Chem 150, Spring 2015
Unit 4 - Acids \& Bases

Introduction

- Patients with emphysema cannot expel CO_{2} from their lungs rapidly enough.
+ This can lead to an increase of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ levels in the blood and to a lowering of the pH of the blood by a process called respiratory acidosis.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
$$

Introduction

- Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, along with its conjugate base, the bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$, play an important role as a buffer that maintains blood pH at around 7.4.

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

Introduction

- Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, along with its conjugate base, the bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$, play an important role as a buffer that maintains blood pH at around 7.4.

$$
\underset{\text { acid }}{\mathrm{H}_{2} \mathrm{CO}_{3}} \rightleftharpoons \underset{\text { base }}{\mathrm{HCO}_{3}^{-}}+\mathrm{H}^{+}
$$

7.1 The Self-lonization of Water

- When two water molecules are hydrogen bonded to one another, the acceptor (base) occasionally pulls a hydrogen ion away from the donor (acid). The products are a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

7.1 The Self-lonization of Water

- When two water molecules are hydrogen bonded to one another, the acceptor (base) occasionally pulls a hydrogen ion away from the donor (acid). The products are a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

7.1 The Self-Ionization of Water

- When two water molecules are hydrogen bonded to one another, the acceptor (base) occasionally pulls a hydrogen ion away from the donor (acid). The products are a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

7.1 The Self-Ionization of Water

- When two water molecules are hydrogen bonded to one another, the acceptor (base) occasionally pulls a hydrogen ion away from the donor (acid). The products are a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

7.1 The Self-lonization of Water

- When two water molecules are hydrogen bonded to one another, the acceptor (base) occasionally pulls a hydrogen ion away from the donor (acid). The products are a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

H^{+}moves from one water
molecule to the other.

and

Hydrogen Ion

- Since hydrogen atom contains one proton and one electron, a hydrogen ion $\left(\mathrm{H}^{+}\right)$is simply a proton.
- The terms hydrogen ion and proton are used interchangeably in chemistry.
- Although commonly represented as H^{+}, hydrogen ions do not exist as independent ions in an aqueous solution but instead are covalently bonded to water molecules.
- The hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is also commonly used to represent a hydrogen ion.

Hydrogen Ion

- Since hydrogen atom contains one proton and one electron, a hydrogen ion $\left(\mathrm{H}^{+}\right)$is simply a proton.
- The terms hydrogen ion and proton are used interchangeably in chemistry.
- Although commonly represented as H^{+}, hydrogen ions do not exist as independent ions in an aqueous solution but instead are covalently bonded to water molecules.
- The hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is also commonly used to represent a hydrogen ion.
proton $=$ hydrogen ion $=$ hydronium ion

Hydrogen Ion

- Since hydrogen atom contains one proton and one electron, a hydrogen ion $\left(\mathrm{H}^{+}\right)$is simply a proton.
- The terms hydrogen ion and proton are used interchangeably in chemistry.
- Although commonly represented as H^{+}, hydrogen ions do not exist as independent ions in an aqueous solution but instead are covalently bonded to water molecules.
+ The hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is also commonly used to represent a hydrogen ion.
proton $=$ hydrogen ion $=$ hydronium ion

$$
\mathrm{H}^{+}=\mathrm{H}_{3} \mathrm{O}^{+}
$$

Acids

- When dissolved in water, acids transfer or donate a proton to a water molecule.

Examples:

Acids

- When dissolved in water, acids transfer or donate a proton to a water molecule.

Examples:

$$
\begin{gathered}
\text { Hydrochloric acid } \\
\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\imath)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)
\end{gathered}+\mathrm{Cl}_{(a q)}
$$

Acids

- When dissolved in water, acids transfer or donate a proton to a water molecule.

