TABLES ADAPTED FOR MACHINE COMPUTATION

BY
FRANCIS S. PERRYMAN
In actuarial and particularly in casualty actuarial work the occasion often arises when it is necessary to make a more or less isolated calculation for which full tables are not available covering the particular function involved. For example, we may have to determine the present value of $\$ 12.00$ a week for 200 weeks at $31 / 2 \%$ per annum compound interest, and it may be necessary to do this with considerable accuracy; for instance, in order to comply with some statutory or other legal requirement. If we do not have available a table of the present values of such weekly annuities certain, we have to make the calculation from first principles or from the appropriate formula.

Thus in the example cited if we assume there are 52 weeks to the year the required value is

$$
12 \times 52 a_{\overline{\mathrm{a}})}^{(52)} \text { or } 624 \frac{1-v^{\mathrm{n}}}{j_{(52)}} \text { at } 31 / 2 \%
$$

where $\mathrm{n}=\frac{200}{52}, v=(1+i)^{-1}$ and $j_{(52)}=52\left\{(1+i)^{\frac{1}{52}}-1\right\}$
To calculate v^{n} logarithms must be resorted to (unless a troublesome series development is used) and tables of these to more than 7 places are not very usual in offices and even if available are unhandy to use, involving considerable interpolations. Seven place tables do not always give sufficient accuracy. Then as regards $j_{(52)}$ probably no tables are available and again we have to fall back on logarithms (or else sum a series) and for any moderate accuracy extended logarithm tables must be used.

On the other hand, let us remember that efficient calculating machines are in everyday use in modern offices. In making calculations of the type considered above, not much assistance can be had from a calculating machine that nevertheless can add, subtract, multiply and divide almost instantaneously. Why is this? The answer is of course that the usual logarithm tables are not adapted to the special requirements and limitations of the calculating machines and basic tables so arranged as to be usable on the machines are not at hand. As I will show it is easily possible to compile suitable tables with the aid of which logarithmic
computations can be made rapidly. I have had such tables prepared and the purpose of this paper is to publish them with necessary instructions for their use.

I will assume there is available a calculating machine that will multiply a 10 figure number by a 10 figure number giving the result to 20 significant figures (though 10 will be sufficient for our purposes) : the machine will also divide a number of 20 figures (10 will be sufficient) by another 10 figure number giving the quotient to 10 places. The tables given are for this capacity but of course can be used with a machine of 8×8 capacity in which case the final result will naturally be accurate to a less number of significant figures. Let us consider in detail a calculation requiring the use of logarithms, say for example

$$
12.3456789^{9.88854321} .
$$

This involves three steps
(i) the determination of the logarithm of 12.3456789
(ii) its multiplication by 9.87654321
(iii) the determination of the antilogarithm of the product

The second step is easily done on the machine. As for the other steps it would require impractically large tables to give logarithms and antilogarithms to 9 or 10 places by mere inspection or even with the aid of simple interpolations. However by factorizing the number whose logarithm is required we can reduce the size of the necessary tables to a manageable size and the factorizing can be effected quickly with the aid of the machine. Similarly for antilogarithms we get the answer in the form of factors which are easily multiplied together on the machine.

What I have done is to provide tables of logarithms to $\mathbf{1 0}$ places of
(a) a series of numbers (each of 3 figures) from 1.00 to 10.00 such that the ratio of any number to its predecessor is not greater than 1.02235 (150 numbers in this series) (see Table III)
(b) numbers from 1.00000 to 1.02235 by intervals of .00015 (150 numbers) (see Table IV)
(c) numbers from 1.000000 to 1.000149 by intervals of .000001 (150 numbers) (see Table V)
plus (d) a simple rule involving one multiplication to find the logarithm to 10 places of any number between 1.000000 and 1.000001 (see Table VI).

Any number is readily reduced by the machine to four factors whose logarithms are given by the three tables and the rule respectively. The addition of the four logarithms of the factors give the logarithm of the number. (As in the case of ordinary logarithm tables, what is given by my tables is the mantissa of the logarithm; the characteristic is as usual to be supplied by inspection-the readers of this paper are familiar with this procedure and it is not necessary for me to elaborate on it.) Thus to take (at last!) our example, to find the logarithm of 1,23456789 we divide this by 1.22, the largest number in series (a) which is not greater than 1.23456789 ; the quotient is 1.01194 . . . This is as far as we need proceed on the first division for we can see the largest number in series (b) which is not greater than this quotient is 1.01185 . Now 1.22×1.01185 equals 1.2344570 and dividing this into 1.23456789 we get 1.000089829 (to 10 significant figures) which can be resolved at sight into $1.000089 \times 1.000000829$. So $1.23456789=1.22$ $\times 1.01185 \times 1.000089 \times 1.000000829$ (to 10 significant figures).

The tables give directly the logarithms of the first three factors: as to the fourth, its logarithm is $.000000829 \times .434294$ or .0000003600 (to 10 places).

$\log 1.22$.0863598307
$\log 1.01185$.0051161360
$\log 1.000089$.0000386505
$\log 1.000000829$.0000003600
$\log 1.23456789$.0915149772

So $\log 12.3456789=1.0915149772$.
This is the first step and it takes much longer to describe than to do-with the tables in front of the operator the first two factors are picked out in a few seconds and the last two in a few more. The addition of the logarithm takes but a few more: very little need be written down.

Now multiplying the logarithm just found by 9.87654321 we get 10.7803948367 . We must now find the antilogarithm of this; the process is just the reverse of finding a logarithm. We see that 6.00 is the number in series (a) whose logarithm is the nearest below .7803948367 ; and subtracting therefore the logarithm of 6.00 from this we get .0022435863 from which we subtract the
largest possible logarithm out of series (b), namely that of 1.00510 , and the remainder is .0000343133 : from this we subtract the largest possible logarithm out of series (c), namely that of 1.000079 , and the remainder is .0000000054 . The antilogarithm of this is 1 plus $.0000000054 \times 2.30259$ or 1.000000012 (to 10 significant figures). So the required antilogarithm of .7803948367 is $6.00 \times 1.00510 \times 1.000079 \times 1.000000012$. By inspection the product of the last two factors is 1.000079012 and by multiplication the product of the first two is 6.0306 and therefore the antilogarithm is

$$
6.0306 \times 1.000079012 \text { or } 6.031076490
$$

Therefore the antilogarithm of 10.7803948367 is $60,310,764,900$. This result is, of course, not reliable to the last significant figure. In fact, using more extended logarithm tables, I find that $\log 1.23456789=.9815149771700 \ldots$ and the final answer is $60,310,764,882.44 \ldots$ so that the result from our tables is wrong by two units in the tenth significant place.

The above is an illustration of Tables III to VI described below. These tables form a compact logarithm table and can be used for any purpose for which such a table is required. As for Tables I and II, these are special compound interest tables. Table I gives the logarithm of $1+i$ to 12 decimal places for 64 rates of interest from $1 / 8 \%$ to 10%. This table enables us to avoid the calculation of $\log (1+i)$ for each problem and also gives enough decimal places so that the logarithm of $(1+i)^{n}$ may be calculated accurately to 10 places when n is large say 50 or 100 . Table II is a table of values of $j_{(r)}$ for rates of interest from $1 / 4 \%$ to $71 / 2 \%$. This is necessary for calculating the values of annuities certain payable semi-annually, quarterly, monthly, weekly or continuously; and besides saving the calculation of the value of $j_{(r)}$ from the other tables gives it more accurately. Instructions for the use of these tables are given next, followed by the tables themselves, after which are various illustrations covering some of the purposes to which the table can be put.
I trust that these tables will be of service to the actuarial profession. Tables I, III and IV were derived from existing tables (chiefly the 20 place Logarithmetica Britannica) with precautions to ensure accuracy. Table V was calculated specially as was also

Table II. The idea of obtaining logarithms by factorizing is of course not new : it is as old as logarithms themselves. Last century Peter Gray published tables to 24 places based on this method. It is interesting to note that A. J. Thompson in the introduction to his 20 place Logarithmetica Britannica first gave the "classical" method of obtaining logarithms and antilogarithms by central difference interpolation but later added auxiliary tables based on the factorization method with the comment that, as contrasted with interpolation methods, factorization methods "are at least as short for finding logarithms, and distinctly shorter for finding antilogarithms." This is my experience also.

