

Introduction

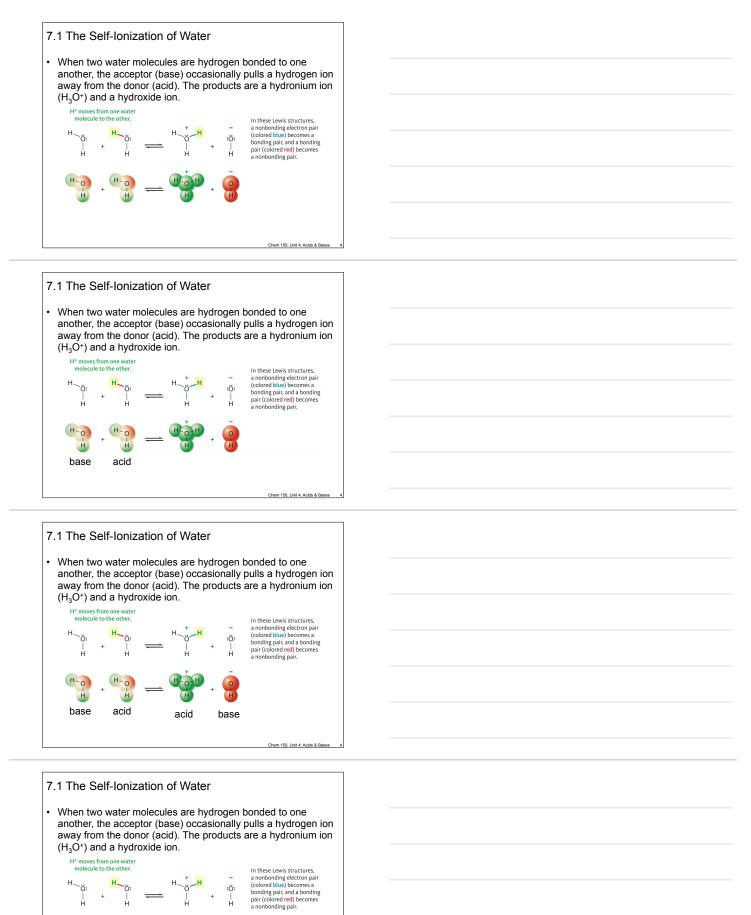
- Patients with emphysema cannot expel CO₂ from their lungs rapidly enough.
 - This can lead to an increase of carbonic acid (H₂CO₃) levels in the blood and to a lowering of the *pH* of the blood by a process called respiratory acidosis.

 $CO_2 + H_2O \rightarrow H_2CO_3$

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Bas

Introduction


 Carbonic acid (H₂CO₃), along with its conjugate base, the bicarbonate ion (HCO₃⁻), play an important role as a buffer that maintains blood *pH* at around 7.4.

 $H_2CO_3 \rightleftharpoons HCO_3^- + H^+$

Introduction

• Carbonic acid (H₂CO₃), along with its conjugate base, the bicarbonate ion (HCO₃⁻), play an important role as a buffer that maintains blood *pH* at around 7.4.

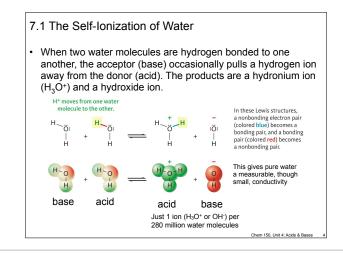
 $\begin{array}{c} \mathsf{H_{2}CO_{3}} \rightleftharpoons \mathsf{HCO_{3}^{-}} + \mathsf{H^{+}} \\ \text{acid} & \text{base} \end{array}$

This gives pure water a measurable, though small, conductivity

base

acid

H-0


acid

Ĥ

H-0 +

base

Chem 150, Unit 4: Acids & Bas

Hydrogen Ion

- Since hydrogen atom contains one proton and one electron, a hydrogen ion (H⁺) is simply a proton.
 - + The terms *hydrogen ion* and *proton* are used interchangeably in chemistry.
- Although commonly represented as H⁺, hydrogen ions do not exist as independent ions in an aqueous solution but instead are covalently bonded to water molecules.
 - The hydronium ion (H₃O⁺) is also commonly used to represent a hydrogen ion.

Hydrogen Ion

- Since hydrogen atom contains one proton and one electron, a hydrogen ion (H⁺) is simply a proton.
- The terms hydrogen ion and proton are used interchangeably in chemistry.
- Although commonly represented as H⁺, hydrogen ions do not exist as independent ions in an aqueous solution but instead are covalently bonded to water molecules.
 - The hydronium ion (H₃O⁺) is also commonly used to represent a hydrogen ion.
 - proton = hydrogen ion = hydronium ion

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Base

Hydrogen Ion

- Since hydrogen atom contains one proton and one electron, a hydrogen ion (H⁺) is simply a proton.
 - + The terms *hydrogen ion* and *proton* are used interchangeably in chemistry.
- Although commonly represented as H⁺, hydrogen ions do not exist as independent ions in an aqueous solution but instead are covalently bonded to water molecules.
 - The hydronium ion (H₃O⁺) is also commonly used to represent a hydrogen ion.

proton = hydrogen ion = hydronium ion

 $H^{+} = H_{3}O^{+}$

Acids

• When dissolved in water, acids transfer or *donate* a proton to a water molecule.

Examples:

Chem 150, Unit 4: Acids & Bases 6

Acids

• When dissolved in water, acids transfer or *donate* a proton to a water molecule.

Examples:

 $\begin{array}{rl} & Hydrochloric \ acid \\ HCl_{(aq)} \ + \ H_2O \ {}_{(l)} \rightarrow H_3O^+{}_{(aq)} \ + \ Cl^{-}{}_{(aq)} \end{array}$

Acids

• When dissolved in water, acids transfer or *donate* a proton to a water molecule.

