

Manufacturer of Quality Heat Exchangers

Fixed Tube Bundle / Liquid Cooled

HEAT EXCHANGERS

- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 300 PSI.
- Operating temperature 300 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

AB, SAE, STS, & EAB Series overview

AB Series

Fixed tube construction heat exchangers with NPT connections. Made of brass with copper cooling tubes and cast iron end bonnets. Standard sizes from 2" through 8" diameters, and from 1.4 to 308 sq.ft. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tubes, bronze bonnets and zinc anodes. Can be customized to fit your requirements.

Optional 10" diameter units in brass are available upon request.

SAB Series

Similar to AB series with the exception of steel shell material. For use in applications where the shell fluid is non-corrosive with steel. Offered in 5" through 8" shell diameter.

SAE Series

Similar to AB series with the exception of the shell ports. SAE series from 2" through 6" diameter has SAE O-ring strait thread shell port connections. Size 8" diameter has SAE code 61 four bolt flange shell port connections.

SSAE Series

Similar to SAE series with the exception of steel shell material. For use in applications where the shell fluid is non-corrosive with steel. *Offered in 5" through 8" shell diameter.*

STS Series

Similar in design to AB series with fixed tube construction and NPT connections made of all 316 stainless steel. Standard sizes from 2" through 8" diameters, and from 1.4 to 308 sq.ft. Standard one, two and four pass models are available. Larger diameters available upon request. Can be customized to fit your requirements.

EAB Series

Expansion bellow minimizes the effects of differential expansion and contraction between the shell and cooling tubing, prolonging the overall life of the heat exchanger by reducing fatigue. Fixed tube construction heat exchangers with NPT connections. Made of brass with 90/10 copper nickel cooling tubes, stainless steel expansion bellows, and cast iron end bonnets. Standard sizes from 3.5" through 8" diameters, and from 3.6 to 308 sq.ft. Standard one, two and four pass models are available.

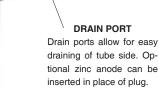
AB, SAE, STS, & EAB Series construction

TUBE JOINT

Roller expanded tube joint to integral forged hub.

THREAD CNC precision threading to provide accurate leakproof connections. BAFFLES

CNC manufactured baffles to provide maximum turbulence and heat transfer with a minimum fluid pressure drop.


FINISH

Gray semigloss enamel. Can be used as a base for additional coats.

CAST BONNET Provides fluid into tubes with minimum restriction. One, two, or four pass interchangeability.

MOUNTING BRACKET

Heavy gauge steel mounting brackets are adjustable in orientations to 360 degrees.

FLOW CAVITY

Generously sized to

allow for minimum pressure drop and more

uniform flow.

FULL FACE GASKET Full-face composite gasket.

Options

FORGED HUB Premium quality forging with full opening designed for minimum

pressure drop.

BUNDLE ASSEMBLY

CNC precision manufactured parts to guarantee a close fit between the baffles, tubes, and shell. Clearances are minimized to provide for maximum heat transfer.

Example Model

		٨B	- 1204 - C 4				
Model AB SAB SAE SSAE STS EAB	Shell Diameter 400 = 2.13" 700 = 3.65" 1000 = 5.13" 1200 = 6.13" 1600 = 8.00"	Effective Tube Length (9" increments)	Baffle Spacing Code A = 1 1/8" B = 2 1/4" C = 4 1/2" D = 9 " E = 18 "	Cooling Tube Diamenter 4 = 1/4" 6 = 3/8" 10 = 5/8"	Tube Side Passes SP = 1 pass TP = 2 pass FP = 4 pass	Z = 1	Anode Zinc Anode 2 Zinc Anode etc. End Bonnets Blank = Cast Iron <i>Options</i> B = Bronze

UNIT CODING

STANDARD CONSTRUCTION MATERIALS & RATINGS

Standard Model	AB Series	SAB & SSAE Series*	SAE Series	STS Series	EAB Series	Standard Unit Ratings
Shell	Brass	Steel	Brass	316 Stainless Steel	Steel	Operating Pressure
Tubes	Copper	Copper	Copper	316 Stainless Steel	90/10 Copper Nickel	Tubes150 psig
Baffle	Brass	Steel	Brass	316 Stainless Steel	Brass	
Integral End Hub	Forged Brass	Forged Brass	Forged Brass	316 Stainless Steel	Forged Brass	Operating Pressure
End Bonnets	Cast Iron	Cast Iron	Cast Iron	316 Stainless Steel	Cast Iron	Shell300 psig
Mounting Brackets	Steel	Steel	Steel	Steel	Steel	
Gasket	Hypalon Composite	Hypalon Composite	Hypalon Composite	Hypalon Composite	High Temp Gasket	Operating Temperature
Expansion Bellows	_	-	-	-	Stainless Steel	300 °F
				*Offered i	n 5" through 8" shell diar	neter.

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Rou

3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

3

fax: 1 (847) 731-1010

AB, SAE, STS, & EAB Series selection

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other fluids that are commonly used with shell & tube heat exchangers.

Terms	Kw	= Kilowatt (watts x 1000)	
GPM = Gallons Per Minute	T :	= Hot fluid entering temperature in °F	
	T _{out}	= Hot fluid exiting temperature in °F	
CN = Constant Number for a given fluid	t in	= Cold fluid temperature entering in °F	
ΔT = Temperature differential across the potential	t _{out}	= Cold fluid temperature exiting in °F	
PSI = Pounds per Square Inch (pressure) of the operating side of the system	Out	= BTU/HR	
MHP = Horsepower of the electric motor driving the hydraulic pump	Ŷ		

For example purposes, a hydraulic system has a 125 HP (93Kw) electric motor installed coupled to a pump that produces a flow of 80 GPM @ 2500 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 5.3° F. Even though our return line pressure operates below 100 psi, we must calculate the system heat load potential (Q) based upon the prime movers (pump) capability. We can use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

Formula	Example	Constant for a given fluid (CN)
A) Q = GPM x CN x actual $\triangle T$	A) $Q = 80 \times 210 \times 5.3^{\circ}F = 89,040 \text{ BTU/HR}$	
B) Q = [(PSI x GPM) / 1714] x (v) x 2545	в) Q =[(2500x80)/1714] x .30 x 2545 = 89,090 вти/нг	1) OilCN = 210
c) $Q = MHP x (v) x 2545$	с) Q =125 x .30 x 2545 = 95,347 вти/нг	2) Water CN = 500
D) $Q = Kw$ to be removed x 3415	D) $Q = 28 \times 3415 = 95,620 \text{ btu/hr}$	3) 50% E. Glycol CN = 450
E) $Q = HP$ to be removed x 2545	е) Q =37.5 x 2545 = 95,437 вти/нг	

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid flow rate to derive the cold side \triangle T. If your water flow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

FORMULA HOT FLUID $\triangle T = Q$ Oil $\overline{CN \times GPM}$	EXAMPLE $\Delta \mathbf{T} = \frac{89,090 \text{ BTU/hr} (\text{from step 1,example B})}{210 \text{ CN x 80GPM}} = 5.3^{\circ}\text{F} = \Delta \text{T} \text{ Rejected}$
$\frac{\text{COLD FLUID} \bigtriangleup \mathbf{t}}{\text{Water}} = \frac{\text{BTU / hr}}{\text{CN x GPM}}$	$\triangle \mathbf{t} = \frac{89,090 \text{ BTU/hr}}{500 \text{ CN x 40GPM (for a 2:1 ratio)}} = 4.5^{\circ}\text{F} = \triangle t \text{ Absorbed}$
$\begin{array}{rcl} \mathbf{T}_{in} &=& \text{Hot Fluid entering temperature in degrees F} \\ \mathbf{T}_{out} &=& \text{Hot Fluid exiting temperature in degrees F} \\ \mathbf{t}_{in} &=& \text{Cold Fluid entering temperature in degrees F} \\ \mathbf{t}_{out} &=& \text{Cold Fluid exiting temperature in degrees F} \end{array}$	$T_{in} = 125.3 \text{ °F} T_{out} = 120.0 \text{ °F} t_{in} = 70.0 \text{ °F} t_{out} = 74.5 \text{ °F} $
$\frac{\mathbf{T}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{out}} = \frac{\mathbf{S}[\text{smaller temperature difference}]}{\mathbf{L} [\text{larger temperature difference}]} = \left(\frac{\mathbf{S}}{\mathbf{L}}\right)$	$\frac{120.0^{\circ}\text{F} - 70.0^{\circ}\text{F} = 50.0^{\circ}\text{F}}{125.3^{\circ}\text{F} - 74.5^{\circ}\text{F} = 50.8^{\circ}\text{F}} = \frac{50.0^{\circ}\text{F}}{50.8^{\circ}\text{F}} = .984$

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

To calculate the LMTD please use the following method;

L = Larger temperature difference from step 2. M = S/L number (LOCATED IN TABLE A).

$LMTD_{i} = L \times M$

LMTD₁ = 50.8 x .992 (FROM TABLE A) = 50.39

To correct the LMTD, for a multipass heat exchangers calculate **R** & **K** as follows:

FORMULA

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}} \qquad \mathbf{R} = \frac{125.3^{\circ}F - 120^{\circ}F}{74.5^{\circ}F - 70^{\circ}F} = \frac{5.3^{\circ}F}{4.5^{\circ}F} = \{1.17 = R\}$$

EXAMPLE

$$= \frac{t_{out} - t_{in}}{T_{in} - t_{in}} \qquad \mathbf{K} = \frac{74.5^{\circ}F - 70^{\circ}F}{124.5^{\circ}F - 70^{\circ}F} = \frac{4.5^{\circ}F}{55.4^{\circ}F} = \{0.081 = \mathbf{K}\}$$

Locate the correction factor CF_T (FROM TABLE B) $LMTD_{c} = LMTD_{i} \times CF_{B}$ LMTD_c = 50.39 x 1 = **50.39**

note: AIHTI reserves the right to make reasonable design changes without notice.

Κ

STEP 4: Calculate the area required

Required Area sq.ft. =	Q (BTU / HR)
Kequireu mea squit. –	$LMTD_{c} \ge U$ (from table C)

 $\frac{89,090}{50.39 \text{ x } 100} = 17.68 \text{ sq.ft.}$

STEP 5: Selection

R

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits your flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

				Entemple	
Oil Flow Rate	=	80 GPM	=	Series Required from Table $E =$	1200 Series
				Baffle Spacing from Table $E =$	C baffle
Water Flow Rate	=	40 GPM	=	Passes required in 1200 series $=$	4 (FP)

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate.

Example Required Area = 17.68sq.ft Closest model required based upon sq.ft. & series= AB-1202-C6-FP

If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

TABLE A- FACTOR M/LMTD = L x M

S/L	М	S/L	М	S/L	М	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

TABLE I	D- Surfa	ce Area							
Model	Surfac	e Area in	Sq.ft.	Model	Surface Area in Sq.ft.				
Number	1/4" O.D Tubing	3/8" O.D Tubing	5/8 O.D Tubing	Number	1/4" O.D Tubing	3/8" O.D Tubing	5/8 O.D Tubing		
AB-401	1.4	_	_	AB-1602	44.4	30.3	17.6		
AB-402	3.0	_	-	AB-1603	66.3	45.3	26.5		
AB-403	4.6	_	_	AB-1604	88.3	60.3	35.3		
				AB-1605	110.3	75.6	44.1		
AB-701	3.6	2.6	-	AB-1606	132.3	90.4	53.0		
AB-702	7.3	5.2	_	AB-1607	154.3	105.4	61.8		
AB-703	11.1	7.9	_	AB-1608	176.3	120.4	70.6		
AB-704	14.9	10.6	-	AB-1609	197.9	135.2	79.5		
AB-705	18.7	13.3	-	AB-1610	219.9	150.2	88.3		
				AB-1611	241.9	165.2	97.1		
AB-1002	17.7	11.2	5.9	AB-1612	263.9	180.2	105.9		
AB-1003	26.5	16.8	8.8	AB-1613	285.9	195.2	114.7		
AB-1004	35.4	22.4	11.8						
AB-1005	44.3	28.0	14.7	AB-2004	155.1	110.7	60.8		
AB-1006	53.2	33.6	17.6	AB-2005	193.8	138.4	76.1		
				AB-2006	232.6	166.1	91.3		
AB-1202	25.5	17.9	8.8	AB-2007	271.4	193.8	106.5		
AB-1203	38.0	26.7	13.2	AB-2008	310.2	221.4	121.7		
AB-1204	50.3	35.4	17.6	AB-2009	349.0	249.1	137.0		
AB-1205	63.0	44.2	22.1	AB-2010	387.7	276.8	152.2		
AB-1206	75.6	53.2	26.5	AB-2011	426.5	304.5	167.4		
AB-1207	88.2	62.0	30.9	AB-2012	465.3	332.2	182.7		
AB-1208	100.6	70.7	35.3	AB-2013	504.1	359.9	197.9		
AB-1209	113.0	79.4	39.6	AB-2014	542.9	387.6	213.2		
AB-1210	125.4	88.1	44.1	AB-2015	581.7	415.3	228.4		

TABLE B- LMTD correction factor for Multipass Exchangers

									••••	· • · · · · r				.90.	•
	.05	.1	.15	.2	.25	.3	.35	.4	.45	.5	.6	.7	.8	.9	1.0
.2	1	1	1	1	1	1	1	.999	.993	.984	.972	.942	.908	.845	.71
.4	1	1	1	1	1	1	.994	.983	.971	.959	.922	.855	.70		
.6	1	1	1	1	1	.992	.980	.965	.948	.923	.840				
.8	1	1	1	1	.995	.981	.965	.945	.916	.872					
1.0	1	1	1	1	.988	.970	.949	.918	.867	.770					
2.0	1	1	.977	.973	.940	.845	.740								
3.0	1	1	.997	.933	.835										
4.0	1	.993	.950	.850											
5.0	1	.982	.917												
6.0	1	.968	.885												
8.0	1	.930													
10.0	.996	.880													
12.0	.985	.720													
14.0	.972														
16.0	.958														
18.0	.940														
20.0	.915														

TABLE E- Flow Rate for Shell & Tube

Shell	Max. I	iquid	Flow ·	- Shel	l Side	Liquid Flow - Tube Side					
dia .		Baffl	e Spa	cing		S	Ρ	Т	P	FP	
Code	Α	В	С	D	Е	Min.	Max.	Min.	Max.	Min.	Max.
400	10	15	20	-	-	3.5	21	-	-	-	-
700	17	29	30	35	-	9	61	4.5	30	2.2	15
1000	24	48	68	70	-	20	120	10	70	5.0	37
1200	29	56	105	115	120	30	250	15	112	7.5	56
1600	38	70	150	200	220	57	460	29	180	14	90
2000	-	-	190	370	550	90	650	45	320	25	160

TABLE C

U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

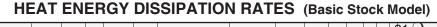
note: AIHTI reserves the right to make reasonaure uesign changes without notice.

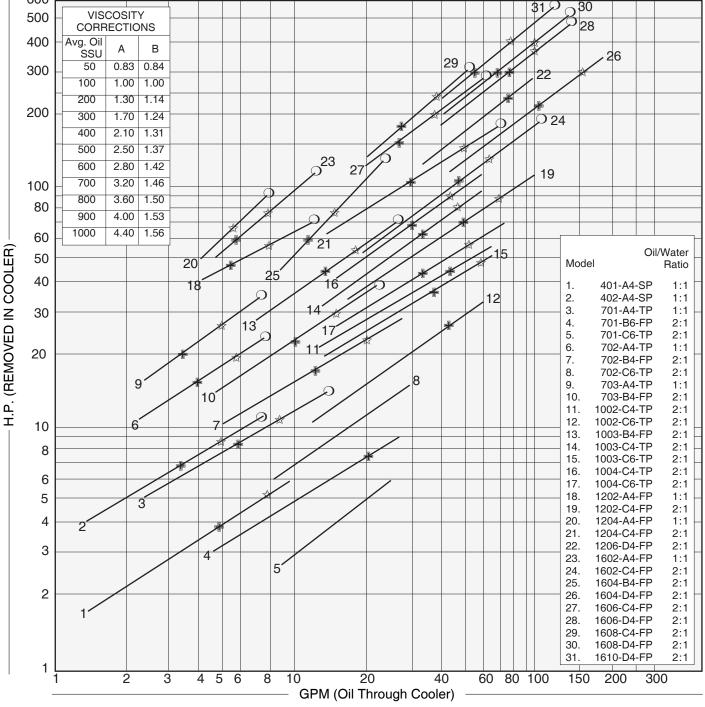
Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel:

AB, SAE, STS, & EAB Series performance

Instructions

600

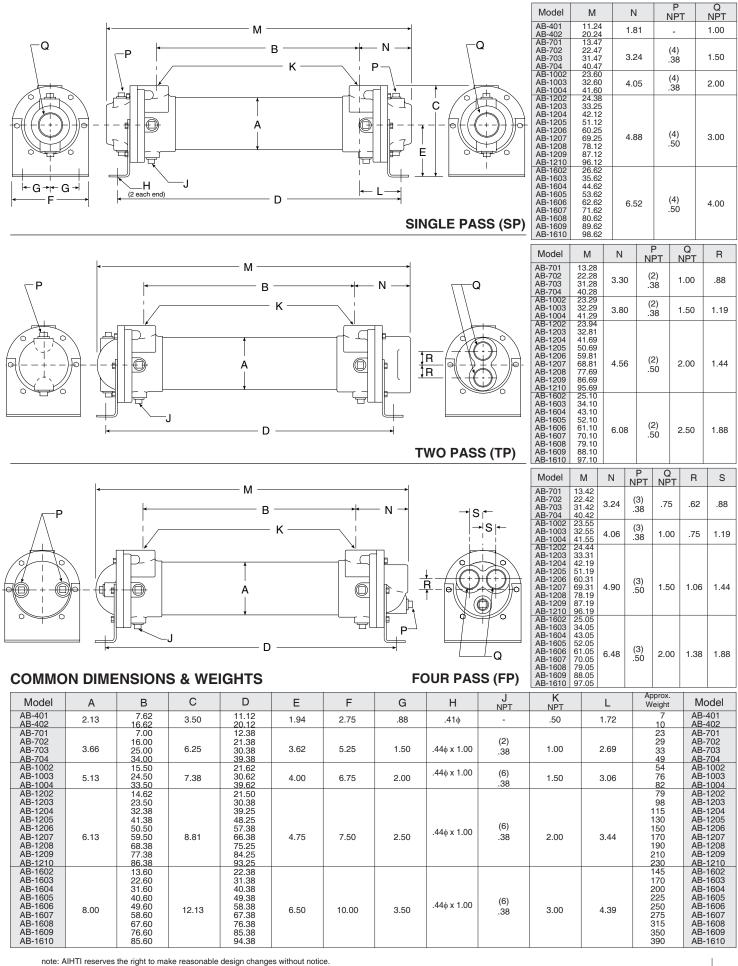

The selection chart provided contains an array of popular sizes for quick sizing. It does not provide curves for all models available. Refer to page 4 & 5 for detailed calculation information.


Computer selection data sheets for standard or special models are available through the engineering department of American Industrial. To use the followings graphs correctly, refer to the instruction notes "1-5".

- HP Curves are based upon a 40°F approach temperature; for example: oil leaving a cooler at 125°F, using 85°F cooling water (125°F - 85°F = 40°F).
- 2) The oil to water ratio of 1:1 or 2:1 means that for every 1 gallon of oil circulated, a minimum of 1 or 1/2 gallon (respectively) of 85°F water must be circulated to match the curve results.

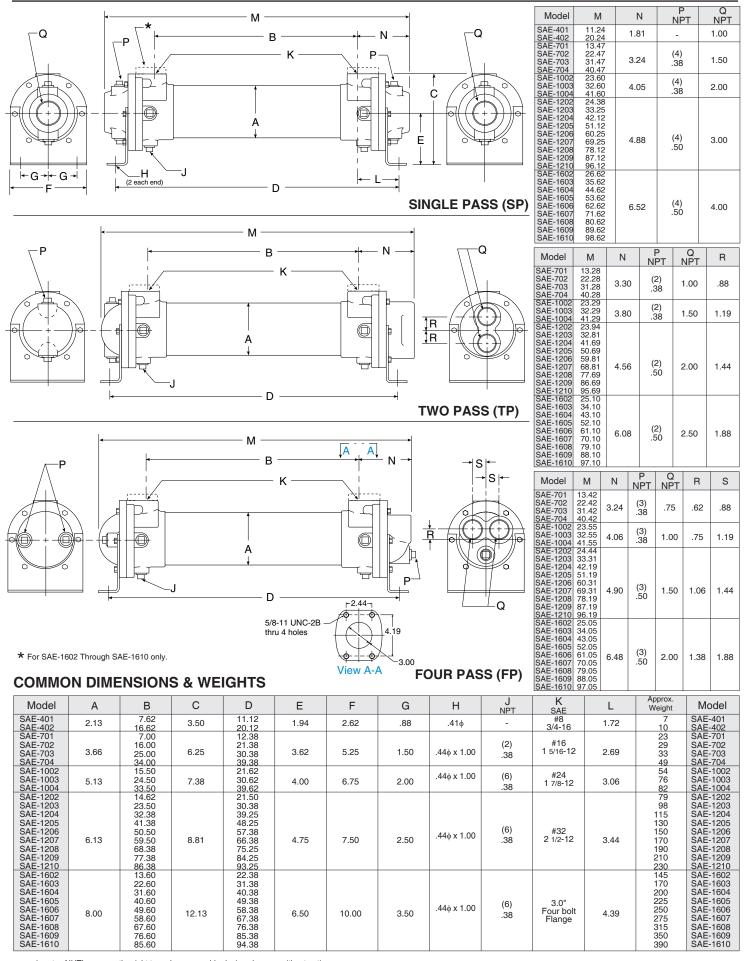
- OIL PRESSURE DROP CODING:
 [●] = 5 psi;
 [☆] = 10 psi;
 [○] = 20 psi;
 [△] = 50psi. Curves that have no pressure drop code symbols indicate
 that the oil pressure drop is less than 5 psi for the flow rate shown.
- 4) Pressure Drop is based upon oil with an average viscosity of 100 SSU. If the average oil viscosity is other than 100 SSU, then multiply the indicated Pressure Drop by the corresponding value from corrections table A.
- 5) Corrections for approach temperature and oil viscosity are as follows:

H.P.(
$$_{\text{In Cooler}}^{\text{Removed}}$$
) = H.P.($_{\text{Heat Load}}^{\text{Actual}}$) x ($\frac{40}{\text{Actual Approach}}$) x B.



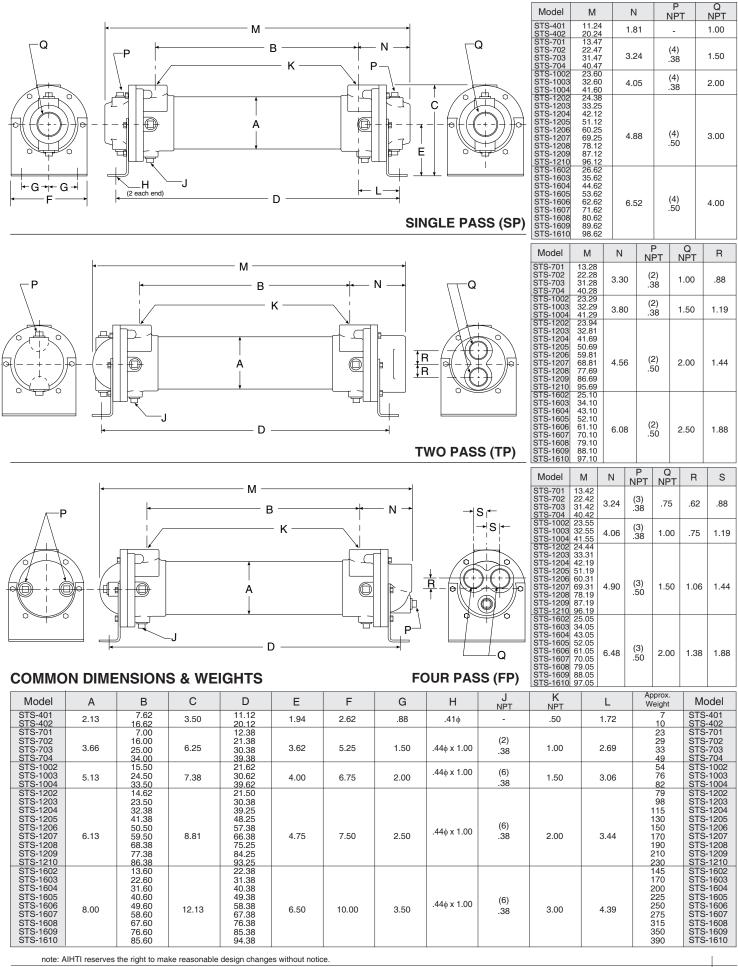
note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Ro

AB Series dimensions


P

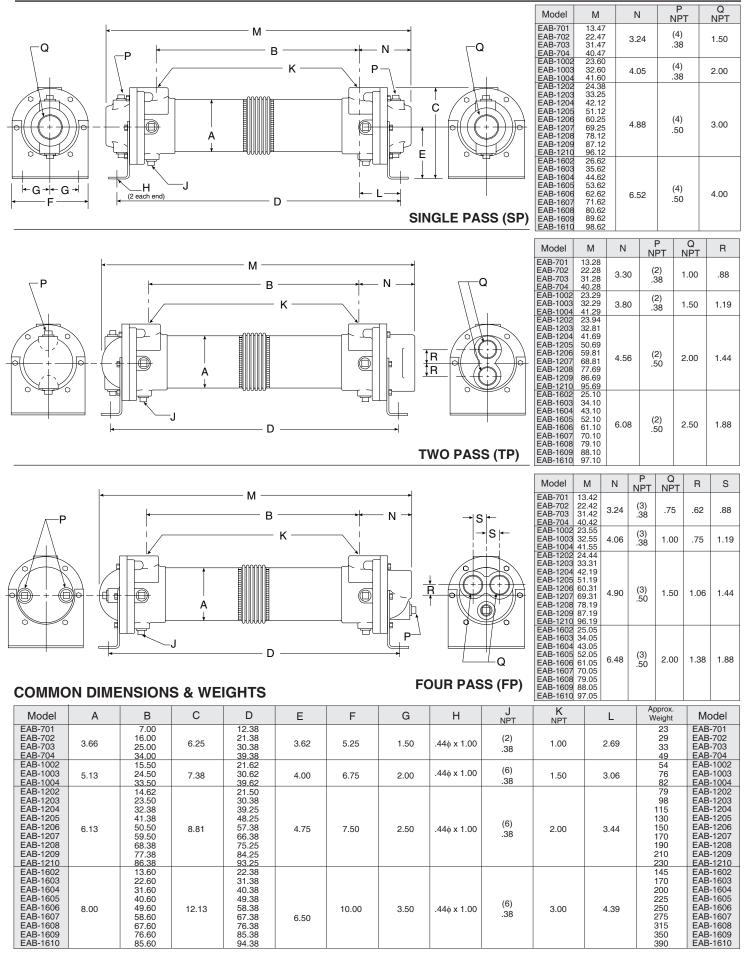
Copyright © 2004 American Industrial Heat Transfer, Inc.

3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000


SAE Series dimensions

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Ro

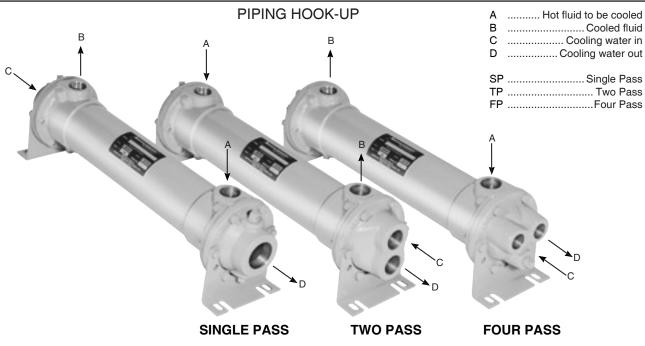
Inc. 3905 Route 173 Zion, IL 60099


STS Series dimensions

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Rou

³⁹⁰⁵ Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

EAB Series dimensions



note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Ro

c. 3905 Route 173 Zion, IL 60099

fax: 1 (847) 731-1010

AB, SAE, STS, & EAB Series installation & maintenance

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of flushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.
- Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped

empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.

5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the hot fluid to be cooled through the shell side and the cold fluid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock.

note: AIHTI reserves the right to make reasonable design changes without notice.

AB, SAE, STS, & EAB Series installation & maintenance

In instances where the fluids are required to be reversed, *hot fluid in the tubes and cold fluid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a fluid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the complete bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) When installing a series EAB heat exchanger (expansion bellow), it is recommended to use a shoulder bolt to allow the heat exchanger to move freely while expanding and contracting due to high differential temperatures.

i) It is recommended to use flexible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate flow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high flow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

j) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side fluid and the entering tube side fluid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the fluids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a floating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

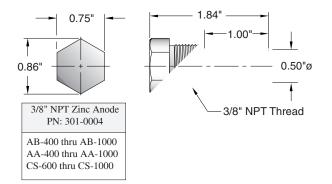
k) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the flow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water flow.

I) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external fluid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to flush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic fluid is in question, the shell side should be disconnected and flushed on a yearly basis with a clean flushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be flushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.


c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor fluid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, flush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes. d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, flow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

2.70" 2.70" 1.75" 1.75" 0.63"ø 1/2" NPT Zinc Anode PN: 301-0003 AB-1200 thru AB-2000 AA-1200 thru AB-2000 CS-1200 thru CS-1700

note: AIHTI reserves the right to make reasonable design changes without notice.

Manufacturer of Quality Heat Exchangers

Fixed Tube Bundle / Liquid Cooled

HEAT EXCHANGERS

- High thermal capacity.
- Large flow capacity.
- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 225 PSI.
- Operating temperature 250 °F.

- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

AB 2000 Series selection

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other fluids that are commonly used with shell & tube heat exchangers.