I should state here, for completeness, that no life contingencies are involved in any of the tables or examples of this paper and that all annuities mentioned are annuities certain: also that all logarithms dealt with are "common" logarithms, that is to base 10.

Description of Tables and Instructions for Use

Table I

Logarithms of $(1+i)$ for rates of interest from $1 / 8 \%$ to 6% by intervals of $1 / 8 \%$ and from 6% to 10% by intervals of $1 / 4 \%$.

These logarithms are given to 12 decimal places.
No particular comments required here except
(i) if, as in problems involving present values, $v^{\mathrm{n}}=(1+i)^{-\mathrm{n}}$ is required, say for example (1.05) ${ }^{-20}$, we can either (a) write
$\log v=-\log (1+i)=-\log 1.05=-.021189299070$

$$
=-1+.978810700930=\overline{1} .978810700930
$$

and then multiply by 20 , thus

$$
-20+19.576214018600=\overline{1} .576214018600
$$

or (b) multiply $\log (1+i)=.021189299070$ by 20 getting $\log (1+i)^{\mathrm{n}}=\log 1.05^{20}=0.423785981400$
and then $\log v^{n}=-0.423785981400=\overline{1} .576214018600$.
(ii) for values of i not in the table, e.g., $3_{\text {교 }}^{8} \%$, we can either (a) calculate $\log 1.03_{15}^{5}=\log 1.033125$ from Tables III, IV, V and VI, or (b) interpolate in Table I as indicated in Appendix I-the latter method will usually be quicker and always be accurate to more decimal places.

Table II

Values of $j_{(r)}$ for rates of interest proceeding from $1 / 4 \%$ to $71 / 2 \%$ by intervals of $1 / 4 \%$, for values of $r=2,4,12,52,52.1775$ and ∞. These values are given to 12 decimal places so that at least 10 significant figures are available.
$j_{(r)}=r\left\{(1+i)^{\frac{1}{\mathrm{r}}}-1\right\}$ is the nominal rate of interest convertible r times a year equivalent to the effective rate of interest i. The amount and present value of an annuity of 1 per annum for n years payable annually and r times a year are

Payable annually
Payable r times a year
amount
present value $a_{\mathrm{n}}=\frac{1-v^{\mathrm{n}}}{i} \quad a_{\mathrm{n}\rceil}^{(\mathrm{r})}=\frac{1-v^{\mathrm{n}}}{j_{(\mathrm{r})}}$
$j_{(2)}, j_{(4)}, j_{(12)}$ are to be used for annuities payable semi-annually, quarterly, and monthly respectively: $j_{(52)}$ is to be used for annuities payable 52 times a year, that is weekly if a year is regarded as consisting of 52 weeks: $j_{(52.1775)}$ is to be used for weekly annuities if it is assumed that a year contains 52.1775 weeks on the average:* $j_{(\infty)}=\delta$ is to be used for annuities payable continuously. The procedure to be used if $j_{(r)}$ is required for a rate of interest or a value of r will not be given in the Table will be found in Appendix I.

Note that this Table can be used in conjunction with ordinary annuity tables: if for instance $a_{35}^{(4)}$ is required, this is equal to a_{351} (the value of which can be taken from any table of annuities certain) multiplied by $\frac{i}{j_{(4)}}$ (where $j_{(4)}$ is taken from Table II).

[^0]
Tables III, IV, V and VI

These together form a condensed logarithm table-and their use will be clear from the following examples.
(a) To find the logarithm of 105 . We first find the \log of 1.05 , that is the number with the same significant figures but with the decimal point between the first two significant figures. Out of Table III pick the number nearest to but not exceeding $1.05-$ this is 1.04 . Dividing this on the machine into 1.05 we get a quotient which is always between 1.00000 and 1.02235: we carry the division only far enough to determine the number in Table IV that is the nearest below the quotient. In our case $\frac{1.05}{1.04}=1.009615 \ldots$ and the nearest number below this in Table IV is 1.00960 . Now multiplying on the machine 1.04 by 1.00960 we get 1.0499840 which divided into our number 1.05 gives 1.000015238 which quotient will always be between 1.000000 and 1.000150 . Now taking from Table V the number nearest below this, that is 1.000015 , we factorize by inspection 1.000015238 into $1.000015 \times 1.000000238$. Thus $1.05=1.04 \times 1.00960 \times 1.000015 \times 1.000000238$ (to 10 significant figures) and the logarithms of the first three factors we take from Tables III, IV and V respectively. Table VI, which is not strictly a Table but an instruction, tells us that the \log of 1.000000238 is $.000000238 \times .434294$ to 10 places or .0000001034 , performing the multiplication on the machine. Now adding the logs of the four factors we get

$$
\begin{array}{lc}
\log 1.04 & .0170333393 \\
\log 1.00960 & .0041493419 \\
\log 1.000015 & .0000065144 \\
\log 1.000000338 & .0000001034 \\
\cline { 2 - 3 } & \log 1.05 \\
\text { (compare this with Table I which gives } \\
\quad \begin{array}{c}
\log 1.05
\end{array}=.021189299070 \text {) }
\end{array}
$$

and therefore $\log 105=2.0211892990$.
(b) To find the antilogarithm of $\overline{2} .6$. We first find the antilogarithm of .6 , by reversing the process of finding logarithms. From Table III we pick out the logarithm next less than .6this is .5932860670 , the logarithm of 3.92 . We subtract this from 6 obtaining .0067139330 (which will always be between .00000 and .00960). From Table IV we pick out the logarithm next less than this remainder, this will be .0066585439 the logarithm of 1.01545 ; subtract this and obtain .0000553891 (which will always be less than .00006514). From Table V
we pick out the logarithm next less than this remainder ; this will be .0000551519 , the logarithm of 1.000127 . Subtract this. The balance, namely .0000002372 , we divide by .434294 or multiply by 2.30259 , as per Table VI, performing the operation on the machine, and the result (to 9 decimal places) added to 1 is the antilogarithm of the balance, in our case antilogarithm $.0000002372=1.000000546$ (to ten significant figures). Thus antilogarithm $.6=3.92 \times 1.01545 \times 1.000127$ $\times 1.000000546$. We multiply the last two factors together by inspection, thus 1.000127546 , and the first two on the machine, getting 3.980564 ; then $3.980564 \times 1.000127546$ $=3.981071705=$ antilogarithm .6. So antilogarithm $\overline{2} .6$ $=.03981071705$ (the correct result is $.0398107170553 \ldots$).