Examples:

$\underset{\mathrm{HCl}_{(a q)}}{ }+\stackrel{$| $\mathrm{Hydrochloric} \mathrm{acid}_{\mathrm{H}_{2} \mathrm{O}}^{(\eta)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}$ |
| :---: |$+\mathrm{Cl}_{(\text {(aq) }}}{ }$

Nitric acid
$\mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(n)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{NO}_{3^{-}(a q)}$

Acids

- When dissolved in water, acids transfer or donate a proton to a water molecule.

Examples:

$$
\begin{gathered}
\mathrm{Hydrochloric} \mathrm{acid}^{\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}\left(n \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)\right.}+\mathrm{Cl}_{(a q)} \\
\text { Nitric acid } \\
\mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}\left(n \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3-(a q)}\right.
\end{gathered}
$$

Unlike pure water, the conductivity of hydrochloric acid and nitric acid solutions are very high, because both of these acids are strong acids and therefore strong electrolytes.

Bases

- Compounds that form hydroxide ions when they dissolve in water are bases.

Examples:

Bases

- Compounds that form hydroxide ions when they dissolve in water are bases

Examples:
Sodium Hydroxide
$\mathrm{NaOH}_{(s)} \xrightarrow{\mathrm{Hog}} \mathrm{Na}^{+}(a q)+\mathrm{OH}_{(a q)}^{-}$

Bases

- Compounds that form hydroxide ions when they dissolve in water are bases

Examples:
Sodium Hydroxide
$\mathrm{NaOH}_{(s)} \xrightarrow{\mathrm{Hog}} \mathrm{Na}^{+}(a q)+\mathrm{OH}_{(a q)}$

Calcium Hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2(s)} \xrightarrow{\mathrm{mog}} \mathrm{Ca}^{2+}{ }_{(\text {aq })}+2 \mathrm{OH}_{(\text {aq })}$

Bases

- Compounds that form hydroxide ions when they dissolve in water are bases

Examples:
Sodium Hydroxide
$\mathrm{NaOH}_{(s)} \xrightarrow{\mathrm{HOO}^{\left(\mathrm{Na}^{+}\right.}{ }_{(a q)}+\mathrm{OH}^{-}(a q)}$

Calcium Hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2(s)} \xrightarrow{\mathrm{Hog}} \mathrm{Ca}^{2+}{ }_{(a q)}+2 \mathrm{OH}_{(a q)}$
Because both NaOH and $\mathrm{Ca}(\mathrm{OH})_{2}$ are ionic compounds (salts), and therefore strong electrolytes that produce a high conductivity when dissolved in water.

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

$$
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(\eta)} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}
$$

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

$$
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(\eta)} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}
$$

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

The Ion Product of Water

- Any reaction that forms $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions has an effect on the equilibrium in water between $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.

The Ion Product of Water

- At equilbrium,

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{()}+\mathrm{H}_{2} \mathrm{O}_{(l)} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q) \\
& K_{w}=\left[\mathrm{OH}_{3}^{-} \mathrm{O}_{(a q)}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}
\end{aligned}
$$

- K_{w} is called the ion product for water.

7.2 The pH Scale

- In most cases, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is very small can vary over a wide range of magnitudes, therefore, its concentration is often express in terms of pH ..
- The pH is a logarithmic scale and it value is determine by taking the negative logarithm of the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration.
+ For exact powers of 10 , it is just the negative value of the exponent:

If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$	then, $\mathrm{pH}=$
10^{-4}	4
10^{-7}	7
10^{-11}	11

Acids, Bases, and pH

- If the pH of a solution is below 7 , the solution is acidic, and,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] \text {acidic }
$$

- If the pH of a solution is 7 , the solution is neutral, and

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right] \text {neutral }
$$

- If the pH of a solution is above 7 , the solution is basic or alkaline, and,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right] \text {basic or alkaline }
$$

pH of Common Substances

Try It!

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$[\mathrm{OH}]$	pH	Acid, Base, or Neutral
$10^{-5} \mathrm{M}$			
	$10^{-3} \mathrm{M}$		
			Neutral

Try It!