Terms	Kw = Kilowatt (watts x 1000)
GPM = Gallons Per Minute	T_{in} = Hot fluid entering temperature in °F
CN = Constant Number for a given fluid	T_{out}^{m} = Hot fluid exiting temperature in °F
$\triangle T$ = Temperature differential across the potential	t_{in} = Cold fluid temperature entering in °F
PSI = Pounds per Square Inch (pressure) of the operating side of the system	t_{in} = Cold fluid temperature entering in °F
MHP = Horsepower of the electric motor driving the hydraulic pump	
	Q = BTU/HR

For example purposes, a hydraulic system has a 250 HP (186Kw) electric motor installed coupled to a pump that produces a flow of 200 GPM @ 2000 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 4.3°F. Even though our return line pressure operates below 100 psi, we must calculate the system heat load potential (Q) based upon the prime movers (pump) capability. We can use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

FORMULA A) $Q = GPM \times CN \times actual \triangle T$	Ехамрее а) Q =200 x 210 x 4 .3°F = 180,600 вти/нг	Constant for a given fluid (CN)
B) Q = [(PSI x GPM) / 1714] x (v) x 2545 c) Q = MHP x (v) x 2545 b) Q = Kw to be removed x 3415 e) Q = HP to be removed x 2545	 B) Q =[(2000x200)/1714] x .30 x 2545 = 178,179 bTU/HR C) Q =250 x .30 x 2545 = 190,875 bTU/HR D) Q =186 x .30 x 3415 = 190,557 bTU/HR E) Q =75 x 2545 = 190,875 bTU/HR 	1) OilCN = 210 2) WaterCN = 500 3) 50% E. GlycolCN = 450

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid flow rate to derive the cold side $\triangle T$. If your water flow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

FORMULA HOT FLUID $\triangle T = Q$ Oil $CN \times GPM$	$\Delta \mathbf{T} = \frac{190,875 \text{ BTU/hr}}{210 \text{ CN x } 200\text{ GPM}} (\text{from step 1, item c}) = 4.54^{\circ}\text{F} = \Delta \text{T} \text{ Rejected}$
$\begin{array}{ccc} \textbf{COLD FLUID} \bigtriangleup \mathbf{t} &= & \underline{BTU / hr} \\ \textbf{Water} & & \overline{CN \ x \ GPM} \end{array}$	$\triangle \mathbf{t} = \frac{190,875 \text{ BTU/hr}}{500 \text{ CN x 100GPM} \text{ (for a 2:1 ratio)}} = 3.81^{\circ}\text{F} = \triangle t \text{ Absorbed}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{in} = 104.54 \text{ °F} T_{out} = 100.0 \text{ °F} t_{in} = 90.0 \text{ °F} t_{out} = 93.81 \text{ °F} $
$\frac{\mathbf{T}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{out}} = \frac{\mathbf{S}[\text{smaller temperature difference}]}{\mathbf{L} [\text{larger temperature difference}]} = \left(\frac{\mathbf{S}}{\mathbf{L}}\right)$	$\frac{100.0^{\circ}\text{F} - 90.0^{\circ}\text{F} = 10.0^{\circ}\text{F}}{104.54^{\circ}\text{F} - 93.81^{\circ}\text{F} = 10.73^{\circ}\text{F}} = \frac{10.0^{\circ}\text{F}}{10.73^{\circ}\text{F}} = .931$

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

To calculate the LMTD please use the following method; $LMTD_i = L \times M$ (L = Larger temperature difference from step 2.) x (M = S/L number (LOCATED IN TABLE A)) LMTD_i = 10.73 x .964 (FROM TABLE A) = 10.34

To correct the LMTD_i for a multipass heat exchangers calculate **R** & **K** as follows:

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}} \qquad \mathbf{R} = \frac{104.54^{\circ}F - 100^{\circ}F}{93.81^{\circ}F - 90^{\circ}F} = \frac{4.54^{\circ}F}{3.81^{\circ}F} = \{1.191=R\} \qquad \begin{bmatrix} \text{Locate the correction factor } CF_B \\ (FROM TABLE B) \\ LMTD_c = LMTD_i \times CF_B \\ LMTD_c = 10.34 \times .98 = 10.13 \end{bmatrix}$$
$$\mathbf{K} = \frac{t_{out} - t_{in}}{T_{in} - t_{in}} \qquad \mathbf{K} = \frac{93.81^{\circ}F - 90^{\circ}F}{104.54^{\circ}F - 90^{\circ}F} = \frac{3.81^{\circ}F}{14.54^{\circ}F} = \{0.262=K\}$$

TABLE C

TABLE E- Flow Rate for Shell & Tube

Shell	Max. Liquid Flow - Shell Side						Liqui	d Flov	v - Tuł	oe Sid	е
dia .	Baffle Spacing					S	P	Г	Р	F	۶P
Code	Α	В	С	D	E	Min.	Max.	Min.	Max.	Min.	Max.
2000	-	-	190	370	550	90	650	45	320	25	160

U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

1/

Eens and

STEP 4: Calculate the area required

Required Area sq.ft. =

Q (BTU / HR) LMTD_a x U (from table C) $\frac{190,875}{10.13 \text{ x } 100} = 188.4 \text{ sq.ft.}$

STEP 5: Selection

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits your flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers.

Example Oil Flow Rate = 200 GPM = Series Required from Table E = **2000 Series**

E = D baffle es = 4 (FP)

Water Flow Rate = 100 GPM = Passes required in 2000 series = 4 (FP)b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate. Example

Required Area = 188.4 sq.ft Closest model required based upon sq.ft. & series = **AB-2007-D6-FP** If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

TABLE A- FACTOR M/LMTD = L x M

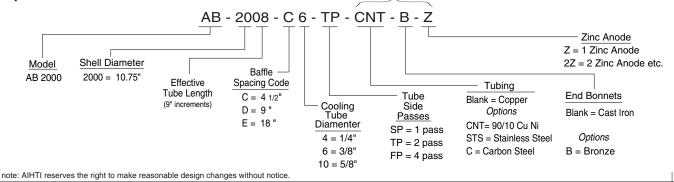
S/L	М	S/L	М	S/L	М	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

STANDARD CONSTRUCTION MATERIALS & RATINGS

Standard Model	AB-2000 Series	Standard Unit Ratings
Shell	Steel	Operating Pressure Tubes
Tubes	Copper	150 psig
Baffle	Steel	Operating Pressure Shell
Tube Sheet	Steel	225 psig
End Bonnets	Cast Iron	Operating Temperature
Mounting Brackets	Steel	250 °F
Gasket	Hypalon Composite	200 1

Example Model

TABLE B- LMTD correction factor for Multipass Exchangers


							_							<u> </u>	
	.05	.1	.15	.2	.25	.3	.35	.4	.45		.6	.7	.8	.9	1.0
.2	1	1	1	1	1	1	1	.999	.993	.984	.972	.942	.908	.845	.71
.4	1	1	1	1	1	1	.994	.983	.971	.959	.922	.855	.70		
.6	1	1	1	1	1	.992	.980	.965	.948	.923	.840				
.8	1	1	1	1	.995	.981	.965	.945	.916	.872					
1.0	1	1	1	1	.988	.970	.949	.918	.867	.770					
2.0	1	1	.977	.973	.940	.845	.740								
3.0	1	1	.997	.933	.835										
4.0	1	.993	.950	.850											
5.0	1	.982	.917												
6.0	1	.968	.885												
8.0	1	.930													
10.0	.996	.880													
12.0	.985	.720													
14.0	.972														
16.0	.958														
18.0	.940														
20.0	.915														

κ

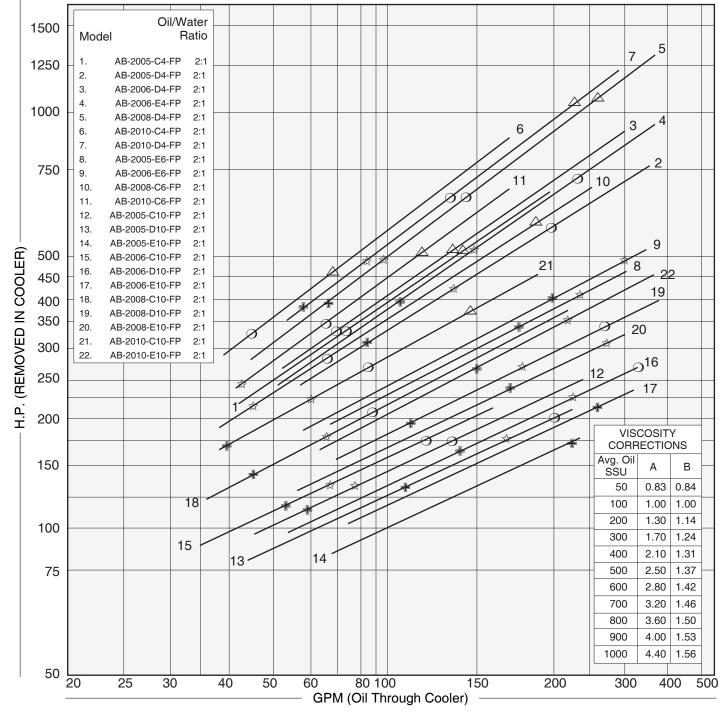
TABLE D- Surface Area

Model	Surface Area in Sq.ft.						
Number	1/4" O.D	3/8" O.D	5/8 O.D				
Number	Tubing	Tubing	Tubing				
AB-2004	155.1	110.7	60.8				
AB-2005	193.8	138.4	76.1				
AB-2006	232.6	166.1	91.3				
AB-2007	271.4	193.8	106.5				
AB-2008	310.2	221.4	121.7				
AB-2009	349.0	249.1	137.0				
AB-2010	387.7	276.8	152.2				
AB-2011	426.5	304.5	167.4				
AB-2012	465.3	332.2	182.7				
AB-2013	504.1	359.9	197.9				
AB-2014	542.9	387.6	213.2				
AB-2015	581.7	415.3	228.4				

Options

Instructions

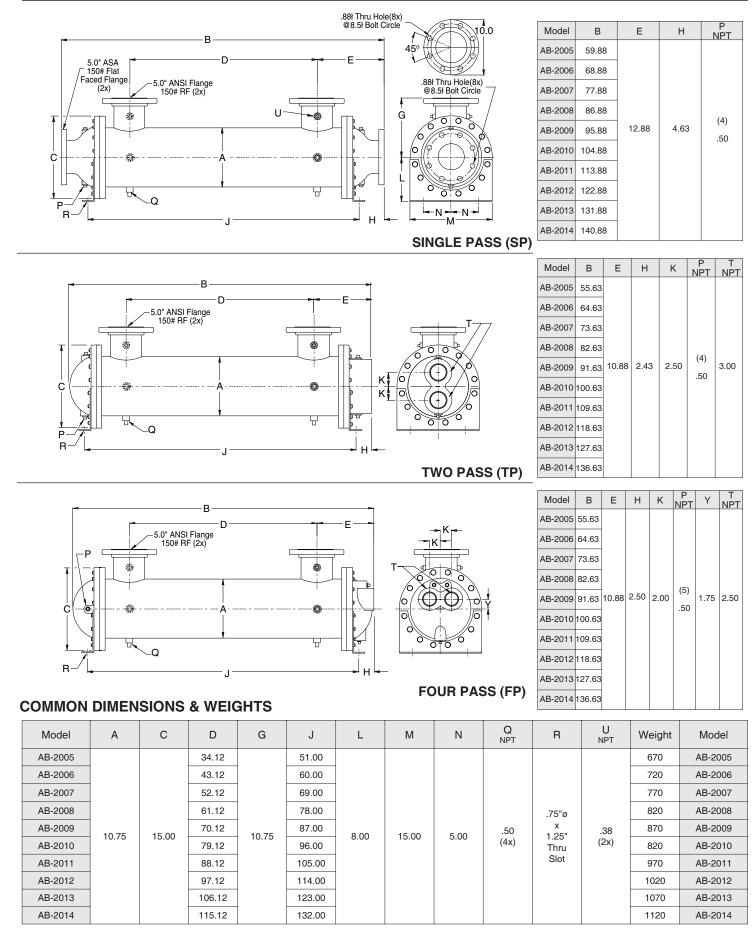
The selection chart provided contains an array of popular sizes for quick sizing. It does not provide curves for all models available. Refer to page 14 & 15 for detailed calculation information.


Computer selection data sheets for standard or special models are available through the engineering department of American Industrial. To use the followings graphs correctly, refer to the instruction notes "1-5".

- 1) HP Curves are based upon a 40°F approach temperature; for example: oil leaving a cooler at 125°F, using 85°F cooling water (125°F 85°F = 40°F).
- 2) The oil to water ratio of 1:1 or 2:1 means that for every 1 gallon of oil circulated, a minimum of 1 or 1/2 gallon (respectively) of 85°F water must be circulated to match the curve results.

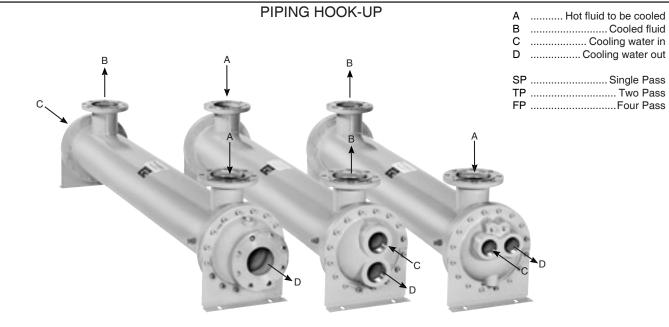
- 3) OIL PRESSURE DROP CODING: ♣ = 5 psi; ☆= 10 psi; = 20 psi; △ = 50psi. Curves that have no pressure drop code symbols indicate that the oil pressure drop is less than 5 psi for the flow rate shown.
- 4) Pressure Drop is based upon oil with an average viscosity of 100 SSU. If the average oil viscosity is other than 100 SSU, then multiply the indicated Pressure Drop by the corresponding value from corrections table A.
- 5) Corrections for approach temperature and oil viscosity are as follows:

$$H.P.(_{In Cooler}^{Removed}) = H.P.(_{Heat Load}^{Actual}) \times (\frac{40}{Actual Approach}) \times B.$$


HEAT ENERGY DISSIPATION RATES (Basic Stock Model)

 note: AIHTI reserves the right to make reasonable design changes without notice.

 Copyright © 2004 American Industrial Heat Transfer, Inc.
 3905 Ro


AB 2000 Series dimensions

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax:

AB 2000 Series installation & maintenance

ONE PASS

TWO PASS

FOUR PASS

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of flushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.
- Remove all dirt, water, ice, or snow and wipe dry before moving heat note: AIHTI reserves the right to make reasonable design changes without notice.

exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.

5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the

fax: 1 (847) 731-1010

AB 2000 Series installation & maintenance

hot fluid to be cooled through the shell side and the cold fluid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the fluids are required to be reversed, *hot fluid in the tubes and cold fluid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a fluid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the complete bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use flexible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate flow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high flow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side fluid and the entering tube side fluid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the fluids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a floating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

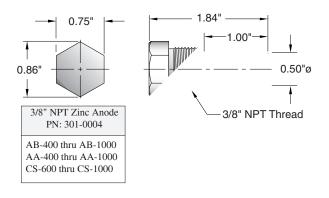
j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the flow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water flow.

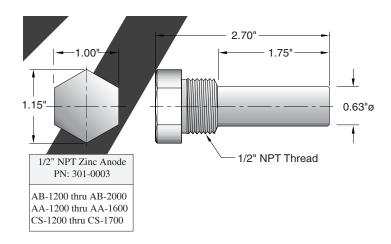
k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external fluid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to flush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic fluid is in question, the shell side should be disconnected and flushed on a yearly basis with a clean flushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be flushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.


c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor fluid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, flush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes. d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.


Applications vary due to water chemical makeup and quality, material differences, temperature, flow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route

56T THERMOSTATIC MODULATING WATER VALVE WITH BULB WELL ASSEMBLY

(for Shell & Tube Heat Exchangers And Air/Oil Coolers)

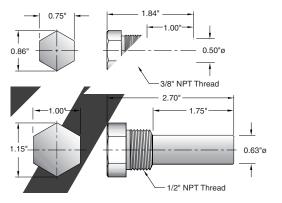
SPECIFICATIONS

Sizes Fluid Pressure Standard Temperature	0.375", 0.50", 0.75", 1.00", 1.25" FPT 125psi (max.) 40° - 100° F., 60° - 140° F., 100° - 175° F., 125° - 200° F., 140° - 240° F., 200° - 275°F.	Provisions for easy manual flushing after installation
Body	Brass alloy casting	
Valve Parts	Brass alloy	Replaceable Zinc-coated
Standard Capillary Length	6' & 20' foot	Buna-N seat disc.
Standard Bulbs	For 3/8" & 1/2" valve sizes: 5/8" x 6 with 3/4" union connections. For 3/4" & 1" valve sizes: 5/8" x 8-1/4" with 3/4" union connections. Stainless steel construction available.	Body and valve parts of special brass alloy
Standard Bulb Mounting	3/4" NPT	
Seat Disk	Buna-N-replaceable	Brass
Seat Bead	Stainless Steel - replaceable	-sensing bub Durable bronze, hourship before
	Length for 3/4" - 1 1/4" 9.5" Length for 1/2" - 3/8"	Copper capitary
APPLICATION INFOR	MATION 5.5"	protected by heavy-duty
Built for rugged mach	ine tool and hydraulic applications.	MA In- and
Adjustable temperatur	e range to meet your requirements.	

- Quick response to temperature changes.
- Extra heavy-duty direct acting bellows for longer service.

Note: Please consult factory if a non-cataloged temperature is required.

The type 56-T valve gives smooth regulation of water and other fluids. It's designed for the most rugged application. For example: hydraulic power packaging equipment, hydraulic presses, plastic molding equipment, and anywhere reliability in temperature control is demanded. The type 56-t valve is a better designed product that won't leak or chatter. To insure dependability, every valve is factory tested three times in different temperature baths. Extra performance can be expected of the bellows also. They are direct acting with sturdy walls, and the inner spring is zinc coated. The seat beads are stainless steel to resist the erosive effects of *wire drawing* and provide longer life for your needs. Additional features include mounting in any position, Buna-N seat disc, and manual flushing.


Thermostatic Modulating Water Valve

Part Number	Desci	ription
Part Number	Size NPT	Temp. Range
310-1001	3/8"	60 °F - 140 °F
310-1004	1/2"	60 °F - 140 °F
310-1008	3/4"	60 °F - 140 °F
310-1014	1"	60 °F - 140 °F
310-1020	1-1/4"	60 °F - 140 °F
310-1046	1-1/2"	60 °F - 140 °F
310-1047	2"	60 °F - 140 °F
310-1025	3/8"	100 °F - 175 °F
310-1005	1/2"	100 °F - 175 °F
310-1010	3/4"	100 °F - 175 °F
310-1015	1"	100 °F - 175 °F
310-1026	1-1/4"	100 °F - 175 °F

Zinc Anode List Prices

Description				
Part Number	Size NPT			
301-0004	3/8" NPT			
301-0003	1/2" NPT			

Bulb Well					
Part Number Brass	Part Number Stainless Steel				
310-2001	310-2003				
310-2001	310-2003				
310-2002	310-2004				
310-2002	310-2004				
310-2002	310-2004				
310-2001	310-2003				
310-2001	310-2003				
310-2002	310-2004				
310-2002	310-2004				
310-2002	310-2004				

Manufacturer of Quality Heat Exchangers

AA - STA SERIES

Fixed Tube Bundle Liquid Cooled

HEAT EXCHANGERS

- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 300 PSI.
- Operating temperature 300 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

Fixed tube construction heat exchangers with NPT connections. Made of brass with copper cooling tubes and cast iron end bonnets. Standard sizes from 2" through 8" diameters, and from 1.3 to 200 sq.ft. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tubes, bronze end bonnets and zinc anodes. Can be customized to fit your requirements.

Optional 10" diameter units in brass are available upon request.

SAA Series

Similar to AA series with the exception of steel shell material. For use in applications where the shell fluid is non-corrosive with steel. *Offered in 5" through 8" shell diameter.*

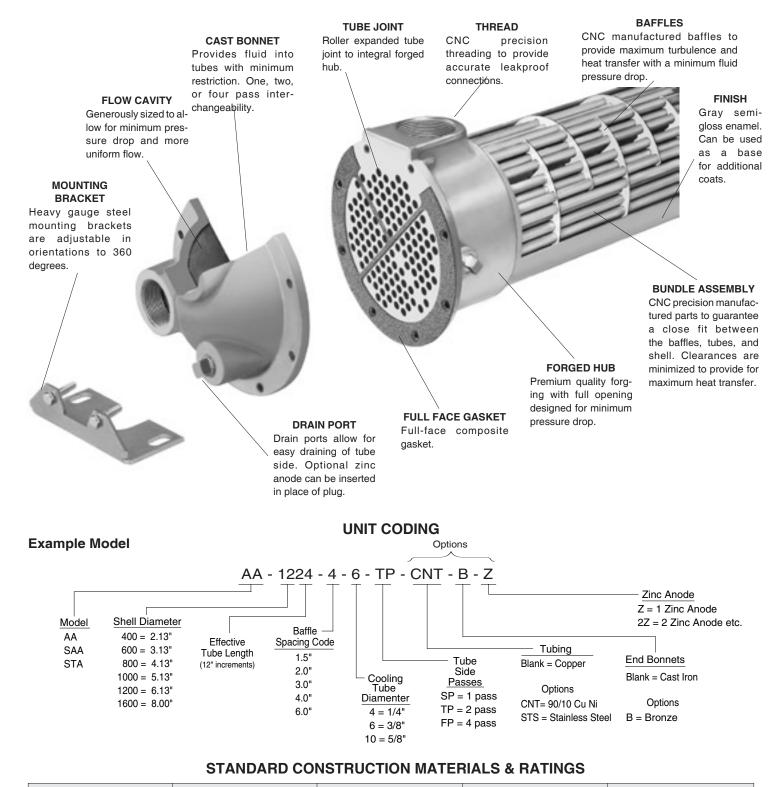
STA SERIES

Similar in design to AA series with fixed tube construction and NPT connections made of all 316 stainless steel. Standard sizes from 2" through 8" diameters. From 1.3 to 200 sq. ft. Standard one, two and four pass models are available. Larger diameters available upon request. Can be customized to fit your requirements.

FBF SERIES

Similar to AA series with the exception of shell ports. FBF series offered from 5" through 8" diameter has SAE code 61 four bolt flange shell port connections. Available with single pass, two pass, and four pass end bonnets. Options include 90/10 copper nickel and 316 stainless steel cooling tubes, bronze end bonnets, and zinc anodes. In applications where shell fluid is non-corrosive with steel, SFBF series can be used.

(See Page 31)



AC SERIES with electric drive

Air-cooled oil coolers with AC electric , DC electric, and hydraulic fan drive motors. Eight standard sizes with optional washable air filter. Rated flow from 2 to 120 GPM. Thermal capacity up to 100 hp (75Kw). NPT, flange, or SAE straight thread port connections. Optional built-in bypass relief valve 30 PSI or 65 PSI. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrications oils, synthetic compressor oils, phosphate ester, ethylene glycol, and many other fluids compatible with listed material.

In applications where water is not available for cooling (see page 131)

AA & STA Series construction

Standard Model	AA Series	SAA Series*	STA Series	Standard Unit Ratings
Shell	Brass	Steel	316 Stainless Steel	
Tubes	Copper	Copper	316 Stainless Steel	Operating Pressure Tubes
Baffle	Brass	Steel	316 Stainless Steel	150 psig
Integral End Hub	Forged Brass	Forged Brass	316 Stainless Steel	Operating Pressure Shell
End Bonnets	Cast Iron	Cast Iron	316 Stainless Steel	300 psig
Mounting Brackets	Steel	Steel	Steel	Operating Temperature
Gasket	Hypalon Composite	Hypalon Composite	Hypalon Composite	300 °F

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Rou

3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

www.aihti.com 23

*Offered in 5" through 8" shell diameter.

fax: 1 (847) 731-1010

AA & STA Series selection

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other fluids that are commonly used with shell & tube heat exchangers.

Terms GPM = Gallons Per Minute	Kw = Kilowatt (watts x 1000) T _{in} = Hot fluid entering temperature in °F T _{out} = Hot fluid exiting temperature in °F
$CN = Constant Number for a given fluid$ $\Delta T = Temperature differential across the potential$ $PSI = Pounds per Square Inch (pressure) of the operating side of the system$	t_{in} = Cold fluid temperature entering in °F t_{out} = Cold fluid temperature exiting in °F
MHP = Horsepower of the electric motor driving the hydraulic pump	Q = BTU / HR

For example purposes, a hydraulic system has a 125 HP (93Kw) electric motor installed coupled to a pump that produces a flow of 80 GPM @ 2500 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 5.3°F. Even though our return line pressure operates below 100 psi, we must calculate the system heat load potential (Q) based upon the prime movers (pump) capability. We can use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required). EXAMPLE

A) $Q = 80 \times 210 \times 5.3^{\circ}F = 89,040 \text{ BTU/HR}$

c) $Q = 125 \text{ x} \cdot 30 \text{ x} 2545 = 95,347 \text{ btu/hr}$

D) $Q = 28 \times 3415 = 95,620 \text{ BTU/HR}$

E) Q = 37.5 x 2545 = 95,437 BTU/HR

B) Q =[(2500x80)/1714] x .30 x 2545 = 89,090 вти/нк

FORMULA A) Q = GPM x CN x actual $\triangle T$ B) $Q = [(PSI \times GPM) / 1714] \times (v) \times 2545$ c) Q = MHP x (v) x 2545D) Q = Kw to be removed x 3415 E) Q = HP to be removed x 2545

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid flow rate to derive the cold side ΔT . If your water flow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

Formula	Example
$\begin{array}{ccc} \text{HOT FLUID} \triangle T &= & Q\\ \text{Oil} & & \overline{\text{CN x GPM}} \end{array}$	$\triangle \mathbf{T} = \frac{89,090 \text{ BTU/hr}}{210 \text{ CN x 80GPM}} (\text{from step 1, item B}) = 5.3^{\circ}\text{F} = \triangle \text{T} \text{ Rejected}$
$\begin{array}{rcl} \textbf{COLD FLUID} \bigtriangleup \mathbf{t} &= & \underline{BTU / hr} \\ \textbf{Water} & & \overline{CN \times GPM} \end{array}$	$\Delta \mathbf{t} = \frac{89,090 \text{ BTU/hr}}{500 \text{ CN x 40GPM}} \text{ (for a 2:1 ratio)} = 4.45^{\circ}\text{F} = \Delta \text{T} \text{ Absorbed}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{in} = 125.3 \text{ °F} T_{out} = 120.0 \text{ °F} t_{in} = 700 \text{ °F} t_{out} = 74.5 \text{ °F} $
$\frac{\mathbf{T}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{out}} = \frac{\mathbf{S}[\text{smaller temperature difference}]}{\mathbf{L} [\text{larger temperature difference}]} = \left(\frac{\mathbf{S}}{\mathbf{L}}\right)$	$\frac{120.0^{\circ}\text{F} - 70.0^{\circ}\text{F} = 50.0^{\circ}\text{F}}{125.3^{\circ}\text{F} - 74.5^{\circ}\text{F} = 50.8^{\circ}\text{F}} = \frac{50.0^{\circ}\text{F}}{50.8^{\circ}\text{F}} = .984$

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

To calculate the LMTD please use the following method;

L = Larger temperature difference from step 2.

M = S/L number (located in table A).

$LMTD_{i} = L \times M$

To correct the LMTD, for a multipass heat exchangers calculate **R** & **K** as follows:

FORMULA EXAMPLE

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}} \qquad \mathbf{R} = \frac{125.3^{\circ}F - 120^{\circ}F}{74.5^{\circ}F - 70^{\circ}F} = \frac{5.3^{\circ}F}{4.5^{\circ}F} = \{1.17=R\}$$

$$\mathbf{K} = \frac{t_{out} - t_{in}}{T_{in} - t_{in}} \qquad \mathbf{K} = \frac{74.5^{\circ}F - 70^{\circ}F}{124.5^{\circ}F - 70^{\circ}F} = \frac{4.5^{\circ}F}{55.4^{\circ}F} = \{0.081=K\}$$

 $LMTD_{i} = 50.8 \text{ x} .992 \text{ (FROM TABLE A)} = 50.39$

Locate the correction factor CF_B (FROM TABLE **B**) $LMTD_{c} = LMTD_{i} \times CF_{B}$ LMTD_c = 50.39 x 1 = **50.39**

Constant for a given fluid (CN)

1) Oil CN = 210

2) Water...... CN = 500

3) 50% E. Glycol..... CN = 450

note: AIHTI reserves the right to make reasonable design changes without notice.

STEP 4: Calculate the area required

Required Area sq.ft. =	Q (BTU / HR)
Kequireu Area sq.it. –	$\overline{LMTD_{c} \times U}$ (from table \overline{C})

89,090 = 17.68 sq.ft. 50.39 x 100

STEP 5: Selection

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits your flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

				2		
Oil Flow Rate	=	80 GPM	=	Series Required from Table E	=	1200 Series
				Baffle Spacing from Table E	=	4
Water Flow Rate	=	40 GPM	=	Passes required in 1200 series	=	4 (FP)

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate.

Example Closest model required based upon sq.ft. & series = AA-1224-4-6-FP Required Area = 17.68 sq.ft

If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

TABLE A- FACTOR M/LMTD = L x M

S/L	М	S/L	М	S/L	М	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

TABLE B- LMTD correction factor for Multipass Exchangers

1

.994 .983 .971

.995 .981 .965 .945 .916 .872

.970 .949 .918 .867

.940 .845 .740

.992 .980 .965 .948 .923 .840

999 .993 .984

.770

TABLE D- Surface Area								
Model	Surface Area in Sq.ft.			Model	Surface Area in Sq.ft.			
Number	1/4" O.D	3/8" O.D	5/8 O.D	Number	1/4" O.D	3/8" O.D	5/8 O.D	
Tumber	Tubing	Tubing	Tubing	rtambor	Tubing	Tubing	Tubing	
AA-408	1.3	-	-	AA-1224	-	23.6	11.8	
				AA-1236	-	35.3	17.7	
AA-608	2.6	_	-	AA-1248	-	47.1	23.6	
AA-614	4.6	-	-	AA-1260	-	58.9	29.5	
AA-624	7.9	_	-	AA-1272	-	70.6	35.4	
AA-636	11.2	_	_	AA-1284	-	82.3	41.3	
				AA-1296	-	94.0	47.2	
AA-814	8.3	-	-					
AA-824	14.1	-	-	AA-1624	-	41.0	23.6	
AA-836	21.2	-	-	AA-1636	-	62.0	35.3	
AA-848	28.3	_	-	AA-1648	-	82.0	47.1	
				AA-1660	-	103.0	58.9	
AA-1014	_	9.1	4.6	AA-1672	-	124.0	70.7	
AA-1024	-	16.0	7.8	AA-1684	-	145.0	82.5	
AA-1036	_	24.0	11.8	AA-1696	-	166.0	94.3	
AA-1048	_	32.0	15.8	AA-16108	-	187.0	106.1	
AA-1060	-	40.0	19.8	AA-16120	-	208.0	117.9	

TABLE E- Flow Rate for Shell & Tube

Shell	Max.	Max. liquid Flow - Shell Side					Liaui	d Flov	/ - Tub	e Sid	е
dia .		•	e Spa			S	· ·		P		- P
Code	1.5	2	3	4	6	Min.	Max.	Min.	Max.	Min.	Max.
400	10	19	_	-	_	3.5	20	_	_	_	_
600	15	20	25	30	_	7.5	48	3.5	24	2	12
800	20	35	45	60	_	10	70	4.5	38	3	21
1000	24	35	60	70	_	20	120	10	70	5.0	37
1200	35	45	70	100	120	30	220	15	112	7.5	56
1600	38	70	150	200	220	57	300	29	180	14	90

TABLE C

U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

н

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .6 .7 .8 .9 1.0

1

1

1 1 1

1 3.0 1 1 .997

1 1

1 1

1 .977 .973

.720

2

.4 1 1 1 1 1 1

.6

.8 1 1 1 1

1.0

2.0

4.0 1 .993 .950 .850

5.0 1 .982 .917 .968 .885

6.0 1 8.0 1 930

10.0 .996 .880

12.0 .985

14.0 .972 .958 16.0 .940 18.0 20.0 .915 1 1 1

1 1

1 988

.933 .835

Κ note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099

.972 .942 .908 .845 .71

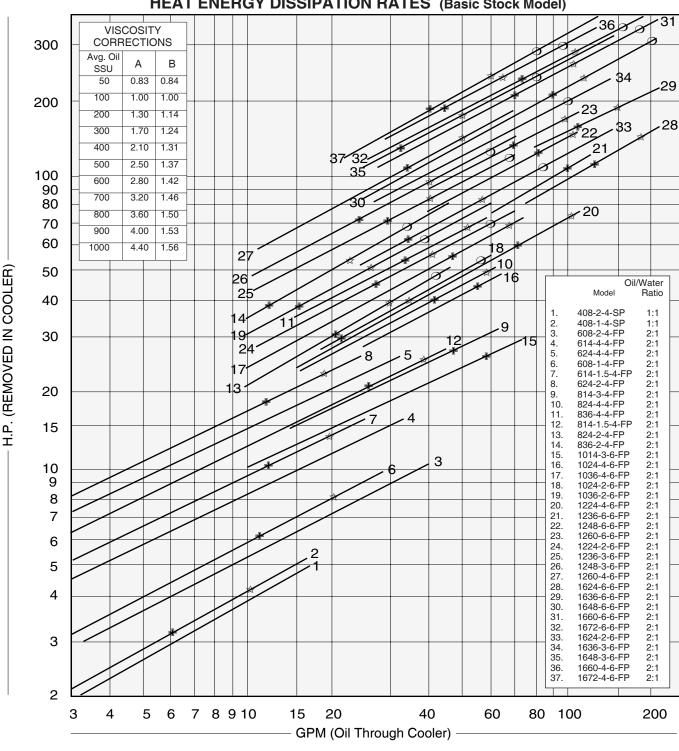
.70

.959 .922 .855

AA & STA Series performance

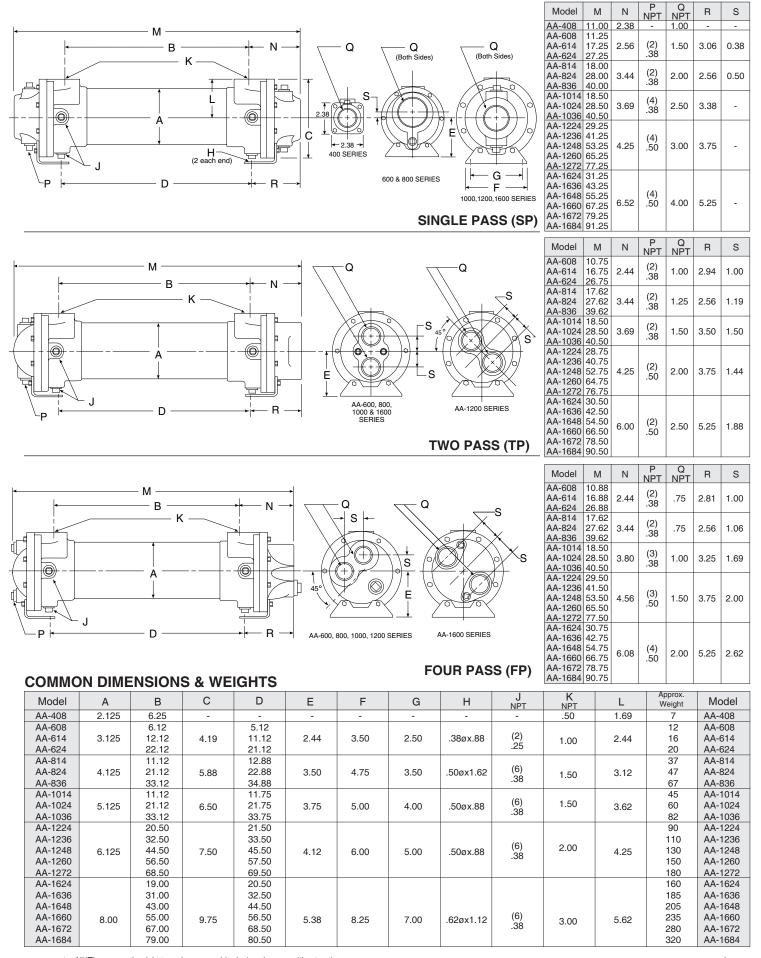
Instructions

The selection chart provided contains an array of popular sizes for quick sizing. It does not provide curves for all models available. Refer to page 24 & 25 for detailed calculation information.

