper presents a system, Photo Navigator, for
enhancing the photo browsing experience by creating a new
browsing style with a realistic feel to users as being into the
scenes and taking a trip back in time to revisit the place.
The proposed system is characterized by two main features.
First, it better reveals the spatial relations among photos
and offers a strong sense of space by taking users to fly into
the scenes. Second, it is fully automatic and makes plausi-
ble for novice users to utilize the 3D technologies that are
traditionally complex to manipulate. The proposed system
is compared with two other photo browsing tools, ACDSee’s
photo slideshow and Microsoft’s PhotoStory. User studies
show that people would comparatively favor the browsing
style we offer and appreciate the ease to create such a style.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Animations;
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—representations.

General Terms
Algorithms, Design, Experimentation.

Keywords
Photo browsing, Fly-through, Sense of space, Automation,
Image-based modeling.

1. INTRODUCTION
After days of hard work, travel has become a popular

activity for people to relax their body and mind. During

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 26–31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-303-7/08/10 ...$5.00.

their trips, people like to take pictures for anything that
they find interested, such as a splendid view from the Great
Wall, a busy street scene of the New York city, or the quiet
scenery in an European village. It is common that hun-
dreds or thousands of photographs are taken for a single
trip alone. Although taking a trip is fun and memorable,
the process required to organize the large number of travel
photos (e.g. tagging metadata) is often tedious and painful.
Sometimes, it is cumbersome even for the simple browsing
task. Photo slideshows or thumbnails generated using avail-
able tools, such as ACDSee [1] and Picasa [3], are popular
means for people to review their trips. However, their plain
styles of display tend to be dull. It is possible to create more
vivid and eye-catching presentations. However, it is less ac-
cessible to most users because it requires not only much time
and labor, but also skills, creativity and art sense. As a re-
sult, the creation of vivid presentations for travel photos is
largely privileges of professionals or expert users.

In this paper, we present Photo Navigator, a system for
enhancing the photo browsing experience by creating a re-
alistic feel to users as being personally into the scenes and
taking a trip back in time to revisit the place. By human
nature, people would like to relive the wonderful experiences
they had during their travels. To go beyond the traditional
browsing paradigms, we believe that people would enjoy the
experience of virtually walking through their photos in a re-
alistic sense of returning to the scenes. Our system produces
such an experience by creating an approximate 3D model
for each photo. These models are then connected to gener-
ate a sequence of views according to a well-routed browsing
path. Without the need for user intervention, the procedure
is fully automatic and only requires users to specify a set
of photos as the input. A key feature of our system is its
capability for better revealing the spatial relations between
photos. For example, six pictures in Figure 1 were taken at
a memorial. It is hard to tell their spatial relations at first
glance by simply browsing the photos. For those who have
never been there, it is even doubtful if these photos were
taken at the same scene. Our system, by contrast, offers a
strong sense of space by taking users to fly into and through
photographs taken at the same scene.

For our applications, two neighboring photos (i.e. the two
are taken in physical proximity but not necessarily closely in
time) are assumed to share certain sight in common. For ex-
ample, a landmark (partial or whole) is photographed from
different positions or angles. It seems a strong assumption
but actually quite acceptable in practice. Travelers often
walk leisurely on a pre-scheduled traveling route and the

: feature point

: camera path

: feature matching

: cuboid model

A

B

C
D

F

E

A

B

C

D

E

F

Figure 1: The basic idea of the Photo Navigator system. Given a set of unordered photographs (A–F), the
system automatically arranges these photos by their spatial relationship. For each photograph, a cuboid
model and a couple of camera poses are estimated automatically. With these, the system generates a “fly-
through” path for each photograph and smooth transitions between photographs. Thus, browsing photos
with the slideshow generated by the system offers a more enjoyable “being there” experience.

photos they took naturally tend to exhibit high spatial cor-
relations. On the other hand, once users are aware of the
potential to generate interesting fly-through slideshows, they
may take pictures this way so that they can later relive their
wonderful trip experiences. An analogy is taking panoramas.
Before panorama stitching tools exist, people won’t take pic-
tures in a panoramic way. However, once they are aware of
such tools, it becomes popular to take pictures this way if
they think it is worth it. In addition to the above motiva-
tion, the main ideas and general design considerations of our
system are also motivated by the following observations:

• Travel photos are personal data and not necessarily re-
lating to famous tourist spots. The pleasure of travel,
for example, sometimes comes from the discovery of
special places where few other travelers reached, such
as a scenic trail in deep mountains. Thus, it is hard
to find relevant photos of such a scene from external
sources, e.g. travel reviews on personal blogs or me-
dia posted on social networking websites [13]. There-
fore, to create a personal photo browsing experience,
it is better to enhance the visual presentation with
the input photographs themselves rather than rely-
ing on other external relevant information or other
community-based multimedia services.

• Travel photos are rich in content and there are high
variations in the number of photos taken at different
physical locations. This may pose difficulty in the ef-
fective realization of advanced photo applications. For
example, modeling a travel site with a full 3D repre-
sentation is favorable since it offers the viewer a more
realistic sense of space [16]. However, if the available

photos for the site are in a small quantity, it is of-
ten not affordable to obtain accurate geometry for the
site. Furthermore, even if the number of photos is
large enough, the recovery is still often ill-posed since
the travelers tend to take pictures of the same site from
various angles and distances. Thus, a practical system
should only attempt to approximate such visual expe-
rience instead of the pursuit of reconstructing accurate
models.

