## OPERATICA AND SERVICE MANUAL

# 8556A SPECTRUM ANALYZER LF SECTION 




Figure 1-1. Model 8556A Spectrum Analyzer LF Section with 8552B IF Section and 141T Display Section $1-0$

SECTION I

## GENERAL INFORMATION

## 1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the LF Section. This section covers instrument identifiFrion, description, options, accessories, specifica tions and other basic information.

1-3. Figure 1-1 shows the Hewlett-Packard Mode 8556A Spectrum Analyzer LF Section with the Model 8552B Spectrum Analyzer IF Section and the Model 141 T Display Section. Also shown are the accessories supplied with the 8556A (see para graph 1-15).
14. The various sections in this manual provide information as follows:

SECTION II, INSTALLATION, provides inormation relative to incoming inspection, power requirements, mounting, packing shipping, etc.
SECTION III, OPERATION, provides infor mation relative to operating the instrument.

SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.
SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs are made.

SECTION VI, REPLACEABLE PARTS, pro vides ordering information for all replaceable parts and assemblies.
SECTION VII, MANUAL CHANGES, nor mally will contain no relevant information in original issue of a manual. This section ed to provide back-dating and up-datin information in manual revisions or reprints.

SECTION VIII, SERVICE, inctudes all infor mation required to repair the instrument.
1.5. INSTRUMENTS COVERED BY MANUAL
16. Hewlett-Packard instruments carry a serial number (see Figure 1-2) on the back panel. When number plate of your instrument is the same as on
of the prefix numbers on the inside title page of this manual, the manual applies directly to the misixis. When the the inside title page of this pranual manual change sheets and manual up dating information is provided. Later editions or revisions to the manual will contain the required change information in Section VII.


Figure 1-2. Instrument Identification

### 1.7. DESCRIPTION

1-8. The Hewlett-Packard Model 8556A Spectrum Analyzer LF Section covers the frequency rang Analyzer LF Section covers the frequency range an IF Section and a Display Section it functions as the tuning section of a low frequency spectrum analyzer.

1-9. The analyzer electronically scans input signal and displays their frequency and amplitude on a CRT. The horizontal, $x$-axis, is calibrated in units of frequency and the vertical, $y$-axis, is calibrated in absolute units of voltage ( $\mu \mathrm{V}, \mathrm{mV}$, dBV) or power ( dBm ). T both amplitude and frequency mean be made.

1-10. The horizontal (frequency) axis can be swept three different ways:
a. The center of the CRT is set to a fre quency determined by the dial and the analyzer swept symmetrically about that frequency.
b. The analyzer is not swept but is used as a fixed frequency receiver. Signal amplitude can b read on the CRT and signal modulation can be viewed as with an oscilloscope

Table 1-5. Test Equipment Accessories (cont'd)

| Item | Required Features | Suggested <br> Model | Use* |
| :---: | :--- | :---: | :---: |
| Service Kit <br> (cont'd) | Selectro Female to Selectro Female Test Cable, <br> 2each, 8 inches long (HP 11592-60002) <br> Extender Board Assembly, 15 pins, 30 conductors, <br> for plug-in circuit boards (HP 11592-60011) <br> Fastener Assembly (2 each: HP 11592-2001 and <br> HP 1390-0170) <br> Selectro Jack-to-Jack Adapter (HP 1250-0827) <br> Wrench, open end, 15/16 inch (HP 8710-0946) <br> BNC Jack-to-OSM Plug Adapter (HP 1250-1200) <br> OSM Plug-to-Plug Adapter (HP 1250-1158) <br> Cable Assembly R and P Connector <br> (HP 11592-60013) | HP 11592A | A, T |



Figure 1-5. HP 11592A Service Kit

## 2-1. INITIAL INSPECTION

2-2. Mechanical Check
2-3. Check the shipping carton for evidence of damage immediately after receipt. If there is any visible damage to the carton, request the carrier's agent be present when the instrument is unpacked. Inspect the instrument for physical damage such as bent or broken parts and dents or scratches. If damage is found reler to paragraph 2-6 for recommended claim procedures. If the instrument appears to be undamaged, perform the electrical check (see paragraph 2-4). The packaging material should be retained for possible future use.

## 24. Electrical Check

$2-5$. The electrical check consists of following the performance test procedures listed in Section IV. These procedures allow the operator to determine that the instrument is, or is not, operating within he specifications listed in Table $1-1$. The initial performance and accuracy of the instrument are certified as stated on the inside front cover of this manual. If the instrument does not operate as apecified, refer to paragrpah $2-6$ for the recommended claim procedure

## 26. CLAIMS FOR DAMAGE

2-7. If physical damage is found when the instrunent is unpacked, notify the carrier and the earest Hewhetl-rackard Sales and Service Office immedialeiy. The Sales and Service Office will arrange for repair or replacement without waiting for a claim to be settled with the carrier.
2-8. The warranty statement for the instrument is on the inside front cover of this manual. Contact Sales and Service Office for information about warranty claims.

## 2-9. PREPARATION FOR USE <br> CAUTION

Before applying power, check the rear panel slide switch on the Display Section for proper position( 115 or 230 volts).

## 2-10. Shipping Configuration

2-11. Because of individual customer require ments, shipping configurations are flexible. Preparation for use is based on the premise that the

## SECTION II

## INSTALLATION

LF and IF Sections are installed in a Display Section; thus, the Spectrum Analyzer is physically and functionally complete for use. Since the LF and IF Sections are usually received separately, the trically connected and inserted in a display section or oscilloscope mainframe of the 140 -series. For mechanical and electrical connections, refer to Figure 2-1 and paragraph 2-20.

## 2-12. Power Requirements

2-13. The Spectrum Analyzer can be operated from a 50 to 60 hertz input line that supplies frither a 115 volt or 230 volt ( $\pm 10 \%$ in each case) either a 115 volt or 230 volt ( $\pm 10 \%$ in each case)
power. Consumed power varies with the plug-ins used but is normally less than 225 watts. Line power enters the Display Section or Mainframe, where it is converted to dc voltages, and then is distributed to the LF and IF Sections via internal connectors.
2-14. The $115 / 230$ power selector switch at the rear of the Display Section must be set to agree with the available line voltage. If the line voltage is 115 volts, the stide switch must be positioned so nally fused for 115 volt. The instrument is interIf 230 volt source is to replacement procedures in the Diaplay Section replacement procedures in the Display Section manual.

## 2-15. Power Cable

2-16. To protect operating personnel, the National Electrical Manufacturers Association (NEMA) and the International Electrotechnical Commission (IEC) recommends that the instrument panel and cabinet be grounded. The Spectrum Analyzer is third conductor is the ground conductor, and when the cable is plugged into an appropriate receptacle the instrument is grounded. To preserve the protec tion feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green lead on the adapter to ground.

2-17. Operating Environment
2-18. The Spectrum Analyzer uses a forced-air cooling system to maintain required operating emperatures within the instrument. The air intake and filter are located on the rear of the Display Section; air is exhausted through the side panel
c. The analyzer is swept from 0 Hz to higher frequency - selectable from 200 Hz to 200 kHz .
1-11. The vertical (amplitude) axis provides relative and absolute measurement capability in volts, into, 50 Bm ins. 600

1-12. The LF Section's input is isolated from the instrument chassis so that the CRT display is free of line frequency spurious responses due to ground loops.

1-13. Accurate frequency calibration is provided by selecting 20 kHz markers.
1-14. The LF Section also contains a tracking generator that produces a calibrated signal that precisely tracks the analyzer tuning frequency. This signal can be used to test the frequency frequency counter for making frequency measure ments that are accurate to 1 Hz (see Section III)

## 1-15. ACCESSORIES SUPPLIED

1-16. The 8556A LF Section requires a specia knob on the IF Section in place of the standard LOG REF LEVEL control. The special knob has calibraton (red scale) one for log calibration with the RF Sections (black scale), and one for linear calibration with all units (blue scale). This knob and an allen wrench to install it are supplied with each 8556A. Extra knobs (HP 08556-00013) are available from the nearest HP Sales and Service Office.
1.17. The 8556 A is supplied with the following accessories

HP 11905A 600 ohm Feed Thru Termination HP 11048B 50 ohm Feed Thru Termination HP 11660A Tracking Generator Shunt ( 50 ohm output)

1-18. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-19. The 8556A LF Section must be mated with an IF Section, such as the 8552A or the 8552B, and a Display Section, such as the 140 T or the 141T, before the units can perform as a spectrum analyzer.

## 1-20. IF Sections

1-21. The 8552A $1 F$ Section features calibrated bandwidths, log and linear amplitude calibration and calibrated scan times. The 8552 B IF Section
has all of the features of the 8552 A and, in addition, manual scan, greater frequency stability, narrower bandwidths and an expanded log scale (2 dB per division).

## 1-22. Display Sections

1-23. The 140T Display Section is equipped with a fixed persistence, non-storage CRT; the 141T Display Section is equipped with a vayable persislarge screen ( $8 \times 10$ inch) CRT

## 1-24. COMPATIBILITY

$1-25$. The 8556A LF Section is fully compatible with all current 8552A/B IF Sections; 8552A's with serial prefix 991 and below, and 8552B's with serial prefix 977 and below must be modified. The modification consists of adding a white-blue-grey in 8 and 13 pin 40 . (See appropriate 8552 manual for location of connectors.) or location of connectors.)

## NOTE

The 8556A requires a special knob on the IF Section in place of the standard LOG REF LEVEL control (see EQUIPMENT SUPPLIED).

1-26. The 8556A LF Section is fully compatible with all HP $140 \mathrm{~S} / \mathrm{T}$, HP $141 \mathrm{~S} / \mathrm{T}$, and HP 143 S Display Sections. The 8556A can be used with HP $140 \mathrm{~A} / \mathrm{B}$ and $141 \mathrm{~A} / \mathrm{B}$ Oscilloscope Mainframes but some performance specifications will be slightly degraded. (For more information, contact your nearest Hewlett-Packard office.)

## 1-27. OPERATING ACCESSORIES

1-28. Operating accessories for use with the $8556 \mathrm{~A} / 8552 / 140$ Spectrum Analyzer are listed in Table 1-3. They include a frequency counter, an oscilloscope camera, and various attenuators and probes.

## 1-29. TEST EQUIPMENT REQUIRED

$1-30$. Tables $1-4$ and $1-5$ list the test equipment and test equipment accessories required to check, adjust and repair the 8556A LF Section.

## 1-31. WARRANTY

1-32. The 8556A LF Section is warranted and certified as indicated on the inner front cover of this manual. For further information contact the nearest Hewlett-Packard Sales and Service Office; addresses are provided at the back of this manual.

Table 1-1. Specification

## 8556A/8552B/8552A

## FREQUENCY

Range:
20 Hz to $300 \mathrm{kHz}-8552$ B IF Section 100 Hz to $300 \mathrm{kHz}-8552 \mathrm{~A}$ IF Section

Tuning Dial Ranges of $0-30 \mathrm{kHz}$ and $0-300 \mathrm{kHz}$.
Scan Width: (On a 10 div. CRT horizontal axis.)
Per Division: 10 calibrated scan widths from 20 $\mathrm{Hz} /$ div to $20 \mathrm{kHz} /$ div in a $1,2,5$ sequence.
$0-10$ : 10 calibrated preset scans, from 200 Hz to 200 kHz in a $1,2,5$ sequence. Analyzer scans from zero frequency to ten times the scan width per division setting.
Zero: Analyzer is a fixed tuned reciever

## Accuracy:

Center Frequency: After 1 hour warmup, zero and 300 kHz adjustments, and with the Fine Tune centered, the dial indicates the display center frequency within the following specifications:
With 8552B IF Section:
$0-30 \mathrm{kHz}$ Range: $\pm 500 \mathrm{~Hz}$
$0-300 \mathrm{kHz}$ Range: $\pm 3 \mathrm{kHz}$
With 8552A IF Section:
$0-30 \mathrm{kHz}$ Range: $\pm 1 \mathrm{kHz}$
$0-300 \mathrm{kHz}$ Range: $\pm 5 \mathrm{kHz}$
Marker: RF markers every 20 kHz accurate to within $\pm 0.01 \%$. Markers controiled by front panel on/off switch.

## Scan Width:

With 8552B IF Section:
Frequency error between any two points on the display is less than $\pm 3 \%$ of the indicated frequency separation.
With 8552A IF Section:
Frequency error between any two points on he display is less than $\pm 5 \%$ of the indicated frequency separation.

## Stability:

## Residual FM:

With 8552B IF Section: Sidebands $>60 \mathrm{~dB}$ down 50 Hz or more from CW signal, scan time $\geqslant 1 \mathrm{sec} / \mathrm{div}, 10 \mathrm{~Hz}$ bandwidth.

With 8552A IF Section
Less than 20 Hz peak-to-peak
Noise Sidebands: More than 90 dB below CW signal, 3 kHz away from signal, with a 100 Hz IF bandwidth.

Frequency Drift: (After 1 hour warmup.)
With 8552B IF Section: Less than $200 \mathrm{~Hz} / 10$ min.

With 8552A IF Section: Less than $1 \mathrm{kHz} / 10$ min

## Resolution:

Bandwidth Ranges: IF bandwidths of $10 \mathrm{~Hz}(50$ Hz for 8552 A ) to 10 kHz are provided in a 1,3 , 10 sequence.
Bandwidth Aecuracy: Individual IF bandwidth 3 dB points calibrated to $\pm 20 \%$ ( 10 kHz bandwidth $\pm 5 \%$ ).

Bandwidth Selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ IF bandwidth ratios.

With 8552B IF Section: <11:1 for IF bandwidths from 10 Hz to $3 \mathrm{kHz} ;<20: 1$ for 10 kHz IF bandwidth. For 10 Hz bandwidth, 60 dB points are separated by less than 100 Hz .

With 8552A IF Section: <25:1 for IF bandwidths from 50 Hz to $300 \mathrm{~Hz} ;<20: 1$ for IF band widths from 1 kHz to 10 kHz .

## AMPLITUDE

## Absolute Amplitude Calibration Range:

## Log Modes:

| dBV | $0 \mathrm{dBV}=1 \mathrm{~V} \mathrm{~ms}$ |
| :--- | :--- |
| $\mathrm{dBm}-600 \Omega$ | $0 \mathrm{dBm}=1 \mathrm{~mW}-600 \Omega$ |
| $\mathrm{dBm}-50 \Omega$ | $0 \mathrm{dBm}=1 \mathrm{~mW}-50 \Omega$ |

Input impedance is $1 \mathrm{M} \Omega . \mathrm{dBm}$ ranges are referenced with input properly terminated externally.

Log Range: From $-150 \mathrm{dBm} / \mathrm{dBV}$ to +10
$\mathrm{dBm} / \mathrm{dBV}$ in 10 dB steps. Log reference level vernier, 0 to -12 dB continuously.

Log Display Range: $10 \mathrm{~dB} /$ div on a 70 dB display or $2 \mathrm{~dB} / \mathrm{div}$ on a 16 dB display (with 8552 B only).
Linear Sensitivity: From $0.1 \mu \mathrm{~V} /$ div to $1 \mathrm{~V} / \mathrm{div}$ in a $1,2,10$ sequence. Linear sensitivity vernier X 1 to X 0.25 continuously.

## Dynamic Range:

Average Noise Level: Specified with a $600 \Omega$ or less source impedance and INPUT LEVEL at $-60 \mathrm{dBm} / \mathrm{dBV}$.

|  | 1 kHz IF <br> Mode <br> Bandwidth | 10 Hz IF <br> Bandwidth |
| :---: | :---: | :---: |

$\mathrm{dBm}-50 \Omega<122 \mathrm{dBm}(180 \mathrm{nV})<142 \mathrm{dBm}(18 \mathrm{nV})$ $\mathrm{dBm}-600 \Omega<130 \mathrm{dBm}(250 \mathrm{nV})<150 \mathrm{dBm}(25 \mathrm{nV})$ $(250 \mathrm{nV})<152 \mathrm{dBV}(25 \mathrm{nV})$ Linear $\quad<400 \mathrm{nV}$ $<40 \mathrm{nV}$

Spurious Responses: Input signal level $\leqslant$ INPUT LEVEL Setting: out of band mixing responses,
harmonic and intermodulation distortion products are all more than 70 dB below the products are all more than 70 dB below the
input signal level 5 kHz to $300 \mathrm{kHz} ; 60 \mathrm{~dB} 20$ input signal level 5 kHz to $300 \mathrm{kHz} ; 60 \mathrm{~dB} 20$
Hz to 5 kHz . Third order intermodulation Hz products are more than 70 dB below the input signal level, 5 kHz to 300 kHz with signal separation $>300 \mathrm{~Hz}$.

Residual Reponses: (no signal present at input): with the INPUT LEVEL at $-60 \mathrm{dBm} / \mathrm{dBV}$ and the input terminated with $600 \Omega$ or less, all line the input terminated with $600 \Omega$ or less, and below $-120 \mathrm{dBm} / \mathrm{dBV}$. All other residual responses are below $-130 \mathrm{dBm} / \mathrm{dBV}$.

Gain Compression: For input signal level 20 dB above INPUT LEVEL setting gain compression is less than 1 dB .

INPUT LEVEL Control: $\mathbf{- 1 0}$ to $-60 \mathrm{dBm} / \mathrm{dBV}$ in 10 dB steps. Accuracy $\pm 0.2 \mathrm{~dB}$. Marking indicates maximum input levels for 70 dB spuriousfree dynamic range.

| Accuracy: | Log | Linear |
| :---: | :---: | :---: |
| Frequency Response: | $\pm 0.2 \mathrm{~dB}$ | $\pm 2.3 \%$ |
| Switching Between |  |  |
| Bandwidths (at $20^{\circ} \mathrm{C}$ ), |  |  |
| 100 Hz to 10 kHz : | $\pm 0.5 \mathrm{~dB}$ | $\pm 5.8 \%$ |
| 20 Hz to 10 kHz : | $\pm 1.0 \mathrm{~dB}$ | $\pm 12 \%$ |
| 10 Hz to 10 kHz : | $\pm 1.5 \mathrm{~dB}$ | $\pm 20 \%$ |
| Display: | $\pm .25 \mathrm{~dB} / \mathrm{dB}$ | $\pm 2.8 \%$ of full |
|  | but not more than $\pm 1.5 \mathrm{~dB}$ | 8 div display |
|  | over 70 dB |  |
|  | display range |  |

## INPUT

## Input Impedance: $1 \mathrm{M} \Omega$ shunted by $\approx 32 \mathrm{pF}$.

Maximum lnput Level: $10 \mathrm{~V} \mathrm{rms}, \pm 200 \mathrm{Vdc}$.
Ground terminals of BNC input connectors are isolated from the analyzer chassis ground to mi mize ground loop pickup at low frequencies.

Maximum Voltage, Isolated Ground to Chassis Ground: $\pm 100$ Vdc.

Isolated Ground to Chassis Ground Impe dance: $100 \mathrm{k} \Omega$ shunted by approximately $0.3 \mu \mathrm{f}$

## GENERAL

## Scan Time: 16 internal scan rates from $0.1 \mathrm{~ms} /$ div to Weight:

Scan Time Accuracy:
$0.1 \mathrm{~ms} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}:+10 \%$
$50 \mathrm{~ms} /$ div to 10 sec $/$ div: $+20 \%$.
Power Requirements: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz , less than 225 watts.

## Dimensions:

Model 140 T or 141 T Display Section: $9-1 / 5$ " high (including height of feet) $\times 16-3 / 4$ " wide $\times$ $18-3 / 8^{\prime \prime}$ deep ( $229 \times 425 \times 467 \mathrm{~mm}$ )
Model 143S Display Section: 21" high (including height of feet) $\times 16-3 / 4^{\prime \prime}$ wide $x 18-3 / 8^{\prime \prime}$ deep $(533 \times 425 \times 467 \mathrm{~mm}$ )

Model 8556A LF Section: Net, $8 \mathrm{lb}(3,7 \mathrm{~kg})$
Model 8552B IF Section: Net, $9 \mathrm{lb}(4,1 \mathrm{~kg})$
Model 8552B IF Section: Net, $9 \mathrm{lb}(4,1 \mathrm{~kg})$
Model 8552A IF Section: Net, 9 lb ( $4,1 \mathrm{~kg}$ ).
Model 140 T Normal Persistence Display Sec tion: Net $37 \mathrm{lb}(16,8 \mathrm{~kg})$.
Model 141T Variable Persistence Display Section: Net, $40 \mathrm{lb}(18 \mathrm{~kg})$.
Model 143S Large Screen Display Section: Net 62 $\mathrm{lb}(28,1 \mathrm{~kg})$.

## Accessories Included:

Model 11660A Tracking Generator Shunt Model 11048B $50 \Omega$ Feed Thru Termination Model 11095A 600 2 Feed Thru Termination

## TRACKING GENERATOR

Frequency Range: Tracks the analyzer tuning, 20 Hz to 300 kHz .

Amplitude Range: Continuously variable from 100
mV rms to greater than 3 V rms into an open circuit.