Examples:

 $\begin{array}{rl} & \mbox{Hydrochloric acid} \\ & \mbox{HCl}_{(aq)} \ + \ \mbox{H}_2O_{\ (l)} \rightarrow \mbox{H}_3O^{+}{}_{(aq)} \ + \ \mbox{Cl}^{-}{}_{(aq)} \end{array}$

 $\begin{array}{rl} \mbox{Nitric acid} \\ \mbox{HNO}_{3(aq)} \mbox{ + } \mbox{ } H_2O \ {}_{(l)} \rightarrow \mbox{H}_3O^{+}{}_{(aq)} \mbox{ + } \mbox{NO}_{3^-\!(aq)} \end{array}$

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Bas

Chem 150, Unit 4: Acids & Bases

Acids

• When dissolved in water, acids transfer or *donate* a proton to a water molecule.

Examples:

 $\begin{array}{rl} & \mbox{Hydrochloric acid} \\ \mbox{HCl}_{(aq)} \ + \ \mbox{H}_2O_{(\textit{I})} \rightarrow \mbox{H}_3O^{+}{}_{(aq)} \ + \ \mbox{Cl}^{-}{}_{(aq)} \end{array}$

Unlike pure water, the conductivity of hydrochloric acid and nitric acid solutions are very high, because both of these acids are strong acids and therefore strong electrolytes.

Bases

• Compounds that form hydroxide ions when they dissolve in water are bases.

Examples:

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Base

Bases

• Compounds that form hydroxide ions when they dissolve in water are bases.

Examples:

Bases

• Compounds that form hydroxide ions when they dissolve in water are bases.

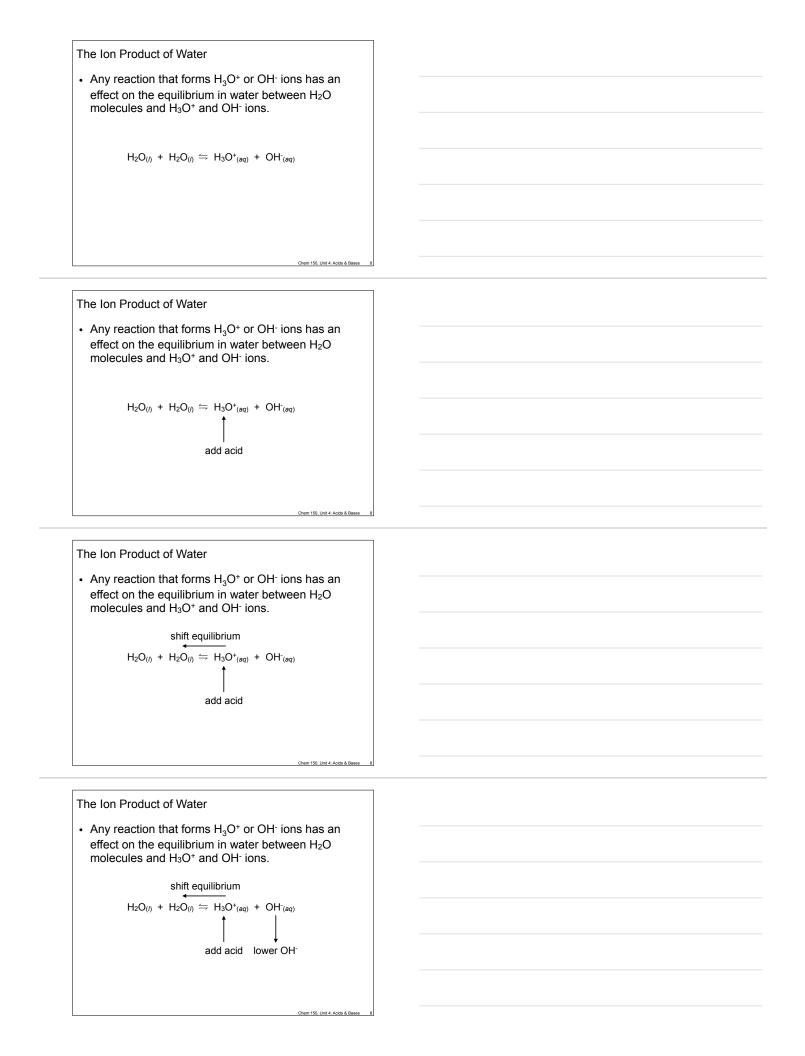
Examples:

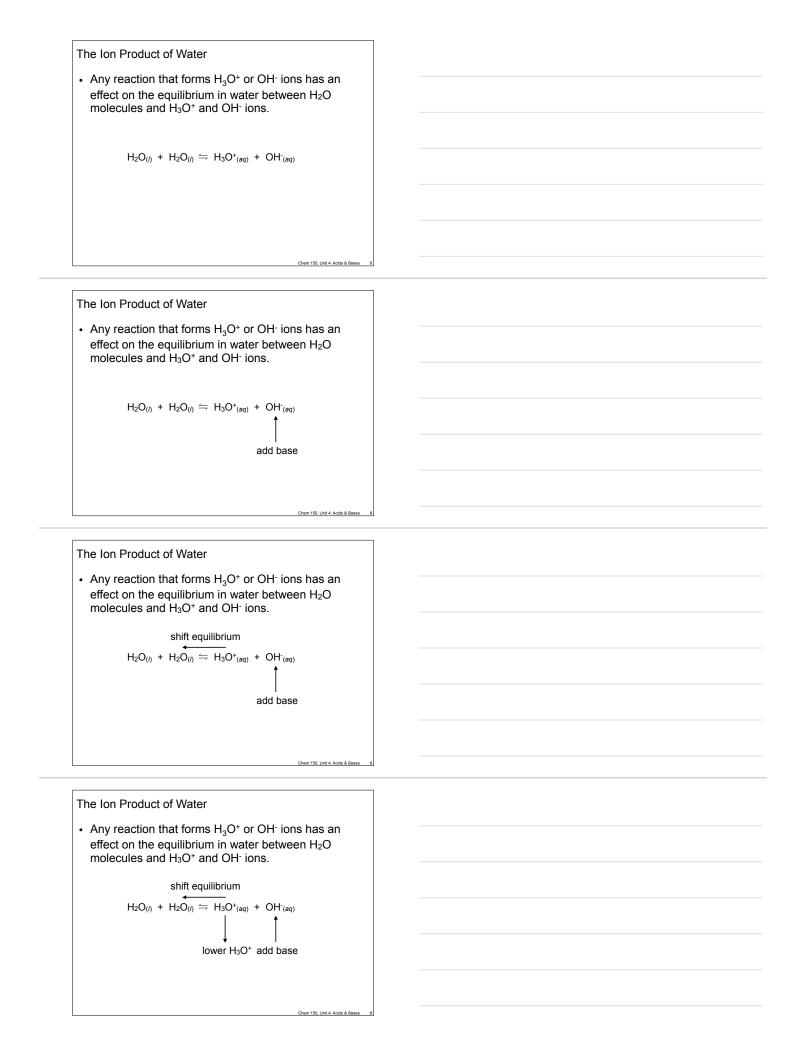
Sodium Hydroxide NaOH_(s) $\xrightarrow{H_{2O}}$ Na⁺_(aq) + OH⁻_(aq)