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$[\mathrm{OH}]$	$\mathbf{p H}$	Acid, Base, or Neutral
$10^{-5} \mathrm{M}$	$10^{-9} \mathrm{M}$		
	$10^{-3} \mathrm{M}$		
			Neutral

Try It!

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$[\mathrm{OH}]$	$\mathbf{p H}$	Acid, Base, or Neutral
$10^{-5} \mathbf{~ M}$	$10^{-9} \mathrm{M}$	5	
	$10^{-3} \mathrm{M}$		
			Neutral

Try It!

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$\mathbf{1 0 ^ { - 5 } \mathbf { ~ M }}$	$10^{-9} \mathrm{M}$	5	Acid
	$10^{-3} \mathbf{M}$		
			Neutral

Try It!

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$\mathbf{1 0 ^ { - 5 }} \mathbf{~ M}$	$10^{-9} \mathrm{M}$	5	Acid
$10^{-11} \mathrm{M}$	$\mathbf{1 0}^{-3} \mathbf{~ M}$		
			Neutral

Try It!

$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$10^{-\mathbf{5}} \mathbf{~ M}$	$10^{-9} \mathrm{M}$	5	Acid
$10^{-11} \mathrm{M}$	$\mathbf{1 0}^{-3} \mathbf{~ M}$	11	
			Neutral

Try It!

$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$\mathbf{1 0 ^ { - 5 }} \mathbf{~ M}$	$10^{-9} \mathrm{M}$	5	Acid
$10^{-11} \mathrm{M}$	$10^{-3} \mathbf{M}$	11	Base
			Neutral

Try It!

$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$\mathbf{1 0 ^ { - 5 }} \mathbf{~ M}$	$10^{-9} \mathrm{M}$	5	Acid
$10^{-11} \mathrm{M}$	$\mathbf{1 0}^{-\mathbf{3}} \mathbf{~}$	11	Base
		7	Neutral

Try It!

$\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$\mathbf{1 0 ^ { - 5 } \mathbf { M }}$	$10^{-9} \mathrm{M}$	5	Acid
$10^{-11} \mathrm{M}$	$\mathbf{1 0}^{-\mathbf{3}} \mathbf{\mathrm { M }}$	11	Base
	$10^{-7} \mathrm{M}$	7	Neutral

Try It!

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	Acid, Base, or Neutral
$10^{-5} \mathbf{~ M}$	$10^{-9} \mathrm{M}$	5	Acid
$10^{-11} \mathrm{M}$	$10^{-\mathbf{3}} \mathbf{M}$	11	Base
$10^{-7} \mathrm{M}$	$10^{-7} \mathrm{M}$	7	Neutral

pH , Logarithm, and Antilogarithm

- When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is not an exact power of 10 , use the [Log] key on your calculator:

$$
p H=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)
$$

- Example 1: If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.3 \times 10^{-5}$, what is the pH ?

On a TI-83 calculator
[(-)] [Log] 7.3 [EE] [(-)] 5 [Enter]
pH , Logarithm, and Antilogarithm

- When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is not an exact power of 10 , use the [Log] key on your calculator:

$$
p H=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)
$$

- Example 1: If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.3 \times 10^{-5}$, what is the pH ?

On a TI-83 calculator
[(-)] [Log] 7.3 [EE] [(-)] 5 [Enter]

$$
p H=4.14
$$

pH, Logarithm, and Antilogarithm

- To calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the pH , take 10 to the -pH power, do this using the the [10-x] key on you calculator.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-p H}
$$

- Example 2: If $\mathrm{pH}=8.35$, what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

On a TI-83 calculator
[10-x] [(-)] 8.35 [Enter]

pH, Logarithm, and Antilogarithm

- To calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the pH , take 10 to the -pH power, do this using the the [10-x] key on you calculator.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\rho H}
$$

- Example 2: If $\mathrm{pH}=8.35$, what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

On a TI-83 calculator
[10-x] [(-)] 8.35 [Enter]

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.5 \times 10^{-9} \mathrm{M}
$$

7.3 Properties of Acids

- An acid is a compound that can lose a H^{+}ion
- Since a hydrogen ion is just a proton, acids are often called proton donors.