Amplitude Accuracy: With TRACKING GEN LEVEL in CAL position, output level at 100 kHz is $100 \mathrm{mV} \pm 0.3 \mathrm{~dB}$ into an open circuit.

Output Impedance: $600 \Omega$.

## Spectral Purity:

## Residual FM:

With 8552B IF Section: $<1 \mathrm{~Hz}$ peak-to-peak. With 8552A IF Section: $<20 \mathrm{~Hz}$ peak-to-peak
Harmonic Signals: $>40 \mathrm{~dB}$ down.

Frequency Response: $\pm 0.25 \mathrm{~dB} 50 \mathrm{~Hz}$ to 300 kHz
Spurious Outputs: $>50 \mathrm{~dB}$ down.

## FREQUENCY CHARACTERISTICS

Range: With 300 kHz Center Frequency and 20
$\mathrm{kHz} /$ div Scan Width, analyzer will scan linearly to 400 kHz .

Center Frequency Control: Approximately 10 turns to cover full dial indicator in both $0-30 \mathrm{kHz}$ and $0-300 \mathrm{kHz}$ ranges.
Fine Tune: Single turn control, $\pm 50 \mathrm{~Hz}$ on $0-30 \mathrm{kHz}$ range, $\pm 500 \mathrm{~Hz}$ on $0-300 \mathrm{kHz}$ range.
Zero Adjust: $\pm 27 \mathrm{kHz}$ range with $8552 \mathrm{~A}, \pm 12 \mathrm{kHz}$ range with 8552B.
0 -10f Scan Mode: With zero properly adjusted in PER DIVISION scan, 0 to 10 f scan mode will scan from 0 ( $\pm 500 \mathrm{~Hz}$ or 0.2 div, whichever is greater) Offset may be reduced to 0 readjusting frequency zero. Scan accuracy $\pm 5 \%$.

Resolution: See Figure $1-3$ for curves of typical 8556A/8552B/8552A Spectrum Analyzer resolution using different IF bandwidths.
Warmup Drift: (Typical - first hour's operation.)
With 8552B: 500 Hz
With 8552A: $\quad 15 \mathrm{kHz}$
Long Term Drift: (Typical - at fixed center fre quency after one hour warmup.)
With 8552B: $70 \mathrm{~Hz} / 10 \mathrm{~min}$ With 8552A: $400 \mathrm{~Hz} / 10 \mathrm{~min}$

Temperature Drift: (Typical.)
With 8552B: $200 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$
With 8552A: $\quad 2 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$

## AMPLITUDE CHARACTERISTICS

Dynamic Range: For operation from 5 kHz to 300 kHz with signal levels greater than INPUT LEVEL setting, see Figure 1-4 for typical distortion.

## Accuracy:

Log Reference Level: INPUT LEVEL and LOG REF LEVEL controls provide continuous $\log$ reference levels from $+10 \mathrm{dBm} / \mathrm{dBV}$ to -80 $\mathrm{dBm} / \mathrm{dBV}$ (may be decreased to $-92 \mathrm{dBm} / \mathrm{dBV}$ by using 12 dB Log Reference Level Vernier).


Figure 1-3. Typical Spectrum Analyzer Resolution

Input Level: Provides 50 dB control of input preamplification and attenuation to prevent in put overload. INPUT LEVEL markings of -60 $\mathrm{dBm} / \mathrm{dBV}$ to $-10 \mathrm{dBm} / \mathrm{dBV}$ indicate maximum input level for a minimum of 70 dB spurious


Single input signal, 300 Hz to 300 kHz . Second and third barmonic distortion products typically 10 dB higher below 30 Hz . Two input signals, 5 kHz to 300 kHz with $>300 \mathrm{~Hz}$ siqna separation.
$*$ Two input nal separation.

Figure 1-4. Typical Spectrum Analyzer Distortion Products

## AMPLITUDE CHARACTERISTICS (cont'd)

free dynamic range. Accuracy $\pm 0.2 \mathrm{~dB}(2.3 \%)$. Input may be overioaded up to 20 dB with the analyzer still providing useful measurement capability. See Figure 1-4.
Log Reference Level Control: Provides 90 dB of IF gain control in 10 dB steps to cover log and linear ranges. Accurate to $\pm 0.2 \mathrm{~dB}( \pm 2.3 \%)$.
Log Reference Level Vernier: Provides continuous 12 dB range. Accurate to $\pm 0.1 \mathrm{~dB}( \pm 1.2 \%)$ in 0 , $-6,-12 \mathrm{~dB}$ positions; otherwise $\pm 0.25 \mathrm{~dB}$ ( $\pm 2.8 \%$ ).
Log Reference Level, switching between $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} /$ div $\log$ scales ( 8552 B only):

Accuracy: $\pm 0.6 \mathrm{~dB}$
Temperature Stability: $\pm 0.07 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
Amplitude Stability: $\pm 0.07 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in log, $\pm 0.6$ $\% 0^{\circ} \mathrm{C}$ in linear.

Display Uncalibrated Light: Warns if a combinatio of control settings (IF or video bandwidth, scan time or scan width) degrades absolute calibration for CW signals. Typically accurate to $\pm 1$ position in scan width or scan time setting

Video Filter: Averages displayed noise; bandwidth of $10 \mathrm{kHz}, 100 \mathrm{~Hz}$ and ( 8552 B only) 10 Hz . Band width accuracy $\pm 20 \%$.

## DISPLAY CHARACTERISTICS

## Variahle Persistence/Storage (Model 141T):

Plug ins: Accepts Model 8550 series Spectrum Analyzer plug.ins and Model 1400 series time domain plug-ins.
Cathode-ray Tube:
Type: Post-accelerator storage tube, 9000 volt accelerating potential; aluminized P31 phos glare.
Graticule: $8 \times 10$ division (approximately 7,1 $8,9 \mathrm{~cm}$ ) parallax-free internal graticule; five subdivisions per major division on horizontal sistence:
Normal: Natural persistence of P31 phosphor (approximately 0.1 second).
Variable:
Normal Writing Rate Mode: Continuously variable from less than 0.2 second to more than one minute (typically to two or three minutes).
Maximum Writing Rate Mode: Typically from 0.2 second to 15 seconds.

Erase: Manual; erasure takes approximately rase: Manual; erasure takes approximately
350 ms ; CRT ready to record immediately after erasure.
Storage Time: Normal writing rate; more than 2 hours at reduced brightness (typically 4 hours). More than one minute at maximum brightness.

Fast Writing Speed: More than 15 minutes (typicaily 30 minutes) at reduced brightness or more than 15 seconds at maximum brightness.
Functions Used with Time Domain Plug-ins Only
Intensity modulation, calibrator, bem finder Intensity modulation, calibrator, beam finder.

## Normal Persistence (Model 140T)

Plug-ins: Same as 141T.
Cathode-ray Tube:
Type: Post-accelerator, 7300 volt potential and etched saftety glass face-plate reduces tinted (Normal persistence of P7 phosphor approximately 3 sec.)
Graticule: $8 \times 10$ division (approximately 7,6 $9,5 \mathrm{~cm}$ ) parallax-free internal graticule; fiv subdivisions per major division on horizontal subdivisions per
and vertical axes.
Functions Used with Time Domain Plug-ins Only: Same as 141T.
143S)
Plug-ins: Same as 141 T .
Cathode Ray Tube:
Type: Post-accelerator, 20 kV accelerating po tential aluminized P31 phosphor. (Persistenc approximately 0.1 sec .
Graticule: $8 \times 10$ divisions (approximately 8 10 -inch) parallax-free internal graticule, five sub divisions per major division on horizontal and
vertical axes.
unctions Used with Time Domain Plug-ins Only: Same as 141 T .

## GENERAL CHARACTERISTICS

## Scan Mode:

Int: Analyzer repetitively scanned by internally generated ramp; synchronization selected by scan trigger.

Single: Single scan with reset actuated by front panel pushbutton.

Ext: Scan determined by 0 to +8 volt external signal; scan input impedance more than $10 \mathrm{k} \Omega$.

Blanking: -1.5 V external blanking signal re quired.
Manual: Scan determined by front panel control; continuously variable across CRT in either direc. tion ( 8552 B only).

Scan Trigger: For Intermal Scan Mode, select between:

Auto: Scan free runs.
Line: Scan synchronized with power line frequency.

Ext: Scan synchronized with more than 2 volt ( 20 volt max.) trigger signal (polarity selected by internally located switch in Model 8552 IF Section).
Video: Scan internally synchronized to envelope of RF input signal (signal amplitude of 1.5 major divisions peak-to-peak required on display section CRT).

## Auxiliary Outputs:

Vertical Output: Approximately 0 to -0.8 V for 8 division deflection on CRT display; approximately $100 \Omega$ output impedance.

Scan Output: Approximately -5 to +5 V for 10 div CRT deflection, $5 \mathrm{k} \Omega$ output impedance.

Lift Output: 0 to 14 V ( 0 V , pen down). Output available in Int and Single Scan modes and Auto, Line, and Video Scan Trigger.

CRT Baseline Clipper: Front panel control adjusts blanking of CRT trace baseline to allow more denproved photographic records to be made.

EMI: Conducted and radiated interference is within requirements of MIL-I-16910C and MIL-I-6181D and methods CE03 and RE02 of MILSTD-461 (excest 35 to 40 kHz ) when 8556A and 8552B are (except 35 in 4140 T or 141 T Display Section.

Temperature Range: Operating, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, stor age, $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Table 1-3. Operating Accessories

| Model Number | Description |
| :---: | :---: |
| HP 10004A | 10:1 Divider Probe (oscilloscope type) |
| HP 1001A | Probe to BNC Adapter |
| HP 1110A |  |
| HP 5221B | Electronic Counter, Option 001 <br> Frequency Range: 5 Hz to 10 MHz <br> Sensitivity: 100 mV rms max <br> Gate Time: . 01, $0.1,1$ and 10 sec . <br> Accuracy: $\pm 0.001 \% \pm 1$ count <br> Readout: 6 digits |
| HP 4437A | 600 ohm Unbalanced Attenuator <br> Range: $0-119.9 \mathrm{~dB}$ in 0.1 dB increments <br> Accuracy: $\pm 0.2 \mathrm{~dB}$ to 90 dB <br> $\pm 0.5 \mathrm{~dB}$ to 110 dB <br> $\pm 1.0 \mathrm{~dB}$ to 119.9 dB <br> Input Power: 1 watt max |
| HP 197A | Oscilloscope Camera |

Table 1-4. Test Equipment

| Item | Minimum Specifications | Suggested Model | Use* |
| :---: | :---: | :---: | :---: |
| AC Voltmeter | Voltage Range: 1 mV to 10 V full scale ( -10 to +2 dB on dB scale) <br> Frequency Range: 20 Hz to 400 kHz <br> Accuracy: $\pm(2.5 \%$ of full scale $+2.5 \%$ of reading) <br> AC to DC Converter Output: 1V dc for full scale meter deflection <br> AC to DC Converter Accuracy: $\pm$ ( $1 \%$ of full scale $+1 \%$ of reading) <br> Input Impedance: $10 \mathrm{M} \Omega$ shunted by $\approx 25 \mathrm{pF}$ | HP 400EL | P,A,T |
| Oscilloscope | Frequency Range: dc to 50 MHz <br> AC or DC Coupling <br> Sensitivity: 0.005 V/DIV <br> Voltage Accuracy: $\pm 3 \%$ | $\begin{aligned} & \text { HP 180A/ } \\ & \text { 1801A/ } \\ & 1820 \mathrm{~B} \end{aligned}$ | A, T |
| X10 Oscilloscope Probe (2) | Resistance: $10 \mathrm{M} \Omega$ shunted by $\approx 10 \mathrm{pF}$ <br> Division Accuracy: 3\% | HP 10004A | A, T |

*Use: Performance $=$ P; Adjustment $=$ A: Troubleshooting $=T$
perforations. When operating the instrument, choose a location which provides at least three inches of clearance around the rear and both sides. Refer to the Display Section manual for maintenance instructions for the cooling system.
2-19. Interconnections
2-20. The LF and IF Sections are normally shipped separately; the plug-ins must be mechanically fitted together, electrically connected, and then inserted in the Display Section or mainframe. To make these connections, refer to Figure 2-1 and proceed as follows:
a. Set the IF Section on a level bench. Locate slot near right rear corner of LF Section; also locate metal tab on IF Section that engages with this slot.
b. Grasp the 8556A LF Section near middle of chassis and raise until it is a few inches above the IF Section.
c. Tilt LF Section until front of assembly is about 2 inches higher than the rear.
d. Engage assemblies in such a way that metal tab on the rear of the IF Section slips through the slot on LF Section
e. With the preceding mechanical interface completed, gently lower LF Section until electrical plug and receptacle meet.
f. Position LF Section as required to mate the plug and receptacle. When plug and receptacle are properly aligned, only a small downward pressure is required to obtain a snug fit.
g. After the LF and IF Sections are joined mechanically and electrically, the complete assembly is ready to insert in the Display Section.
h. Pick up the LF/IF Sections and center in opening of Display Section. Push forward until assembly fits snugly into Display Section.
i. Push in front panel latch to securely fasten assembly in place.

2-21. To separate the LF/IF Sections from Display Section and to separate the LF Section from the IF Section, proceed as follows
a. Push front panel latch in direction of arrow until it releases.
b. Firmly grasp the middle of latch flange and b. Firmly grasp the middle of
pull LF/RF Sections straight out.
c. Locate black press-to-release level near right front side of LF Section. Press this lever and imultaneously exert an upward pulling force on front edge of LF Section.
d. When the two sections separate at the front, raise LF Section two or three inches and slide netal tab at rear of IF Section out of the slot in which it is engaged.

### 2.22. STORAGE AND SHIPMENT

## 2-23. Original Packaging

2-24. The same containers and materials used in factory packaging can be obtained through the Hewlett-Packard Sales and Service Offices listed at he rear of this manual.
2-25. If the instrument is being returned to Hewiett-Packard for servicing, attach a tag indicating service required, return address, instrument model number and full serial number. Mark the container FRAGILE to assure careful handling.
2.26. In any correspondence refer to the instrument by model number and full serial number.

## 2-27. Other Packaging Materials

-28. The following general instructions should be ollowed when repackaging with commercially available materials:
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard Service rrvie or Center aclach a tas indicating the type of ervice required, $r$
b. Use a strong shipping container. A double
wall carton made of 350 pound test material is adequate.
c. Use enough shock-absorbing material (three c. Use enough shock-absorbing material (three instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to ssure careful handling.


Figure 2-1. LF Section and IF Section Interconnections

# SECTION III <br> OPERATION 

## 3-1. INTRODUCTION

3-2. This section provides complete operating instructions for the HP 8556A Spectrum Analyzer LF Section as used with an 8552 series IF Section and a 140 series Display Section.

## 3-3. PANEL FEATURES

3-4. Front panel controls, indicators and connectors are shown and briefly described in Figure 3-1. Rear panel controls and connectors are shown and described in Figure 3-2. For a detailed description of IF Section and Display Section controls and indicators, refer to their manuals.

## 3-5. OPERATOR'S CHECKS

3-6. Upon receipt of the analyzer, or when any plug-in is changed, perform the operational adjustments listed in Figure 3-2. This procedure corrects for minor differences between units and ensures that the LF Section. IF Section and Display Section are properly matched.

### 3.7. OPERATING CONSIDERATIONS

3-8. Front panel controls, indicators and connectors are shown and briefly described in Figure 3-1. The following information covers general operating considerations.

## 3-9. RF Input

3-10. The 8556A has an input impedance of 1 Megohm, shunted by approximately 32 pF , so compensated oscilloscope probes (see Table 1-3) can be connected directly to INPUT and used for in-circuit testing. To compensate an oscilloscope probe for use with the 8556 A , use the probe's BNC adaptor to connect the probe tip to TRACKING GEN OUT. Adjust the probe for optimum signal flatness on the CRT display.

3-11. Use the feedthrough terminations, 50 ohm and 600 ohm , when the device to be tested must be terminated in its characteristic impedance (for example, when measuring dBm ). To make a feedthrough termination for some other impedance, simply connect a resistor across the analyzer INPUT (connect the resistor to INPUT ground, not chassis ground). The value of the resistor should be equal to the characteristic impedance of the device.

## CAUTION

Do not apply more than 10 V rms and $\pm 200 \mathrm{Vdc}$ to INPUT.

## 3-12. Amplitude Ranges

3-13. The LOG/LINEAR switch on the IF Section works in conjunction with the $\mathrm{dBm} / \mathrm{dBV}$ switch on the LF Section. With LINEAR selected, the analyzer measures voltage. With LOG selected (either 2 dB or 10 dB on the 8552 B ), the analyzer measures voltage in dBV (that is, dB referenced to 1 volt) or power in dBm . The LF Section is calibrated to measure dBm in 50 or 600 ohms.

3-14. To use 2 dB LOG, first find the signal using 10 dB LOG; display the desired portion of the signal on the top 16 dB of the CRT display, then switch to 2 dB LOG. The top of the display, the LOG REF graticule, remains the same. The -70 dB graticule line becomes -14 dB (each major division becomes 2 dB ).

## NOTE

Do not make any VERTICAL GAIN or POSITION adjustments in 2 dB LOG as the front panel calibration will become invalid.

3-15. The LOG REF LEVEL control on the IF Section has three scales (see EQUIPMENT SUPPLIED in Section I): the red scale is used for LF Section log calibration, the black scale is used for RF Section log calibration, and the blue scale is used for linear calibration on all units, If the IF Section being used does not have the red scale, subtract 20 dB from the black scale to obtain the LOG REF level on the CRT.

## 3-16. First Mixer Balance

3-17. The first mixer in the 8556 A is balanced to insure a low level of first local oscillator feedthrough appearing on the display. Excessive LO feedthrough may result in inaccurate amplitude calibration and excessive intermodulation distortion. With the $\mathrm{dBm} / \mathrm{dBV}$ switch set to $50 \Omega \mathrm{dBm}$ and INPUT LEVEL set to $-60 \mathrm{dBm} / \mathrm{dBV}$, the first LO feedthrough (zero frequency marker) should be below -80 dBm . If it is above this level, perform the first mixer balance adjustment specified below.
amplifier is inserted, and the attenuator is set to 50 dB . If the amplifier response curve is at the -7 dB graticule line, the gain is $3 \mathrm{~dB}(50 \mathrm{~dB}-7 \mathrm{~dB})$

3-47. Important Considerations. When using the tracking generator for swept response measurements, the spectrum analyzer BANDWIDTH and ments, the spectrum analyzer BANDWIDTH and ferent significance. The BANDWIDTH setting mainly affects the average noise level and has only a secondary effect on resolution. Narrowing the BANDWIDTH improves dynamic range, but requires slower sweep rates. The DISPLAY UNCAL light in most cases will not apply. The best procedure in swept response measurements is to slow the scan rate until the display amplitude remains constant with changes in SCAN TIME PER DIVISION. At this point, the scan is the proper rate to satisfy the requirements of both the spectrum analyzer and the device under test.

3-48. Spurious responses are not displayed on the CRT due to the tracking signal source and receiver. Therefore, measurements may be made over a dynamic range limited only by gain compression as an upper limit and system noise as a lower limit

3-49. Devices, such as filters, which may have attenuation greater than 100 dB can be measured. 70 dB segments, and the results can be photographed to give a composite picture.

3-50. Precise Frequency Measurements. It may be desired to measure the frequency of a low level ignal which is close to a higher level signal. First, confirm that TRACK ADJ is correctly adjusted (see Figure 3-2), then connect a low frequency counter to the tracking generator's output. Using the MANUAL SCAN mode, scan the spectrum analyzer until you reach the peak of the signal is the frequency of the signal. Resolution of 1 Hz is possible using narrow scan widths and bandwidths on the spectrum analyzer. (The counter gate time for this resolution is 1 second.)

3-51. This same method may be applied to the measurement of points on a frequency response curve. Use a high impedance counter and connect the test device (see Figure 3-4). Then manually can to a point of interest on the response curve and read the frequency. This method is usefu when measuring the 3 dB or 6 dB bandwidth of a filter, discontinuities in a response characteristic, or identifying spurious modes on a device.