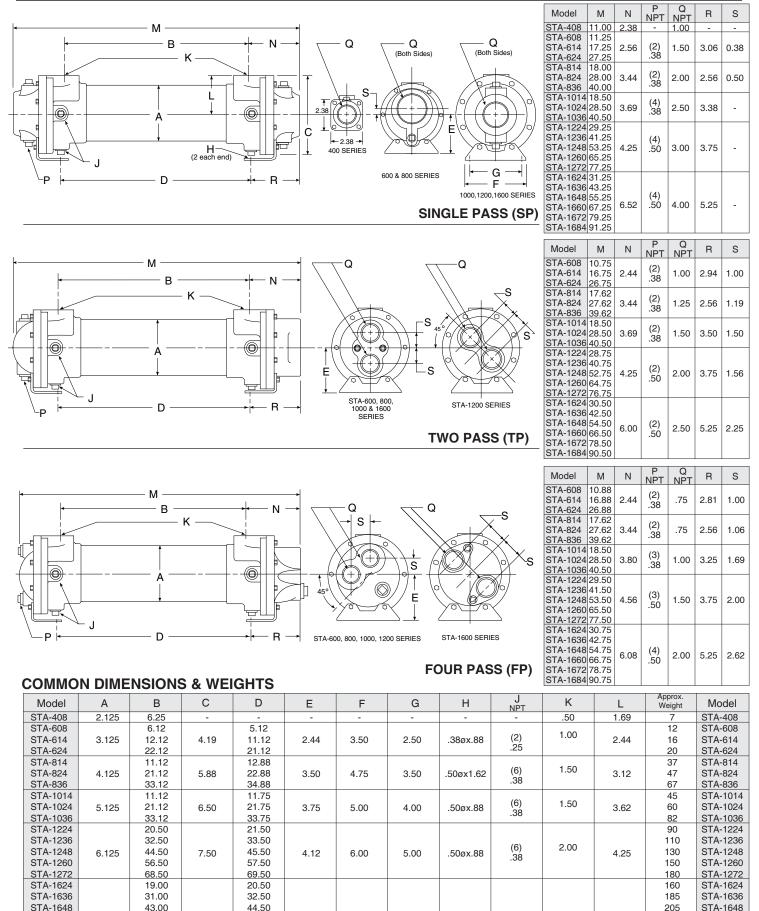

Computer selection data sheets for standard or special models are available through the engineering department of American Industrial. To use the followings graphs correctly, refer to the instruction notes "1-5".

- 1) HP Curves are based upon a 40°F approach temperature; for example: oil leaving a cooler at 125°F, using 85°F cooling water $(125^{\circ}F - 85^{\circ}F = 40^{\circ}F).$
- 2) The oil to water ratio of 1:1 or 2:1 means that for every 1 gallon of oil circulated, a minimum of 1 or 1/2 gallon (respectively) of 85°F water

must be circulated to match the curve results.


- OIL PRESSURE DROP CODING: ♣ = 5 psi; ☆= 10 psi; = 20 psi; 3) \triangle = 50psi. Curves that have no pressure drop code symbols indicate that the oil pressure drop is less than 5 psi for the flow rate shown.
- 4) Pressure Drop is based upon oil with an average viscosity of 100 SSU. If the average oil viscosity is other than 100 SSU, then multiply the indicated Pressure Drop by the corresponding value from corrections table A.
- 5) Corrections for approach temperature and oil viscosity are as follows:

$$H.P.(_{In Cooler}^{Removed}) = H.P.(_{Heat Load}^{Actual}) \times (\frac{40}{Actual Approach}) \times B.$$


AA Series dimensions

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099

STA Series dimensions

note: AIHTI reserves the right to make reasonable design changes without notice.

9 75

55.00

67.00

79.00

8.00

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099

5.38

8.25

56.50

68.50

80.50

.62øx1.12

7.00

(6)

.38

3.00

STA-1660

STA-1672

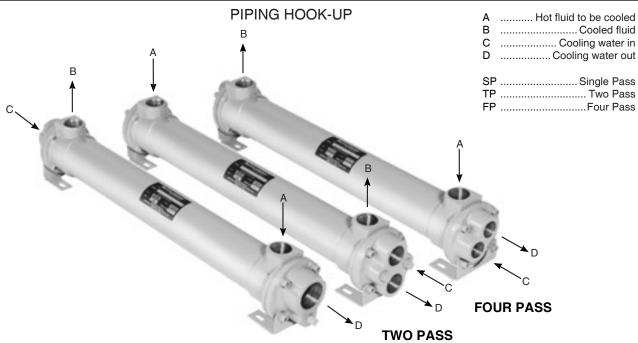
STA-1684

235

280

320

5.62


28

STA-1660

STA-1672

STA-1684

AA & STA Series installation & maintenance

SINGLE PASS

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the

original purchase order specifications.

- Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

AA & STA Series installation & maintenance

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, hot uid in the tubes and cold uid in the shell the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the complete bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

i) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

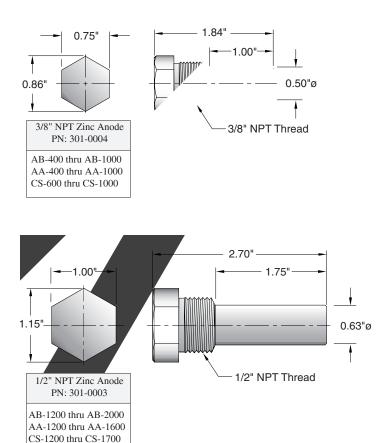
b) Shell side: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

c) Tube side: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack

note: AIHTI reserves the right to make reasonable design changes without notice.

3905 Route 173 Zion, IL 60099

the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.


d) Zinc anodes are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

www.aihti.com

³⁰

Manufacturer of Quality Heat Exchangers

FBF SERIES

Fixed Tube Bundle Liquid Cooled

HEAT EXCHANGERS

with SAE four bolt ange

- Available in single, two, and four pass.
- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 300 PSI.
- Operating temperature 300 °F.

- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

note: AIHTI reserves the right to make reasonable design changes without notice.

FBF Series overview

FBF SERIES

Similar to AA series with the exception of shell ports. FBF series offered from 5" through 8" diameter has SAE code 61 four bolt flange shell port connections. Available with single pass, two pass, and four pass end bonnets. Options include 90/10 copper nickel and 316 stainless steel cooling tubes, bronze end bonnets, and zinc anodes.

SFBF Series

Similar to FBF series with the exception of steel shell material. For use in applications where the shell fluid is non-corrosive with steel. *Offered in 5" through 8" shell diameter.*

Fixed tube construction heat exchangers with NPT connections. Made of brass with copper cooling tubes and cast iron end bonnets. Standard sizes from 2" through 8" diameters, and from 1.3 to 200 sq.ft. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tubes, bronze end bonnets and zinc anodes. Can be customized to fit your requirements.

Optional 10" diameter units in brass are available upon request. In applications where the shell fluid is non-corrosive with steel, SAA series can be used. See AA Series on (page 21).

CS SERIES

Fixed tube construction heat exchangers with NPT connections. Made of steel with copper cooling tubes and cast iron end bonnets. Standard sizes from 3" through 8" diameters. From 4.6 to 200 sq. ft. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tube, and zinc anodes. Can be customized to fit your requirements. See CS Series on (page 41).

EOC & EOCF with electric drive

Mobile & industrial air-cooled oil coolers. Brazed or serviceable core ®, mobile and industrial series heat exchangers available with optional washable filter and integral relief valve, 30 PSI or 65 PSI. Standard single phase, three phase, hydraulic,12 volt DC (21amp) or 24 volt DC (10.5 amp) motors with single or dual cooling fans. Standard flow rates to 180 GPM. Thermal capacity up to 225 hp (168 Kw). NPT or SAE strait thread O-ring port connections. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrication oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed materials.

www.aihti.com

In applications where water is not available for cooling (see page 169)

FBF Series construction

FOUR BOLT FLANGE

SAE Code 61 four bolt

ange.

BUNDLE ASSEMBLY

CNC precision manufactured

TUBE JOINT Roller expanded tube joint to integral forged ~ hub.

CAST BONNET

Provides fluid into tubes with minimum restriction. One, two, or four pass interchangeability.

DRAIN PORT

Drain ports allow for easy draining of tube side. Optional zinc anode can be inserted in place of plug. MOUNTING BRACKET Heavy gauge steel mounting brackets

degrees.

mounting brackets are adjustable in orientations to 360

BAFFLES

CNC manufactured baffles to provide maximum turbulence and heat transfer with a minimum fluid pressure drop.

FINISH

Gray semigloss enamel. Can be used as a base for additional coats.

UNIT CODING


FORGED HUB

Premium quality forg-

ing with full opening

designed for minimum

pressure drop.

STANDARD CONSTRUCTION MATERIALS & RATINGS

Standard Model	FBF Series	SFBF Series*	Standard Unit Ratings
Shell	Brass	Steel	
Tubes	Copper	Copper	Operating Pressure Tubes
Baffle	Brass	Steel	150 psig
Integral End Hub	Forged Brass	Forged Brass	Operating Pressure Shell
Flanges	Code 61 Steel	Code 61 Steel	300 psig
End Bonnets	Cast Iron	Cast Iron	Operating Temperature
Mounting Brackets	Steel	Steel	300 °F
Gasket	Hypalon Composite	Hypalon Composite	

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

FBF Series selection

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other fluids that are commonly used with shell & tube heat exchangers.

Terms	Kw = Kilowatt (watts x 1000)
GPM = Gallons Per Minute	T_{in} = Hot fluid entering temperature in °F
CN = Constant Number for a given fluid	T_{out} = Hot fluid exiting temperature in °F
ΔT = Temperature differential across the potential	t_{in} = Cold fluid temperature entering in °F
PSI = Pounds per Square Inch (pressure) of the operating side of the system	t_{out} = Cold fluid temperature exiting in °F
MHP = Horsepower of the electric motor driving the hydraulic pump	Q = BTU / HR

For example purposes, a hydraulic system has a 125 HP (93Kw) electric motor installed coupled to a pump that produces a flow of 80 GPM @ 2500 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 5.3°F. Even though our return line pressure operates below 100 psi, we must calculate the system heat load potential (Q) based upon the prime movers (pump) capability. We can use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

Formula	EXAMPLE	
A) Q = GPM x CN x actual $\triangle T$	A) $Q = 80 \times 210 \times 5.3^{\circ}F = 89,040 \text{ btu/hr}$	Constant for a given fluid (CN)
B) Q = [(PSI x GPM) / 1714] x (v) x 2545	B) $Q = [(2500 \times 80)/1714] \times .30 \times 2545 = 89,090 \text{ BTU/HR}$	
	C) $Q = 125 \text{ x} .30 \text{ x} 2545 = 95,347 \text{ btu/hr}$	1) Oil CN = 210
c) $Q = MHP x (v) x 2545$	D) $Q = 28 \times 3415 = 95,620$ BTU/HR	2) Water CN = 500
D) $Q = Kw$ to be removed x 3415	е) Q =37.5 x 2545 = 95,437 вти/нг	3) 50% E. Glycol CN = 450
E) $Q = HP$ to be removed x 2545		-

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid flow rate to derive the cold side ΔT . If your water flow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

Formula	Example
$ \begin{array}{ccc} \textbf{HOT FLUID} \bigtriangleup \textbf{T} &= & \textbf{Q} \\ \textbf{Oil} & & \overline{\text{CN x GPM}} \end{array} $	$\triangle \mathbf{T} = \frac{89,090 \text{ BTU/hr} \text{ (from step 1, item B)}}{210 \text{ CN x 80GPM}} = 5.3^{\circ}\text{F} = \triangle \text{T} \text{ Rejected}$
$\begin{array}{rcl} \textbf{COLD FLUID} \bigtriangleup \mathbf{t} &=& \underline{BTU / hr} \\ \textbf{Water} & & \overline{CN \times GPM} \end{array}$	$\triangle t = \frac{89,090 \text{ BTU/hr}}{500 \text{ CN x 40GPM (for a 2:1 ratio)}} = 4.45^{\circ}\text{F} = \triangle \text{T Absorbed}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{in} = 125.3 \text{ °F} T_{out} = 120.0 \text{ °F} t_{in} = 700 \text{ °F} t_{out} = 74.5 \text{ °F} $
$\frac{\mathbf{T}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{out}} = \frac{\mathbf{S}[\text{smaller temperature difference}]}{\mathbf{L} [\text{larger temperature difference}]} = \left(\frac{\mathbf{S}}{\mathbf{L}}\right)$	$\frac{120.0^{\circ}\text{F} - 70.0^{\circ}\text{F} = 50.0^{\circ}\text{F}}{125.3^{\circ}\text{F} - 74.5^{\circ}\text{F} = 50.8^{\circ}\text{F}} = \frac{50.0^{\circ}\text{F}}{50.8^{\circ}\text{F}} = .984$

STEP 3: Calculate Log Mean Temperature Difference (LMTD) To calculate the LMTD please use the following method;

L = Larger temperature difference from step 2. M = S/L number (LOCATED IN TABLE A). LMTD_i = L x M

 $LMTD_{i}^{1} = 50.8 \text{ x} .992 \text{ (FROM TABLE A)} = 50.39$

FORMULA

To correct the LMTD_i for a multipass heat exchangers calculate $\mathbf{R} \& \mathbf{K}$ as follows:

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}} \qquad \mathbf{R} = \frac{125.3^{\circ}F - 120^{\circ}F}{74.5^{\circ}F - 70^{\circ}F} = \frac{5.3^{\circ}F}{4.5^{\circ}F} = \{1.17=R\}$$
$$\mathbf{K} = \frac{t_{out} - t_{in}}{T_{in} - t_{in}} \qquad \mathbf{K} = \frac{74.5^{\circ}F - 70^{\circ}F}{124.5^{\circ}F - 70^{\circ}F} = \frac{4.5^{\circ}F}{55.4^{\circ}F} = \{0.081=K\}$$

Locate the correction factor CF_B (FROM TABLE B) LMTD_c =LMTD_i x CF_B LMTD_c = 50.39 x 1 = **50.39**

note: AIHTI reserves the right to make reasonable design changes without notice.

STEP 4: Calculate the area required

Required Area sq.ft. =	Q (BTU / HR)
Kequireu mea squit. –	$LMTD_{c} \ge U$ (from table C)

 $\frac{89,090}{50.39 \text{ x } 100} = 17.68 \text{ sq.ft.}$

STEP 5: Selection

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits your flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

				2.1411.1910		
Oil Flow Rate	=	80 GPM	=	Series Required from Table E	=	1200 Series
				Baffle Spacing from Table E	=	4
Water Flow Rate	=	40 GPM	=	Passes required in 1200 series	=	4 (FP)

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate.

Example Required Area = 17.68sq.ft Closest model required based upon sq.ft. & series = **FBF-1224-4-6-FP**

If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

TABLE D- Surface Area

TABLE A- FACTOR M/LMTD = L x M

S/L	М	S/L	М	S/L	М	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

Model Number	Surface Area in Sq. ft.					
	3/8" O.D. Tubing	5/8" O.D. Tubing				
FBF-1014	9.1	4.6				
FBF-1024	16.0	7.8				
FBF-1036	24.0	11.8				
FBF-1048	32.0	15.8				
FBF-1224	23.6	11.8				
FBF-1236	35.3	17.7				
FBF-1248	47.1	23.6				
FBF-1260	58.9	29.5				
FBF-1272	70.6	35.4				
FBF-1624	41.0	23.6				
FBF-1636	62.0	35.3				
FBF-1648	82.0	47.1				
FBF-1660	103.0	58.9				
FBF-1672	124.0	70.7				
FBF-1684	145.0	82.5				

TABLE B- LMTD correction factor for Multipass Exchangers T

														Ŭ	
	.05	.1	.15	.2	.25	.3	.35	.4	.45	.5	.6	.7	.8	.9	1.0
.2	1	1	1	1	1	1	1	.999	.993	.984	.972	.942	.908	.845	.71
.4	1	1	1	1	1	1	.994	.983	.971	.959	.922	.855	.70		
.6	1	1	1	1	1	.992	.980	.965	.948	.923	.840				
.8	1	1	1	1	.995	.981	.965	.945	.916	.872					
1.0	1	1	1	1	.988	.970	.949	.918	.867	.770					
2.0	1	1	.977	.973	.940	.845	.740								
3.0	1	1	.997	.933	.835										
4.0	1	.993	.950	.850											
5.0	1	.982	.917												
6.0	1	.968	.885												
8.0	1	.930													
10.0	.996	.880													
12.0	.985	.720													
14.0	.972														
16.0	.958														
18.0	.940														
20.0	.915														

R

TABLE E- Flow Rate for Shell & Tube

Shell	Max.	liquid	Flow -	Shell	Side		Liqui	d Flov	v - Tuk	be Sid	е
dia .		Baffl	e Spa	cing		S	P	٦	P	F	P
Code	1.5	2	3	4	6	Min.	Max.	Min.	Max.	Min.	Max.
1000	24	35	60	70	-	20	120	10	70	5.0	37
1200	35	45	70	100	120	30	220	15	112	7.5	56
1600	38	70	150	200	220	57	300	29	180	14	90

TABLE C

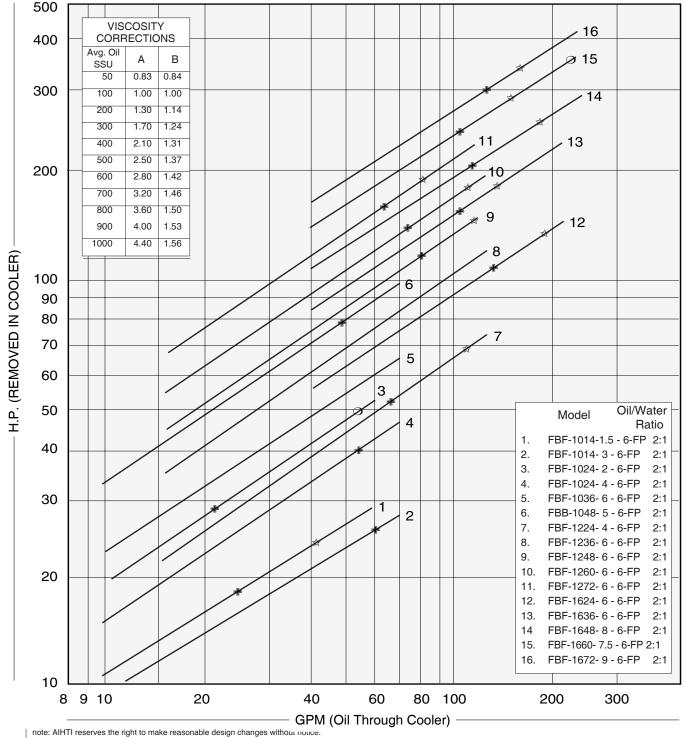
U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 6

FBF Series performance

Instructions

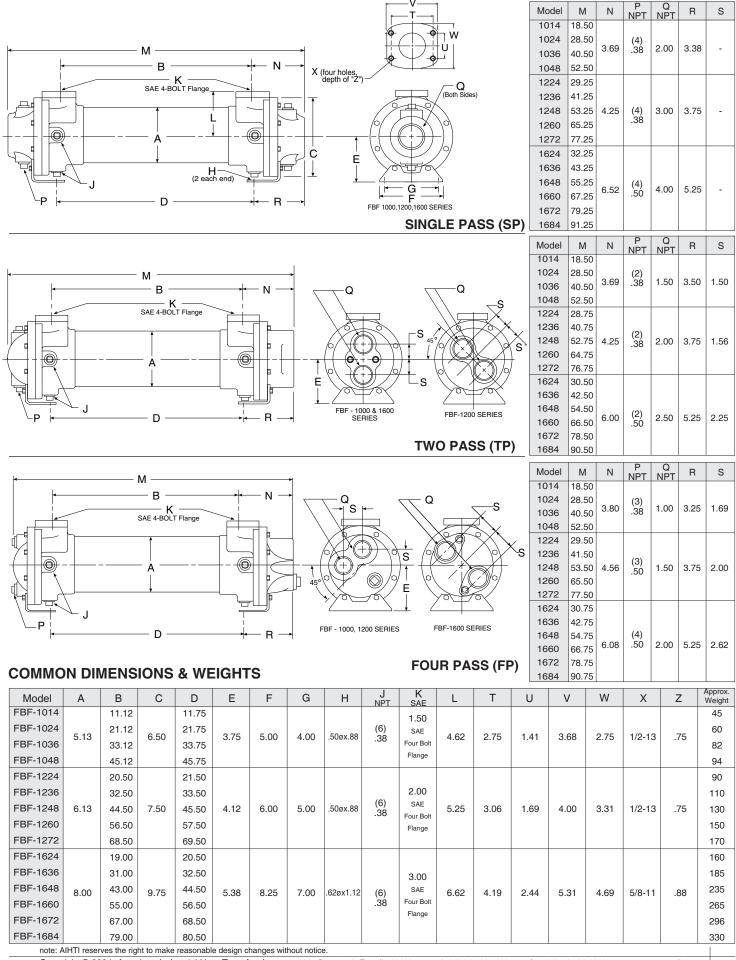
The selection chart provided contains an array of popular sizes for quick sizing. It does not provide curves for all models available. Refer to page 34 & 35 for detailed calculation information.


Computer selection data sheets for standard or special models are available through the engineering department of American Industrial. To use the followings graphs correctly, refer to the instruction notes "1-5".

- HP Curves are based upon a 40°F approach temperature; for example: oil leaving a cooler at 125°F, using 85°F cooling water (125°F - 85°F = 40°F).
- 2) The oil to water ratio of 1:1 or 2:1 means that for every 1 gallon of oil circulated, a minimum of 1 or 1/2 gallon (respectively) of 85°F water must be circulated to match the curve results.

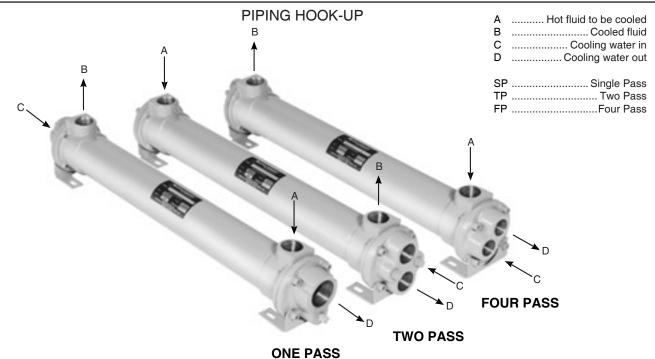
- OIL PRESSURE DROP CODING: ♣ = 5 psi; ☆= 10 psi; = 20 psi; △ = 50psi. Curves that have no pressure drop code symbols indicate that the oil pressure drop is less than 5 psi for the flow rate shown.
- 4) Pressure Drop is based upon oil with an average viscosity of 100 SSU. If the average oil viscosity is other than 100 SSU, then multiply the indicated Pressure Drop by the corresponding value from corrections table A.
- 5) Corrections for approach temperature and oil viscosity are as follows:

$$H.P.(_{In Cooler}^{Removed}) = H.P.(_{Heat Load}^{Actual}) \times (\frac{40}{Actual Approach}) \times B.$$


HEAT ENERGY DISSIPATION RATES (Basic Stock Model)

Copyright © 2004 American Industrial Heat Transfer, Inc.

^{. 3905} Route 173 Zion, IL 60099


FBF Series dimensions

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905

tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

FBF Series installation & maintenance

Receiving / Installation

38

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the

note: AIHTI reserves the right to make reasonable design changes without notice.

hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, *hot uid in the tubes and cold uid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the complete bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

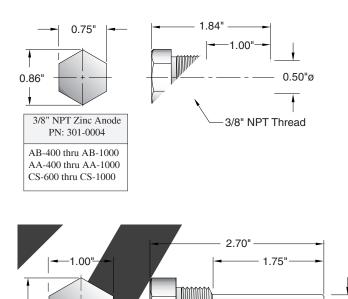
Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.

FBF Series installation & maintenance


d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

fax: 1 (847) 731-1010

1.15

1/2" NPT Zinc Anode

PN: 301-0003

AB-1200 thru AB-2000

AA-1200 thru AA-1600

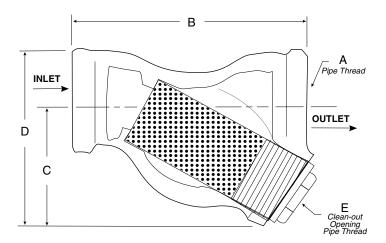
CS-1200 thru CS-1700

1/2" NPT Thread

0.63"ø

"Y" STRAINER (for Shell & Tube Heat Exchangers And Air/Oil Coolers)

APPLICATIONS & SPECS. ("Y" Strainers)


These strainers are engineered for water or steam, and are adaptable for many other uses. Cleaning is accomplished by simply removing a pipe plug without disconnecting any piping. Or, if it is desirable to clean without interrupting service, a blow-off valve can be connected to the clean-out opening. *Note:* Pumps, control valves, traps, or other equipment controlling the flow of liquids or gases require proper protection with strainers for trouble free operation.

18 - Y BRASS STRAINERS

The 18 - Y strainer body is a sturdy red brass casting. Standard units have 50 mesh brass wire screens. Brazing connections are available on special order instead of pipe threads.

20 - Y STRAINERS

The 20 - Y strainer has a heavy cast iron body with accurately machined pipe thread inlet and outlet (National Pipe Thread N.P.T.). It contains a strainer screen of 0.02" thick brass with 100, 1/16" perforations per inch.

	SIZE	DI	DIMENSIONS (Inches)					
MODEL	A (NPT)	В	С	D	E (NPT)	WT. (lbs.)		
18 - Y	0.38" 0.50" 0.75"	2.50" 2.50" 3.50"	2.63" 2.63" 3.75"	2.00" 2.00" 2.75"	0.25" 0.25" 0.50"	0.75 0.75 1.75		
	1.00"	3.50"	3.75"	2.75"	0.50"	1.75		
20 - Y	0.50" 0.75" 1.00" 1.25" 1.50" 2.00"	4.00" 4.00" 4.75" 6.00" 6.00" 8.13"	3.25" 3.25" 4.38" 5.13" 5.13" 6.38"	2.50" 2.50" 3.38" 3.88" 3.88" 4.63"	0.38" 0.38" 0.75" 0.75" 0.75" 0.75"	1.75 1.75 4.00 4.75 4.75 13.00		
PRESSURE RATINGS, ALL MODELS: 125lbs. per Sq.In.								

Part Number	Desci	ription	Part Number	Description		
Part Number	Size NPT Material		Part Number	Size NPT	Material	
310-3002	1/2"		310-3001	3/8"		
310-3004	3/4"		310-3003	1/2"		
310-3006	1"		310-3005	3/4"		
310-3008	1-1/4"		310-3007	1"		
310-3009	1-1/2"	Cast Iron	310-3013	1-1/4"	Brass	
310-3010	2"		310-3014	1-1/2"		
310-3011	2-1/2"		310-3015	2		
310-3012	3"		310-3016	2-1/2"		
			310-3017	3"		

fax: 1 (847) 731-1010

Manufacturer of Quality Heat Exchangers

CS - STC SERIES

Fixed Tube Bundle / Liquid Cooled

HEAT EXCHANGERS

- Steel or stainless steel construction.
- Operating pressure for tubes 150 PSI
- Operating pressure for shell 300 PSI.
- Operating temperature 300 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

CS SERIES

Fixed tube construction heat exchangers with NPT connections. Made of steel with copper cooling tubes and cast iron end bonnets. Standard sizes from 3" through 8" diameters. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tube, and zinc anodes. Can be customized to fit your requirements.

STC SERIES

Similar in design to CS series with fixed tube construction and NPT connections made of 316 stainless steel. Standard sizes from 3" through 8" diameters. Standard one, two, and four pass models are available. Larger diameter units available upon request. Can be customized to fit your requirements.

CS 2000 SERIES

Fixed tube construction heat exchangers with ANSI ange connections. Made of Steel with copper cooling tubes and cast iron end bonnets. Standard 10" diameter from 111 to 442 sq. ft. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tubes, and zinc anodes. Can be customized to fit your requirements.

(See Page 51)

CS 2400 - CS 4800 SERIES

Strait tube large capacity heat exchangers with fixed tube bundle. Standard one, two and four pass units available. Sizes from 12" to 24" diameters. Made of steel with copper cooling tubes and steel channels. Options include 90/10 copper nickel and 316 stainless steel cooling tube, and zinc anodes. Can be customized to fit your requirements.

fax: 1 (847) 731-1010

(See Page 57)

CS & STC Series overview

BAFFLES

CNC manufactured baffles to

provide maximum turbulence and

heat transfer with a minimum fluid

for long lasting high

strength service.

pressure drop.

tubes with minimum uniform flow. restriction. One, two, or four pass interchangeability. MOUNTING BRACKET Heavy gauge steel mounting brackets are adjustable in orientations to 360 TUBE SHEET Precision-machined tube-sheet provides

THREAD

threading to provide

accurate leakproof

precision

CNC

connections.

FLOW CAVITY

Generously sized to al-

low for minimum pres-

sure drop and more

CAST BONNET

Provides fluid into

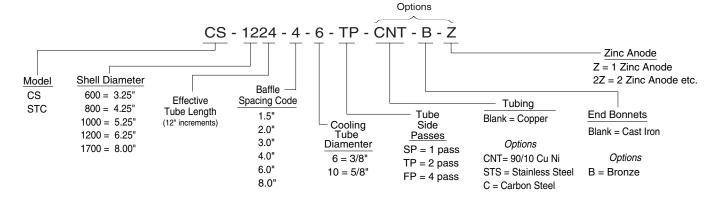
degrees.

Example Model

FINISH

Gray semigloss

enamel. Can be


used as a base for additional coats.

BUNDLE ASSEMBLY CNC precision manufactured parts to guarantee a close fit between the baffles, tubes, and shell. Clearances are minimized to provide for maximum heat transfer.

DRAIN PORT Drain ports allow for easy draining of tube side. Optional zinc anode can be inserted in place of plug.

TUBE JOINT Roller expanded tube ioint to tube-sheet.

FULL FACE GASKET Full-face composite gasket.

