
The Directory

The directory holds mappings between human-
friendly names (HFNs) and inode numbers

It stores two types of mappings:

Hard links

map a file’s HFN (its local path) to the file’s inode number

Symbolic (soft) links

Logically, map a file’s HFN (its local path) to the HFN of a
different file

Implementation: maps a file’s HFN to the number of an
inode that contains the HFN of a different file

Hard links
Creating file foo adds a hard link for file foo in the file’s
directory

 Command ln oldpath newpath

adds to the directory a hard link mapping HFN newpath to the
inode number of the file with HFN oldpath

Now two HFNs are mapping to the same inode!

calls int link(const char *oldpath, const char *newpath)

Removing a file through the rm [file] command invokes a
call to int unlink(const char *pathname)

removes from directory the hard link between pathname and
corresponding inode number

File’s inode stores the number of hard links to it

inode reclaimed (file deleted) only when link count = 0; if file
opened, wait to reclaim until file is closed

Example

…368

~/example/cornell

~/example/bigred

Example

inode of the
current directory

inode of the
parent directory

Example

…368

~/example/cornell

inode

Example

…368

~/example/cornell

~/example/bigred

~/b
esti

vy

Example

~/example/bigred

~/b
esti

vy

~/example/cornell

…368

Example
~/b

esti
vy

…368

Symbolic (Soft) links
More flexible than hard links

can link to a directory

can link to files in another volume

A map between pathnames

to link newpathname to existingpathname for file inode1:

create a hard link between newpathname and new file inode2

store in inode2 the existingpathname for inode1

so, a symbolic link is really a file (inode2 in our example) of
a third type

neither a regular file nor a directory

Created using ln, but with the -s flag

Example …367

~/example/cornell

Example …367

~/example/cornell ~/example/bigred

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/cornell ~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/bigred

~/bestiv
y

~/highabove

…138

Example …367

~/example/bigred

~/bestiv
y

~/highabove

…138

Permission Bits

File bestivy

leading - says bestivy is a regular file

d is for directory; l is for soft link

Next nine characters are permission bits

rwx for owner, group, everyone

owner can read and write; group and others can just read

x set in a regular file means means file can be executed

x set in a directory that user/group/everybody is allow to cd to that
directory

can be set using chmod

File System Layout
File System is stored on disks

disk can be divided into one or more partitions

Sector 0 of disk: Master Boot Record (MBR). It contains:

bootstrap code (loaded and executed by firmware)

partition table (addresses of where partitions start & end)

First block of each partition has boot block

loaded by executing code in MBR and executed on boot

MBR

Free Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Partition

Table

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example, 64 blocks, each 4KB

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

some blocks store data

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example, 64 blocks, each 4KB

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

D D

some blocks store data

other blocks store metadata

an array of inodes

if an inode is 256 bytes, then 16 inodes per block.
With 5 blocks for inodes, file system can have up to 80 files

data blocks data blocks

data blocksdata blocksdata blocksdata blocks

data blocks

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example, 64 blocks, each 4KB

some blocks store data

I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

inodes

32 39

other blocks store metadata

an array of inodes

if an inode is 256 bytes, then 16 inodes per block.
With 5 blocks for inodes, file system can have up to 80 files

data blocks data blocks

data blocksdata blocksdata blocks

data blocks

data blocks

Peeking Inside
Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example, 64 blocks, each 4KB

some blocks store data

i d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

32 39

free

lists

other blocks store metadata (remember stat()?)

an array of inodes

if an inode is 256 bytes, then 16 inodes per block.
With 5 blocks for inodes, file system can have up to 80 files

bitmaps tracking free inodes and data blocks;

data blocks data blocks

data blocksdata blocksdata blocks

data blocks

data blocks

inodes

Peeking Inside

some blocks store data

B S I d I I I I I D

0 7 8 15 16 23 24 31

40 47 48 55 56 63

D D

32 39

data blocks data blocks

data blocksdata blocksdata blocksdata blocks

bitmaps tracking free inodes and data blocks; Superblock; Boot block

other blocks store metadata (remember stat()?)

an array of inodes

if an inode is 256 bytes, then 16 inodes per block.
With 5 blocks for inodes, file system can have up to 80 files

Persistent storage modeled as a sequence of N blocks

from 0 to N-1

in this example, 64 blocks, each 4KB

data blocksinodes
free

lists

The uperblock

One logical superblock per file system

at a well-known location

contains metadata about the file system, including

how many inodes

how many data blocks

where the inode table begins

may contain info to manage free inodes/data blocks

read first when mounting a file system

Storing Files

Files can be allocated in different ways

Contiguous allocation

all bytes together, in order

Linked Structure

Each points to the next block

Indexed Structure

Index block, pointing to many other blocks

Which is best?