## 3-52. Variable Persistence and Storage Function

3-53. With the 141 T Display Section the operator can set trace persistence for a bright, steady trace that does not flicker, even on the slow sweeps required for narrow band analysis. The variable persistence also permits the display of low repetition rate pulses without flickering and, using the captured and displayed The storage capability allows side-by-side comparison of changing sigal

3-54. Persistence and Intensity. The persistence and intensity determine how long a written signal will be visible. Specifically, PERSISTENCE con trols the rate at which a signal is erased and INTENSITY controls the trace brightness as the signal is written. With a given PERSISTENCE setting, the actual time of trace visibility can be increased by greater INTENSITY. Since the PERSISTENCE control sets the rate of erasing a written signal, it follows that a brighter trace will require more time to be erased. Conversely, a rapidly The same principle applies to a stored display of high and low intensity

## CAUTION

Excessive INTENSITY will damage the CRT torage mesh. The INTENSITY setting for ny sweep speed should just eliminate trace blooming with minimum PERSISTENCE set ting.
3-55. Storage. The storage controls select the stor age mode in which the CRT functions. In ERASE, STORE and WRITING SPEED are disconnected The STORE selector disconnects the WRITING SPEED AND ERASE functions and implements signal retention at reduced intensity. In the STORE mode, PERSISTENCE and INTENSITY have no function.
3-56. Writing Speed. In the FAST mode, the rate of erasing a written display is decreased. Since the erasing rate is decreased, the entire screen becomes illuminated more rapidly and the display is time are considerably reduced

## 3-57. Photographic Techniques

3-58. Excellent signal photography is possible when the Spectrum Analyzer is used with an oscilloscope camera and when proper techniques are employed. Both the HP 196B and the 197A Oscilloscope Cameras attach directly to the analyzer's CRT bezel without adapters. Both cameras also have an Ultra-Violet light source that causes a
uniform glow of the CRT phosphor. This gives the inished photograph a grey background that contrasts sharply with the white trace and the blac raticule lines. Ultra-Violet illumination is no mally used only when the CRT is of the non-
storage and fixed persistence type (140T Display Section). For a storage or variable persistence CRT (1417 Display Section), a uniform gray backphotograph in STORE rather than in VIEW.

3-18. Remove the top cover from the Display Section (with power off).

## WARNING

Removing the top cover from the Display potentials (up to 7000 volts)

3-19. Set the analyzer controls as follows:
FREQUENCY .......................... 0 kHz
BANDWIDTH . . . . . . . . . . . . . . . . . .......... 3 kHz division
PER DIVISION $\cdots$.................. . PER DIVISION

INPUT LEVEL . . . . . . . . . . . . . . . . . . . . . $60 \mathrm{dBm} / \mathrm{dBV}$
$\mathrm{dBm} / \mathrm{dBV}$.......................... $50 \Omega \mathrm{dBm}$
BASE LINECCLIPPER . . . . . . . . . . . . . . . . . . ccw
VIDEO FILTER. .......................... 10 kH
COG/LINEAR 10 dB LOG
LOG REF LEVEL . . . . . . . . . . . . . . . . -40 dBm
SCAN MODE . . . . . . . . . . . . . . . . . . . . . . . . . INT
SCAN TRIGGER
AUTO
POWER

## NOTE

This procedure assumes that the analyzer is calibrated as specified in Figure 3-2 and has been allowed to warm up at least one-half hour.

3-20. Center the LO feedthrough signal on the display with the FREQUENCY control.
3-21. Using a non-metallic adjustment tool, alternately adjust $C$ and $R$ MIXER BALANCE ADJUSTMENTS (available on the LF Section to cover) to null the LO feedthrough.

3-22. When the signal is below -80 dBm , turn power off and replace the top cover.

## 3-23. OPERATING INSTRUCTIONS

3-24. The following instructions should enable an operator to make fast, accurate measurements with the low frequency analyzer. To define each instrument application is beyond the scope of this manual. For further details, there is a complete Note 134. This application note is available from your local HP Sales and Service Office.

3-25. In general, operation of the Spectrum Analyzer may be accomplished through the following steps:
a. Set the analyzer to scan the appropriate frequency range with the proper resolution.
3-2
b. Adjust the amplitude scale as necessary for the measurement.
c. Complete the measurement, and interpret the results.

3-26. Setting the Frequency Scan
$3-27$. There are three ways to set the frequency scan on the 8556 A . The first is the the $0-10 \mathrm{f}$ mode of operation. When this mode is selected, the spectrum analyzer scans from "zero" frequency to a preset upper limit selected by the PER DIVISION control. For example, if the PER DIVISION control is set to 10 kHz , and the $0-10 f$ mode is selected, the spectrum analyzer will scan from 0 to $100 \mathrm{kHz}, 10 \mathrm{kHz}$ per division. Scans may be selected from 20 Hz per division to 20 kHz per division in a $1,2,5$ sequence.
$3-28$. The second way to set the frequency scan is the PER DIVISION mode. In this mode, the frequency scan is symmetrical about the CENTER FREQUENCY tuned by the FREQUENCY conthis. The CENTER FREQUENCY dial indicates kHz . The horizontal scale is then selected by the PER DIVISION setting.

3-29. The third way is the ZERO scan mode. The spectrum analyzer becomes a fixed-tuned receiver at the frequency indicated by the CENTER FREQUENCY dial. In this mode, amplitude variations
are displayed versus time on the CRT.
$3-30$. Once the proper frequency scan is chosen, the resolution needed for the particular measurement should be determined. Resolution is mainly a function of the IF bandwidth selected. As narrower IF bandwidths are used, the resolution increases. At the same time, the spectrum analyzer must be swept at a slower rate. The bandwidth used should be only as narrow as is necessary for the particular application. The best procedure is to select the bandwidth necessary for the desired resolution, and then slow the scan rate (SCAN TIME PER DIVISION) until the DISPLAY
UNCAL light is unlit.

## 3-31. Adjusting the Amplitude Scale

3-32. Once the desired signals are displayed on the CRT the amplitude is set to give an optimum display. The first consideration is how the amplitude is to be measured. The 8556 A can measure power in dBm (for 50 ohm or 600 ohm systems), and it can measure voltage on a linear scale or in dB referred to one volt ( dBV ) on a log scale.
3-33. If power is the desired parameter, set the $\mathrm{dBm} / \mathrm{dBV}$ switch to dBm for the appropriate

## FRONT PANEL FEATURES

1 DISPLAY UNCAL: warning light indicates that the CRT display has become uncalibrated due to incompatible settings of SCAN WIDTH, SCAN TIME PER DIVISION, BANDWIDTH, and VIDEO FILTER
controls. controls.
(2) FREQUENCY: tunes the CENTER FREQUENCY in SCAN WIDTH PER DIVISION and ZERO scan
modes. FINE TUNE allows high resolution adjust modes. FINE TUNE allows bigh resolution adjustments in narrow scans.
(3) ZERO ADJ: calibrates CENTER FREQUENCY dial for "zero" frequency
4) 300 kHz ADJ: calibrates CENTER FREQUENCY dial for 300 kHz
dynamic range. This control should be set to agre with the signal level read on the CRT

12 TRACKING GEN LEVEL: adjusts the output leve of the tracking signal present at the TRACKING GEN OUT. When the CAL position is selected, it gives an output of 100 mV for calibrating the spectrum
anayzer dilay.
13 RANGE kHz : selects CENTER FREQUENCY dia range of $0-30 \mathrm{kHz}$ or $0-300 \mathrm{kHz}$.
(14) INPUT: one megohm unbalanced input for signals to be measured.
(5) BANDWIDTH: selects resolution bandwidth of the spectrum analyzer from 10 Hz to 10 kHz in a 1,3 sequence. ( $8552 \mathrm{~A}, 50 \mathrm{~Hz}$ and 100 Hz to 300 kHz in a
1,3 sequence.)

6 AMPL CAL: calibrates display amplitude for absolute voltage and power measurements.

1 CENTER FREQUENCY: dial indicates the CENTER FREQUENCY for SCAN WIDTH PER DIVISION and ZERO scan modes. Calibrated in 5 kHz increments for $0-300 \mathrm{kHz}$ range and 500 Hz increments for $0-30 \mathrm{kHz}$ range.
8 SCAN WIDTH: selects spectrum analyzer frequency scanning mode. 0-10f repetitively tunes the specthe setting of the PER DIVISION control. (e.g., with PER DIVISION control set at 1 kHz , scan would be from $0-10 \mathrm{kHz}$, or 1 kHz per division.) PER DIVISION mode scans the spectrum analyzer symmetrically about the CENTER FREQUENCY with a
scan width set by the PER DIVISION control. In the ZERO scan mode, the analyzer becomes a fixed frequency receiver at the CENTER FREQUENCY.
(9) PER DIVISION: selects the CRT horizontal calibra tion (frequency scale) in the PER DIVISION and $0-10$ frequency scan modes.
(1i) TRACKING ADJ: tunes the TRACKING GEN OUT frequency to precisely track the tuning frequency of the spectrum analyzer
(11) INPUT LEVEL: adjusts the input signal level to the input mixer and input preamplifier to maximiz

15 $\mathrm{dB} \mathrm{m} / \mathrm{dBV}$ : selects log display absolute calibration for dBV or dBm referred to 50 ohms or calibration fo correct dBm measurements, an external termination of the proper impedance must be provided for the
input signals. input signals.

16 TRACKING GEN OUT: output signal tracks the spectrum analyzer tuning frequency. The signal may be used for swept frequency response measurements
or to drive a frequency counter for accurate frequency measurements. The signal output also serves to accurately calibrate the display for absolute amplitude.
1720 kHz MARKERS
places crystal controlled markers with 20 kHz spacing on CRT. These markers are accurate to $0.01 \%$, and are useful for calibrating the frequency axis

CAL OUTPUT: $-30 \mathrm{dBm}, 30 \mathrm{MHz}$ signal used for calibrating amplitude on other tuning sections (8553B, 8554L, 8555A).PEN LIFT OUTPUT, TRIG/BLANK INPUT: provides +14 V pen lift signal for use with X-Y recorders during retrace in SINGLE and INT SCAN MODES serves as an, LINE, or AUTO SCAN TRIGGER. It serves as an input connector for external blanking TRIGGER is selected it becomes an input connector for the external trigger signal.
(20) VERTICAL OUTPUT: provides output proportional to vertical deflection on CRT. Approximately 100 mV per major division with 100 ohm output
impedance.

## FRONT PANEL FEATURES

(21) SCAN IN/OUT: provides output voltage propor tional to CRT horizontal deflection. 0 voits equals
center screen with 1 volt per division $(-5$ to +5 V full screen). Output voltage available in SINGLE, MAN, and INT SCAN MODES. In EXT SCAN MODE, the connector is used as an input for 0 to +8 V external
scan signal. san signal.
22 DISPLAY ADJUST: these controls adjust the deflecion circuit gain and offset levels to match the IF section to a particular display section.
23) LOG REF LEVEL - LINEAR SENSITIVITY: these controls set the absolute amplitude caiibration of the CRT display. In the 10 dB LOG or 2 dB LOG modes, the sum of the two control settings determines the
LOG REF LEVEL (top graticule line on CRT) In the LOG REF LEVEL (top graticule line on CRT). In the settings determines the CRT scale factor in volts per division. A special knob is provided for use with the 3556A. This knob is described under OPERATING CONSIDERATIONS (paragraph $3-15$ ).

24 LOG/LINEAR: selects display mode for logarithmic display with scale factors of 10 dB per division or 2 Belected by LINEAR SENSTIIVITY (2 dB per division not available with 8552A).
25) SCAN TRIGGER: selects synchronizing trigger when
in the INT SCAN MODE.

AUTO: scan free runs.
LINE: scan synchronized to power line frequency.
EXT.: scan initiated by external positive or negati pulses ( $2-20 \mathrm{~V}$ ) applied to TRIG/BLANK INPUT

VIDEO: scan internal synchronized to envelope of RF input signal. Signal amplitude of 1.5 divisions peak-to-peak ( $\min$.) required on display section CRT.
26 SCAN MODE: selects scan source.
INT.: analyzer repetitively scanned by internally generated ramp; synchronization selected by SCAN which analyzer is being scanned.
EXT.: scan determined by externally applied 0 to +8 V signal at SCAN IN/OUT

MAN: scan determined by MANUAL SCAN control scan continuously variable across CRT in either direc tion. (Not available with 8552A.)

SINGIE: single scan initiated by front panel pushutton. SCANNING lamp indicates time during which analyzer is being scanned.

Initiates or resets scan when SINGLE SCAN MODE is selected.
28 SCAN TIME PER DIVISION: selects time required to scan one major division on CRT display. Control ZERO scan.

29 VIDEO FILTER: post detection low pass filter for ffective averaging of distributed signals such as noise. Bandwidths of $10 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz selectable; ominal bandwidth 400 kHz in OFF position. ( 10 Hz position not available with 8552 A .)

30 BASE LINE CLIPPER: allows blanking of the bright base line area of the CRT for better photography and improved display of transient phenomena.

31 MANUAL SCAN: controls spectrum analyzer horiontal scan in the MAN SCAN MODE. (Not available on 8552A.)
32 CAL 10V and 1V: 10 V or 1 V square wave used to calibrate time domain plug-ins ONLY

33 FOCUS: focuses CRT spot for best definition.
34) BEAM FINDER: returns CRT trace to the center of the screen regardless of deflection potentials with time domain plug-ins ONLY.

35 NON STORAGE, CONV: defeats the storage and variable persistence features of the CRT. Persistence is that of the standard P31 phosphor

36 INTENSITY: adjusts the intensity of the trace on the CRT.

## CAUTION

Excessive INTENSITY will damage the CRT storage mesh. Whenever trace looming oceurs, turn INTENSITY down

31 ERASE: erases the CRT in the WRITING SPEED AST or STD mode of operation. CRT ready to asord immediately after erasure.

## FRONT PANEL FEATURES

33 PERSISTENCE: adjusts the trace fade rate from 0.1 sec, to more than 2 minutes in the WRITING SPEED FAST or STD modes of operation.

39 WRITING SPEED FAST, STD: these controls select the writing speed of the CRT in the PERSISde of operation. The WRITING SPEED STD mode is almost always selected for spectrum analysis applications.

40 STORE TIME: controls the storage time and relative brightness of the display in the SIORE mode of operation. Storage time more than 2 minutes at maximum brightness, more than 2 hours at minimum brightness.STORE: stores the display on the CRT for extended viewing or photography. The CRT does not
write in the STORE mode.POWER: controls power to the mainframe and to both plugins.

43 ASTIG: adjusts the shape of the CRT spot
(44) TRACE ALIGN: used to adjust the CRT trace to atign with the horizontal graticule lines.
45 CRT Graticule with LOG and LIN seales. LOG REF is the level used to reference the amplitude o displayed signals in the LOG display mode. LINEAR display amplitude is referenced from the baseline.

FRONT PANEL FEATURES


Figure 3-1. Front Panel Features (4 of 4)

## OPERATIONAL ADJUSTMENTS

## OPERATIONAL ADJUSTMENTS

## INPUT POWER

a. Set $115 / 230$ switch to correspond with available input voltage. (The instrument is fused for 115 olt, $50 / 60 \mathrm{~Hz}$ operation; if 230 volt power is used, replacement procedures.)
b. Connect line power cord to instrument jack and to a line power outlet.
(2) INTENSITY MODULATION

St INT/EXT switch to INT. (Set to EXT only if CRT $Z$ axis is to be externally modulated - normall
only used with 1400 series oscilloscope plug-ins).

## (3) FOCUS AND ASTIGMATISM

a. Make the following instrument control settings RANGE

300 kH FREQUENCY
BANDWIDTH
SCAN WIDTH
PER DIVISION PER DIVISION
NPUT LEVEL $-20 \mathrm{dBm} / \mathrm{dBV}$
Bm/dBV ........ .........dBV
SCAN TIME PER DIVISION ...................... MLLISECOND
OUG REF LEVEL $\ldots \ldots \ldots \ldots \ldots \ldots$. 10 dBV
Vernier ..

IDEO FILTER
CAN TRIGGER
BASE LINE CLIPPER
WRITING SPEED
PERSISTENCE
NTENSIT
OWER

## horizontal position and gain

a. Alternately adjust HORIZONTAL GAIN and HORIZONTAL POSITION so that the trace just fill the horizontal graticule line.
b. Using the VERTICAL POSITION contro bring the trace to the bottom graticule line (ignor any slight misalignment of the trace).

## 6 VERTICAL POSITION AND GAIN

a. Connect TRACKING GEN OUT to the INPUT (do NOT use a feedthrough termination). Set the FILTER to 10 kHz . Use the LOG REF LEVEL vernier to set the trace to the -70 dB graticule line at the center of the CRT. (Adjust AMPL CAL counter clockwise, if necessary, to lower trace.)
b. Turn the LOG REF LEVEL clockwise 7 steps (without moving vernier) while observing the trace (without moving vernier) while observing the trace.
The trace should move up the CRT in 10 dB steps. If it does not, adjust VERTICAL GAIN to bring the trace to the top graticule line
c. Turn the LOG REF LEVEL fully counterclock wise and repeat steps 6 a. and 6 b . until no further adjustment is necessary.

## 7 amplitude calibration

a. Set the LOG REF Level to - 20 dBV (set vernier to zero). Adjust AMPL CAL to bring the trace to the top graticule line at the center of the screen.
b. Set the LOG/LINEAR switch to LINEAR, and set LINEAR SENSITIVITY to 20 mV per division hecessary to bring the trace to the fifth graticule line ( $5 \times 20 \mathrm{mV}=100 \mathrm{mV}$ ).

## (8) tracking adjustment

LOG. Return the LOG/LINEAR switch to 10 dB LOG. Set the LOG REF LEVEL to -10 dBV , and set WIDTH to $10 \mathrm{~Hz}(50 \mathrm{~Hz}$ on 8552 A$)$. Adjust TRACE ADJ to bring the trace as high as possible on the screen.
b. Set the LOG/LINEAR switch to 2 dB LOG (o nepeat the peaking procedure, the retum to 10 dB LOG.
b. Adjust INTENSITY as looming occurs on CRT, tur INTENSITY deneve et LOG REF LEVEL maximum counterclockwise. Jsing the VERTICAL POSITION control, bring the trace to the -40 dB graticule line.
c. Switch the SCAN MODE to MAN, and use the MANUAL SCAN to bring the CRT dot to the cente of the screen. Adjust FOCUS and ASTIG for the smallest round dot possible.

## (4) TRACE ALIGNMENT

et SCAN MODE to INT. Adjust TRACE ALIGN to set the trace paraliel to the horizontal graticule lines.

## 9 frequency calibration

a. Disconnect TRACKING GEN OUT from INPUT and set the controls as follows: FREQUENCY RANGE TUNE BANDWIDTH SCAN WIDTH PER DIVISION 20 kHz MARKERS SCAN TIME PER Division $\ldots \ldots \ldots \ldots . . .1 \mathrm{kHz}$ SCAN TIME PER DIVISION .. 50 MILLISECONDS b. Center LO feedthrough signal, at CENTER FREQUENCY graticule on the display, with ZERO ADJ. The dial should be accurately set to 0 kHz .

## NOTE

If using an 8552A IF Section and ZERO ADJ will not zero the LO feedthrough, se paragraph 5-30 in Section VI.
c. Set RANGE to $0-300 \mathrm{kHz}$, and slowly tune FREQUENCY to 300 kHz , counting 20 kHz markers as they pass the CENTER FREQUENCY graticule on the display. Center the fifteenth marker ( 300 kHz ) on the CENTER FREQUENCY graticule
d. Adjust 300 kHz ADJ so that the dial reads 300 kHz when the fifteenth marker is centered
e. Repeat steps 9 b through 9 d until no further adjustment is necessary.

## NOTE

 Some minor readjustment of tracking adjustment and frequency calibration con trols may be necessary from time to tim for narrowband operation.

## OPERATIONAL ADJUSTMENTS

## (9) frequency calibration

a. Disconnect TRACKING GEN OUT from INPUT and set the controls as follow: 0rHz FREQUENCY RANGE ......................... 0-30 kHz BANDWIDTH ...................................... 300 Hz
 PER DIVISION 20 kHz MARKERS . . . . . . . . . . . . . . . . . . . . In SCAN TIME PER DIVISION ... 50 MiLLiSECONDS VIDEO FILTER ......
b. Center LO feedthrough signal, at CENTER FREQUENCY graticule on the display, with ZERO ADJ. The dial should be accurately set to 0 kHz .

NOTB
f using an 8552A IF Section and ZERO ADJ will not zero the LO feedthrough, see paragraph 5 -30 in Section VI.
c. Set RANGE to $0-300 \mathrm{kHz}$, and slowly tune FREQUENCY to 300 kHz , counting 20 kHz marken as they pass the CENTER FREQUENCY graticule on the display. Center the fifteenth marker ( 300 kHz ) on the CENTER FREQUENCY graticule.
d. Adjust 300 kHz ADJ so that the dial reads 300 $\mathbf{k H z}$ when the fifteenth marker is centered.
e. Repeat steps 9 b through 9 d until no further adjustment is necessary.

## NOTE

Some minor readjustment of tracking adjustment and frequency calibration conjusment may be necessary from time to time for narrowband operation.

OPERATIONAL ADJUSTMENTS

mpedance ( 600 ohms or 50 ohms). The input ould then be terminated with a feedthrough termination for the impedance selected.

3-34. For voltage measurements, the $\mathrm{dBm} / \mathrm{dBV}$ witch can be set to dBV for a log display, or the LOG/LINEAR switch can be set to LINEAR for a linear display. If no feedthrough termination is used, the spectrum analyzer will display the open circuit voltage. If a feedthrough termination is used, the voltage displayed will be that developed across the impedance of the termination.
3-35. The next step is to insure that the spectrum analyzer is operating linearly. That is, that all pectral components displayed are present at the This is readily accomplished: read the amplitude of the largest signal on the CRT, and set the INPUT LEVEL control to the setting nearest this amplitude. For example, if the largest signal on the display reads -13 dBV , the INPUT LEVEL control would be set to $-10 \mathrm{dBm} / \mathrm{dBV}$.