UNIT CODING

STANDARD CONSTRUCTION MATERIALS & RATINGS

Standard Model	CS Series	STC Series	Standard Unit Ratings		
Shell	Steel	316 Stainless Steel	Operating Pressure Tubes		
Tubes	Copper	316 Stainless Steel	150 psig		
Baffle	Steel	316 Stainless Steel	Operating Pressure Shell		
Tube Sheet	Steel	316 Stainless Steel	- 300 psig		
End Bonnets	Cast Iron	316 Stainless Steel	Operating Temperature		
Mounting Brackets	Steel	Steel	- Operating Temperature		
Gasket	Hypalon Composite	Hypalon Composite	- 300 °F		

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

CS & STC Series selection

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other fluids that are commonly used with shell & tube heat exchangers.

Terms	Kw	= Kilowatt (watts x 1000)
GPM = Gallons Per Minute	T _{in}	 Hot fluid entering temperature in °F
CN = Constant Number for a given fluid	T out	 Hot fluid exiting temperature in °F
ΔT = Temperature differential across the potential	t _{in}	= Cold fluid temperature entering in °F
PSI = Pounds per Square Inch (pressure) of the operating side of the system	t _{out}	 Cold fluid temperature exiting in °F
MHP = Horsepower of the electric motor driving the hydraulic pump	Q	= BTU/HR

For example purposes, a hydraulic system has a 125 HP (93Kw) electric motor installed coupled to a pump that produces a flow of 80 GPM @ 2500 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 5.3°F. Even though our return line pressure operates below 100 psi, we must calculate the system heat load potential (Q) based upon the prime movers (pump) capability. We can use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

Formula	Example	Constant for a given fluid (CN)
A) Q = GPM x CN x actual $\triangle T$	A) $Q = 80 \times 210 \times 5.3^{\circ}F = 89,040 \text{ btu/hr}$	
B) Q = [(PSI x GPM) / 1714] x (v) x 2545	в) Q =[(2500x80)/1714] x .30 x 2545 = 89,090 вти/	1) Oil CN = 210
c) $Q = MHP x (v) x 2545$	HR	2) Water CN = 500
D) $Q = Kw$ to be removed x 3415	с) Q =125 х .30 х 2545 = 95,347 вти/нг	3) 50% E. Glycol CN = 450
E) $Q = HP$ to be removed x 2545	D) $Q = 28 \times 3415 = 95,620$ BTU/HR	

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid flow rate to derive the cold side $\triangle T$. If your water flow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

$HOT FLUID \bigtriangleup T = Q$ Oil CN x GPM	$\Delta \mathbf{T} = \frac{89,090 \text{ BTU/hr} \text{ (from step 1, item B)}}{210 \text{ CN x 80GPM}} = 5.3^{\circ}\text{F} = \Delta \text{T} \text{ Rejected}$
$\begin{array}{ccc} \textbf{COLD FLUID} \bigtriangleup \mathbf{t} &= & BTU / hr \\ \textbf{Water} & & \overline{CN \times GPM} \end{array}$	$\triangle \mathbf{t} = \frac{89,090 \text{ BTU/hr}}{500 \text{ CN x 40GPM (for a 2:1 ratio)}} = 4.45^{\circ}\text{F} = \triangle \text{T} \text{ Absorbed}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{in} = 125.3 \text{ °F} T_{out} = 120.0 \text{ °F} t_{in} = 70.0 \text{ °F} t_{out} = 74.5 \text{ °F} $
$\frac{\mathbf{T}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{out}} = \frac{\mathbf{S}[\text{smaller temperature difference}]}{\mathbf{L} [\text{larger temperature difference}]} = \left(\frac{\mathbf{S}}{\mathbf{L}}\right)$	$\frac{120.0^{\circ}\text{F} - 70.0^{\circ}\text{F} = 50.0^{\circ}\text{F}}{125.3^{\circ}\text{F} - 74.5^{\circ}\text{F} = 50.8^{\circ}\text{F}} = \frac{50.0^{\circ}\text{F}}{50.8^{\circ}\text{F}} = .984$

{1.17=R}

- =

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

To calculate the LMTD please use the following method;

L = Larger temperature difference from step 2. M = S/L number (LOCATED IN TABLE A).

$LMTD_{i} = L \times M$

To correct the LMTD, for a multipass heat exchangers calculate R & K as follows:

FORMULA EXAMPLE

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}} \qquad \mathbf{R} = \frac{125.3^{\circ}F - 120^{\circ}F}{74.5^{\circ}F - 70^{\circ}F} = \frac{5.3^{\circ}F}{4.5^{\circ}F}$$

$$\mathbf{K} = \frac{\mathbf{t}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{in}} \qquad \mathbf{K} = \frac{74.5^{\circ} \mathrm{F} - 70^{\circ} \mathrm{F}}{124.5^{\circ} \mathrm{F} - 70^{\circ} \mathrm{F}} = \frac{4.5^{\circ} \mathrm{F}}{55.4^{\circ} \mathrm{F}} = \{0.081 = \mathrm{K}\}$$

EXAMPLE

note: AIHTI reserves the right to make reasonable design changes without notice.

 $LMTD_{i} = 50.8 \text{ x} .992 \text{ (FROM TABLE A)} = 50.39$

(FROM TABLE B)

Locate the correction factor CF_B

 $LMTD_{c} = LMTD_{i} \times CF_{B}$ LMTD_c = 50.39 x 1 = **50.39**

STEP 4: Calculate the area required

Required Area sq.ft. =	Q (BTU / HR)			
	$LMTD_{C} \ge U$ (from table C)			

89.090 = 17.68 sq.ft. 50.39 x 100

STEP 5: Selection

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits your flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

Oil Flow Rate	=	80 GPM	=	Series Required from Table $E =$	1200 Series
				Baffle Spacing from Table E =	
Water Flow Rate	=	40 GPM	=	Passes required in 1200 series =	4 (FP)

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate.

Example Closest model required based upon sq.ft. & series = CS - 1224 - 4 - 6 - FP Required Area = 17.68 sq.ft

If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

TABLE A- FACTOR M/LMTD = L x M

	-					0.1	
S/L	М	S/L	М	S/L	M	S/L	M
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

TABLE B- LMTD correction factor for Multipass Exchangers

.999 .993 .984 .972 .942

.980 .965 .948

.995 .981 .965 .945 .916 .872

.988 .970 .949 .918 .867 .770

.983 .971

.959 .922 .855 .70

.923 .840

TABLE D- Surface Area									
	Surface Are	ea in Sq.ft.		Surface Area in Sq.ft.					
Model Number	3/8" O.D Tubing Code 6	5/8" O.D Tubing Code 10	Model Number	3/8" O.D Tubing Code 6	5/8" O.D Tubing Code 10				
CS-614	-	-	CS-1236	35.3	17.7				
CS-624	-	-	CS-1248	47.1	23.6				
CS-636	-	-	CS-1260	58.9	29.5				
			CS-1272	70.6	35.4				
CS-814	-	-	CS-1284	82.3	41.3				
CS-824	-	-	CS-1296	94.0	47.2				
CS-836	-	-							
CS-848	-	-	CS-1724	44.0	23.6				
			CS-1736	66.0	35.3				
CS-1014	8.7	4.6	CS-1748	88.0	47.1				
CS-1024	14.9	7.8	CS-1760	110.0	58.9				
CS-1036	22.4	11.8	CS-1772	132.0	70.7				
CS-1048	29.9	15.8	CS-1784	154.0	82.5				
CS-1060	37.4	19.8	CS-1796	176.0	94.3				
			CS-17108	198.0	106.1				
CS-1224	23.6	11.8	CS-17120	220.0	117.9				

TABLE	E- F	-low	Rate	for	Shell	&	Tube

Shell	Ma	x Liquic	I Flow -	Shell S	Liquid Flow - Tube Side				
dia.		Baf	e Spa	cing	Т	Ρ	F	Р	
Code	1.5	2	3	4	6	Min.	Max.	Min.	Max.
600	15	20	25	30	-	3.5	24	2	12
800	20	34	45	60	-	4.5	38	3	21
1000	30	36	50	65	-	10	70	5	37
1200	45	50	70	100	125	15	112	7.5	56
1700	50	65	100	140	220	29	180	14	90
2000	60	80	100	160	240	45	320	25	160

TABLE C

U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

R

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .6 .7 .8 .9 1.0

1 1

.996 .880

.720

.2 1 1

.4 1 1 1

.6 1 1 1 1 1 .992

.8 1 1 1 1

1.0 1 1 1 1

2.0

3.0 1 1

4.0 1

5.0 1 .982 .917 .885

6.0 1 .968 1 .930

8.0

10.0 12.0 .985

14.0 .972 16.0.958 18.0 .940 20.0 .915 1

.977 .973

.993 .950 .850

1 1 1 1 .994

1

.997 .933 .835

1 1

.940 .845 .740

note: AIHTI reserves the right to make reasonable design changes without notice.

Κ

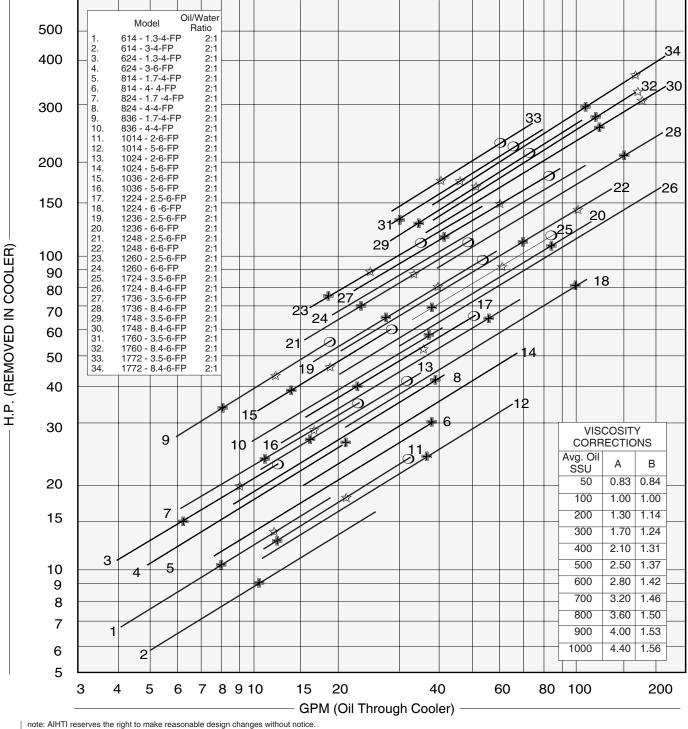
Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

.908 .845

.71

Instructions

The selection chart provided contains an array of popular sizes for quick sizing. It does not provide curves for all models available. Refer to page 44 & 45 for detailed calculation information.


Computer selection data sheets for standard or special models are available through the engineering department of American Industrial. To use the followings graphs correctly, refer to the instruction notes "1-5".

- HP Curves are based upon a 40°F approach temperature; for example: oil leaving a cooler at 125°F, using 85°F cooling water (125°F - 85°F = 40°F).
- 2) The oil to water ratio of 1:1 or 2:1 means that for every 1 gallon of oil circulated, a minimum of 1 or 1/2 gallon (respectively) of 85°F water must be circulated to match the curve results.

- 4) Pressure Drop is based upon oil with an average viscosity of 100 SSU. If the average oil viscosity is other than 100 SSU, then multiply the indicated Pressure Drop by the corresponding value from corrections table A.
- 5) Corrections for approach temperature and oil viscosity are as follows:

$$H.P.(_{In Cooler}^{Removed}) = H.P.(_{Heat Load}^{Actual}) \times (\frac{40}{Actual Approach}) \times B.$$

HEAT ENERGY DISSIPATION RATES (Basic Stock Model)

Ν

3.70

4.44

5.05

Model

Μ

17.18 27.18

17.88

27.88

39.88

19.09

29.09

Р

.40

.63

.92

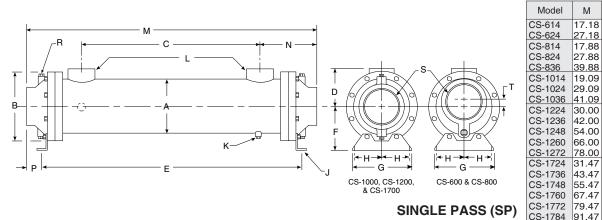
(2) .38

(2) .38

(4) .38

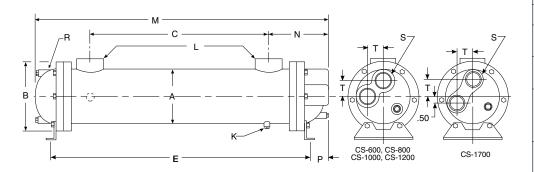
1.50

2.00


2.00

Т

.38

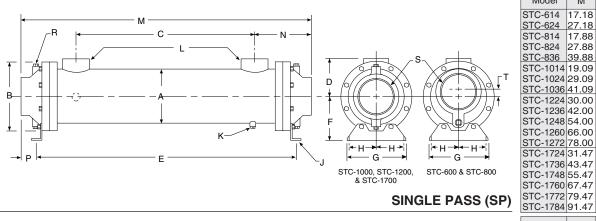

.50

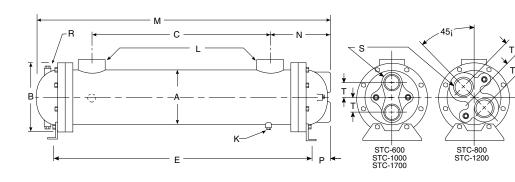
-

TWO PASS (TP)

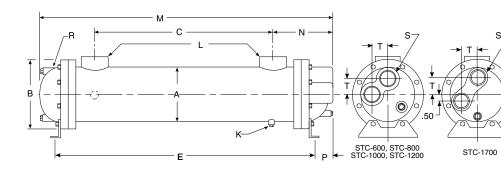
CS-1248 CS-1260 CS-1272	54.00 66.00 78.00	5.88	1.43	(4) .50	3.00	-
CS-1724 CS-1736 CS-1748 CS-1760 CS-1772 CS-1784	31.47 43.47 55.47 67.47 79.47 91.47	7.23	1.99	(4) .50	4.00	-
Model	М	Ν	Р	R NPT	S NPT	Т
CS-614 CS-624	17.12 27.12	3.70	.38	(2) .38	1.00	1.00
CS-814 CS-824 CS-836	17.88 27.88 39.88	4.44	.63	(2) .38	1.25	1.19
CS-1014 CS-1024 CS-1036	18.62 28.62 40.62	5.00	.94	(2) .38	1.50	1.19
CS-1224 CS-1236 CS-1248 CS-1260 CS-1272	29.03 41.03 53.03 65.03 77.03	5.44	1.00	(2) .50	2.00	1.44
CS-1724 CS-1736 CS-1748 CS-1760 CS-1772 CS-1784	30.62 42.62 54.62 66.62 78.62 90.62	7.06	1.81	(2) .50	2.50	1.88
Model	М	Ν	Р	R NPT	S NPT	Т
CS-614 CS-624	17.12 27.12	3.70				
	21.12	0.7 0	.38	(2) .38	.75	1.00
CS-814 CS-824 CS-836	17.88 27.88 39.88	4.44	.38	(2) .38 (3) .38	.75 .75	1.00 1.06
CS-824	17.88 27.88			.38		
CS-824 CS-836 CS-1014 CS-1024	17.88 27.88 <u>39.88</u> 18.81 28.81	4.44	.63	.38 (3) .38	.75	1.06

FOUR PASS (FP)


Model	А	В	С	D	E	F	G	н	J	K NPT	L NPT	Approx. Weight	Model
CS-614	0.05	4.50	10.00	0.00	17.00	2.75	4.10	1 00	001.000	(2)	1.00	17	CS-614
CS-624	3.25	4.50	20.00	2.63	27.00	2.75	4.18	1.62	.38¢x0.88	.25	1.00	24	CS-624
CS-814			9.00		16.62							32	CS-814
CS-824	4.25	6.00	19.00	3.12	26.62	3.50	4.25	1.75	.446x1.00	(2)	1.50	41	CS-824
CS-836	_		31.00		38.62					.25		53	CS-836
CS-1014			9.00		17.12					(=)		43	CS-1014
CS-1024	5.25	7.00	19.00	3.62	27.12	4.00	5.25	2.00	.44¢x1.00	(2) .38	1.50	57	CS-1024
CS-1036			31.00		39.12					.38		72	CS-1036
CS-1224			18.25		27.13							85	CS-1224
CS-1236			30.25		39.13							110	CS-1236
CS-1248	6.25	8.00	42.25	4.16	51.13	4.50	6.25	2.50	.446x1.00	(2) .38	2.00	135	CS-1248
CS-1260			54.25		63.13					.38		160	CS-1260
CS-1272			66.25		75.13							185	CS-1272
CS-1724			17.00		27.50							140	CS-1724
CS-1736			29.00		39.50							180	CS-1736
CS-1748	8.00	10.00	41.00	5.62	51.50	5.75	8.25	3.50	.446x1.00	(2) .38	3.00	220	CS-1748
CS-1760	0.00		53.00	0.02	63.50	00	0.20	0.00		.38	0.00	260	CS-1760
CS-1772			65.00		75.50							300	CS-1772
CS-1784			77.00		87.50							340	CS-1784


note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc.

COMMON DIMENSIONS & WEIGHTS


3905 Route 173 Zion, IL 60099

STC Series dimensions

TWO PASS (TP)

SIC-624	27.18			.38		
STC-814	17.88			(-)		
STC-824	27.88	4.44	.63	(2)	2.00	.50
STC-836	39.88			.38		
STC-1014				(()		
STC-1024		5.05	.92	(4)	2.00	-
STC-1036				.38		
STC-1224						
STC-1236				(4)		
STC-1248	54.00	5.88	1.43	(4)	3.00	-
STC-1260	66.00			.50		
STC-1272	78.00					
STC-1724	31.47					
STC-1736						
STC-1748	-			(4)		
STC-1760		7.23	1.99	(4) .50	4.00	-
				.50		
STC-1772	-					
STC-1784	91.47					
Medal	M	N	D	R	S	Ŧ
Model	M	Ν	Р	NPT	NPT	Т
STC-614	17.12	3.70	.38	(2)	1.00	1.00
STC-624	27.12	5.70	.00	.38	1.00	1.00
STC-814	17.88					
STC-824	27.88	4.44	.63	(2)	1.25	1.19
		4.44	.03	.38	1.20	1.19
STC-836	39.88					
STC-1014	18.62	E 00	04	(2)	1 50	1 10
STC-1024		5.00	.94	.38	1.50	1.19
STC-1036	40.62					
STC-1224	29.03					
STC-1236	41.03					
OTO 1040	53.03	5.44	1 00	(0)		
010-1/40			1.00	(2)	2.00	1.44
STC-1248		5.44	1.00	(2) .50	2.00	1.44
STC-1260	65.03	5.44	1.00	.50	2.00	1.44
STC-1260 STC-1272	65.03 77.03	5.44	1.00	.50	2.00	1.44
STC-1260 STC-1272 STC-1724	65.03 77.03 30.62	5.44	1.00	.50	2.00	1.44
STC-1260 STC-1272 STC-1724 STC-1736	65.03 77.03 30.62 42.62	5.44	1.00		2.00	1.44
STC-1260 STC-1272 STC-1724	65.03 77.03 30.62 42.62	-				
STC-1260 STC-1272 STC-1724 STC-1736	65.03 77.03 30.62 42.62 54.62	7.06	1.81	(2) .50 (2) .50	2.00	1.44
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748	65.03 77.03 30.62 42.62 54.62 66.62	-				
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760	65.03 77.03 30.62 42.62 54.62 66.62 78.62	-				
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1772	65.03 77.03 30.62 42.62 54.62 66.62 78.62	-	1.81	(2) .50	2.50	1.88
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1772	65.03 77.03 30.62 42.62 54.62 66.62 78.62	-		(2) .50	2.50 S	
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1772 STC-1784 Model	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M	7.06 N	1.81 P	(2) .50 R NPT	2.50 S NPT	1.88 T
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1772 STC-1784 Model STC-614	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12	7.06	1.81	(2) .50 R NPT	2.50 S	1.88
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1768 STC-1772 STC-1772 STC-1784 Model STC-614 STC-624	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12 27.12	7.06 N	1.81 P	(2) .50	2.50 S NPT	1.88 T
STC-1260 STC-1272 STC-1724 STC-1748 STC-1748 STC-1760 STC-1772 STC-1784 Model STC-614 STC-614 STC-614 STC-814	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12 27.12 17.88	7.06 N 3.70	1.81 P .38	(2) .50 R NPT (2) .38	2.50 S NPT .75	1.88 T 1.00
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1778 STC-1778 STC-1784 Model STC-614 STC-624 STC-814 STC-824	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12 27.12 17.88 27.88	7.06 N	1.81 P	(2) .50 R NPT (2) .38	2.50 S NPT	1.88 T
STC-1260 STC-1272 STC-1724 STC-1748 STC-1748 STC-1760 STC-1772 STC-1784 Model STC-614 STC-614 STC-624	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12 27.12 17.88	7.06 N 3.70	1.81 P .38	(2) .50 R NPT	2.50 S NPT .75	1.88 T 1.00
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1778 STC-1778 STC-1784 Model STC-614 STC-624 STC-814 STC-824	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12 27.12 17.88 27.88	7.06 N 3.70	1.81 P .38	(2) .50 R NPT (2) .38 (3) .38	2.50 S NPT .75	1.88 T 1.00
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1748 STC-1760 STC-1772 STC-1784 Model STC-614 STC-614 STC-814 STC-824 STC-816 STC-1014	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 M 17.12 27.12 17.88 27.88 39.88 18.81	7.06 N 3.70	1.81 P .38	(2) .50 R NPT (2) .38 (3) .38	2.50 S NPT .75	1.88 T 1.00
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1778 STC-1778 STC-1778 STC-1778 STC-1778 STC-614 STC-614 STC-614 STC-624 STC-814 STC-824 STC-836 STC-1014 STC-1024	65.03 77.03 30.62 42.62 54.62 66.62 90.62 90.62 M 17.12 27.12 17.88 27.88 39.88 18.81 28.81	7.06 N 3.70 4.44	1.81 P .38 .63	(2) .50 R NPT (2) .38	2.50 S NPT .75 .75	1.88 T 1.00 1.06
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1778 Model STC-614 STC-614 STC-624 STC-814 STC-824 STC-814 STC-824 STC-1014 STC-1024	65.03 77.03 30.62 42.62 54.62 66.62 90.62 90.62 M 17.12 27.12 17.88 27.88 39.88 18.81 28.81 40.81	7.06 N 3.70 4.44	1.81 P .38 .63	(2) .50 R NPT (2) .38 (3) .38	2.50 S NPT .75 .75	1.88 T 1.00 1.06
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1772 STC-1784 Model STC-614 STC-614 STC-614 STC-814 STC-814 STC-824 STC-1024 STC-1036 STC-1024	65.03 77.03 30.62 42.62 54.62 90.62 78.62 90.62 17.12 17.88 27.88 39.88 18.81 28.81 28.81 40.81 29.13	7.06 N 3.70 4.44	1.81 P .38 .63	(2) .50 R NPT (2) .38 (3) .38	2.50 S NPT .75 .75	1.88 T 1.00 1.06
STC-1260 STC-1722 STC-1724 STC-1748 STC-1760 STC-1748 STC-1760 STC-1772 STC-1784 STC-614 STC-614 STC-614 STC-614 STC-614 STC-824 STC-814 STC-824 STC-1026 STC-1024 STC-1026 STC-1224	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 17.12 27.12 17.88 27.88 39.88 18.81 28.81 40.81 29.13 41.13	7.06 N 3.70 4.44 4.81	1.81 P .38 .63 .75	(2) .50 R NPT (2) .38 (3) .38 (3) .38	2.50 S NPT .75 .75 1.00	1.88 T 1.00 1.06 1.69
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1778 STC-1778 STC-1784 Model STC-614 STC-614 STC-824 STC-814 STC-824 STC-1014 STC-1024 STC-1024 STC-1024 STC-1228	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 17.12 27.12 17.88 27.88 18.81 28.81 40.81 29.13 53.13	7.06 N 3.70 4.44	1.81 P .38 .63	(2) .50 NPT (2) .38 (3) .38 (3) .38 (3) .38	2.50 S NPT .75 .75	1.88 T 1.00 1.06
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1778 STC-1778 STC-1778 STC-1778 STC-1778 STC-1778 STC-614 STC-624 STC-814 STC-824 STC-814 STC-1014 STC-1024 STC-1026 STC-1248 STC-1248	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 17.12 27.12 17.88 27.88 39.88 18.81 28.81 40.81 29.13 41.13	7.06 N 3.70 4.44 4.81	1.81 P .38 .63 .75	(2) .50 R NPT (2) .38 (3) .38 (3) .38	2.50 S NPT .75 .75 1.00	1.88 T 1.00 1.06 1.69
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1778 STC-1778 STC-1784 Model STC-614 STC-614 STC-824 STC-814 STC-824 STC-1014 STC-1024 STC-1024 STC-1024 STC-1228	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 17.12 27.12 17.88 27.88 18.81 28.81 40.81 29.13 53.13	7.06 N 3.70 4.44 4.81	1.81 P .38 .63 .75	(2) .50 NPT (2) .38 (3) .38 (3) .38 (3) .38	2.50 S NPT .75 .75 1.00	1.88 T 1.00 1.06 1.69
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1778 STC-1778 STC-1778 STC-1778 STC-1778 STC-1778 STC-614 STC-624 STC-814 STC-824 STC-814 STC-1014 STC-1024 STC-1026 STC-1248 STC-1248	65.03 77.03 30.62 42.62 54.62 90.62 90.62 M 17.12 27.12 17.88 39.88 18.81 28.81 28.81 29.13 40.81 29.13 41.13 53.13 65.13 77.13	7.06 N 3.70 4.44 4.81	1.81 P .38 .63 .75	(2) .50 NPT (2) .38 (3) .38 (3) .38 (3) .38	2.50 S NPT .75 .75 1.00	1.88 T 1.00 1.06 1.69
STC-1260 STC-1722 STC-1724 STC-1748 STC-1760 STC-1778 STC-1784 STC-1784 STC-614 STC-614 STC-614 STC-614 STC-814 STC-824 STC-1026 STC-1026 STC-1026 STC-1224 STC-1260 STC-1272 STC-1724	65.03 77.03 30.62 42.62 54.62 78.62 90.62 M 177.12 27.12 17.88 39.88 18.81 28.81 40.81 29.13 41.13 53.13 65.13 29.86	7.06 N 3.70 4.44 4.81	1.81 P .38 .63 .75	(2) .50 NPT (2) .38 (3) .38 (3) .38 (3) .38	2.50 S NPT .75 .75 1.00	1.88 T 1.00 1.06 1.69
STC-1260 STC-1722 STC-1724 STC-1748 STC-1760 STC-1778 STC-1784 STC-1760 STC-1772 STC-1784 STC-614 STC-614 STC-614 STC-624 STC-824 STC-836 STC-1014 STC-1026 STC-1024 STC-1228 STC-1224 STC-1228 STC-1224 STC-1272 STC-1724	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 17.12 27.12 17.88 27.88 39.88 18.81 29.13 41.13 53.13 65.13 77.13 29.86 41.86	7.06 N 3.70 4.44 4.81 5.44	1.81 P .38 .63 .75	(2) .50 R NPT (2) .38 (3) .38 (3) .38 (3) .50	2.50 NPT .75 1.00 1.50	1.88 T 1.00 1.06 2.00
STC-1260 STC-1272 STC-1724 STC-1748 STC-1760 STC-1778 STC-1784 Model STC-614 STC-614 STC-814 STC-824 STC-814 STC-824 STC-1024 STC-1024 STC-1024 STC-1224 STC-1226 STC-1227 STC-1726 STC-1726 STC-1726 STC-1726 STC-1736 STC-1748	65.03 77.03 30.62 42.62 54.62 66.62 78.62 90.62 17.12 27.12 17.88 27.88 18.81 29.13 53.13 65.13 77.13 29.86 41.86 53.86	7.06 N 3.70 4.44 4.81	1.81 P .38 .63 .75	(2) .50 R NPT (2) .38 (3) .38 (3) .38 (3) .50	2.50 S NPT .75 .75 1.00	1.88 T 1.00 1.06 1.69
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1778 STC-1778 STC-1784 STC-614 STC-614 STC-624 STC-814 STC-824 STC-814 STC-1024 STC-1024 STC-1024 STC-1248 STC-1288 STC-1288 STC-1288 STC-1272 STC-1724 STC-1748 STC-17760	65.03 77.03 30.62 42.62 54.62 90.62 90.62 M 17.12 27.12 17.88 27.88 39.88 18.81 28.81 29.13 41.13 53.13 53.13 29.86 41.86 53.86 65.86	7.06 N 3.70 4.44 4.81 5.44	1.81 P .38 .63 .75 1.00	(2) .50 NPT (2) .38 (3) .38 (3) .38 (3) .38	2.50 NPT .75 1.00 1.50	1.88 T 1.00 1.06 2.00
STC-1260 STC-1272 STC-1724 STC-1748 STC-1748 STC-1760 STC-1772 STC-1784 Model STC-614 STC-614 STC-614 STC-814 STC-814 STC-824 STC-1026 STC-1026 STC-1228 STC-1248 STC-1260 STC-1272 STC-1746 STC-1776 STC-1760 STC-1772	65.03 77.03 30.62 42.62 54.62 78.62 90.62 M 177.12 27.12 17.88 39.88 18.81 28.81 40.81 29.13 41.13 53.13 65.13 29.86 41.86 53.86 65.86 65.86 65.86	7.06 N 3.70 4.44 4.81 5.44	1.81 P .38 .63 .75 1.00	(2) .50 R NPT (2) .38 (3) .38 (3) .38 (3) .50	2.50 NPT .75 1.00 1.50	1.88 T 1.00 1.06 2.00
STC-1260 STC-1272 STC-1724 STC-1736 STC-1748 STC-1760 STC-1778 STC-1778 STC-1784 STC-614 STC-614 STC-624 STC-814 STC-824 STC-814 STC-1024 STC-1024 STC-1024 STC-1248 STC-1288 STC-1288 STC-1288 STC-1272 STC-1724 STC-1748 STC-17760	65.03 77.03 30.62 42.62 54.62 78.62 90.62 M 177.12 27.12 17.88 39.88 18.81 28.81 40.81 29.13 41.13 53.13 65.13 29.86 41.86 53.86 65.86 65.86 65.86	7.06 N 3.70 4.44 4.81 5.44	1.81 P .38 .63 .75 1.00	(2) .50 R NPT (2) .38 (3) .38 (3) .38 (3) .50	2.50 NPT .75 1.00 1.50	1.88 T 1.00 1.06 2.00

S NPT

1.50

т

.38

R NPT

(2)

Ρ

.40

Ν

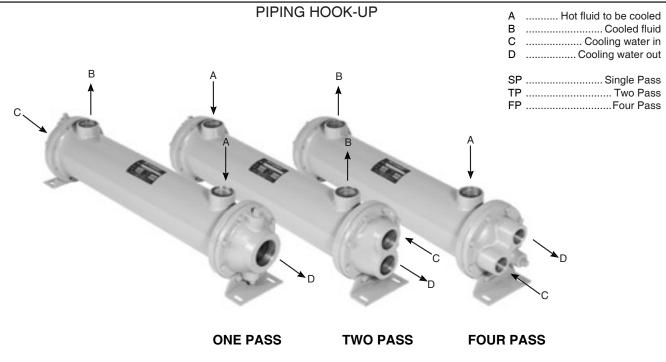
3.70

Model

Μ

COMMON DIMENSIONS & WEIGHTS

FOUR PASS (FP)


Model	А	В	С	D	E	F	G	н	J	K NPT	L NPT	Approx. Weight	Model
STC-614	3.12	4.50	10.00	2.31	17.00	2.75	4.18	1.62	.38¢x0.88	(2)	1.00	17	STC-614
STC-624	3.12	4.50	20.00	2.51	27.00	2.75	4.10	1.02	.300,00	(2) .25	1.00	24	STC-624
STC-814			9.00		16.62							32	STC-814
STC-824	4.12	6.00	19.00	3.12	26.62	3.50	4.25	1.75	.44¢x1.00	(2) .25	1.50	41	STC-824
STC-836			31.00	-	38.62					.25		53	STC-836
STC-1014			9.00		17.12							43	STC-1014
STC-1024	5.12	7.00	19.00	3.62	27.12	4.00	5.25	2.00	.44¢x1.00	(2) .38	1.50	57	STC-1024
STC-1036			31.00		39.12					.38		72	STC-1036
STC-1224			18.25		27.13							85	STC-1224
STC-1236			30.25		39.13							110	STC-1236
STC-1248	6.12	8.00	42.25	4.16	51.13	4.50	6.25	2.50	.44¢x1.00	(2) .38	2.00	135	STC-1248
STC-1260			54.25		63.13					.38		160	STC-1260
STC-1272			66.25		75.13							185	STC-1272
STC-1724			17.00		27.50							140	STC-1724
STC-1736			29.00		39.50							180	STC-1736
STC-1748	8.00	10.00	41.00	5.62	51.50	5.75	8.25	3.50	.44¢x1.00	(2) .38	3.00	220	STC-1748
STC-1760	0.00	10.00	53.00	0.02	63.50	0.70	0.20	0.00		.38	0.00	260	STC-1760
STC-1772			65.00		75.50							300	STC-1772
STC-1784			77.00		87.50							340	STC-1784
STC-1784			77.00		87.50							340	STC-1784

 note: AIHTI reserves the right to make reasonable design changes without notice.