For sequential access? Random access?

Large files? Small files? Mixed?

Contiguous Allocation

All bytes together, in order

Simple: only need start block and size

Efficient: one seek to read entire file

Fragmentation: external, and can be serious

Usability: User need to know file’s size at time of
creation

file1 file2 file3 file4 file5

Used in CD-ROm, DVDs

Linked List Allocation

Each file is stored as a linked list of blocks

first word of each block points to next block

the rest of the block is data

File
block 0

next

File
block 1

next

File
block 2

next

File
block 3

next

File
block 4

next

File A

Physical

Block 7 8 33 17 4

Space utilization: no external fragmentation

Simplicity: only need to find first block of each file

Performance: random access is slow

Implementation: blocks mix data and metadata

File Allocation Table
(FAT) FS

Decouple data and metadata

reduces disk seeks (and enables
caching!)

File
block 0

next

File
block 1

next

File
block 2

next

File
block 3

next

File
block 4

next

7 8 33 17 4

Microsoft, late 70s
still widely used today

thumb drives, camera cards, CD ROMs

DataMetadata

not to scale!

4

17

7
8

33

FAT File system

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)

array of 32-bit entries

one entry per block

file represented as a linked list
of FAT entries

file # = index of first FAT entry

Free space map

If data block i is free,
then FAT[i] = 0

find free blocks by
scanning FAT

Locality heuristics

As simple as next fit:

scan sequentially from
last allocated entry and
return next free entry

Can be improved through
defragmentation

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*

Directory

Maps file name to FAT index

Directory

jack.txt 12

jill.txt 9

FAT File system

Advantages

simple!

per file, needs
only start block

widely supported

no external
fragmentation

no conflating data
and metadata in
the same block

Disadvantages

Poor locality

many file seeks unless entire FAT
in memory

1 TB (240 bytes) disk, 4kb (212
bytes block, 228 FAT entries; at
4B/entry, 1 GB (!)

Poor random access

needs sequential traversal

Limited access control

no file owner or group ID

any user can read/write any file

No support for hard links

Volume and file size are limited

FAT entry is 32 bits, but top 4 are
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB FS

file no bigger than 4GB

No support for advanced reliability
techniques

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*

File System Layout

MBR

Free Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Partition

Table

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0
0
0

0
0
0
0
0

0
0
0

*

*

FAT Data BlocksBOOT BLOCK SUPERBLOCK

Super

block

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

Tree-based

Multi-level Index

UFS (Unix File System) (Ken Thompson, 1969)

4.2 BSD FFS (Fast File System) (McKusick, Joy,
Leffler, Fabry, 1983)

<latexit sha1_base64="ufTBxfWqtwx+eJvY+5eSg36SKfc=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkEr0Z9OIxilkgCaGn05M06VnofiOEkLMXES8K/pG/4F/4CXZm9BCXgoaiqpr36nmxFBod593KLS2vrK7l1wsbm1vbO8XdvaaOEsV4g0UyUm2Pai5FyBsoUPJ2rDgNPMlb3vhy7rfuuNIiCm9xEvNeQIeh8AWjaKSb7qxfLLm2k4L8T0rnH5Ci3i++dQcRSwIeIpNU647rxNibUoWCST4rdBPNY8rGdMin6X4zcmSkAfEjZV6IJFUXcjTQehJ4JhlQHOmf3lz8y+sk6J/1piKME+Qhywb5iSQYkXlZMhCKM5QTQyhTwmxI2IgqytCcpGCqO3aleuJWHPKbfFdvlm23apevy6XaRXYDyMMBHMIxuHAKNbiCOjSAgQ8P8AwvFrXurUfrKYvmrK8/+7AA6/UTOZOKeQ==</latexit>