• People would prefer browsing photos in 3D, even if the
constructed 3D models are not precise. An example is
the active research on the Tour into the Picture [10,
9]. However, previous work is mostly confined to a sin-
gle image and its extensions to a photo set need more
investigation. For example, making visually seamless
transitions between individual photos remains a tech-
nical issue [17]. In addition, enabling 3D navigating
effect is difficult because it lacks friendly user inter-
faces and could be complex when dealing with multi-
ple photos. Automation of the process would make the
creation of such effects more feasible for practical use.

• It may not be less convenient to browse travel photos in
an interactive navigation style (e.g. Photo Tourism [17])
that allows users to freely choose every next step to
move in a 3D scene. For example, people are used to
share their pleasure of travel by showing the photos
to friends. If the viewers have never been to the same
places, they would soon feel bored for not knowing
where are worthy of seeing and just aimlessly walking
around in the 3D scenes. In such a case, they would
rather passively watch a dynamic photo presentation
than actively participate in it.

The main contributions of our work are twofold. First, a
practical system is proposed and realized for enhancing the
enjoyment of browsing travel photos. It provides a new type
of personalized applications that make visually seamless 3D
presentations for user’s own photos, in support of the user’s
desire to relive wonderful travels by creating photo browsing
experiences of really walking around the scenes. Second, our
system effectively automates a series of complex interactive
tasks (e.g. 3D modeling of a scene) into a simple step (i.e.
specifying the input photos). It greatly reduces the user’s
burden. We believe such automation would facilitate the
widespread use of the cool 3D technologies that are not easily
accessible to näıve users.

Two systems are related to our system, Photo2Video [11,
12] (and Microsoft Photo Story) and Photo Tourism [17]
(and Microsoft’s Photosynth). The former generates a set
of 2D panning and zooming camera motions within a photo
to create slideshows. The later analyzes spatial relations
among photos to allow users to interactively switch between
spatially related photos. Compared to Photo2Video, Photo
Navigator’s 3D walk-through style reveals the sense of space
for the scene better than plain 2D camera motions. In addi-
tion, Photo Navigator exposes spatial relations among pho-
tos by navigating through them while Photo2Video does not
spatially relate photos at all. Compared to Photo Tourism,
Photo Navigator works with much fewer photos. Photo
Tourism requires a dense set of photos for a site and thus
often needs to seek for them from public photo collections.
As pointed out previously, travel photo browsing is a per-
sonal application and it is preferred to only use personal
photographs. In addition, Photo Tourism does not pay much
attention to navigation within a photo. Its 3D illusion is syn-
thesized merely by switching between densely related pho-
tos. On the other hand, to expose sense of space with much
fewer photos, we build approximate 3D models for naviga-
tion within single photos.

The rest of this paper is organized as follows. Section 2
describes an overview to the system, mainly consisting of 3D
scene model reconstruction and slideshow generation. De-
tails of the 3D scene model reconstruction are described in
Section 3, and the process of generating slideshow is de-
scribed in Section 4. Section 5 presents the experimental re-
sults and Section 6 shows evaluations and comparisons with
other tools. Finally, Section 7 concludes the paper with con-
clusions and future work.

2. SYSTEM OVERVIEW
Figure 1 sketches the basic idea for the proposed Photo

Navigator system. In this example, a user took six pho-
tographs (A–F) at different locations of Chiang Kai-shek
Memorial Hall in Taipei. Note that these photographs are
not necessarily taken temporally in that order. Photo Nav-
igator automatically analyzes spatial relationships between
photographs by feature matching (orange points and blue
dotted liens in Figure 1) and suggests a proper navigation
order (from A to F in this example) through this set of
photographs so that the navigation exhibits a more natu-
ral camera motion. Once the path is determined, a cuboid
model is constructed automatically for each photograph. A
cuboid is a rectangular prism consisting of five axis-aligned
rectangular faces. The photograph is then partitioned into
five areas, one for each rectangular face. Each area of photo-
graph is texture-mapped onto the corresponding face. With

Feature Matching

3D Scene Modeling

Camera Alignment

Photo Ordering

Speed Control

Beat Detection

Music SegmentationPost-processing

Video

MusicPhotographs

Composition

3D Scene Model

Reconstruction

(Section 3)

Beat Alignment

Slideshow Generation

(Section 4)

Figure 2: System flowchart of the proposed Photo
Navigator system.

the cuboid model, by setting a virtual camera, we can take
a picture of this textured mapped cuboid to obtain an im-
age approximating viewing the scene from the virtual view.
Here, a virtual camera is specified by its rotation and trans-
lation. After constructing the cuboid models, Photo Navi-
gator automatically determines a smooth camera path (the
green path in Figure 1) to let us navigate from photograph
A to photograph B and so forth until we reach the final pho-
tograph F. The system then takes a series of pictures with
virtual camera settings along the determined path to syn-
thesize a navigation video for the input photo set. Music
is accompanied to complete the slideshow. Note that the
system is essentially automatic. However, optionally, users
can manually cut out foreground objects, such as the girl in
Photo A of Figure 1, to even further improve the slideshow.