 Copyright © 2004 American Industrial Heat Transfer, Inc.
 3905 Ro

3905 Route 173 Zion, IL 60099

CS & STC Series installation & maintenance

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the

original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

CS & STC Series installation & maintenance

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, *hot uid in the tubes and cold uid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the complete bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

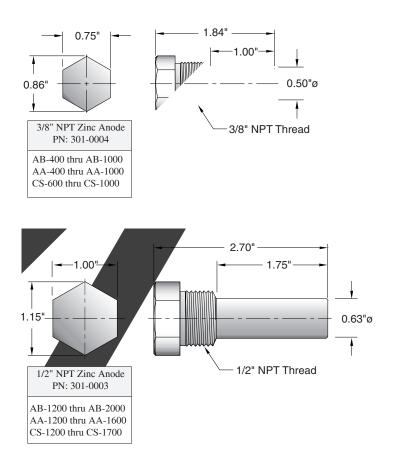
c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc.

tel: 1 (847) 731-1000

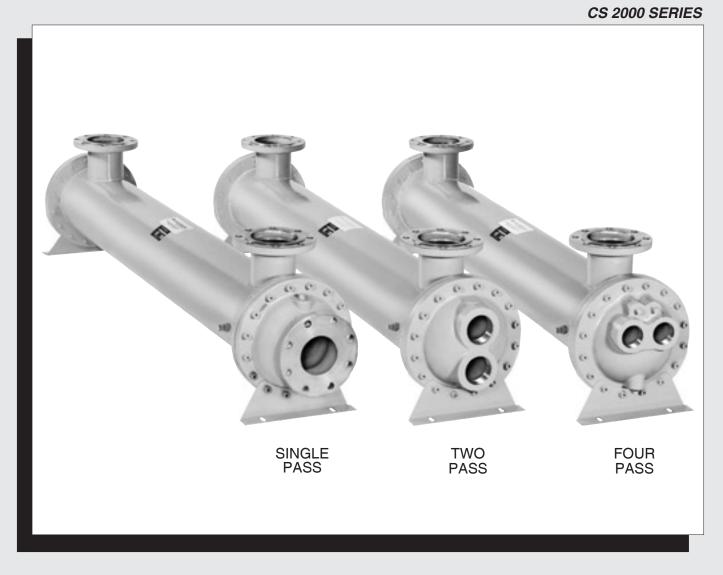
the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.


d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.


Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

Manufacturer of Quality Heat Exchangers

Fixed Tube Bundle / Liquid Cooled

HEAT EXCHANGERS

- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 225 PSI.
- Operating temperature 250 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other fluids that are commonly used with shell & tube heat exchangers.

Terms	Kw = Kilowatt (watts x 1000)
GPM = Gallons Per Minute	$T_{in} = Hot fluid entering temperature in °F$
CN = Constant Number for a given fluid	Hot fluid entering temperature in °F
$ \Delta T = Temperature differential across the potential PSI = Pounds per Square Inch (pressure) of the operating side of the system MHP = Horsepower of the electric motor driving the hydraulic pump$	$\begin{array}{rcl} T_{out} &= & \text{Hot fluid exiting temperature in }^{\circ}F \\ t_{in} &= & \text{Cold fluid temperature entering in }^{\circ}F \\ t_{out} &= & \text{Cold fluid temperature exiting in }^{\circ}F \\ Q &= & \text{BTU} / \text{HR} \end{array}$

For example purposes, a hydraulic system has a 250 HP (186Kw) electric motor installed coupled to a pump that produces a flow of 200 GPM @ 2000 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 4.3°F. Even though the return line pressure operates below 100 psi, calculate the system heat load potential (Q) based upon the prime movers (pump) capability.

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

Formula	Example	Constant for a given fluid (CN)
A) Q = GPM x CN x actual $\triangle T$	A) $Q = 200 \text{ x } 210 \text{ x } 4 .3^{\circ}\text{F} = 180,600 \text{ btu/hr}$	Constant for a given fluid (Civ)
B) Q = [(PSI x GPM) / 1714] x (v) x 2545 c) Q = MHP x (v) x 2545 d) Q = Kw to be removed x 3415 e) Q = HP to be removed x 2545	 B) Q =[(2000x200)/1714] x .30 x 2545 = 178,179 bTU/HR C) Q =250 x .30 x 2545 = 190,875 bTU/HR D) Q =186 x .30 x 3415 = 190,557 bTU/HR 	1) OilCN = 210 2) WaterCN = 500 3) 50% E. GlycolCN = 450

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid flow rate to derive the cold side ΔT . If your water flow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

FORMULA HOT FLUID $\triangle T = Q$	EXAMPLE $\triangle \mathbf{T} = \frac{190,875 \text{ BTU/hr}}{(\text{from step 1,item c})} = 4.54^{\circ}\text{F} = \triangle \text{T} \text{ Rejected}$
Oil $CN \times GPM$ COLD FLUID $\triangle t$ = BTU / hr Water $CN \times GPM$	$\Delta \mathbf{t} = \frac{190,875 \text{ BTU/hr}}{500 \text{ CN x 100GPM} \text{ (for a 2:1 ratio)}} = 3.81^{\circ}\text{F} = \Delta t \text{ Absorbed}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{in} = 104.54 \text{ °F} T_{out} = 100.0 \text{ °F} t_{in} = 90.0 \text{ °F} t_{out} = 93.81 \text{ °F} $
$\frac{\mathbf{T}_{out} - \mathbf{t}_{in}}{\mathbf{T}_{in} - \mathbf{t}_{out}} = \frac{\mathbf{S}[\text{smaller temperature difference}]}{\mathbf{L} [\text{larger temperature difference}]} = \left(\frac{\mathbf{S}}{\mathbf{L}}\right)$	$\frac{100.0^{\circ}\text{F} - 90.0^{\circ}\text{F} = 10.0^{\circ}\text{F}}{104.54^{\circ}\text{F} - 93.81^{\circ}\text{F} = 10.73^{\circ}\text{F}} = \frac{10.0^{\circ}\text{F}}{10.73^{\circ}\text{F}} = .931$

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

To calculate the LMTD please use the following method;

LMTD_i = L x M (L = Larger temperature difference from step 2) x (M = S/L number (LOCATED IN TABLE A)) $LMTD_{i} = 10.73 \text{ x} .964 \text{ (from table A)} = 10.34$

Errore

To correct the LMTD_i for a multipass heat exchangers calculate **R** & **K** as follows:

FORMULA
 EXAMPLE

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}}$$
 $\mathbf{R} = \frac{104.54^{\circ}F - 100^{\circ}F}{93.81^{\circ}F - 90^{\circ}F} = \frac{4.54^{\circ}F}{3.81^{\circ}F} = \{1.191=R\}$
 Locate the correction factor $C_{(FROM TABLE B)}$
 $\mathbf{K} = \frac{t_{out} - t_{in}}{T_{out}}$
 $\mathbf{K} = \frac{93.81^{\circ}F - 90^{\circ}F}{104.54^{\circ}F - 90^{\circ}F} = \frac{3.81^{\circ}F}{14.54^{\circ}F} = \{0.262=K\}$
 Locate the correction factor $C_{(FROM TABLE B)}$

 $I_{in} - l_{in}$ TABLE C

U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

TABLE E- Flow Rate for She	۱&	Tube
----------------------------	----	------

Shell	Max. I	Liquid	Flow	- Shel	l Side		Liqui	d Flov	v - Tuk	be Sid	е
dia .		Baffle Spacing				SP TP FP			P		
Code	2	4	6	8	12	Min.	Max.	Min.	Max.	Min.	Max.
2000	80	160	240	320	500	90	650	45	320	25	160

note: AIHTI reserves the right to make reasonable design changes without notice.

CS 2000 Series selection

STEP 4: Calculate the area required

Required Area sq.ft. = $\frac{Q(BTU/HR)}{LMTD_{req}}$

STEP 5: Selection

W

 $LMTD_{c} \ge U$ (from table C)

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits the flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

190,875

10.13 x 100

Oil Flow Rate = 200 GPM = Series Required from Table E = **2000 Series** Baffle Spacing from Table E = **6''**

ater Flow Rate =
$$100 \text{ GPM}$$
 = Passes required in 2000 series = 4 (FP)

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate. Example

Required Area = 188.4 sq.ft Closest model required based upon sq.ft. & series = **CS-2072-6-6-FP** If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

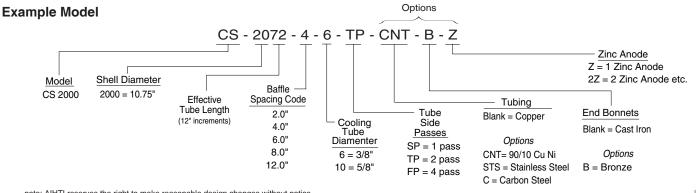
TABLE A- FACTOR M/LMTD = L x M

S/L	М	S/L	М	S/L	М	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

STANDARD CONSTRUCTION MATERIALS & RATINGS

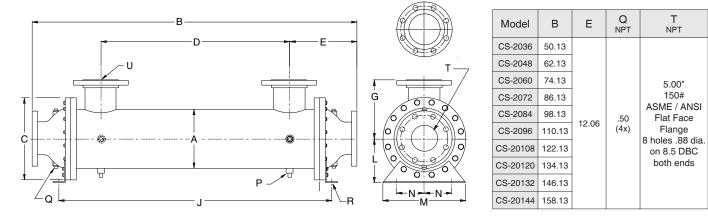
Standard I	Nodel	AB-2000 Series	Standard Unit Ratings
Shell		Steel	
Tubes		Copper	Operating Pressure Tubes
Baffle		Steel	150 psig
Tube She	eet	Steel	Operating Pressure Shell
End Bonr	ets	Cast Iron	225 psig
Mounting Br	ackets	Steel	Operating Temperature
Gaske	t I	Hypalon Composite	250 °F

TABLE B- LMTD correction factor for Multipass Exchangers

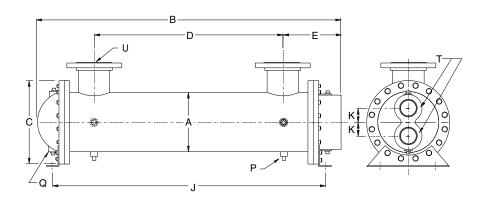

= 188.4 sq.ft.

		.05	.1	.15	.2	.25	.3	.35	.4	.45	.5	.6	.7	.8	.9	1.0
	.2	1	1	1	1	1	1	1	.999	.993	.984	.972	.942	.908	.845	.71
	.4	1	1	1	1	1	1	.994	.983	.971	.959	.922	.855	.70		
	.6	1	1	1	1	1	.992	.980	.965	.948	.923	.840				
	.8	1	1	1	1	.995	.981	.965	.945	.916	.872					
	1.0	1	1	1	1	.988	.970	.949	.918	.867	.770					
	2.0	1	1	.977	.973	.940	.845	.740								
	3.0	1	1	.997	.933	.835										
	4.0	1	.993	.950	.850											
	5.0	1	.982	.917												
	6.0	1	.968	.885												
	8.0	1	.930													
	10.0	.996	.880													
	12.0	.985	.720													
	14.0	.972														
	16.0	.958														
	18.0	.940														
	20.0	.915														

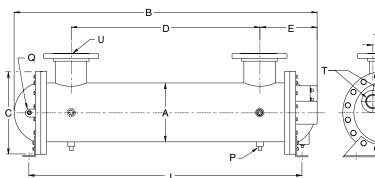
TABLE D- Surface Area


	Surface Ar	ea in Sg.ft.
Model Number	3/8" O.D Tubing	5/8 O.D Tubing
CS-2036	110.7	61.8
CS-2048	147.6	82.4
CS-2060	184.5	103.0
CS-2072	221.4	123.7
CS-2084	258.3	144.3
CS-2096	295.3	164.9
CS-20108	332.2	185.5
CS-20120	369.1	206.1
CS-20132	406.0	226.7
CS-20144	442.9	247.4

κ



note: AIHTI reserves the right to make reasonable design changes without notice.


CS 2000 Series dimensions

SINGLE PASS (SP)

Model	В	Е	К	Q NPT	T NPT
CS-2036	45.50				
CS-2048	57.50				
CS-2060	69.50				
CS-2072	81.50				
CS-2084	93.50			.50	
CS-2096	105.50	9.83	2.50	(4x)	3.00
CS-20108	117.50				
CS-20120	129.50				
CS-20132	141.50				
CS-20144	153.50				

FOUR PASS (FP)

TWO PASS (TP)

Model	В	Е	К	Q NPT	Y	T NPT		
CS-2036	45.80							
CS-2048	57.80							
CS-2060	69.80	9.93						
CS-2072	81.80							
CS-2084	93.80			.50	1.75	2.50		
CS-2096	105.80		2.00	(5x)				
CS-20108	117.80							
CS-20120	129.80							
CS-20132	141.80							
CS-20144	153.80							
					-			

COMMON DIMENSIONS & WEIGHTS

Model	А	С	D	G	J	L	М	N	P NPT	R	U	Weight	Model						
CS-2036			26.00		42.00							690	CS-2036						
CS-2048			38.00		54.00							750	CS-2048						
CS-2060			50.00		66.00							810	CS-2060						
CS-2072				62.00		78.00					.75"Ø	4.00	870	CS-2072					
CS-2084	10.75	15.00	74.00		90.00		12.00	5.00	.50	x 1.25"	4.00" ANSI	930	CS-2084						
CS-2096	10.75 15.00	10.75	15.00	15.00	.75 15.00	15.00	5 15.00	10.75 15.00	86.00	10.38	102.00	8.00	12.00	5.00	(4x)	T.25 Thru	Flange 150# RF	990	CS-2096
CS-20108						98.00		114.00					Slot	150# HF	1050	CS-20108			
CS-20120			110.00		126.00							1110	CS-20120						
CS-20132			122.00		138.00							1170	CS-20132						
CS-20144			134.00		150.00						1230	CS-20144							

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

CS 2000 Series installation & maintenance

	-			
	PIPI	NG HOOK-UP	A B C D	Hot fluid to be cooled Cooled fluid Cooling water in Cooling water out
C			TP	D. Single Pass Two Pass Four Pass

ONE PASS

TWO PASS

FOUR PASS

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- Heat exchangers made of ferrous materials, may be pressure-tested 2) using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc ...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the

CS 2000 Series installation & maintenance

hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, *hot uid in the tubes and cold uid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the complete bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

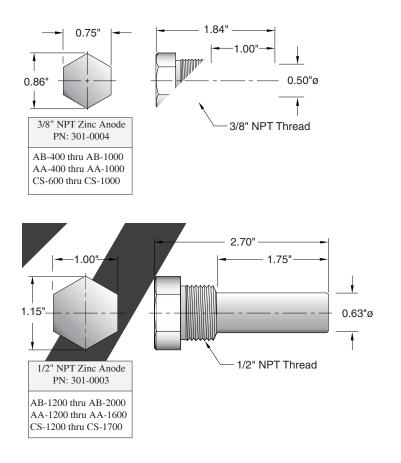
j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

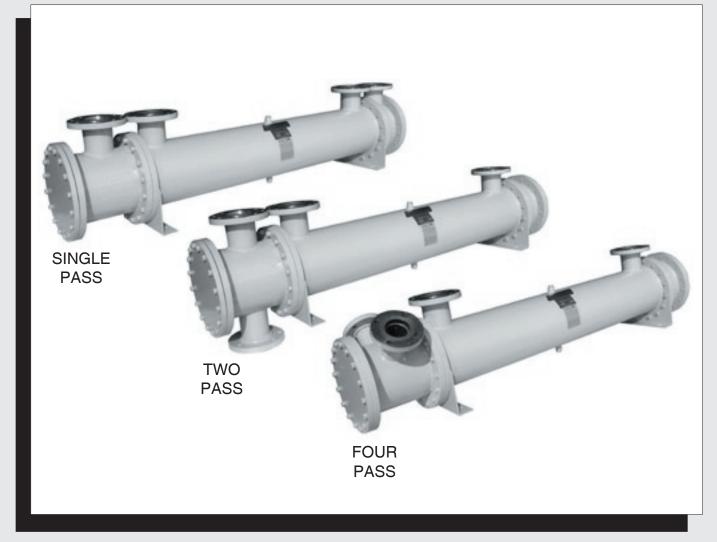

c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes. d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.


note: AIHTI reserves the right to make reasonable design changes without notice.

Manufacturer of Quality Heat Exchangers

CS 2400 - 4800 SERIES

Fixed Tube Bundle / Liquid Cooled

HEAT EXCHANGERS

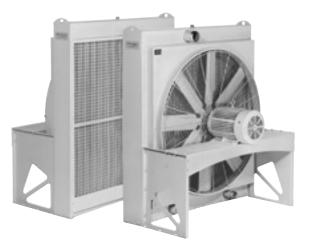
- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 225 PSI.
- Operating temperature 250 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

CS 2400 - CS 4800 Series overview

CS 2400 - CS 4800 SERIES

Strait tube large capacity heat exchangers with fixed tube bundle. Standard one, two and four pass units available. Sizes from 12" to 24" diameters. Made of steel with copper cooling tubes and steel channels. Options include 90/10 copper nickel and 316 stainless steel cooling tube, and zinc anodes. Can be customized to fit your requirements.

SRCS SERIES

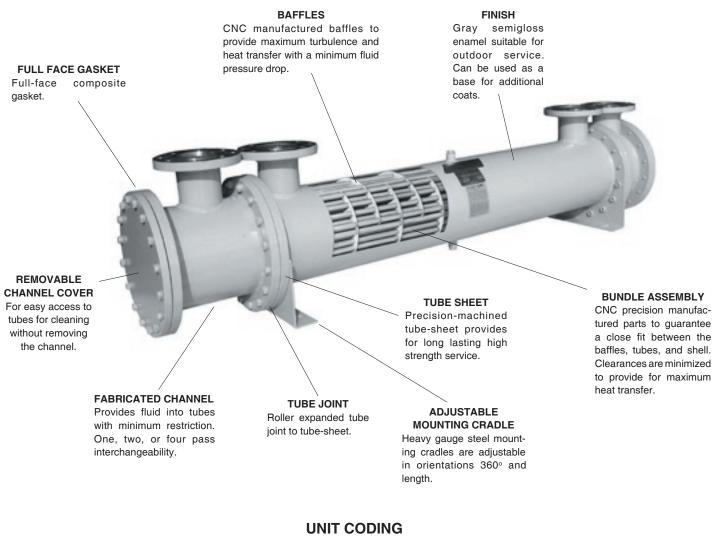

Strait tube heat exchangers with removeable tube bundle for fluids with high differential inlet temperatures or in applications where tube bundle requires removal. Standard one and two pass units available. Normally applied when the differential temperature between the hot uid entering and the cooling fluid entering is 150°F or greater. Strait tube design allows tubing to freely expand and contract independently of the shell. Welded outer shell construction made of carbon steel. Sizes from 6" to 20" diameters. Optional 90/10 copper nickel, stainless steel, and carbon steel tube. Can be modified to meet your requirements.

(See Page 71)

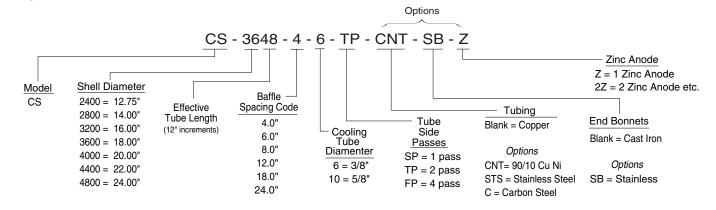
CS SERIES

Fixed tube construction heat exchangers with NPT connections. Made of steel with copper cooling tubes and cast iron end bonnets. Standard sizes from 3" through 8" diameters. Standard one, two, and four pass models are available. Options include 90/10 copper nickel and 316 stainless steel cooling tube, and zinc anodes. Can be customized to fit your requirements.

(See Page 41)



AOCS Series with electric drive


Severe duty air-cooled oil coolers, super capacity, rolled tube industrial series heat exchangers with direct electric drive cooling fan, OSHA guard, and heavy duty front screen. Rated operating temperature of 300°F at 200 PSIG. Standard flow rates from 10 to 600 GPM. NPT, ANSI flange, or SAE code 61 four bolt flange port connections. Optional built-in bypass relief valve 30 PSI or 65 PSI. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrications oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed material.

In applications where water is not available for cooling (see page 157)

CS 2400 - CS 4800 Series overview

Example Model

STANDARD CONSTRUCTION MATERIALS & RATINGS

Standard Model	CS 2400 - 4800	Options	Standard Unit Ratings
Shell	Steel	Stainless Steel	Operating Pressure Tubes
Tubes	Copper	90/10 Copper Nickel / Stainless Steel	150 psig
Baffle	Steel	Brass / Stainless Steel	1 0
Tube Sheet	Steel	Stainless Steel	Operating Pressure Shell
End Bonnets	Fabricated Steel	Stainless Steel	225 psig
Mounting Brackets	Steel	Steel	Operating Temperature 250 °F
Gasket	Hypalon Composite	O-Ring	250 °F

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other uids that are commonly used with shell & tube heat exchangers.

Terms	Kw = Kilowatt (watts x 1000)
GPM = Gallons Per Minute	T_{in} = Hot fluid entering temperature in °F
CN = Constant Number for a given fluid	T_{out} = Hot fluid exiting temperature in °F
$\triangle T$ = Temperature differential across the potential	t_{in} = Cold fluid temperature entering in °F
PSI = Pounds per Square Inch (pressure) of the operating side of the system	t_{out} = Cold fluid temperature exiting in °F
MHP = Horsepower of the electric motor driving the hydraulic pump	Q = BTU / HR

For example purposes, a hydraulic system has a total input 1200 HP (894Kw) electric motor installed coupled to a pump that produces a ow of 600 GPM @ 3000 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 6.6°F. Even though the return line pressure operates below 200 psi, calculate the system heat load potential (Q) based upon the prime movers (pump) capability, cooling uid is water @ 80°F use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v)represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

Formula	Example	
A) Q = GPM x CN x actual $\triangle T$	A) $Q = 600 \text{ x } 210 \text{ x } 6.6^{\circ}\text{F} = 831,600 \text{ btu/hr}$	Constant for a given fluid (CN)
B) Q = [(PSI x GPM) / 1714] x (v) x 2545	в) Q =[(3000x600)/1714] x .30 x 2545 = 801,808 вти/нг	
c) $Q = MHP x (v) x 2545$	c) $Q = 1200 \text{ x} .30 \text{ x} 2545 = 916,200 \text{ btu/hr}$	1) OilCN = 210
D) $Q = Kw$ to be removed x 3415	D) $Q = 894 \text{ x} .30 \text{ x} 3415 = 915,909 \text{ BTU/HR}$	2) WaterCN = 500
E) $Q = HP$ to be removed x 2545	E) $Q = 300 \text{ x } 2545 = 736,500 \text{ btu/hr}$	3) 50% E. Glycol CN = 450

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid ow rate to derive the cold side \triangle T. If the water ow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

FORMULA EXAMPLE (from step 1, item c) $\Delta \mathbf{T} = \frac{916,200 \text{ BTU/hr}}{210 \text{ CN x } 600\text{GPM}}$ $\frac{\text{HOT FLUID}}{\text{Oil}} \quad \triangle T = \frac{\text{Q}}{\text{CN x GPM}}$ = 7.37°F $= \triangle T$ Rejected $\frac{\text{COLD FLUID}}{\text{Water}} \bigtriangleup t = \frac{\text{BTU}/\text{hr}}{\text{CN x GPM}}$ $\triangle \mathbf{t} = \frac{916,200 \text{ BTU/hr}}{500 \text{ CN x } 300\text{GPM}}$ $= 3.81^{\circ}F$ = $\triangle t$ Absorbed Water $\begin{array}{rcl} T_{\rm in} &=& 117.3 \ {}^\circ F \\ T_{\rm out} &=& 110.0 \ {}^\circ F \\ t_{\rm in} &=& 80.0 \ {}^\circ F \\ t_{\rm out} &=& 86.1 \ {}^\circ F \end{array}$ $\mathbf{T_{in}} = \text{Hot Fluid entering temperature in degrees F}$ \mathbf{T}_{out}^{m} = Hot Fluid exiting temperature in degrees F = Cold Fluid entering temperature in degrees F = Cold Fluid exiting temperature in degrees F $\frac{T_{out} - t_{in}}{T_{in} - t_{out}} = \frac{S[\text{smaller temperature difference}]}{L [larger temperature difference]} = \left(\frac{S}{L}\right)$ $110.0^{\circ}\text{F} - 80.0^{\circ}\text{F} = 30.0^{\circ}\text{F}$.962 $\overline{117.3^{\circ}\text{F} - 86.1^{\circ}\text{F}} = \overline{31.2^{\circ}\text{F}}$

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099

To calculate the LMTD please use the following method;

- L = Larger temperature difference from step 2.
- M = S/L number (LOCATED IN TABLE A). .962 = .980

$$LMTD_{i} = L \times M$$

To correct the LMTD, for a multipass heat exchangers calculate R & K as follows:

FORMULA

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}}$$

$$\mathbf{R} = \frac{117.3^{\circ}F - 100^{\circ}F}{86.1^{\circ}F - 90^{\circ}F} = \frac{17.3^{\circ}F}{6.1^{\circ}F} = \{2.82=R\}$$

$$\mathbf{K} = \frac{t_{out} - t_{in}}{T_{in} - t_{in}}$$

$$\mathbf{K} = \frac{86.1^{\circ}F - 80^{\circ}F}{117.3^{\circ}F - 80^{\circ}F} = \frac{6.1^{\circ}F}{37.3^{\circ}F} = \{.163=K\}$$

STEP 4: Calculate the area required

Required Area sq.ft. =	Q (BTU / HR)	916,200	= 300.4 sq.ft.
Required filed squite =	$\overline{\text{LMTD}}_{\text{c}} \ge U$ (from table $\overline{\text{C}}$)	30.5 x 100	- 50014 54110

1)	OilCN	= 210
2)	WaterCN	= 500
3)	50% E. Glycol CN	= 450
	J	

 $LMTD_{i} = 31.2 \text{ x} .980 \text{ (FROM TABLE A)} = 30.6$

Locate the correction factor CF_B (from table B) $LMTD_{c} = LMTD_{i} \times CF_{B}$ $LMTD_{c} = 30.6 \times .996 = 30.5$

fax: 1 (847) 731-1010

tel: 1 (847) 731-1000

STEP 5: Selection

a) From TABLE E choose the correct series size, baffle spacing, and number of passes that best fits your flow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

Oil Flow Rate	=	600 GPM =	Series Required from Table E	=	2400 Series
			Baffle Spacing from Table E	=	18 baffle
Water Flow Rate	=	300 GPM =	Passes required in 2000 series	=	ТР
b) From TABLE D	h	and the heat	wahangar madal siza hasad unar	n +1	a saft or sur

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your flow rate. Example

Required Area = 300.4 sq.ft Closest model required based upon sq.ft. & series = CS-2472-12-6-TP

If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

R

ТΔ	RI	F.	F
IA	DL	_	

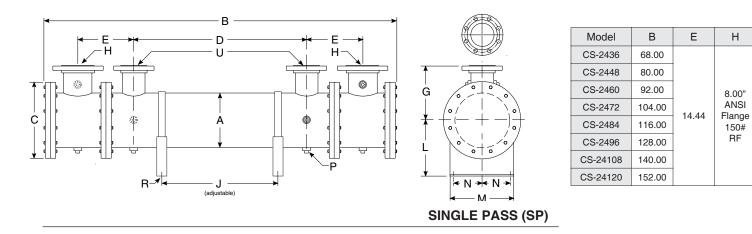
Shell	l	Max. Li	quid Fl	ow - Sl	hell Sid	le	Liquid Flow - Tube Side					
Dia.	4	6	8	12	18	24	S	βP	Т	P	F	P
Code	4	0	0	12	10	24	Min.	Max.	Min.	Max.	Min.	Max.
2400	155	235	310	470	700	930	135	1080	70	535	34	265
2800	170	255	345	510	770	1030	166	1320	83	660	42	330
3200	200	295	395	590	890	1175	221	1760	110	880	55	440
3600	225	335	445	665	1000	1330	284	2275	142	1135	71	565
4000	250	375	495	745	1120	1490	355	2845	177	1420	89	710
4400	275	410	550	820	1230	1640	435	3480	218	1740	109	870
4800	300	450	600	895	1345	1790	522	4170	261	2085	130	1040

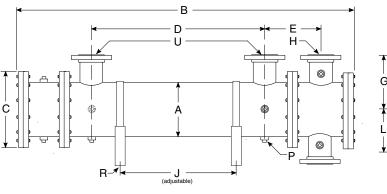
TABLE C		
U	TUBE FLUID	SHELL FLUID
400	Water	Water
350	Water	50% E. Glycol
100	Water	Oil
300	50% E. Glycol	50% E. Glycol
90	50% E. Glycol	Oil

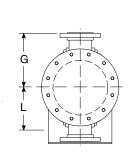
TABLE A- FACTOR M/LMTD = L x M

	-						
S/L	М	S/L	M	S/L	M	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

TABLE B- LMTD correction factor for Multipass Exchangers

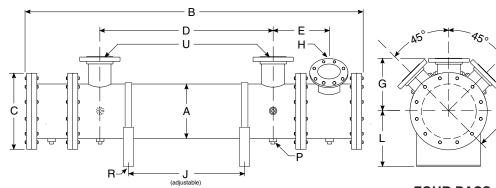

	.05	.1	.15	.2	.25	.3	.35	.4	.45	.5	.6	.7	.8	.9	1.0
.2	1	1	1	1	1	1	1	.999	.993	.984	.972	.942	.908	.845	.71
.4	1	1	1	1	1	1	.994	.983	.971	.959	.922	.855	.70		
.6	1	1	1	1	1	.992	.980	.965	.948	.923	.840				
.8	1	1	1	1	.995	.981	.965	.945	.916	.872					
1.0	1	1	1	1	.988	.970	.949	.918	.867	.770					
2.0	1	1	.977	.973	.940	.845	.740								
3.0	1	1	.997	.933	.835										
4.0	1	.993	.950	.850											
5.0	1	.982	.917												
6.0	1	.968	.885												
8.0	1	.930													
10.0	.996	.880													
12.0	.985	.720													
14.0	.972														
16.0	.958														
18.0	.940														
20.0	.915														


TABLE D- Surface Area


Model		rea in Sq.ft.	Model		ea in Sq.ft.	Model		rea in Sq.ft.	Model		ea in Sq.ft.
Number	3/8" O.D Tubing	5/8 O.D Tubing									
CS-2436	153.2	82.5	CS-3248	334.6	185.9	CS-4048	540.4	301.1	CS-4848	793.2	442.4
CS-2448	204.2	110.0	CS-3260	418.2	232.3	CS-4060	675.4	376.3	CS-4860	991.6	553.0
CS-2460	255.3	137.4	CS-3272	501.9	278.8	CS-4072	810.5	451.6	CS-4872	1189.9	663.7
CS-2472	306.3	164.9	CS-3284	585.5	325.3	CS-4084	945.6	526.9	CS-4884	1388.2	774.3
CS-2484	357.4	192.4	CS-3296	669.1	371.8	CS-4096	1080.7	602.1	CS-4896	1586.5	884.9
CS-2496	408.4	219.9	CS-32108	752.8	418.2	CS-40108	1215.8	677.4	CS-48108	1784.8	995.5
CS-24108	459.5	247.4	CS-32120	836.4	464.7	CS-40120	1350.9	752.7	CS-48120	1983.1	1106.1
CS-24120	510.5	274.9	CS-32132	920.1	511.2	CS-40132	1486.0	827.9	CS-48132	2181.4	1216.7
CS-2848	251.3	138.8	CS-3648	432.0	240.9	CS-4448	661.3	361.3			
CS-2860	314.2	173.4	CS-3660	540.0	301.1	CS-4460	826.6	451.6			
CS-2872	377.0	208.1	CS-3672	647.9	361.3	CS-4472	991.9	541.9			
CS-2884	439.8	242.8	CS-3684	755.9	421.5	CS-4484	1157.3	632.2			
CS-2896	502.7	277.5	CS-3696	863.9	481.7	CS-4496	1322.6	722.6			
CS-28108	565.5	312.2	CS-36108	971.9	541.9	CS-44108	1487.9	812.9			
CS-28120	628.3	346.9	CS-36120	1079.9	602.1	CS-44120	1653.2	903.2			
CS-28132	691.1	381.6	CS-36132	1187.9	662.4	CS-44132	1818.5	993.5			

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Ro

CS-2400 Series dimensions



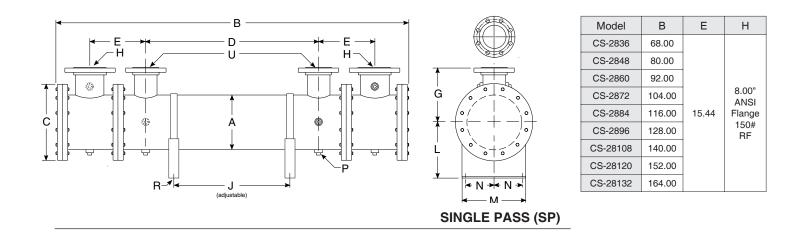
Model	В	Е	Н
CS-2436	63.00		
CS-2448	75.00		
CS-2460	87.00		6.00"
CS-2472	99.00	14.44	ANSI Flange
CS-2484	111.00	14.44	150#
CS-2496	123.00		RF
CS-24108	135.00		
CS-24120	147.00		

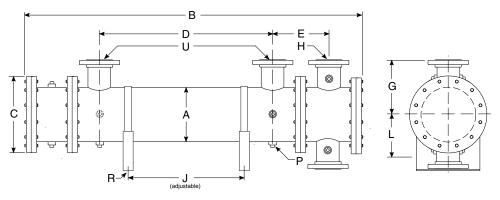
TWO PASS (TP)

Model	В	E	Н
CS-2436	63.00		
CS-2448	75.00		
CS-2460	87.00		4.00"
CS-2472	99.00	14.44	ANSI
CS-2484	111.00	14.44	Flange 150#
CS-2496	123.00		RF
CS-24108	135.00		
CS-24120	147.00		

FOUR PASS (FP)

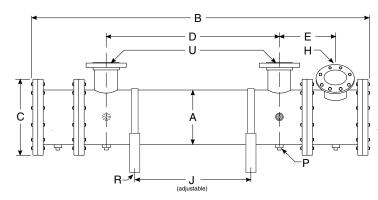
COMMON DIMENSIONS & WEIGHTS


Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
CS-2436			24.00		13.00							1040	CS-2436
CS-2448			36.00		25.00							1130	CS-2448
CS-2460			48.00		37.00					.75"Ø	0.00"	1221	CS-2460
CS-2472	10.75	10.05	60.00		49.00	12.00	14.75	5.00	(10)	x 1.00"	6.00" ANSI	1312	CS-2472
CS-2484	12.75	16.25	72.00	11.38	61.00				.50	Thru	Flange 150# RF	1402	CS-2484
CS-2496			84.00		73.00					Slot	150# HF	1493	CS-2496
CS-24108			96.00		85.00							1584	CS-24108
CS-24120			108.00		97.00							1675	CS-24120


 note: AIHTI reserves the right to make reasonable design changes without notice.