3-36. Now set the LOG REF LEVEL or LINEAR ENSITIVITY controls to give the desired display. One convenient way to set the LOG REF LEVEL to set the $-10 \mathrm{dBm} / \mathrm{dBV}$ position under the right hand indicator light. The $-60 \mathrm{dBm} / \mathrm{dBV}$ position will then fall under the left hand indicator light. In this position, setting the INPUT LEVEL control to the amplitude of the CRT This wives the widest possible display dynamic range for $-60 \mathrm{dBm} / \mathrm{dBV}$ and -10 $\mathrm{dBm} / \mathrm{dBV}$.

3-37. Using the Tracking Generator
3-38. The tracking generator is a flat signal source whose output irequency precisely tracks the specrum analyzer's tuning frequency. This output can e used as a source to test devices for frequency esponse. Also, by measuring the frequency of the racking generator's output with a frequency counter, the frequency of signals appearing on the spectrum analyzer display can be precisely determined.

3-39. Frequency Response Measurements. The frequency scan of the spectrum analyzer is set in quency scan of the spectrum analyzer is set in 3-26. The tracking generator's output frequency is determined by the spectrum analyzer's scan. If a device is being tested from $0-20 \mathrm{kHz}$, it is only necessary to set the spectrum analyzer to scan $0-20 \mathrm{kHz}$ using the $0-101$ mode.

3-40. The device under test will be connected in he signal path between the TRACKING GEN OUT and the INPUT. Some consideration must be
iven to the input and output impedances of th est device. If the device has a 600 ohm input impedance, the tracking generator can be con nected directly to the device. The 50 -ohm Trackin Generator Shunt supplied with the 8556 A should be used between the tracking generator and the test device for devices with a 50 -ohm input impe dance.

3-41. The output of the device should be term nated in its characteristic impedance. 50 ohm or 600 ohm devices can be terminated using the feedthrough terminations, and high impedance devices can be connected directly to the spectrum wich have a different impedance by using a simple which have a differen sistive termination.

3-42. The tracking generator output level is 100 mV ( $\mathbf{- 2 0} \mathrm{dBV}$ ) open circuit in the CAL position This amounts to $50 \mathrm{mV}(-26 \mathrm{dBV})$ across 600 ohms. If the 50 ohm shunt is used, the output will be 4.17 mV or -34.6 dBm into 50 ohms. The output level increases as TRACKING GEN LEVEL is turned clockwise from the CAL position.

3-43. System Calibration. The TRACKING GEN OUT should be connected through any necessary terminations to the spectrum analyzer INPUT. Th TRACKING GEN LEVEL can then be adjusted to bring the trace to the top graticule line, thus pro viding a convenient reference. The INPUT LEVEL control should be set to $-20 \mathrm{dBm} / \mathrm{dBV}$ and the Lou ReF LEVEL set to 0 dBm/aB ror maxi the dBm scale for 50 ohm devices and the dBV scale for 600 ohm devices.)

3-44. Insert the test device in the circuit, and it frequency response will be displayed directly on the CRT. Insertion loss can be read directly from the dB scale on the CRT.

3-45. Testing Amplifiers. When measuring ampli fier frequency response, some provision must be made for the gain of the amplifier to preven damage to the spectrum analyzer. A step attenua tor should be added to the test setup to decrease the tracking generator level by a known amount (see Figure 3-4).

3-46. Set the attenuator to 0 dB and perform the calibration procedure described under System Cali bration. Then the attenuation should be increased by an amount greater than the gain of the amplifier under test. The gain of the amplifier will be the sum of the attenuator setting and the dB reading from the CRT graticule at any point. (Remember, this is a negative number on the graticule.) For example, the spectrum analyzer is calibrated for reference at the top of the CRT. Now a tes


Figure 3-3. Typical Frequency Response Measurement (in 50 Ohms)


Figure 3-4. Typical Amplifier Frequency Response Measurement (in 600 Ohms) Using a Frequency Counter

## SECTION IV PERFORMANCE TESTS

## 4-1. INTRODUCTION

4-2. This section provides instructions for performance testing the Model 8556A Spectrum Analyzer LF Section. Front panel checks for routine inspection are given in Table 4-1. The performance tests verify that the instrument meets the specifications listed in Table 1-1.

4-3. Perform the tests in procedural order with the test equipment called for, or with its equivalent. During the tests, all circuit boards, shields, covers and attaching hardware must be in place, and the LF and IF Sections must be installed in the Display Section. Allow the analyzer to warm up at least one hour before performing the tests.

## 44. EQUIPMENT REQUIRED

4-5. Test equipment and test equipment accessories for the performance tests (designated " P " in the "use" column) are specified in Tables 1-4 and 1-5. Equipment other than that listed may be used providing that it meets or exceeds the minimum specifications listed in the tables.

## 4-6. OPERATIONAL ADJUSTMENTS

4-7. Before proceeding to the performance tests, perform the operational adjustments specified in Figure 3-2 (in Section III). These adjustments correct for minor differences between units and ensure that the LF Section, IF Section and Display Section are properly calibrated.

## 48. FRONT PANEL CHECKS

4-9. The front panel checks provide a quick method for verifying that the LF Section is operating correctly. After performing the operational adjustments described in Figure 3-2, set the analyzer's controls as specified in Table 4-1 and perform the checks.

## 4-10. TEST SEQUENCE

4-11. The performance tests are suitable for incoming inspection, troubleshooting, and preventive maintenance. A test card for recording data is included at the back of this section.

## 4-12. Perform the tests in the following order:

a. Allow analyzer to warm up one hour.
b. Perform operational adjustments listed in Figure 3-2.
c. Perform front panel checks listed in Table 4-1.
d. Perform the performance tests in the order given.

4-13. Each test is arranged so that the specification is written as it appears in Table 1-1. Next is a description of the test that includes any special instructions. Each test that requires test equipment has a test setup drawing and a list of required equipment.

## Table 4-1. Front Panel Checks

| Function | Procedure | Result |
| :---: | :---: | :---: |
| Calibration | 1) Perform operational adjustments specified in Section III (Figure 3-2), then set analyzer as follows: | 1) Analyzer calibrates normally. |
| BASE LINE CLIPPER <br> Scan | 2) Turn BASE LINE CLIPPER full clockwise. <br> 3) Tum BASE LINE CLIPPER full counterclockwise. <br> 4) Turn SCAN TIME PER DIVISION through its range. <br> 5) Return SCAN TIME PER DIVISION to 50 MILLISECONDS. Center LO feedthrough on CRT with FREQUENCY. | 2) At least bottom two divisions blank on CRT. <br> 4) Scan occurs in all positions. |
| BANDWIDTH \& SCAN WIDTH PER DIVISION | 6) Reduce SCAN WIDTH PER DIVISION to 20 Hz , reducing BANDWIDTH to maintain LO feedthrough about 2 divisions wide. Reduce SCAN TIME PER DIVISION to keep DISPLAY UNCAL lamp unlit; keep signal centered with FREQUENCY and FINE TUNE. | 6) LO feedthrough narrows as BAND. WIDTH is reduced and widens as SCAN WIDTH PER DIVISION is reduced. |
| $\begin{aligned} & \text { SCAN WIDTH } \\ & 0-10 \mathrm{f} \end{aligned}$ | 7) Set SCAN WIDTH to $0-10 f$, PER DIVISION to 20 kHz , BANDWIDTH to 1 kHz , and SCAN TIME PER DIVISION to 50 MILLISECONDS. <br> 8) Depress 20 kHz MARKERS switch. | 7) LO feedthrough appears at left graticule on CRT. <br> 8) Markers appear at about every major |
| DISPLAY UNCAL light | 9) Increase SCAN TIME PER DIVISION to 20 MILLISECONDS. | 9) DISPLAY UNCAL light illuminates. |

## 4-14. TRACKING GENERATOR AMPLITUDE

SPECIFICATIONS:
Amplitude Range: Continuously variable from 100 mV rms to greater than 3 V rms into an open circuit. Amplitude Accuracy: With TRACKING GEN LEVEL in CAL position, output level at 100 kHz is 100 mV $\pm 0.3 \mathrm{~dB}$ into an open circuit
Frequency Response: $\pm 0.25 \mathrm{~dB}, 50 \mathrm{~Hz}$ to 300 kHz .
DESCRIPTION: An AC Voltmeter is used to measure the amplitude range and accuracy and the frequency response of the tracking generator.

EQUIPMENT:
Frequency Counter
HP 400EL
HP 5327 C
$24^{\prime \prime}$ BNC Cable Assy HP 11086A

## PROCEDURE

1. Connect equipment as shown in Figure 4-1, connecting AC Voltmeter directly to TRACKING GEN OUT with 24 " BNC cable.
2. Set analyzer as follows
RANGE .
$0-300 \mathrm{kHz}$ 7ERO
TRACKING GEN LEEVEL CAL 100 mV


Figure 4-1. Tracking Generator Test Setup
3. Set voltmeter to measure 100 mV . It should read $100 \mathrm{mV} \pm 3.5 \mathrm{mV}$

$$
\text { Amplitude Accuracy: } 96.5
$$

$\qquad$ 103.5 mV
4. Disconnect BNC cable from voltmeter and connect it to Frequency Counter. Set TRACKING GEN LEVEL fully clockwise, and tune FREQUENCY and FINE TUNE for a 50 Hz reading on counter.

## 4-14. TRACKING GENERATOR AMPLITUDE (cont'd)

5. Set voltmeter to measure 3 volts. Disconnect BNC cable from counter and re-connect it to voltmeter. Voltmeter should read $\geqslant 3 \mathrm{~V}$;

$$
\text { Amplitude Range: } 3 \mathrm{~V}
$$

$\qquad$
6. Reset TRACKING GEN LEVEL to CAL 100 mV , and reset voltmeter to measure 100 mV
7. Slowly tune FREQUENCY from 50 Hz (set in step 5) to 300 kHz . Voltmeter should indicate a maximum variation of $0.5 \mathrm{~dB}( \pm 0.25 \mathrm{~dB})$ through entire range:

Frequency Response: $\qquad$ 0.5 dB

## 4-15. MARKER ACCURACY

SPECIFICATION: RF markers every 20 kHz accurate to within $\pm 0.01 \%$.
DESCRIPTION: The tracking generator is peaked to ensure that it is accurately tracking the analyzer tuning, and a frequency counter is connected to TRACKING GEN OUTPUT. Marker accuracy is tested using MANUAL SCAN (with 8552B IF Section) or ZERO SCAN (with 8552A IF Section) to tune the analyzer to the markers.


Figure 4-2. Marker Accuracy Test Setup
EQUIPMENT:
Frequency Counter
BNC Cable Assembly . . . . . . . . . . . . . . . . . . . . . . . . HP 5327C
5P

Tuning Tool (or small screwdriver) . . . . . . . . . . . . HP 8710-1010

## PROCEDURE:

1. Connect equipment as shown in Figure 4-2, connecting TRACKING GEN OUT to analyzer INPUT with BNC cable.

## 4-15. MARKER ACCURACY (cont'd)

2. Set analyzer as follows:

3. Using tuning tool or small screwdriver, adjust TRACK ADJ to peak trace as high as possible on CRT display.
4. Set LOG/LINEAR to LINEAR and LINEAR SENSITIVITY to $20 \mathrm{mV} / \mathrm{DIV}$ and, again, peak trace.
5. Disconnect TRACKING GEN OUT from analyzer INPUT; connect TRACKING GEN OUT to Frequency Counter (if necessary, increase TRACKING GEN LEVEL to get reading on counter)
6. Depress 20 kHz MARKERS switch, set BANDWIDTH to 300 Hz , and set SCAN WIDTH to PER DIVISION. Set LINEAR SENSITIVITY to $2 \mathrm{mV} / \mathrm{DIV}$, SCAN TIME PER DIVISION to 50 MILLISECONDS, and center 300 kHz marker on CRT display with FREQUENCY and FINE TUNE.
7. Set SCAN WIDTH PER DIVISION to 20 Hz, BANDWIDTH to 10 Hz , and SCAN MODE to MAN. Use MANUAL SCAN knob to set dot on CRT to peak of marker. Frequency Counter should read 300 kHz $\pm 30 \mathrm{~Hz}$ :

Marker Accuracy: 299,970 $\qquad$ $300,030 \mathrm{~Hz}$

## NOTE

With 8552A IF Section, perform test with SCAN WIDTH set to ZERO and BANDWIDTH set to 50 Hz ; peak trace with FINE TUNE to get reading.
8. Set SCAN MODE to INT, and tune FREQUENCY down to next marker (should be at 280 kHz ).
9. Set SCAN MODE to MAN and use MANUAL SCAN knob to set dot on CRT to peak of marker. Counter should read $280 \mathrm{kHz} \pm 28 \mathrm{~Hz}$

Marker Accuracy: 279,972 $\qquad$ $280,028 \mathrm{~Hz}$

## 4-16. SCAN WIDTH ACCURACY

## SPECIFICATION:

With 8552B IF Section:
Frequency error between any two points on the display is less than $\pm 3 \%$ of the indicated frequency separation.
With 8552A IF Section:
Frequency error between any two points on the display is less than $\pm 5 \%$ of the indicated frequency separation.
DESCRIPTION: Internal 20 kHz markers are used to test scan width accuracy on the CRT display PROCEDURE:

1. Set analyzer as follows:

2. Note that a 20 kHz marker appears at about every major division on the CRT display. Tune FREQUENCY and FINE TUNE to center a marker on the -4 graticule line (see Figure 4-3).
3. Measure amount of error, in divisions, that the marker deviates from the +4 graticule line. Marker should appear on the +4 graticule line plus or minus the specified tolerance (for IF Section being used):
With 8552 B IF Section, $\pm 0.24$ major
divisions: $+3.76 \quad+4.24$

| With 8552 A IF Section, $\pm 0.4$ major |
| :--- |
| divisions: $+3.60 \quad+4.40$ |

4. Set BANDWIDTH to 300 Hz , SCAN TIME PER DIVISION to 0.1 SECONDS, and SCAN WRIF PER DIVISION THE to center marker on the -4 graticule line.
5. Measure amount of error, in divisions, that the marker deviates from the +4 graticule line. Marker should appear on the +4 line plus or minus the specified tolerance:


Figure 4-3. Scan Width Accuracy Display

## 4-16. SCAN WIDTH ACCURACY (cont'd)

With 8552B IF Section, $\pm 0.24$ major divisions: $+3.76 \ldots+4.24$
With 8552A IF Section, $\pm 0.4$ major divisions: $+3.60 \ldots \ldots+4.40$
NOTE
If 8556 A appears to be out of tolerance, re-check scan width accuracy at 160,220 , and 280 kHz . If 8556 A scan width accuracy is within tolerance at any frequency, check IF Section scan time accuracy

## 4-17. CENTER FREOUENCY ACCURACY

SPECIFICATION: After 1 hour warmup, zero and 300 kHz adjustments, and with the FINE TUNE centered, the dial indicates the display center frequency within the following specifications:

$$
\begin{aligned}
& \text { With 8552B IF Section: } \\
& 0-30 \mathrm{kHz} \text { Range: } \pm 500 \mathrm{~Hz} \\
& 0-300 \mathrm{kHz} \text { Range: } \pm 3 \mathrm{kHz}
\end{aligned}
$$

With 8552A IF Section:
$0-30 \mathrm{kHz}$ Range: $\pm 1 \mathrm{kHz}$
0 - 300 kHz Range: $\pm 5 \mathrm{kHz}$
DESCRIPTION: Dial accuracy is tested using internal 20 kHz markers. Any error between the CENTER FREQUENCY dial reading and the marker frequency is measured on the CRT display.

## PROCEDURE:

1. Set analyzer as follows:
RANGE
$0-300 \mathrm{kHz}$ Centered
FREQUENCY
FINE TUNE
BANDWIDTH
SCAN WIDTH
PER DIVISION
INPUT LEVEL
ER DIVISION
$\mathrm{dBm} / \mathrm{dBV}$
20 kHz MARKERS
SCAN TIME PER DIVISION . . . . . . . . . . . . . . . . . . . . .
LOG REF LEVEL
LOG/LINEAR
. . . . -10 dBV
VIDEO FILTER
SCAN TRIGGER
BASE LINE CLIPPE
10 dB LOG
. . OFF
. INT
AUTO . cew
2. Using FREQUENCY control, center the dial marker on the CENTER FREQUENCY dial every 20 kHz from 20 kHz to 300 kHz (for example, $40 \mathrm{kHz}, 60 \mathrm{kHz}, 80 \mathrm{kHz}$, etc.). At each 20 kHz point, a 20 kHz marker should appear at CENTER FREQUENCY graticule on the CRT within the tolerance shown below:

With 8552 B IF Section:
$:-3$ $\qquad$ +3 divisions
+5 divisions

## 4-17. CENTER FREQUENCY ACCURACY (cont'd)

3. Switch SCAN WIDTH PER DIVISION to 500 Hz , and switch RANGE to $0-30 \mathrm{kHz}$. Tune FREQUENCY to 0 kHz and adjust ZERO ADJ to center LO feedthrough on CENTER FREQUENCY graticule. Then tune FREQUENCY to center the dial marker on the CENTER FREQUENCY dial at 20 kHz . The 20 kHz marker should appear at CENTER FREQUENCY graticule on CRT plus or minus the specified tolerance (in major divisions):
```
With 8552B IF Section: -1__+1 divisions
```


## 4-18. FREQUENCY RESPONSE

SPECIFICATION: Log: $\pm 0.2 \mathrm{~dB}$; Linear: $2.3 \%$.
DESCRIPTION: The tracking generator's output is calibrated with an AC Voltmeter and used to test the analyzer's frequency response. The analyzer (with the tracking generator) is set to 20 Hz (if using an 8552 B IF Section) or 100 Hz (if using an 8552 A IF Section). The analyzer is then tuned slowly to 300 kHz . Any variations in frequency response are read on a Digital Voltmeter connected to VERTICAL OUTPUT.


Figure 4-4. Frequency Response Test Setup

## 4-18. FREQUENCY RESPONSE (cont'd)

## EQUIPMENT:



1. Connect equipment as shown in Figure 4-4, connecting TRACKING GEN OUT to analyzer INPUT through the Tracking Gen Shunt, BNC Tee, 24" BNC Cable Assembly, and the 50 Ohm Feed Thru Termination. Connect AC Voltmeter to BNC Tee at feed thru with a 24 "'BNC Cable Assembly; connect first Digital Voltmeter to DC OUTPUT on rear panel of AC Voltmeter. Connect second Digital Voltmeter to VERTICAL OUTPUT on IF Section.
2. Set analyzer as follows
RANGE
FREQUENCY $. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~$ 0- 30 kHz
3. Using tuning tool or small screwdriver, adjust TRACK ADJ to peak trace as high as possible on CRT display.
4. Disconnect Tracking Gen Shunt from TRACKING GEN OUT and connect Frequency Counter to TRACKING GEN OUT. Set Frequency Counter to measure 100 Hz . Tune FREQUENCY and FINE tune down until counter reads 20 Hz (with 8552 B ) or 100 Hz (with 8552A). Disconnect counter and re-connect Tracking Gen Shunt to TRACKING GEN OUT.
5. Set AC Voltmeter to measure 30 mV full scale. Set first Digital Voltmeter (connected to AC Voltmeter) to measure 1.000 volts. Adjust TRACKING GEN LEVEL for a 1.000 V reference on first Digital Voltmeter.
6. Set second Digital Voltmeter (connected to analyzer VERTICAL OUTPUT) to measure 1.000 volts. Adjust LINEAR SENSITIVITY for a 700.0 mV reference on second Digital Voltmeter.

