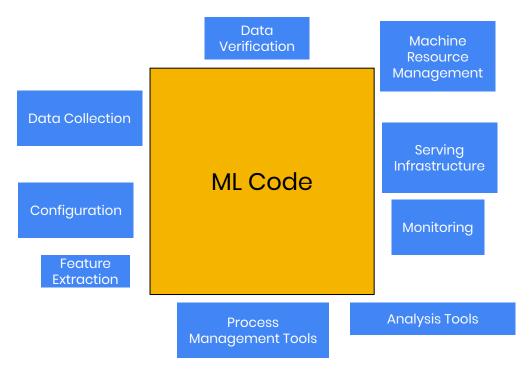

Scalable ML Workflows with Advanced Data Management on Kubeflow

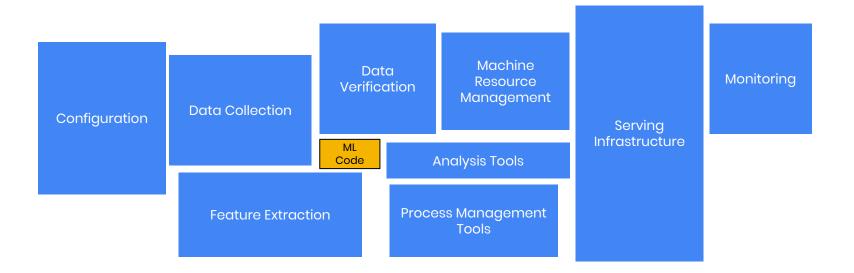
Vangelis Koukis, Founder & CTO, Arrikto

The Problem


- Setting up an ML stack/pipeline is incredibly hard
- Setting up a production ML stack/pipeline is even harder
- Setting up an ML stack/pipeline that works across the 81% of enterprises that use multi-cloud* environments is EVEN HARDER

* Note: For the purposes of this presentation, "local" is a specific type of "multi-cloud"

Source: "Building an ML stack with Kubeflow" by Abhishek Gupta, Google Al Huddle - Bay Area



Perception: ML Products are mostly about ML

Reality: ML Requires DevOps; lots of it

Credit: Hidden Technical Debt of Machine Learning Systems, D. Sculley, et al.

Why Kubeflow

- End-to-end solution for ML on Kubernetes
- Containerized workload
- Experiment exploration with state-of-art AI technologies
- Easy on-boarding
- Outstanding community and industry support

What is MiniKF?

- Kubeflow on your laptop or on-prem infrastructure in just a few minutes
- All-in-one, single-node, Kubeflow distribution
- Featuring the latest Kubeflow version, 0.6.x
- Very easy to spin up on your own local environment
- MiniKF = MiniKube + Kubeflow + Arrikto's Rok Data Management Platform

How to install MiniKF

- Watch the webinar <u>recording</u>
- Watch the installation video
- Read the <u>docs</u>
- TL;DR
 - vagrant init arrikto/minikf
 - vagrant up

Live demo of MiniKF installation

KDD 2017 Applied Data Science Paper

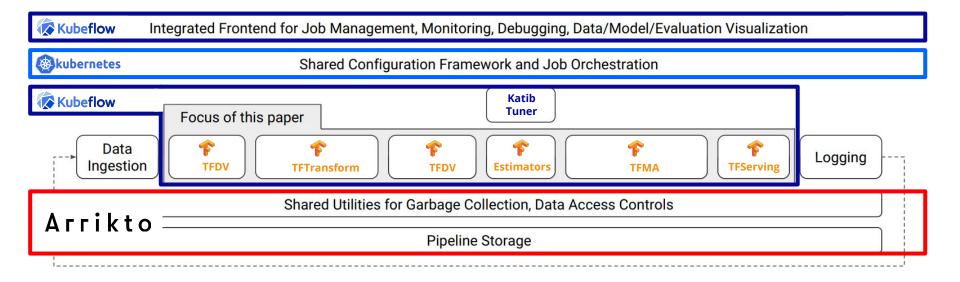
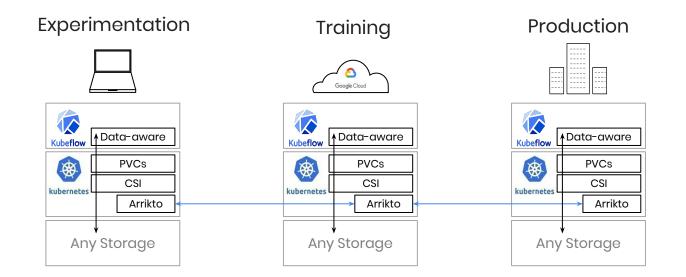
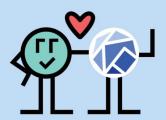



Figure 1: High-level component overview of a machine learning platform.