TABLE I

Logarithms of $(1+i)$ to 12 decimal places for values of i proceeding from $1 / 8 \%$ by $1 / 8 \%$ to 6% and by $1 / 4 \%$ to 10%

\%	i	$\log (1+i)$	\%	i	$\log (1+i)$
1/8	. 00125	. 000542529092	$41 / 8$. 04125	. 0175550144 15-
$1 / 4$. 00250	. 001084381292	41/4	. 04250	. 018076063646
38	. 00375	. 001625558287	4%	. 04375	. 018596488492
1/2	. 00500	. 002166061757	$41 / 2$. 04500	.019116290447
5/8	. 00625	. 002705893376	4\%	. 04625	.019635471001
3/4	. 00750	. 003245054813	4 4	. 04750	. 020154031638
7/8	. 00875	. 003783547730	47\%	. 04875	. 020671973837
1	. 01000	. 004321373783	5	. 05000	.021189299070
11/8	. 01125	. 004858534620	51/8	. 05125	. 021706008806
$11 / 4$. 01250	. 005395031887	$51 / 4$. 05250	. 022222104508
1\%	. 01375	. 005930867219	5%	. 05375	. 022737587633
11/2	. 01500	. 006466042249	$51 / 2$. 05500	. 023252459634
15/8	. 01625	. 007000558602	5%	. 05625	. 023766721958
$13 / 4$. 01750	. 007534417897	$53 / 4$. 05750	. 0242880376047
${ }^{17 / 8}$. 01875	. 008067621748	57/8	. 05875	. 024793423339
2	. 02000	. 008600171762	6	. 06000	.025305865265
21/3	. 02125	. 009132069540	61/4	. 06250	. 026328938722
$21 / 4$. 02250	. 009663316679	61/2	. 06500	. 0273496077 75-
2388	. 02375	. 010193914768	6 $81 /$. 06750	. 028367883697
$21 / 2$. 02500	. 010723865392	7	. 07000	$.029383777685+$
25%	. 02625	. 011253170127	71/4	. 07250	. 030397300857
234	. 02750	. 011781830548	$71 / 2$. 07500	. 031408464252
27/8	. 02875	.012309848220	$78 / 4$. 07750	. 032417278833
3	. 03000	. 0128372247 05+	8	. 08000	. 033423755487
$31 / 8$. 03125	. 013363961558	$81 / 4$. 08250	. $034427905025+$
$31 / 4$. 03250	. 013890060328	$81 / 2$. 08500	. 035429738185
$33 / 8$. 03375	. 014415522561	$83 / 4$. 08750	. 036429265627
$31 / 2$. 03500	. 014940349793	9	. 09000	. 037426497941
35\%	. 03625	. 015464543558	91/4	. 09250	. 038421445642
$33 / 4$. 03750	. 015988105384	$91 / 2$. 09500	.039414119176
$37 / 8$. 03875	. 016511036792	$93 / 1$. 09750	.040404528914
4	. 04000	. 017033339299	10	. 10000	. 041392685158

TABLE II

Nominal rates of interest $j_{(\mathbf{r})}$ convertible r times a year equivalent to effective rate i

For i up to $71 / 2 \%$ and $r=2,4,12,52,52.1775$ and ∞.

\%	i	$j_{(2)}$	$j_{(4)}$	$j_{(12)}$
$1 / 4$. 0025	. $002498439450+$. 002497659662	. 002497139984
1/2	. 0050	. 004993765576	. $004990652250+$. 004988578137
\% 4	. 0075	. 007485989988	. 007478998062	. 007474341614
1	. 0100	. 009975124224	. 009962717257	. 009954457372
11/4	. 0125	. 0124611797 50-	. 012441829859	. 012428952176
$11 / 2$. 0150	. 014944167961	. 014916355752	. 014897852597
$13 / 4$. 0175	.017424100183	. 017386314691	. 017361185016
2	. 0200	.019900987672	. 019851726293	. 019818975623
21/4	. 0225	. 022374841616	. 0223126100 45-	. 022271250424
$21 / 2$. 0250	. 024845673132	. 024768985303	. 024718035238
$23 / 4$. 0275	.027313493271	. 027220871292	. 027159355701
3	. 0300	.029778313018	.029668287111	. 029595237268
314	. 0325	. 032240143290	. 032111251729	. 032025705212
$31 / 2$. 0350	. 034698994938	. 034549783991	. 034450784629
3\%	. 0375	. 037154878746	. $036983902615-$. 036870500439
4	. 0400	. 039607805437	. 039413626196	. 039284877386
$41 / 2$. 0425	.042057785666 .0445 088300	.041838973206 044259619	. 041693940042
43/4	. 0475	. 044694884949046	.044259961997 .046676610796	.04409 04649 62198 06
5	. 0500	. 049390153192	. 049088937716	. 048889485404
$51 / 4$. 0525	. 051828452868	. 051496960748	. 051277533194
$51 / 2$. 0550	. 054263858417	. 0539006977 65-	. 0536603870 05-
$53 / 4$. 0575	. 056696380120	. 056300166526	.056038070400
6	. 0600	.059126028197	. 0586953846 75-	. 058410606784
$61 / 4$. 0625	. 061552812809	. 061086369738	. 060778019397
$611 / 2$. 0650	$.063976744055+$.063473139131	. 063140331322
${ }^{63 / 4}$. 0675	. 066397831977	. 065855710157	. 065497565483
7	. 0700	. 068816086558	. 068234100007	. 067849744649
$71 / 4$ $71 / 2$. 0725	. 071231517721	.070608325762	. 070196891432
$71 / 2$. 0750	.073644135333	. 072978404394	. 072539028292

TABLE II (Continued)

Nominal rates of interest $j_{(r)}$ convertible r times a year equivalent to effective rate i

For i up to $7 \frac{1}{2} \%$ and $r=2,4,12,52,52.1775$ and ∞.

$\%$	i	$j_{(52)}$	$j_{(52.1775)}$	$j_{(\infty)}=\delta$
1/4	. 0025	. 002496940146	. 002496939942	. 002496880199
1/2	. 0050	. 004987780707	. 004987779893	. 004987541511
$3 / 4$. 0075	. 007472551701	$.007472549875-$. 007472014839
1	. 0100	. 009951282924	$.009951279685+$. 009950330853
$11 / 4$. 0125	. 012424003953	.0124239989 05-	. 012422519999
11/2	. 0150	.014890744147	.0148907368 95-	. 014888612494
1%	. 0175	. 017351532649	. 017351522802	. 0173486383 35-
2	. 0200	.019806398391	. 019806385560	. 019802627296
21/4	. 0225	. 022255370091	. 022255353892	. $022250608935-$
$21 / 2$. 0255	. 024698476260	. 024698456310	. 024692612590
2%	. 0275	.027135745202	.027135721120	. 027128667388
3	. 0300	. 029567205014	. 029567176424	. 029558802242
31/4	. 0325	. 031992883593	.031992850120	. 031983045853
$31 / 2$. 0350	. 034412808633	. 034412769904	. 034401426717
$33 / 4$. 0375	. 036827007628	. 036826963276	. 036813973123
4	. 0400	. 039235507876	. 039235457534	. 039220713153
$41 / 4$. 0425	. 041638336480	. 041638279784	. 041621674691
$41 / 2$. 0450	. 044035520349	. 044035456938	. 0440168854.17
48	. 0475	. 046427086201	. 046427015716	. 046406372814
5	. 0500	. 048813060562	.048812982647	. 048790164169
$51 / 4$. 0525	. 051193469772	. 051193384074	. 051168286574
$51 / 2$. 0550	. 053568339984	. 053568246153	. 053540766928
53/4	. 0575	. 055937697167	. 055937594853	. 055907631938
6	. 0600	.058301567107	.058301455964	. 058268908124
61/4	. 0625	. 060659975408	. 060659855094	. 060624621816
61/2	. 0650	. 063012947496	. 063012817668	. 062974799161
63/4	. 0675	. 065363508618	. 065360368939	. 065319466121
7	. 0700	.067702683846	. 067702533980	. 067658648474
$71 / 4$. 0725	. 070039498078	. 070039337690	. 069992371820
71/2	. 0750	.072370976038	. 072370804797	. 072320661580