Common Acids

Formula	Name	Ionization Reaction
HCl	Hydrochloric acid	$\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
HNO_{3}	Nitric acid	$\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)$
Cengage Learnin		

Acids: Strong or Weak Electrolytes

- All acids are electrolytes because they form ions when they dissolve in water.
- Any compound that ionizes completely in water is a strong electrolyte. An acid that is a strong electrolyte is classified as a strong acid.
- Any compound that ionizes to a limited extent when it dissolves in water is a weak electrolyte. An acid that is a weak electrolyte is classified as a weak acid.

Ionization of a Strong Acid

Chem 150, Unit 4:Acids \& Bases 19

Common Structural Features of Acids

- We can recognize two structural features that are found in most acids:
+ Acids normally contain at least one hydroxyl (-OH) group.
+ The atom that is attached to the hydroxyl group is normally bonded to at least one other oxygen atom.
- In on convention, the chemical formulas of acids start with H , and the chemical formulas of compounds that are not acids start with some other element.

Structural Features

Try It!

Question:
Write the chemical equation for the ionization of lactic
acid ($\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$) in aqueous solution.

Polyprotic Acids

- A monoprotic acid is only able to transfer one hydrogen ion to water.
- Polyprotic acids are capable of losing more than one hydrogen ion:
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{-}$
$\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}$
- In most polyprotic acids, the second hydrogen is more difficult to remove than the first.

7.4 Properties of Bases

- Bases neutralize acids by forming a covalent bond to the hydrogen ion from the acid.
- A base is any compound that can bond to H^{+}.
- Since a hydrogen ion is a proton, bases are also called proton acceptors.
- When we mix a base with water, the base pulls a hydrogen ion away from a water molecule:

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Common Structural Features of Bases

- We can recognize two structural features that are common among bases:
+ Most anions are bases because opposite charges attract each other.
+ Most molecules that contain nitrogen covalently bonded to carbon, hydrogen, or both are bases.

Strong or Weak Bases

- Bases are classified as strong or weak based on how effective they are at removing hydrogen ions from water molecules.
- If every molecule of a substance removes a proton from a water molecule, the substance is a strong electrolyte and a strong base.
- Weak bases are weak electrolytes and react with water to produce hydroxide ions, but only to a limited extent.

Conjugate Acids and Bases

- When an acid or a base reacts with water, the reactant and the product bear a special relationship with each other.
- In both cases, the formulas of the reactant and product differ by only one hydrogen ion.
- Two substances whose formulas differ by one hydrogen ion are called a conjugate pair.
- The substance with the hydrogen ion is the conjugate acid, and the substance that is missing the hydrogen ion is the conjugate base.

Conjugate Pairs

Conjugate Pairs

Conjugate Pairs
H^{+}moves from one water
molecule to the
molecule to the other. In these Lewis structures,
(

Conjugate Pairs

base

Conjugate Pairs

base conjugate acid

Conjugate Pairs

$$
\mathrm{H}^{+} \text {moves from }
$$

$$
\mathrm{H}_{2} \mathrm{O} \text { to } \mathrm{NH}_{3} .
$$

Reaction of ammonia with water

Conjugate Pairs

$$
\mathrm{H}^{+} \text {moves from }
$$

$$
\mathrm{H}_{2} \mathrm{O} \text { to } \mathrm{NH}_{3} \text {. }
$$

Reaction of ammonia with water
acid

Conjugate Pairs
H^{+}moves from
$\mathrm{H}_{2} \mathrm{O}$ to NH_{3}.

acid \longrightarrow conjugate base

Conjugate Pairs

H^{+}moves from
$\mathrm{H}_{2} \mathrm{O}$ to NH_{3}.