## 4-18. FREQUENCY RESPONSE (cont'd)

7. Tune FREQUENCY control to frequencies noted below. At each frequency, re-adjust TRACKING GEN LEVEL for a 1.000 volt reading on first Digital Voltmeter, then note reading on second Digita Voltmeter (don't re-adjust LINEAR SENSITIVITY). Second Digital Voltmeter should read 700.0 $\pm 16.1 \mathrm{mV}$.

| Frequency | Reading |
| :---: | :---: |
| 1 kHz | $683.9=716.1 \mathrm{mV}$ |
| 3 kHz | $683.9-716.1 \mathrm{mV}$ |
| 5 kHz | $683.9=716.1 \mathrm{mV}$ |
| 10 kHz | $683.9-716.1 \mathrm{mV}$ |
| 20 kHz | $683.9-716.1 \mathrm{mV}$ |
| 30 kHz | $683.9-716.1 \mathrm{mV}$ |

8. Set RANGE to $0-300 \mathrm{kHz}$ and tune FREQUENCY control to frequencies noted below. Again, re-adjust TRACKING GEN LEVEL for a 1.000 volt reading on first Digital Voltmeter. Second Digital Voltmeter should read $700.0 \pm 16.1 \mathrm{mV}$

Frequency
Reading
50 kHz
100 kHz
150 kHz
200 kHz
250 kHz
250 kHz
300 kHz

## 4-19. AVERAGE NOISE LEVEL

SPECIFICATION: Specified with a 600 ohm or less source impedance and INPUT LEVEL at -60 $\mathrm{dBm} / \mathrm{dBV}$.

| Mode | 1 kHz IF Bandwidth |  |
| :--- | :--- | :--- |
|  |  | 10 Hz IF Bandwidth |
| $\mathrm{dBm}-50 \Omega$ | $<-122 \mathrm{dBm}(180 \mathrm{nV})$ | $<-142 \mathrm{dBm}(18 \mathrm{nV})$ |
| $\mathrm{dBm}-600 \Omega$ | $<-130 \mathrm{dBm}(250 \mathrm{nV})$ | $<-150 \mathrm{dBm}(25 \mathrm{nV})$ |
| dBV | $<-132 \mathrm{dBV}(250 \mathrm{nV})$ | $<-152 \mathrm{dBV}(25 \mathrm{nV})$ |
| Linear | $<400 \mathrm{nV}$ | $<40 \mathrm{nV}$ |

DESCRIPTION: Average noise level is observed on the analyzer's calibrated CRT display with no signal input and the analyzer INPUT terminated in 600 ohms.
NOTE

The 10 Hz bandwidth specification can be checked only when using an 8552B IF Section. EQUIPMENT:

600 Ohm Feed Thru Termination
HP 11095A

## PROCEDURE:

1. Connect 600 Ohm Feed Thru Termination to INPUT. Set the analyzer as follows:


4-19. AVERAGE NOISE LEVEL (cont'd)
INPUT LEVEL
ZERO
20 kHz MARKERS
. $-60 \mathrm{dBm} / \mathrm{dBV}$
SCAN TIME PER DIVISION
50 MILLISECONDS
LOG/LINEAR
LINEAR SENSITIVITY
LINEAR
Vernier
VIDEO FILTER
$0.1 \mu \mathrm{~V} / \mathrm{DIV}$
SCAN MODE
SCAN TRIGGER
BASE LINE CLIPPER
INT
AUTO
2. Observe average noise level on CRT display. It should be less than 400 nV (the 4 graticule line on the CRT represents 400 nV ). Tune the analyzer to 300 kHz using FREQUENCY and RANGE controls; the average noise level should be less than 400 nV throughout the range:

LINEAR noise level: $\qquad$ 400 nV

## NOTE

Average noise level is read at the mid-point of the noise on the CRT display (see Figure 4-5)
3. Set LOG/LINEAR to 10 dB LOG. In turn, set dBm/dBV switch to $50 \Omega \mathrm{dBm}, \mathrm{dBV}$, and $600 \Omega$ dBm ; at each setting, tune the analyzer from 7 kHz to 300 kHz and read the average noise level. It should be as specified below:
$50 \Omega \mathrm{dBm}$ noise level, $<-122 \mathrm{dBm}$ : $\qquad$ $-122 \mathrm{dBm}$
dBV noise level, $<-132 \mathrm{dBV}$ : $\qquad$
$\qquad$ $-130 \mathrm{dBV}$
4. If using an 8552B IF Section, set BANDWIDTH to 10 Hz and check average noise level from 100 Hz to 300 kHz in all four modes. It should be as specified below:

LINEAR noise level, $<40 \mathrm{nV}$ : $\qquad$ 40 nV
$\Omega \mathrm{dBm}$ noise level, $<-142 \mathrm{dBm}$
$\qquad$ $-152 \mathrm{~dB}$ $-142 \mathrm{dBm}$
dBV noise level, $<-152 \mathrm{dBV}$ : $\qquad$ $-152 \mathrm{dBV}$
$600 \Omega \mathrm{dBm}$ noise level, $<-150 \mathrm{dBm}$ : $\qquad$ $-150 \mathrm{dBm}$


Figure 4-5. Average Noise Level Display

## 4-20. RESIDUAL RESPONSES

SPECIFICATION: (No signal present at INPUT.) With the INPUT LEVEL AT $-60 \mathrm{dBm} / \mathrm{dBV}$ and the input terminated with 600 ohms or less, all line related residual responses from 0 to 500 Hz are below -120 input terminated with 600 ohms or less, all line related residual resp.

DESCRIPTION: Residual responses are signals that appear on the display with no input signal. To measure them, a reference is selected so that -120 and $-130 \mathrm{dBm} / \mathrm{dBV}$ are easily determined, and the display is searched for signals appearing above this reference.

EQUIPMENT:
50 Ohm Feed Thru Termination

1. Connect 50 Ohm Feed Thru Termination to INPUT and set analyzer as follows:


## NOTE

Instruments that radiate magnetic spurs (such as counters, power supplies, etc.) should not be operating near 8556 A during this test.
2. Using FREQUENCY and FINE TUNE, tune LO feedthrough ( 0 Hz ) to far left graticule line on CRT display (see Figure 4-6)
3. Set BANDWIDTH to 10 Hz (with 8552B IF Section) or 50 Hz (with 8552A IF Section). Set SCAN TIME PER DIVISION to 2 SECONDS
4. Measure residual responses from the point that the skirt of the LO feedthrough crosses the -40 dB graticule on the CRT ( -120 dBm ) to CENTER FREQUENCY graticule ( 500 Hz ). They should be below -120 dBm :

$$
\text { Line Related Residual Responses: } \quad-120 \mathrm{dBm}
$$

## NOTE

Check that peak of LO feedthrough is below - 80 dBm . If it is not, null it (see Section III) and re-check line related residual responses.

## 4-20. RESIDUAL RESPONSES (cont'd)

5. Check that any residual responses from 500 Hz (CENTER FREQUENCY graticule) to 1 kHz (far right graticule line) are below -130 dBm :

Residual Responses, 500 Hz to 1 kHz :
$\qquad$ $-130 \mathrm{dBm}$
6. Set BANDWIDTH to 30 Hz ( 8552 B ) or 50 Hz (8552A), SCAN WIDTH PER DIVISION to 2 kHz and SCAN TIME PER DIVISION to 5 SECONDS. Tune FREQUENCY to 11 kHz . All residual responses should be below -130 dBm :

Residual Responses, 1 kHz to 20 kHz : $\qquad$ $-130 \mathrm{dBm}$
7. Set RANGE to $0-300 \mathrm{kHz}$ and tune FREQUENCY to 30 kHz . All residual responses should be below -130 dBm :

Residual Responses, 20 kHz to 40 kHz :___ 130 dBm
8. Tune FREQUENCY slowly to 300 kHz . All residual responses should be below -130 dBm :

Residual Responses, 40 kHz to 300 kHz : $\qquad$


Figure 4-6. Residual Responses Display

### 4.21. SPURIOUS RESPONSES

SPECIFICATION: Input signal level $\leqslant$ INPUT LEVEL setting: out of band mixing responses, harmonic and intermodulation distortion products are all more than 70 dB below the input signal level 5 kHz to 300 $\mathrm{kHz} ; 60 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 5 kHz . Third order intermodulation products are more than 70 dB below the input signal level, 5 kHz to 300 kHz with signal separation $>300 \mathrm{~Hz}$.

DESCRIPTION: An oscillator, with low harmonic distortion, is connected through a bandpass filter, to the analyzer. Any harmonic distortion due to the analyzer is read on the CRT display. Then intermodulation distortion is checked using a two-tone test.


Figure 4-7. Spurious Responses Test Setup

EQUIPMENT


## PROCEDURE:

1. Connect Oscillator through Filter Set to analyzer INPUT as shown in Figure 4-7.

## 4-21. SPURIOUS RESPONSES (cont'd)

2. Set analyzer as follows:

3. Switch Filter Set to 50 kHz filter. Set Oscillator for a $50 \mathrm{kHz}, \mathrm{CW}$ signal at $\mathbf{- 1 0} \mathrm{dBV}$. Center signal on analyzer CRT display with FREQUENCY and FINE TUNE. Set signal peak to CRT LOG REF graticule with Oscillator AMPLITUDE vernier.
4. Tune FREQUENCY to 100 kHz and 150 kHz ; at both frequencies all signals on CRT should be below -70 dB graticule line.

Harmonic Distortion: $\qquad$ $-70 \mathrm{~dB}$
5. Switch Filter Set to 500 Hz filter. Set SCAN WIDTH to $0-10$ f, and set Oscillator for a $500 \mathrm{~Hz}, \mathrm{CW}$ signal at -10 dBV . If necessary, set signal peak to CRT LOG REF graticule with Oscillator AMPLIT UDE vernier.
6. Set BANDWIDTH to 30 Hz (with 8552 B ) or 50 Hz (with 8552A) and set SCAN TIME PER DIVISION to 2 SECONDS. All harmonics of $500 \mathrm{~Hz}(1 \mathrm{kHz}, 1.5 \mathrm{kHz}$, etc.) should be below -60 dB graticule line:

> Harmonic Distortion:
$\qquad$ $-60 \mathrm{~dB}$
7. Disconnect Filter Set from analyzer INPUT. Connect Test Oscillator and Oscillator to BNC Tee; connect BNC Tee directly to INPUT.
8. Set one oscillator for a $70 \mathrm{kHz}, \mathrm{CW}$ signal ( $\mathrm{f}_{1}$ ), and the other oscillator for a $90 \mathrm{kHz}, \mathrm{CW}$ signal ( $\mathrm{f}_{2}$ ).
Set both oscillator output attenuators to -40 dBm .
9. Set INPUT LEVEL to -40 dBV , and SCAN WIDTH PER DIVISION to 20 kHz . Set SCAN TIME PER DIVISION to 2 SECONDS and BANDWIDTH to 300 Hz . Set both oscillator AMPLITUDE verniers so that both signal peaks are 3 dB below LOG REF graticule on CRT display.

## 4-21. SPURIOUS RESPONSES (cont'd)

10. Refer to Figure 4-8; the signals at $140 \mathrm{kHz}\left(2 \mathrm{f}_{1}\right)$ and $180 \mathrm{kHz}\left(2 \mathrm{f}_{2}\right)$ are oscillator second harmonics Any second order intermodulation product (due to the analyzer) will occur at $160 \mathrm{kHz}\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)$. Any third order intermodulation products will occur at $50 \mathrm{kHz}\left(2 \mathrm{f}_{1}-\mathrm{f}_{2}\right)$ and at $110 \mathrm{kHz}\left(2 \mathrm{f}_{2}-\mathrm{f}_{1}\right)$. The intermodulation products should all be below -70 dB graticule line:

Intermodulation Products Above 5 kHz : $\qquad$ $-70 \mathrm{~dB}$
11. Set one oscillator for a $1.7 \mathrm{kHz}, \mathrm{CW}$ signal ( $\mathrm{f}_{1}$ ), and the other oscillator for a $2 \mathrm{kHz}, \mathrm{CW}$ signal ( $\mathrm{f}_{2}$ ).
12. Set SCAN WIDTH PER DIVISION knob to 500 Hz , and set BANDWIDTH to 30 Hz (with 8552 B IF Section) or 50 Hz (with 8552A IF Section). If necessary, tune ZERO ADJ until LO feedthrough is centered at far left graticule line.
13. If necessary, use oscillator AMPLITUDE verniers to set both signal peaks 3 dB below LOG REF graticule on CRT. The signals at $3.4 \mathrm{kHz}\left(2 \mathrm{f}_{1}\right)$ and $4.0 \mathrm{kHz}\left(2 \mathrm{f}_{2}\right)$ are oscillator second harmonics. Any second order intermodulation product will occur at $3.7 \mathrm{kHz}\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)$; this will always be centered between the two second harmonics. Any third order intermodulation product will occur at 1.4 kHz $\left(2 f_{1}-f_{2}\right)$ and at $2.3 \mathrm{kHz}\left(2 f_{2}-f_{1}\right)$. The intermodulation products should all be below -60 dB graticule line:

Intermodulation Products Below 5 kHz : $\qquad$ $-60 \mathrm{~dB}$ NOTE

With the 8552A IF Section, the close-in third order intermodulation products will be hidden in the skirts of the fundamental frequencies.


Figure 4-8. Intermodulation Distortion Products Display

## 4-22. RESIDUAL FM

: With 852 IF Section: Sidebands $>60 \mathrm{~dB}$ down 50 Hz or more from CW signal, scan . $\geqslant 1 \mathrm{sec} / \mathrm{div}, 10 \mathrm{~Hz}$ bandwidth. With 8552 A IF Section: Less than 20 Hz peak-to-peak.
Dhecking ion: The test is written in two parts: the first part is for the 8552 B and tests residual FM b detecting a stable, CW signal for close-in sidebands. The second part is for the 8552 A ; the signal is slop detected on the linear portion of the IF filter skirt, then any detected FM is displayed in the time domain


## EQUIPMENT:

Cable Assy
600 Ohm Feed Thru Termination . . . . . . . . . . . . . . . HP 11001A

## PROCEDURE:

1. Connect equipment as shown in Figure 4-9, connecting the oscillator to analyzer INPUT through the 600 Ohm Feed Thru Termination.
2. Set analyzer as follows:

3. Set oscillator for a $2 \mathrm{kHz}, \mathrm{CW}$ signal at -20 dBm (read on analzyer CRT). Set NORM/LOW DIST an 8552A IF Section, skip to step 6 .

## 4-22. RESIDUAL FM (cont'd)

WITH 8552B


> Figure 4-10. Residual FM Display
4. Center signal on CRT display with FREQUENCY and FINE TUNE. Set BANDWIDTH to 10 Hz, SCAN TIME PER DIVISION to 2 SECONDS and SCAN WIDTH to 20 Hz . Re-center signal if necessary and set VIDEO FILTER to 10 Hz .
5. All sidebands 2.5 divisions ( 50 Hz ) from CENTER FREQUENCY graticule should be below -60 dB graticule line (see Figure 4-10):

$$
60 \mathrm{~Hz} \text { Sidebands (8552B) }
$$

$\qquad$ $-60 \mathrm{~dB}$
6. If using an 8552A, set LOG/LINEAR to LINEAR and LINEAR SENSITIVITY to $10 \mathrm{mV} / \mathrm{DIV}$. Center signal on CRT display with FREQUENCY and FINE TUNE; set SCAN WIDTH PER DIVISION to 200 Hz and BANDWIDTH to 100 Hz .
7. Using LINEAR SENSITIVITY vernier, set signal peak to top horizontal graticule line (see Figure 4-10). Then FINE TUNE so that upward slope of signal intersects CENTER FREQUENCY graticule line 1 division from the top. Note where upward slope of signal intersects middle (4) horizontal graticule line.
Horizontal Displacement: ____divisions
8. Use the horizontal displacement to calculate demodualtion sensitivity:
a. Convert horizontal displacement into hertz. For example, ( 200 Hz SCAN WIDTH PER DIVISION) $x(0.2 \mathrm{div})=40 \mathrm{~Hz}$.
b. Calculate demodulation sensitivity by dividing the vertical displacement in divisions into horizontal displacement in Hz . For example, $\frac{40 \mathrm{~Hz}}{3 \mathrm{div}}=\frac{13.1 \mathrm{~Hz}}{\text { div }}$
9. Turn SCAN WIDTH to ZERO. Tune FREQUENCY and FINE TUNE for a response level within the calibrated three division range (from 1 division from the top to the center horizontal graticule line).
10. Measure the peak-to-peak deviation and multiply it by the demodulation sensitivity obtained in step 8 b above. For example, 0.5 div p-p signal deviation $x 13.3 \mathrm{~Hz}=6.65 \mathrm{~Hz}$.

## div

Residual FM (8552A) : __ 20 Hz

## 4-23. NOISE SIDEBANDS

SPECIFICATION: More than 90 dB below CW signal, 3 kHz away from signal with a 100 Hz IF
bandwidth. bandwidth.

DESCRIPTION: A stable CW signal is applied to the analyzer. The amplitude of the noise sidebands are measured on the CRT display.


Figure 4-11. Noise Sidebands Test Setup

## EQUIPMENT:

Oscillator
Cable Assy . . . . . . . . . . . . . . . . . . . . . . . HP HP 1001 HP 11001A
HP 11095A

## PROCEDURE:

1. Connect equipment as shown in Figure 4-11, connecting the Oscillator to analyzer INPUT through the
2. Set analyzer as follows


### 4.23. NOISE SIDEBANDS (cont'd)


SCAN TRIGGER . . . . . . . . . . . . . . . . . . . . . AUTO
3. Set Oscillator for a $15 \mathrm{kHz}, \mathrm{CW}$ signal at about 0 dBm . Center the signal on analyzer CRT display with FREQUENCY and FINE TUNE.
Set signal peak to LOG REF graticule on CRT with Oscillator AMPLITUDE vernier. Set VIDEO Set signal peak to LOG REF graticulion) or 100 Hz (with 8552A IF Section). Set SCAN TIME PER DIVISION to 5 SECONDS.
5. Set LOG REF LEVEL to -20 dBm . Average level of noise sidebands more than 1.5 division ( 3 kHz ) away from signal should be below -70 dB graticule ( -90 dBm )

Noise Sidebands, $>90 \mathrm{~dB}$ down: $\qquad$ $-90 \mathrm{dBm}$ NOTE (see Figure 4-12).


Figure 4-12. Noise Sidebands Display

## 4-24. INPUT LEVEL CONTROL AND GAIN COMPRESSION

## SPECIFICATIONS:

INPUT LEVEL Control: -10 to $-60 \mathrm{dBm} / \mathrm{dBV}$ in 10 dB steps.
UT LEVEL Control: -10 to $-60 \mathrm{dBm} / \mathrm{dBV}$ in 10 dB steps.
Gain Compression: For input signal level 20 dB above INPUT LEVEL setting, gain compression is less than 1 dB .

DESCRIPTION: A Test Oscillator's calibrated attenuator is used to test the accuracy of the INPUT LEVEL control. Any error is read on a Digital Voltmeter connected to the analyzer's VERTICAL OUTPUT. Next, compression is checked by setting the oscillator 20 dB above the INPUT LEVEL setting.


Figure 4-13. Input Level Control and Gain Compression Test Setup

## EQUIPMENT:



PROCEDURE:

1. Connect equipment as shown in Figure 4-13, connecting the Test Oscillator to INPUT through the 50 Ohm Feed Thru Termination and the Digital Voltmeter to VERTICAL OUTPUT

## PERFORMANCE TESTS

## 4-24. INPUT LEVEL CONTROL AND GAIN COMPRESSION (cont'd)

2. Set analyzer as follows:

3. Set Digital Voltmeter on a range that will measure 700.0 mV . Set Test Oscillator OUTPUT ATTENUATOR to -10 dBm ; adjust oscillator frequency to 50 kHz and amplitude controls (COARSE and FINE) for zero on dBm meter scale.
4. Adjust analyzer FREQUENCY and FINE TUNE to peak signal at center of CRT display. Set SCAN WIDTH to ZERO. Adjust oscillator amplitude controls until Digital Voltmeter reads -700.0 mV
5. To test INPUT LEVEL control, set INPUT LEVEL and oscillator OUTPUT ATTENUATOR as shown below. In each case, voltmeter should read $-700.0 \pm 2.0 \mathrm{mV}$ :

| INPUT LEVEL/OUTPUT <br> ATTENUATOR <br> Settings | INPUT LEVEL |
| :---: | :---: |
| Error |  |
| -10 dBm | Reference |
| -20 dBm | $-698.0=-702.0 \mathrm{mV}$ |
| -30 dBm | $-698.0=-702.0 \mathrm{mV}$ |
| -40 dBm | $-698.0=-702.0 \mathrm{mV}$ |
| -50 dBm | $-698.0-702.0 \mathrm{mV}$ |
| -60 dBm | $-698.0-702.0 \mathrm{mV}$ |

6. To test gain compression, set analyzer INPUT LEVEL and oscillator OUTPUT ATTENUATOR to -10 dBm and adjust oscillator amplitude controls for zero on dBm meter scale.
7. Set LOG/LINEAR to LINEAR and LINEAR SENSITIVITY to $20 \mathrm{mV} / \mathrm{DIV}$; adjust LINEAR SENSITIVITY vernier for -700 mV read on Digital Voltmeter.
8. Set oscillator OUTPUT ATTENUATOR to +10 dBm ; set LINEAR SENSITIVITY to $0.2 \mathrm{~V} / \mathrm{DIV}$. Digital Voltmeter should read $-700 \pm 84 \mathrm{mV}$ :

$$
-616
$$

$\qquad$ $-784 \mathrm{mV}$

PERFORMANCE TESTS

## 4-25. TRACKING GENERATOR SPECTRAL PURITY

## SPECIFICATIONS:

Harmonic Signals: $>40 \mathrm{~dB}$ down.
Spurious Outputs: $>50 \mathrm{~dB}$ down.