 Copyright © 2004 American Industrial Heat Transfer, Inc.
 3905 Ro

. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000


CS-2800 Series dimensions

Model	В	Е	Н
CS-2836	64.00		
CS-2848	76.00		
CS-2860	88.00		
CS-2872	100.00		6.00" ANSI
CS-2884	112.00	15.44	Flange
CS-2896	124.00		150# RF
CS-28108	136.00		
CS-28120	148.00		
CS-28132	160.00		

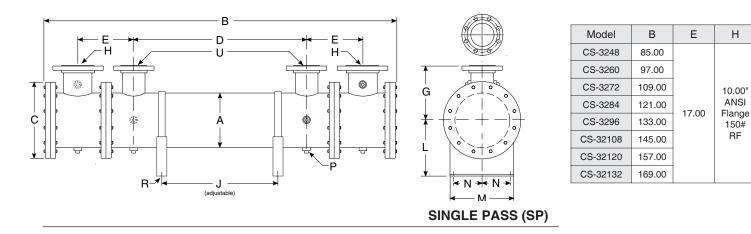
TWO PASS (TP)

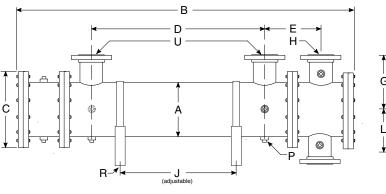
٨4

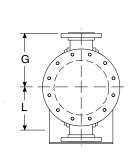
G

Model	В	Е	Н
CS-2836	64.00		
CS-2848	76.00		
CS-2860	88.00		
CS-2872	100.00		4.00" ANSI
CS-2884	112.00	15.44	Flange
CS-2896	124.00		150# RF
CS-28108	136.00		
CS-28120	148.00		
CS-28132	160.00		

COMMON DIMENSIONS & WEIGHTS

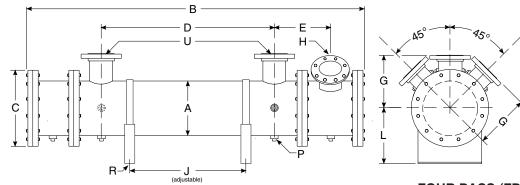

FOUR PASS (FP)


Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
CS-2836			22.00		9.00							1288	CS-2836
CS-2848			34.00		21.00							1400	CS-2848
CS-2860			46.00		33.00							1512	CS-2860
CS-2872			58.00		45.00					.75"Ø x	8.00"	1624	CS-2872
CS-2884	14.00	18.00	70.00	12.00	57.00	13.00	16.00	5.00	(10) .50	1.00"	ANSI Flange	1736	CS-2884
CS-2896			82.00		69.00				100	Thru Slot	150# RF	1848	CS-2896
CS-28108			94.00	94.00 81.00				1960	CS-28108				
CS-28120		106.00 93.00			2072	CS-28120							
CS-28132			118.00		105.00							2184	CS-28132


note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

CS-3200 Series dimensions



Model	В	Е	Н
CS-3248	80.00		
CS-3260	92.00		
CS-3272	104.00		6.00"
CS-3284	116.00	17.00	ANSI
CS-3296	128.00	17.00	Flange 150#
CS-32108	140.00		RF
CS-32120	152.00		
CS-32132	164.00		

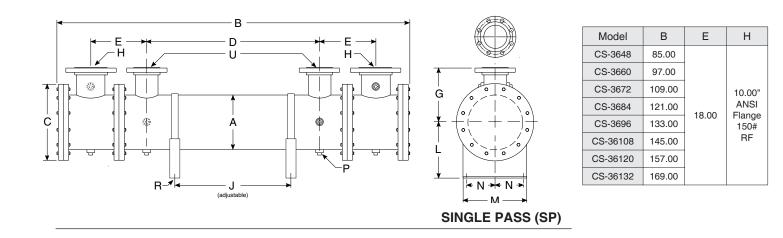
TWO PASS (TP)

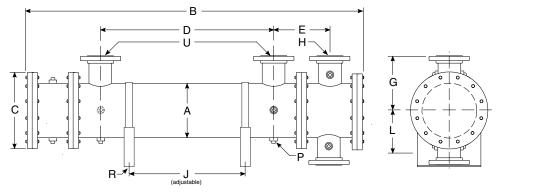
Model	В	E	Н	
CS-3248	80.00			
CS-3260	92.00			
CS-3272	104.00		5.00"	
CS-3284	116.00	17.00	ANSI Flange 150#	
CS-3296	128.00	17.00		
CS-32108	140.00		RF	
CS-32120	152.00			
CS-32132	164.00			

FOUR PASS (FP)

COMMON DIMENSIONS & WEIGHTS

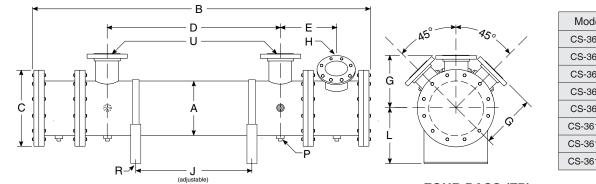
Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
CS-3248			34.00		21.00						2377	CS-3248	
CS-3260			46.00		33.00							1975	CS-3260
CS-3272			58.00		45.00					.781"Ø	0.00	2121	CS-3272
CS-3284	16.00	20.00	70.00	13.00	57.00	14.00	18.00	6.00	(10)	x 1.50"	8.00" ANSI	2266	CS-3284
CS-3296	16.00	20.00	82.00	13.00	69.00	14.00	18.00	6.00	.50	T.50 Thru	Flange 150# RF	2200	CS-3296
CS-32108			94.00		81.00					Slot	150# HF	2558	CS-32108
CS-32120			106.00		93.00							2705	CS-32120
CS-32132			118.00		105.00							2852	CS-32132


 note: AIHTI reserves the right to make reasonable design changes without notice.


 Copyright © 2004 American Industrial Heat Transfer, Inc.
 3905 Ro

. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

1000 fax: 1 (847) 731-1010


CS-3600 Series dimensions

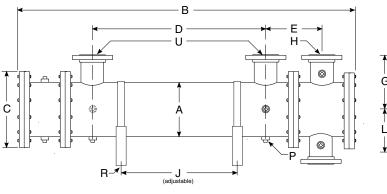
Model	В	Е	Н				
CS-3648	81.50						
CS-3660	93.50						
CS-3672	105.50		8.00"				
CS-3684	117.50	18.00	ANSI Flange 150#				
CS-3696	129.50	10.00					
CS-36108	141.50		RF				
CS-36120	153.50						
CS-36132	165.50						

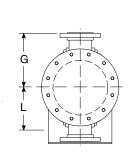
TWO PASS (TP)

Model	В	E	Н
CS-3648	81.50		
CS-3660	93.50		
CS-3672	105.50		5.00"
CS-3684	117.50	18.00	ANSI Flange 150#
CS-3696	129.50	18.00	
CS-36108	141.50		RF
CS-36120	153.50		
CS-36132	165.50		

FOUR PASS (FP)

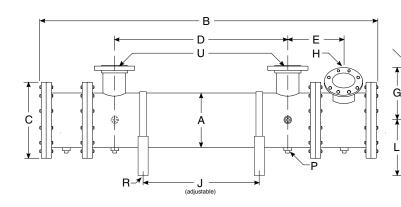
COMMON DIMENSIONS & WEIGHTS

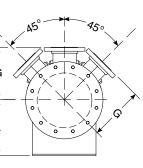

Model	А	С	D	G	J maximum	L	М	Ν	P NPT	R	U	Weight	Model
CS-3648			32.00		17.00					2314	CS-3648		
CS-3660			44.00		29.00							2498	CS-3660
CS-3672			56.00		41.00					.781"Ø	10.00"	2684	CS-3672
CS-3684	18.00	22.00	68.00	14.00	53.00	15.00	20.00	7.00	.50	x 1.50"	10.00" ANSI	2869	CS-3684
CS-3696	18.00	22.00	80.00	14.00	65.00	15.00	20.00	7.00	.50	T.50 Thru	Flange 150# RF	2869 3054	CS-3696
CS-36108			92.00		77.00					Slot	150# HF	3239	CS-36108
CS-36120			104.00		89.00							3424	CS-36120
CS-36132			116.00]	101.00							3609	CS-36132


note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

CS-4000 Series dimensions





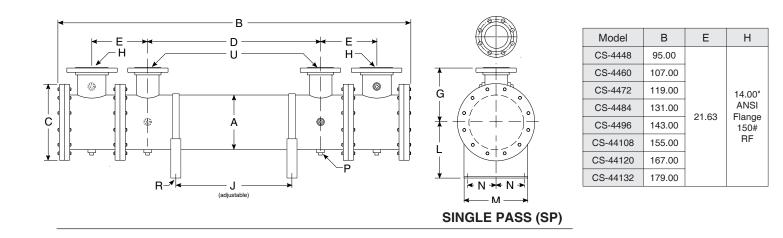
Model	В	Е	Н				
CS-4048	86.50						
CS-4060	98.50						
CS-4072	110.50		8.00"				
CS-4084	122.50	19.50	ANSI				
CS-4096	134.50	19.50	Flange 150#				
CS-40108	146.50		RF				
CS-40120	158.50						
CS-40132	170.50						

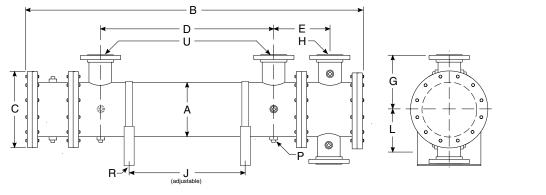
TWO PASS (TP)

Model	В	E	Н
CS-4048	86.50		
CS-4060	98.50		
CS-4072	110.50		6.00"
CS-4084	122.50	19.50	ANSI
CS-4096	134.50	19.50	Flange 150#
CS-40108	146.50		RF
CS-40120	158.50		
CS-40132	170.50		

FOUR PASS (FP)

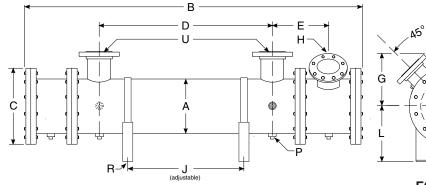
COMMON DIMENSIONS & WEIGHTS


Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
CS-4048			32.00		17.00	.00						2856	CS-4048
CS-4060			44.00		29.00							3085	CS-4060
CS-4072			56.00		41.00					.781"Ø	10.00"	3313	CS-4072
CS-4084	20.00	25.00	68.00	15.00	53.00	17.00	22.00	8.00	.50	X 1 50"	10.00" ANSI	3542	CS-4084
CS-4096	20.00	25.00	80.00	15.00	65.00	17.00	22.00	8.00	.50	1.50" Thru	Flange 150# RF	3770	CS-4096
CS-40108			92.00		77.00					Slot	150# hF	3999	CS-40108
CS-40120			104.00		89.00							4227	CS-40120
CS-40132			116.00		101.00							4456	CS-40132


 note: AIHTI reserves the right to make reasonable design changes without notice.

 Copyright © 2004 American Industrial Heat Transfer, Inc.
 3905 Ro

Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

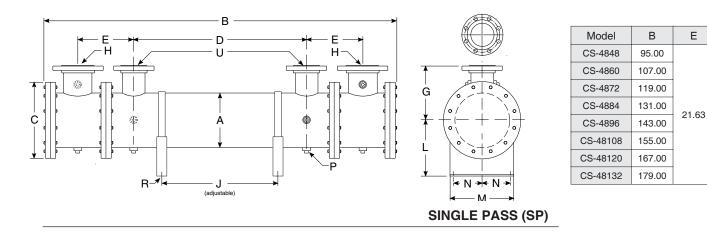

CS-4400 Series dimensions

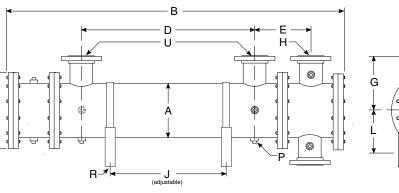
Model	В	Е	Н
CS-4448	90.00		
CS-4460	102.00		
CS-4472	114.00		10.00"
CS-4484	126.00	21.63	ANSI Flange
CS-4496	138.00	21.03	150#
CS-44108	150.00		RF
CS-44120	162.00		
CS-44132	174.00		

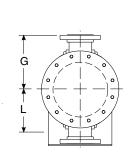
TWO PASS (TP)

Model	В	E	Н				
CS-4448	90.00						
CS-4460	102.00						
CS-4472	114.00		6.00"				
CS-4484	126.00	21.63	ANSI				
CS-4496	138.00	21.03	Flange 150#				
CS-44108	150.00		RF				
CS-44120	162.00						
CS-44132	174.00						

FOUR PASS (FP)


COMMON DIMENSIONS & WEIGHTS

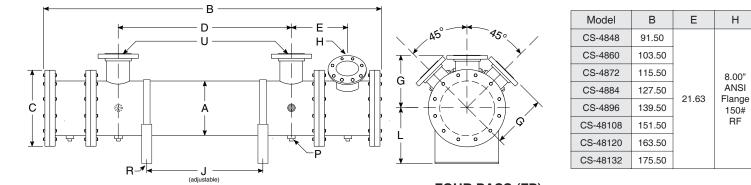

Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
CS-4448			29.00	-	13.00	18.00		0 8.50	.50	.781"Ø x 1.50" Thru Slot	12.00" ANSI Flange 150# RF	3456	CS-4448
CS-4460			41.00		25.00							3733	CS-4460
CS-4472			53.00		37.00							4099	CS-4472
CS-4484	00.00	00.00	65.00	- 16.00	49.00		04.00					4285	CS-4484
CS-4496	22.00	22.00 28.00	77.00		61.00		24.00					4562	CS-4496
CS-44108			89.00		73.00							4839	CS-44108
CS-44120			101.00		85.00							5115	CS-44120
CS-44132			113.00		97.00							5391	CS-44132


note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000

CS-4800 Series dimensions

Model	В	Е	Н			
CS-4848	91.50					
CS-4860	103.50		10.00" ANSI Flange 150# RF			
CS-4872	115.50					
CS-4884	127.50	21.63				
CS-4896	139.50	21.03				
CS-48108	151.50					
CS-48120	163.50					
CS-48132	175.50					


Н

14.00" ANSI

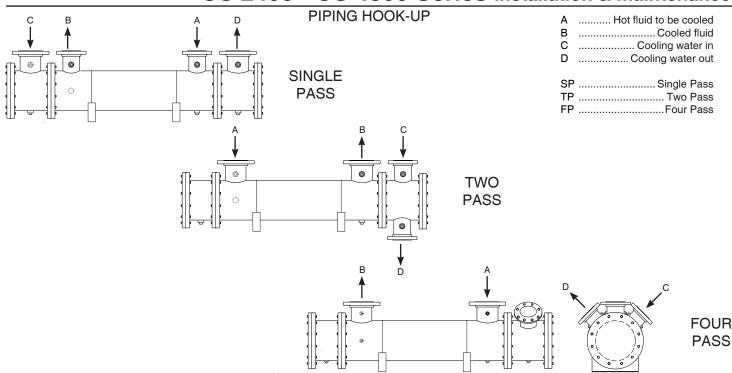
Flange 150#

RF

TWO PASS (TP)

FOUR PASS (FP)

INIOUCI							
CS-4848	91.50						
CS-4860	103.50		8.00" ANSI Flange				
CS-4872	115.50						
CS-4884	127.50	21.63					
CS-4896	139.50	21.03	150#				
CS-48108	151.50		RF				
CS-48120	163.50						
CS-48132	175.50						


COMMON DIMENSIONS & WEIGHTS

Model	А	С	D	G	J maximum	L	М	Ν	P NPT	R	U	Weight	Model
CS-4848			29.00	-	13.00	- 19.00	26.00	10.00	.50	.781"Ø x 1.50" Thru Slot	12.00" ANSI Flange 150# RF	4113	CS-4848
CS-4860	-		41.00		25.00							4442	CS-4860
CS-4872			53.00		37.00							4771	CS-4872
CS-4884	04.00	30.00	65.00	17.00	49.00							5100	CS-4884
CS-4896	24.00	30.00	77.00		61.00							5429	CS-4896
CS-48108			89.00		73.00							5758	CS-48108
CS-48120			101.00		85.00							6087	CS-48120
CS-48132			113.00		97.00							6416	CS-48132

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

CS 2400 - CS 4800 Series installation & maintenance

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the

note: AIHTI reserves the right to make reasonable design changes without notice.

CS 2400 - CS 4800 Series installation & maintenance

hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, *hot uid in the tubes and cold uid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the channel cover and complete channel to provide sufficient clearance to permit tube rolling and cleaning. Channel covers can be removed to aid in cleaning the tubes without disassembling channel, plumbing, or mounting hardware. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

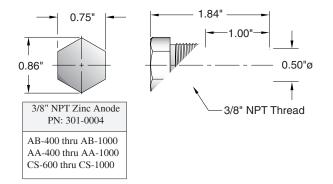
a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean

ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.

note: AIHTI reserves the right to make reasonable design changes without notice.

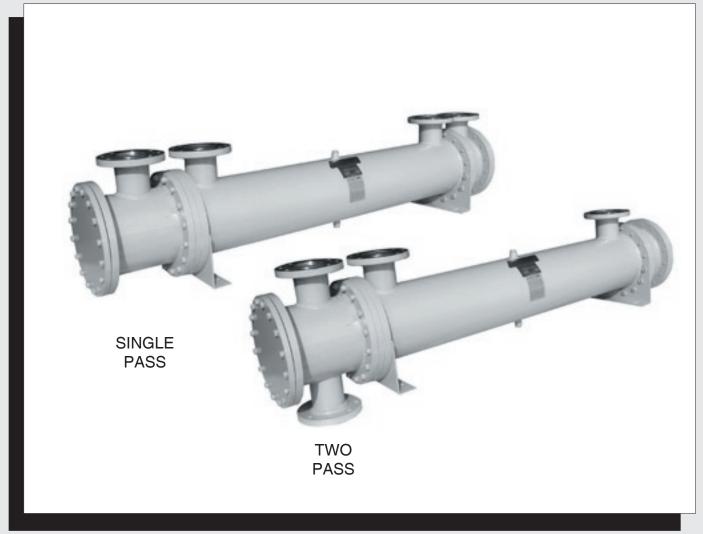

d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.



2.70" 2.70" 1.75" 1.75" 0.63"ø 1/2" NPT Zinc Anode PN: 301-0003 AB-1200 thru AB-2000 AA-1200 thru AB-2000 CS-1200 thru CS-1700

Manufacturer of Quality Heat Exchangers

SRCS SERIES

Strait Tube Removable Bundle / Liquid Cooled

HEAT EXCHANGERS

- Removable strait-tube bundle
- Brass stationary and floating tube sheets.
- Brass packing and retaining rings.
- Dual Viton O-ring packing seals.
- Removable channel covers for access to tubes without disturbing existing plumbing.
- Operating pressure, 150 PSI tubes, 225 PSI shell.
- Operating temperature 400°F
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

note: AIHTI reserves the right to make reasonable design changes without notice.

SRCS SERIES

Strait tube heat exchangers with removeable tube bundle for fluids with high differential inlet temperatures or in applications where tube bundle requires removal. Normally applied when the differential temperature between the hot fluid entering and the cooling fluid entering is 150°F or greater. Strait tube design allows tubing to freely expand and contract independently of the shell. Welded outer shell construction made of carbon steel. Sizes from 6" to 20" diameters. Standard one and two pass units available. Optional 90/10 copper nickel, stainless steel, and carbon steel tube. Can be modified to meet your requirements.

UCS & URCS SERIES

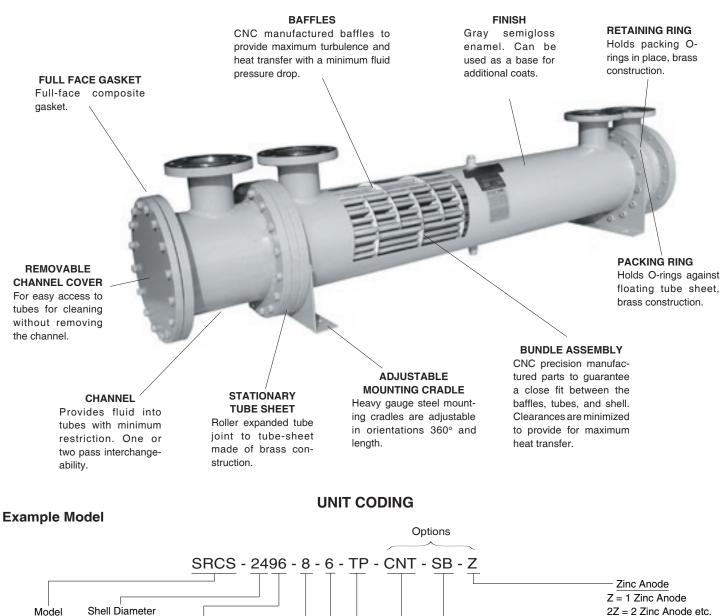
U-tube heat exchangers with removeable tube bundle for fluids with high differential inlet temperatures or where tube bundle requires removal. Normally applied when the differential temperature between the hot fluid entering and the cooling fluid entering is 150°F or greater. U-tube design allows tubing to freely expand and contract independently of the shell. Welded outer shell construction made of carbon steel. Sizes from 3" to 10" diameters. Standard two and four pass units available. Optional 90/10 copper nickel, stainless steel, and carbon steel tube. Can be modified to meet your requirements.

(See Page 89)

UCN, URCN & UCF, URCF SERIES

U-tube heat exchangers with removeable tube bundle for steam service. Normally applied when the differential temperature between the hot fluid entering and the cooling fluid entering is 150°F or greater. U-tube design allows tubing to freely expand and contract independently of the shell. Welded outer shell construction made of carbon steel. Sizes from 5" to 10" diameters. Standard two and four pass units available. Optional 90/10 copper nickel, stainless steel, and carbon steel tube. Can be modified to meet your requirements.

(See Page 105)


AOCS Series with ELECTRIC DRIVE

Severe duty air-cooled oil coolers, super capacity, rolled tube industrial series heat exchangers with direct electric drive cooling fan, OSHA guard, and heavy duty front screen. Rated operating temperature of 300°F at 200 PSIG. Standard flow rates from 10 to 600 GPM. NPT, ANSI flange, or SAE code 61 four bolt flange port connections. Optional built-in bypass relief valve 30 PSI or 65 PSI. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrications oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed material.

fax: 1 (847) 731-1010

In applications where water is not available for cooling (see page 157)

SRCS Series overview

Model	
SRCS	

1700 = 8.00"

2000 = 10.75"

2400 = 12.75"

2800 = 14.00"

3200 = 16.00"

3600 = 18.00"

4000 = 20.00"

Baffle Effective Spacing Tubing Tube Length 4.0" Tube Blank = Standard (12" increments) Cooling Side 6.0" Tube Passes 8.0" Diamenter

6 = 3/8"

10 = 5/8"

End Bonnets Blank = Standard Options CNT= 90/10 Cu Ni

Options STS = Stainless Steel SB = Stainless C = Carbon Steel

STANDARD CONSTRUCTION MATERIALS & RATINGS

SP = 1 pass

TP = 2 pass

Standard Model	SRCS 1700 - 4000	Options	Standard Unit Ratings
Shell	Steel	Stainless Steel	
Tubes	Copper	90/10 Cu. Ni. / Stainless Steel	
Baf es	Steel	Brass / Stainless Steel	Operating Pressure Tubes
Tube Sheets	Brass	Steel / Stainless Steel	150 psig
Retaining Ring	Brass	Steel / Stainless Steel	Operating Pressure Shell 225 psig
Packing Ring	Brass	Steel / Stainless Steel	Operating Temperature
Gaskets / Packing	Hypalon / Viton	Viton / EPDM / EPR	400 °F
Mounting Brackets	Steel	Stainless Steel	400 1
Bonnets / Channels	Cast Iron / Steel	Stainless Steel	

note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

12.0"

18.0"

24.0"

SRCS Series selection

STEP 1: Calculate the heat load

The heat load in BTU/HR or (Q) can be derived by using several methods. To simplify things, we will consider general specifications for hydraulic system oils and other uids that are commonly used with shell & tube heat exchangers.

	Terms	Kw	= Kilowatt (watts x 1000)
GPM =	Gallons Per Minute	T _{in}	= Hot uid entering temperature in °F
CN =	Constant Number for a given uid	T out	= Hot uid exiting temperature in °F
∆T =	Temperature differential across the potential	t _{in}	= Cold uid temperature entering in °F
PSI =	Pounds per Square Inch (pressure) of the operating side of the system	t out	= Cold uid temperature exiting in °F
MHP =	Horsepower of the electric motor driving the hydraulic pump	Q	= BTU / HR

For example purposes, a hydraulic system has a total input 1200 HP (894Kw) electric motor installed coupled to a pump that produces a ow of 600 GPM @ 3000 PSIG. The temperature differential of the oil entering the pump vs exiting the system is about 6.6°F. Even though return line pressure operates below 200 psi, calculate the system heat load potential (Q) based upon the prime movers (pump) capability, cooling uid is water @ 80°F use one of the following equations to accomplish this:

To derive the required heat load (Q) to be removed by the heat exchanger, apply ONE of the following. Note: The calculated heat loads may differ slightly from one formula to the next. This is due to assumptions made when estimating heat removal requirements. The factor (v) represents the percentage of the overall input energy to be rejected by the heat exchanger. The (v) factor is generally about 30% for most hydraulic systems, however it can range from 20%-70% depending upon the installed system components and heat being generated (ie. servo valves, proportional valves, etc...will increase the percentage required).

Formula	Example	
A) Q = GPM x CN x actual $\triangle T$	A) $Q = 600 \text{ x } 210 \text{ x } 6.6^{\circ}\text{F} = 831,600 \text{ btu/hr}$	Constant for a given uid (CN)
B) Q = [(PSI x GPM) / 1714] x (v) x 2545	в) Q =[(3000x600)/1714] x .30 x 2545 = 801,808 вти/нг	
c) $Q = MHP x (v) x 2545$	c) $Q = 1200 \text{ x} .30 \text{ x} 2545 = 916,200 \text{ btu/hr}$	1) OilCN = 210
D) $Q = Kw$ to be removed x 3415	D) $Q = 894 \text{ x} .30 \text{ x} 3415 = 915,909 \text{ btu/hr}$	2) Water CN = 500
E) $Q = HP$ to be removed x 2545	E) Q =300 x 2545 = 736,500 вти/нг	3) 50% E. Glycol CN = 450

STEP 2: Calculate the Mean Temperature Difference

When calculating the MTD you will be required to choose a liquid ow rate to derive the cold side $\triangle T$. If the water ow is unknown you may need to assume a number based on what is available. As a normal rule of thumb, for oil to water cooling a 2:1 oil to water ratio is used. For applications of water to water or 50 % Ethylene Glycol to water, a 1:1 ratio is common.

