
The Directory

The directory holds mappings between human-
friendly names (HFNs) and inode numbers


It stores two types of mappings:

Hard links


map a file’s HFN (its local path) to the file’s inode number


Symbolic (soft) links

Logically, map a file’s HFN (its local path) to the HFN of a 
different file

Implementation: maps a file’s HFN to the number of an 
inode that contains the HFN of a different file



Hard links
Creating file foo adds a hard link for file foo in the file’s 
directory


 Command ln oldpath newpath 

adds to the directory a hard link mapping HFN newpath to the 
inode number of the file with HFN oldpath 

Now two HFNs are mapping to the same inode! 

calls int link(const char *oldpath, const char *newpath) 

Removing a file through the rm [file] command invokes a 
call to int unlink(const char *pathname) 

removes from directory the hard link between pathname and 
corresponding inode number


File’s inode stores the number of hard links to it

inode reclaimed (file deleted) only when link count = 0; if file 
opened, wait to reclaim until file is closed
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Symbolic (Soft) links
More flexible than hard links 


can link to a directory

can link to files in another volume


A map between pathnames

to link newpathname to existingpathname for file inode1:


create a hard link between newpathname and new file inode2

store in inode2 the existingpathname for inode1


so, a symbolic link is really a file (inode2 in our example) of 
a third type


neither a regular file nor a directory


Created using ln, but with the -s flag 
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Permission Bits

File bestivy

leading - says bestivy is a regular file 


d is for directory; l is for soft link


Next nine characters are permission bits

rwx for owner, group, everyone


owner can read and write; group and others can just read


x set in a regular file means means file can be executed


x set in a directory that user/group/everybody is allow to cd to that 
directory 


can be set using chmod



File System Layout
File System is stored on disks


disk can be divided into one or more partitions

Sector 0 of disk: Master Boot Record (MBR). It contains:


bootstrap code (loaded and executed by firmware)


partition table (addresses of where partitions start & end)


First block of each partition has boot block

loaded by executing code in MBR and executed on boot

MBR

Free Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Partition 

Table

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4
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Persistent storage modeled as a sequence of N blocks
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The     uperblock

One logical superblock per file system

at a well-known location 


contains metadata about the file system, including

how many inodes

how many data blocks

where the inode table begins

may contain info to manage free inodes/data blocks


read first when mounting a file system



Storing Files

Files can be allocated in different ways

Contiguous allocation


all bytes together, in order


Linked Structure

Each points to the next block


Indexed Structure

Index block, pointing to many other blocks


Which is best?

For sequential access? Random access?

Large files? Small files? Mixed?



Contiguous Allocation

All bytes together, in order

Simple: only need start block and size

Efficient: one seek to read entire file

Fragmentation: external, and can be serious

Usability: User need to know file’s size at time of 
creation

file1 file2 file3 file4 file5

Used in CD-ROm, DVDs



Linked List Allocation

Each file is stored as a linked list of blocks

first word of each block points to next block

the rest of the block is data

File 
block 0

next

File 
block 1

next

File 
block 2

next

File 
block 3

next

File 
block 4

next

File A

Physical

Block 7 8 33 17 4

Space utilization: no external fragmentation

Simplicity: only need to find first block of each file

Performance: random access is slow

Implementation: blocks mix data and metadata



File Allocation Table 
(FAT) FS

Decouple data and metadata

reduces disk seeks (and enables 
caching!)

File 
block 0

next

File 
block 1

next

File 
block 2

next

File 
block 3

next

File 
block 4

next

7 8 33 17 4

Microsoft, late 70s
still widely used today 

thumb drives, camera cards, CD ROMs

DataMetadata

not to scale!

4

17

7
8

33



FAT File system

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)


array of 32-bit entries

one entry per block

file represented as a linked list 
of FAT entries

file # = index of first FAT entry 

Free space map

If data block i is free, 
then FAT[i] = 0

find free blocks by 
scanning FAT

Locality heuristics

As simple as next fit:


scan sequentially from 
last allocated entry and 
return next free entry


Can be improved through 
defragmentation

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*

Directory

Maps file name to FAT index


Directory

jack.txt 12

jill.txt 9



FAT File system

Advantages

simple!


per file, needs 
only start block


widely supported

no external 
fragmentation

no conflating data 
and metadata in 
the same block

Disadvantages

Poor locality


many file seeks unless entire FAT 
in memory

1 TB (240 bytes) disk, 4kb (212 
bytes block, 228 FAT entries; at 
4B/entry, 1 GB (!)


Poor random access

needs sequential traversal


Limited access control

no file owner or group ID

any user can read/write any file


No support for hard links

Volume and file size are limited


FAT entry is 32 bits, but top 4 are 
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB FS

file no bigger than 4GB


No support for advanced reliability 
techniques

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*



File System Layout

MBR

Free Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Partition 

Table

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4
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Super

block

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

Tree-based 

Multi-level Index

UFS (Unix File System) (Ken Thompson, 1969)


