
LC-2
Programmer’s Reference

and
User Guide

University of Michigan EECS 100

Matt Postiff

Copyright (C) Matt Postiff 1995-1999. All rights reserved.
Written permission of the author is required for duplication of this document.

Table of Contents
Table of Contents . i
List of Tables . iii
List of Figures . v

Chapter 1 Introduction to the LC-2 . 1

1.1 Notational Conventions . 3

Chapter 2 LC-2 Programmer’s Reference. 7

2.1 LC-2 Programming Model. 9
2.2 Instruction Set . 10
2.3 Summary of Instruction Formats and Semantics . 28
2.4 Addressing Modes . 31
2.5 Branching Modes. 32
2.6 The LC-2 System Calls . 33
2.7 The LC-2 Hardware Registers . 34
2.8 The LC-2 Memory Map. 35

Chapter 3 LC-2 Machine- and Assembly-Programming . 37

3.1 Introduction to Program Execution in the LC-2 . 39
3.2 The LC-2 Instruction Encoding . 40
3.3 Condition Codes in the LC-2 Processor. 41

3.3.1 Condition Field in the Instruction Encoding. 41
3.4 Keyboard Input and Console Output . 42
3.5 Programming the LC-2 in Machine Language . 43

3.5.1 Machine-Language File Formats . 43
3.6 Programming the LC-2 in Assembly Language . 46

3.6.1 Introduction. 46
3.6.2 LC-2 Assembly Language . 46
3.6.3 The Assembly Process . 49
3.6.4 Some Examples. 49

Chapter 4 LC-2 Programming Tools Guide. 51

4.1 The convert Program . 53
4.2 The assemble Program. 54

4.2.1 The Listing File. 54
4.3 The Simulator. 55

4.3.1 The Simulator Menu Bar . 56

Chapter 5 Appendices. 61

Appendix A ASCII Reference . 63
i

Appendix B Simulator Script Reference . 65
Appendix C Installing the LC-2 Software . 67
ii

 . .
. .
 bits

 . . . 28
. . .
. . .
.
. . . .
. . . . 41
 . . 41
. . . . 46
 47
 48
. . . .
. . . .
List of Tables
Table 1. Notational Conventions . 3
Table 2. The Logical Operators . 5
Table 3. Specifying when a branch occurs by the relationship between the instruction’s nzp
and the condition codes. 14
Table 4. LC-2 Instruction Format Summary. .
Table 5. LC-2 addressing modes . 31
Table 6. LC-2 branching modes . . 32
Table 7. LC-2 System Calls . 33
Table 8. LC-2 Hardware Registers . 34
Table 9. Condition Codes in the LC-2 Processor .
Table 10. The Possibilities for the Condition Field in the Instruction (nzp)
Table 11. The elements of a line of an LC-2 assembly language program
Table 12. LC-2 Assembler reserved characters .
Table 13. LC-2 assembler pseudo-ops .
Table 14. LC-2 assembler output files . 54
Table 15. ASCII Code Reference . 63
iii

. .
al

. . . 44
. . . . 49
. . . . 50
. . . 54
 .
 . . . 56
 . . . 57
. . . 57
. . . 58
 . . . 59
. . . 59
. . . 60
 . . . 60
List of Figures
Figure 1. LC-2 Memory Map . . 35
Figure 2. The binary representation of an LC-2 program (left) and its equivalent hexadecim
representation (right). 43
Figure 3. A more complicated LC-2 program .
Figure 4. The program of Figure 2 shown in assembly language.
Figure 5. The program of Figure 3 shown in assembly language.
Figure 6. Assembler-produced listing file for dumbadd.asm .
Figure 7. The LC-2 simulator . 55
Figure 8. The LC-2 console window .
Figure 9. The LC-2 Simulator menu bar. .
Figure 10. The LC-2 Simulator File menu (A) and associated dialog boxes (B-D).
Figure 11. The LC-2 Simulator Run menu (A) and associated dialog boxes (B-D).
Figure 12. The LC-2 Simulator Set Values menu (A) and an associated dialog box (B). . . .
Figure 13. The LC-2 Simulator Display menu (A) and an associated dialog box (B).
Figure 14. The LC-2 Simulator Options (A) and Help menus (B). .
Figure 15. The LC-2 Simulator Popup menu.. .
v

CHAPTER 1 Introduction to the LC-2
er-
or
 of

ite
tails
he

pro-
ula-

the

ter

ple-
2.
The Little Computer 2 (LC-2) is a simple computer used to
introduce general-purpose computing devices to first-year engine
ing students with no previous background in computer architecture
logic design. This document introduces the use and programming
the LC-2. The remainder of this chapter defines notation used
throughout this manual. TheLC-2 Programmer’s Reference in
Chapter 2 is a detailed reference manual for students who will wr
several programming assignments on the machine. Chapter 3 de
LC-2 machine-language and assembly-language programming. T
LC-2 Programming Tools Guide in Chapter 4 provides information
concerning use of the assembler and simulator. The appendices
vide an ASCII character reference and some detail about the sim
tion tools.

The LC-2 and accompanying materials have been used for
introductory computing course (EECS 100) at the University of
Michigan since the Fall of 1995. Winter 1999 is the eighth semes
in which the LC-2 has been used.

The course lectures, the textbook, and this document com
ment each other, and neither in isolation will cover the whole LC-
1

is

 If
vi-

2

s

e

e

1.1. Notational Conventions
This section summarizes the notational conventions used throughout this manual.

A word is a 16-bit quantity with bit order increasing from right to left, so that the left bit
numbered 15 and the right bit is numbered 0. Bit 15 is themost significant bit, while bit 0 is the
least significant bit. The following figure illustrates:

Table 1 lists the symbols and terms used throughout the manual.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 1: Notational Conventions

Notation Meaning

$Number, XNumber,
0XNumber, 0xNumber

The number is specified in base-16 (hexadecimal).

#Number The number is specified in base-10 (decimal).

A<l:r> Denotes part of a value, specifically, the bits in positions l
through r of value A (usually a register or memory location). For
example, if the value in the PC is (hex) $301A = (binary) 0011
0000 0001 1010, then PC<15:9> refers to the 7 bits 0011 000.
only one bit needs to be denoted, the notation is usually abbre
ated as A<l>, the :r part being left off. For example, PC<2:2> is
the same as PC<2>, which is the single bit found at bit position
of the PC (0 in this case).

A @ B Concatenation of A and B. For example, if A is 0011 01 and B i
00 1100 1000, A @ B = 0011 0100 1100 1000.

BaseR Base Register. one of R0..R7 whose contents specify the bas
address of a memory structure.

COND Condition upon which a branch occurs. These are based on th
processor status bits N, Z, and P. See the BR instruction.

page The set of 29 consecutive memory locations which share the
same high 7 address bits (bits <15:9> of the address).

current page The page where the currently executing instruction resides.

DR Destination Register; one of R0..R7 which specifies where the
result of an instruction should be written

general purpose register Any register R0..R7.
3

ded
te

se

al-

-

e

ate-

e

or
.

imm5 5-bit immediate value; 5 bits in an instruction used as a literal
(immediate) value; sign extended to 16 bits. Range {-16..15}.

index6 6-bit immediate value; These 6 bits are zero extended and ad
to a base register to form a memory address. Range {0..63}. No
that index6 is always zero or positive.

LABEL An assembler construct that identifies a location on the current
page. It is translated into a pgoffset9 (see below).

L Link bit; specifies whether a JSR instruction will save the value
of the next PC in R7. If L == 1, the next PC is saved in R7. If L
== 0, the next PC isnot saved in R7.

MB1 Must Be One. In an instruction encoding, bits shown as MB1
must be set to 1 by the programmer or assembler. Zeroes in the
bit positions may result in unexpected behavior.

MBZ Must Be Zero. In an instruction encoding, bits shown as MBZ
must be set to 0 by the programmer or assembler. Non-zero v
ues in these bit positions may result in unexpected behavior.

mem[address] Denotes the contents of memory at the given address.

OPC Opcode field of instruction; 4 bits which specify the instruction
to be executed by the processor.

PC Program Counter; 16-bit, processor-internal register which con
tains the memory address of thenext instruction to be fetched.
For example, during execution of the instruction at address A, th
PC contains address A+1. The PC is sometimes called the
Instruction Pointer (IP).

pgoffset9 9 bits of offset on a page (a page address). PC<15:9> is conc
nated with pgoffset9 to form a 16-bit memory address. Range
{0..511}.

setcc(X) Indicates that condition codes N, Z and P are set based on th
value of X. If X is negative, N=1, Z=0, P=0. If X is zero, N=0,
Z=1, P=0. If X is positive, N=0, Z=0, P=1.

SEXT(A) Sign extension of A. The most significant bit position of A is
duplicated as many times as necessary to extend A to 16 bits. F
example, if A = 1100 00, then SEXT(A) = 1111 1111 1111 0000

SR, SR1, SR2 Source Register (1 or 2); one of R0..R7 which specifies from
where an instruction operand is taken.

Table 1: Notational Conventions

Notation Meaning
4

5}.

ig-
Table 2 shows the truth tables of the logical operators used in this manual.

trapvect8 8-bit trap number used in the TRAP instruction. Range {0..25

unix% The Unix command prompt.