Data Versioning, Packaging, and Sharing

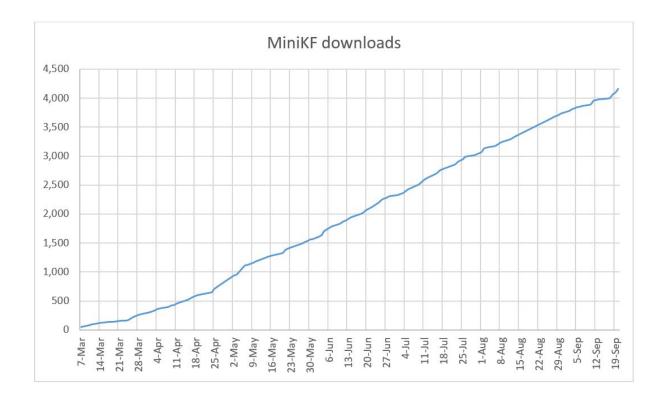
Across teams and cloud boundaries for complete Reproducibility, Provenance, and Portability

What's new in the latest MiniKF?

- Kubeflow v0.6.2
- Kubeflow authentication with Istio and Dex
- Authorization for Notebooks
- Faster, near-instantaneous snapshot restore with Rok
- Significantly improve time for snapshotting Notebooks (using Arrikto's Rok)
- Ability to snapshot every step of a pipeline (using Arrikto's Rok)

MiniKF landing page

MiniKF × +		- Ø ×			
← → ♂ ③ Not secure 10.10.10.10		* 2 :			
Welcome to MiniKF! Use the terminal to start MiniKF					
	Herlands + Raderlan + Rok = Hinld Helcome to the Hinld? Provisioning tool. About to provision: • Obocker • Hinlands • Hinlands • Book • Book • This can take up to 30', depending on the quality of your network connection. • # •				
	Credentials Connect B Rok Connect usermane user Up Up				
	password K294239				


Why we started MiniKF

- Exploration and experimentation starts on the data scientist's laptop
- No easy way to deploy Kubeflow on-prem
- Make get started with Kubeflow dead simple
 - Help democratize access to ML
- Same foundation/APIs everywhere,
 - users can move to a Kubeflow cloud deployment with one click, without having to rewrite anything

Local Kubeflow: Unified UX

- **Exactly** the same environment, on-prem, or on the cloud
- A single, unified User Experience
- Same Kubernetes APIs
- Same Kubeflow components
 - Notebooks
 - Pipelines
 - Fairing

MiniKF adoption

TL;DR of MiniKF installation

\$ vagrant init arrikto/minikf
\$ vagrant up

System requirements

- 12GB RAM
- 2 CPUs
- 50GB disk space

Operating systems

MiniKF runs on all major operating systems:

- Linux
- macOS
- Windows

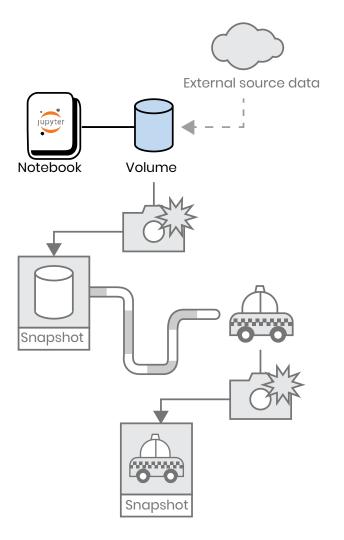
Prerequisites

- Vagrant
- VirtualBox

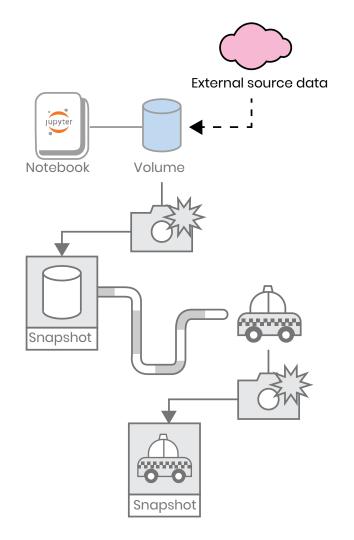
Live demo: Chicago Taxi on-prem with MiniKF

What is the Chicago Taxi example?

