

Cisco SD-Access

Connecting to the Data Center, Firewall, WAN and More !

Vedran Hafner, vehafner@cisco.com Systems Engineer Manager

Agenda

- Introduction to Cisco SD-Access
 - Fabric Roles and Constructs
- Enterprise Network Design
 - Traditional vs Cisco SD-Access Network Design
 - Border Design Options

Border Connectivity Models

- Connecting to Internal networks like DC & WAN
- Connecting to external networks like Internet & Cloud

Small Enterprise Network Design

- Traditional vs Cisco SD-Access Network Design
- Border Design Options

Conclusion

Fabric Roles and Constructs

Cisco SD-Access

Fabric Roles & Terminology

- Cisco DNA Automation provides simple GUI management and intent based automation (e.g. NCP) and context sharing
- Cisco DNA Assurance Data Collectors (e.g. NDP) analyze Endpoint to App flows and monitor fabric status
- Identity Services NAC & ID Systems (e.g. ISE) for dynamic Endpoint to Group mapping and Policy definition
- Control-Plane Nodes Map System that manages Endpoint to Device relationships
- Fabric Border Nodes A Fabric device (e.g. Core) that connects External L3 network(s) to the SDA Fabric
- Fabric Edge Nodes A Fabric device (e.g. Access or Distribution) that connects Wired Endpoints to the SDA Fabric
- Fabric Wireless Controller A Fabric device (WLC) that connects APs and Wireless Endpoints to the SDA Fabric

Cisco SD-Access

Fabric Terminology

Control-Plane Nodes - A Closer Look

Control-Plane Node runs a Host Tracking Database to map location information

- A simple Host Database that maps Endpoint IDs to a current Location, along with other attributes
- Host Database supports multiple types of Endpoint ID lookup types (IPv4, IPv6 or MAC)
- Receives Endpoint ID map registrations from Edge
 and/or Border Nodes for "known" IP prefixes
- Resolves lookup requests from Edge and/or Border Nodes, to locate destination Endpoint IDs

Edge Nodes - A Closer Look

Edge Node provides first-hop services for Users / Devices connected to a Fabric

- Responsible for Identifying and Authenticating Endpoints (e.g. Static, 802.1X, Active Directory)
- Register specific Endpoint ID info (e.g. /32 or /128) with the Control-Plane Node(s)
- Provide an Anycast L3 Gateway for the connected Endpoints (same IP address on all Edge nodes)
- Performs encapsulation / de-encapsulation of data traffic to and from all connected Endpoints

Cisco SD-Access Fabric Border Nodes

Border Node is an Entry & Exit point for data traffic going Into & Out of a Fabric

There are **3 Types** of **Border Node**!

- Rest of Company/Internal Border Used for "Known" Routes inside your company
- Outside World/External Border Used for "Unknown" Routes outside your company
- Anywhere/External + Internal Border Used

for "Known" and "UnKnown" Routes for your company

Border Nodes - Rest of Company/Internal

Rest of Company/Internal Border advertises Endpoints to outside, and known Subnets to inside

- Connects to any "known" IP subnets available from the outside network (e.g. DC, WLC, FW, etc.)
- Exports all internal IP Pools to outside (as aggregate), using a traditional IP routing protocol(s).
- Importsand registers (known) IP subnets from outside, into the Control-Plane Map System except the default route.
- Hand-off requires mapping the context (VRF & SGT) from one domain to another.

Border Nodes - Forwarding from Fabric to External Domain

Border Nodes - Forwarding from External to Fabric Domain

Border Nodes - Outside World/External

Outside World/External Border is a "Gateway of Last Resort" for any unknown destinations

- Connects to any "unknown" IP subnets, outside of the network (e.g. Internet, Public Cloud)
- Exports all internal IP Pools outside (as aggregate) into traditional IP routing protocol(s).
- Does NOT import any routes! It is a "default" exit, if no entry is available in Control-Plane.
- Hand-off requires mapping the context (VRF & SGT) from one domain to another.

Border Nodes - Forwarding from Fabric to External Domain

Border Nodes - Anywhere/ Internal + External Border

Anywhere/ Internal + External Border is a "One all exit point" for any known and unknown destinations

- Connects to any "unknown" IP subnets, outside of the network (e.g. Internet, Public Cloud) and "known" IP subnets available from the outside network (e.g. DC, WLC, FW, etc.)
- Imports and registers (known) IP subnets from outside, into the Control-Plane Map System except the default route.
- Exports all internal IP Pools outside (as aggregate) into traditional IP routing protocol(s).