## NOTE

Testing the analyzer's residual FM also tests the tracking generator's residual FM.
DESCRIPTION: A separate Spectrum Analyzer is used to measure the harmonic and spurious outputs from the 8556 A under test
spectrum analyzer


Figure 4-14. Tracking Generator Spectral Purity Test Setup
EQUIPMENT:
Spectrum Analyzer . . . . . . . . . . . . . . . . . HP 8556A/8552B/141T
50 Ohm Feed Thru Termination . . . . . . . . . . . . . . . . . . . HP 11048B
BNC Cable Assy . . . . . . . . . . . . . . . . . . . . . . . HP 10503A

## NOTE

If a second spectrum analyzer is not available, an HP 310A Wave Analyzer can be used to test spectral purity.

## PROCEDURE

1. Connect equipment as shown in Figure 4-14, connecting TRACKING GEN OUT of 8556A under test to INPUT of separate Spectrum Analyzer; connect through 50 Ohm Feed Thru Termination.

## PERFORMANCE TESTS

## 4-25. TRACKING GENERATOR SPECTRAL PURITY (cont'd)

2. Set 8556 A under test as follows:
RANGE
FREQUENCY
SCAN WIDTH
TRACKING GEN LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Set separate Spectrum Analyzer as follows:

4. Using separate Spectrum Analyzer LOG REF LEVEL vernier, position peak of 20 kHz signal at LOG REF graticule on CRT. All harmonics of $20 \mathrm{kHz}(40 \mathrm{kHz}, 60 \mathrm{kHz}, 80 \mathrm{kHz}$, etc.) should be below - 40 dB graticule:

Harmonics: $\qquad$ $-40 \mathrm{~dB}$
5. Switch Spectrum Analyzer SCAN WIDTH to PER DIVISION. All harmonics of 20 kHz should be below - 40 dB graticule:

Harmonics: $\qquad$ $-40 \mathrm{~dB}$
6. Switch SCAN WIDTH to 0-10f. On 8556A under test, set TRACKING GEN LEVEL to CAL 100 mV . Disconnect 50 Ohm Feed Thru from Spectrum Analyzer INPUT; connect BNC Cable Assembly directly to INPUT.
7. Set Spectrum Analyzer LOG REF LEVEL to 0 dBm and use vernier to reset peak of 20 kHz signal to LOG REF graticule on CRT.
8. All spurious signals on CRT (that is, all signals excepting LO feedthrough, 20 kHz , and 20 kHz harmonics) should be below -50 dB graticule line:

Spurious: $\qquad$ $-50 \mathrm{~dB}$
9. Switch SCAN WIDTH to PER DIVISION. All spurious signals should be below $\mathbf{- 5 0} \mathrm{dB}$ graticule line:
$\qquad$ $-50 \mathrm{~dB}$

Table 4-2. Performance Test Record (1 of 2)

| Hewlett-Packard Model 8556A Spectrum Analyzer LF Section |  | Test Performed by |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Serial No. |  | Date |  |  |  |
| Para. No. | Test Description | Measurement Units | Min. | Actual | Max. |
| 4-14. <br> Step: 3. <br> 5. <br> 7. | Tracking Generator Amplitude <br> Amplitude Accuracy <br> Amplitude Range <br> Fequency Response | $\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \\ \mathrm{~dB} \end{gathered}$ | $\begin{aligned} & 96.5 \\ & 3 \end{aligned}$ | - | $\begin{aligned} & 103.5 \\ & 0.5 \end{aligned}$ |
| 4-15. Step: 7. 9. | Marker Accuracy <br> Marker Accuracy ( 300 kHz ) <br> Marker Accuracy ( 280 kHz ) | $\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 299,970 \\ & 279,972 \end{aligned}$ | —— | $\begin{aligned} & 300,030 \\ & 280,028 \end{aligned}$ |
| 4-16. Step: 3. <br> 5. | Scan Width Accuracy <br> With 8552 B ( $20 \mathrm{kHz} / \mathrm{DIV}$ ) <br> With 8552 A ( $20 \mathrm{kHz} / \mathrm{DIV}$ ) <br> With 8552 B ( $5 \mathrm{kHz} /$ DIV) <br> With $8552 \mathrm{~A}(5 \mathrm{kHz} / \mathrm{DIV})$ | Divisions <br> Divisions <br> Divisions <br> Divisions | $\begin{aligned} & +3.76 \\ & +3.60 \\ & +3.76 \\ & +3.60 \end{aligned}$ |  | $\begin{aligned} & +4.24 \\ & +4.40 \\ & +4.24 \\ & +4.40 \end{aligned}$ |
| 4-17. <br> Step: 2. <br> 3. | Center Frequency Accuracy <br> With $8552 \mathrm{~B}(0-300 \mathrm{kHz})$ <br> With $8552 \mathrm{~A}(0-300 \mathrm{kHz})$ <br> With $8552 \mathrm{~B}(0-30 \mathrm{kHz})$ <br> With $8552 \mathrm{~A}(0-30 \mathrm{kHz})$ | Divisions <br> Divisions <br> Divisions <br> Divisions | $\begin{aligned} & -3 \\ & -5 \\ & -1 \\ & -2 \end{aligned}$ |  | $\begin{aligned} & +3 \\ & +5 \\ & +1 \\ & +2 \end{aligned}$ |
| 4-18: <br> Step: 7. <br> 8. | Frequency Response1 kHz <br> 3 kHz <br> 5 kHz <br> 10 kHz <br> 20 kHz <br> 30 kHz <br> 50 kHz <br> 100 kHz <br> 150 kHz <br> 200 kHz <br> 250 kHz <br> 300 kHz | $m V$ | 683.9 683.9 683.9 683.9 683.9 683.9 683.9 683.9 683.9 683.9 683.9 683.9 |  | 761.1 761.1 761.1 761.1 761.1 761.1 761.1 761.1 761.1 761.1 761.1 761.1 |
| 4-19. Step: 2. | Average Noise Level Linear ( 1 kHz ) $50 \Omega \mathrm{dBm}(1 \mathrm{kHz})$ dBV ( 1 kHz ) $600 \Omega \mathrm{dBm}(1 \mathrm{kHz})$ Linear ( 10 Hz ) $50 \Omega \mathrm{dBm}(10 \mathrm{~Hz})$ dBV ( 10 Hz ) $600 \Omega \mathrm{dBm}(10 \mathrm{~Hz})$ | nV <br> dBm <br> dBV <br> dBm <br> nV <br> dBm <br> dBV <br> dBm |  |  | $\begin{aligned} & 400 \\ & -122 \\ & -132 \\ & -130 \\ & 40 \\ & -142 \\ & -152 \\ & -150 \end{aligned}$ |
| 4-20. <br> Step: 4. <br> 5. <br> 6. | Residual Responses Line Related 500 Hz to 1 kHz 1 kHz to 20 kHz | dBm <br> dBm <br> dBm |  |  | $\begin{aligned} & -120 \\ & -130 \\ & -130 \end{aligned}$ |


| Para. No. | Test Description | Measurement Units | Min | Actual | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $4.20$ | Residual Responses (cont'd) <br> 20 kHz to 40 kHz <br> 40 kHz to 300 kHz | dBm dBm |  | - | -130 -130 |
| $\begin{array}{lr} 4-21 . \\ \text { Step } & 4 . \\ & 6 . \\ & 10 . \end{array}$ | Spurious Responses <br> Harmonic Distortion ( 5 kHz to 300 kHz ) <br> Harmonic Distortion ( 20 Hz to 5 kHz ) <br> Intermod. Products Above 5 kHz <br> Intermod. Products Below 5 kHz | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ |  |  | -70 -60 -70 -60 |
| $\begin{array}{lr} 4-22 . \\ \text { Step } & 5 . \\ & 7 . \\ & 10 . \end{array}$ | Residual FM 60 Hz Sidebands (8552B) Horizontal Displacement Residual FM (8552A) | $\underset{\substack{\mathrm{dB}_{\mathrm{*}} \\ \text { Divisions } \\ \mathrm{Hz}}}{\text { and }}$ |  |  | $\begin{gathered} -60 \\ 20 \end{gathered}$ |
| 4-23. <br> Step <br> 5. | Noise Sidebands Noise Sidebands | dBm |  |  | $-90$ |
| 4-24. <br> Step <br> 5. <br> 8. | Input Level Control and Gain Compression <br> INPUT LEVEL: -10 dBm <br> $-20 \mathrm{dBm}$ <br> $-30 \mathrm{dBm}$ <br> $-40 \mathrm{dBm}$ <br> $-50 \mathrm{dBm}$ <br> $-60 \mathrm{dBm}$ <br> Gain Compression | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | -698.0 -698.0 -698.0 -698.0 -698.0 -69.0 -616 |  | $\begin{aligned} & -702.0 \\ & -702.0 \\ & -702.0 \\ & -702.0 \\ & -702.0 \\ & -702.0 \\ & -784 \end{aligned}$ |
| 4-25. <br> Step <br> 4. <br> 5. <br> 8. | Tracking Generator Spectral Purity <br> Harmonics <br> Harmonics <br> Spurious <br> Spurious | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ |  |  | $\begin{aligned} & -40 \\ & -40 \\ & -50 \\ & -50 \end{aligned}$ |

## SECTION V

## ADJUSTMENTS

### 5.1. INTRODUCTION

5-2. This section describes adjustments required to return the analyzer LF Section to peak operating this section are test setups, required. Included in ment procedures. A test card for recording data is included at the back of this section. Adjustment ocation photographs are contained in foldouts in Section VIII.

5-3. Record data, taken during adjustments, in the spaces provided or in the data test card at the end of this section. Comparison of initial data with data taken during periodic adjustments assists in preventive maintenance and troubleshooting.

## 5-4. TEST EQUIPMENT REQUIRED

5-5. Tables 1-4 and 1-5 contain a tabular list of test equipment and test accessories required in the adjustment procedures. In addition, the tables consuggested manufacturers model number.

5-6. In addition to the test equipment and test accessories in Tables 1-4 and 1-5, a Display Section and an IF Section are required. Perform the Display Section and IF Section adjustments prior to performing the LF Section adjustments.

## 5-7. Posidriv Screwdrivers

5-8. Many screws in the instrument appear to be Phillips, but are not. Table $1-5$ gives the name and number of the Posidriv screwdrivers designed to fit these screws. To avoid damage to the screw slots, Posidriv screwdrivers should be used.

## 5-9. Blade Tuning Tools

5-10. For adjustments requiring a non-metallic metal-blade tuning tool, use the J.F.D. Model No non-metallic (HP10-1010). In situations not requing driver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjust ment control in the analyzer. This is especially critical when tuning variable slug-tuned inductors and variable capacitors.

## 5-11. HP 11592A Service Kit

5-12. The HP 11592A Service Kit is an accessory item available from Hewlett-Packard for use in
maintaining both the LF and IF Sections of the spectrum analyzer. Some adjustments can be made without this kit by removing the top cover from both the LF Section and the Display Section. However, this procedure exposes dangerous potentials in the Display Section chassis and should not be used unless absolutely necessary. All adjustments can and should be performed with the provided in the service kit. The kit can be obtained provided in the service kat. The kit can be obtained Service Office. Ser

5-13. Table 1-5, Test Equipment Accessories, contains a detailed description of the contents of the service kit, and any item in the kit may be ordere separately. In the case of the 11592-60015 Ex critical and fabrication should not be attempted However, other items in the kit may be built if desired.

## 5-14. Extender Cable Installation

5-15. Push the front panel latch in the direction indicated by the arrow until the latch disengages and pops out from the panel. Pull the plug-ins out of the instrument. Remove the top cover of the LF Section.

5-16. Place the plate end of the HP 11592-60015 Extender Cable Assembly in the Display Section and press firmly into place so that the plugs mak upside down as the plate has two holes correspond ing to the two guide rods in the mainframe.
5.17. Connect the upper cable plug to the LF Section and the lower cable plug to the IF Section The plugs are keyed so that they will go on correctly and will not make contact upside down.

## 5-18. FACTORY SELECTED COMPONENTS

$5-19$. Table 8-1 contains a list of factory selected components by reference designation, basis of selection, and schematic diagram location. Factory selected components are designated by an asterisk ${ }^{*}$ ) on the schematic diagrams in Section VIII

## 5-20. RELATED ADJUSTMENTS

5-21. These adjustments should be performed when the troubleshooting information in Section VIII indicates that an adjustable circuit is not
operating correctly. Perform the adjustments after repairing, or replacing, the circuit. The troubleshooting procedures specify the required adjustments.

5-22. Perform any required Display Section and IF Section adjustments before performing the LF Section adjustments. Also, perform the voltage checks in paragraph $5-23$ before performing any of the following adjustments.

## ADJUSTMENTS

## 5-23. VOLTAGE CHECKS

REFERENCE: Service Sheet 12 and IF Section and Display Section Operating and Service Manuals.
DESCRIPTION: Dc operating voltages for the LF Section are obtained from the Display Section, the IF Dection, they should be corrected before performing any of the LF Section adjustments.


Figure 5-1. Voltage Checks Test Setup

EQUIPMENT:


## ADJUSTMENTS

## 5-23. VOLTAGE CHECKS (cont'd

## PROCEDURE:

1. Extend LF and IF Sections on Extender Cable Assembly as shown in Figure 5-1.
2. Connect Digital Voltmeter from -10 V test point and +20 V test point (located on A 7 assembly cover) to chassis ground. The voltages should be $-10 \pm 0.02 \mathrm{~V}$ and $+20 \pm 0.10 \mathrm{~V}$
$\qquad$
$\qquad$ $-10.02 \mathrm{~V}$
+19.90 $\qquad$ $+20.10 \mathrm{~V}$
3. If either voltage is out of limits, see IF Section Operating and Service Manual
4. Connect voltmeter from -12.6 V test point and +100 V test point (located at left, rear of Master Board Assembly A11) to chassis ground. The voltages should be $-12.6 \pm 0.2 \mathrm{~V}$ and $+100 \pm 1.0 \mathrm{~V}$ :
$-12.4 \_-12.8 \mathrm{~V}$
$+99.0 \_+101.0 \mathrm{~V}$
5. If either voltage is out of limits, see Display Section Operating and Service Manual.
6. Connect voltmeter from -12.6 VF test point (located at left, rear of master board) to chassis ground. ( 20 kHz MARKERS button on analyzer front panel should be out.) The voltage should be -11.5 $\pm 0.5 \mathrm{~V}$ :
$-11.0$ $\qquad$ -12.0V
7. Connect voltmeter from 20 VI test point and - 20 VI test point (located on A 5 assembly cover) to A5 assembly cover ground (not chassis ground). The voltages should be $+20 \pm 2 \mathrm{~V}$ and $-20 \pm 2 \mathrm{~V}$ :

$$
\begin{aligned}
& +18 \_+22 \mathrm{~V} \\
& -18 \ldots-22 \mathrm{~V}
\end{aligned}
$$

8. If any of the voltages checked in steps 6 and 7 are out of limits, see Service Sheet 12 in this manual.

## 5-24. PRE-ATTENUATOR ADJUSTMENTS: COMP AND C IN

REFERENCE: Service Sheet 4.
DESCRIPTION: Pre-attenuator attenuation is checked. Then its flatness is set, adjusting COMP capacitor A5C7, so that attenuation at 300 kHz equals attenuation at 3 kHz . C IN capacitor A5C6 is adjusted so that INPUT capacitance does not change when the attenuator is used.


Figure 5-2. Pre-Attenuator Adjustment Test Setup
EQUIPMENT:


## PROCEDURE

1. Connect equipment as shown in Figure 5-2, disconnecting green cable (A3W1) so that AC Voltmeter can be connected to A5J2 (OUTPUT). Connect Test Oscillator to analyzer INPUT through 50 Ohm Feed Thru Termination.

ADJUSTMENTS

5-24. PRE-ATTENUATOR ADJUSTMiENTS: COMP AND C IN (cont'd)
2. Set analyzer as follows (controls not specified do not apply):

$$
\begin{aligned}
& \mathrm{dBm} / \mathrm{dBV} \\
& 50 \Omega \mathrm{dBm} \\
& \text { INPUT LEVEL } \\
& -40 \mathrm{dBm} / \mathrm{dBV}
\end{aligned}
$$

3. Set Test Oscillator for a $3 \mathrm{kHz}-27 \mathrm{dBm}$ signal as follows:

4. Set AC Voltmeter to measure -10 dB .
5. Adjust Test Oscillator AMPLITUDE (COARSE and FINE) so that AC Voltmeter reads -10.00 dB .
6. Set analyzer INPUT LEVEL to $-30 \mathrm{dBm} / \mathrm{dBV}$. Increase 3 kHz signal from Test Oscillator exactly 30 dB by setting OUTPUT ATTENUATOR to +10 dBm .
7. The AC Voltmeter should read $-10 \mathrm{~dB} \pm 0.20 \mathrm{~dB}$ :
$-9.8$ $\qquad$ $-10.2 \mathrm{~dB}$
8. Set Test Oscillator to 300 kHz by setting RANGE to X100K (don't change oscillator signal amplitude).
9. Adjust COMP capacitor A5C7 until AC Voltmeter reads within $\pm 0.10 \mathrm{~dB}$ of reading in step 7 (taken at 3 kHz ):

$$
(\text { step } 7) \pm 0.10 \mathrm{~dB}, 0.10
$$

$\qquad$ 0.10 dB
10. Disconnect AC Voltmeter, Test Oscillator, and 50 Ohm Feed Thru Termination from analyzer. Don't re-connect green cable (A3W1) to A5J2 (OUTPUT). Set analyzer $\mathrm{dBm} / \mathrm{dBV}$ switch to dBV and input level to $-40 \mathrm{dBm} / \mathrm{dBV}$.
11. Connect the 24 inch BNC cable assembly to L-C Meter UNKNOWN L or C input, and set meter to measure 32 pF . Null cable capacitance by zeroing the meter, then connect cable to analyzer INPUT
12. The L-C Meter should read approximately $32 \mathrm{pF}(\mu \mu \mathrm{F})$ :

$$
\approx 32 \mathrm{pF}
$$

$\qquad$
13. Set analyzer INPUT LEVEL to $-30 \mathrm{dBm} / \mathrm{dBV}$. Adjust C IN capacitor A5C6 until L-C Meter reads within $\pm 0.5 \mathrm{pF}$ of reading in step 12:
(step 12) $\pm 0.5 \mathrm{pF}, 0.5$ $\qquad$ 0.5 pF
14. Disconnect L-C Meter from analyzer INPUT. Re-connect green cable (A3W1) to A5J2 (OUTPUT). Perform mixer balance adjustments specified in paragraph 5-26.

## 5-25. 50.150 MHz LOCAL OSCILLATOR ADJUSTMENT: A6T1

## REFERENCE: Service Sheet 5

DESCRIPTION: Transformer A6T1 is tuned to peak the signal from the 50.150 MHz local oscillator. Then the signal's frequency and amplitude are checked


Figure 5-3. 50.150 MHz Local Oscillator Adjustment Test Setup

## EQUIPMENT:



## PROCEDURE:

1. Connect equipment as shown in Figure 5-3. Remove Frequency Converter Assembly A6 from chassis and re-install on extender board. Connect Oscilloscope to A6J3 using BNC cable and adapter.
2. Set Oscilloscope to measure 50.150 MHz at about 1 V peak-to-peak by setting TIME/DIV to $0.1 \mu \mathrm{sec}$ and VOLTS/DIV to 0.2 V .
3. Using non-metallic tuning tool, tune transformer A6T1 for maximum signal on Oscilloscope. Signal level should be 0.9 V to 1.6 V peak-to-peak.
$\qquad$ 1.6V P-P

## 5-25. 50.150 MHz LOCAL OSCILLATOR ADJUSTMENT: A6T1 (cont'd)

4. Disconnect BNC cable from Oscilloscope and connect it to Frequency Counter. Set counter to measure 50.150 MHz .
5. Oscillator frequency should be $50.150 \mathrm{MHz} \pm 3.0 \mathrm{kHz}$ :

$$
50.147
$$

$\qquad$ 50.153 MHz
6. Disconnect BNC cable from A6 assembly; remove extender board and install assembly into chassis. Re-connect cables to A6J1, J2 and J3. Perform mixer balance adjustments as specified in paragraph 5-26.

## 5-26. MIXER BALANCE ADJUSTMENTS: $C, R$ and $Z$

REFERENCE: Service Sheet 5
DESCRIPTION: C, R and Z MIXER BALANCE are adjusted until LO feedthrough measures less than - 80 dBm .


Figure 5-4. Mixer Balance Adjustments Test Setup
EQUIPMENT:


## PROCEDURE:

1. Extend LF and IF Sections on Extender Cable Assembly as shown in Figure 5-4. The A6 assembly should be mounted in chassis with all screws in place. Connect 50 Ohm Feed Thru Termination to analyzer INPUT.