 $\begin{array}{c} \mbox{Calcium Hydroxide} \\ \mbox{Ca(OH)}_{2(s)} \ \stackrel{_{H_{2}O}}{\rightarrow} \ \mbox{Ca}^{2+}{}_{(aq)} \ + \ 2 \ \mbox{OH}^{-}{}_{(aq)} \end{array}$

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Base


Bases


• Compounds that form hydroxide ions when they dissolve in water are bases.

Examples:

 $\begin{array}{c} \mbox{Calcium Hydroxide} \\ \mbox{Ca}(\mbox{OH})_{2(s)} \xrightarrow{\mbox{H}\mbox{O}} \mbox{Ca}^{2+}{}_{(aq)} \mbox{ + } 2 \mbox{ OH}^{-}{}_{(aq)} \end{array}$

Because both NaOH and Ca(OH)₂ are ionic compounds (salts), and therefore strong electrolytes that produce a high conductivity when dissolved in water.

The Ion Product of Water

• At equilbrium,

 $H_2O_{(\textit{I})} \ + \ H_2O_{(\textit{I})} \ \leftrightarrows \ H_3O^+{}_{(\textit{aq})} \ + \ OH^-{}_{(\textit{aq})}$

$$K_w = [H_3O^+] \times [OH^-] = 1.0 \times 10^{-14} \text{ M}^2$$

• *K*_w is called the ion product for water.

Chem 150, Unit 4: Acids & Bases

7.2 The pH Scale

- In most cases, [H₃O⁺] is very small can vary over a wide range of magnitudes, therefore, its concentration is often express in terms of *pH*.
- The *pH* is a logarithmic scale and it value is determine by taking the negative logarithm of the H₃O⁺ concentration.
 - For exact powers of 10, it is just the negative value of the exponent:

lf [H ₃ O+] =	then, pH =
10-4	4
10-7	7
10 ⁻¹¹	11

Chem 150, Unit 4: Acids & Bases 10

Chem 150, Unit 4: Acids & Base

Chem 150, Unit 4: Acids & Ba

Acids, Bases, and pH

• If the *pH* of a solution is *below* 7, the solution is acidic, and,

 $\left[H_{3}O^{+} \right] > \left[OH^{-} \right]$ acidic

• If the pH of a solution is 7, the solution is neutral, and

$$\left[H_{3}O^{+} \right] = \left[OH^{-} \right]$$
 neutral

• If the pH of a solution is *above* 7, the solution is basic or alkaline, and,

 $\left[H_{3}O^{+}\right] < \left[OH^{-}\right]$ basic or alkaline

PH above 7 Basic Strongy 1 PH above 7 Basic PH above 7 PH a-11: Initiating to skin, will damage mucous membranes (above 7) PH a-11: Initiating to skin, will damage mucous membranes (above 7) PH a-11: Initiating to skin, will damage mucous membranes (above 7) PH 3-8: Nonhazardous (basic PH above 7) PH 3-8: Nonhazardous (bod, intestinal contents, urine) PH 2-5: Generally nonhazardous may initiate mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents) PH 0-2: Initiating to skin, can damage mucous membranes (thoradh contents)

Try It!				
[H ₃ O+]	[OH·]	рН	Acid, Base, or Neutral	
10 ^{–₅} M				
	<i>10</i> −³ M			
			Neutral	
			Chem 150, Unit 4: Acids & Bases	1

ry It!			
[H ₃ O ⁺]	[OH·]	pН	Acid, Base, or Neutral
10 ^{–5} M	<i>10</i> -9 M		
	10 ⁻³ M		
			Neutral

[H₃O⁺]	[OH ⁻]	pН	Acid, Base,
[1:30]	[011]	pii	or Neutral
<i>10</i> −⁵ M	10 ⁻⁹ M	5	
	10 ⁻³ M		
			Neutral

[H ₃ O ⁺]	[OH [.]]	pН	Acid, Base, or Neutral
10 ⁻⁵ M	<i>10</i> -9 M	5	Acid
	10-3 M		
			Neutral

10 ⁻⁵ M 10 ⁻⁹ M 5 Acid 10 ⁻¹¹ M 10 ⁻³ M <th></th> <th></th> <th>pН</th> <th>Acid, Base or Neutral</th>			pН	Acid, Base or Neutral
10 ⁻¹¹ M 10⁻³ M	10 ⁻⁵ M	<i>10</i> -9 М	5	Acid
	10 ⁻¹¹ M	10 ⁻³ M		
Neutra				Neutral

[H₃O⁺]	[OH-]	pН	Acid, Base or Neutral
10 ^{–₅} M	10 ⁻⁹ M	5	Acid
<i>10⁻¹¹</i> M	10 ^{_3} M	11	
			Neutral

[H₃O⁺]	[OH [.]]	pН	Acid, Base, or Neutral
<i>10</i> −⁵ M	10 ⁻⁹ M	5	Acid
<i>10⁻¹¹</i> M	10−3 M	11	Base
			Neutral

[H ₃ O ⁺]	[OH ⁻]	pН	Acid, Base or Neutral
<i>10</i> −5 M	<i>10</i> -9 M	5	Acid
10 ⁻¹¹ M	10 ^{_3} M	11	Base
		7	Neutral