TABLE III
Logarithms of Numbers from 1.00 to 10.00

N	$\log N$	N	$\log N$
1.00	. 0000000000	1.80	. 2552725051
1.02	. 0086001718	1.83	. 2624510897
1.04	. 0170333393	1.86	. 2695129442
1.06	. 0253058653	1.89	. 2764618042
1.08	. $0334237555-$	1.92	. 2833012287
1.10	. 0413926852	1.95	. 2900346114
1.12	. 0492180227	1.98	. 2966651903
1.14	. 0569048513	2.01	. 3031960574
1.16	. 0644579892	2.04	. 3096301674
1.18	. 0718820073	2.07	. 3159703455 -
1.20	. 0791812460	2.10	. 3222192947
1.22	. 0863598307	2.13	. 3283796034
1.24	. 0934216852	2.16	. 3344537512
1.26	. 1003705451	2.19	. 3404441148
1.28	. 1072099696	2.22	. 34635 29745-
1.30	. 1139433523	2.25	. 3521825181
1.32	. 1205739312	2,30	. 3617278360
1.34	. 1271047984	2.35	. 3710678623
1.36	. 1335389084	2.40	. 3802112417
1.38	. 1398790864	2.45	. 3891660844
1.40	. 1461280357	2.50	. 3979400087
1.42	. 1522883444	2.55	. 4065401804
1.44	. 1583624921	2.60	. 4149733480
1.47	.1673173347	2.65	. 4232458739
1.50	. 1760912591	2.70	. 4313637642
1.53	. 1846914308	2.75	. 4393326938
1.56	. 1931245984	2.80	. 4471580313
1.59	. 2013971243	2.85	. 4548448600
1.62	$.2095150145+$	2.90	. 4623979979
1.65	. 2174839442	2.95	. 4698220160
1.68	. 2253092817	3.00	. 4771212547
1.71	. 2329961103	3.05	. 4842998393
1.74	. 2405492483	3.10	. 4913616938
1.77	. 2479732664	3.15	. 4983105538

TABLE III (Continued)
Logarithms of Numbers from 1.00 to 10.00

N	$\log \mathrm{N}$	N	$\log \mathrm{N}$
3.20	. 5051499783	5.68	. 7543483357
3.25	. 5118833610	5.76	. 7604224834
3.30	. 5185139399	5.88	. 7693773261
3.35	. 5250448070	6.00	. 7781512504
3.40	. 5314789170	6.12	.7867514221
3.45	. 5378190951	6.24	. 7951845897
3.50	. 5440680444	6.36	. 8034571156
3.55	. 5502283531	6.48	. 8115750059
3.60	. 5563025008	6.60	. 81954 39355+
3.68	. 5658478187	6.72	. 8273692731
3.76	. 5751878449	6.84	.8350561017
3.84	. 5843312244	6.96	. 8426092396
3.92	. 5932860670	7.08	. 8500332577
4.00	. 6020599913	7.20	. 8573324964
4.08	. 6106601631	7.32	. 8645110811
4.16	. 6190933306	7.44	. 87157 29355+
4.24	. 6273658566	7.56	. $8785217955+$
4.32	. 6354837468	7.68	. 8853612200
4.40	. 64345 26765-	7.80	. 8920946027
4.48	. 6512780140	7.92	. 8987251816
4.56	. 6589648427	8.04	. 9052560487
4.64	. 6665179806	8.16	. 9116901588
4.72	. 6739419986	8.28	. 9180303368
4.80	. 6812412374	8.40	. 9242792861
4.88	. 6884198220	8.52	. 9304395948
4.96	. 69548 16765-	8.64	. $9365137425-$
5.04	. 7024305364	8.76	. 9425041062
5.12	. 7092699610	8.88	. 9484129658
5.20	. 7160033436	9.00	. 9542425094
5.28	$.7226339225+$	9.20	. 9637878273
5.36	. 7291647897	9.40	. 9731278536
5.44	. 7355988997	9.60	. 9822712330
5.52	. 7419390777	9.80	. 9912260757
5.60	. 7481880270	10.00	1.0000000000

TABLE IV
Logarithms of Numbers from 1.00000 to 1.02235

N	$\log \mathrm{N}$	N	$\log N$
1.00000	. 0000000000	1.00570	. 0024684501
1.00015	. 0000651393	1.00585	. 0025332203
1.00030	. 0001302688	1.00600	. 0025979807
1.00045	. 0001953886	1.00615	. $0026627315+$
1.00060	. 00026 04985+	1.00630	. 0027274727
1.00075	. 0003255988	1.00645	. 0027922042
1.00090	. 0003906892	1.00660	. 0028569261
1.00105	. 0004557700	1.00675	. 0029216383
1.00120	. 0005208409	1.00690	. 0029863409
1.00135	. 0005859022	1.00705	. 0030510338
1.00150	. 0006509536	1.00720	. 0031157171
1.00165	. 0007159954	1.00735	. 0031803908
1.00180	. 0007810274	1.00750	. 0032450548
1.00195	. 0008460496	1.00765	. 0033097092
1.00210	. 0009110621	1.00780	. 0033743540
1.00225	. 0009760649	1.00795	. 0034389892
1.00240	. 0010410580	1.00810	. 0035036147
1.00255	. 0011060413	1.00825	. 0035682307
1.00270	. 0011710149	1.00840	. 0036328370
1.00285	. 0012359788	1.00855	. 0036974337
1.00300	. 0013009330	1.00870	. 0037620208
1.00315	. 00136 58775-	1.00885	. 0038265983
1.00330	. 0014308122	1.00900	. 0038911662
1.00345	. 0014957373	1.00915	. 00395 57245+
1.00360	. 0015606526	1.00930	. 0040202733
1.00375	. 0016255583	1.00945	. 0040848124
1.00390	. 0016904542	1.00960	. 0041493419
1.00405	. 00175 53405-	1.00975	. 0042138618
1.00420	. 0018202170	1.00990	. 0042783722
1.00435	. 0018850839	1.01005	. 0043428730
1.00450	. 0019499411	1.01020	. 0044073642
1.00465	. 0020147886	1.01035	. 0044718458
1.00480	. 0020796264	1.01050	. 0045363179
1.00495	. 00214 44545+	1.01065	. 0046007803
1.00510	. 0022092730	1.01080	. 0046652332
1.00525	. 0022740818	1.01095	. 0047296766
1.00540	. 0023388809	1.01110	. 0047941104
1.00555	. 0024036703	1.01125	. 0048585346

TABLE IV (Continued)
Logarithms of Numbers from 1.00000 to 1.02235

N	$\log \mathrm{N}$	N	$\log \mathrm{N}$
1.01140	.00492 29493	1.01695	. 0072996007
1.01155	. 0049873544	1.01710	. 0073636543
1.01170	. $0050517500-$	1.01725	. 00742 76985+
1.01185	. 0051161360	1.01740	. 0074917333
1.01200	. $0051805125+$	1.01755	. 0075557586
1.01215	. 0052448794	1.01770	. 00761 97745+
1.01230	. 0053092368	1.01785	. 0076837810
1.01245	. 0053735847	1.01800	. 0077477780
1.01260	. 0054379231	1.01815	. 0078117656
1.01275	. 0055022519	1.01830	. 0078757438
1.01290	. 0055665711	1.01845	. 00793 97125+
1.01305	. 0056308809	1.01860	. 0080036718
1.01320	. 0056951811	1.01875	. 0080676217
1.01335	. 0057594718	1.01890	. 0081315622
1.01350	. 0058237530	1.01905	. 0081954933
1.01365	. 0058880247	1.01920	. 00825 94150-
1.01380	. 0059522869	1.01935	. 0083233273
1.01395	. 0060165396	1.01950	. 0083872301
1.01410	. 0060807827	1.01965	. 0084511236
1.01425	. 0061450164	1.01980	. 0085150076
1.01440	. $0062092405+$	1.01995	. 0085788823
1.01455	. 0062734552	1.02010	. 0086427476
1.01470	. 0063376604	1.02025	. 0087066034
1.01485	. 0064018561	1.02040	. 0087704499
1.01500	. 0064660422	1.02055	. 0088342870
1.01515	. 0065302190	1.02070	. 0088981148
1.01530	. 0065943862	1.02085	. 0089619331
1.01545	. 0066585439	1.02100	. 0090257421
1.01560	. 0067226922	1.02115	. 0090895417
1.01575	. 0067868310	1.02130	. 0091533319
1.01590	. 0068509603	1.02145	. 0092171128
1.01605	. 0069150802	1.02160	. 0092808843
1.01620	. 0069791906	1.02175	. 0093446464
1.01635	. $0070432915+$	1.02190	. 0094083992
1.01650	. 0071073830	1.02205	. 0094721426
1.01665	. 00717 14650-	1.02220	. 0095358766
1.01680	. $0072355375+$	1.02235	. 0095996013