ZEXT(A) Zero extension of A. Enough zero bits are added to the most s
nificant end of A to extend it to 16 bits. For example, if A = 1100
00, then ZEXT(A) = 0000 0000 0011 0000. Note that ZEXT(A)
= SEXT(A) if the most significant bit of A is 0.

Table 2: The Logical Operators

AND

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

OR

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

X NOT X

0 1

1 0

Table 1: Notational Conventions

Notation Meaning
5

CHAPTER 2 LC-2 Programmer’s
Reference
 is

on
nch-
la-

and
ap
This chapter, theLC-2 Programmer’s Reference, is a
detailed reference manual for the LC-2 architecture. This chapter
divided into 8 sections. Section 1 gives an overview of LC-2 pro-
gramming; 2 details the instruction set of the LC-2; 3 is an instructi
summary; and 4 and 5 contain descriptions of addressing and bra
ing modes. Section 6 lists the trap routines provided with the simu
tor; 7 lists the hardware registers for accessing video, keyboard,
machine control functions of the LC-2; and 8 shows a memory m
of the machine.
7

etic

nd

bits of
at the

odes”

e LC-2
2.1. LC-2 Programming Model
The LC-2 has 8 general purpose registers, each of which is 16 bits wide. The arithm

and logic units operate on 16 bit words. Addresses are 16 bits wide, so the machine has 216 (65,
536 or 64K) words, or 128 KB of memory.

The instruction set contains 16 basic instructions. There are operates (ADD, AND, a
NOT), data movement instructions (LD, LDI, LDR, ST, STI, STR, LEA), flow control instruc-
tions (BR, JSR, JMP, JSRR, JMPR, RET), and control instructions (RTI and TRAP).

The simplest addressing scheme, direct, forms addresses by concatenating the top 7
the program counter with 9 bits of page address specified in the instruction. This means th
memory space can be viewed as divided into 27 = 128 pages, each of 29 = 512 words. The other
addressing modes of the LC-2 are indirect, base+index, and immediate. See “Addressing M
on page 31 for more information.

Input and output devices are mapped as part of the memory address space. See “Th
Hardware Registers” on page 34 for more details.
9

ut as

ts.
about
uc-
 on
2.2. Instruction Set
Each of the following pages describes an LC-2 instruction. The descriptions are laid o

follows:

INSTRUCTION Short description

Assembler Format(s):

mnemonic [arguments]
This is the assembly language format of the instruction.

Encoding(s):

Machine code equivalent to the assembly language format.

Operation:
A formal description of the instruction.

Description:
English description of the action of the instruction, including any side effec

Includes special notes and references to related instructions. Includes a note
which, if any, of the condition codes are modified by the instruction. If an instr
tion modifies a condition code, the condition code is set or cleared depending
the result of the operation performed by the instruction. So,

if the result of the operation is negative, thenN = 1, Z = 0, P = 0.
if the result of the operation is zero, thenN = 0, Z = 1, P = 0.
if the result of the operation is positive, thenN = 0, Z = 0, P = 1.

Example(s):
Some example uses of the instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPC miscellaneous
10

dd
th

and
ADD Add

Assembler Formats:

ADD DR, SR1, SR2
ADD DR, SR1, imm5

Encodings:

Operation:
if (bit<5> == 0) {
 DR = SR1 + SR2
}
else if (bit<5> == 1) {
 DR = SR1 + SEXT(imm5)
}
setcc(DR)

Description:
If bit<5> == 0, then add the contents of SR1 and SR2. If bit<5> == 1, then a

the contents of SR1 and the sign extended immediate value. The result in bo
cases is placed in DR and sets the condition codes.

Any carry generated at the most significant bit of the addition is discarded,
overflow is not signalled.

Examples:
ADD R2, R3, R4 ; R2 = R3 + R4
ADD R2, R3, #7 ; R2 = R3 + 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0001 DR SR1 0 MBZ SR2

0001 DR SR1 1 imm5
11

2.
ign
 the
AND Bitwise Logical AND

Assembler Formats:

AND DR, SR1, SR2
AND DR, SR1, imm5

Encodings:

Operation:
if (bit<5> == 0) {
 DR = SR1 AND SR2
}
else if (bit<5> == 1) {
 DR = SR1 AND SEXT(imm5)
}
setcc(DR)

Description:
If bit<5> == 0, then perform the bitwise AND of the contents of SR1 and SR

If bit<5> == 1, then perform the bitwise AND of the contents of SR1 and the s
extended immediate value. The result in both cases is placed in DR and sets
condition codes.

Examples:
AND R2, R3, R4 ; R2 = R3 AND R4
AND R2, R3, #7 ; R2 = R3 AND 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0101 DR SR1 0 MBZ SR2

0101 DR SR1 1 imm5
12

.
fset9
di-
BR Branch to Location on Current Page

Assembler Formats:

Encoding:

Operation:
if ((n AND N) OR (z AND Z) OR (p AND P)) {
 PC = PC<15:9> @ pgoffset9
}

Description:
If the condition is true, branch to the specified location on the current page

The top 7 bits of the current program counter are concatenated with the pgof
field to form the new 16-bit PC value, which is written to the PC only if the con
tion is true. The condition codes are not modified.

Equivalent Mnemonics

BRn LABEL BRlt LABEL

BRz LABEL BReq LABEL

BRp LABEL BRgt LABEL

BRnz LABEL BRle LABEL

BRnp LABEL BRne LABEL

BRzp LABEL BRge LABEL

BRnzp LABEL BR LABEL

BRNOP NOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 n z p pgoffset9
13

sor

If z
anch

sor
The nzp bits specify how to compute the condition under which the proces
should take the branch. Table 3 explains the nzp encodings.

The processor examines the n, z, and p bits in the instruction to determine
which LC-2 condition codes to test. If n is set, test N; if n is not set, ignore N.
is set, test Z, etc. If any of the condition codes tested in this way is set, the br
is taken. If none of n, z, or p are set in the instruction, the processor treats the
branch instruction as it would treat a NOP. If n, z, and p are all set, the proces
branches unconditionally, regardless of the condition code setting.

JSR/JMP and JSRR/JMPR also control program flow.
Zero is neither positive nor negative.

Example:
BRzp LOOP ; Branch to LOOP if last result was zero or positive

Table 3: Specifying when a branch occurs by the relationship between the instruction’s nzp
bits and the condition codes.

nzp
Condition
Codes Set

Condition nzp
Condition
Codes Set

Condition

000 NA Do not branch under any
condition

100 N Negative
Less Than

001 P Positive
Greater Than

101 N or P Negative or Positive
Not Equal

010 Z Zero
Equal

110 N or Z Negative or Zero
Less than or Equal

011 Z or P Zero or Positive
Greater than or Equal

111 N, Z, or
P

Negative, Zero, or Positive
Unconditional
14

nk
cur-

16-
JSR Jump to Subroutine
JMP Jump

Assembler Format:

JSR LABEL (L = 1)
JMP LABEL (L = 0)

Encoding:

Operation:
if (L == 1) {
 R7 = PC
}
PC = PC<15:9> @ pgoffset9

Description:
Unconditionally jump to the specified location on the current page. If the li

bit L is set, the PC is saved in R7, allowing a later return. The top 7 bits of the
rent program counter are concatenated with the pgoffset9 field to form the new
bit PC value. The condition codes are not modified.

Examples:
JSR FOO ; Jump to FOO, put return PC into R7
JMP FOO ; Jump to FOO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0100 L MBZ pgoffset9
15

ex
w PC
JSRR Jump to Subroutine through Register
JMPR Jump through Register

Assembler Format:

JSRR BaseR, index6 (L = 1)
JMPR BaseR, index6 (L = 0)

Encoding:

Operation:
if (L == 1) {
 R7 = PC
}
PC = BaseR + ZEXT(index6)

Description:
If the link bit L is set, the PC is saved in R7, allowing a later return. The ind

is zero extended to 16 bits and added to the contents of BaseR to form the ne
value. The condition codes are not modified.

Examples:
JSRR R2, #10 ; Jump to R2 + 10, put return PC into R7
JMPR R2, #10 ; Jump to R2 + 10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1100 L MBZ BaseR index6
16

 bits
rm a
o DR
LD Load Direct from Memory to Register

Assembler Format:

LD DR, LABEL

Encoding:

Operation:
DR = mem[PC<15:9> @ pgoffset9]
setcc(DR)

Description:
Load a register from the specified location on the current page. The top 7

of the current program counter are concatenated with the pgoffset9 field to fo
16-bit memory address. The contents of memory at this address is loaded int
and is used to set the condition codes.