Technically, as illustrated in Figure 2, the proposed Photo
Navigator system consists of a set of processes for 3D scene
model reconstruction and slideshow generation. The core
technical module of Photo Navigator is its 3D scene model
reconstruction procedure which consists of three main com-
ponents: feature matching, 3D scene modeling, and camera
alignment. Given two photographs, feature matching is first
used to identify the spatial relationship between them. A
cuboid model is automatically created by finding the four
boundaries of the back wall and a vanishing point. Then,
camera alignment estimates the initial and final camera poses
for the best photograph transition.

Given a collection of unordered photographs, the photo
ordering process automatically selects an ordered sequence
of photographs and generates a camera path for them. In
terms of music content, beat detection is performed to char-
acterize beats. Switches between photographs are aligned
with the nearest beat in the beat alignment process. In-
stead of using a constant touring speed, speed control is
performed to enhance the virtual walk-through of the pho-
tographs. According to the varying speed, frames of the
slideshow are then rendered along the determined path. Fur-
thermore, post-processing is applied to the rendered frames
for better visual quality. Finally, a video consisting of these
rendered frames and the segmented music is generated as
the slideshow for the input photographs.

3. 3D SCENE MODEL CONSTRUCTION
This section describes the core algorithm of Photo Navi-

gator, 3D scene model construction. Given a source image
I and a destination image J, an automatic procedure is pro-
posed to obtain the following:

• a cuboid model MI→J for the source image I,

• initial extrinsic parameters (rotation and translation)
[

R0

I→J|T
0

I→J

]

for the virtual camera to match I,

• final extrinsic camera parameters [RI→J|TI→J] so that
rendering of MI→J matches the destination image J.

More specifically, if the source image I is texture-mapped
onto the cuboid model MI→J, the image of the textured
model taken by a virtual camera with its location and ori-
entation specified by

[

R0

I→J|T
0

I→J

]

should resemble I and the
image of MI→J taken with [RI→J|TI→J] should resemble J,
i.e.

I ≈ Render(MI→J,
[

R0

I→J|T
0

I→J

]

)

J ≈ Render(MI→J, [RI→J|TI→J]),
(1)

where Render(M, [R|T]) is a function which returns the
rendering of a texture-mapped cuboid M for a given cam-
era orientation R and location T. Figure 3 illustrates the
flowchart for the proposed procedure which consists of three
main components: feature matching (Section 3.1), 3D scene
modeling (Section 3.2) and camera alignment (Section 3.3).

3.1 Feature matching
In order to acquire the spatial relationship between two

photographs, we first match features extracted from them.
The popular SIFT (Scale Invariant Feature Transform) [14]
feature is used to detect and describe local features. SIFT
is used because it is famous for its invariance to scale and
rotation, and its robustness to occlusion, illumination vari-
ations, noise and minor variances in viewpoints. However,
even with robust SIFT features, for our application, it is
still possible to have a fair number of false feature matches.
This is because the photos we used were often taken from
very different viewpoints. To reduce the adverse effect of
falsely matched features, we estimate the fundamental ma-
trix F between I and J. The fundamental matrix imposes
the constraint that correctly matched features x and x′ of
two images should satisfy the relation x′TFx = 0. We can
use this constraint to remove false feature matches. We use
the normalized 8-point algorithm and RANSAC to compute
F [8] and decide inliers as correctly matched features de-
noted as (xI

i,x
J

i). The whole procedure for feature matching
is described in Algorithm 1. On the top of Figure 3, the cyan
lines represent all matches without imposing the fundamen-
tal matrix constraint. The blue lines shows correct feature
matches using Algorithm 1.

3.2 3D scene modeling
The next step is building a 3D scene model MI→J for the

source image I. Our approach is based on the “tour into
picture” paper [10, 4] in which a cuboid is used as the scene
model. Figure 4 shows the configuration of our cuboid model
consisting of five rectangular faces: floor, ceiling, rear wall,
and two side walls. Figure 5 shows the partition of the source
image corresponding to the cuboid model. In the original
tour into picture paper [10], users need to manually specify

SIFT matching

F correction

left-right bounding

sky-ground

detection

top-bottom

bounding

multi-scale VP

searching

model building

camera alignment

Feature Matching

3D Scene Modeling

source destination

1 2

7 8

3

4

5 6

9 10

11

12

1 2

7 8

3

4

5 6

9 10

11

12

1 2

7 8

3

4

5 6

9 10

11

12

Figure 3: 3D scene model reconstruction.

Algorithm 1 (xI

i,x
J

i)=FeatureMatching(I,J). Given two
images I and J, find a set of correct feature matches (xI

i, x
J

i).

1: detect and match SIFT features of I and J
2: repeat
3: randomly select 8 matched pairs
4: estimate F′ using the selected pairs
5: count the number of inliers
6: until it has been performed N times
7: select the configuration with most inliers
8: compute F using all inliers

9: return all (xI

i,x
J

i) satisfying xI

i

T

FxJ

i = 0

five points for building the model. These points are the four
corners of the rear wall (vertices 1, 2, 7, 8) and the vanish-
ing point V of the scene, as shown in Figure 5. Assuming
the focal length is set to 1, once those 2D points are speci-
fied, the corresponding 3D coordinates of the twelve points
(vertices 1 ∼ 12 in Figure 4) can be directly determined [4].
Thus, once those five points are specified, one can uniquely
determine the cuboid model MI→J. In addition, since the
focal length is assumed to be 1, the projection matrix Π and
the extrinsic camera parameters

[

R0

I→J|T
0

I→J

]

can also be
determined so that the projection of MI→J matches I. In
order to make this process automatic, we devise methods to
determine those five points from image content.