TABLE V
Logarithms of Numbers from 1.000000 to 1.000149

N	$\log N$	N	$\log N$
1.000000	. 0000000000	1.000038	. 0000165029
1.000001	. 0000004343	1.000039	. 0000169372
1.000002	. 0000008686	1.000040	. 0000173714
1.000003	. 0000013029	1.000041	. 0000178057
1.000004	. 0000017372	1.000042	. 0000182400
1.000005	. $0000021715-$	1.000043	. 0000186743
1.000006	. 0000026058	1.000044	. $0000191085+$
1.000007	. 0000030401	1.000045	. 0000195428
1.000008	. 0000034743	1.000046	. 0000199771
1.000009	. 0000039086	1.000047	. 0000204114
1.000010	. 0000043429	1.000048	. 0000208456
1.000011	. 0000047772	1.000049	. 0000212799
1.000012	. $0000052115+$	1.000050	. 0000217142
1.000013	. 0000056458	1.000051	. $0000221485-$
1.000014	.00000 60801	1.000052	. 0000225827
1.000015	. 0000065144	1.000053	. 0000230170
1.000016	. 0000069487	1.000054	. 0000234513
1.000017	. 0000073829	1.000055	. $0000238855+$
1.000018	. 0000078172	1.000056	. 0000243198
1.000019	$.0000082515+$	1.000057	. 0000247541
1.000020	. 0000086858	1.000058	. 0000251883
1.000021	. 0000091201	1.000059	. 0000256226
1.000022	. 0000095544	1.000060	. 0000260569
1.000023	. 0000099887	1.000061	. 0000264912
1.000024	. 0000104229	1.000062	. 0000269254
1.000025	. 0000108572	1.000063	. 0000273597
1.000026	. $0000112915+$	1.000064	. 0000277940
1.000027	. 0000117258	1.000065	. 0000282282
1.000028	. 0000121601	1.000066	. $0000286625-$
1.000029	. 0000125944	1.000067	. 0000290968
1.000030	. 0000130286	1.000068	. 0000295310
1.000031	. 0000134629	1.000069	. 0000299653
1.000032	. 0000138972	1.000070	. $0000303995+$
1.000033	. $0000143315-$	1.000071	. 0000308338
1.000034	. 0000147658	1.000072	. 0000312681
1.000035	. 0000152000	1.000073	. 0000317023
1.000036	. 0000156343	1.000074	. 0000321366
1.000037	. 0000160686	1.000075	. 0000325709

TABLE V (Continued)
Logarithms of Numbers from 1.000000 to 1.000149

N	$\log \mathrm{N}$	N	$\log N$
1.000076	. 0000330051	1.000113	. $0000490725+$
1.000077	. 0000334394	1.000114	. 0000495067
1.000078	. 0000338736	1.000115	. 0000499410
1.000079	. 0000343079	1.000116	. 0000503752
1.000080	. 0000347422	1.000117	. 00005 08095-
1.000081	. 0000351764	1.000118	. 0000512437
1.000082	. 0000356107	1.000119	. 0000516780
1.000083	. 0000360449	1.000120	. 0000521122
1.000084	. 0000364792	1.000121	. 00005 25465-
1.000085	. 00003 69135-	1.000122	. 0000529807
1.000086	. 0000373477	1.000123	. 0000534149
1.000087	. 0000377820	1.000124	. 0000538492
1.000088	. 0000382162	1.000125	. 0000542834
1.000089	. $0000386505-$	1.000126	. 0000547177
1.000090	.00003 90847	1.000127	. 0000551519
1.000091	. 0000395190	1.000128	. 0000555861
1.000092	. 0000399533	1.000129	. 0000560204
1.000093	. $0000403875+$	1.000130	. 0000564546
1.000094	. 0000408218	1.000131	. 0000568889
1.000095	. 0000412560	1.000132	. 0000573231
1.000096	. 0000416903	1.000133	. 0000577573
1.000097	. $0000421245+$	1.000134	. 0000581916
1.000098	. 0000425588	1.000135	. 0000586258
1.000099	. 0000429930	1.000136	. 0000590600
1.000100	. 0000434273	1.000137	. 0000594943
1.000101	. $0000438615+$	1.000138	. $0000599285+$
1.000102	. 0000442958	1.000139	. 0000603627
1.000103	. 0000447300	1.000140	. 0000607970
1.000104	. 0000451643	1.000141	. 0000612312
1.000105	. $0000455985+$	1.000142	. 0000616654
1.000106	. 0000460328	1.000143	. 0000620997
1.000107	. 0000464670	1.000144	. 0000625339
1.000108	. 0000469013	1.000145	. 0000629681
1.000109	. 00004 73355+	1.000146	. 0000634024
1.000110	. 0000477698	1.000147	. 0000638366
1.000111	. 0000482040	1.000148	. 0000642708
1.000112	. 0000486383	1.000149	. 0000647051

Table VI

Logarithms of numbers from 1.000000 to 1.000001
To find the logarithm of a number between 1 and 1.000001 multiply the decimal portion by .434294 and the product is the logarithm to 10 decimal places.

$$
\text { Example: } \begin{aligned}
\log 1.000000421 & =.000000421 \times .434294 \\
& =.0000001828 .
\end{aligned}
$$

To find the antilogarithm of a number between 0 and .0000004343 multiply the number by 2.30259 and the product, to 9 decimal places, added to 1 is the antilogarithm.

Example: antilog $.0000001828=1+.0000001828 \times 2.30259$ $=1.000000421$.

Examples of the Use of the Tables

(1) $\frac{355}{113}$ is an approximation to the value of π the true value of which is 3.141592654 . .
Find the error in using the approximation in π^{19}. $\frac{355}{113}=3.141592920 \ldots$ (call this p for short). We have to calculate $p^{19}-\pi^{19}=3.141592920^{19}-3.141592654^{19}$.
Factorizing according to the instructions for Tables III, IV, V and VI, we find

$$
p=3.141592920=3.10 \times 1.01335 \times 1.000066 \times 1.000000187
$$

$$
\pi=3.141592654=3.10 \times 1.01335 \times 1.000066 \times 1.000000103
$$

So | .4913616938 | |
| ---: | :--- |
| .0057594718 | .4913616938 |
| | .0000286625 |
| | .0000000812 |\(\quad \begin{aligned} \& .0057594718

\& \log p=

\& .4971499093\end{aligned} \quad \log \pi=\)| .0000286625 |
| :--- |

$19 \log p=9.4458482767 \quad 19 \log \pi=9.4458475832$
from which, proceeding according to the instructions, we find
antilog $.4458482767=2.75 \times 1.01500 \times 1.000114 \times 1.000000078$
$=2.791568420$
antilog $.4458475832=2.75 \times 1.01500 \times 1.000112 \times 1.000000481$

$$
=2.791563963
$$

So $\quad p^{19}=2,791,568,420$.
$\pi^{19}=2,791,563,963$.
Difference $=\quad 4,457$.
(The correct difference, taking π to more decimal places than given above and using fifteen place logarithms, is 4,503.80 . .).
(2) Find the amount of 1625.14 accumulated at $33 / 4 \%$ per annum compound interest for 400 weeks, assuming 52.1775 weeks to the year.
400 weeks $=7.666139620$ years (to 10 significant figures) so we have to calculate $1625.14 \times 1.0375^{7.666139620}$.
From Table I $\log 1.0375=.015988105384$ and multiplying by 7.666139630 we get, to 10 places, .1225670481 , the anti-
logarithm of which we must find. Proceeding as per the instructions we get

-	. 1225670481
$\log 1.32$. 1205739312
	. 0019931169
$\log 1.00450$. 0019499411
	. 0000431758
$\log 1.000099$. 0000429930
	. 0000001828

Then the product of the last two factors is 1.000099421 and $1.32 \times 1.00450=1.32594$. Multiplying these two together we get 1.326071826 which, finally, has to be multiplied by 1625.14 giving 2155.0524 .
(3) Find the present value of 1625.14 , at $33 / 4 \%$ per annum compound interest, due 400 weeks hence, assuming 52.1775 weeks to the year.