Example:
LD R4, COUNT ; R4 = mem[COUNT]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0010 DR pgoffset9
17

cur-
it
ss of
des.
LDI Load Indirect from Memory to Register

Assembler Format:

LDI DR, LABEL

Encoding:

Operation:
DR = mem[mem[PC<15:9> @ pgoffset9]]
setcc(DR)

Description:
Load a register indirectly from the specified location. The top 7 bits of the

rent program counter are concatenated with the pgoffset9 field to form a 16-b
memory address. The contents of memory at this location is used as the addre
the data that is loaded into DR. The data loaded into DR sets the condition co

Example:
LDI R4, POINTER ; R4 = mem[mem[POINTER]]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1010 DR pgoffset9
18

d to
on-
s.
LDR Load from mem[Base + Index] to Register

Assembler Format:

LDR DR, BaseR, index6

Encoding:

Operation:
DR = mem[BaseR + ZEXT(index6)]
setcc(DR)

Description:
Load a register using a base register and index. The index is zero extende

16 bits and added to the contents of BaseR to form a memory address. The c
tents of memory at this address is loaded into DR and sets the condition code
Note that index6 is a positive offset.

Example:
LDR R4, R2, #10 ; R4 = contents of mem[R2 + 10]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0110 DR BaseR index6
19

R

LEA Load Effective Address

Assembler Format:

LEA DR, LABEL

Encoding:

Operation:
DR = PC<15:9> @ pgoffset9
setcc(DR)

Description:
The top 7 bits of the current program counter are concatenated with the

pgoffset9 field to form a 16-bit memory address. This address is placed into D
and sets the condition codes.

Example:
LEA R4, F00 ; R4 = address of FOO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110 DR pgoffset9
20

the
NOT Bitwise NOT (invert or complement)

Assembler Format:

NOT DR, SR

Encoding:

Operation:
DR = NOT(SR)
setcc(DR)

Description:
Perform the bitwise complement operation on the contents of SR and place

result in DR. The result sets the condition codes.

Example:
NOT R4, R2 ; R4 = NOT(R2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1001 DR SR MB1
21

SR
RET Return from Subroutine

Assembler Format:

RET

Encoding:

Operation:
PC = R7

Description:
Load the PC with the value in R7, thus allowing a return from a previous J

or JSRR instruction. The condition codes are not modified.

Example:
RET ; PC = R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1101 MBZ
22

 are

tack,
th the
e is
d
ain
RTI Return from Interrupt

Assembler Format:

RTI

Encoding:

Operation:
setcc(mem[R6])
R6 = R6 - 1
PC = mem[R6]
R6 = R6 - 1

Description:
Pop the top of the stack, and load the value into PC. The condition codes

not modified.

Example:
RTI ; first pop condition codes

; then pop PC

Notes:
On an external interrupt, the initiating sequence pushes the PC onto the s

then pushes the current condition codes onto the stack, then loads the PC wi
starting address of the service routine. The last instruction in the service routin
RTI, which returns control to the interrupted program by popping the stack an
loading the value popped into the condition codes, then popping the stack ag
and loading the value popped into the PC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1000 MBZ
23

ge.
fset9
ory
ST Store Direct from Register to Memory

Assembler Format:

ST SR, LABEL

Encoding:

Operation:
mem[PC<15:9> @ pgoffset9] = SR

Description:
Store from the specified register to the specified location on the current pa

The top 7 bits of the current program counter are concatenated with the pgof
field to form a 16-bit memory address. The contents of SR are copied into mem
at this address. The condition codes are not modified.

Example:
ST R4, COUNT ; mem[COUNT] = R4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0011 SR pgoffset9
24

p 7
to
ed as
re not
STI Store Indirect from Register to Memory

Assembler Format:

STI SR, LABEL

Encoding:

Operation:
mem[mem[PC<15:9> @ pgoffset9]] = SR

Description:
Store from the specified register to the indirectly specified location. The to

bits of the current program counter are concatenated with the pgoffset9 field
form a 16-bit memory address. The contents of memory at this address are us
the address where the contents of SR are to be copied. The condition codes a
modified.

Example:
STI R4, POINTER ; mem[mem[POINTER]] = R4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1011 SR pgoffset9
25

o
ress.
des
STR Store from Register to mem[Base + Index]

Assembler Format:

STR SR, BaseR, index6

Encoding:

Operation:
mem[(BaseR + ZEXT(index6)] = SR

Description:
Store from the specified register to the specified location. The offset is zer

extended to 16 bits and added to the contents of BaseR to form a memory add
The contents of SR are copied into memory at this address. The condition co
are not modified.

Example:
STR R4, R2, #10 ; mem[R2 + 10] = R4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0111 SR BaseR index6
26

R7,
ents

odi-

r
ry is
e

TRAP Call System Routine

Assembler Format:

TRAP trapvect8

Encoding:

Operation:
R7 = PC
PC = mem[ZEXT(trapvect8)]

Description:
Execute the system call specified by the trap number. The PC is saved in

allowing a later return. The trapvect8 field is zero extended to 16 bits. The cont
of this memory location are placed into the PC. The condition codes are not m
fied.

Each of the first 28 = 256 memory locations contains the starting address fo
the system call specified by its corresponding trap number. This area of memo
called the trap vector table. See “The LC-2 System Calls” on page 33 for mor
information.

Example:
TRAP x23 ; Execute the IN system call

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111 MBZ trapvect8
27

2.3. Summary of Instruction Formats and Semantics

*Indicates instructions that modify the condition codes.

Table 4: LC-2 Instruction Format Summary

Mnemonic 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

*ADD 0001 DR SR1 0 MBZ SR2

*ADD 0001 DR SR1 1 imm5

*AND 0101 DR SR1 0 MBZ SR2

*AND 0101 DR SR1 1 imm5

 BR 0000 n z p pgoffset9

 JSR 0100 L MBZ pgoffset9

 JSRR 1100 L MBZ BaseR index6

*LD 0010 DR pgoffset9

*LDI 1010 DR pgoffset9

*LDR 0110 DR BaseR index6

*LEA 1110 DR pgoffset9

*NOT 1001 DR SR MB1

 RET 1101 MBZ

 RTI 1000 MBZ

 ST 0011 SR pgoffset9

 STI 1011 SR pgoffset9

 STR 0111 SR BaseR index6

 TRAP 1111 MBZ trapvect8
28

ble
as
The following Verilog summarizes the behavior of each instruction. The Verilog varia
containing the instruction is calledinst . Symbols such as DR, ZEXT, trapvect8, etc. are used
defined earlier in this document. The register file is a memory array calledR[] .

// Memory State
reg [15:0] mem [65535:0]; // primary memory

// Processor State
reg [15:0] PC; // program counter
reg [15:0] R [7:0]; // register file
reg N, Z, P; // condition codes

// Instruction Format
reg [15:0] i; // instruction
reg [3:0] opc = i[15:12]; // opcode
reg [4:0] imm5 = i[4:0]; // immediate data
reg [8:0] pgoffset9 = i[8:0]; // page address
reg [5:0] index6 = i[5:0]; // immediate index
reg [7:0] trapvect8 = i[7:0]; // trap vector
reg [2:0] DR = i[11:9]; // destination register
reg [2:0] SR = i[11:9]; // source registers
reg [2:0] SR1 = i[8:6];
reg [2:0] SR2 = i[2:0];
reg [2:0] BaseR = i[8:6];
reg L = i[11]; // link bit

// Interpret the instruction stream
task interpret begin

repeat begin
i = MP[PC];
PC = PC + 1;
execute;

end
end // task interpret

// Execute an instruction
task execute begin
 case (i[15:12])

`ADD: begin
if (i[5] == 0) R[DR] = R[SR1] + R[SR2];
if (i[5] == 1) R[DR] = R[SR1] + SEXT(imm5);
set_condition_codes(R[DR]);
end

`LD: begin
29

R[DR] = mem[{PC[15:9], pgoffset9}];
set_condition_codes(R[DR]);
end

`ST: mem[{PC[15:9], pgoffset9}] = R[SR];
`JSR: begin // also called `JMP

if (L == 1) R[7] = PC;
PC = {PC[15:9], pgoffset9};
end

`AND: begin
if (i[5] == 0) R[DR] = R[SR1] & R[SR2];
if (i[5] == 1) R[DR] = R[SR1] & SEXT(imm5);
set_condition_codes(R[DR]);
end

`LDR: begin
R[DR] = mem[R[BaseR] + ZEXT(index6)];
set_condition_codes(R[DR]);
end

`STR: mem[R[BaseR] + ZEXT(index6)] = R[SR];
`BR: begin

if ((i[11] & N) | (i[10] & Z) | (i[9] & P))
PC = {PC[15:9], pgoffset9};

end
`NOT: begin

R[DR] = ~R[SR1];
set_condition_codes(R[DR]);
end

`LDI: begin
R[DR] = mem[mem[{PC[15:9], pgoffset9}]];
set_condition_codes(R[DR]);
end

`STI: mem[mem[{PC[15:9], pgoffset9}]] = R[SR];
`JSRR: begin // also called `JMPR

if (L == 1) R[7] = PC;
PC = R[SR1] + ZEXT(index6);
end

`RET: PC = R[7];
‘RTI: begin

PC = mem[R[6]];
R[6] = R[6] - 1;
end

`LEA: begin
R[DR] = {PC[15:9], pgoffset9};
set_condition_codes(R[DR]);
end

`TRAP: begin
R[7] = PC;
30

dress-

L

PC = mem[ZEXT(trapvect8)];
end

 endcase
end // task execute

// Computing condition codes
task set_condition_codes;

input [15:0] a;
begin

N = Z = P = 0;
if (a[15] == 1) N = 1;
else if (a == 16'b0) Z = 1;
else P = 1;

end // task set_condition_codes
endtask

2.4. Addressing Modes
An addressing mode defines the way in which data is accessed. The LC-2 has five ad

ing modes which are summarized in the table below.