4.2 BSD FFS (Fast File System) (McKusick, Joy, 
Leffler, Fabry, 1983)

<latexit sha1_base64="ufTBxfWqtwx+eJvY+5eSg36SKfc=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkEr0Z9OIxilkgCaGn05M06VnofiOEkLMXES8K/pG/4F/4CXZm9BCXgoaiqpr36nmxFBod593KLS2vrK7l1wsbm1vbO8XdvaaOEsV4g0UyUm2Pai5FyBsoUPJ2rDgNPMlb3vhy7rfuuNIiCm9xEvNeQIeh8AWjaKSb7qxfLLm2k4L8T0rnH5Ci3i++dQcRSwIeIpNU647rxNibUoWCST4rdBPNY8rGdMin6X4zcmSkAfEjZV6IJFUXcjTQehJ4JhlQHOmf3lz8y+sk6J/1piKME+Qhywb5iSQYkXlZMhCKM5QTQyhTwmxI2IgqytCcpGCqO3aleuJWHPKbfFdvlm23apevy6XaRXYDyMMBHMIxuHAKNbiCOjSAgQ8P8AwvFrXurUfrKYvmrK8/+7AA6/UTOZOKeQ==</latexit>

}
Data blocks

<latexit sha1_base64="ufTBxfWqtwx+eJvY+5eSg36SKfc=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkEr0Z9OIxilkgCaGn05M06VnofiOEkLMXES8K/pG/4F/4CXZm9BCXgoaiqpr36nmxFBod593KLS2vrK7l1wsbm1vbO8XdvaaOEsV4g0UyUm2Pai5FyBsoUPJ2rDgNPMlb3vhy7rfuuNIiCm9xEvNeQIeh8AWjaKSb7qxfLLm2k4L8T0rnH5Ci3i++dQcRSwIeIpNU647rxNibUoWCST4rdBPNY8rGdMin6X4zcmSkAfEjZV6IJFUXcjTQehJ4JhlQHOmf3lz8y+sk6J/1piKME+Qhywb5iSQYkXlZMhCKM5QTQyhTwmxI2IgqytCcpGCqO3aleuJWHPKbfFdvlm23apevy6XaRXYDyMMBHMIxuHAKNbiCOjSAgQ8P8AwvFrXurUfrKYvmrK8/+7AA6/UTOZOKeQ==</latexit>

}
i-node blocksIncludes


 location of free 

data blocks,

free inodes

storing an array of i-nodes



Multilevel index 
Inode Array

at known location 
on disk


file number = 
inode number = 
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37



File structure
Each file is a fixed, asymmetric tree, with fixed 
size data blocks (e.g. 4KB) as its leaves


The root of the tree is the file’s inode, containing

metadata (more about it later)

a set of 15 pointers


first 12 point to data blocks

last three point to intermediate blocks, themselves 
containing pointers…


#13: pointer to a block containing pointers to data blocks


#14: double indirect pointer


#15: triple indirect pointer (!)



Multilevel index 
Inode Array

I-node

File 

Metadata

Data 
blocks

} 12 x 
4KB = 
48KB

indirect block

  contains pointers to data blocks

 4 Bytes entries
}1K x 4KB 

= 4MB

double indirect block

  contains pointers to indirect blocks

} 1K x 1k x 
4KB = 
4GB

triple indirect block

  contains pointers to double indirect blocks } 1K x 


1k x 

1k x

4KB = 
4TB

at known location 
on disk


file number = 
inode number = 
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37



Multilevel index:  
key ideas

Tree structure

efficient in finding blocks


High degree

efficient in sequential reads


once an indirect block is read, can 
read 100s of data block


Fixed structure

simple to implement


Asymmetric

supports large files

small files don’t pay large 
overheads

File 

Metadata

Inode

array

Data

blocks



Good for small files…
I-node

File 

Metadata

All blocks reached 
by direct pointers

If instead all blocks were accessed through a 
3-level index, a file occupying a single 4KB block 
would require 16 KB:


a triple indirect block

a double indirect block

an indirect block

the 4KB data block

reading would require reading 5 blocks to 
traverse the tree



…and for sparse files

File 

Metadata

Consider file sparse.dat with two 4K blocks: one at offset 0; 

                                 the other at offset 230

Triple 

Indirect

 Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

What is the file’s size?  ls -lgGh sparse.dat: 1.1.GB

What about disk usage?  du -hs spase.dat: 16KB (!)

Reading from hole?  FS creates a 0-filled buffer

Writing to hole?  FS allocates storage blocks for data +  
         any required indirect block



What else 

is in an i-node?

Type

ordinary file

directory

symbolic link

special device 


Size of the file (in bytes)


No. of links to the i-node


Owner (user id & group id)


Protection bits


Times: creation, last accessed, last modified

Inode

File 

Metadata



Directory
A file that contains a collection of mapping from file 
name to file inode


To look up a file, find the directory that contains the 
mapping to the file’s inode


To find that directory, find the parent directory that 
contains the mapping to that directory’s inode..