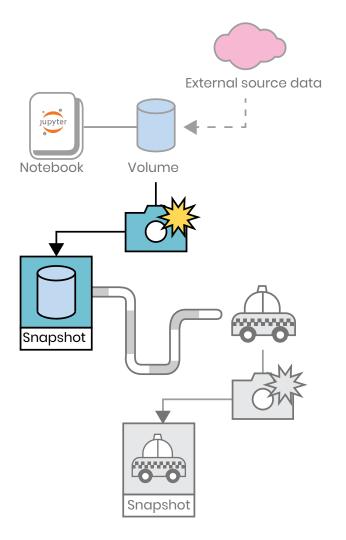
• Original dataset:

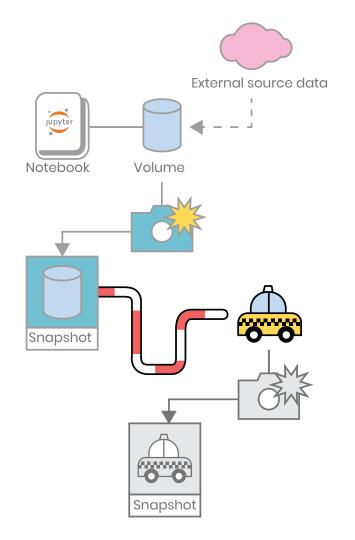

More than 100M trips, released by the City of Chicago https://digital.cityofchicago.org/index.php/chicago-taxi-data-released/

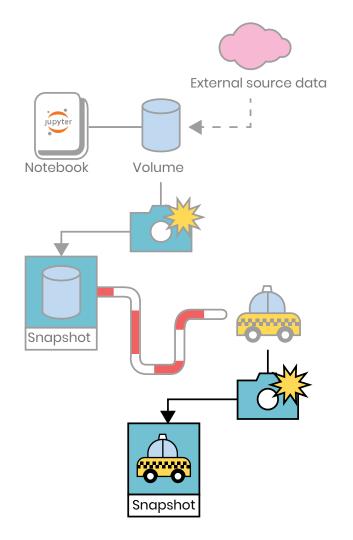
- Example fields are: fare, trip_start_month, trip_start_hour, trip_start_day, pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude, trip_miles, payment_type, tips.
- End result:


A **classifier** that predicts if a trip will result in a tip greater than 20% of the fare

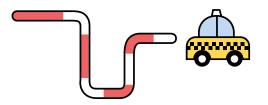
Demo overview


1. Create Notebook, add data volume


- 1. Create Notebook, add data volume
- 2. Ingest data in volume, compile the Taxi Cab Pipeline

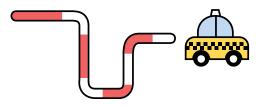

- 1. Create Notebook, add data volume
- 2. Ingest data in volume, compile the Taxi Cab Pipeline
- 3. Take a snapshot of your data using Arrikto Rok

- 1. Create Notebook, add data volume
- 2. Ingest data in volume, compile the Taxi Cab Pipeline
- 3. Take a snapshot of your data using Arrikto Rok
- 4. Create a new Kubeflow Pipeline and seed it with the Rok snapshot


- 1. Create Notebook, add data volume
- 2. Ingest data in volume, compile the Taxi Cab Pipeline
- 3. Take a snapshot of your data using Arrikto Rok
- 4. Create a new Kubeflow Pipeline and seed it with the Rok snapshot
- 5. Snapshot the PVC after the pipeline run using Arrikto Rok

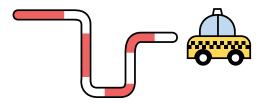
Step 1: Data validation

This step uses the TensorFlow Data Validation (TFDV) library to:


- Validate the training data
- Generate the dataset's schema for use by next steps
- Validate the evaluation data against the schema
- Identify anomalies between the training and evaluation data

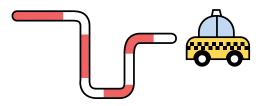
Step 2: Data preprocessing

This step uses the TensorFlow Transform (TFT) library to:


- Preprocess the training dataset, applying transformations to it
- Preprocess the evaluation dataset, applying transformations to it
- Produce a Transform TensorFlow Graph

Step 3: Model training

This step uses the TensorFlow Estimators to:

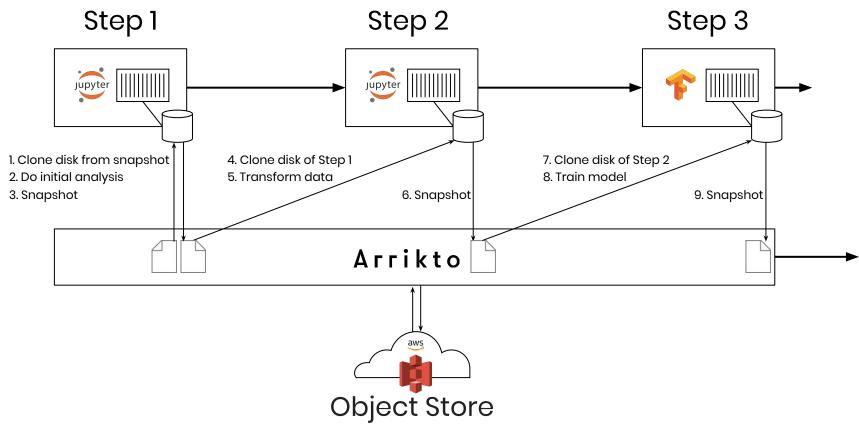

- Train the model using the processed datasets, producing a SavedModel for inference
- Produce a TFMA-specific evaluation Graph for deeper analysis with TFMA
- Produce evaluation events for Tensorboard

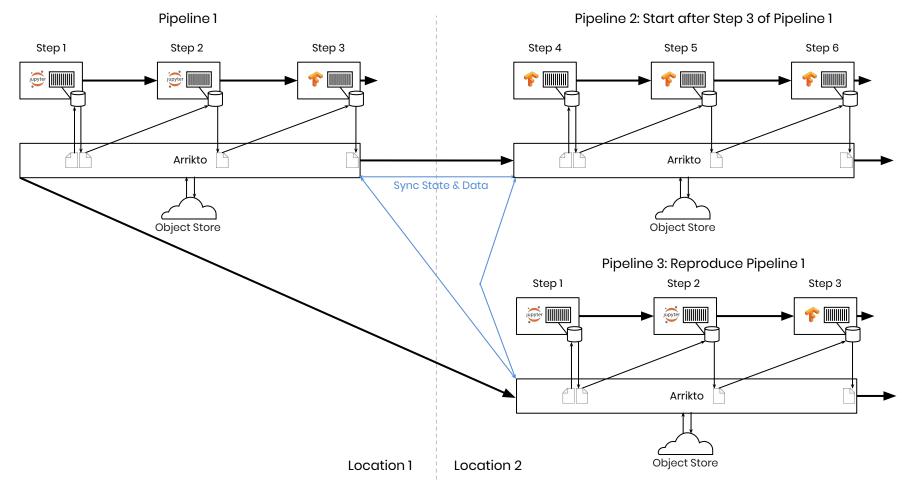
Step 4: Model analysis

This step uses the TensorFlow TFMA library to:

• Evaluate the trained model, using the evaluation dataset

Step 5: Prediction


This step aims to:


- Make predictions by against the evaluation dataset
- Generate results as CSV file(s), which add the prediction column in the evaluation dataset, to be used by next steps to generate a ROC and a Confusion Matrix.

Data Management in Kubeflow

- Extend Kubeflow to use Persistent Volumes in a vendor-agnostic way
- Arrikto contributions
 - JupyterHub-based Spawner with support for Persistent Volumes (in 0.4)
 - K8s-native Jupyter Notebook Manager with support for Persistent Volumes (in 0.5)
 - Extensions to the Kubeflow Pipelines DSL for Persistent Volumes and Volume
 Snapshots (in 0.5)

Running KFP on-prem before MiniKF

One should have strong Kubernetes knowledge to be able to deal with some steps:

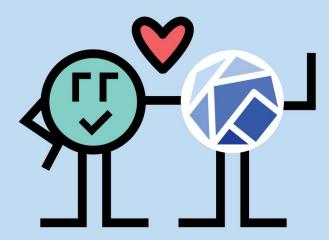
- Understand K8s and be familiar with kubectl
- Understand and compose YAML files
- Manually create PVCs via Kubernetes
- Mount a PVC to a container to fill it up with initial data