FORMULA EXAMPLE (from step 1, item c) $\Delta \mathbf{T} = \frac{916,200 \text{ BTU/hr}}{210 \text{ CN x } 600\text{GPM}}$ $\frac{\text{HOT FLUID}}{\text{Oil}} \quad \triangle T = \frac{Q}{CN \text{ x GPM}}$ $= 7.37^{\circ}F$ $= \triangle T$ Rejected $\frac{\text{COLD FLUID}}{\text{Water}} \bigtriangleup t = \frac{\text{BTU}/\text{hr}}{\text{CN x GPM}}$ $\triangle \mathbf{t} = \frac{916,200 \text{ BTU/hr}}{500 \text{ CN x } 300\text{GPM}}$ $= 3.81^{\circ}F$ = $\triangle t$ Absorbed Water $\begin{array}{rcl} T_{\rm in} &=& 117.3 \ {}^\circ F \\ T_{\rm out} &=& 110.0 \ {}^\circ F \\ t_{\rm in} &=& 80.0 \ {}^\circ F \\ t_{\rm out} &=& 86.1 \ {}^\circ F \end{array}$ T_{in} = Hot Fluid entering temperature in degrees F T_{out} = Hot Fluid exiting temperature in degrees F = Cold Fluid entering temperature in degrees F = Cold Fluid exiting temperature in degrees F $\frac{T_{out} - t_{in}}{T_{in} - t_{out}} = \frac{S[\text{smaller temperature difference}]}{L [\text{larger temperature difference}]} = \left(\frac{S}{L}\right)$ $110.0^{\circ}\text{F} - 80.0^{\circ}\text{F} = 30.0^{\circ}\text{F}$.962 $\overline{117.3^{\circ}\text{F} - 86.1^{\circ}\text{F}} = \overline{31.2^{\circ}\text{F}}$

STEP 3: Calculate Log Mean Temperature Difference (LMTD)

To calculate the LMTD please use the following method;

- L = Larger temperature difference from step 2.
- M = S/L number (located in table A). .962 = .980

 $LMTD_i = L \times M$

To correct the LMTD_i for a multipass heat exchangers calculate $\mathbf{R} \& \mathbf{K}$ as follows:

FORMULA EXAMPLE

$$\mathbf{R} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}} \qquad \mathbf{R} = \frac{117.3^{\circ}F - 100^{\circ}F}{86.1^{\circ}F - 90^{\circ}F} = \frac{17.3^{\circ}F}{6.1^{\circ}F} = \{2.82=R\}$$

$$\mathbf{K} = \frac{t_{out} - t_{in}}{T_{in} - t_{in}} \qquad \mathbf{K} = \frac{86.1^{\circ}F - 80^{\circ}F}{117.3^{\circ}F - 80^{\circ}F} = \frac{6.1^{\circ}F}{37.3^{\circ}F} = \{.163=K\}$$

STEP 4: Calculate the area required

Required Area sq.ft. =	Q (BTU / HR)	916,200	= 300.4 sq.ft.
Requireu fireu squu –	$\overline{\text{LMTD}_{c} x U}$ (from table \overline{C})	30.5 x 100	- 50014 54110

 $LMTD_{i} = 31.2 \text{ x} .980 \text{ (FROM TABLE A)} = 30.6$

Locate the correction factor CF_B (FROM TABLE B) LMTD_c =LMTD_i x CF_B LMTD_c = 30.6 x .996 = **30.5**

SRCS Series selection

STEP 5: Selection

a) From TABLE E choose the correct series size, baf e spacing, and number of passes that best fits your ow rates for both shell and tube side. Note that the tables suggest minimum and maximum information. Try to stay within the 20-80 percent range of the indicated numbers. Example

Oil Flow Rate	=	600 GPM =	Series Required from Table E	=	2400 Series
			Baf e Spacing from Table E	=	18 baf e
Water Flow Rate	=	300 GPM =	Passes required in 2000 series =	=	ТР
(\mathbf{L}) Ensure $-\mathbf{L}$	- 1	41 1 4		1.	<u>.</u>

b) From TABLE D choose the heat exchanger model size based upon the sq.ft. or surface area in the series size that will accommodate your ow rate. Example

Required Area = 300.4 sq.ft Closest model required based upon sq.ft. & series = SRCS-2484-18-6-TP

If you require a computer generated data sheet for the application, or if the information that you are trying to apply does not match the corresponding information, please contact our engineering services department for further assistance.

TABLE E

Shell	M	ax. Liq	uid Flo	w - She	ell Side		Liquid Flow - Tube Side					
Dia.	4	6	8	12	18 24 -			P		P		P
Code	-	-					Min.	Max.	Min.	Max.	Min.	Max.
1700	140	165	190	210	220	—	52	418	26	164	13	82
2000	150	220	300	440	550	—	82	590	41	290	23	145
2400	155	235	310	470	700	930	125	980	64	486	31	240
2800	170	255	345	510	770	1030	150	1200	75	600	38	300
3200	200	295	395	590	890	1175	200	1600	100	800	50	400
3600	225	335	445	665	1000	1330	258	2068	129	1031	65	514
4000	250	375	495	745	1120	1490	322	2586	160	1290	81	645

TABLE C

U	TUBE FLUID	SHELL FLUID		
400	Water	Water		
350	Water	50% E. Glycol		
100	Water	Oil		
300	50% E. Glycol	50% E. Glycol		
90	50% E. Glycol	Oil		

TABLE A- FACTOR M/LMTD = L x M

S/L	М	S/L	М	S/L	М	S/L	М
.01 .02 .03 .04	.215 .251 .277 .298	.25 .26 .27 .28 .29	.541 .549 .558 .566 .574	.50 .51 .52 .53 .54	.721 .728 .734 .740 .746	.75 .76 .77 .78 .79	.870 .864 .879 .886 .890
.05	.317	.30	.582	.55	.753	.80	.896
.06	.334	.31	.589	.56	.759	.81	.902
.07	.350	.32	.597	.57	.765	.82	.907
.08	.364	.33	.604	.58	.771	.83	.913
.09	.378	.34	.612	.59	.777	.84	.918
.10	.391	.35	.619	.60	.783	.85	.923
.11	.403	.36	.626	.61	.789	.86	.928
.12	.415	.37	.634	.62	.795	.87	.934
.13	.427	.38	.641	.63	.801	.88	.939
.14	.438	.39	.648	.64	.806	.89	.944
.15	.448	.40	.655	.65	.813	.90	.949
.16	.458	.41	.662	.66	.818	.91	.955
.17	.469	.42	.669	.67	.823	.92	.959
.18	.478	.43	.675	.68	.829	.93	.964
.19	.488	.44	.682	.69	.836	.94	.970
.20	.497	.45	.689	.70	.840	.95	.975
.21	.506	.46	.695	.71	.848	.96	.979
.22	.515	.47	.702	.72	.852	.97	.986
.23	.524	.48	.709	.73	.658	.98	.991
.24	.533	.49	.715	.74	.864	.99	.995

TABLE B- LMTD correction factor for Multipass Exchangers

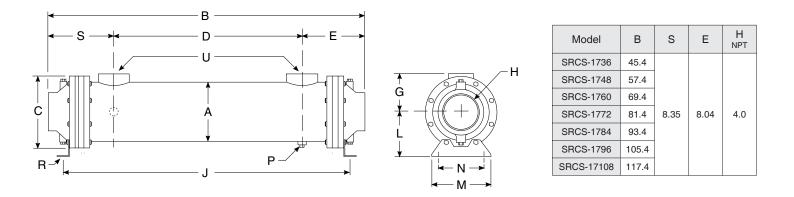
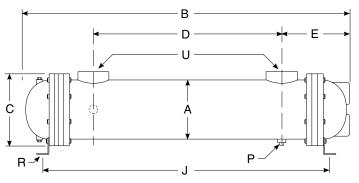
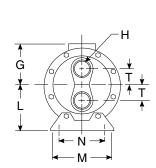

	.05	.1	.15	.2	.25	.3	.35	.4	.45	.5	.6	.7	.8	.9	1.0
.2	1	1	1	1	1	1	1	.999	.993	.984	.972	.942	.908	.845	.71
.4	1	1	1	1	1	1	.994	.983	.971	.959	.922	.855	.70		
.6	1	1	1	1	1	.992	.980	.965	.948	.923	.840				
.8	1	1	1	1	.995	.981	.965	.945	.916	.872					
1.0	1	1	1	1	.988	.970	.949	.918	.867	.770					
2.0	1	1	.977	.973	.940	.845	.740								
3.0	1	1	.997	.933	.835										
4.0	1	.993	.950	.850											
5.0	1	.982	.917												
6.0	1	.968	.885												
8.0	1	.930													
10.0	.996	.880													
12.0	.985	.720													
14.0	.972														
16.0	.958														
18.0	.940														
20.0	.915														

TABLE D- Surface Area


Model	Surface Area in Sq. ft.		Model	Surface Are	ea in Sq. ft.	ea in Sq. ft. Model Surface Area		ea in Sq. ft.	Model	Surface Ar	ea in Sq. ft.
Number	3/8" O.D. Tubing	5/8" O.D. Tubing	Number	3/8" O.D. Tubing	5/8" O.D. Tubing	Number	3/8" O.D. Tubing	5/8" O.D. Tubing	Number	3/8" O.D. Tubing	5/8" O.D. Tubing
SRCS-1736 SRCS-1748 SRCS-1760 SRCS-1772	55.3 73.8 92.2 110.7	33.3 44.5 55.6 66.7	SRCS-2472 SRCS-2484 SRCS-2496 SRCS-24108	286.3 334.0 381.7 429.4	149.2 174.1 199.0 223.8	SRCS-3248 SRCS-3260 SRCS-3272 SRCS-3284	336.9 421.1 505.4 589.6	179.3 224.1 268.9 313.8	SRCS-36144 SRCS-36156 SRCS-36168 SRCS-36180	1324.0 1434.0 1544.0 1655.0	730.0 791.0 852.0 913.0
SRCS-1784 SRCS-1796 SRCS-17108	129.1 147.6 166.1	77.8 89.0 100.1	SRCS-24120 SRCS-24132 SRCS-24144	477.1 524.8 572.5	248.7 273.6 298.5	SRCS-3296 SRCS-32108 SRCS-32120 SRCS-32132	673.8 758.1 842.3 926.5	358.6 403.4 448.3 493.1	SRCS-4048 SRCS-4060 SRCS-4072	545.8 682.3 818.7	299.7 374.7 449.6
SRCS-2036 SRCS-2048 SRCS-2060 SRCS-2072	104.8 139.8 174.7 209.7	53.9 72.0 90.0 108.0	SRCS-2836 SRCS-2848 SRCS-2860 SRCS-2872	186.1 248.1 310.2 372.2	96.2 128.2 160.5 192.4	SRCS-32144 SRCS-32156 SRCS-32168	1010.8 1095.0 1179.2	537.9 582.8 627.6	SRCS-4084 SRCS-4096 SRCS-40108 SRCS-40120	955.2 1091.7 1228.0 1364.6	524.5 599.5 674.4 749.4
SRCS-2084 SRCS-2096 SRCS-20108 SRCS-20120	244.6 279.6 314.5 349.5	126.0 144.0 162.0 180.0	SRCS-2884 SRCS-2896 SRCS-28108 SRCS-28120	434.3 496.3 558.4 620.4	224.4 256.5 290.4 320.7	SRCS-3648 SRCS-3660 SRCS-3672 SRCS-3684	441.4 551.7 662.1 772.4	243.5 304.3 356.2 426.1	SRCS-40132 SRCS-40144 SRCS-40156 SRCS-40168	1501.0 1637.5 1774.0 1910.4	824.3 899.2 974.2 1049.1
SRCS-2436 SRCS-2448 SRCS-2460	143.1 190.9 238.6	74.6 99.5 124.4	SRCS-28132 SRCS-28144 SRCS-28156 SRCS-28168	682.5 744.5 806.6 868.6	352.7 384.8 416.9 448.9	SRCS-3696 SRCS-36108 SRCS-36120 SRCS-36132	882.8 993.1 1103.5 1213.8	486.9 547.8 608.7 669.6	SRCS-40180	2046.9	1124.1


R

note: AIHTI reserves the right to make reasonable design changes without notice. Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Ro

SINGLE PASS (SP)

Model	В	E	H NPT	т
SRCS-1736	44.5			
SRCS-1748	56.5			
SRCS-1760	68.5			
SRCS-1772	80.5	7.88	2.5	1.88
SRCS-1784	92.5			
SRCS-1796	104.5			
SRCS-17108	116.5			

TWO PASS (TP)

Model	А	С	D	G	J	L	М	N	P NPT	R	U NPT	Weight	Model
SRCS-1736			29.00		41.4							205	SRCS-1736
SRCS-1748			41.00		53.4							245	SRCS-1748
SRCS-1760			53.00		65.4					.44Ø x		285	SRCS-1760
SRCS-1772	8.0	10.12	65.00	5.62	77.4	5.75	8.25	7.0	(2) .38	1.00"	3.0	325	SRCS-1772
SRCS-1784			77.00		89.4					Thru Slot		365	SRCS-1784
SRCS-1796			89.00		101.4							405	SRCS-1796
SRCS-17108			101.00		113.4							445	SRCS-17108

COMMON DIMENSIONS & WEIGHTS

Notes

- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tubesheet end provide space to permit removal of the end bonnet.
- Tube bundle removal minimum space required is the model length in inches plus six inches. *Example: SRCS 1760 Effective Tube Length 60" + 6" + channel width = minimum clearance.*
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- SRCS Series tube bundle is removable for replacement bundles (consult factory)
- It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- · Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)

 note: AIHTI reserves the right to make reasonable design changes without notice.

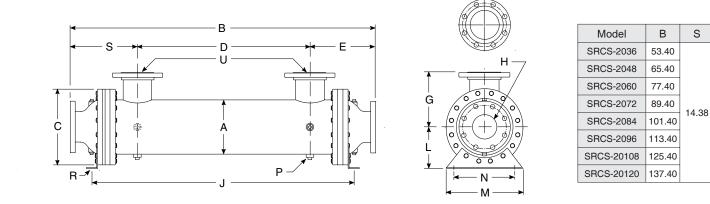
 Copyright © 2004 American Industrial Heat Transfer, Inc.
 3905 Rou

fax: 1 (847) 731-1010

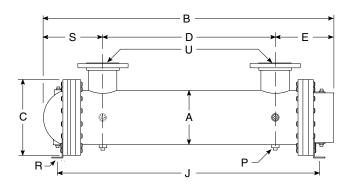
76

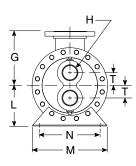
SRCS-2000 Series dimensions

Е


13.90

Н


5.0"

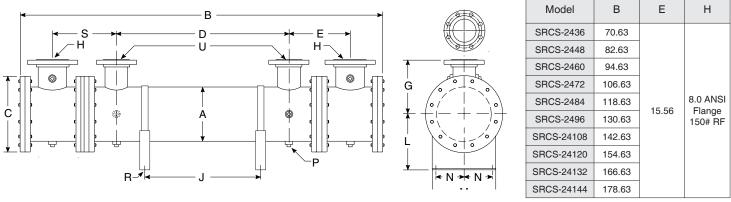

ANSI

Flange

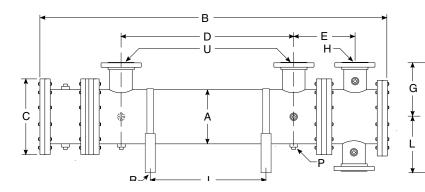
SINGLE PASS (SP)

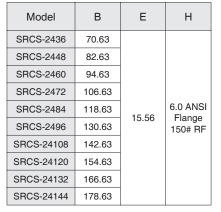
Model	В	E	H NPT	т
SRCS-2036	49.2			
SRCS-2048	61.2			
SRCS-2060	73.2			
SRCS-2072	85.2	11.94	3.00	0.50
SRCS-2084	97.2	11.94	3.00	2.50
SRCS-2096	109.2			
SRCS-20108	121.2			
SRCS-20120	133.2			

TWO PASS (TP)


COMMON DIMENSIONS & WEIGHTS

Model	А	С	D	G	J	L	М	N	P NPT	R	U	Weight	Model
SRCS-2036			26.00		44.63							720	SRCS-2036
SRCS-2048			38.00		56.63							780	SRCS-2048
SRCS-2060			50.00		68.63					.75"Ø	4.00	840	SRCS-2060
SRCS-2072	10 75	15.00	62.00	10 75	80.63		10.0	5.0	(4x)	X	4.00" ANSI	900	SRCS-2072
SRCS-2084	10.75	15.00	74.00	10.75	92.63	8.0	12.0	5.0	.50	1.25" Thru	Flange 150# RF	960	SRCS-2084
SRCS-2096			86.00		104.63					Slot	150# hF	1020	SRCS-2096
SRCS-20108			98.00		116.63							1080	SRCS-20108
SRCS-20120			110.00		128.63							1150	SRCS-20120


Notes

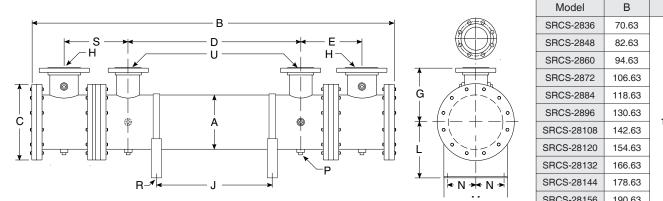

- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tubesheet end provide space to permit removal of the end bonnet.
- Tube bundle removal minimum space required is the model length in inches plus six inches. *Example: SRCS 2060 Effective Tube Length 60" + 6" + channel width = minimum clearance.*
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- SRCS Series tube bundle is removable for replacement bundles (consult factory)
- It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)

SRCS-2400 Series dimensions

SINGLE PASS (SP)

TWO PASS (TP)

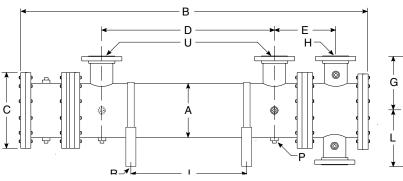
COMMON	DIMEN	ISIONS	& WEI	GHTS	

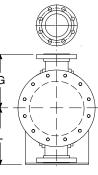

Model	А	С	D	G	J adjustable	L	М	N	P NPT	R	U	Weight	Model
SRCS-2436			24.00		13.00							1040	SRCS-2436
SRCS-2448			36.00		25.00							1130	SRCS-2448
SRCS-2460			48.00		37.00							1221	SRCS-2460
SRCS-2472			60.00		49.00					.75"Ø		1312	SRCS-2472
SRCS-2484	12.75	16.25	72.00	11.38	61.00	12.00	12.75	5.00	.50	x 1.00"	6.0 ANSI	1402	SRCS-2484
SRCS-2496	12.75	10.25	84.00	11.30	73.00	12.00	12.75	5.00	(10x)	Thru	Flange 150# RF	1493	SRCS-2496
SRCS-24108			96.00		85.00					Slot		1584	SRCS-24108
SRCS-24120			108.00		97.00							1675	SRCS-24120
SRCS-24132			120.00		109.00							1766	SRCS-24132
SRCS-24144			132.00		121.00							1857	SRCS-24144

Notes

78

- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tubesheet end provide space to permit removal of the channel cover and channel.
- Tube bundle removal minimum space required is the model length in inches plus six inches. *Example: SRCS 2460 Effective Tube Length 60" + 6" + channel width = minimum clearance.*
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- SRCS Series tube bundle is removable for replacement bundles (consult factory)
- It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- · Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)


SRCS-2800 Series dimensions



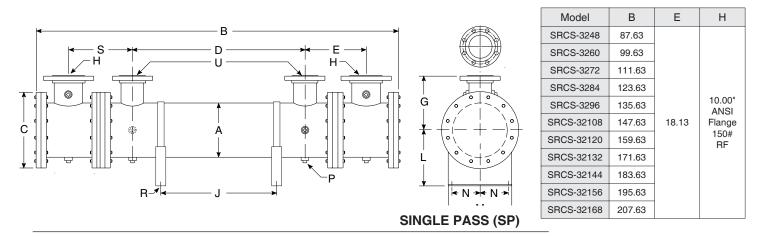
SINGLE PASS (SP)

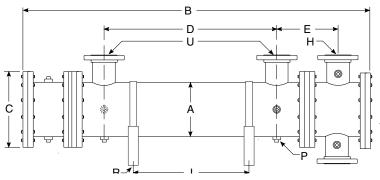
SRCS-2836	70.63		
SRCS-2848	82.63		
SRCS-2860	94.63		
SRCS-2872	106.63		
SRCS-2884	118.63		8.00"
SRCS-2896	130.63	16.56	ANSI Flange
SRCS-28108	142.63	10.50	150#
SRCS-28120	154.63		RF
SRCS-28132	166.63		
SRCS-28144	178.63		
SRCS-28156	190.63		
SRCS-28168	202.63		

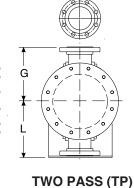
F

TWO PASS (TP)

Model	В	E	н
SRCS-2836	70.63		
SRCS-2848	82.63		
SRCS-2860	94.63		
SRCS-2872	106.63		
SRCS-2884	118.63		6.00"
SRCS-2896	130.63	16.56	ANSI
SRCS-28108	142.63	10.50	Flange 150#
SRCS-28120	154.63		RF
SRCS-28132	166.63		
SRCS-28144	178.63		
SRCS-28156	190.63		
SRCS-28168	202.63		


COMMON DIMENSIONS & WEIGHTS

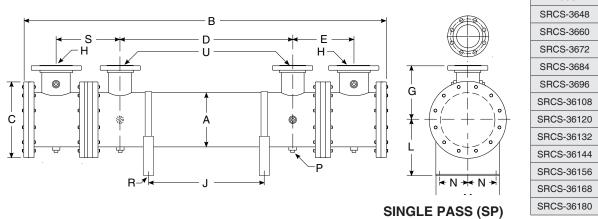

Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
SRCS-2836			22.00		9.00							1288	SRCS-2836
SRCS-2848			34.00		21.00							1400	SRCS-2848
SRCS-2860			46.00		33.00							1512	SRCS-2860
SRCS-2872			58.00		45.00							1624	SRCS-2872
SRCS-2884			70.00		57.00					.75"Ø	0.00"	1736	SRCS-2884
SRCS-2896	14.00	18.00	82.00	12.00	69.00	13.00	14.00	5.00	.50	X	8.00" ANSI	1848	SRCS-2896
SRCS-28108	14.00	18.00	94.00	12.00	81.00	13.00	14.00	5.00	(10x)	1.00" Thru	Flange 150# RF	1960	SRCS-28108
SRCS-28120			106.00		93.00					Slot	150# HF	2072	SRCS-28120
SRCS-28132			112.00		105.00							2184	SRCS-28132
SRCS-28144			130.00		117.00							2296	SRCS-28144
SRCS-28156			142.00		129.00							2408	SRCS-28156
SRCS-28168			154.00		141.00							2520	SRCS-28168


Notes

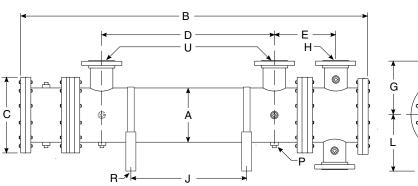
- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tube-• sheet end provide space to permit removal of the channel cover and channel.
- Tube bundle removal minimum space required is the model length in inches plus six inches. Example: SRCS 2860 Effective Tube Length 60" + 6" + channel width = minimum clearance.
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube • sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- · SRCS Series tube bundle is removable for replacement bundles (consult factory)
- · It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- · Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)

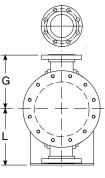
SRCS-3200 Series dimensions

Model	В	E	Н
SRCS-3248	82.75		
SRCS-3260	94.75		
SRCS-3272	106.75		
SRCS-3284	118.75		
SRCS-3296	130.75		6.00" ANSI
SRCS-32108	142.75	18.13	Flange
SRCS-32120	154.75		150# RF
SRCS-32132	166.75		
SRCS-32144	178.75		
SRCS-32156	190.75		
SRCS-32168	202.75		


COMMON DIMENSIONS & WEIGHTS

Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model
SRCS-3248			34.00		21.00							2377	SRCS-3248
SRCS-3260			46.00		33.00							1975	SRCS-3260
SRCS-3272			58.00		45.00							2121	SRCS-3272
SRCS-3284			70.00		57.00							2266	SRCS-3284
SRCS-3296			82.00		69.00					.781"Ø x	8.00"	2414	SRCS-3296
SRCS-32108	16.00	20.00	94.00	13.00	81.00	14.00	16.00	6.00	.50 (10x)	1.50"	ANSI Flange	2558	SRCS-32108
SRCS-32120			106.00		93.00				(10)	Thru Slot	150# RF	2705	SRCS-32120
SRCS-32132			112.00		105.00							2852	SRCS-32132
SRCS-32144			130.00		117.00							2999	SRCS-32144
SRCS-32156			142.00		129.00							3146	SRCS-32156
SRCS-32168			154.00		141.00							3293	SRCS-32168


Notes


- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tubesheet end provide space to permit removal of the channel cover and channel.
- Tube bundle removal minimum space required is the model length in inches plus six inches. *Example: SRCS 3260 Effective Tube Length 60" + 6" + channel width = minimum clearance.*
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- · SRCS Series tube bundle is removable for replacement bundles (consult factory)
- It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- · Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)

SRCS-3600 Series dimensions

Model	В	E	Н
SRCS-3648	87.63		
SRCS-3660	99.63		
SRCS-3672	111.63		
SRCS-3684	123.63		
SRCS-3696	135.63		10.00"
SRCS-36108	147.63	19.13	ANSI Flange
SRCS-36120	159.63	19.15	150#
SRCS-36132	171.63		RF
SRCS-36144	183.63		
SRCS-36156	195.63		
SRCS-36168	207.63		
SRCS-36180	219.63		

TWO PASS (TP)

Model	В	E	Н
SRCS-3648	87.63		
SRCS-3660	99.63		
SRCS-3672	111.63		
SRCS-3684	123.63		
SRCS-3696	135.63		8.00"
SRCS-36108	147.63	10.10	ANSI
SRCS-36120	159.63	19.13	Flange 150#
SRCS-36132	171.63		RF
SRCS-36144	183.63		
SRCS-36156	195.63		
SRCS-36168	207.63		
SRCS-36180	219.63		


COMMON DIMENSIONS & WEIGHTS

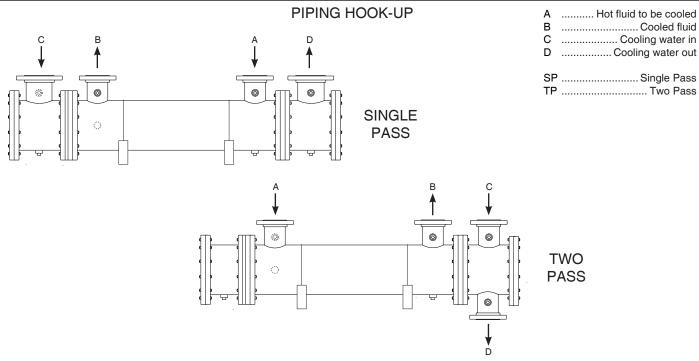
Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model				
SRCS-3648			32.00		17.00							2314	SRCS-3648				
SRCS-3660			44.00		29.00							2498	SRCS-3660				
SRCS-3672			56.00		41.00						2684	SRCS-3672					
SRCS-3684			68.00		53.00							2869	SRCS-3684				
SRCS-3696			80.00		65.00					.781"Ø	.781"Ø 10.00" x ANSI 1.50" Flange Thru 150# RF	3054	SRCS-3696				
SRCS-36108	10.00	00.00	92.00		77.00	15.00	10.00	7.00	.50			3239	SRCS-36108				
SRCS-36120	18.00	22.00	104.00	14.00	89.00		16.00 7.00	7.00	(6X)		"Ø 10.00" 0" ANSI 7u 150# BE	3424	SRCS-36120				
SRCS-36132			116.00		101.00					Slot	150# HF	3609	SRCS-36132				
SRCS-36144			128.00		113.00							3794	SRCS-36144				
SRCS-36156			140.00						125.00							3979	SRCS-36156
SRCS-36168			152.00		137.00							4164	SRCS-36168				
SRCS-36180			164.00		149.00							4349	SRCS-36180				

Notes

- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tubesheet end provide space to permit removal of the channel cover and channel.
- Tube bundle removal minimum space required is the model length in inches plus six inches. *Example: SRCS 3660 Effective Tube Length 60" + 6" + channel width = minimum clearance.*
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- SRCS Series tube bundle is removable for replacement bundles (consult factory)
- It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- · Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)

SRCS-4000 Series dimensions

Model	А	С	D	G	J maximum	L	М	N	P NPT	R	U	Weight	Model		
SRCS-4048			32.00		17.00							2856	SRCS-4048		
SRCS-4060			44.00	29.	29.00							3085	SRCS-4060		
SRCS-4072			56.00		41.00							3313	SRCS-4072		
SRCS-4084			68.00	5	53.00									3542	SRCS-4084
SRCS-4096			80.00		65.00					.781"Ø	40.00"	3770	SRCS-4096		
SRCS-40108	00.00	05.00	92.00	10.00	77.00	17.00	00.00	0.00	.50	X	10.00" ANSI	3999	SRCS-40108		
SRCS-40120	20.00	25.00	104.00	16.00	89.00		20.00	8.00	(6X)	1.50" Thru	Flange 150# RF	4227	SRCS-40120		
SRCS-40132			116.00		101.00					Slot	150# KF	4456	SRCS-40132		
SRCS-40144			128.00		113.00							4686	SRCS-40144		
SRCS-40156			140.00		-	125.00							4916	SRCS-40156	
SRCS-40168			152.00		137.00							5146	SRCS-40168		
SRCS-40180			164.00		149.00							5376	SRCS-40180		


Notes

82

- Provide sufficient clearance at the stationary tube-sheet end to allow for the complete removal of the tube bundle from the shell. On the floating tubesheet end provide space to permit removal of the channel cover and channel.
- Tube bundle removal minimum space required is the model length in inches plus six inches.
 Example: SRCS 4060 Effective Tube Length 60" + 6" + channel width = minimum clearance.
- When removing bundle from shell the weight of the tube bundle should not be supported on individual tubes. Weight should be distributed on the tube sheets, support baffle plates, or on blocks contoured to the periphery of the tube bundle.
- · SRCS Series tube bundle is removable for replacement bundles (consult factory)
- It is recommended that when a heat exchanger is disassembled, new gaskets and O-rings be used in reassembly.
- · Replacement gasket and O-ring seal part numbers are available, for more information (consult factory)

fax: 1 (847) 731-1010

SRCS 1700 - SRCS 4000 Series installation & maintenance

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- Heat exchangers made of ferrous materials, may be pressure-2) tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc ...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

SRCS 1700 - SRCS 4000 Series installation & maintenance

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the installation diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, *hot uid in the tubes and cold uid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of two pass or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For removable bundle heat exchangers, provide sufficient clearance at the stationary tube-sheet end to allow for the removal of the tube bundle from the shell. Channel cover can be removed to aid in cleaning the tubes without disassembling the tube bundle. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

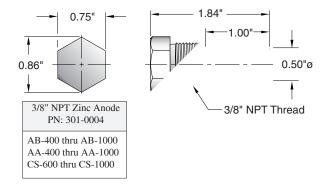
a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.

d) Zinc anodes are normally used to reduce the risk of failure due to

note: AIHTI reserves the right to make reasonable design changes without notice.

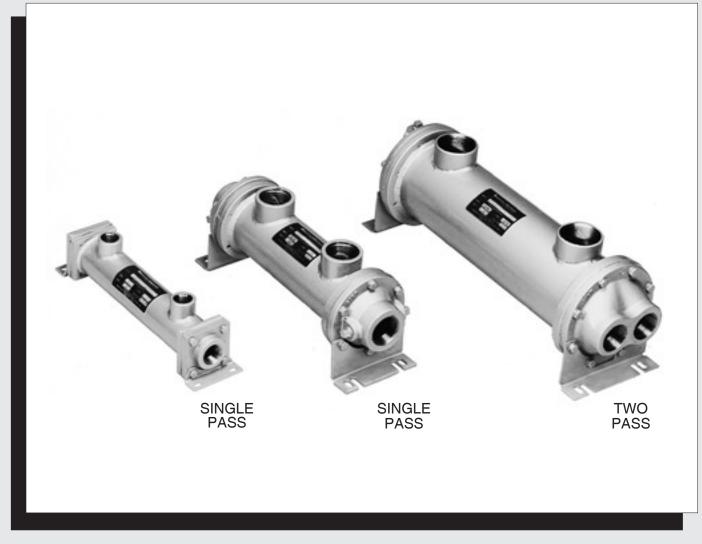

electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

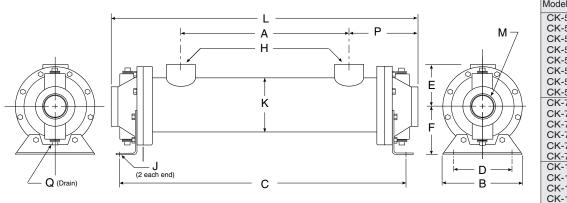
If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc... .Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.