Table 5: LC-2 addressing modes

Name of
Addressing

Mode
Meaning Example

register The data is in the specified register. add r1, r2, r3

immediate
 (literal)

The data is in the instruction. In the example, the #5 is the
immediate data.

The data to be loaded is theliterally -specified address on
the current page.

(This addressing mode is often referred to asliteral mode
since the bits in the instruction “literally” are used as
data.)

add r1, r2, #5

lea r1, LABEL

direct The data is at the specified address on the current page. ld r1, LABE

indirect The address of the data is contained in the location speci-
fied on the current page.

ldi r1, LABEL

base+index Data is at the address formed by adding the zero-
extended index (#3 in the example) to the base register
(r2 in the example).

ldr r1, r2, #3
31

spec-
 128
nd the
it data

e
very
 data is
TI

 an
tched (in

on as
egister
y add-
ed for
ess
tures,
 incre-

field in

 has

tify
6-bit

ction.

is
a

nt

seR
Direct addressing is provided in the pgoffset9 field (INST<8:0>) of the LD and ST
instructions. The 9 bits directly identify the memory address on the current page. PC<15:9>
ifies the current page. Since there are 7 bits to identify the current page, there can be 2^7 =
pages. A complete 16-bit address is formed by concatenating the page number PC<15:9> a
pgoffset9 (i.e., PC<15:9> @ INST<8:0>). This address is used as the adddress of the 16-b
element.

The indirect addressing mode allows the contents of a memory location to contain th
address of the data element. [You will see when we get to programming in C that this is a
useful concept, and has a special name. That is, a location that contains the address of the
referred to as a “pointer” because it points to the data.] It is implemented with the LDI and S
instructions. INST<8:0> are used exactly as they are in the direct addressing mode to form
address. However, the resulting address contains the address of the data element to be fe
the case of LDI) or stored (in the case of STI).

The base+index addressing mode allows the programmer to specify a memory locati
an offset from some particular starting address. The starting address is contained in a base r
BaseR. The offset is specified as the index in the instruction. A memory address is formed b
ing the contents of the base register with the zero-extended offset. This address is then us
the LDR or STR operation. It is convenient to use the base+index addressing mode to proc
sequential data structures such as strings, records (e.g. activation records), arrays of struc
etc. Supposing that the base register points to the beginning of an array of items, it must be
mented by the size of each element to traverse through the array. The index can specify a
each item.

2.5. Branching Modes
A branching mode defines the way in which a branch or jump takes place. The LC-2

two basic modes which are summarized below.

Direct branches are provided by the BR and JSR instructions. INST<8:0> directly iden
the target address on the current page. PC<15:9> specifies the current page. A complete 1
address is formed by concatenating the page number PC<15:9> and the pgoffset9 (that is,
PC<15:9> @ INST<8:0>). This is the target address placed into the PC.

Jumps to locations not on the current page can be implemented with the JSRR instru
The new PC is formed by adding the contents of the BaseR with the 6-bit index.

The L (link) field in the JSR instructions distinguish them from the BR instruction. If L
set (L == 1), the current PC is copied to R7 before the jump takes place. This action forms link
to the calling subroutine for a later return. If L is clear (L == 0), the current PC is discarded.

Table 6: LC-2 branching modes

Examples Meaning

BR LABEL
JSR LABEL

The target of the branch or jump is the specified address on the curre
page.

JSRR BaseR, index6 The target of the jump is the sum of the contents of the register Ba
and the zero-extended 6-bit index encoded in the instruction.
32

e as

r is

-
r

2.6. The LC-2 System Calls
The LC-2 provides several trap routines for the programmer’s convenience. They ar

follows.

Table 7: LC-2 System Calls

Trap
Number

Assembler
Name

Description

$20 GETC Read a single character from the keyboard. The characte
not echoed onto the console. Its ASCII code is copied into
R0. The high 8 bits of R0 are cleared.

$21 OUT Write a character in R0<7:0> to the console.

$22 PUTS Write a string pointed to by R0 to the console.

$23 IN Print a prompt on the screen and read a single character
from the keyboard. The character is echoed onto the con-
sole, and its ASCII code copied into R0. The high 8 bits of
R0 are cleared.

$24 PUTSP Write a packed string pointed to by R0 to the console.

$25 HALT Prints a message on the console and halts execution.

Others All other trap vectors point to a routine which prints a mes
sage on the console indicating that a trap was executed fo
which no other routine was defined.
33

-2.

r

er

ey-

the
2.7. The LC-2 Hardware Registers
Certain memory addresses specify registers which have special meanings to the LC

Table 8: LC-2 Hardware Registers

Location I/O Register Name I/O Register Function

$F3FC Video Status Register Bit<15>, the ready bit, indicates whether the
video device is ready to receive another characte
to print on the screen. Also known as CRTSR.

$F3FD Horizontal Screen Position Not implemented.

$F3FE Vertical Screen Position Not implemented.

$F3FF Video Data Register A character written in the low byte of this regist
will be displayed on screen. If the high byte is not
0, it too will be written (packed strings). Also
known as CRTDR.

$F400 Keyboard Status Register Bit<15>, the ready bit, indicates whether the k
board has received a new character. Also known
as KBSR.

$F401 Keyboard Data Register Bits<7:0> contain the last character typed on
keyboard. Also known as KBDR.

$FFFF Machine Control Register Bit<15> is the clock enable bit. When cleared,
instruction processing stops because the clock
signal stops pulsing. Also known as MCR.
34

ser
2.8. The LC-2 Memory Map

The LC-2’s complete 16-bit, 64 KW memory space is shown below. There are 27 = 128
pages with 512 words each. Memory between $3000 and $CFFF (40 KW) is available for u
programs. Each block represents two pages.

* packed memory: 2 characters are stored in each word
** memory mapped I/O devices

Figure 1: LC-2 Memory Map

X000-X3FF X400-X7FF X800-XBFF XC00-XFFF

0000 Vector Table Operating System
Code

Operating System
Code

Operating System
Code

1000 Reserved Reserved Reserved Reserved

2000 Reserved Reserved Reserved Reserved

3000

4000

5000

6000

7000

8000

9000

A000

B000

C000

D000 Reserved Reserved Reserved Reserved

E000 Reserved Reserved Reserved Reserved

F000 Video RAM*
Video registers

Keyboard
System RAM**

System RAM** Boot ROM
35

CHAPTER 3 LC-2 Machine- and
Assembly-Programming
-
This chapter discusses programming the LC-2 in machine
and assembly-language.
37

enti-

 exe-

on is
ition

d the
ial reg-
 the

t
bits
s
dify
3.1. Introduction to Program Execution in the LC-2
The LC-2’s memory is logically laid out in a linear array. Each entry in the array is id

fied by a unique 16-bit number (itsaddress). Each entry contains 16 bits of information.
LC-2 instructions are stored in its memory. Each instruction is 16 bits long. To begin

cution of an instruction, the processor first retrieves (fetches) the instruction from the memory
location which contains the instruction. The instruction is thendecoded andexecuted.

As part of the execution, many instructions also record whether the result of executi
negative, zero, or positive. This is done by setting or clearing the three corresponding cond
codes (N, Z, and P).

After finishing execution, whatever results the instruction produces are recorded, an
next instruction is processed. The processor keeps track of the next instruction with a spec
ister called theprogram counter (PC). The program counter specifies the address from which
next instruction is to be retrieved.

From the programmer’s perspective, amachine instructionis the most basic operation tha
a computer can carry out. In the case of the LC-2, there are 16 basic instructions, each 16
long, which the processor knows how to execute directly. These include operate instruction
(which process information), data movement instructions, and control instructions (which mo
the normal sequential flow of the program).
39

es
do.
 LC-2

ion
s zero

-

. It

llow-

n,
vening
te a

ell as

y the
3.2. The LC-2 Instruction Encoding
Consider an arbitrary LC-2 instruction which we will call INST. When the LC-2 execut

INST, it examines bits <15:12>, the opcode, to figure out what the instruction is telling it to
For example, the opcode may represent “add.” The rest of the bits in the instruction tell the
what quantities to add and where to put the result.

INST<11:9> usually specifies a destination register or condition codes. The destinat
register (DR) is specified as 000, 001, 010, 011, 100, 101, 110, or 111, representing register
through seven (R0..R7). For instance, if bits <15:9> = 1001 010, the opcode isNOTand the result
will be placed into R2.

One exception to this general rule is thest instruction, where INST<11:9> actually spec
ify a source register.

In the case ofand , add , andnot , at least one source register (SR or SR1) is required
is encoded in bits <8:6>. It is encoded in the same fashion as the DR field.