To determine those five points, we need to determine the
vanishing point and the positions for left, right, top, and bot-
tom boundaries of the rear wall. We first find the leftmost
and the rightmost features among xI

i and use them respec-
tively as the left and right boundaries of the rear wall. To

1 2

7 8

3

4

5 6

9 10

11

12

Figure 4: The 3D cuboid model. It is specified by
five rectangular faces and twelve vertices. The red
pyramid represents a virtual camera.

7 8

1

V

2

3 4

5 6

9 10

11

12

Figure 5: The partition of an image for a cuboid
model. An image is partitioned into five areas, cor-
responding to the five faces of a cuboid model, rear
wall, right wall, left wall, ceiling and floor.

prevent constructing a bizarre model, we require that the
width of the rear wall must be larger than a quarter of the
image width. If the estimated rear wall width is too small,
we use the mean position of all matched feature points as the
middle of the rear wall and set the left and right boundaries
of the rear wall so that its width equals the minimal width.
Magenta points in Figure 3 are feature points and the two
vertical red lines represent the left and right boundaries.

Next, we determine the top and bottom of the rear wall
by detecting sky and ground portion of the image. We use
the method described in Hoiem et al.’s paper [9] to detect
sky area and ground area of the image I. The image is first
segmented by colors to obtain superpixels [7]. Superpixels
are then classified into “sky”, “vertical”, and “ground,” us-
ing pre-trained classifiers based on color, texture, location
and geometry features. In Figure 3, the green area is the
detected sky area and the blue one is the detected ground
area. We set the top of the rear wall as the top of the non-sky
area within left and right boundaries of the rear wall. The
reason is to prevent distortion caused by the ceiling. Simi-
larly, we assign the bottom of rear wall as the bottom of the
non-ground area within left and right boundaries. However,
when the road is a trapezoid or inaccurate due to people in
the image, the bottom might not be a good boundary. Thus,
when the distance between top and bottom of the detected
ground area is larger than 10% of the image height, we in-
stead set the top of detected ground area as the bottom of
the rear wall.

V

rear wall

search area

sky

boundary

ground

boundary

detected sky

detected ground (G)

ground from V (U)

Figure 6: Determination of the best vanishing point.

After determining four boundaries for the rear wall, the
next step is to find the vanishing point within the rear wall.
A less-carefully-placed vanishing point might cause terrible
distortion when walking through the model. Thus, we have
to define criterion for selecting the vanishing point to avoid
such distortion. For an assumed vanishing point V, we can
form two lines by connecting V to points 1 and 2 respectively
(Figure 5). We define U as the set of pixels under these
two lines and G as the set of pixels which belong to the
detected ground (Figure 6). We then calculate the area α
of the region U ∩ G − U ∩ G. We prefer a larger α since it
means a better match to the detected ground area. Notice
that U ∩ G is also considered because treating non-ground
area as ground causes terrible distortion during rendering.
Thus, we want to minimize this kind of misclassification as
well. On the other hand, misclassification of the area U∩G
often won’t cause serious distortion and it is thus ignored.
In addition, to avoid a bizarre vanishing point, we restrict
the search within a search area whose center is at the center
of the rear wall and whose size is 75% of the rear window,
as denoted as the magenta dashed line in Figure 6.

To avoid exhaustive search for the vanishing point within
the search area, we use a multi-scale approach to find the
position with the maximal α. Multi-scale techniques are
well known in the computer vision and image processing
communities. This technique starts by computing an im-
age pyramid. At the smallest level of the pyramid, we find
the best value by exhaustive search in the search area. The
optimal position is then projected to its parent level as the
initial point. A local search for the optimal value is per-
formed only within a small neighborhood around the pro-
jected point. The process is repeated until returning to the
base level of the pyramid. In this way, the vanishing point
can be efficiently and accurately determined. Algorithm 2
sketches the pseudo code for our multi-scale vanishing point
search algorithm.

After automatically determining the 2D positions of the
rear wall and the vanishing point, a cuboid model MI→J

and the initial camera pose
[

R0

I→J|T
0

I→J

]

can be estimated
using the method proposed by Cao et al. [4]. Since the focal
length is assumed to be 1, we can also obtain the correspond-
ing camera projection matrix Π. In addition to those, we
also estimate the 3D coordinates XI

i for each 2D feature xI

i.
Since the projection matrix Π and the initial camera pose
[

R0

I→J|T
0

I→J

]

are given, we know that XI

i must be along the

Algorithm 2 (x, y)=VPSearch(G, Ω). Given a ground
mask G and the coordinates of the rear wall Ω, determine
the 2D position (x, y) of the vanishing point V.

1: if image is not small enough then
2: (x′, y′) = VPSearch(G/2, Ω/2)
3: (x, y) = (2x′, 2y′)
4: for (∆x,∆y) ∈ {−1, 0, 1} × {−1, 0, 1} do
5: determine U assuming (x+∆x, y+∆y) is the van-

ishing point
6: α(x+∆x, y+∆y) =

∣

∣U ∩ G − U ∩ G
∣

∣

7: end for
8: return (x+∆x, y+∆y) with maximum α
9: else

10: set search area Ψ = 0.75 ∗ Ω
11: for all (x, y) within Ψ do
12: determine U assuming (x, y) is the vanishing point
13: α(x, y) =

∣

∣U ∩ G − U ∩ G
∣

∣

14: end for
15: return (x, y) with maximum α
16: end if

line defined as follows:

XI

i ∼
(

Π
[

R0

I→J|T
0

I→J

])−1

xI

i.