[H₃O⁺]	[OH-]	pН	Acid, Base or Neutral
10 ^{–₅} M	<i>10</i> -9 M	5	Acid
10 ⁻¹¹ M	10 ⁻³ M	11	Base
	10 ⁻⁷ M	7	Neutral

13

[H ₃ O ⁺]	[OH-]	pН	Acid, Base, or Neutral
10 ⁻⁵ M	<i>10</i> -9 М	5	Acid
10 ⁻¹¹ M	<i>10</i> −³ M	11	Base
10 ⁻⁷ M	10 ⁻⁷ M	7	Neutral

pH, Logarithm, and Antilogarithm

- When $[H_3O^+]$ is not an exact power of 10, use the [Log] key on your calculator:

$$pH = -\log(\left[H_{3}O^{+}\right])$$

• Example 1: If $[H_3O^+] = 7.3 \times 10^{-5}$, what is the pH?

On a TI-83 calculator [(-)] [Log] 7.3 [EE] [(-)] 5 [Enter]

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Ba

Chem 150, Unit 4: Acids & Base

pH, Logarithm, and Antilogarithm

- When $[H_3O^+]$ is not an exact power of 10, use the [Log] key on your calculator:

 $pH = -log([H_3O^+])$

• Example 1: If $[H_3O^+] = 7.3 \times 10^{-5}$, what is the pH?

On a TI-83 calculator [(-)] [Log] 7.3 [EE] [(-)] 5 [Enter]

pH = 4.14

pH, Logarithm, and Antilogarithm

• To calculate $[H_3O^+]$ from the *pH*, take 10 to the *-pH* power, do this using the the $[10^{-x}]$ key on you calculator.

$$|H_{3}O^{+}| = 10^{-pH}$$

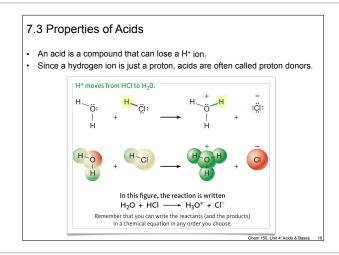
• Example 2: If *pH* = 8.35, what is [H₃O⁺]?

On a TI-83 calculator [10^{-x}] [(-)] 8.35 [Enter]

Chem 150, Unit 4: Acids & Bases 15

Chem 150, Unit 4: Acids & Bases

pH, Logarithm, and Antilogarithm

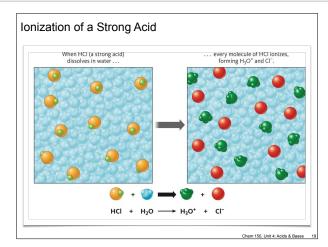

• To calculate [H₃O⁺] from the *pH*, take 10 to the -*pH* power, do this using the the [10^{-x}] key on you calculator.

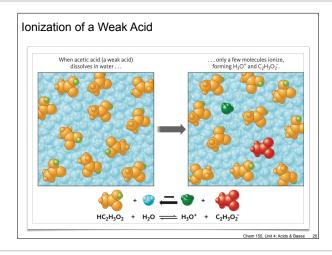
$$\left[H_{3}O^{+}\right] = 10^{-pH}$$

• Example 2: If *pH* = 8.35, what is [H₃O⁺]?

On a TI-83 calculator [10^{-x}] [(-)] 8.35 [Enter]

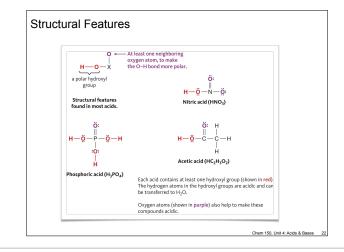
 $\left[H_{3}O^{+}\right] = 4.5 \times 10^{-9} M$

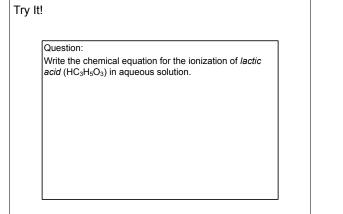



TABLE 7.2 Some Common Acids and Their Ionization Reactions						
Formula	Name	Ionization Reaction				
HCI	Hydrochloric acid	$HCI(aq) + H_2O(l) \rightarrow H_3O^+(aq) + CI^-(aq)$				
HNO₃	Nitric acid	$HNO_3(aq) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$				
H ₂ SO ₄	Sulfuric acid	$\mathrm{H_2SO_4}(aq) + \mathrm{H_2O}(l) \rightarrow \mathrm{H_3O^+}(aq) + \mathrm{HSO_4^-}(aq)$				
H ₃ PO ₄	Phosphoric acid	$\mathrm{H_3PO_4}(aq) + \mathrm{H_2O}(l) \rightarrow \mathrm{H_3O^+}(aq) + \mathrm{H_2PO_4^-}(aq)$				
H ₂ CO ₃	Carbonic acid	$\mathrm{H_2CO_3}(aq) + \mathrm{H_2O}(l) \rightarrow \mathrm{H_3O^+}(aq) + \mathrm{HCO_3^-}(aq)$				
HC ₂ H ₃ O ₂	Acetic acid	$HC_2H_3O_2(aq) + H_2O(l) \rightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$				

Acids: Strong or Weak Electrolytes

- All acids are electrolytes because they form ions when they dissolve in water.
- Any compound that *ionizes completely* in water is a strong electrolyte. An acid that is a strong electrolyte is classified as a strong acid.
- Any compound that ionizes to a limited extent when it dissolves in water is a weak electrolyte. An acid that is a weak electrolyte is classified as a weak acid.





Common Structural Features of Acids

- We can recognize two structural features that are found in most acids:
 - Acids normally contain at least one hydroxyl (-OH) group.
 - The atom that is attached to the hydroxyl group is normally bonded to at least one other oxygen atom.
- In on convention, the chemical formulas of acids start with H, and the chemical formulas of compounds that are not acids start with some other element.