## 5-26. MiXER BALANCE ADJUSTMENTS: $C, R$ and $Z$ (cont'd)

2. Set analyzer controls as follows:


This procedure assumes that analyzer has been allowed to warm up at least one-half hour and that it is calibrated as specified in Section III, Figure 3.2
3. Center LO feedthrough signal on display with FREQUENCY control.
4. Using non-metallic adjustment tool, adjust C and R MIXER BALANCE (A6R5 and C12) for best null of LO feedthrough.
5. Adjust Z MIXER BALANCE (A6C22) for LO feedthrough null, then repeat steps 4 and 5 until LO eedthrough is below -40 dB graticule on display $(<-80 \mathrm{dBm})$
$\qquad$ $-80 \mathrm{dBm}$
6. Secure top cover on 8556 A . Repeat step 4 until LO feedthrough is below -40 dB graticule line
$\qquad$

5-27. TRACKING GENERATOR ADJUSTMENTS: AMPL ADJ and FLATNESS ADJ
REFERENCE: Service Sheet 7
DESCRIPTION: Tracking generator level is adjusted at 100 kHz , flatness is adjusted at 300 kHz , and flatness is checked across the band from 20 kHz to 300 kHz . Then the generator's ability to deliver power into a load is checked

## NOTE

The following adjustments assume that the analyzer meets its frequency specifications.

## 5-27. TRACKING GENERATOR ADJUSTMENTS: AMPL ADJ and FLATNESS ADJ (cont'd)

Figure 5-5. Tracking Generator Adjustment Test Setup
EQUIPMENT:


## PROCEDURE:

1. Connect equipment as shown in Figure 5-5, connecting AC Voltmeter directly to TRACKING GEN OUT with 24" BNC cable.
2. Set analyzer as follows (controls not specified do not apply)

3. Set AC Voltmeter to read 100 mV full scale and adjust AMPL ADJ (A8A1R1) so that voltmeter reads exactly 100 mV (use non-metallic tuning tool)
4. Set FREQUENCY to 300 kHz and adjust FLATNESS ADJ (A8R9) so that voltmeter reads exactly 100 mV .

## 5-27. TRACKING GENERATOR ADJUSTMENTS: AMPL ADJ and FLATNESS ADJ (cont'd)

5. Slowly tune FREQUENCY from 300 kHz to 20 kHz . The voltmeter should indicate a maximum variation of 5 mV through entire range:
$\qquad$
6. Connect 600 Ohm Feed Thru Termination between TRACKING GEN OUT and AC Voltmeter. Set TRACKING GEN LEVEL full clockwise. Voltmeter should read $\geqslant 1.5 \mathrm{~V}$ :

$$
1.5 \mathrm{~V}
$$

$\qquad$
7. Slowly tune FREQUENCY from 20 kHz to 300 kHz . The voltmeter should indicate a maximum variation of 80 mV through entire range:
$\qquad$ 80 mV

5-28. FREQUENCY CALIBRATION ADJUSTMENT: OFFSET ADJ, 300 kHz ADJ, and ZERO ADJ REFERENCE: Service Sheet 9
DESCRIPTION: OFFSET ADJ is adjusted, and the dial is calibrated with the ZERO ADJ and 300 kHz ADJ controls.

## NOTE

This procedure assumes that analyzer horizontal display calibration has been performed (see Figure 3-2 in Section III)


Figure 5-6. Frequency Calibration Adjustment Test Setup
EQUIPMENT


HP 3480B/3484A Option 042
HP ${ }_{11592-60015}$

## 5-28. FREQUENCY CALIBRATION ADJUSTMENT: OFFSET ADJ, 300 kHz ADJ and ZERO ADJ (cont)

## PROCEDURE:

1. Connect equipment as shown in Figure 5-6, connecting Digital Voltmeter between Scan Width Switch Assembly A2, wafer S2-1R lug $111 / 2$ (where white-red-gray, 928 , wire is connected) and chassis ground
2. Set analyzer controls as follows:

3. Center 300 kHz ADJ, and center OFFSET ADJ (A7R13). Center LO feedthrough signal at CENTER FREQUENCY graticule with ZERO ADJ. Dial should be accurately set to 0 kHz
4. Adjust OFFSET ADJ for $0.0 \pm 5.0 \mathrm{mV}$ read on voltmeter
5. Set BANDWIDTH to 100 Hz and PER DIVISION to 100 Hz ; center signal on display with ZERO ADJ Switch RANGE to $0-30 \mathrm{kHz}$; signal shift should be less than 150 Hz :
$\qquad$ 150 Hz
6. Set BANDWIDTH to 1 kHz , PER DIVISION to 20 kHz and RANGE to $0-300 \mathrm{kHz}$; push 20 kHz MARKERS switch
7. Slowly tune FREQUENCY to 300 kHz counting 20 kHz markers as they pass CENTER FREQUENCY graticule on display. Center fifteenth marker ( 300 kHz ) on CENTER FREQUENCY graticule; adjust 300 kHz ADJ so that dial reads 300 kHz when fifteenth marker ( 300 kHz ) is centered.
8. Tune FREQUENCY to 0 kHz . Adjust ZERO ADJ to center LO feedthrough ( 0 Hz ) on display.
9. Repeat steps 7 and 8 until no further adjustment is necessary.

## 5-29. ANALOGIC CHECKS

REFERENCE: Service Sheet 10 and IF Section Operating and Service Manual.
DESCRIPTION: Perform the display calibration check tabulated below. If an adjustment is required, refer to the analogic adjusiment procedure in the IF Section manual.

If the table indicates that the DISPLAY UNCAL light should be off, it is acceptable for the light to be on if the light subsequently goes off when either SCAN TIME PER DIVISION Or SCAN WIDTH PER DIVISION is switched one position counter-clock wise.

5-29. ANALOGIC CHECKS (cont'd)

| VIDEO FILTER | SCAN TIME PER DIVISION | BAND. WIDTH | SCAN WIDTH PER DIVISION | SCAN WIDTH | DISPLAY UNCAL LIGHT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 Hz | 2 SECONDS | 100 Hz | 1 kHz | Per division | OFF |
| 10 Hz | 1 SECOND | 100 Hz | 1 kHz | Per division | ON |
| 100 Hz | 0.2 SECONDS | 1 kHz | 10 kHz | PER DIVISION | OFF |
| 100 Hz | 0.1 SECONDS | 1 kHz | 10 kHz | PER DIVISION | ON |
| 10 kHz | 10 MILLISECONDS | 3 kHz | 20 kHz | PER DIVISİON | OFF |
| 10 kHz | 5 MILLISECONDS | 3 kHz | 20 kHz | PER DIVISION | ON |
| OFF | 5 Milliseconds | 3 kHz | 20 kHz | ZERO | OFF* |
| OFF | 2 MILLISECONDS | 10 kHz | 20 kHz | PER DIVISION | OFF |
| OFF | 5 MILLISECONDS | 3 kHz | 20 kHz | Per division | OFF |
| OFF | 5 MILLISECONDS | 1 kHz | 20 kHz | PER DIVISİN | ON |
| OfF | 20 MILLISECONDS | 1 kHz | 10 kHz | PER DIVISİN | off |
| OfF | 20 MILLISECONDS | 300 Hz | 10 kHz | Per division | ON |
| OFF | 50 MLLLISECONDS | 300 Hz | 2 kHz | PER DIVISION | OFF |
| OFF | 50 MILLISECONDS | 100 Hz | 2 kHz | PER division | ON |
| OFF | 0.1 SECONDS | 100 Hz | 500 Hz | PER DIVISION | OFF |
| OFF | 0.1 SECONDS | 30 Hz | 500 Hz | PER DIVISION | ON |
| OFF | 0.2 SECONDS | 30 Hz | 100 Hz | PER DIVISION | OFF |
| OFF | 0.2 SECONDS | 10 Hz | 100 Hz | PER DIVISION | ON |
| OFF | 0.5 SECONDS | 10 Hz | 20 Hz | PER DIVISION | OFF |
| OFF | 0.5 SECONDS | 300 Hz | 20 Hz | PER DIVISION | OFF |
| OFF | 0.2 SECONDS | 300 Hz | 20 kHz | PER DIVISION | ON |
| OFF | 0.2 SECONDS | 300 Hz | 10 kHz | PER DIVISION | OFF |
| OFF | 0.1 SECONDS | 300 Hz | 10 kHz | PER DIVISION | ON |
| OFF | 0.1 SECONDS | 300 Hz | 5 kHz | PER DIVISION | OFF |
| OFF | 50 MILLISECONDS | 300 Hz | 5 kHz | PER DIVISION | ON |
| OfF | 50 MILLISECONDS | 300 Hz | 2 kHz | PER DIVISION | OFF |
| OFF | 20 MILLISECONDS | 300 Hz | 2 kHz | PER DIVISION | ON |
| OFF | 20 MILLISECONDS | 300 Hz | 1 kHz | PER DIVISION | OFF |
| OFF | 10 MILLISECONDS | 300 Hz 300 Hz | ${ }_{500}^{1 \mathrm{kHz}}$ | $\underset{\text { PER DIVISION }}{\text { PIVISION }}$ | ON |
|  |  |  |  |  |  |
| OFF | 5 MILLISECONDS | 300 Hz | 500 Hz | PER DIVISION | ON |
| OFF | 5 MILLISECONDS | 300 Hz | 200 Hz | PER DIVISION | OFF |
| OFF | 2 MILLISECONDS | 300 Hz | 200 Hz | PER DIVISION | ON |
| OFF | 2 2 MILLISECONDS | 300 Hz 300 Hz | 100 Hz | PER DIVISION | OFF |
| OFF | 1 MILLISECOND | 300 Hz | 100 Hz 50 Hz | ${ }_{\text {PER }}$ PER DIVISION | OFF |

[^0]
## 5-30. 8552A 47 MHz LO ADJUSTMENT

REFERENCE: Service Sheet 9 and 8552A IF Section Operating and Service Manual
DESCRIPTION: On some HP Model 8552A Spectrum Analyzer IF Sections, long term aging may have caused the center frequency of the 47 MHz LO to drift beyond the zero adjustment range of the 8556 A . If this is the case, the following simplified 47 MHz LO adjustment procedure can be used to readjust center
frequency and tuning accuracy.

EQUIPMENT:
Extender Cable Assy (if not available, see step 1)
HP 11592-60015
Tuning Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 8710-1010

## PROCEDURE:

1. Extend LF and IF Sections on Extender Cable Assembly (see paragraph 5-15 for step-by-step procedure). If the Extender Cable Assembly is not available, the adjustment can be made with the LF and IF Sections installed in the Display Section:
a. Remove 8552A and 8556A from Display Section.
b. Remove bottom covers from Display Section and 8552A.
c. Place Display Section on left side and plug 8552A and 8556A into Display Section. Be careful that 8552A does not hang up on Display Section guide rails.

## CAUTION

Removing the Display Section bottom cover exposes dangerous potentials (up to 7000 volts).
2. Turn analyzer on and allow to warm up at least one hour
3. Set analyzer as follows:

4. If necessary, adjust HORIZONTAL POSITION and GAIN on 8552A for a 10 division horizontal trace.
5. Depress 20 kHz MARKERS switch. Markers should appear at approximately every major vertical graticule line on CRT. Switch 20 kHz MARKERS switch out.

## 5-30. 8552A 47 MHz LO ADJUSTMENT (cont'd)

6. Using non-metallic tuning tool, slowly adjust 8552A A3A2C4 (see Assembly and Adjustment Using non-metalle tuning tool, slowly adjust 8552A ABA2C4 (see Assembly and Adjustment Location
7. Depress 20 kHz MARKERS switch. With LO feedthrough centered on far left graticule line, markers should be evenly spaced with ninth marker ( 180 kHz ) within $\pm 0.2$ division ( 4 kHz ) of the +4 graticule line. If not, adjust 8552A A5R42 TUNING RANGE and A3A2C4 until the 20 kHz markers are aligned
on the graticule lines and the LO feedthrough is centered on the far left graticule line. (A5R42 varies on the graticule lines and the LO feedthrough is centered
marker spacing and A3A2C4 varies location of markers.)
8. Tune FREQUENCY to 0 kHz (FINE TUNE centered), and set SCAN WIDTH PER DIVISION to 1 kHz and SCAN TIME PER DIVISION to 5 MILLISECONDS.
9. Adjust 8552A A2A3C4 until LO feedthrough is centered within $\pm 2$ divisions of center graticule line. Center LO feedthrough exactly on center graticule line with 8556 A ZERO ADJ.
10. Tune FREQUENCY to 300 kHz . Adjust 8556 A 300 kHz ADJ to center 300 kHz marker on center graticule line.
11. Turn analyzer off, remove 8552A and 8556A from Display Section, replace bottom covers, and reinstall 8556 A and 8552 A .


Figure 5-7. 47 MHz LO Adjustment Display

Table 5-2. Check and Adjustment Test Record

| Hewlett-Packard Model 8556A Spectrum Analyzer LF Section |  | Test Performed by |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Serial No. |  | Date ___ |  |  |
| Para. No. | Test Description | Measurement Units | Min. | Actual ${ }^{\prime}$ Max. |
| 5-23. <br> Step: 2. <br> 2. <br> 4. <br> 6. <br> 7. | Voltage Checks <br> -10 Volt Supply <br> +20 Volt Supply <br> -12.6 Volt Supply <br> +100 Volt Supply <br> -12.6 Volts Filtered <br> +20 Volts Isolated <br> -20 Volts Isolated | Vdc <br> Vdc <br> Vdc <br> Vdc <br> Vdc <br> Vdc <br> Vde | $\begin{aligned} & -9.98 \\ & +19.90 \\ & -12.4 \\ & +99.0 \\ & -11.0 \\ & +18 \\ & -18 \end{aligned}$ | $\square$-10.02 <br> +20.10 <br> -12.8 <br> $\square$ <br> -101.0 <br> -12.0 <br> +22 <br> -22 |
| $\text { 5-24. } \begin{array}{r} \text { Step: } 7 . \\ 9 . \\ 12 . \\ 13 . \end{array}$ | Pre-Attenuator Adjustments <br> Pre-Attenuator ( $30 \pm 0.10 \mathrm{~dB}$ ): <br> at 3 kHz <br> at 300 kHz <br> INPUT Capacitance <br> Pre-Attenuator Capacitance | dB <br> dB <br> pF <br> pF | $\begin{gathered} -9.8 \\ 0.10 \\ \approx 32 \\ 0.5 \end{gathered}$ | $\square$-10.2 <br> 0.10 <br> 0.5 |
| 5.25. Step: 3. 5. | 50.15 MHz Oscillator Adjustment Signal Level Frequency | V P-P MHz | $\begin{aligned} & 0.9 \\ & 50.147 \end{aligned}$ | $\begin{array}{ll} 1.6 \\ 50.153 \end{array}$ |
| 5-26. Step: 5. 6. | Mixer Balance Adjustment LO Feedthrough Level LO Feedthrough Level | dBm dBm |  | $\left[\begin{array}{r} -80 \\ -80 \end{array}\right.$ |
| 5.27. <br> Step: 5. <br> 6. <br> 7. | Tracking Generator Adjustments Flatness Max. Into Load Flatness at Max. | mVrms Vrms mVrms | $\begin{aligned} & 95 \\ & 1.5 \\ & 5 \end{aligned}$ | $\sim_{5}^{105}$ |
| 5-28. <br> Step: 6. | Frequency Calibration Adjustment RANGE Switch Shift | Hz |  | 150 |

# SECTION VI <br> REPLACEABLE PARTS 

## 6-1. INTRODUCTION

6-2. Table 6-1 is an index of reference designations and abbreviations used in Hewlett-Packard manuals.
6-3. Table 6-3 lists 8556A replaceable parts in alpha-numerical order of their reference designation.

6-4. Table 6-2 lists code number identification of part manufacturers. (Manufacturer's code and part number are supplied for each part listed in Table 63).

## 6-5. ORDERING INFORMATION

6-6. To obtain replacement parts, address order or inquiry to your local HP Sales and Service Office (see list at rear of manual for address). Identify parts by their HP part number.
6-7. To obtain a part that is not listed, include:
a. Instrument model number.
b. Instrument serial number.
c. Description of the part.
d. Function and location of the part.

Table 6-2. Reference Designators and Abbreviations used in Parts List

| REFERENCE DESIGNATORS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | = assembly | F | $=$ fuse | P | $=$ plug | v | vacuum tube, |
| B | - motor | FL | = Filter | Q | - transistor |  | neon bulb. |
| ${ }^{\text {BT }}$ | * battery | J | = jack | R | $=$ resistor |  | photocell, etc. |
| C | = capacitor | K | = relay | ${ }_{\text {RT }}$ | $=$ thermistor | VR | $=$ voltage |
| ${ }_{C P}$ | \% coupler | ${ }_{\text {L }}$ | = inductor | S | $=$ switch $=$ transfo |  | ${ }^{\text {regulator }}$ |
| CR | $=$ = diode | ${ }_{\text {M }}$ | = loud speaker | T8 | $=$ transformer $=$ terminal board | W | = cable |
| DS | = device signaling (lamp) | MK | $=$ microphone | TP | $=$ test point | $\mathbf{Y}$ | - crystal |
| E | $=$ misc electronic part | MP | = mechanica! part | U | $=$ integrated circuit | 2 | = tuned cavity. |
| ABBREVIATIONS |  |  |  |  |  |  |  |
| A | $=$ amperes | H | = henries | N/O | \# normally open | RMO | $=$ rack mount only |
| AFC | $=\underset{\text { automatic frequency }}{\text { control }}$ | HDW | $=$ hardware <br> - hexagonal | NOM NPO | $=$ nominal <br> $=$ negative positive | $\begin{aligned} & \text { RMS } \\ & \text { RWV } \end{aligned}$ | = root-mean square <br> - reverse working |
| AMPL | $=$ amplifier | HG | $=$ mereury |  | zero (zero tem- |  | voltage |
|  |  | HR | - hour (s) |  | perature coef- | S.B | - slow-blow |
| BFO | $=$ beat trequency oscilla. | Hz | $=$ Hertz | NPN | ficient) | ${ }_{\text {SER }}$ | = screw |
| BECU | $=$ ber ${ }_{\text {berylium }}$ | IF | $=$ intermediate freq | NPN | - negative-positive- | SECT | $=$ gelenium $=\operatorname{section}(\mathrm{s})$ |
| BH | = binder head | IMPG | - impregrated | NRFR | = not recommended | SEMICON | = memiconductor |
| BP | - bandpass | INCD | = incandescent |  | for field re- | SI | = silicon |
| BRS | = brass | INCL | $=$ includets) |  | placement | SIL | = silver |
| Bwo | = backward wave oseilla- | $\begin{aligned} & \text { INS } \\ & \text { INT } \end{aligned}$ | $=$ insulation(ed) <br> $=$ internal | NSR | $=\begin{gathered}\text { not scparately } \\ \text { replaceable }\end{gathered}$ | $\begin{aligned} & \text { SL } \\ & \text { SPG } \end{aligned}$ | - slide <br> = spring |
| CCW | \% counterclockwise |  |  | OBD | = order by | ${ }_{\text {SPL }}$ | $\begin{aligned} & \text { spectal } \\ = & \text { Stainless steel }\end{aligned}$ |
| CER | = ceramic | K | kilo |  | $={ }^{\text {description }}$ | SR | = split ring |
| CMO | $\cdots{ }^{-}$cabinet mount only |  |  | OX | = oval head | STL | = steel |
| COEF |  | LH | $=$ left hand |  | = oxide |  |  |
| $\mathrm{COM}_{\text {Comp }}$ | = common | $\mathrm{LIN}_{\text {WASH }}$ | " linear taper | $\stackrel{p}{\text { P }}$ | = peak | TA | $=$ tantalum |
| $\mathrm{COMP}^{\text {ComPL }}$ | $*$ $=$ composition $=$ $=$ complete | LK WASH | $=$ lock washer $=$ logrithmic | ${ }_{P}^{\text {PC }}$ | $=$ printed circuit | TD | = time delay |
| CONN | $=$ complector | ${ }_{\text {LPF }}$ | = ${ }^{\text {a }}$ logarithmic taper | PF | $=$ picofarads $=10^{-12}$ | TGL | $=$ torele |
| CP | = cadmium plate |  |  | PH BRZ | = phosphor bronze | ${ }_{\text {TI }}$ | = thread |
| CRT | = cathode-ray tube |  | $=$ milli $=10^{-3}$ | PHL | $=$ Phillips | TOL | $=$ tolerance |
| CW |  | MEG | $=$ meg $=10^{6}$ | PIV | $=$ peak inverse | TRIM | = trimmer |
| DEPC | $=$ deposited carbon | MET FLM | $=$ metal film | PNP | $=$ voltage ${ }^{\text {vasitive-negative }}$ | TWT | $=$ traveling wave |
| DR | $=$ dive | $\begin{aligned} & \text { MET OX } \\ & \text { MFR } \end{aligned}$ | $=$ metallic oxide $=\text { manufacturer }$ |  | positive |  |  |
| ELECT | = electrolytic | MHz | = mega Hertz | ${ }_{\text {POLOL }} \mathrm{P} / \mathrm{O}$ | = part of | $\mu$ | $=$ micro $=10^{-6}$ |
| ENCAP | - encaprulated | MINAT | $=$ miniature | PORC | a polystrene $=$ porcelain |  |  |
| EXT | = external | $\begin{aligned} & \text { MOM } \\ & \text { MOS } \end{aligned}$ | $=$ momentary $=$ metalized | POS | $=$ porcelain $=$ position(s) | VAR | = variable |
| F | $=$ farads |  | sabstrate |  | $=$ potentiometer | VDCW | $=$ de working volts |
| FH | = flat head | MTG | $=$ mounting |  | $=$ peak-to-peak |  |  |
| FIL H | = Fillister head | MY | = "mylar" | PWV | = peak working volt- | W/ | $=$ with |
| FXD | = fixed |  |  |  | age | $\stackrel{\text { w }}{ }$ | = watts |
| G | $=\operatorname{sign}\left(10^{9}\right)$ | N/C | $\begin{aligned} & =\text { nano }\left(10^{-9}\right) \\ & =\text { normally closed } \end{aligned}$ | RECT | $=$ rectifier | WIV | $=$ working inverse |
| GE | = germenium | NE | $=$ neon | $\mathrm{RF}_{\mathrm{RH}}$ | = radio trequency | ww | $=$ wirewound |
| GRD | $\stackrel{\text { - }}{ }=$ glass | NI PL | $=$ nickel plate | RH | * round head or | w/o | = without |