Additionally, we assume that features are placed on the rear
wall in 3D. Thus, XI

i can be uniquely determined by in-
tersecting the above line with the rear wall. The procedure
of Section 3.2 is denoted as: (MI→J, Π,

[

R0

I→J|T
0

I→J

]

,XI

i) =

SceneModeling(I,xI

i). Given the source image I and matched
features’ positions xI

i, the procedure SceneModeling returns
a cuboid model (I,xI

i), the camera project matrix Π and the
initial extrinsic camera parameters

[

R0

I→J|T
0

I→J

]

.

3.3 Camera alignment
After the cuboid model MI→J is created and the initial

camera pose
[

R0

I→J|T
0

I→J

]

is found, the next step is to de-
cide the final camera pose [RI→J|TI→J] so that we can switch
from browsing I to browsing J as seamlessly as possible.
Thus, we would like to find the camera pose so that the ren-
dering of MI→J looks as similar to J as possible. To speed up
the estimation, instead of using all pixels, we only measure
the discrepancy between matched features. That is, we find
the final pose [RI→J|TI→J] by the following optimization,

[RI→J|TI→J] = arg min
R,T

∑

i

(

Π [R|T]XI

i − xJ

i

)

2

, (2)

where Π [R|T]XI

i is the projected 2D position of XI

i under
a specific camera pose [R|T]. Here, we want the projected
position to be close to its corresponding feature position xJ

i

in the target image.
Equation 2 is a nonlinear function to the optimizing pa-

rameters, (tx, ty, tz, θx, θy, θz), where tx, ty and tz are trans-
lation offsets along x, y and z axes, and θx, θy and θz are
rotation angles for each axis. Thus, the above optimiza-
tion problem becomes a nonlinear least square fitting prob-
lem. Levenberg-Marquardt algorithm and Gauss-Newton al-
gorithm [15] are used to find the optimal camera parameters.
We run both algorithms simultaneously and select the an-
swer with the smaller error. The initial guess for both algo-
rithms is

[

R0

I→J|T
0

I→J

]

. To make the camera path more sim-
ilar to a walk-through through the scene, two camera param-

eters (θz and ty) are set fixed as their values in
[

R0

I→J|T
0

I→J

]

.
Thus, only four parameters are estimated. The above opti-
mization process for finding the final camera parameters is
denoted as [RI→J|TI→J] = CameraAlign(MI→J,X

I

i,x
J

i , Π).
At the bottom of Figure 3, the left and right red pyramids
represent the virtual cameras corresponding to

[

R0

I→J|T
0

I→J

]

and [RI→J|TI→J] respectively.
This section describes the core procedure of our system.

Given two images I and J, the procedure automatically cre-
ates a cuboid model and estimates the initial and final cam-
era poses. The overall procedure of this section can be sum-
marized as Algorithm 3.

Algorithm 3 (MI→J,

[

R
0

I→J
|T0

I→J

]

, [RI→J|TI→J])=Model(I, J).

Given two images I and J, find a cuboid model MI→J for I,
the initial camera pose

[

R0

I→J|T
0

I→J

]

and the final camera
pose [RI→J|TI→J].

1: (xI

i, x
J

i) = FeatureMatching(I, J)
2: (MI→J, Π,

[

R0

I→J|T
0

I→J

]

, XI

i) = SceneModeling(I,xI

i)

3: [RI→J|TI→J] = CameraAlign(MI→J, X
I

i,x
J

i , Π)
4: return (MI→J,

[

R0

I→J|T
0

I→J

]

, [RI→J|TI→J])

4. SLIDESHOW GENERATION
This section describes the procedure to automatically gen-

erate a camera path for travel photo navigation. Using the
procedure described in Section 3, our system decides which
photographs can be stitched together for navigation and
determines a best camera path going through them (Sec-
tion 4.1). Section 4.2 describes how to control speed and
align with music. Section 4.3 describes the post-processing
for improving visual quality.

4.1 Photo ordering
Given a collection of photographs, our system automati-

cally determines which photographs should be stitched into
a trace and generates a camera path for them. For a collec-
tion of unordered photographs, we first discover their spatial
relationships by computing pairwise feature matching. To
speed up the feature matching process, we use down-sampled
images. Let S(I, J) record the number of matched features
between I and J. Algorithm 4 summarizes our procedure
to find the best image to follow an image I from the input
photograph collection C. We first drop images which have
less than 15 matched features with I. For each of the re-
maining images J, we use the procedure of Section 3 to find
the initial camera pose

[

R0

I→J|T
0

I→J

]

and the camera motion

[RI→J|TI→J] which brings us from I to J. Let t0x, t0z, θ0

x, θ0

y be
x-offset, z-offset, x-rotation, y-rotation of

[

R0

I→J|T
0

I→J

]

and
tx, tz, θx, θy be the ones of [RI→J|TI→J]. We then calculate
the priority of each transition from I to J by evaluating the
corresponding camera motion type.