Theadd andand instructions are different fromnot in that they need two source oper-
ands. It is also convenient to be able to literally specify in the instruction a number toadd or and .
To accomplish both in the same instruction format, the LC-2 supports the execution of the fo
ing instructions:

a) add R0, R1, R2 ; R0 = R1 + R2
b) add R0, R0, #1 ; R0 = R0 + 1 (increment R0)
c) and R0, R1, R2 ; R0 = R1 & R2
d) and R0, R0, #0 ; R0 = R0 & 0 (clear R0)

To specify a) and c), INST<5> is 0. This indicates that the last 3 bits of the instructio
INST<2:0> are encoded as the second source register (R2 in both cases above). The inter
bits INST<4:3> are 0. To specify b) and d), INST<5> is 1. The remaining 5 bits <4:0> designa
5 bit number. This number is sign extended to 16 bits, which allows us to use positive as w
negative numbers in the 5-bit immediate field. The allowed values range from -16 to 15.

Some instructions require a nine-bit field which is a page offset. As will be explained
shortly, this offset tells the processor where to fetch data from on the current page (defined b
program counter). This page offset field is contained in INST<8:0>.
40

ops
appro-

ps

ences

ction

nch

east

n

3.3. Condition Codes in the LC-2 Processor
The hardware for an LC-2 computer (or in our case, the simulator) contains three flip fl

which retain properties about the results computed by the processor. The flip flops, or more
priately the signals that they store, are called thecondition codes of the LC-2. Sometimes condi-
tion codes are referred to asflags. The instructions that may modify the contents of those flip flo
are detailed in theLC-2 Programmer’s Reference Manual. The three condition codes are
described in Table 9.

3.3.1. Condition Field in the Instruction Encoding
To control the flow of a program, branch instructions are used to skip or repeat sequ

of instructions. The LC-2 provides several ways to perform suchbranches. The programmer con-
trols the conditions under which a branch may occur by using three bits in the branch instru
encoding which we call the ‘nzp’ bits. The 3 bits together form thecondition field of the branch
instruction. For the LC-2, these bits may be used in any combination to specify when a bra
occurs. Table 10 shows all the combinations.

Table 9: Condition Codes in the LC-2 Processor

Name Meaning

N Set if bit 15 of the instruction result is 1. That is, if the result isnegative when
interpreted as a two’s complement number. Cleared otherwise.

Z Set if the instruction result iszero ($0000). Cleared otherwise.

P Set if the instruction result ispositive, that is, neither negative nor zero. Note
that $0000 is neither positive nor negative. Cleared otherwise.

Table 10: The Possibilities for the Condition Field in the Instruction (nzp)

nzp Take the branch...

000 ...never

100 ...if N is set (only negative)

010 ...if Z is set (only zero)

001 ...if P is set (only positive)

110 ...if N or Z is set (negative or zero, but not positive)

011 ...if Z or P is set (zero or positive, but not negative)

101 ...if N or P is set (negative or positive, but not zero)

111 ...if any of N, Z, or P are set (after the processor sets the condition codes, at l
one bit is always set, so the branch will always be takena)

a. Note that upon machine startup, the contents of the condition codes are undefined. Using the conditio
codes in a branch instruction before setting them results in undefined operation.
41

g sys-

ntil
-
he
ram.

 low
3.4. Keyboard Input and Console Output
The trap instruction has an 8-bit field INST<7:0> which is atrap number. The trap number

indexes a table at the start of the LC-2’s memory which provides access to special operatin
tem routines.

Two instances of thetrap instruction are thein andout operations. To avoid explain-
ing all of the details behind this instruction, we will simply say that it should be used “as is” u
a more complete explanation can be given.1 When anin instruction is reached in a program, pro
gram execution stops until a key on the keyboard is pressed. The ASCII representation of t
pressed key is placed into the low half of the R0 register and control is returned to the prog
The upper half of the R0 register R<15:8> = 00000000 after use of thein instruction. Theout
instruction works similarly. When encountered in a program, the character contained in the
half of R0 is written to the LC-2 console. The upper half of the register R0<15:8> must be
00000000 for the operation to work correctly.

1. Lectures in class will fully explain this. Bear with us as the textbook for the course is not yet written.
42

 one
into
for a
 into

 2.

ters 0

am
ual.
 sec-

d line

 result
LT

ar to

file
3.5. Programming the LC-2 in Machine Language

3.5.1. Machine-Language File Formats
An LC-2 program written in machine language is formatt5ed as a sequence of lines,

16-bit instruction per line. The first line must indicate where the program should be loaded
the LC-2’s memory. The load position is usually $3000 (hex) or 0011000000000000 (binary)
normal program. The remaining lines are machine instructions or data which will be loaded
contiguous locations of LC-2’s memory.

The program can be written in your favorite text editor in bnary notation as in Figure
The spaces in the binary representation are for readability only.

Figure 2: The binary representation of an LC-2 program (left) and its equivalent hexadeci-
mal representation (right).

0011 0000 0000 0000 3000
1111 0000 0010 0011 F023
0001 0010 0010 0000 1220
1111 0000 0010 0011 F023
0001 0000 0000 0001 1001
1111 0000 0010 0001 F021
1111 0000 0010 0101 F025

The program may also be written as hexadecimal notation (consisting of the charac
through 9 and A through F), as on the right of Figure 2.

These listings represent a very simple LC-2 program. To understand what this progr
does, simply decode each of the instructions using the information from the reference man
The first line instructs the simulator where to load the program into the LC-2’s memory. The
ond line is an input instruction which reads a character from the keyboard into R0. The thir
adds R0 and 0 and places the result into R1 (which effectively copies2 R0 into R1). The next
instruction reads a second character into R0. The fifth line adds R0 and R1 and places the
into R0. The sixth line writes the character in R0 to the console. Finally, the last line is a HA
instruction which stops instruction processing.

LC-2 programs can also be stored in true binary format (not like that in Figure 2). This
format is nearly impossible to read directly, unlike the textual forms shown above. It is simil
the format in which commercial software is distributed.

Incidentally, the program of Figure 1 is provided in the class examples directory in the
calleddumbadd.obj. Try it using the simulator and see what happens.

2. This type of copy operation is often called a “move.”
43

is-

is
6

ar-

e

A more complicated example is shown in Figure 3.

Figure 3: A more complicated LC-2 program

Page
Address

(hex)

Program
Hex

Function

3000 Program load address

000 E612 Load the full address of a buffer at page address $012 into reg
ter R3

001 54A0 AND R2 with $0 (produces $0) and place result into R2.

002 F023 Read a character from the keyboard

003 1236 Add $36 to the character read in and place result into R1 This
the same as subtracting $0A. How? Consider that the value $3
is sign extended before the addition and remember your two’s
complement arithmetic. Why? So that we can perform a comp
ison against the Enter key [newline].

004 8409 If the last result was zero, branch to location $009

005 70C0 Store R0 into memory pointed to by R3+0

006 16E1 Increment R3 (move pointer one word ahead)

007 14A1 Increment R2 (add 1 to counter)

008 4802 Jump to location $002 on this page

009 16FF Decrement the pointer to point to the last character read into th
buffer

00A 5482 AND R2 with itself and place result into R2. This action is to set
the flag bits according to R2 (I am using it specifically for the
side effect, just to make sure that the flags are set correctly).

00B 8411 If R2 was zero, branch to location $010 on this page

00C 60C0 Load a character into R0 from memory pointed to by R3+0

00D F021 Write the character to the console

00E 14BF Decrement R2 (subtract 1 from counter)

00F 16FF Decrement R3 (move pointer one word backward)

010 480A Jump to offset $0A on this page

011 F025 HALT service routine
44

does.
el
, R2,

e
Corre-

ut
As before, we use the reference manual to figure out what each line of the program
The third column of the table summarizes the function of each line, though a lot of high-lev
information has been left out. Try to figure out what the program does and what registers R0
and R3 are used for.

This program is called reverse.obj and is in your eecs100 directory. Run it through th
simulator and see what happens. (Hint: type a few characters and then hit the ENTER key.)
late the results with the code that you see above.

012
013
014
015
016
017
018
019
01A
01B

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

The next 10 locations are reserved to hold characters of an inp
string.

Figure 3: A more complicated LC-2 program

Page
Address

(hex)

Program
Hex

Function
45

’s
which
 LC-2

p is

bler;
-op.
ond to

ge pro-
ram to

tween

o

e

r
ro-

T
ace,
3.6. Programming the LC-2 in Assembly Language

3.6.1. Introduction
As you have probably realized, it is tedious to write even small programs in the LC-2

machine language. To facilitate the development of larger programs, a language is provided
allows the use of symbolic names for opcodes as well as memory locations. It is called the
assembly language.

Because the LC-2 can only execute machine language instructions, a translation ste
necessary to convert the symbolic language into a binary one. A program called anassemblerper-
forms this function; the processing is calledassembling.

An assembly language program (thesource program) consists of a sequence of instruc-
tions, one per line. Each line can contain either (1) a comment, which is ignored by the assem
(2) a real instruction, which corresponds to a machine language instruction; or (3) a pseudo
Pseudo-ops, which will be discussed presently, are so named because they do not corresp
machine language instructions, but rather are messages provided by the assembly langua
grammer to the assembler program to help in the translation of the assembly language prog
binary machine language.