}
Data blocks

<latexit sha1_base64="ufTBxfWqtwx+eJvY+5eSg36SKfc=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkEr0Z9OIxilkgCaGn05M06VnofiOEkLMXES8K/pG/4F/4CXZm9BCXgoaiqpr36nmxFBod593KLS2vrK7l1wsbm1vbO8XdvaaOEsV4g0UyUm2Pai5FyBsoUPJ2rDgNPMlb3vhy7rfuuNIiCm9xEvNeQIeh8AWjaKSb7qxfLLm2k4L8T0rnH5Ci3i++dQcRSwIeIpNU647rxNibUoWCST4rdBPNY8rGdMin6X4zcmSkAfEjZV6IJFUXcjTQehJ4JhlQHOmf3lz8y+sk6J/1piKME+Qhywb5iSQYkXlZMhCKM5QTQyhTwmxI2IgqytCcpGCqO3aleuJWHPKbfFdvlm23apevy6XaRXYDyMMBHMIxuHAKNbiCOjSAgQ8P8AwvFrXurUfrKYvmrK8/+7AA6/UTOZOKeQ==</latexit>

}
i-node blocksIncludes

 location of free

data blocks,

free inodes

storing an array of i-nodes

Multilevel index
Inode Array

at known location
on disk

file number =
inode number =
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37

File structure
Each file is a fixed, asymmetric tree, with fixed
size data blocks (e.g. 4KB) as its leaves

The root of the tree is the file’s inode, containing

metadata (more about it later)

a set of 15 pointers

first 12 point to data blocks

last three point to intermediate blocks, themselves
containing pointers…

#13: pointer to a block containing pointers to data blocks

#14: double indirect pointer

#15: triple indirect pointer (!)

Multilevel index
Inode Array

I-node

File

Metadata

Data
blocks

} 12 x
4KB =
48KB

indirect block

 contains pointers to data blocks

 4 Bytes entries
}1K x 4KB

= 4MB

double indirect block

 contains pointers to indirect blocks

} 1K x 1k x
4KB =
4GB

triple indirect block

 contains pointers to double indirect blocks } 1K x

1k x

1k x

4KB =
4TB

at known location
on disk

file number =
inode number =
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37

Multilevel index:
key ideas

Tree structure

efficient in finding blocks

High degree

efficient in sequential reads

once an indirect block is read, can
read 100s of data block

Fixed structure

simple to implement

Asymmetric

supports large files

small files don’t pay large
overheads

File

Metadata

Inode

array

Data

blocks

Good for small files…
I-node

File

Metadata

All blocks reached
by direct pointers

If instead all blocks were accessed through a
3-level index, a file occupying a single 4KB block
would require 16 KB:

a triple indirect block

a double indirect block

an indirect block

the 4KB data block

reading would require reading 5 blocks to
traverse the tree

…and for sparse files

File

Metadata

Consider file sparse.dat with two 4K blocks: one at offset 0;

 the other at offset 230

Triple

Indirect

 Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

What is the file’s size? ls -lgGh sparse.dat: 1.1.GB

What about disk usage? du -hs spase.dat: 16KB (!)

Reading from hole? FS creates a 0-filled buffer

Writing to hole? FS allocates storage blocks for data +
 any required indirect block

What else

is in an i-node?

Type

ordinary file

directory

symbolic link

special device

Size of the file (in bytes)

No. of links to the i-node

Owner (user id & group id)

Protection bits

Times: creation, last accessed, last modified

Inode

File

Metadata

Directory
A file that contains a collection of mapping from file
name to file inode

To look up a file, find the directory that contains the
mapping to the file’s inode

To find that directory, find the parent directory that
contains the mapping to that directory’s inode..

Good news: root directory has well-known number (2)

Documents

Music
griso.jpg

394

416
864

/Users/lorenzo ..
.