Chem 150, Unit 4: Acids & Base

Polyprotic Acids

- A monoprotic acid is only able to transfer one hydrogen ion to water.
- Polyprotic acids are capable of losing more than one hydrogen ion:

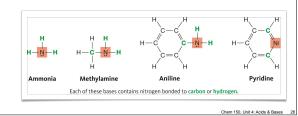
Ö: H---Ö--H :O: H---Ö--H :O: H Phosphoric acid (H₃PO₄)

 $\begin{array}{rcl} H_3PO_4 + H_2O &\rightleftharpoons H_2PO_4^- + H_3O^- \\ H_2PO_4^- + H_2O &\rightleftharpoons HPO_4^{2-} + H_3O^- \\ HPO_4^{2-} + H_2O &\rightleftharpoons PO_4^{3-} + H_3O^- \end{array}$

• In most polyprotic acids, the second hydrogen is more difficult to remove than the first.

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Bas


7.4 Properties of Bases

- Bases neutralize acids by forming a covalent bond to the hydrogen ion from the acid.
- A base is any compound that can bond to H⁺.
- Since a hydrogen ion is a proton, bases are also called proton acceptors.
- When we mix a base with water, the base pulls a hydrogen ion away from a water molecule:

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

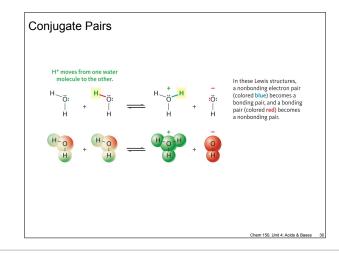
Common Structural Features of Bases

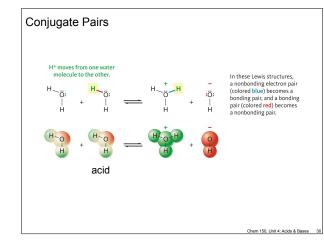
- We can recognize two structural features that are common among bases:
 - + Most anions are bases because opposite charges attract each other.
 - Most molecules that contain nitrogen covalently bonded to carbon, hydrogen, or both are bases.

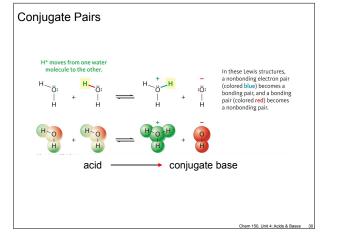
Strong or Weak Bases

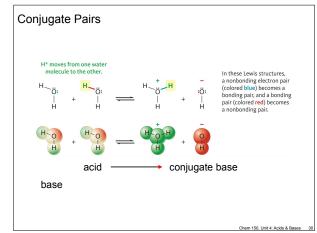
- Bases are classified as strong or weak based on how effective they are at removing hydrogen ions from water molecules.
- If every molecule of a substance removes a proton from a water molecule, the substance is a strong electrolyte and a strong base.
- Weak bases are weak electrolytes and react with water to produce hydroxide ions, but only to a limited extent.

Chem 150, Unit 4: Acids & Bases 2

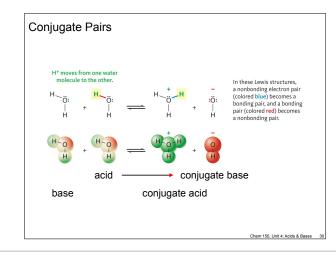

ak Bases					
TABLE 7.3 Some Weak Bases and Their Reactions with Water					
Formula	Name	Reaction with Water			
C₅H₅N	Pyridine	$C_5H_5N(aq) + H_2O(l) \rightleftharpoons HC_5H_5N^+(aq) + OH^-(aq)$			
N ₂ H ₄	Hydrazine	$N_2H_4(aq) + H_2O(I) \rightleftharpoons N_2H_5^+(aq) + OH^-(aq)$			
C ₂ H ₇ NO	Ethanolamine	$C_2H_7NO(aq) + H_2O(l) \rightleftharpoons HC_2H_7NO^+(aq) + OH^-(aq)$			
C ₂ H ₃ O ₂ -	Acetate ion	$C_2H_3O_2^{-}(aq) + H_2O(l) \rightleftharpoons HC_2H_3O_2(aq) + OH^{-}(aq)$			
CO32-	Carbonate ion	$CO_3^{2-}(aq) + H_2O(l) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$			
	Phosphate ion	$PO_4^{3-}(aq) + H_2O(l) \rightleftharpoons HPO_4^{2-}(aq) + OH^{-}(aq)$			

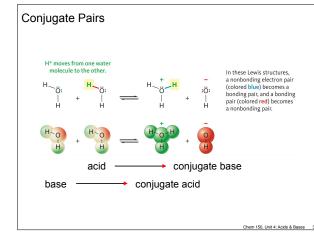

Chem 150, Unit 4: Acids & Bases

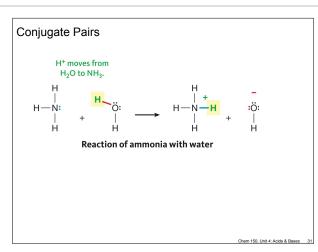

Chem 150, Unit 4: Acids & Base

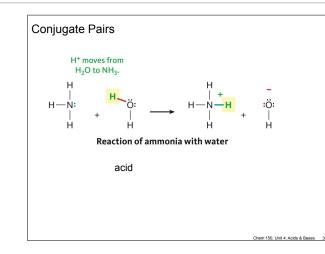

Conjugate Acids and Bases

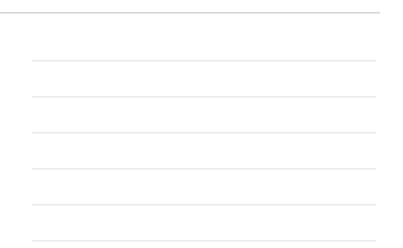
- When an acid or a base reacts with water, the reactant and the product bear a special relationship with each other.
- In both cases, the formulas of the reactant and product differ by only one hydrogen ion.
- Two substances whose formulas differ by one hydrogen ion are called a conjugate pair.
- The substance with the hydrogen ion is the conjugate acid, and the substance that is missing the hydrogen ion is the conjugate base.