We often prefer the “walking-through” camera motion.
Thus, our system assigns the highest weight wtz to the
translation along z to encourage a camera motion spending
more time on “moving forward”. The next preferred camera
motions are panning and panoramic motion, corresponding
to translation along x-axis and rotation with respect to y-
axis. We prefer panning more than the panoramic motion
because it is often more challenging to transit from one im-
age to another using a panoramic camera motion. Hence,

we assign the second highest weight wtx to panning motion
and a smaller weight wry to panoramic motion. The final
remaining motion is rotation with respect to x-axis, corre-
sponding camera motion of looking up and down. Since
this is a rare motion, we assign the lowest weight wrx to
it. To sum up, we assign different weights to four kinds
of camera motions, walking-through (wtz), panning (wtx),
panoramic motion (wry) and looking-up-and-down (wrx) in
the order of preference, wtz > wtx > wry > wrx to encour-
age camera motion spending more time on our preferred
motion components. Assume that the preferred velocity for
the four camera parameters tx, tz, θx, θz are vx, vz, ωx, ωz re-
spectively. The portion of each motion type is estimated by

its corresponding duration,
|tz−t0

z
|

vz
,
|tx−t0

x
|

vx
,
|θy−θ0

y
|

ωy
,
|θx−θ0

x
|

ωx

respectively. Their weighted sum is then used as the prior-
ity of the transition from I to J. Such a priority function will
encourage camera motion in the order of walking-through,
panning, panoramic motion and looking-up-and-down.

With the procedure of Algorithm 4, one usage scenario is
to let the user specify a photograph as the starting point.
Our system then automatically selects an ordered sequence
of photographs starting from that photograph and gener-
ates the camera path. Given a collection of unordered pho-
tographs, our system can also automatically find all possible
series of photographs and generate a camera path for each
of them by building a directed graph and finding all con-
nected components. Note that the photo ordering algorithm
is used instead of just using time tags for the following rea-
sons. First, spatially close photos were not necessarily taken
closely in time. Second, users may take many photos which
are close in space. Our ordering algorithm can pick up the
best ones to stitch together. Finally, the ordering algorithm
can deal with photos from other travel partners’ cameras.

Algorithm 4 Jbest=FindNext(I,C). Given a photograph
I and a photograph collection C, find the best image Jbest

in C to follow I.
1: max = 0
2: for each J ∈ C do
3: if S(I, J) ≥ 15 then
4: (MI→J,

[

R0

I→J|T
0

I→J

]

, [RI→J|TI→J])=Model(I,J)

5: ρ=wtz
|tz−t0

z
|

vz
+wtx

|tx−t0
x
|

vx
+wry

|θy−θ0

y
|

ωy
+wrx

|θx−θ0

x
|

ωx

6: if ρ > max then
7: max = ρ; Jbest = J;
8: end if
9: end if

10: end for
11: return Jbest

4.2 Music beat alignment and speed control
Once we have determined a camera trace for a series of

photographs, our system can render a series of images to fly
through this set of photographs according to a specific walk-
ing speed. Instead of walking in a constant speed, varying
speed gives people better perception as “tour into the pic-
ture.” Our system increases speed in first three quarters of
time interval and decreases speed in the last quarter of time
interval. This speed change applies to all camera parame-
ters. Figure 7 shows examples for speed control. Based on
the speed control function, our system interpolates camera
poses for each time instance accordingly and then generates

0 50 100 150
−1

−0.5

0

0.5

1

1.5

2

2.5

3
position − time

Time (frame number)

T
z

constant speed

varying speed

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time (frame number)

V
el

o
ci

ty
 o

f
T

z

velocity − time

increase

speed

decrease

speed

Figure 7: Examples of speed control functions.

time

music beats

t1
t2 t3

beat alignment

video frames

frame of model 1 frame of cross -fading frame of model 2

Figure 8: Beat alignment and cross fading.

the corresponding frame by rendering the current cuboid
model with the interpolated camera pose.

When switching from the source image to the next image,
a cross-fading effect is applied for a smoother transition. To
even improve the browsing experience, the rendered video is
accompanied with a music as proposed in tiling slideshow [5].
To harmonize the audio-visual effect, touring speed is fine-
adjusted to be aligned with the nearest beat of the music.
Music beat is detected using the method by Dixon [6]. Fig-
ure 8 demonstrates such an alignment.

4.3 Post-processing
Our system uses a post-processing to further improve the

visual quality. The post-processing includes three parts:
cross-fading, cross-blending, and unknown area filling as
shown in Figure 9. Unknown area filling happens when the
rendering of the model under the current pose does not cover
the whole image. When this happens, we estimate a suit-
able translation for the next image to fill in the unknown
area. To hide the boundary of the rendered area and the
filled area, cross-blending is performed along their bound-
ary. The width of cross blending is set to 100 pixels. Cross-
fading happens at the transition time from the source image
to the next image, from t2 to t3, as shown in Figure 8. Dur-
ing the transition, the rendered view is cross-faded to the
next image gradually. In our current implementation, the
cross-fading period is set to one second long.

5. EXPERIMENTAL RESULTS
Five sets of unordered photos taken by different amateurs

were used for testing and evaluating the proposed Photo

Figure 9: Area of each post-processing.

input #photos category video length
set A (Figure 10) 4 landscape 29s
set B (Figure 11) 3 landscape 17s
set C (Figure 12) 16 landmark 118s
set D (Figure 13) 8 night view 57s
set E (Figure 14) 20 campus 165s

Table 1: Information of the tested photo sets and
produced video clips.