400 weeks $=7.666139620$ so we have to calculate
$1625.14 v^{7.666138820} \quad v=1.0375^{-1}$.
As in example (2) we find
$7.666139620 \times \log 1.0375=.1225670481$
and so we have to find the antilogarithm of

$$
-.1225670481=\overline{1} .8774329519 .
$$

Proceeding as usual we find
antilog $.8774329519=7.44 \times 1.01350 \times 1.000083 \times 1.000000503$

$$
=7.54044 \times 1.000083503
$$

$$
=7.541069649
$$

Thus $\quad v^{7.666139620}=.7541069649$
which multiplied by 1625.14 gives the final answer of 1225.5294.
(4) Find the amount of an annuity certain of 12.83 a week accumulated at $33 / 4 \%$ per annum compound interest for 400 weeks (52.1775 weeks to the year).
The amount of an annuity certain of 1 per annum payable r times a year for n years is

$$
s_{\overline{\mathrm{n}}}^{(\mathrm{r})}=\frac{(1+i)^{\mathrm{n}}-1}{j_{(\mathrm{r})}} .
$$

In this example $\mathrm{n}=400 / 52.1775=7.666139620$
$\mathrm{r}=52.1775$ and $j_{(r)}=.036826963276$
(per Table II).

The value of ($1+i)^{\mathrm{n}}$, per example (2), is 1.326071826

$$
\text { so } s_{\overline{\mathrm{m}}}^{(\mathrm{r})}=\frac{.326071826}{.036826963276}=8.8541606
$$

which must be multiplied by the annual annuity payment, namely 12.83×52.1775 or 669.437325 : so the final answer is $669.437325 \times 8.8541600=5927.3052$.
(5) Find the present value of an annuity certain of 12.83 a week, at $33 / 4 \%$ per annum compound interest, payable for 400 weeks (52.1775 weeks to the year).
The present value of an annuity certain of 1 per annum payable r times a year for n years is

$$
a_{\mathrm{n})}^{(\mathrm{r})}=\frac{1-v^{\mathrm{n}}}{j_{(\mathrm{r})}} .
$$

In this example $\mathrm{n}=400 / 52.1775=7.666139620$

$$
\mathrm{r}=52.1775 \text { and } j_{(\mathrm{r})}=.036826963276
$$

The value of v^{n}, per example (3), is .7541069649

$$
\text { so } a_{\bar{\square}}^{(\mathrm{r})}=\frac{.2458930351}{.036826963276}=6.6769837
$$

which must be multiplied by the annual annuity payment, namely 12.83×52.1775 or 669.437325 : so the final answer is $669.437325 \times 6.6769838=4469.8221$.
(5a) What would be the present value of the annuity given in example (5) if the year be assumed to consist of 52 weeks? Under this assumption $\mathrm{n}=400 / 52$
and $\log \nu^{\mathrm{n}}=-\frac{400}{52} \times \log 1.0375=-.1229854260=$

$$
\overline{1} .8770145740 .
$$

Antilog $.8770145740=7.44 \times 1.01260 \times 1.000008 \times 1.000000555$

$$
=.7533808451
$$

so $\quad v^{\mathrm{n}}=7.533808451$
also

$$
j_{(52)}=.036827007628 \quad \text { (per Table II) }
$$

Thus

$$
a_{\mathrm{in}]}^{(52)}=\frac{.2466191549}{036827007628}=6.6966927
$$

which has to be multiplied by 12.83×52 or 667.16 giving as the final answer 4467.7655.
Note the slight difference between this and the answer to example (5).
(6) For how many weeks will a payment of 1000 suspend an annuity of 12 per week, at 3% per annum interest and assuming 52.1775 weeks to the year?
We have the following equation from which to find n

$$
12 \times 52.1775 \times \frac{1-v^{\mathrm{I}}}{j_{(62.1775)}}=1000
$$

whence $v^{\mathrm{n}}=.9527778953$.
We find $\log v^{\mathrm{n}}$ to be $\overline{1} .9789916728=-.0210083272$ which we divide by $\log v=-\log (1+i)=-.0128372247$ to get $\mathrm{n}=1.63651628$ years.
Therefore the required number of weeks is

$$
1.63651628 \times 52.1775
$$

$=85.3893$ weeks.
(7) In consideration of a payment now of 1000, by how many weeks should we shorten an annuity of 12 per week payable for 300 weeks, at 3% per annum, 52.1775 weeks to the year? We find first, as in example (5), the present value of the annuity for 300 weeks. This is 3309.7679 . Subtracting 1000 we have 2309.7679 and we must find as in example (6) how many weeks annuity this is equivalent to. The number is 203.8673.

Thus the payment now of 1000 shortens the annuity from 300 to 203.8673 weeks, that is by 96.1327 weeks.
(8) To construct a short table that will quickly give the present value of a weekly annuity for any integral number of weeks not exceeding 900 , assuming compound interest at the rate of $31 / 2 \%$ per annum with 52.1775 weeks to the year.
The value of a weekly annuity of 1 per week for n weeks is

$$
\mathrm{r} a_{\pi / \pi}^{(\mathrm{r})}=\mathrm{r} \frac{1-v_{\mathrm{r}}^{\mathrm{n}}}{j_{(\mathrm{r})}}
$$

where $\mathrm{r}=52.1775$. Now if $\mathrm{n}=30 p+q$ we can write the value of the annuity as

$$
\frac{\mathrm{r}}{j_{(\mathrm{r})}}-\frac{\mathrm{r} v \frac{\mathrm{n}}{\mathrm{r}}}{j_{(\mathrm{r})}} \times v^{\frac{30 p}{\mathrm{r}}}
$$

If we put $\frac{\mathrm{r} v \frac{2}{j_{(r)}}}{j_{(r)}}=A_{q}$ and $v^{\frac{30 p}{\mathrm{r}}}=B_{p}$ and construct tables of A_{q} for $q=0,1,2, \ldots 29$ and of B_{p} for $p=0,1, \ldots$ the
required annuity value can be easily determined from the formula

$$
A_{0}-A_{q} B_{p} .
$$

First $A_{0}=\frac{\mathrm{r}}{j_{(\mathrm{r})}}=\frac{52.1775}{.034412769904}=1516.2249405$.
We now calculate $v^{\frac{1}{r}}, v^{\frac{10}{\mathrm{r}}}, v^{\frac{30}{r}}, v^{\frac{300}{\mathrm{r}}}, v^{\frac{900}{\mathrm{r}}}$ from Tables I, etc. The table of values of A_{q} we now get by starting with A_{0} and continually multiplying by $\frac{1}{v^{\frac{T}{r}}}$, that is $A_{1}-\frac{1}{v^{\frac{1}{r}}} A_{0}$, $A_{2}=v^{\frac{1}{r}} A_{1}$, etc. We calculate $A_{10}=A_{0} v^{\frac{10}{r}}, A_{20}=A_{10} v^{\frac{10}{r}}$, $A_{30}=A_{20} v^{\frac{10}{\mathrm{r}}}=A_{0} v^{\frac{30}{\mathrm{r}}}$, to be used as check values. The tables of values of B_{p} we get similarly by continuous multiplication by $v^{\frac{30}{\mathrm{r}}}$, thus $B_{0}=1, B_{1}=B_{0} v^{\frac{30}{\mathrm{r}}}$, etc. Check values are obtained from $B_{10}=v^{\frac{300}{\mathrm{r}}}, \quad B_{20}=B_{10} v^{\frac{300}{\mathrm{r}}}$, $B_{30}=B_{20} v^{\frac{300}{\tau}}=v^{\frac{900}{\mathrm{r}}}$.
The tables are calculated to 9 or 10 significant figures and later cut down to 7 figures. The completed tables follow:

Table for Ascertaining the Present Value of a Weekly Annuity of 1 for n Weeks - Interest $31 / 2 \%$ per Annum - 52.1775 Weeks to the Year
Present Value $=1516.225-A_{q} B_{p}$ where $\mathrm{n}=30 p+q$

q	A_{q}	30 p	B_{p}
0	1516.225	0	1.0000000
1	1515.226	30	. 9804149
2	1514.227	60	. 9612133
3	1513.229	90	. 9423878
	1512.232	120	. 9239310
5	1511.235	150	. 9058357
6	1510.239	180	. 8880948
7	1509.243	210	. 8707014
8	1508.249	240	. 8536486
9	1507.255	270	. 8369297
10	1506.261	300	. 8205384
11	1505.268	330	. 8044680
12	1504.276	360	. 7887124
13	1503.285	390	. 7732653
14	1502.294	420	. 7581209
15	1501.304	450	. 7432730
16	1500.314	480	. 7287159
17	1499.325	510	. 7144439
18	1498.337	540	. 7004514
19	1497.350	570	. 6867330
20	1496.363	600	. 6732832
21	1495.377	630	. 6600969
22	1494.391	660	. 6471688
23	1493.406	690	. 6344939
24	1492.422	720	. 6220673
25	1491.438	750	. 6098840
26	1490.455	780	. 5979393
27	1489.473	810	. 5862286
28	1488.491	840	. 5747473
29	1487.510	870	. 5634908
30	1486.529	900	. 5524547

e.g., 467 weeks: value is $1516.225-1499.325 \times .7432730=401.8172$.

Appendix I

(1) It will sometimes happen that values of $\log (1+i)$ or $j_{\text {(r) }}$ are required for a rate of interest not given in Tables I and II. In this case we can
either (a) calculate the value from Tables III, IV, V and VI. For $\log (1+i)$ this calculation will be merely the determination of a logarithm e.g. for $3 \frac{5}{16} \%$ we have to find $\log 1.033125$ which can be readily done, but only to 10 place accuracy. For $j_{(r)}$ we must calculate $\mathrm{r}\left\{(1+i) \frac{1}{\mathbf{r}}-1\right\}$ which involves finding the $\log (1+i)$, and the antilogarithm of one $\mathrm{r}^{\text {th }}$ of this. The final result will be accurate only to about 7 places, and the process is fairly long:
or (b) we can interpolate in Table I or II as the case may be assuming (as will usually be the case) that the rate of interest for which the function is required is within the range of the Table. Now ordinary (first difference) interpolation is not sufficiently accurate neither is second difference interpolation. However, third difference interpolation is. The maximum error is not greater than $\frac{3 h}{128}\left(\frac{d}{d i}\right)^{4}$ where h is the interval between the values of i in the Table. For the first part of Table I (i.e. from 0% to 6%) $h=.00125$ and the maximum error is .00000000000015 while from 6% to $10 \% h=.0025$ and the maximum error is .0000000000024 : as for Table II $h=.0025$ and the maximum error is .0000000000017 for $\mathrm{r}=2$ rising to .0000000000055 for $r=\infty$.
The interpolation to third difference can be done by the usual central difference methods, but perhaps the easiest way is as follows:-
Use four tabulated values, two on each side of the value required. Then
(i) if, as will often be the case, the value is required for i half way, quarter way or three quarters way between the tabulated rates,
use the appropriate one of the following formulas:-

$$
\begin{aligned}
u_{1 / / 2} & =\frac{-u_{0}+9 u_{1}+9 u_{2}-u_{3}}{16} \\
u_{1 / 4} & =\frac{-7 u_{0}+105 u_{1}+35 u_{2}-5 u_{3}}{128} \\
\text { or } u_{1 / / 2} & =\frac{-5 u_{0}+35 u_{1}+105 u_{2}-7 u_{3}}{128}
\end{aligned}
$$

Thus if $j_{(52)}$ is required for $3 \frac{1}{16} \%, u_{0}$ is $j_{(52)}$ for $23 \%, u_{1}$ that for $3 \%, u_{2}$ that for $31 / 4 \%$ and u_{3} that for $31 / 2 \%$: we require $u_{14 /}$ which we get at once on the machine as $105 u_{1}$ plus $35 u_{2}$ minus $5 u_{3}$ minus $7 u_{0}$, the net divided by 128 . The answer is .030174165568 .
(ii) but if we require a value for a rate of interest, not half or quarter or three quarters way between tabulated rates, say $\log (1+i)$ for 3.1%, proceed as follows:-choose u_{0}, u_{1}, u_{2}, u_{3} as before. Let the required value be u_{1+x}. Interpolate (by ordinary or first difference interpolation) between u_{1} and u_{2}, that is calculate $x u_{2}+(1-x) u_{1}$: call the result u_{1+x}^{\prime}. Do the same between u_{0} and u_{3} that is calculate $\frac{(1+x) u_{3}+(2-x) u_{0}}{3}$ and call the result $u^{\prime \prime}{ }_{1+x}$.

Then the required u_{1+x} is equal to

$$
u_{1+x}^{\prime}+\frac{(1-x) x}{2}\left(u_{1+x}^{\prime}-u_{1+x}^{\prime \prime}\right) .
$$

For instance in our example $u_{0}=\log 1.02875$, $u_{1}=\log 1.03, u_{2}=\log 1.03125$ and $u_{3}=\log 1.0325$. We require $u_{1.8}$. Interpolating for 3.1% between 3% and 3.125% we have

$$
u_{1,8}^{\prime}=.8 u_{2}+.2 u_{1}=.013258614187 .
$$

Similarly interpolating between u_{0} and u_{3},

$$
u_{1,8}^{\prime \prime}=\left(1.8 u_{3}+1.2 u_{0}\right) / 3=.013257975485 .
$$

Now $x(1-x) / 2=.08$ and so
$u_{1.8}=u_{1.8}^{\prime}+.08\left(u_{1.8}^{\prime}-u^{\prime \prime}{ }_{1.8}\right)=.013258665283$.
From Tables III, etc., we get the value of $\log 1.031$
as .0132586652 . The correct value is .013258665284 . As another example let us calculate $j_{(52}$, for 3.1%.

$$
\begin{aligned}
& u_{0}=j_{(52)} \text { for } 23 / 4 \% \\
& u_{1}=j_{(52)} \text { for } 3 \% \\
& u_{2}=j_{(52)} \text { for } 31 / 4 \% \\
& u_{3}=j_{(52)} \text { for } 31 / 2 \% .
\end{aligned}
$$