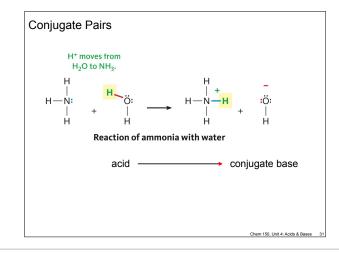


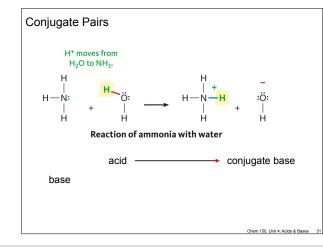


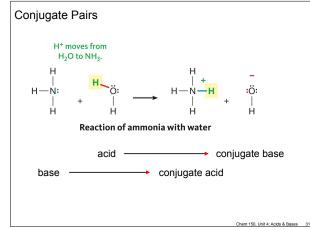


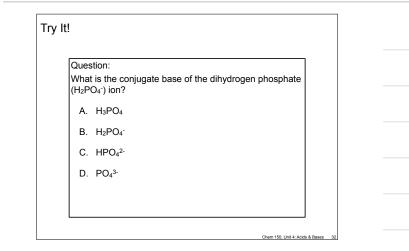


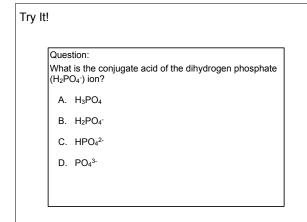


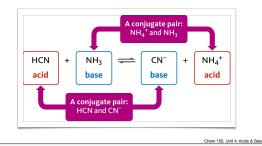


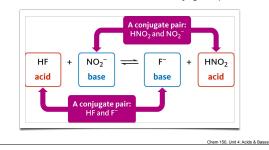











7.5 Acid-Base Reactions

- In an acid-base reaction, a proton moves from the acid to the base.
- · Acid-base reactions involve two conjugate pairs.

7.5 Acid-Base Reactions

- In an acid-base reaction, a proton moves from the acid to the base.
- · Acid-base reactions involve two conjugate pairs.

Polyprotic Acids React with Bases in Several Steps • When a polyprotic acid reacts with a base, the base removes one hydrogen atom at a time. $H_3PO_4 + OH^- \rightarrow H_2O + H_2PO_4^ H_2PO_4^- + OH^- \rightarrow H_2O + HPO_4^{2-}$ $HPO_4^{2-} + OH^- \rightarrow H_2O + PO_4^{3-}$

Chem 150, Unit 4: Acids & Base

Molecular and Net Ionic Equations

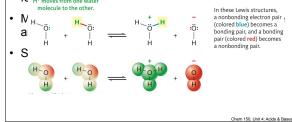
- We have been looking at net ionic equations where strong electrolytes are shown ionized without the counter ions that are not involved in the reaction (spectator ions).
- Molecular equations include spectator ions and do not make a distinction between weak, strong, and non-electrolytes.

 $H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(l)$

(net ionic)

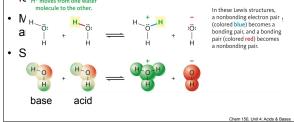
 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$ (molecular)

Chem 150, Unit 4: Acids & Bases 36


Chem 150, Unit 4: Acids & Base

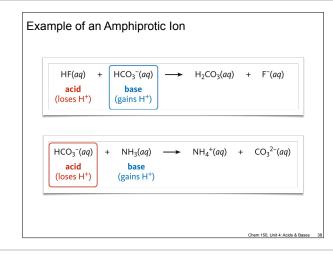
7.6 Amphiprotic Molecules and Ions

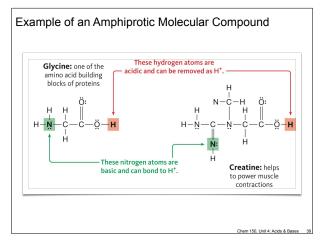
- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to form a hydroxide ion.
- Most negative ions that can lose hydrogen ions are amphiprotic
- · Some molecular compounds are amphiprotic.


7.6 Amphiprotic Molecules and Ions

- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to form a hydronium ion or lose a proton to