Navigator. Detailed information for the photo sets and pro-
duced video clips are listed in Table 1. All results are avail-
able at http://www.cmlab.csie.ntu.edu.tw/navigator.

The input photo set A contains photographs taken when
climbing a mountain. Photo set B was taken in a forest.
Both belong to the category of natural landscape. The num-
bers of photos in set A and set B are much less than other
types. Generally, the scenes in personal travel photographs
cannot be found easily elsewhere. Therefore, photo-tourism-
like systems are not suitable to be applied to this kind of
personal travel photograph sets.

Figure 10 shows the result that Photo Navigator produced
for photo set A. Figure 10(a) shows a frame of the anima-
tion of camera shuttering with audio effects, used to repre-
sent the photo capturing moment. Figures 10(b,d,g,i) show
the input photographs within photo frames. These effects
bring enjoyment and enhance the differences between 2D
photographs and 3D animations. Figures 10(b–g) illustrate
the panorama effect produced by our system. Figure 10(h)
shows the view of three-dimensional walk-through between
photographs. Note that, for further enhancing the effects,
some foreground objects (i.e. people) are manually cut out
from the scene to make “pop-ups” [9] in our results. The
same technique is also applied to the following examples.

Figure 11 illustrates results of Photo Navigator on photo
set B. This example is quite challenging for feature matching
since it consists of natural scenery with only a limited num-
ber of noticeable objects. Although spatial relationships be-
tween some of those photographs are not obvious to viewers,
Photo Navigator successfully enhances the spatial relations
in the output video with compelling walk-through effects.
Furthermore, Photo Navigator can display captions supple-
mented by users on the photographs to enhance slideshows
with semantic information as shown in Figure 11(a) and (d).

Photo set C belongs to the category of landmark pho-
tographs, taken in Chiang Kai-Shek memorial hall. Fig-
ure 12 shows the novel renderings when walking through the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Sample frames of slideshow A.

(a) (b) (c)

(d) (e) (f)

Figure 11: Sample frames of slideshow B.

scene. Due to the limitation of 3D scene modeling, objects
with more prominent shapes, such as architectures, usually
result in more obvious artifacts compared to the natural
landscape. Therefore, a varying speed of camera motion is
required to bring a little perceptual motion blur to effec-
tively reduce the artifacts.

Photo set D is a night view for a street scene. Similar to
photo sets A and B, it belongs to a personal photograph
collection. Thus, it is not easy to find external sources
and Photo-tourism-like systems won’t work well with such
a sparse set of photos. Since it is dark in most areas of
night view photos, this scene is more challenging for feature
matching. Nevertheless, the artifacts of 3D scene model re-
construction are not obvious to users, as shown in Figure 13.

In Figure 14, Photo Navigator is applied to photo set E,
a set of pictures taken at National Taiwan University. This
set belongs to the category of campus landscape. This is
an example which contains buildings and trees in the same
scene. Figures 14(d) and (e) show novel views that are not
part of the input images.

The proposed system is implemented with Matlab 7.0 on
a machine with Intel Core-2 1.86 GHz CPU, 2GB memory,
and Microsoft Windows XP. On average, the processing time

(a) (b) (c)

(d) (e) (f)

Figure 12: Sample frames of slideshow C.

(a) (b) (c)

(d) (e) (f)

Figure 13: Sample frames of slideshow D.

for a set of 15 photos (with a resolution of 2253 × 1690) is
about 19,637 seconds, and the time is roughly quadric to the
number of photos. Note that, if the photos are first scaled
down to the size of 800 × 600, the processing time can be
effectively reduced to around 5,778 seconds. The percent-
age of time spent in each underlying component is shown in
Figure 15. It is clear from the figure that feature matching
is the most expensive component, consuming roughly 3/4 of
time.

6. EVALUATION
This section shows evaluation of Photo Navigator. Since

objective evaluation of the proposed system is difficult, sub-
jective experiments were taken to evaluate the performance
of our system. We compare the slideshows of Photo Naviga-
tor to the ones produced automatically by ACDSee [1] and
the ones generated manually with Photo Story [2] in terms
of satisfaction. Five photo sets mentioned in Section 5 were
used for the evaluation. The incidental music clips for sets
A and C are pop music and those for others are pure music.

Fifteen evaluators interested in tour and photography were
invited for the user study. The slideshows produced by
ACDSee, Photo Story, and Photo Navigator were presented
to them by projecting onto a 60-inch screen. Evaluators
were requested to grade from 1 to 10 to show their satisfac-
tions (higher scores for better satisfactions) with respective
to each of the following perspectives:

• Reality. How do they feel about the reality of the
virtual walking-through?

(a) (b) (c)

(d) (e) (f)

Figure 14: Sample frames of slideshow E.

4.3%

6.4% 1.1%

10.7%

5.3%

72.0%

0.1%
Feature Matching

3D Scene Modeling

Camera Alignment

Photo Ordering

Beat Alignment + Beat Detection +

Music Segmentation + Speed Control
Post-processing

Composition

Figure 15: The percentage of computation time
spent for each of the system components.

• Visual perception. How do they like the novel views
between photographs?

• Smoothness. How do they think about the smoothness
of the transitions?

• Spatiality. How strong sense of space does this se-
quence offer them after watching the slideshow?

• Acceptance. How do they feel about the overall sys-
tem?