3.6.2. LC-2 Assembly Language

The format of each line of an assembly language program is as follows:

LABEL (whitespace) MNEMONIC (whitespace) ARG1, ARG2, ...(whitespace) ; comment

Any amount of whitespace (including the space and tab characters) can be used be
elements. The four basic elements of aline of assembly code are described in Table 11:

Table 11: The elements of a line of an LC-2 assembly language program

Element Meaning

LABEL A descriptive label for the line; not necessary unless there is a need t
identify the information in the corresponding memory location: for
example, if the line is the destination of a jump instruction or the sourc
of data to be loaded.

MNEMONIC The mnemonic for the assembly language instruction; ADD, LD, JSR, o
pseudo-ops like .ORIG, and special names for which the assembler p
vides a shortcut, such as IN, OUT, and HALT.

ARG1, ARG2, ... Opcode-dependent arguments; ADD requires 3, LD requires 2, HAL
requires none. Each argument is separated by at least some whitesp
and optionally a comma.
46

 the
abel
ch)
g

mbler
e. The

con-
s are in
, $A,
hat is
will
guage

mbler
f
he

tions

-

is
A label is used to identify a memory location. There are two main uses for a label. If
memory location contains data, we want to be able to refer to it using a symbolic name. A l
can also be used to symbolically identify an instruction. Another instruction (a jump or bran
can then explicitly tell the processor what instruction to execute next by using the identifyin
label attached to the desired instruction.

Labels can be constructed using a combination of almost any characters that the asse
recognizes. Exceptions include characters that the assembler reserves for some special us
characters with reserved uses are shown in Table 12.

Depending on the instruction, a constant value may be specified. The length of that
stant also depends on the instruction, and the assembler will check to see that the constant
range. For example, the constant value ten can be represented as any of the following: #10
%1010, $0A, #010, etc. If an instruction such as an ADD is used with an immediate value t
too large to fit into the immediate field of the instruction (5 bits in this case), the assembler
produce an error because it cannot correctly complete the translation from the assembly lan
program.

To properly translate an assembly language program into machine language, the asse
needs some help from the assembly language programmer. This help comes in the form o
pseudo-ops, which are messages to the assembler. Each pseudo-op occupies one line of t
assembly language program. Table 13 details these pseudo-ops and their purposes.

The rest of the instruction syntax is best shown by example; please see the next sec
for details.

; comment Text describing the function of the line in the context of the given pro
gram (not the obvious ‘add R0 to R1’ but ‘increment the character
count’); all text beyond the semicolon is ignored by the assembler and
only there for the reader’s benefit.

Table 12: LC-2 Assembler reserved characters

Character Reserved Use

; or // identifies the start of a comment

$, x, X, 0x,
0X

start of a hexadecimal constant

%, b, B start of a binary constant

start of a decimal constant

R, r denote a register identifier; the LC-2 regis-
ters are R0, R1, ..., R7.

Table 11: The elements of a line of an LC-2 assembly language program

Element Meaning
47

lue
m-
ms.

ion
to

ng.
ini-
e

 for

the
Table 13: LC-2 assembler pseudo-ops

Pseudo-op Function

.ORIG Tells the assembler where to load the code in the simulator’s memory. The va
specified is put as the first word in the object file. It should be the first non-co
ment line of the source program. The value is usually $3000 for user progra

Example:
 .ORIG $3000

.FILL Directs the assembler to reserve a location and initialize the value of the locat
to the argument given. Most often used to provide constant values, but also
reserve working memory for your program.

Examples:
Label1 .FILL $0000 ; initialize to 0
Label2 .FILL $000A ; initialize to #10

.STRINGZ Directs the assembler to reserve a number of locations for the specified stri
Strings are arranged one character per word, with the high byte of the word
tialized to zero; a zero word follows the string to denote its termination (as in th
C programming language). Thus, the number of memory locations reserved
the string is equal to one more than the length of the string.

Example:
Label3 .STRINGZ “This is a string”

.BLKW Directs the assembler to reserve a number of locations and initialize them to
given value. Useful to reserve working space for your program.

Example:
Label4 .BLKW 10 $0000

.END Signifies the end of the source code. There should be no more text after this
pseudo-op.

Example:
 .END
48

f the
re

 assem-
x and
’s ben-

int
t of
ting the
mbler

ke it

 dem-
3.6.3. The Assembly Process
Recall that to provide the convenience of assembly language and satisfy the need o

computer to have its instructions in machine code, some intermediate translational steps a
needed to translate the assembly language to machine code.

For the LC-2, the assembler does all the necessary steps. It converts the text of the
bly language source code into several formats. The first two are the textual versions of the he
binary machine code which you have already seen. These are provided for the programmer
efit, because they are easy to read.

No machine executes programs in this textual format. You might notice that if you pr
out an executable file on a Windows, Macintosh, or Unix workstation, you generally get a lo
non-printable characters and beeps. These ‘garbage’ characters are just the result of conver
textual version into true binary. So, the binary 0010 1010 0101 1110 becomes *^. The asse
provides output in true binary (the.obj file) which the simulator can read directly.

3.6.4. Some Examples
The program in Figure 2 is shown below in the easier-to-read assembly format:

Figure 4: The program of Figure 2 shown in assembly language
; dumbadd.asm
; This LC2 program performs the following operations:
; 1) input two characters
; 2) adds the characters
; 3) output the result

.ORIG $3000 ; directive: program load location
; Get the character inputs
; the IN service routine provides a prompt for each character

IN ; read character into R0
ADD R1, R0, #0 ; move R0 into R1
IN ; read character into R0

; do the addition
ADD R0, R0, R1 ; add numbers

; write the results
OUT ; write the single-character result
HALT
.END ; directive: no more code

As a point of style, notice how each line is commented and arranged using tabs to ma
easy to read.

After writing the assembly language program, the next step is to assemble it. This is
onstrated in “The assemble Program” on page 54.

The example in Figure 3 is now reproduced in assembly language.
49

Figure 5: The program of Figure 3 shown in assembly language
; reverse.asm
; This LC2 program performs the following operations:
; 1) input up to 10 characters
; 2) print out the characters in reverse order
; If more than 10 characters are typed, the program may break.
; R0 is the current character being read or printed
; R1 is a temporary
; R2 is the count of characters that have been read in so far
; R3 is the address into the buffer (same as bufptr)

.ORIG $3000 ; directive: program load location

; Set up
lea R3, Buffer ; R3 points to start of buffer
and R2, R2, #0 ; zero out character count

; Read characters and store them
READ in ; read a character from keyboard

add R1, R0, $-A ; subtract ASCII value of ENTER key
brz PRINTIT ; if ENTER pressed, we’re done with

; input
str R0, R3, #0 ; store R0 (character) into buffer
add R3, R3, #1 ; increment the buffer pointer
add R2, R2, #1 ; increment character count
jmp READ ; read the next character

PRINTIT
add R3, R3, #-1 ; move pointer back to last

; character read

; Print the characters in reverse order
PRINT and R2, R2, R2 ; and R2 to itself to set the flags

 brz DONE ; if R2 is 0, no more to print
 ldr R0, R3, #0 ; load character pointed to by R3
 out ; print the character
 add R2, R2, #-1 ; decrement character count
 add R3, R3, #-1 ; decrement the buffer pointer
 jmp PRINT ; print the next character

DONE HALT

; Memory fills
Buffer .BLKW 10 $0000 ; 10 character buffer

.END ; directive: no more code
50

CHAPTER 4 LC-2ProgrammingTools
Guide
ator
This chapter discusses the use of the assembler and simul
software and how to run LC-2 programs using the simulator.
51

to a
and

nd 2
e

mu-
4.1. The convert Program
Theconvert program is used to translate programs written in machine language in

binary format acceptable to the LC-2 simulator. It transforms your input text consisting of 0’s
1’s (or hexadecimal text) into true binary (machine code) format. Typing:

unix% convert -b2 myfile outfile

tellsconvert to assume that the program was written in binary (-b stands for base a
means base 2, or binary).myfile is your program written in 0’s and 1’s, and outfile is where th
binary output will be written. If the-b2 is left off, it is assumed. You can use-b16 if your pro-
gram is written in hexadecimal notation. If you type the command incorrectly,convert will dis-
play a message explaining its usage rules.

Note that it is necessary to convert your text input into binary format in order for the si
lator to run your program.
53

mn
0 is
eally
e sec-

file,
4.2. The assemble Program
To assemble a program into a real binary machine code file, type:

unix% assemble myfile.asm outfile

This command will cause the assembler to read the assembly code frommyfile.asm
and produce several output files, detailed in Table 14:

4.2.1. The Listing File
Listing 6 shows an example of a listing file produced by the assembler. The first colu

shows the hexadecimal page address of the instruction or data on that line. Notice that 000
duplicated: this is the assembler’s way of showing that the first line (3000 in this case) is not r
part of the program, but indicates to the simulator where to load the program in memory. Th
ond column shows the hexadecimal of the instruction or data for that line. The third column
shows the equivalent binary. The fourth column lists the line number of the original source
and the fifth column shows the code that was entered at that line number in the source file.