Virtual Network- A Closer Look

Virtual Network maintains a separate Routing & Switching table for each instance

- Control-Plane uses Instance ID to maintain separate VRF topologies ("Default" VRF is Instance ID "4098")
- Nodes add a VNID to the Fabric encapsulation
- Endpoint ID prefixes (Host Pools) are routed and advertised within a Virtual Network
- Uses standard "vrf definition" configuration, along with RD & RT for remote advertisement (Border Node)

Enterprise Network Design

Traditional Network Design

Cisco SD-Access Network Design

Border Connectivity Models

Connectivity to external networks in the traditional design

Connectivity to external networks in the Cisco SD-Access design using the Border Node

Large Enterprise Network Design - Cisco SD-Access Network

Data Center and Internet Border needs to be a Anywhere/ Internal + External Border as it has to import the DC routes into the fabric through the fusion router.

Large Enterprise Network Design - Cisco SD-Access Network

Data Center and Internet Border needs to be a Anywhere/ Internal + External Border as it also is the default exit point out of the fabric aka " Default route".

Large Enterprise Network Design - Cisco SD-Access Network

Wan Border needs to be a Rest of the Company/ Internal Border as it has to import the WAN routes into the fabric.

Large Enterprise Network Design - Cisco SD-Access Network

There is a separate Guest Border in fabric for Guest VN traffic only. This Border needs to be a Outside world/External border as it is the default exit point out of the fabric aka " Default route" for the Guest VN.
Why Internal (Rest of Company) vs External (Outside World) Border

Cisco SD-Access - Border Deployment

Why? Internal Traffic with External Borders

Cisco SD-Access - Border Deployment

Why? Internal Traffic with Internal Borders

Fabric Control Plane

- 1/mG RJ45
- 10/25/40/mG NM

- Catalyst 9400
- Sup1/Sup1XL
- 9400 Cards

For more details: cs.co/sda-compatibility-matrix

- 40/100G QSFP
- 1/10/25G SFP

Fabric Control Plane

	Catalyst 3K
-	

- Catalyst 3650/3850
- 1/mG RJ45
- 1/10G SFP
- 1/10/40G NM Cards

- Catalyst 6500/6800
- Sup2T/Sup6T
- C6800 Cards
- C6880/6840-X

ISRv / CSRv

1/10G SFP

Fabric Border Node

- 1/mG RJ45
- 10/25/40/mG NM

- Catalyst 9400
- Sup1/Sup1XL
- 9400 Cards

For more details: cs.co/sda-compatibility-matrix

- Catalyst 9500
- 1/10/25G SFP
- 40/100G QSFP

Fabric Border Node

Cisco SD-Access - Border Deployment Fabric Border Scale

Fabric Constructs	Catalyst 3850-XS	Catalyst 9300	Catalyst 9400	Catalyst 9500	Catalyst 9500H	Catalyst 6800	Nexus N7700	ASR1K / ISR4K	CSR1Kv
Virtual Networks	64	256	256	256	256	500	500	4K	n.a.
SGT/DGT Table	4K	8K	8K	8K	8K	30K	16K	62K	n.a.
SGACLs (Security ACEs)	1500	5K	18K	18K	18K	12K 30K (XL)	16K	64K	n.a.
Control Plane Entries with Co-Located Border	ЗК	16K	SUP1 = 50K SUP1XL=80K	80K	80K	25K	Not Supported	200K / 100K (16GB) 100K / 50K (8GB)	200K
IPv4 Fabric Routes	8K	4K	SUP1 = 10K SUP1XL=20K	48K	48K	256K	500K	4M (16GB)	n.a.
IPv4 Fabric Host Entries	16K	16K	SUP1 = 50K SUP1XL=80K	96K	96K	1M (XL)	32K	1M (8GB)	

Cisco SD-Access - Border Deployment

Which Border to pick ?

Outside world(External)	Connect to the unknown part of company like internet or is the only exit point from fabric	
Rest of Company (Internal)	Connect to known part of the company like DC, WAN etc.	
		_
Anywhere(Internal +External)	Connect to the internet and also known part of the company like DC, WAN etc.	