2.70" 2.70" 1.75" 0.63"ø 1/2" NPT Zinc Anode PN: 301-0003 AB-1200 thru AB-2000 AA-1200 thru AB-2000 CS-1200 thru CS-1700

Manufacturer of Quality Heat Exchangers


CK & CKS SERIES

Fixed Tube Bundle / Liquid Cooled HEAT EXCHANGERS

- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 300 PSI.
- Operating temperature 300 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

CK & CKS Series dimensions

Model	L	M NPT	Р	S NPT
CK-505	7.38			
CK-508	10.38			
CK-510	12.38			
CK-512	14.38	.75	3.35	
CK-514	16.38			
CK-518	20.38			
CK-524	26.38			
CK-536	38.38			
CK-708	12.57			
CK-712	16.57			
CK-714	18.57	1.25	4.78	(2)
CK-718	22.57			.38
CK-724	28.57			
CK-736	40.57			
CK-1012	17.02			
CK-1014	19.02			
CK-1018	23.02			
CK-1024	29.03	2.00	5.17	(2)
CK-1036	41.02			.38
CK-1048	53.02			

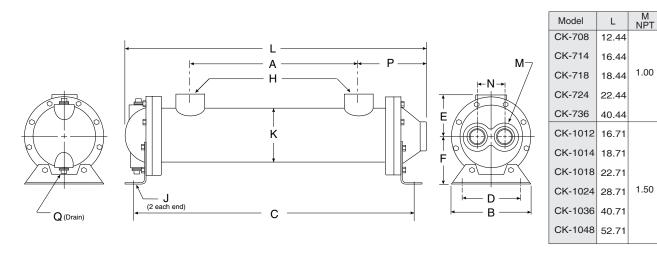
Ν

1.76

2.38

Ρ

4.85


5.17

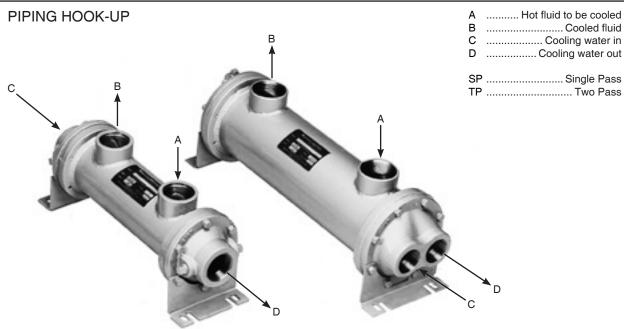
Q NPT

> (2) .38

> (2) .38

SINGLE PASS (SP)

TWO PASS (TP)


COMMON DIMENSIONS & WEIGHTS

Model	А	В	С	D	E	F		Н		К	Approx.	Model
		P		D		F	NPT	SAE	J	ĸ	Weight	
CK-505	2.19		7.44				.50	#8			7.00	CK-505
CK-508	3.85		10.44								7.50	CK-508
CK-510	5.85		12.44					#10			8.00	CK-510
CK-512	7.85	3.50	14.44	2.50	2.28	1.62	.75	#12 1 1/16 -12	.34¢ x .62	2.55	8.50	CK-512
CK-514	9.85	0.00	16.44	2.00	2.20	1.02	.75	1 1/10-12	.04φ Χ.02	2.55	9.00	CK-514
CK-518	13.85		20.44								9.50	CK-518
CK-524	19.85		26.44								10.50	CK-524
CK-536	31.85		38.44								11.50	CK-536
CK-708	3.00		10.71								15.00	CK-708
CK-712	7.00		14.71								17.50	CK-712
CK-714	9.00	5.00	16.71	0.00	0.04	0.00	1.50	#24 1 7/8 -12	441	0.75	18.50	CK-714
CK-718	13.00	5.00	20.71	3.00	2.84	2.69	1.50	1 //8-12	.44¢ x .75	3.75	20.00	CK-718
CK-724	19.00		26.71								22.00	CK-724
CK-736	31.00		38.71								24.50	CK-736
CK-1012	6.18		15.45								38.00	CK-1012
CK-1014	8.18		17.45					#32			40.00	CK-1014
CK-1018	12.18	6.50	21.45	4.00	3.62	4.00	2.00	2 1/2 -12	.44ø x 1.00	5.25	44.50	CK-1018
CK-1024	18.18		27.45								51.00	CK-1024
CK-1036	30.18		39.45								57.00	CK-1036
CK-1048	42.18		51.45								64.00	CK-1048

note: AIHTI reserves the right to make reasonable design changes without notice.

120 Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

CK & CKS Series installation & maintenance

ONE PASS

TWO PASS

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the

CK & CKS Series installation & maintenance

hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, *hot uid in the tubes and cold uid in the shell* the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of single pass, two pass, or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

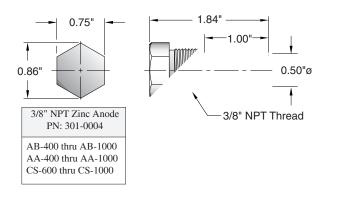
j) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) <u>Shell side</u>: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.


c) <u>Tube side</u>: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc.... To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes. d) <u>Zinc anodes</u> are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

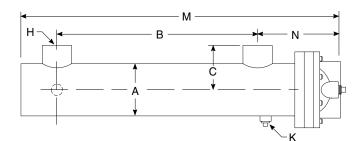
e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

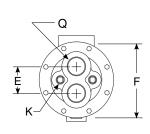
Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

2.70" 2.70" 1.75" 0.63"ø 1/2" NPT Zinc Anode PN: 301-0003 AB-1200 thru AB-2000 AA-1200 thru AB-2000 CS-1200 thru CS-1700

Manufacturer of Quality Heat Exchangers

URTC SERIES




U-TUBE REMOVABLE TUBE BUNDLE HEAT EXCHANGERS

- Available in a variety of sizes.
- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 150 PSI.
- Operating temperature 350 °F.
- Can be customized to fit your needs.
- Cools: Temperature controllers, high temperature lubrication equipment, etc.

- 12 standard models available
- 500°F continuous operation
- U-Tube Removable Bundle construction
- · Can be modified to fit specific needs

High temperature design heat exchangers for hot oil heating and cooling units for plastic injection molding machines. Heat exchanger allows for a large temperature differential between the hot uid and cooling uid making it ideal for high temperature liquid cool down or maintaining liquid at high temperature.

DIMENSIONS

	-		
Model	М	Ν	Q NPT
URTC-614	18.87		
URTC-624	28.87	5.34	1.00
URTC-630	34.87		
URTC-814	18.75		
URTC-824	28.75	5.59	1.25
URTC-830	34.75		
URTC-1014	18.86		
URTC-1024	28.86	5.71	1.50
URTC-1030	34.86		
URTC-1214	19.16		
URTC-1224	29.16	6.26	2.00
URTC-1230	35.16		

COMMON DIMENSIONS

Model	А	В	С	E	F	H NPT	K NPT	Tube Dia.	Model
URTC-614-94107 URTC-624-94108 URTC-630-94109	3.25	12.00 22.00 28.00	2.75	2.00	4.25	1.00	(2) .38	.25	URTC-614-94107 URTC-624-94108 URTC-630-94109
URTC-814-94110 URTC-824-94111 URTC-830-94112	4.25	11.25 21.25 27.25	3.25	2.12	6.00	1.50	(4) .38	.25	URTC-814-94110 URTC-824-94111 URTC-830-94112
URTC-1014-94113 URTC-1014-94114 URTC-1024-94115 URTC-1024-94116 URTC-1030-94117 URTC-1030-94118	5.25	11.25 11.25 21.25 21.25 27.25 27.25 27.25	3.75	2.38	7.00	1.50	(2) .38	.25 .375 .25 .375 .25 .375	URTC-1014-94113 URTC-1014-94114 URTC-1024-94115 URTC-1024-94116 URTC-1030-94117 URTC-1030-94118
URTC-1214-94119 URTC-1214-94120 URTC-1224-94121 URTC-1224-94122 URTC-1220-94123 URTC-1230-94124	6.25	10.75 10.75 20.75 20.75 26.75 26.75 26.75	4.25	2.88	8.00	2.00	(2) .38	.25 .375 .25 .375 .25 .375 .375	URTC-1214-94119 URTC-1214-94120 URTC-1224-94121 URTC-1224-94122 URTC-1230-94123 URTC-1230-94124

STANDARD CONSTRUCTION MATERIALS & RATINGS

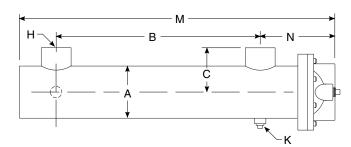
	Construction Material			Model	Surface Ar	ea in Sq.ft.	Model	Surface Ar	ea in Sq.ft.
Constructi	on Material	Optional Material	Standard Unit Ratings	Number		3 / 8" O.D.	Number		3 / 8" O.D.
			Operating Pressure Tubes	Number	Tubing	Tubing	Number	Tubing	Tubing
Shell	Steel	Steel	1 0	URTC-614	3.66		URTC-1014	10.99	5.95
Tubes	Copper	90/10 Cu. Ni. / S. Steel	150 psig	URTC-624	6.28		URTC-1024	18.85	10.21
Baf e	Brass	Brass		URTC-630	7.85		URTC-1030	23.56	12.76
			150 psig	URTC-814	7.02		URTC-1214	14.96	10.99
End Bonnet	Cast Iron	Brass / Stainless Steel	Operating Temperature	URTC-824	12.04		URTC-1224	25.65	18.84
Gasket	High Tem	perature Gasket	350 °F	URTC-830	15.05		URTC-1230	32.07	23.56

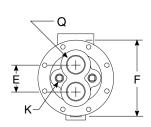
NOTE: We reserve the right to make reasonable design changes without notice.

SURFACE AREA

Manufacturer of Quality Heat Exchangers

UTC SERIES


U-TUBE FIXED TUBE BUNDLE


HEAT EXCHANGERS

- Available in a variety of sizes.
- Operating pressure for tubes 150 PSI.
- Operating pressure for shell 150 PSI.
- Operating temperature 350 °F.
- Can be customized to fit your needs.
- Cools: Temperature controllers, high temperature lubrication equipment, etc.

- 12 standard models available
- 500°F continuous operation
- U-Tube Fixed Bundle construction
- · Can be modified to fit specific needs

High temperature design heat exchangers for hot oil heating and cooling units for plastic injection molding machines. Heat exchanger allows for a large temperature differential between the hot uid and cooling uid making it ideal for high temperature liquid cool down or maintaining liquid at high temperature.

DI	MENS	IONS	
Model	М	Ν	Q NPT
UTC-614	18.12		
UTC-624	28.12	4.59	1.00
UTC-630	34.12		
UTC-814	18.00		
UTC-824	28.00	4.84	1.25
UTC-830	34.00		
UTC-1014	18.11		
UTC-1024	28.11	4.96	1.50
UTC-1030	34.11		
UTC-1214	18.41		
UTC-1224	28.41	5.51	2.00
UTC-1230	34.41		

COMMON DIMENSIONS

Model	А	В	С	E	F	H NPT	K NPT	Tube Dia.	Model
UTC-614-94082 UTC-624-94083 UTC-630-94084	3.25	12.00 22.00 28.00	2.75	2.00	4.25	1.00	(2) .38	.25	UTC-614-94082 UTC-624-94083 UTC-630-94084
UTC-814-94085 UTC-824-94086 UTC-830-94087	4.25	11.25 21.25 27.25	3.25	2.12	6.00	1.50	(4) .38	.25	UTC-814-94085 UTC-824-94086 UTC-830-94087
UTC-1014-94088 UTC-1014-94089 UTC-1024-94090 UTC-1024-94091 UTC-1030-94092 UTC-1030-94093	5.25	11.25 11.25 21.25 21.25 27.25 27.25	3.75	2.38	7.00	1.50	(2) .38	.25 .375 .25 .375 .25 .375	UTC-1014-94088 UTC-1014-94089 UTC-1024-94090 UTC-1024-94091 UTC-1030-94092 UTC-1030-94093
UTC-1214-94094 UTC-1214-94095 UTC-1224-94096 UTC-1224-94097 UTC-1230-94098 UTC-1230-94099	6.25	10.75 10.75 20.75 20.75 26.75 26.75 26.75	4.25	2.88	8.00	2.00	(2) .38	.25 .375 .25 .375 .25 .25 .375	UTC-1214-94094 UTC-1214-94095 UTC-1224-94096 UTC-1224-94097 UTC-1230-94098 UTC-1230-94099

STANDARD CONSTRUCTION MATERIALS & RATINGS

Constructi	on Material	Optional Material	Standard Unit Ratings			
Shell	Steel	Steel	Operating Pressure Tubes			
Tubes	Copper	90/10 Cu. Ni. / S. Steel	150 psig Operating Pressure Shel			
Baf e	Brass	Brass	150 psig			
End Bonnet	Cast Iron	Brass / Stainless Steel	Operating Temperature			
Gasket	High Tem	perature Gasket	350 °F			

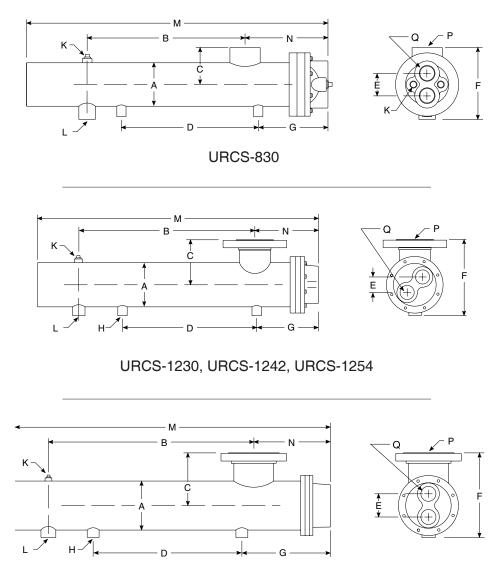
SURFACE AREA

Model	Surface Ar	ea in Sq.ft.	Model	Surface Ar	ea in Sq.ft.
Number	1 / 4" O.D. Tubing	3 / 8" O.D. Tubing	Number	1 / 4" O.D. Tubing	3 / 8" O.D. Tubing
UTC-614	3.66	Tubilig	UTC-1014	10.99	5.95
UTC-624	6.28		UTC-1024	18.85	10.21
UTC-630	7.85		UTC-1030	23.56	12.76
UTC-814	7.02		UTC-1214	14.96	10.99
UTC-824	12.04		UTC-1224	25.65	18.84
UTC-830	15.05		UTC-1230	32.07	23.56

NOTE: We reserve the right to make reasonable design changes without notice.

Manufacturer of Quality Heat Exchangers

URCS OEM SERIES



U-TUBE REMOVABLE TUBE BUNDLE

HEAT EXCHANGERS

- Operating pressure for tubes 100 PSI.
- Operating pressure for shell 100 PSI.
- Operating temperature 400 °F.
- Can be customized to fit your needs.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.

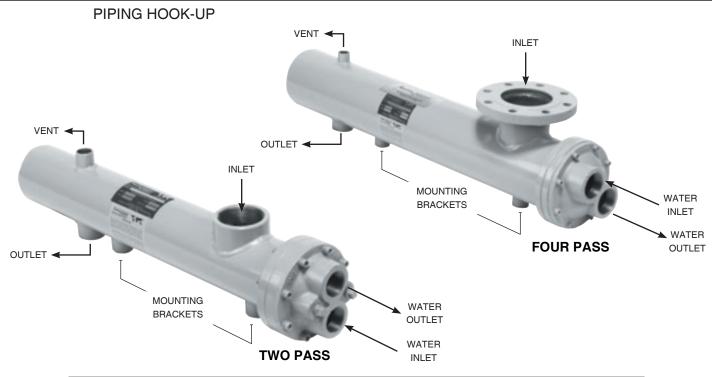
URCS OEM Series dimensions

COMMON DIMENSIONS

MODEL	А	В	С	D	E	F	G	H NPT	K NPT	L NPT	М	N	Р	Q NPT	WEIGHT
URCS-830-25180	4.25	15.00	3.56	13.00	2.38	6.81	5.75	1.00	.38	1.25	28.63	7.88	2.5" NPT	1.25	35
URCS-1230-25182	6.25	13.00	6.38	13.00	3.12	10.75	5.75	1.00	—	1.50	27.75	9.00	4" ANSI	2.00	69
URCS-1242-25183	6.25	25.00	6.38	19.00	3.12	10.75	8.75	1.00	—	1.50	39.75	9.00	4" ANSI	2.00	87
URCS-1254-25184	6.25	37.00	6.38	25.00	3.12	10.75	11.75	1.00	—	1.50	51.75	9.00	4" ANSI	2.00	105
URCS-1754-25185	8.00	34.50	8.75	25.00	4.50	14.00	14.88	1.25	—	2.00	53.00	12.88	6" ANSI	2.50	187

STANDARD CONSTRUCTION MATERIALS & RATINGS

Constructi	on Material	Optional Material	Standard Unit Ratings			
Shell	Steel	Steel	Operating Pressure Tubes			
Tubes	Copper	90/10 Cu. Ni. / S. Steel	100 psig			
Baffle	Brass	Brass	Operating Pressure Shell 100 psig			
End Bonnet	Cast Iron	Brass / Stainless Steel	Operating Temperature			
Gasket	Vito	on O-Ring	400 °F			


SURFACE AREA

Model	Surface Area in Sq.ft.						
Number	1 / 4" O.D. Tubing	3 / 8" O.D. Tubing					
URCS-830-25180	15.0	—					
URCS-1230-25182	—	21.5					
URCS-1242-25183	—	30.2					
URCS-1254-25184	_	88.8					
URCS-1754-25185	—	72.4					

note: AIHTI reserves the right to make reasonable design changes without notice.

102 Copyright © 2004 American Industrial Heat Transfer, Inc. 3905 Route 173 Zion, IL 60099 tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

URCS OEM Series installation & maintenance

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressuretested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of ushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate grade of oil or apply a corrosion preventing inhibitor for storage.
- Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the

request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a longterm finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for longterm benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model

URCS OEM Series installation & maintenance

rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended

to put the hot uid to be cooled through the shell side and the cold uid through the tube side. The indicated port assembly sequence in the installation diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the uids are required to be reversed, hot uid in the tubes and cold uid in the shell the heat exchanger will work with reduced performance. Installation may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of two pass or four pass construction. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a uid, or mineral deposit buildup.

For removable bundle heat exchangers, provide sufficient clearance at the stationary tube-sheet end to allow for the removal of the tube bundle from the shell. Bonnet can be removed to aid in cleaning the tubes without disassembling the tube bundle. For more information please contact American Industrial.

h) It is recommended to use exible hose wherever possible to reduce vibration and allow slight movement. However, hoses are not required. Hydraulic carrying lines should be sized to handle the appropriate ow and to meet system pressure drop requirements based upon the systems parameters, and not based upon the units supply and return connection size. We recommend that a low cracking pressure direct acting relief valve be installed at the heat exchanger inlet to protect it from pressure spikes by bypassing oil in the event the system experiences a high ow surge. If preventative filtration is used it should be located ahead of the cooler on both shell and tube side to catch any scale or sludge from the system before it enters the cooler. Failure to install filters ahead of the heat exchanger could lead to possible heat exchanger failure due to high pressure if the system filters plug.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side uid and the entering tube side uid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the uids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a oating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

i) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the ow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water ow.

k) For steam service, or other related applications, please consult our engineering department for additional information.

Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external uid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) Shell side: In many cases with clean hydraulic system oils it will not be necessary to ush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic uid is in question, the shell side should be disconnected and ushed on a yearly basis with a clean ushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be ushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

c) Tube side: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor uid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc To clean the tube side, ush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.

d) Zinc anodes are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.

Applications vary due to water chemical makeup and quality, material differences, temperature, ow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

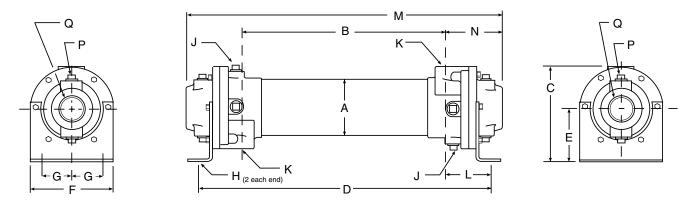
Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

note: AIHTI reserves the right to make reasonable design changes without notice. 104 Copyright © 2004 American Industrial Heat Transfer, Inc.

tel: 1 (847) 731-1000 fax: 1 (847) 731-1010

Manufacturer of Quality Heat Exchangers

ABR SERIES



FIXED TUBE BUNDLE / LIQUID COOLED

AFTER COOLERS

FOR COMPRESSED AIR AND GAS APPLICATIONS

- Copper, 90/10 Copper/Nickel, or Stainless Steel Tubing.
- Optional Bronze Bonnets.
- Operating Pressure for Tubes 150 PSI.
- Operating Pressure for Shell 250 PSI.
- Operating Temperatures of 350° F.
- Can Be Customized to Fit Your Needs.

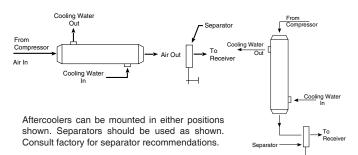
COMMON DIMENSIONS

Model	А	В	С	D	E	F	G	н	J NPT	K NPT	L	М	Ν	P NPT	Q NPT	Weights (lbs.)
ABR-403-A4-SP	2.13	25.62	3.50	29.06	1.94	2.62	0.88	0.41		0.50	1.72	33.36	3.87		1.50	13
ABR-404-A4-SP	2.13	34.62	3.50	38.06	1.94	2.62	0.88	DIA.	N/A	0.50	1.72	42.36	3.87		1.50	16
ABR-405-B4-SP	2.13	43.62	3.50	47.06	1.94	2.62	0.88	0.7.0		0.50	1.72	51.36	3.87	N/A	1.50	18
ABR-705-B4-SP	3.66	43.00	6.25	48.38	3.62	5.25	1.50	0.44x	(2) 0.38	1.00	2.89	50.40	3.70		2.50	40
ABR-1006-B6-SP	5.13	51.50	7.38	57.62	4.00	6.75	2.00	1.00		1.50	3.06	59.60	4.05		3.00	80
ABR-1206-C6-SP	6.13	50.50	8.81	57.38	4.75	7.50	2.50	0.44x		2.00	3.44	60.25	4.88		3.00	130
ABR-1207-C6-SP	6.13	59.60	8.81	66.38	4.75	7.50	2.50	.88	(6)	2.00	3.44	69.25	4.88	(4)	3.00	150
ABR-1606-C6-SP	8.00	49.60	12.13	58.38	6.50	8.62	3.50	0.44x	0.38	3.00	4.39	62.62	6.52	0.50	5.00	259
ABR-1607-D6-SP	8.00	58.60	12.13	67.38	6.50	8.62	3.50	1.00	0.00	3.00	4.39	71.62	6.52	0.00	5.00	270
ABR-1608-D6-SP	8.00	67.60	12.13	76.38	6.50	8.62	3.50	1.00		3.00	4.39	80.62	6.52		5.00	315

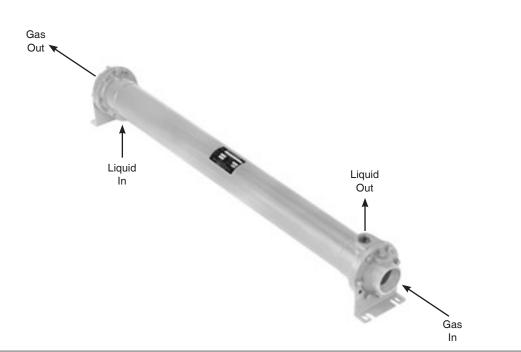
CAPACITY SELECTION CHART

	2-Stage 25	0 ° F Inlet Air	Rotary 200 ° F Inlet Air			
MODEL	SCFM Capacity In Tubes	△P, PSI, In Rated Capacity	SCFM Capacity In Tubes	$\triangle P$, PSI, In Rated Capacity		
ABR-403-A4-SP	45	0.15	56	0.15		
ABR-404-A4-SP	85	0.35	115	0.65		
ABR-405-B4-SP	155	1.25	200	2.01		
ABR-705-B4-SP	315	1.10	435	1.65		
ABR-1006-B6-SP	445	0.35	650	0.55		
ABR-1206-C6-SP	645	0.35	950	0.65		
ABR-1207-C6-SP	1245	1.15	1680	1.95		
ABR-1606-C6-SP	1605	0.60	2270	0.95		
ABR-1607-D6-SP	2105	1.10	3075	1.75		
ABR-1608-D6-SP	2810	1.65	3165	2.10		

EXAMPLE


A two stage compressor with a 340 SCFM air delivery at 100psi and a 250° F discharge temperature. Two psi is the maximum allowable pressure loss. Rate of water flow, to be determined.

SELECTION


To find a solution, select ABR-1006-B6-SP from the 2-stage column in the above chart. It has a capacity of 445 SCFM. Next, identify the value for $\triangle P$ by reading the sub-column within the 2-stage column. The information in that column should be $\triangle P$ = 0.35 psi.

Data for water flow is 340 SCFM x .035 = 11.9 gpm.

PIPING HOOK-UP DIAGRAMS

PIPING HOOK-UP

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person, and mark it on the receiving bill before accepting the freight. Make sure that there is no visible damage to the outside surface of the heat exchanger. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. Since the warranty is based upon the unit date code located on the model identification tags, removal or manipulation of the identification tags will void the manufacturers warranty.

b) When handling the shell & tube heat exchanger, special care should be taken to avoid dropping the unit since mishandling could cause the heat exchanger to crack and leak externally. Mishandling of the unit is not covered under the manufacturers warranty. All units are shipped with partial wood/corrugated cardboard containers for safe handling.

c) Storage: American Industrial heat exchangers are protected against the elements during shipment. If the heat exchanger cannot be installed and put into operation immediately upon receipt, certain precautions are required to prevent deterioration during storage. The responsibility for integrity of the heat exchanger(s) is assumed by the user. American Industrial will not be responsible for damage, corrosion, or other deterioration of the heat exchanger during transit or storage.

Proper storage practices are important when considering the high costs of repair or replacement, and the possible delays for items which require long lead times for manufacture. The following listed practices are provided solely as a convenience to the user, who shall make their own decision on whether to use all or any of them.

- 1) Heat exchangers not to be placed in immediate service, require precautionary measures to prevent corrosion or contamination.
- 2) Heat exchangers made of ferrous materials, may be pressure-tested using compressed air at the factory. Residual oil coating on the inside surfaces of the heat exchanger(s) as a result of flushing does not discount the possibility of internal corrosion. Upon receipt, fill the heat exchanger(s) with the appropriate corrosion preventing inhibitor for storage.
- 3) Corrosion protection compounds for interior surfaces for long term storage or other applications are applied solely at the request of customers. Upon request, American Industrial can provide a customer approved corrosion preventative if available when included in the original purchase order specifications.

- 4) Remove all dirt, water, ice, or snow and wipe dry before moving heat exchanger(s) into storage. Heat exchangers are generally shipped empty, open drain plugs to remove any accumulated condensation moisture, then reseal. Accumulation of moisture usually indicates corrosion has already started and remedial action should be taken.
- 5) Store in a covered, environmentally stable area. The ideal storage environment for heat exchangers is in a dry, low-humidity atmosphere which is sealed to prevent the entry of blowing dust, rain, or snow. Maintain in atmospheric temperatures between 70°F and 105°F (Large temperature swings may cause condensation and moisture to form on steel components, threads, shell, etc...) Use thermometers and humidity indicators and maintain the atmosphere at 40% relative humidity, or lower.

d) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warranty coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

f) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any shell & tube heat exchanger. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Plan the installation to meet the requirements indicated on the piping installation diagram as illustrated above. It is recommended to put the

ABR Series installation & maintenance

compressed air to be cooled through the tube side and the cold fluid through the shell side. The indicated port assembly sequence in the diagram maximizes the performance, and minimizes the possibility of thermal shock. In instances where the fluids are required to be reversed, compressed air in the shell side and cold fluid in the tube side the heat exchanger will work, however it may not meet the performance requirements of the application. Installations may be vertical or horizontal or a combination thereof. However, the installation must allow for complete draining of the heat exchanger regardless of orientation. Complete drainage is important to prevent the heat exchanger from freezing, over-heating of a fluid, or mineral deposit buildup.

h) For fixed bundle heat exchangers, provide sufficient clearance at one end to allow for the removal or replacement of tubes. On the opposite end, provide enough space to allow removal of the bonnet to provide sufficient clearance to permit tube rolling and cleaning. Allow accessible room for scheduled cleaning as needed. Include thermometer wells and pressure gauge pipe ports in piping to and from the heat exchanger located as close to the heat exchanger as possible. For more information please contact American Industrial.

i) Standard shell & tube coolers are built with a rolled tube-sheet construction. However, the differential operating temperature between the entering shell side fluid and the entering tube side fluid should not exceed 150°F. If this condition exists, a severe thermal shock could occur leading to product failure and mixing of the fluids. For applications with a differential temperatures of 150°F or more, we recommend using a series with a floating tube-sheet, u-tube, or expansion joint to reduce the potential for the effects of thermal shock.

i) Water requirements vary from location to location. If the source of cooling water is from other than a municipal water supply, it is recommended that a water strainer be installed ahead of the heat exchanger to prevent dirt and debris from entering and clogging the flow passages. If a water modulating valve is used it is recommended to be installed at the inlet to the cooler to regulate the water flow.

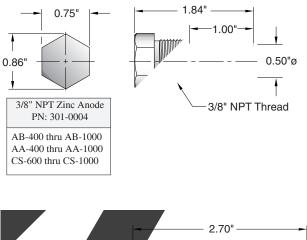
k) For steam service, or other related applications, please consult our engineering department for additional information.

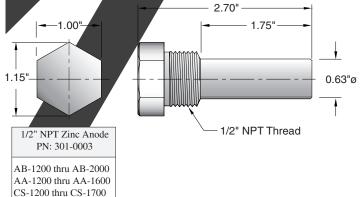
Maintenance

a) Inspect the heat exchanger for loosened bolts, connections, rust spots, corrosion, and for internal or external fluid leakage. Any corroded surfaces should be cleaned and recoated with paint.

b) Shell side: In many cases with clean hydraulic system oils it will not be necessary to flush the interior of the shell side of the cooler. In circumstances where the quality of hydraulic fluid is in question, the shell side should be disconnected and flushed on a yearly basis with a clean flushing oil/solvent to remove any sludge that has been deposited. For severe cases where the unit is plugged and cannot be flushed clean with solvent, the heat exchanger should be replaced to maintain the proper cooling performance.

c) Tube side: In many cases it will be necessary to clean the tube side of the heat exchanger due to poor fluid quality, debris, calcium deposits, corrosion, mud, sludge, seaweed, etc To clean the tube side, flush with clean water or any good quality commercial cleaner that does not attack the particular material of construction. With straight tube heat exchangers you can use a rod to carefully push any debris out of the tubes.


d) Zinc anodes are normally used to reduce the risk of failure due to electrolysis. Zinc anodes are a sacrificial component designed to wear and dissolve through normal use. Normally, zinc anodes are applied to the water supply side of the heat exchanger. Depending upon the amount of corrosive action, one, two, three, or more anodes can be applied to help further reduce the risk of failure. American Industrial Heat Transfer, Inc. offers zinc anodes as an option, to be specified and installed at the request our customers. It is the responsibility of the customer to periodically check and verify the condition of the zinc anode and replace it as needed.


Applications vary due to water chemical makeup and quality, material differences, temperature, flow rate, piping arrangements, and machine grounding. For those reasons, zinc anodes do not follow any scheduled factory predetermined maintenance plan moreover they must be checked routinely by the customer, and a maintenance plan developed based upon the actual wear rate.

If substantial wear occurs or zinc dissolves without replacement, premature failure or permanent damage may occur to the heat exchanger. American Industrial does not warranty customer applications. It is the responsibility of the customer to verify and apply the proper system materials of construction and overall system requirements. Failures resulting from properly applied or misapplied use of zinc anode(s) into non-specified or specified applications will be the sole responsibility of the customer.

e) A routine maintenance schedule should be developed and adjusted to meet your systems requirements based upon water quality, etc....Failure to regularly maintain and clean your heat exchanger can result in a reduction in operational performance and life expectancy.

Note: Since applications can vary substantially, the installation and maintenance information contained in this catalog should be used as a basic guideline. The safe installation, maintenance, and use of any American Industrial Heat Transfer, Inc. heat exchanger are solely the responsibility of the user.