Figure 6: Assembler-produced listing file for dumbadd.asm

(0000) 3000 0011000000000000 (11) .orig 0x3000
(0000) F023 1111000000100011 (13) in
(0001) 1220 0001001000100000 (14) add r1 r0 0x0000
(0002) F023 1111000000100011 (15) in
(0003) 1001 0001000000000001 (18) add r0 r0 r1
(0004) F021 1111000000100001 (21) out
(0005) F025 1111000000100101 (22) halt

Table 14: LC-2 assembler output files

Output Filename Purpose

outfile.obj The binary executable (for loading into the simulator)

outfile.lst Lists the assembly language program with line numbers
and the text of the code produced

outfile.bin Textual representation (binary notation) of executable.

outfile.hex Textual representation (hexadecimal notation) of execut-
able.

outfile.sym Lists the symbol table
54

om-

e 7.

lator
4.3. The Simulator
The LC-2 simulator is a program that allows you to run LC-2 programs. Typing the c

mand:

unix% simulate

causes a representation of the simulator to appear on the monitor as shown in Figur

The usual X-window controls such as -fg, -bg, and -geometry can be passed tosimulate to mod-
ify its default appearance.

Also appearing on your monitor is the LC-2’s console, where input and output (in and
out instructions) occurs for the simulated machine. Figure 8 shows the console upon simu
startup.

Figure 7: The LC-2 simulator
55

nu
e

e con-
ecimal
, and

 the
 (after
truc-
 inter-
ory

en
 from

te that
0. To

ful
When the simulator is started, the filelc2.log is created. After the simulation, this file
will contain a copy of all the output that occurred during the session.

The simulator window is organized into four major sections. The top section is a me
which allows control over the simulated LC-2. The menu bar will be discussed in detail in th
next section.

The second section, labeled ‘CPU’ shows the current state of the CPU registers. Th
tents of the general purpose registers are shown in both their hexadecimal and unsigned d
forms. The condition code (CC) register is displayed as its component N (negative), Z (zero)
P (positive) bits.

The third section, labeled ‘Memory’ shows the contents of memory. Each line shows
address and binary and hexadecimal contents of the memory being displayed. To the right
the semicolon), an instruction is displayed. If this memory location were executed as an ins
tion, this is what would be executed. Of course, some locations are data, so the instruction
pretation would not make much sense. A status column is present at the far left of the mem
window. A ‘B’ in this column indicates that a breakpoint is set at that line in memory. Betwe
the single status column and the memory address, there may be a label. This label is taken
the symbol file from the assembler. (See “The assemble Program” on page 54.) Finally, no
the memory window is currently limited to displaying addresses in the range 0x3000..0x320
display more memory, use the Display|Memory menu option.

The fourth section, labeled ‘Information’ provides miscellaneous information and help
messages.

4.3.1. The Simulator Menu Bar
This section describes the simulator menu bar.

Figure 8: The LC-2 console window
56

ula-
gister

ns are
or

ialog
e the
 or
e sim-
n

The menu bar is shown in Figure 9 below. The menu bar has options to control the sim
tor’s behavior, such as how and when to load a program, run it, and display memory and re
values. The following paragraphs and figures describe these options in more detail.

Figure 10 shows the File menu and dialog boxes that appear when the various optio
selected. The File menu contains commands to specify to the simulator to load a program
script, to run a single user-specified script command, or to exit the simulator.

The first two options, load a program or script, display the same standard open file d
box that appears in many X-window applications. The dialog box allows the user to navigat
directory structure and locate a file. Selecting the file and clicking OK will load the program
script. Scripts are described in Appendix B and are not considered further in this chapter. Th
ulator expects programs to be inthe .obj file format, as described in Section 4.1 and Sectio
4.2. (The file name need not end in.obj , but this is our convention.).

Figure 9: The LC-2 Simulator menu bar.

Figure 10: The LC-2 Simulator File menu (A) and associated dialog boxes (B-D).

(A)

(B)

(C) (D)
57

enu
am”
(by

rting
lick-

am-
uction
This is
is too

e Set
hile a
uring

rect

eg-
he
Figure 11 shows the Run menu and the dialog boxes for each menu item The Run m
contains commands to control the execution of a program in the simulator. The “Run progr
option displays a dialog box which allows the user to specify the program starting address
default, 0x3000). The program begins execution when the Run button is clicked.

The “Step Program” option is similar, except it assumes the PC is pointing to the sta
instruction and asks the user for the number of instructions to step (default is 1 instruction). C
ing the Step button will execute one instruction. This mode is useful for debugging.

Finally, the “Breakpoints” option allows the user to add or remove breakpoints. For ex
ple, if a breakpoint is added at address 0x3002, each time the simulator encounters the instr
at 0x3002, it stops execution so the user can examine the LC-2 register and memory state.
useful for debugging when a bug only appears after many instructions have executed and it
onerous to single step the whole program..

Figure 12 shows the Set Values Menu and a dialog box for one of the menu items. Th
Values menu contains commands to change the values of memory locations or registers w
simulation is running. This is useful when single-stepping a program, for example, because d
execution, if a register or memory value is wrong, the programmer can change it to the cor
value and determine if the remainder of the program works properly.

The first option, “Reinitialize machine,” completely reinitializes the simulator, clears r
isters and memory, and reloads the operating system routines and interrupt vector table. T
“Clear Registers” option clears only the registers.

(A) (B)

(C)

(D)

Figure 11: The LC-2 Simulator Run menu (A) and associated dialog boxes (B-D).
58

r or
y the

con-
mula-
 if it

nge
y
mory.

ram’s

lator
earing
ump

like
use-
The third option, “Set Register or memory,” allows the programmer to set any registe
memory location to a specified value. Values must be specified in the same notation used b
assembler (0x3000, #10, and so on).

Figure 13 shows the Display Menu and one associated dialog box. The Display menu
tains commands to change the range of memory displayed in the Memory window of the si
tor, as well as dump the register contents to the Information section and refresh the display
somehow was corrupted (sometimes this happens on a Unix console window).

The Display|Memory dialog box, show in Figure 13, allows the user to change what ra
of memory is displayed in the Memory window. The From: and To: boxes take LC-2 memor
addresses. When the Print button is selected, the Memory section displays that region of me
Whenever a program is loaded, the Memory section displays memory starting from the prog
starting address.

Figure 14 shows the Options and Help menus. The Options menu provides two simu
options. Both are toggle switches, whose ON state is indicated by an depressed button app
next to the menu item. Thus, in Figure 14(A), the simulator is set to step into traps but not to d
an instruction trace.

The first simulator option, “Step into traps,” tells the simulator whether the user would
to view system call code one instruction at a time while stepping through it. This is primarily
ful for debugging system call routines, which you hopefully will not have to do!

(B)
(A)

Figure 12: The LC-2 Simulator Set Values menu (A) and an associated dialog box (B).

Figure 13: The LC-2 Simulator Display menu (A) and an associated dialog box (B).

(A)
(B)
59

e for

in the
nics
of the

ribes
 The

rints

m-
ed
r main
The second option, “Dump instruction trace,” instructs the simulator to print a messag
each instruction it executes. This can be useful for debugging.

The Help menu, Figure 14(B), contains various commands to display help messages
simulator Information section. The Instruction Set option prints information about the mnemo
and opcodes supported by the simulator. The Simulator Commands option gives a summary
scripting language. The scripting language, which is described in Appendix B, is useful for
debugging and also automatic grading of LC-2 programs. The Simulator Sytax option desc
the invocation options that can be used when the simulator is started at the command line.
View README option prints the README file to the information section. The README file
may contain information that is newer than present in this manual. The last option, Version, p
copyright and version information.

Figure 15 shows the right-mouse button popup menu. The popup menu contains co
mands for the commonly-used functions in the simulator. These options have been describ
above. The menu is accessed by single-clicking the right mouse button inside the simulato
window or the console window.

(A)

(B)

Figure 14: The LC-2 Simulator Options (A) and Help menus (B).

Figure 15: The LC-2 Simulator Popup menu.
60

CHAPTER 5 Appendices
ns

This section contains an ASCII chart, information on auto-

mating the LC-2 simulator using scripts, and installation instructio
for the LC-2 software.
61

n-
Appendix A. ASCII Reference
Following is the ASCII character set shown in octal, decimal, and hexadecimal. C la

guage ‘\x’ escapes are noted.