Reaction of ammonia with water
acid \longrightarrow conjugate base
base

Conjugate Pairs

$$
\mathrm{H}^{+} \text {moves from }
$$

$$
\mathrm{H}_{2} \mathrm{O} \text { to } \mathrm{NH}_{3} \text {. }
$$

Reaction of ammonia with water

$$
\text { base } \longrightarrow \text { conjugate acid } \longrightarrow \text { conjugate base }
$$

Try It!

Question:
What is the conjugate base of the dihydrogen phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$ion?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. $\mathrm{HPO}_{4}{ }^{2-}$
D. PO_{4}^{3-}

Try It!

Question:
What is the conjugate acid of the dihydrogen phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)$ion?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. $\mathrm{HPO}_{4}{ }^{2-}$
D. PO_{4}^{3-}
7.5 Acid-Base Reactions

- In an acid-base reaction, a proton moves from the acid to the base.
- Acid-base reactions involve two conjugate pairs.

7.5 Acid-Base Reactions

- In an acid-base reaction, a proton moves from the acid to the base.
- Acid-base reactions involve two conjugate pairs.

Polyprotic Acids React with Bases in Several Steps
- When a polyprotic acid reacts with a base, the base removes one hydrogen atom at a time.

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-} \rightarrow & \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow & \mathrm{H}_{2} \mathrm{O}+\mathrm{HPO}_{4}^{2-} \\
& \\
\mathrm{HPO}_{4}^{2-}+\mathrm{OH}^{-} \rightarrow & \mathrm{H}_{2} \mathrm{O}+\mathrm{PO}_{4}^{3-}
\end{array}
$$

Molecular and Net Ionic Equations

- We have been looking at net ionic equations where strong electrolytes are shown ionized without the counter ions that are not involved in the reaction (spectator ions).
- Molecular equations include spectator ions and do not make a distinction between weak, strong, and non-electrolytes.
$\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \quad$ (net ionic)
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad$ (molecular)
7.6 Amphiprotic Molecules and Ions
- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to form a hydroxide ion.
- Most negative ions that can lose hydrogen ions are amphiprotic
- Some molecular compounds are amphiprotic.

7.6 Amphiprotic Molecules and Ions

- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to formonhyrirnvido inn

7.6 Amphiprotic Molecules and Ions
- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to fcrmmonestrom menewiern inn

7.6 Amphiprotic Molecules and Ions
- Substances that can either gain or lose hydrogen ions are called amphiprotic.
- Water is an amphiprotic molecule since it can gain a proton to form a hydronium ion or lose a proton to form a hydroxide ion.
- Most negative ions that can lose hydrogen ions are amphiprotic
- Some molecular compounds are amphiprotic.

Example of an Amphiprotic Ion
$\left.\underset{\begin{array}{c}\text { acid } \\ \text { (loses } \mathrm{H}^{+} \text {) }\end{array}}{\mathrm{HF}(a q)}+\begin{array}{c}\mathrm{HCO}_{3}^{-}(a q) \\ \text { base } \\ \text { (gains } \mathrm{H}^{+} \text {) }\end{array}\right) \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{F}^{-}(a q)$

$\mathrm{HCO}_{3}{ }^{-}(a q)$
acid (loses $\left.\mathrm{H}^{+}\right)$
$+\underset{$ base (gains $\mathrm{H}^{+} \text {) }$$}{\mathrm{NH}_{3}(a q)} \longrightarrow \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$

Example of an Amphiprotic Molecular Compound

7.7 Buffers

- A buffer is a solution that resists a change in pH when acids and bases are added to them.
- A buffers is a solution that contain a mixture of a weak acid and its conjugate base.
- When the weak acid and its conjugate base are present at equal concentrations, the pH of a buffer is equal to the $p K_{a}$ of the weak acid.
+ The pH of a buffer system can be fine-tuned by changing the proportions of acid and base in the solution.