Demo Step	Kubeflow System	
Create Notebook Server	Notebook Manager UI	
Create a Persistent Data Volume	Notebook Manager UI	
Ingest Code	JupyterLab, Terminal	
Ingest Data	JupyterLab, Terminal	
Compile Pipeline	JupyterLab, Terminal	
Snapshot JupyterLab Environment	Rok	
Download Pipeline	JupyterLab	
Upload Pipeline	Pipelines UI, Pipeline	
Seed the Data into the Pipeline	Pipelines UI, Pipeline	
Run Pipeline	Pipelines UI, Experiment, Run	
View Metrics	Pipelines UI, Experiments	
View Graph	Pipelines UI, Experiments	

Ability to create Persistent Volume from GUI

Ability to transfer snapshot from notebook to pipeline

Demo Step	Kubeflow pre-0.4 System	
Create Notebook Server	Notebook Manager UI	
Create a Persistent Data Volume	Local Terminal with Editor Compose YAML file to create an empty PVC (empty_pvc.yaml) kubect1 - submit empty_pvc.yaml K8s creates PVC kubect1 - describe PVC, is it up and have the correct name Create 2nd YAML file to create a new pvd (busybox) and attach a new PVC to the pod. Make sure that the pod doesn't exit, so you can get a shell and work with it kubect1 - submit the 2nd YAML kubect1 - connect to the container and get a shell (kubect1ti exec /bin/sh)	
Ingest Data	Local Terminal with Editor	
Clean up Container	Local Terminal with Editor Remove the busybox container and keep the PVC to give it to KFP (this is mutable) If you want to snapshot/clone that PVC to be reproducible you need to create new YAML files and know the specifics of your underlying storage	
Ingest Code	JupyterLab, Terminal	
Compile Pipeline	JupyterLab, Terminal	50% REDUCTION
Snapshot the PVC	Local Terminal with Editor Compose YAML file to snapshot the PVC (snap_pvc.yaml) kubectl - submit snap_pvc.yaml K8s creates snapshot	
Clone the snapshot	Local Terminal with Editor Compose YAML file to clone the snapshotted PVC (clone_pvc.yaml) kubectl - submit clone_pvc.yaml K8s creates new PVC kubectl - describe to get its name	
Download Pipeline	JupyterLab	-
Upload Pipeline	Pipelines UI, Pipeline	
Seed the Data into the Pipeline	Pipelines UI, Pipeline	
Run Pipeline	Pipelines UI, Experiments, Run	
View Metrics	Pipelines UL Experiments	
View Graph	Pipelines UI, Experiments	


	Demo Step	Kubeflow System
	Create Notebook Server	Notebook Manager UI
	Create a Persistent Data Volume	Notebook Manager UI
	Ingest Code	JupyterLab, Terminal
	Ingest Data	JupyterLab, Terminal
	Compile Pipeline	JupyterLab, Terminal
	Snapshot JupyterLab Environment	Rok
	Download Pipeline	JupyterLab
	Upload Pipeline	Pipelines UI, Pipeline
	Seed the Data into the Pipeline	Pipelines UI, Pipeline
	Run Pipeline	Pipelines UI, Experiment, Run
	View Metrics	Pipelines UI, Experiments
	View Graph	Pipelines UI, Experiments

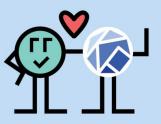
Running KFP on-prem with MiniKF and Rok

Data scientists are more self-sufficient:

- Less interaction with K8s and YAML
- Faster data movement from Notebooks to Pipelines
- Easier mounting of PVCs & seeding with data
- Simplified end-2-end pipeline execution & reproducibility
- Per-step snapshots for notebook-based exploration / iteration / troubleshooting

Running KFP on-prem with MiniKF and Rok

Future improvements


- GPU support
- Support for multi- and hybrid-cloud Kubeflow Pipelines
 - Experiment locally, train and deploy on different clouds
- MiniKF with Kubeflow v0.7 / v1.0 BETA (to be released mid-November)
- Volume Manager UI to browse the files of a Volume
- Request new features
 - #minikf on the <u>Kubeflow Slack</u>

Try it out!

- Installation Instructions:
 - <u>http://www.arrikto.com/minikf</u>
 - <u>https://www.kubeflow.org/docs/started/getting-started-minikf/</u>
- End-to-end ML Pipeline Tutorial
 - Read the <u>blog post</u>
 - View the <u>video</u>
- We need your feedback
 - #minikf on the <u>Kubeflow Slack</u>

Thanks!

www.arrikto.com/minikf

Vangelis Koukis, Founder & CTO, Arrikto vkoukis@arrikto.com | @vkoukis