Cisco SD-Access - Border Deployment

Fabric Border Support Matrix

SDA Border Node	Rest of Company (Internal)	Outside World (External)	Anywhere (Internal + External)
С9К	YES	YES	YES
ASR1K/ISR4K	YES	YES	YES
C6K	YES	YES	YES
N7K	NO	YES	NO

Cisco SD-Access - Border Deployment How VNs work in SD-Access

- Fabric Devices (Underlay) connectivity is in the Global Routing Table
- INFRA_VN is only for Access Points and Extended Nodes in GRT
- DEFAULT_VN is an actual "User VN" provided by default
- User-Defined VNs can be added or removed on-demand

Connectivity to Known Networks like DC & WAN via the Anywhere/Rest of Company Border

Anywhere/Rest of Company for Shared Services and DC - VRF LITE

Anywhere/Rest of Company Border WAN Connectivity

Cisco SD-Access Fabric

Border Nodes - One Box vs. Two Box

One Box Design

- Internal and External domain routing is on the same device
- Simple design, without any extra configurations between the Border and outside routers
- The Border device will advertise routes to and from the Local Fabric domain to the ExternalDomain

Two Box Design

Internal and External domain routing are on different devices

Requires two Devices with BGP in between to exchange connectivity and reachability information

This model is chosen if the Border does not support the functionality (This can due to hardware or software support on the device) to run the external domain on the same device (e.g. DMVPN, EVPN, etc.)

Anywhere/Rest of Company Border

Anywhere/Rest of Company Border

Shared Services (DHCP, AAA, etc) with Border

- Hosts in the fabric domain (in their respective Virtual Networks) will need to have access to common "Shared Services":
 - □ Identity Services (e.g. AAA/RADIUS)
 - Domain Name Services (DNS)
 - Dynamic Host Configuration (DHCP)
 - □ IP Address Management (IPAM)
 - □ Monitoring tools (e.g. SNMP)
 - Data Collectors (e.g. Netflow, Syslog)
 - □ Other infrastructure elements
- These shared services will generally reside outside of the fabric domain.

Shared Services (DHCP, AAA, etc.) with Border

Data Center Connectivity With Border - Traditional DC

CONTROL-PLANE

Policy Options for Shared Services and Traditional Data Center

- Destination IP subnets are statically mapped to SGT's in ISE.
- SXP from ISE to fusion router to download the IP to SGT bindings for the destination IP subnets.
- SG ACLS's are enforced at the Fusion router

Source			Destination			Action
P.	Group/User	Security Group	P	Security Group	Port	Action
ψ£Υ	ANY	Employees on Corporate Assets	ANY	ACI_intranet_Servers_EPG	Any top	Albe
WY.	ANY	Senior Exect on registered BYOD devices	ANT	ACI_Finance_Servers_EPG	http://ttps	Albe
WEY'	ANY	Contractors on unmanaged devices	ANY.	ACI_Citrix_VDI_EPG	RDP, ICA	Alow
ψ£Υ	ANY	Divested Business - Employees	ANY	Divested Business Servers	ANY	Alce
WY.	ANY	ANY	ANY	ANY	ANY	DENY

Data Center Connectivity With Border - VXLAN/ACI Fabric

CONTROL-PLANE

BGP/IGP LISP **Fusion Router** B B ACI Fabric Border Leaf's (__ **DATA-PLANE** 2 VXLAN+SGT **VRF-LITE**

- SD-Access Border merge the VRF's A, B, C and so on to a common VRF D using a fusion router.
- The Common VRF D will connect to ACI VRF on the other side.
- We need access-lists/distribute lists on the fusion router to ensure that VRF A, B and C do not talk to each other. This can also be achieved using VRF import and export maps.

Cisco SD-Access SGTs Provisioned in ACI

ACI EPGs Automatically Propagated into Cisco SD-Access

Cisco SD-Access SGT Info Used in ACI Policies

Alternate Design Option for fusion Router

WAN Connectivity with Rest of Company /Internal Border

WAN Connectivity with Border- WAN (MPLS/DMVPN)

Border Design Options

WAN Connectivity with Border - Control Plane

Border Design Options

WAN Connectivity with Border - Data Plane

Cisco SD-Access - Connecting to the DataCenter, Firewall, WAN and More!

Conclusion

Session Summary

Wireless

Cisco SD-Access Support

Digital Platforms for your Cisco Digital Network Architecture

Switching

Routing

Extended

Cisco IE 4K/5K

What to Do Next?

with Cisco DNA Advantage OS License

Get Cisco DNA Center Appliances with Cisco DNA Center Software

Cisco Services can help you Test - Migrate - Deploy - Manage

Cisco SD-Access Resources

Would you like to know more?

cisco.com/go/dna

cisco.com/go/sdaccess

- SD-Access At-A-Glance
- SD-Access Ordering Guide
- SD-Access Solution Data Sheet
- SD-Access Solution White Paper

cisco.com/go/cvd

- SD-Access Design Guide
- SD-Access Deployment Guide
- SD-Access Segmentation Guide

cisco.com/go/dnacenter

- Cisco DNA Center At-A-Glance
- Cisco DNA ROI Calculator
- Cisco DNA Center Data Sheet
- Cisco DNA Center 'How To' Video Resources

Thank you