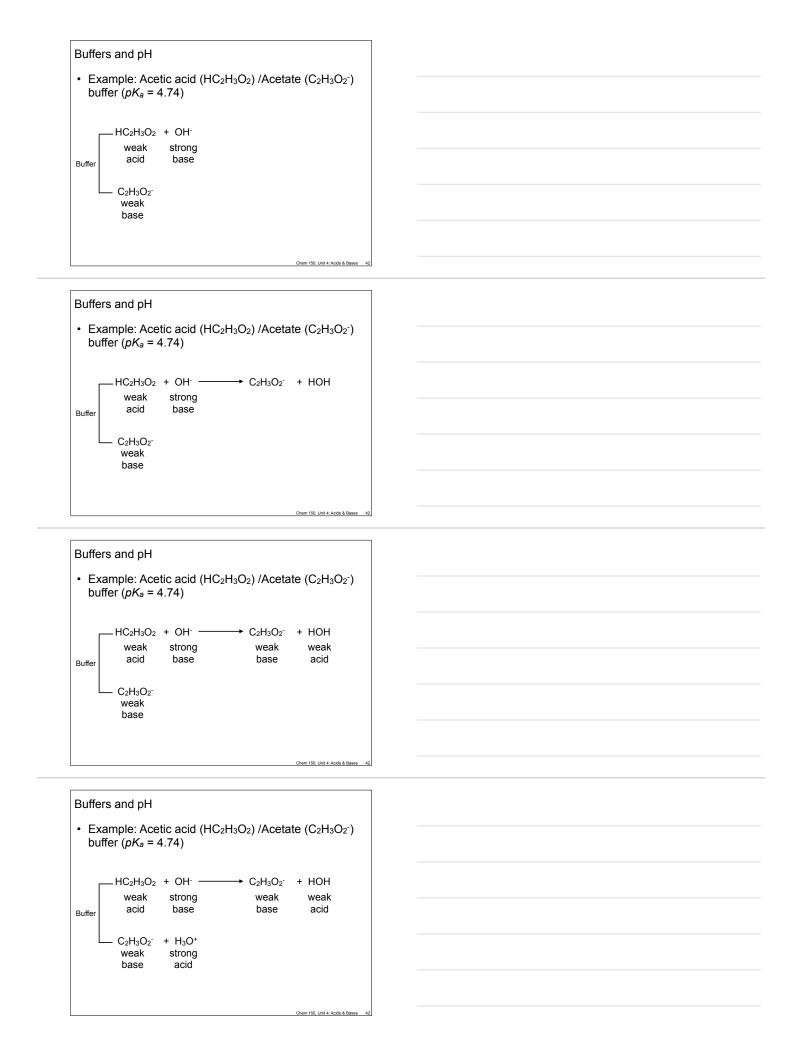
7.6 Amphiprotic Molecules and Ions

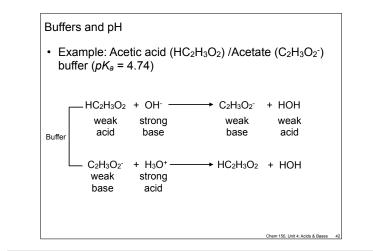

- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to form as hondre water ion

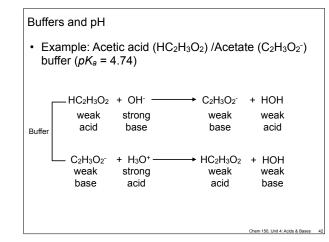


- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to form a hydroxide ion.
- Most negative ions that can lose hydrogen ions are amphiprotic
- Some molecular compounds are amphiprotic.

Chem 150, Unit 4: Acids & Bases 37

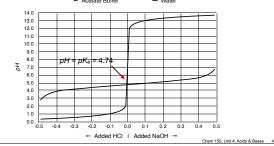


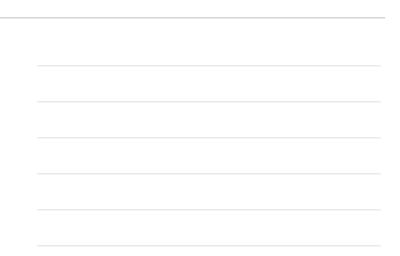

7.7 Buffers

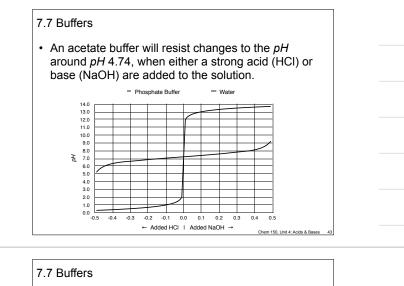

- A buffer is a solution that resists a change in *pH* when acids and bases are added to them.
- A buffers is a solution that contain a mixture of a weak acid and its **conjugate base**.
- When the weak acid and its conjugate base are present at **equal concentrations**, the *pH* of a buffer is equal to the pK_a of the weak acid.
 - The *pH* of a buffer system can be fine-tuned by changing the proportions of acid and base in the solution.

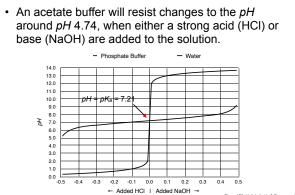
Chem 150, Unit 4: Acids & Bas

Buffers and pH	
• The pK_a is a measure of the strength of a weak acid	
• The <i>lower</i> the pK_a , the <i>stronger</i> the weak acid.	
TABLE 7.4 Some Buffers and Their pH Values Buffer pH	
Buffer Source of the (When the Molarities Components Conjugate Acid Conjugate Base Are Equal)	
HC_HO; and HC_HO; NaC_HO; 4.74 C_HO; C; actetic acid) (sodium acctate) H; PO, and H; PO, NaH; PO, 2.12	
H ₂ PO ₄ ⁻ (phosphoric acid) (sodium dihydrogen phosphate)	
H,PO ₄ ⁻² md NaH,PO ₄ Na,HPO ₄ 7,21 HPO ₄ ² (sodium dihydrogen (sodium mono- phosphate) hydrogen phosphate)	
HPO,2 ¹⁻ and Na,HPO, Na,PO, Na,PO, 12.32 PO,2 ¹⁻ (codium mono- (sodium phosphate) hydrogen phosphate)	
NH4" and NH1 NH4CI NH3 9.25 (ammonium chloride) (ammonia)	
Chem 150, Unit 4: Acids & Bases 41	
Buffers and pH	
• Example: Acetic acid (HC ₂ H ₃ O ₂) /Acetate (C ₂ H ₃ O ₂ -)	
buffer ($pK_a = 4.74$)	
Chem 150, Unit 4. Acids & Bases 42	
Buffers and pH	
• Example: Acetic acid (HC ₂ H ₃ O ₂) /Acetate (C ₂ H ₃ O ₂ -)	
buffer ($pK_a = 4.74$)	
HC ₂ H ₃ O ₂	
weak acid	
Chem 150, Unit 4: Acids & Bases 42	
Buffers and pH	
 Example: Acetic acid (HC₂H₃O₂) /Acetate (C₂H₃O₂⁻) buffer (<i>pK_a</i> = 4.74) 	
$-HC_2H_3O_2$	
weak	
Buffer ACIO	
C ₂ H ₃ O ₂	
weak base	

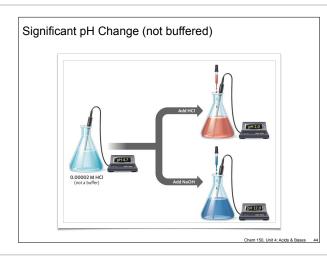


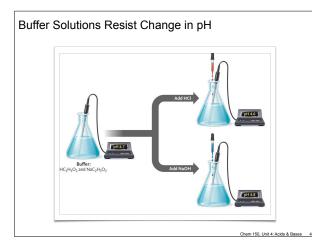


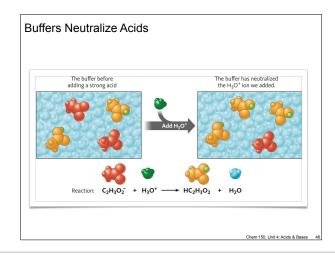

7.7 Buffers • An acetate buffer will resist changes to the pH around pH 4.74, when either a strong acid (HCI) or base (NaOH) are added to the solution. - Acetate Buffer - Water 14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 ← Added HCI I Added NaOH → Chem 150, Unit 4: Acids & Bases