Table 15: ASCII Code Reference

Octal Decimal Hex Character Octal Decimal Hex Character

000 0 00 NUL ‘\0’ 040 32 20 SPACE
001 1 01 SOH 041 33 21 !
002 2 02 STX 042 34 22 “
003 3 03 ETX 043 35 23 #
004 4 04 EOT 044 36 24 $
005 5 05 ENQ 045 37 25 %
006 6 06 ACK 046 38 26 &
007 7 07 BEL ‘\a’ 047 39 27 ‘
010 8 08 BS ‘\b’ 050 40 28 (
011 9 09 HT ‘\t’ 051 41 29)
012 10 0A LF ‘\n’ 052 42 2A *
013 11 0B VT ‘\v’ 053 43 2B +
014 12 0C FF ‘\f’ 054 44 2C ,
015 13 0D CR ‘\r’ 055 45 2D -
016 14 0E SO 056 46 2E .
017 15 0F SI 057 47 2F /
020 16 10 DLE 060 48 30 0
021 17 11 DC1 061 49 31 1
022 18 12 DC2 062 50 32 2
023 19 13 DC3 063 51 33 3
024 20 14 DC4 064 52 34 4
025 21 15 NAK 065 53 35 5
026 22 16 SYN 066 54 36 6
027 23 17 ETB 067 55 37 7
030 24 18 CAN 070 56 38 8
031 25 19 EM 071 57 39 9
032 26 1A SUB 072 58 3A :
033 27 1B ESC 073 59 3B ;
034 28 1C FS 074 60 3C <
035 29 1D GS 075 61 3D =
036 30 1E RS 076 62 3E >
037 31 1F US 077 63 3F ?
63

100 64 40 @ 140 96 60 ‘
101 65 41 A 141 97 61 a
102 66 42 B 142 98 62 b
103 67 43 C 143 99 63 c
104 68 44 D 144 100 64 d
105 69 45 E 145 101 65 e
106 70 46 F 146 102 66 f
107 71 47 G 147 103 67 g
110 72 48 H 150 104 68 h
111 73 49 I 151 105 69 i
112 74 4A J 152 106 6A j
113 75 4B K 153 107 6B k
114 76 4C L 154 108 6C l
115 77 4D M 155 109 6D m
116 78 4E N 156 110 6E n
117 79 4F O 157 111 6F o
120 80 50 P 160 112 70 p
121 81 51 Q 161 113 71 q
122 82 52 R 162 114 72 r
123 83 53 S 163 115 73 s
124 84 54 T 164 116 74 t
125 85 55 U 165 117 75 u
126 86 56 V 166 118 76 v
127 87 57 W 167 119 77 w
130 88 58 X 170 120 78 x
131 89 59 Y 171 121 79 y
132 90 5A Z 172 122 7A z
133 91 5B [173 123 7B {
134 92 5C \ ‘\\’ 174 124 7C |
135 93 5D] 175 125 7D }
136 94 5E ^ 176 126 7E ~
137 95 5F _ 177 127 7F DEL

Table 15: ASCII Code Reference

Octal Decimal Hex Character Octal Decimal Hex Character
64

ding

t
re nec-

file
80 char-
. The
e.

-
egis-

item)
Appendix B. Simulator Script Reference
The simulator supports a simple scripting language to facilitate in the testing and gra

of programs. To run a script from the command line, use the following command:

unix% simulate “script-command” [“script command” ...]

This will cause the simulator to perform its normal startup activities and run the scrip
commands that you specify. Note that the double-quotes surrounding the script command a
essary. The two most useful commands to run from the command line are:

unix% simulate “x script_file”
unix% simulate “l prog.obj”

wherex in the first example tells the simulator to execute the given script file. A script
contains a sequence of script commands, one per line. Each command must be less than
acters long. Currently, no other characters (including comments) are allowed in the script file
syntax for addresses and values are the same as those input through the graphical interfac

The second command shows how to automatically load (l) a program into the simulator
upon startup.

The simulator writes output to the Information window and copies any data from the
Information window to a file calledlc2.log in the simulator’s working directory. Thus the fol
lowing script allows us to automatically load a program, run it to completion, and dump the r
ter values and a memory location tolc2.log :

l prog1.obj
g 3000
r
m 3014

Please see the help provided within the simulator (from the Help|Commands menu
to get a current listing of script commands.
65

direc-

sim-
t, and

ith
u-
Appendix C. Installing the LC-2 Software1

An installation script has been provided to set up aneecs100 directory and install the
LC-2 assembler and simulator in your CAEN home directory. Add the EECS 100 software
tory to your path so that you can run the various software tools:

unix% set path = ($path /afs/engin.umich.edu/class/perm/eecs100/bin)

You will probably want to add this command to your.cshrc file so you don’t have to do
it manually every time you log in. Then, type:

unix% lc2install

This will create a directory for you to do classwork in. When you want to assemble or
ulate a file, type the object or assembly source file using your favorite text editor, assemble i
simulate it all within your eecs100 directory.

The remainder of this manual uses the notationunix% to represent the Unix command
prompt. We assume that ~/eecs100 is the current working directory. If you are not familiar w
the Unix computing environment, ask your teaching assistant or consult CAEN for Unix doc
mentation.

1. These instructions are specific to the University of Michigan Computer Aided Engineering computing
environment.
67

	LC-2
	Programmer’s Reference
	and
	User Guide
	University of Michigan EECS 100

	Table of Contents
	List of Tables
	List of Figures
	CHAPTER 1 Introduction to the LC-2
	1.1. Notational Conventions
	Table 1: Notational Conventions
	Table 2: The Logical Operators

	CHAPTER 2 LC-2 Programmer’s Reference
	2.1. LC-2 Programming Model
	2.2. Instruction Set
	INSTRUCTION Short description
	Assembler Format(s):
	Encoding(s):
	Operation:
	Description:
	Example(s):
	ADD Add
	Assembler Formats:
	Encodings:
	Operation:
	Description:
	Examples:

	AND Bitwise Logical AND
	Assembler Formats:
	Encodings:
	Operation:
	Description:
	Examples:

	BR Branch to Location on Current Page
	Assembler Formats:
	Encoding:
	Operation:
	Description:
	Table 3: Specifying when a branch occurs by the relationship between the instruction’s nzp bits a...

	Example:

	JSR Jump to Subroutine
	JMP Jump
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Examples:

	JSRR Jump to Subroutine through Register
	JMPR Jump through Register
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Examples:

	LD Load Direct from Memory to Register
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	LDI Load Indirect from Memory to Register
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	LDR Load from mem[Base + Index] to Register
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	LEA Load Effective Address
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	NOT Bitwise NOT (invert or complement)
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	RET Return from Subroutine
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	RTI Return from Interrupt
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:
	Notes:

	ST Store Direct from Register to Memory
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	STI Store Indirect from Register to Memory
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	STR Store from Register to mem[Base + Index]
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	TRAP Call System Routine
	Assembler Format:
	Encoding:
	Operation:
	Description:
	Example:

	2.3. Summary of Instruction Formats and Semantics
	Table 4: LC-2 Instruction Format Summary

	2.4. Addressing Modes
	Table 5: LC-2 addressing modes

	2.5. Branching Modes
	Table 6: LC-2 branching modes

	2.6. The LC-2 System Calls
	Table 7: LC-2 System Calls

	2.7. The LC-2 Hardware Registers
	Table 8: LC-2 Hardware Registers

	2.8. The LC-2 Memory Map
	Figure 1: LC-2 Memory Map
	CHAPTER 3 LC-2 Machine- and Assembly-Programming

	3.1. Introduction to Program Execution in the LC-2
	3.2. The LC-2 Instruction Encoding
	3.3. Condition Codes in the LC-2 Processor
	Table 9: Condition Codes in the LC-2 Processor
	3.3.1. Condition Field in the Instruction Encoding
	Table 10: The Possibilities for the Condition Field in the Instruction (nzp)

	3.4. Keyboard Input and Console Output
	3.5. Programming the LC-2 in Machine Language
	3.5.1. Machine-Language File Formats
	Figure 2: The binary representation of an LC-2 program (left) and its equivalent hexadecimal repr...
	Figure 3: A more complicated LC-2 program

	3.6. Programming the LC-2 in Assembly Language
	3.6.1. Introduction
	3.6.2. LC-2 Assembly Language
	Table 11: The elements of a line of an LC-2 assembly language program
	Table 12: LC-2 Assembler reserved characters
	Table 13: LC-2 assembler pseudo-ops

	3.6.3. The Assembly Process
	3.6.4. Some Examples
	Figure 4: The program of Figure 2 shown in assembly language
	Figure 5: The program of Figure 3 shown in assembly language

	CHAPTER 4 LC-2 Programming Tools Guide

	4.1. The convert Program
	4.2. The assemble Program
	Table 14: LC-2 assembler output files
	4.2.1. The Listing File
	Figure 6: Assembler-produced listing file for dumbadd.asm

	4.3. The Simulator
	Figure 7: The LC-2 simulator
	Figure 8: The LC-2 console window
	4.3.1. The Simulator Menu Bar
	Figure 9: The LC-2 Simulator menu bar.
	Figure 10: The LC-2 Simulator File menu (A) and associated dialog boxes (B-D).
	Figure 11: The LC-2 Simulator Run menu (A) and associated dialog boxes (B-D).
	Figure 12: The LC-2 Simulator Set Values menu (A) and an associated dialog box (B).
	Figure 13: The LC-2 Simulator Display menu (A) and an associated dialog box (B).
	Figure 14: The LC-2 Simulator Options (A) and Help menus (B).
	Figure 15: The LC-2 Simulator Popup menu.

	CHAPTER 5 Appendices

	Appendix A. ASCII Reference
	Table 15: ASCII Code Reference

	Appendix B. Simulator Script Reference
	Appendix C. Installing the LC-2 Software