Buffers and pH

- The $p K_{a}$ is a measure of the strength of a weak acid
+ The lower the $p K_{a}$, the stronger the weak acid.

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer ($p K_{a}=4.74$)

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer ($p K_{a}=4.74$)
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
weak
acid

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer ($p K_{a}=4.74$)

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer $\left(p K_{a}=4.74\right)$

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer ($p K_{a}=4.74$)

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer $\left(p K_{a}=4.74\right)$

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer ($p K_{a}=4.74$)

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer ($p K_{a}=4.74$)

Buffers and pH

- Example: Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) /$ Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$ buffer $\left(p K_{a}=4.74\right)$

7.7 Buffers
- An acetate buffer will resist changes to the pH around pH 4.74 , when either a strong acid (HCl) or base (NaOH) are added to the solution.

7.7 Buffers
- An acetate buffer will resist changes to the pH around $p \mathrm{pH} 4.74$, when either a strong acid (HCl) or base (NaOH) are added to the solution.

7.7 Buffers
- An acetate buffer will resist changes to the pH around $p \mathrm{H} 4.74$, when either a strong acid (HCl) or base (NaOH) are added to the solution.

7.7 Buffers
- An acetate buffer will resist changes to the pH around pH 4.74 , when either a strong acid (HCl) or base (NaOH) are added to the solution.

Significant pH Change (not buffered)

Buffer Solutions Resist Change in pH

Buffers Neutralize Acids

7.8 The Role of Buffers in Human Physiology

- If blood pH drops below 7.35, you have acidosis.
- If blood $p H$ rises above 7.45 , you have alkalosis.
- There are three important buffers in the human body:

1. Protein buffer system-proteins that contain amino acid that can serve as buffers.
2. Phosphate buffer system-this system works with the protein buffer to maintain the pH of intercellular fluid.
3. Carbonic acid buffer system $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ - the concentration of CO_{2} in the blood can affect the plasma pH .

Buffers in Human Blood

Carbon Dioxide and the Carbonic Acid buffer

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}
$$

- When CO_{2} increases, the plasma pH goes down.
- When CO_{2} decreases, the plasma pH goes up.

Carbon Dioxide and the Carbonic Acid buffer

- Like combustions, the foods we eat for fuel are broken down to $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
+ The CO_{2} dissolves in the plasma and is converted to carbonic acid

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}
$$

- When CO_{2} increases, the plasma pH goes down.
- When CO_{2} decreases, the plasma pH goes up.

$$
\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \leftrightharpoons \mathrm{H} 2 \mathrm{CO} 3
$$

Plasma pH and the Breathing Rate

Carbon Dioxide and the Carbonic Acid buffer

- The kidneys respond to elevated levels of CO_{2} $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, by elevating the level of the conjugate base (HCO^{-}).

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Carbon Dioxide and the Carbonic Acid buffer

- The kidneys respond to elevated levels of CO_{2} $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, by elevating the level of the conjugate base (HCO^{-}).
excreted by the kidneys

Kidneys Help Regulate Blood pH

TABLE 7.6	Acid-Base Regulation by the Kidneys		
Substance Eliminated	Type of Substance	Result of Excretion	Comments

Chapter 7—Key Health Science Notes

- Respiratory acidosis can be caused by
+ emphysema, pneumonia, asthma, pulmonary edema
+ drugs that suppress breathing

- Metabolic acidosis

+ hyperthyroidism and and sever diabetes which results in the over production of ketone bodies
+ Diarrhea, which disrupts the reabsorption of bicarbonate by the large intestine

Chapter 7—Key Health Science Notes

- Respiratory alkalosis can be caused by
+ hyperventilation brought on by anxiety
- Metabolic alkalosis
+ vomiting, which results in the loss of stomach acid

Next up

- Exam I on Thursday, 19. Feb.
+ Will cover Units 1-4