We require $u_{1.4}$

$$
\begin{aligned}
u_{1.4}^{\prime}=.4 u_{2}+.6 u_{1} & =.030537476446 \\
u_{1,4}^{\prime \prime}=\frac{1.4 u_{3}+1.6 u_{0}}{3} & =.030531708137 \\
\text { Difference } & =.000005768309
\end{aligned}
$$

$$
\text { Multiply by } \frac{.4 \times .6}{2}=.12 \quad .000000692197
$$

$$
\text { Add to } u_{1,4}^{\prime} \quad .030538168643=u_{1.4} .
$$

$$
\text { The correct value is } \quad .030538168639
$$

and the best we can get by calculating from Tables III, IV, etc., is . 030538144 .
Note: When interpolating in Table I for i between $55 / 8 \%$ and $61 / 4 \%$ we must remember that the interval for i changes at 6% and be careful to take u_{0}, etc., at equal intervals, e.g. for 5.9% we must take $u_{0}=\log (1+i)$ for $51 / 2 \%, u_{1}$ for $53 / 4 \%, u_{2}$ for 6% and u_{3} for $61 / 4 \%$.
(2) If $j_{(r)}$ is required for a value of r not given in Table II, e.g. $j_{(6)}$ we must either calculate from Tables III, etc., as indicated in (1) (a) above or else get the value by summation of a series as for instance

$$
j_{(r)}=i-\frac{\mathrm{r}-1}{2 \mathrm{r}} i^{2}+\frac{(2 \mathrm{r}-1)(\mathrm{r}-1)}{6 \mathrm{r}^{2}} i^{3}-\ldots
$$

except that if $j_{(r)}$ is required for weekly annuities when the number of weeks to be assumed in a year is neither 52 or 52.1775 but some other near number, e.g. $52 \frac{1}{7}$, we can interpolate (or exterpolate if necessary) between $j_{(52)}$ and $j_{(32.1775)}$. Thus for $j_{(521 / 7)}$ put this equal to

$$
\begin{gathered}
\left.\frac{\left(52.1775-52 \frac{1}{7}\right) j_{(52)}+(521}{52.1775-52}-52\right) j_{(52.1775)} \\
\text { or } j_{(521 / 7)}=\frac{97 j_{(52)}+400 j_{(52.1775)}}{497}
\end{gathered}
$$

Again if a year is assumed to equal $3651 / 4$ days we require $\left.j_{(50} 5 / 28\right)$: put this equal to (this is an exterpolation)

$$
\begin{aligned}
& \text { or } j_{(555 / 28)}=\frac{\left(52.1775-52_{2}^{5}\right) j_{(52)}+\left(52_{2}^{5} 8-52\right) j_{(62.1775)}}{52.1775-52} \\
& \frac{-3 j_{(52)}+500 j_{(62.1775)}}{497}
\end{aligned}
$$

For example $j_{(521 / 7)} 3 \%$ will be found equal to .029567182004 .

Appendix II

Examples (6) and (7) involve weekly annuities payable for so many weeks and a fraction of a week. This brings up the question of the interpretation of the results. What is meant for example by an annuity of 10 a week for $1061 / 2$ weeks?
The formula for $a_{\bar{\square}}^{(\mathrm{r})}$ has been used above, and is usually used, as though it held for such non-integral periods. This evidently requires that if we have an annuity for an integral number of periods plus $\frac{1}{p}$ th of a period the value of the annuity payment for the final $\frac{1}{p}$ th of a period is $\frac{1-(1+j)-\frac{1}{p}}{j}$, valued at the beginning of such $\frac{1}{\boldsymbol{p}}$ th period (that is just after the last full payment). In this formula j is the effective rate of interest for a complete period. We now have two methods of making the final payment:(a) we can make it at the end of the $\frac{1}{p}$ th of the complete period, when the amount of the payment should be

$$
\frac{(1+j)^{\frac{1}{p}}-1}{j}=\frac{1}{p}\left(1-\frac{p-1}{2 p} j+\ldots\right)
$$

which is slightly less than $\frac{1}{p}$.
(b) We can make it at the end of the next complete period, when the amount of the payment should be

$$
\frac{(1+j)-(1+j)^{1-\frac{1}{2}}}{j}=\frac{1}{p}\left(1+\frac{p-1}{2 p} j-\ldots\right)
$$

which is slightly more than $\frac{1}{p}$.

In practice, the amount of the final payment is invariably taken as $\frac{1}{p}$ so that the total actual payments made correspond with the total period of the annuity. To conform to the above theory such a final payment of $\frac{1}{p}$ should be made neither at the end of the final complete period nor at the end of $\frac{1}{p}$ th of it but at a point approximately halfway between these two points. However, in practice the final payment, of $\frac{1}{p}$, is usually made at the end of $\frac{1}{p}$ th of the period, except in the case of weekly annuities when it is often made at the end of the week. The theoretical error introduced by these sensible practical procedure is of course negligible.

Appendix III

So far in this paper and the examples it has been implicitly assumed that all the annuities dealt with are payable at the end of the period of payment; that is at the end of each year for yearly annuities, at the end of each week for weekly annuities and so on. The amounts and present values of annuities payable at the beginning of the period can be immediately derived from those of annuities payable at the end of the period as follows:-

Present value of an annuity of 1 per annum for n years payable (in installments of $\frac{1}{\mathbf{r}}$) at the beginning of each $\frac{1}{\mathbf{r}}$ th of a year equals

$$
a \frac{(r)}{\left.-1-\frac{1}{r} \right\rvert\,}+\frac{1}{r} \text { or alternatively } a_{\overline{\mathrm{B}}}^{(\mathrm{rr}}\left(1+\frac{j_{(r)}}{\mathrm{r}}\right)
$$

Amount of an annuity of 1 per annum for n years payable (in installments of $\frac{1}{\mathbf{r}}$) at the beginning of each $\frac{1}{\mathbf{r}}$ th of a year equals

$$
s_{\left.\frac{(r)}{n+\frac{1}{r}} \right\rvert\,}-\frac{1}{\mathbf{r}} \text { or alternatively } s_{\bar{\pi}(r)}^{(r)}\left(1+\frac{j_{(r)}}{r}\right)
$$

Appendix IV

Up to this point it has been implicitly assumed that, in the case of an annuity payable r times a year, valued at rate of interest i, the rate of interest given is an effective annual rate and not a nominal annual rate convertible r times a year. If in any instances the given rate is a nominal one the valuation of the annuity is effected very readily by working in time units of $\frac{1}{r}$ th of a year.

For example the present value of an annuity of 1 a month for 60 months, at 3% per annum effective rate of interest is

$$
12 \frac{1-v^{5}}{j_{(12)}} \text { at } 3 \%
$$

but at 3% per annum nominal rate convertible monthly it is

$$
\frac{1-v^{60}}{i} \text { at } 1 / 4 \% .
$$

Such calculations at nominal rates convertible with the same frequency as the annuity payments are relatively simpler than those at effective annual rates: the function $j_{(r)}$ does not have to be used. The only difficulty that may arise is in the determination of $\log (1+i)$ with sufficient accuracy. In the above example, 3% convertible monthly, the value of $\log (1+i)$ for $1 / 4 \%$ is given in Table I, but if we required the value of $5 / 24 \%$ corresponding to $21 / 2 \%$ convertible monthly we must proceed as in Appendix I, that is either we would have to calculate $\log 1.002083333$ from Table III, etc., or we must interpolate in Table I.

In the case of weekly annuities, we are dealing with very low rates of interest (per week) : e.g. at $31 / 4 \%$ convertible 52 times a year the weekly rate of interest is $\frac{1}{1800}=.000625=\frac{1}{16} \%$ and unless we need extreme accuracy for a large number of weeks it will be sufficient to calculate $\log (1+i)$ from Tables III, etc. If we do need greater accuracy than this gives, it is usually quicker to calculate $\log (1+i)$ from the series

$$
\log (1+i)=4342944819\left(i-\frac{i^{2}}{2}+\frac{i^{3}}{3}-\cdots\right)
$$

only the first three or four terms of which need to be used.

[^0]: * The value 52.1775 is arrived at as follows - a year contains 52 weeks plus one day in ordinary years and plus two days in leap years. In a period of 400 years there are 97 leap years (one every four years except in even century years like 1900 where the 19 is not divisible by four). Thus in 400 years there are 497 extra days (over the 52 weeks per year). Now 497 is conveniently divisible by 7 so there are 71 extra weeks in 400 years. So the average number of weeks in a year is $52 \frac{71}{400}$ or 52.1775 . It is convenient to use this figure with a terminating decimal rather than, say, the average number of weeks obtained from considering a year as consisting of 52 weeks plus $11 / 4$ days on the average, for this gives as the average number of weeks $52 \frac{5}{28}$ or 52.17857142 , a recurring decimal.