256
1061

Find file /Users/lorenzo/griso.jpg

Looking up a file

file 2

“/” bin 438

usr
Users 256

782

chiara 1197
maria
lorenzo 1061

294file 256

“/Users”

file 1061

“/Users/lorenzo”

Documents

griso.jpg

394

416

864

Music

file 864

“/Users/lorenzo/griso.jpg”

Directory Layout
Directory stored as a file

Linear search to find filename (small directories)

256 416 394 864

. .. Music

File 1061

/Users/lorenzo

Documents griso.jpg

1061 Free SpaceFree Space

End of File

Larger directories use B trees

searched by hash of file name

Reading a File
First, must open the file

open(“/CS4410/roster”, O_RDONLY)
Follow the directory tree, until we get to the inode
for “roster”

Read that inode

do a permission check

return a file descriptor fd

Then, for each read() that is issued:

read inode

read appropriate data block (depending on offset)

update last access time in inode

update file offset in in-memory open file table for fd

Read first 3 data blocks
from /CS4410/roster
data

bitmap
inode
bitmap

root
inode

CS4410
inode

roster
inode root data CS4410

data
roster

data[0]

roster
data[1]

roster
data[2]

open(CS4410)

read()

read()

read()

read()

read()

read()

read()

read()

write()

read()

read()

read()

write()

read()

read()

read()

write()

Writing a File
Must open the file, like before

But now may have to allocate a new data block

each logical write can generate up to five I/O ops

reading the free data block bitmap

writing the free data block bitmap

reading the file’s inode

writing the file’s inode to include pointer to the new block

writing the new data block

Creating a file is even worse!
read and write free inode bitmap

write inode

(read) and write directory data

write directory inode

and if directory
block is full,
must allocate
another block

Create /CS4410/roster &
Write first 3 Data Blocks

data
bitmap

inode
bitmap

root
inode

CS4410
inode

roster
inode

root

data

CS4410
data

roster

data[0]

roster
data[1]

roster
data[2]

create

(/CS4410/roster)

read()
read()

read()
read()

read()
write()

write()
read()
write()

write()

write()

read()
read()
write()

write()
write()

write()

read()
read()
write()

write()
write()

write()

read()
read()
write()

write()
write()

Caching
Reading a long path can cause a lot of I/O ops!

Cache aggressively!

early days: fixed sized cache for popular blocks

static partitioning can be wasteful

current: dynamic partitioning via unified page cache

virtual memory pages and file system blocks in a single
cache

Caching can significantly reduce disk I/O for reads

Buffering can reduce cost of writes

some blocks may be overwritten

batching helps with scheduling disk accesses

BSD FFS:

Fast File System

UFS treats disks as if they were RAM

files grab first free data block: seeks and fragmentation

FFS optimizes file system layout for how disks work

Smart locality heuristics

block group placement

optimizes placement for when a file data and metadata, and
other files within same directory, are accessed together

reserved space

gives up about 10% of storage to allow flexibility needed to
achieve locality

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new regular file is created, FFS looks for
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new regular file is created, FFS looks for
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Start of

block group

In use FreeFre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
block group placement

Start of

block group

Small file

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new regular file is created, FFS looks for
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
block group placement

Start of

block group

Large file

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups. Keep a superblock copy in
each block group

File Placement

when a new regular file is created, FFS looks for
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a
different block from the parent’s directory

Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Locality heuristics:
reserved space

When a disk is full, hard to
optimize locality

file may end up scattered
through disk

FFS presents applications with
a smaller disk

about 10%-20% smaller

user’s write that encroaches on
reserved space fails

super user still able to allocate
inodes to clean things upFre

e
spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB

Long File Exception
Blocks of a huge file not all in the same block group

or they will eat up all the blocks in the group!

Instead, 12 blocks in a group (direct index)

others divided in “chunks”

Locality lost when moving between chunks

choose chunk size to amortize cost of seeks

Say we want 90% of peak transfer, and transfer rate is 40MB/s

if positioning time (seek+rotation) is 10ms, we need a chunk large enough
that transfer takes 90ms

chunk size = 40MB
s X

1s
1000ms

90msX = 3.6 MB

In practice, FFS uses 4 MB chunks

Caching and Consistency
File systems maintain many data structures

Bitmap of free blocks and inodes

Directories

Inodes

Data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Caching and Consistency
File systems maintain many data structures

Bitmap of free blocks and inodes

Directories

Inodes

Data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Write-back caches

delay writes: higher performance at the cost of potential inconsistencies

Write-through caches

write synchronously but poor performance (fsync)

do we get consistency at least?