Good news: root directory has well-known number (2) 

Documents

Music
griso.jpg

394

416
864

/Users/lorenzo ..
.

256
1061



Find file /Users/lorenzo/griso.jpg

Looking up a file

file 2

“/” bin 438

usr
Users 256

782

chiara 1197
maria
lorenzo 1061

294file 256

“/Users”

file 1061

“/Users/lorenzo”

Documents

griso.jpg

394

416

864

Music

file 864

“/Users/lorenzo/griso.jpg”



Directory Layout
Directory stored as a file


Linear search to find filename (small directories)

256 416 394 864

. .. Music

File 1061

/Users/lorenzo

Documents griso.jpg

1061 Free SpaceFree Space

End of File

Larger directories use B trees 

searched by hash of file name



Reading a File
First, must open the file


open(“/CS4410/roster”, O_RDONLY) 
Follow the directory tree, until we get to the inode 
for “roster”

Read that inode


do a permission check

return a file descriptor fd


Then, for each read() that is issued:

read inode

read appropriate data block (depending on offset)

update last access time in inode

update file offset in in-memory open file table for fd



Read first 3 data blocks 
from /CS4410/roster
data 

bitmap
inode 
bitmap

root 
inode

CS4410 
inode

roster 
inode root data CS4410 

data
roster

data[0]

roster 
data[1]

roster 
data[2]

open(CS4410)

read()

read()

read()

read()

read()

read()

read()

read()

write()

read()

read()

read()

write()

read()

read()

read()

write()



Writing a File
Must open the file, like before


But now may have to allocate a new data block

each logical write can generate up to five I/O ops


reading the free data block bitmap


writing the free data block bitmap


reading the file’s inode


writing the file’s inode to include pointer to the new block


writing the new data block


Creating a file is even worse! 
read and write free inode bitmap


write inode


(read) and write directory data


write directory inode

and if directory 
block is full,
must allocate 
another block



Create /CS4410/roster & 
Write first 3 Data Blocks

data 
bitmap

inode 
bitmap

root 
inode

CS4410 
inode

roster 
inode

root 

data

CS4410 
data

roster

data[0]

roster 
data[1]

roster 
data[2]

create

(/CS4410/roster)

read()
read()

read()
read()

read()
write()

write()
read()
write()

write()

write()

read()
read()
write()

write()
write()

write()

read()
read()
write()

write()
write()

write()

read()
read()
write()

write()
write()



Caching
Reading a long path can cause a lot of I/O ops!


Cache aggressively!

early days: fixed sized cache for popular blocks


static partitioning can be wasteful


current: dynamic partitioning via unified page cache

virtual memory pages and file system blocks in a single 
cache


Caching can significantly reduce disk I/O for reads


Buffering can reduce cost of writes

some blocks may be overwritten

batching helps with scheduling disk accesses 



BSD FFS: 

Fast File System

UFS treats disks as if they were RAM

files grab first free data block: seeks and fragmentation


FFS optimizes file system layout for how disks work


Smart locality heuristics

block group placement


optimizes placement for when a file data and metadata, and 
other files within same directory, are accessed together


reserved space

gives up about 10% of storage to allow flexibility needed to 
achieve locality



Locality heuristics: 
block group placement

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new regular file is created, FFS looks for 
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

SB

SB

SB



Locality heuristics: 
block group placement

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new regular file is created, FFS looks for 
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement
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trade short term for long term locality
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Locality heuristics: 
block group placement

Start of

block group

Small file

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new regular file is created, FFS looks for 
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality
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Locality heuristics: 
block group placement

Start of

block group

Large file

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups. Keep a superblock copy in 
each block group


File Placement

when a new regular file is created, FFS looks for 
inodes in the same block as the file’s directory

when a new directory is created, FFS places it in a 
different block from the parent’s directory


Data Placement

first free heuristics

trade short term for long term locality
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Locality heuristics: 
reserved space

When a disk is full, hard to 
optimize locality


file may end up scattered 
through disk


FFS presents applications with 
a smaller disk


about 10%-20% smaller

user’s write that encroaches on 
reserved space fails

super user still able to allocate 
inodes to clean things upFre
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Long File Exception
Blocks of a huge file not all in the same block group


or they will eat up all the blocks in the group!

Instead, 12 blocks in a group (direct index)

others divided in “chunks”


Locality lost when moving between chunks

choose chunk size to amortize cost of seeks

Say we want 90% of peak transfer, and transfer rate is 40MB/s

if positioning time (seek+rotation) is 10ms, we need a chunk large enough 
that transfer takes 90ms


chunk size =  40MB
s X

1s
1000ms

90msX = 3.6 MB

In practice, FFS uses 4 MB chunks



Caching and Consistency
File systems maintain many data structures


Bitmap of free blocks and inodes


Directories


Inodes


Data blocks


Data structures cached for performance

works great for read operations...


...but what about writes?
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Write-back caches

delay writes: higher performance at the cost of potential inconsistencies


Write-through caches

write synchronously but poor performance (fsync)


do we get consistency at least?