• Experience. Do they think that the slideshow helps
them experience this travel and encourages them to
visit?

The results of the subjective evaluation are illustrated in
Figure 16. The differences between Photo Story and Photo
Navigator in terms of visual perception and smoothness are
relatively small. Possible reasons are that the scene visual-
ization in 3D is not good enough, and the camera path for
photograph navigation doesn’t always act as users expect.
Generally, Photo Navigator has significantly better satisfac-
tions than others in spatiality.

The average satisfaction scores among three systems for
the five photo sets are illustrated in Figure 17. Clearly,
Photo Navigator has much higher satisfaction scores than
others. In particular, our system was given an average score
of 7.68, which is 14% better than Photo Story and 25%
superior to ACDSee for the five photo sets. The differ-
ence of scores between Photo Navigator and Photo Story
for landscape photographs are smaller than other types of
photographs. It is because that the number of photographs

0

2

4

6

8

10
Reality

Visual percrption

Smoothness

Spatiality

Acceptance

Experience

Photo Navigator

Photo Story

ACDSee

Figure 16: Comparisons of Photo Navigator, Photo
Story, and ACDSee on six perspectives.

0

1

2

3

4

5

6

7

8

9

set A set B set C set D set E

Photo Navigator

Photo Story

ACDSee

Figure 17: The results of subjective evaluation for
three types of slideshows on the five tested sets.

in this category is less than other categories. On the other
hand, the zooming and panning transition effects of Photo
Story behave similarly to the 3D effects of Photo Navigator
because of the lack of noticeable objects in sight. Therefore,
the difference between Photo Story and Photo Navigator for
the examples with few landscape photographs is relatively
small. However, it is apparent that Photo Navigator is suit-
able for various types of photo sets.

7. CONCLUSION
This paper proposes Photo Navigator, a system which pro-

vides a new type of slideshows for travel photos by making
visually seamless 3D presentations for user’s own photos.
Simple cuboid models and a smooth camera path are auto-
matically discovered to provide users a 3D navigation expe-
rience for photographs with limited artifacts. Compared to
Photo Story, our system reveals more sense of space and of-
fers more enjoyment of watching the slideshows. Compared
to Photo Tourism, our system can work with a sparse set of
photographs and is more suitable for personal travel photo
slideshows. Many aspects of our system can be improved.
For example, automatic algorithms for creating the“pop-up”
foregrounds are worth of further investigation. In addition,
more efficient algorithms for feature matching would greatly
speed up our system.

Acknowledgments
This work was supported by the National Science Council
of Taiwan, R.O.C., under contracts NSC95-2622-E-002-018
and NSC96-2622-E-002-002. It was also supported by Na-
tional Taiwan University under grant NTU95R0062-AE00-
02. The author would like to thank reviewers for their help-
ful suggestions.

8. REFERENCES
[1] ACDSee: http://www.acdsystems.com/.

[2] Photo Story: http://www.microsoft.com/.

[3] Picasa: http://picasa.google.com/.

[4] Z. Cao, X. Sun, and J. Shi. Tour into the picture using
relative depth calculation. In Proceedings of the 2004
ACM SIGGRAPH international conference on Virtual
Reality continuum and its applications in industry,
pages 38–44, 2004.

[5] J.-C. Chen, W.-T. Chu, J.-H. Kuo, C.-Y. Weng, and
J.-L. Wu. Tiling slideshow. In MULTIMEDIA ’06:
Proceedings of the 14th annual ACM international
conference on Multimedia, pages 25–34, 2006.

[6] S. Dixon. Automatic extraction of tempo and beat
from expressive performances. Journal of New Music
Research, 30(1):39–58, 2001.

[7] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. International
Journal of Computer Vision, 59(2):167–181, 2004.

[8] R. I. Hartley. In defence of the 8-point algorithm. In
Proceedings of ICCV 1995, pages 1064–1070, 1995.

[9] D. Hoiem, A. A. Efros, and M. Hebert. Automatic
photo pop-up. ACM Transactions on Graphics,
24(3):577–584, 2005.

[10] Y. Horry, K.-I. Anjyo, and K. Arai. Tour into the
picture: using a spidery mesh interface to make
animation from a single image. In Proceedings of ACM
SIGGRAPH 1997, pages 225–232, 1997.

[11] X.-S. Hua, L. Lu, and H.-J. Zhang. Automatically
converting potograic series into video. In
MULTIMEDIA ’04: Proceedings of the 12th annual
ACM international conference on Multimedia, pages
708–715, 2004.

[12] X.-S. Hua, L. Lu, and H.-J. Zhang. Photo2video–a
system for automatically converting photographic
series into video. IEEE Transactions on Circuits and
Systems for Video Technology, 16(7):803–819, 2006.

[13] C.-C. Liu, C.-H. Huang, W.-T. Chu, and J.-L. Wu.
ITEMS: intelligent travel experience management
system. In Proc. 9th ACM Intl. Workshop on
Multimedia Information Retrieval (MIR’07), pages
291–298, 2007.

[14] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[15] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, 1999.

[16] A. Saxena, M. Sun, and A. Y. Ng. Learning 3-D scene
structure from a single still image. In Proceedings of
ICCV 2007, pages 1–8, 2007.

[17] N. Snavely, S. M. Seitz, and R. Szeliski. Photo
tourism: exploring photo collections in 3D. ACM
Transactions on Graphics, 25(3):835–846, 2006.