7.7 Buffers

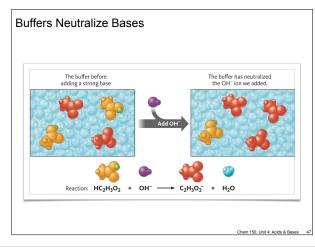
An acetate buffer will resist changes to the *pH* around *pH* 4.74, when either a strong acid (HCI) or base (NaOH) are added to the solution.

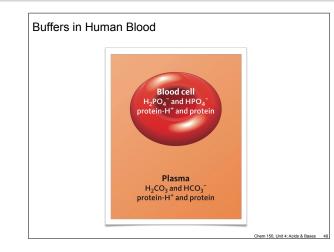






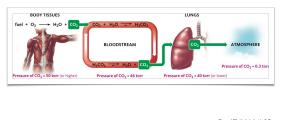
150, Unit 4: Acids & Bas





7.8 The Role of Buffers in Human Physiology

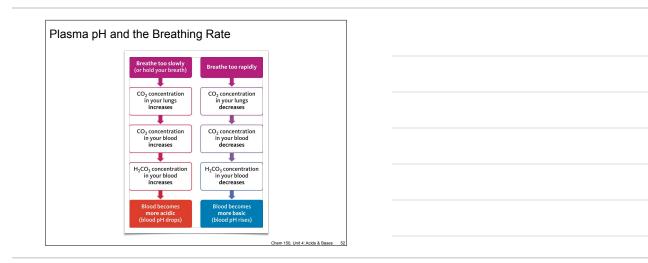
- If blood *pH* drops below 7.35, you have acidosis.
- If blood *pH* rises above 7.45, you have alkalosis.
- There are three important buffers in the human body:
 - 1. Protein buffer system—proteins that contain amino acid that can serve as buffers.
 - 2. Phosphate buffer system—this system works with the protein buffer to maintain the *pH* of intercellular fluid.
 - 3. Carbonic acid buffer system (H_2CO_3) the concentration of CO_2 in the blood can affect the plasma *pH*.


Chem 150, Unit 4: Acids & Bases

Carbon Dioxide and the Carbonic Acid buffer

 $CO_2 + H_2O \rightleftharpoons H_2CO_3$

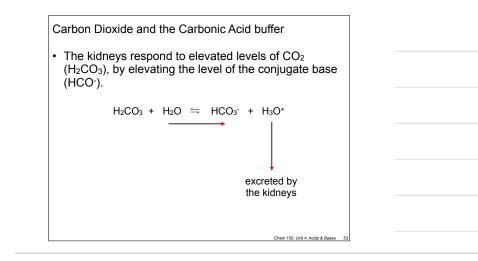
- When CO_2 increases, the plasma pH goes down.
- When CO_2 decreases, the plasma pH goes up.



Carbon Dioxide and the Carbonic Acid buffer

- Like combustions, the foods we eat for fuel are broken down to CO₂ + H₂O
 - + The $\ensuremath{\text{CO}_2}$ dissolves in the plasma and is converted to carbonic acid
 - $\mathsf{CO}_2 \ + \ \mathsf{H}_2\mathsf{O} \ \leftrightarrows \mathsf{H}_2\mathsf{CO}_3$
- When CO₂ increases, the plasma pH goes down.
- When CO₂ decreases, the plasma pH goes up.

 $\mathsf{CO2}\ +\ \mathsf{H2O}\ \leftrightarrows \mathsf{H2CO3}$


Chem 150, Unit 4: Acids & Bas

Chem 150, Unit 4: Acids & Bases

Carbon Dioxide and the Carbonic Acid buffer

 The kidneys respond to elevated levels of CO₂ (H₂CO₃), by elevating the level of the conjugate base (HCO⁻).

 $H_2CO_3 + H_2O \implies HCO_3^- + H_3O^+$

TABLE 7.6 Acid-Base Regulation by the Kidneys					
Substance Eliminated	Type of Substance	Result of Excretion	Comments		
H ₃ O ⁺	Strong acid	Plasma pH rises	The kidneys make H_3O^+ by removing H^+ from H_2CO_3 ; the HCO_3^- is retained in the blood. This is the body's primary way to make HCO_3^- ions.		
NH4 ⁺	Weak acid	Plasma pH rises	The kidneys make NH4 ⁺ by breaking dow amino acids, so the body eliminates NH4 only if the diet contains excess protein.		
H ₂ PO ₄ ⁻	Weak acid*	Plasma pH rises	H ₂ PO ₄ ⁻ is only available if excess phosphate is present in the diet.		
HCO3-	Weak base*	Plasma pH drops	This is the body's primary means of eliminating excess base.		

Chem 150, Unit 4: Acids & Bases 54

Chapter 7—Key Health Science Notes

- Respiratory acidosis can be caused by
 - emphysema, pneumonia, asthma, pulmonary edema
 - + drugs that suppress breathing
- Metabolic acidosis
 - hyperthyroidism and and sever diabetes which results in the over production of ketone bodies
 - Diarrhea, which disrupts the reabsorption of bicarbonate by the large intestine

Chem 150, Unit 4: Acids & Bases

Chem 150, Unit 4: Acids & Base

Chapter 7—Key Health Science Notes

- Respiratory alkalosis can be caused by
 - + hyperventilation brought on by anxiety
- Metabolic alkalosis
 - + vomiting, which results in the loss of stomach acid

Next up

- Exam I on Thursday, 19. Feb.
 - + Will cover Units 1 4

Chem 150, Unit 4: Acids & Bases 57