Table 6-3. Replaceable Parts

| Ner | manufacturer mame | nooress | ${ }_{\text {coid }}^{218}$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 00000 \\ & 0121 \\ & 011295 \\ & 0.1295 \end{aligned}$ | U.S.A. COMMOM <br> ALLEN GRADREY CO <br> TEXAS INSTRUMENTS INC. SEMICONDUCTOR COMPONENTS DIV. | any supplite of u.s.a. MILLAUKEE, wis. Datlas. tex. | \% $\begin{gathered}53204 \\ 75231\end{gathered}$ |
|  | mQTOROLA SEMICONDUCTOR PROD. INC. <br> FAIRCHILO CAMERA E INST. CORP. SEMICONDUKTOR DIV. BRISTOL CO. THE <br> GULTON IND. INC. DATA SYSTEM DIV. | PHoEnix, ARIL, CALIF, Materbuert connif StRUQUEROUE, M.M. |  |
| ${ }^{28480}$ | hemzetr-packaro company | palo alyo, calif. | 94304 |
| 36196 50289 | STAMYCK coll proo. Lro. |  | 01247 |
| 88276 |  | HARTFORO, COEN. | - |
| ${ }_{7}^{71488}$ |  | Cos ancels |  |
| 711789 |  | CHICACO, filst. | 63664 |
| ${ }_{\text {cher }}^{71785}$ |  | ELK crove village, |  |
| ${ }_{7} 72988$ | ERET TECHMOLOGICAI PROD. INC. |  | ${ }^{165512}$ |
| 73734 | FEERAL SCREW PROD. $\mathrm{INC}$. | CMSECA, Mime | \$6093 |
| 75042 | international ams istance co. inc. | philadelphia, pa. | (19108 |
| ${ }_{7}^{75539}$ | LIPGEFESE INC. | Citr of twoustar: calif. | 91746 |
|  | Stick |  | $\underset{\substack{60120 \\ 15557}}{ }$ |
| $\xrightarrow{798989}$ |  | philatelphiat pa. | 19144 |
| 80131 | Electront inu isit es Association | Mashing | 20066 |
| ${ }_{\substack{97142 \\ 91506}}^{9}$ |  |  | ${ }^{252703}$ |
| 93332 | Stivania Electric prod. inc. semiconductor div. | HoMus, mass. | O1881 |
| 98892 |  |  | ${ }_{9}^{10594}$ |
| ${ }_{99800}^{9897}$ |  | E. AURORA, N.Y. | 14052 |


| Reference Designation | HP Part Number | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{1}$ | 08556-60026 | 1 | Suitch assyi banowidit | 28480 | 08556-60026 |
| ${ }_{\text {ancren }}^{\text {A1R1 }}$ | - $\begin{aligned} & \text { 1901-0025 } \\ & 0757-0274\end{aligned}$ | 3 |  | $\underset{28480}{07263}$ |  |
|  |  | ${ }_{5}$ |  | ¢ | - |
|  |  | $\stackrel{2}{1}$ |  | $\underset{\substack{28840 \\ 28490}}{ }$ | -0698-31601 |
|  |  |  |  |  | - |
|  | - | 2 |  | 284日0 <br> 284800 | - 060898.454. |
| ${ }^{\text {A1Rs }}$ | 0690-4534 |  |  | ${ }^{28480}$ | 0698-4536 |
|  |  |  |  | 28880 <br> 28480 <br> 880 |  |
|  |  | 1 1 1 |  |  | cose |
|  |  |  |  |  |  |
|  | -0098-3157 | ${ }_{1}^{3}$ |  |  | $\xrightarrow{009883157}$ |
| ${ }^{\text {A }}$ | come | 1 | Sultch assvisc ANioth | 28480 $\substack{2480 \\ 28400}$ | 0.556-60027 |
| ${ }_{\text {A }}^{\text {A }}$ |  | $\frac{1}{2}$ |  | $\underset{\substack{284800 \\ 28800}}{2480}$ | 0698-5296 <br> 0698-753 |
|  | - $0690+1190$ | $\stackrel{2}{1}$ |  |  | - $06989-4190$ |
|  | -069807688 | 1 | Refex flh | ${ }_{\substack{28480}}^{2689}$ | - |
|  | - |  |  | 28880 <br> 28480 <br> 8.0 |  |
| ${ }^{\text {aras }}$ | 0698-6298 |  |  | ${ }_{2}^{28480}$ | 0698-6299 |
| ${ }_{\text {aranio }}$ | - | 1 |  | ${ }_{28480}^{26880}$ | -0699-6915 |
| ( $\begin{aligned} & \text { A2P1011 } \\ & \text { A2R12 }\end{aligned}$ |  | $\stackrel{1}{1}$ |  |  | - |
| ${ }^{2} 2813$ | 0757-0488 |  | Rafxo met FLM gogk onm 18 1/8M | 28 | 0757-0488 |
| AR2814 | - |  |  |  | - 0757 -0788 |
| A2216 A2R17 | - $\begin{gathered}\text { O5988-3200 } \\ 0698-3260\end{gathered}$ | - |  | 28480 <br> 28480 | - 0 O990-3200 |
| ${ }^{\text {ar218 }}$ | 0698-3260 |  |  | 28800 | ${ }^{\text {O6998-3260 }}$ |
| ${ }_{\substack{48280}}$ |  |  |  | ${ }_{28,80}^{2680}$ | - |
| ${ }^{\text {A } 2822}$ | ${ }_{0698983260}$ |  |  | 28880 <br> 28680 |  |
| ${ }^{12822}$ | 0698-3271 | 2 | RiFXO MET FLL 115k onm 18 1/8w |  |  |
|  | $c0696-32713100-3018$ | 1 |  |  |  |
|  |  |  |  |  |  |
| ${ }_{\text {A }}^{4} \mathrm{HP1}$ |  | 1 |  | $\underset{\substack{288880 \\ 28480}}{2}$ |  |
| ${ }_{\text {a }}^{\text {A3PL }}$ | -0690-7915 | 1 |  |  |  |
|  | - | 1 |  | ${ }_{\substack{28480 \\ 288480}}^{28480}$ |  |
| A384 ${ }_{\text {A3R }}$ | - $\begin{aligned} & \text { O698-7913 } \\ & 2100-3107\end{aligned}$ | 1 |  | cistis |  |
|  | 9757-0799 | 1 |  |  | - $78757-0798$ |
| ${ }_{\text {A }}^{\text {A }}$ | - | 1 |  | ${ }_{28480}^{26840}$ | - |
|  |  | $\stackrel{1}{1}$ | Cable assyinput converter | 28480 284800 | - 0 O8556-6010 |
|  |  | 1 <br>  <br> 2 <br> 4 <br> 4 | NOT ASSIGNED <br> BoArd issy: PRE-ATTENUATOR-AM HOUSING: SHIELD <br> SHIELDZHOUS ING <br> CaFXO ELECT 100 UF +75-108 25 VCD |  | 08556-60005 08556-20002 $38556-2001$ D2-0SM |
| ${ }_{\substack{45 C 2}}^{\text {act }}$ |  | 5 |  |  |  |
|  | ( 018000004 |  |  | ${ }_{56298}^{5689}$ | ${ }_{\substack{3001076025002-054 \\ 5 C 1355-c k l}}$ |
| ${ }_{\text {asces }}^{\text {Ascs }}$ | ( $\begin{aligned} & \text { O1800-2376 } \\ & 0121-10105\end{aligned}$ | ${ }_{2}^{1}$ |  | ¢ | ${ }_{0121-0105}^{392257}$ |
|  |  |  |  |  | - |
| ${ }_{\text {ascco }}$ | ${ }^{\text {a }}$ | ${ }^{1}$ |  | 56289 | $1500105 \times 903542$ |
| Ascio ASC11 | O1/60-2201 $0160-2257$ | 1 |  | 72982 <br> 72982 <br> 188 |  |
|  |  | 2 |  |  | 3005676006012 |
|  |  | 1 |  | 28880 <br> 07263 |  |
| (escric |  | 2 |  | $\underset{\substack{07263 \\ 28480}}{ }$ |  |

See introduction to this section for ordering information

Table 6-3. Replaceable Part

| Reference Designation | HP Part Number | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1901-0376 |  |  | 28480 | 1901-0376 |
| ${ }_{\text {a }}$ | 1902-0964 | 2 | - | $284800^{2}$ <br> 78480 | (1902-0064 |
|  |  | 5 |  |  |  |
|  |  |  | Conneturirf sua-minture sehis |  |  |
| ${ }_{\text {a }}^{45 \mathrm{SkL}}$ | -0490-1011 | $\stackrel{1}{1}$ | RELAY 124V125C |  | - 0 O490-201 |
| ${ }^{4502}$ |  | ; | (tsitisI PMP | citatio |  |
| ${ }^{\text {a }}$ A502 |  |  |  |  |  |
| ${ }^{\text {A5e4 }}$ | ${ }^{1855-0372}$ | ! | TSTRFFET SI SH | $\substack{28480 \\ 28480 \\ \hline \text { 280 }}$ | 1855-0372 |
|  |  |  |  | $\substack{28480 \\ 28480}$ |  |
|  |  | 1 |  |  | - |
| AsR3 | 0675-1011 | 2 |  | ${ }^{01121}$ | ${ }^{\text {888-1011 }}$ |
|  | - $0757-0344$ | $\frac{1}{1}$ |  | ${ }_{\text {2 }}^{28480}$ | ${ }^{0698-7920}$ |
|  |  | 1 |  | ciel | -0.098-7919 |
|  |  | 1 |  | $\xrightarrow[\substack{28480 \\ 28480}]{\substack{\text { 24, }}}$ | -698-7921 |
| ${ }_{\text {ARR12 }}$ | 0757 09042 |  | R:FRD MET FLM | ${ }_{28480}^{28880}$ | 0157-0442 |
|  | - 0 O68-31162 | $\frac{1}{3}$ |  |  | - |
| A5R15 | c699-7967 |  |  | 28480 | 0698-7967 |
|  | - |  | R:FXD MEET FLM | cois | - |
| - $\begin{gathered}\text { ASRR18 } \\ \text { ASR19 }\end{gathered}$ | -0757-0294 | $!$ |  |  | -0757-044 |
| ${ }^{\text {a } 5820}$ | 0757-0.01 |  |  | $\substack{28480 \\ 28480 \\ \hline 200 \\ \hline}$ |  |
| ${ }_{\text {a }}$ |  | ; |  |  | -340-0039 |
|  | 0340-0038 $0340-0039$ |  | FeEsturu it eninal | 28480 <br> 884800 | -3340-0038 ${ }_{0}^{0340039}$ |
| ${ }^{\text {A }}$ 6 |  | 1 | board assyiarequency comverter |  | 0as56-60006 |
| ${ }_{\text {a }}^{46 \mathrm{Cl}}$ |  | 2 |  | $\substack{28880 \\ 12574 \\ \hline 1020}$ | - $08556-2002$ |
|  | Oiso-0575 $0180-0197$ | 4 |  | S2584 56289 |  |
| ${ }^{16} 44$ | $0180-0197$ |  | CiFXD ELECT 2.2 UF 1082 ZVOCH |  | 1500225x9020^ |
|  | -1160-3456 | 23 |  | S0289 | ${ }^{\text {cos }}$ |
| ${ }_{\text {Ab }} \times 18$ | 0160-34,9 | 1 | C:F $\times 10$ |  |  |
| ${ }_{\text {A } 6 \text { ce }}$ | 0160-2130 | 2 | C:FXD MICa ${ }^{\text {abS }}$ PF 12 | ${ }^{29480}$ | $0160-2130$ |
| ${ }_{\text {Abcia }}^{\text {Abcio }}$ | -1160-0300 | 1 |  | $\underset{\substack{56289 \\ 28460}}{2080}$ |  |
| ${ }_{\text {Abctio }}$ | -160-2130 | 1 |  | ${ }^{28460}$ | 0160-2244 |
| ${ }_{\text {ata }}^{\text {Acti2 }}$ | On $01210-0453$ $0160-2238$ | 1 |  | 74979 72982 |  |
|  |  |  |  |  |  |
|  |  |  |  | ${ }_{5}^{562889}$ |  |
| Astcil $\substack{\text { Actis }}$ | O1600-2206 $0160-2307$ | 1 |  | 29880 <br> $28+60$ | $01800-2206$ $0160-2307$ |
| ${ }^{\text {Asc } 19}$ | $0160-3.56$ |  | CIFOR CER - 001 UF 10\% 230VOCM | ${ }_{56289}$ |  |
|  |  |  | CiFlo | ${ }_{\substack{56269 \\ 56299}}^{5689}$ |  |
|  |  | ! |  | $\xrightarrow{72997}$ | ${ }_{\substack{167-0106-105 \\ 301-000} 060}^{1600}$ |
| ${ }_{\text {asc24 }}$ | ${ }_{\substack{0}}^{01120-34986}$ |  |  | ¢562888 <br> 56298 |  |
|  | ( |  |  | ¢ |  |
|  |  | - |  | S6289 <br> 288880 |  |
|  |  |  | Dioot:ssilicon matched quadinsp) |  |  |
|  | 10334-8560 |  |  | $\substack{28480 \\ 28880}$ | (10334-8560 |
|  | (1902-3104 | 1 | DIDOE BREAKDOMN 5.62458 conmectoriar sus-miniature series |  | $\begin{aligned} & 51093-110 \\ & 52-053-0000 \end{aligned}$ |
|  | \%8443-20011 | 3 | COMNECTIR R REEESS |  | - $08443-20011$ |
| ${ }_{\text {a }}^{4652}$ | - $12300-1104$ | 3 | Countcionirf sulkiend recepral | \% 98290 |  |
|  | $\begin{aligned} & 88443-20011 \\ & 1250-1196 \\ & 1206 \end{aligned}$ |  | COANECTOR:RECESS <br> CDHNECTOR:RF BULKHEAD RECEPTACLE |  | - |

Table 6.3. Replaceable Parts

| Reference Designation | HP Part Number | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{46,3}$ | 2950-0043 |  |  | ${ }^{00000}$ |  |
| ${ }_{\text {a }}^{4641}$ |  | 1 |  |  |  |
|  | - $\begin{aligned} & 974000237 \\ & 9100-2255\end{aligned}$ | 2 |  | 28480 <br> 28480 <br> 2680 | 914000237 $9100-2255$ |
| ${ }_{\text {a }}^{4615}$ | ¢100-225s |  | COILLCHOKE 0.47 UH 108 |  | 9100-2255 |
| ${ }^{4667}$ | 9140-0179 |  | COILCHOKE 22.0 UH 108 | ${ }_{2}^{28480}$ | 9140-0179 |
| ${ }_{4619}{ }^{4619}$ | - $91700-1616$ | 1 |  | 98980 36196 |  |
| ${ }_{\text {a }}^{\text {a } 602}$ | $1854-0019$ $1854-0019$ | 5 | ISTR2SI |  | 18540019 $1854-0019$ |
| ${ }_{\text {A }}^{4682}$ | - $1854+0009$ |  | ( |  |  |
|  |  | ${ }_{1}^{2}$ | HEAT SINk TRANSIST | 28880 28480 |  |
|  | 0757-0465 |  | Mifex MeT FLM | ${ }_{\substack{28480 \\ 28680}}$ | O7577-0405 |
|  |  | 4 |  |  |  |
| ${ }_{\substack{4684 \\ 4605}}$ |  | 1 |  |  |  |
|  | -0757-0400 | 2 |  |  | -9757-0400 |
| ${ }^{46888}$ | -0757-0400 |  | Riffo Mer kh | cistic | - |
|  | -07577-0401 | 2 | (in | $\underset{\substack{28880 \\ 28 \rightarrow 80}}{2800}$ | -9757-0401 |
| ${ }_{\substack{46811 \\ 46812}}$ | -0757-0401 |  |  |  | -9757-0601 |
| ${ }_{\text {Ack }}^{46813}$ |  | 2 | RRFP0 |  | -0757-0317 |
|  | - 0757570377 |  | (ex | $\underset{\substack{28880 \\ 28480}}{2800}$ | -0757-0317 |
| ${ }^{46816}$ | - 0 O598-3431 | 2 | R8FFOO MET FLM |  | - 0 O698-3431 |
| ${ }^{46817}$ | - ${ }^{0757} \mathbf{0 7 5 1 9 6}$ | 1 |  |  | - |
|  | - | 2 |  | $\substack{284800 \\ 28480}$ | - |
| ${ }_{\text {a }}^{468621}$ | 0757-0934 |  |  | ${ }_{\substack{28480}}^{248480}$ | 0757-0394 |
| ${ }_{\text {a }}^{46822}$ | - | ${ }_{3}^{3}$ |  | ${ }_{8}^{284800}$ | - $079757-1404$ |
|  | - 07571094 | 2 |  | 28490 <br> 28980 <br> 2980 |  |
|  |  |  |  |  | 0690-3499 |
|  | - 075977009799 | 1 |  | $\substack{286800 \\ 286800}$ |  |
|  | (ess | $\frac{1}{2}$ | ( | 24880 <br> 28480 | - |
| ${ }_{\text {A6T3 }}$ | 08556-80003 |  | transformerar | ${ }^{28480}$ | ${ }^{\text {08550-20003 }}$ |
| ${ }_{\text {ata }}^{\text {ant }}$ |  | 1 |  |  | cossobesoov |
|  |  | 17 |  | ( 5628980 |  |
|  | -1150-2055 |  |  | ${ }_{\substack{562899 \\ 56299}}$ |  |
| ${ }^{\text {are }}$ | - 0160 O-3656 |  | Citro cen | ${ }_{56299}^{5689}$ | ${ }^{\text {cose }}$ |
| ${ }^{\text {atct }}$ | $0160-2055$ $0160-2055$ |  | Cifex cek | $\underset{\substack{56289 \\ 56289}}{ }$ | $\xrightarrow{\text { Co23F }} \mathbf{}$ |
| ${ }_{\text {arctic }}^{\text {arct }}$ | O160-2055 $0180-0197$ |  |  | 56289 56299 | C023F101f1032 522 -con |
| ${ }^{\text {atcs }}$ | -16003060 | 2 | Cifix cen | ¢ 5626899 |  |
| Afctio | - $\begin{aligned} & 0180-0116 \\ & 0180-0116\end{aligned}$ |  |  | ${ }_{5}^{562899}$ | (1500689903582-0Y5 |
| ${ }^{\text {ATCRA }}$ |  | $\frac{1}{2}$ | Droot rerandiow silicon 5.76V |  | - |
| ${ }_{\text {Ar }}$ | -140-0118 |  | ${ }_{\text {corlt }}$ | ${ }_{\text {28480 }}^{2680}$ | ${ }_{9} 9140-9116$ |
| ${ }_{\text {a }}^{\text {ATOI }}$ | 12533-0001 $0757-6419$ | $\frac{1}{2}$ | CsTRISI PNP | 28480 <br> 28480 | 1853-0001 0757-0419 |
|  |  |  |  |  |  |
|  |  |  |  |  | -0757-10\% |
|  |  |  |  |  | (ex |
| ${ }^{\text {a }}$ 7R6 6 | 0690-3615 | 1 |  | 28480 | 0698-3615 |
| A787 | 0698-3154 |  |  |  |  |
|  | - | 1 | cill | $\substack { 26888 \\ \begin{subarray}{c}{28480{ 2 6 8 8 8 \\ \begin{subarray} { c } { 2 8 4 8 0 } } \\{28480} \end{subarray}$ |  |
| ${ }_{\text {ATR11 }}$ | - |  |  | $\underset{\substack{28880 \\ 88400}}{ }$ |  |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {armaz }}$ | ${ }^{06989-3455}$ |  | R:FFXD MET FLM 261 K OHM $121 / 8 \mathrm{M}$ | ${ }^{28490}$ | -098-3455 |
|  |  | 1 |  | 75042 <br> 20480 <br> 200 |  |
|  | - $\begin{array}{r}\text { 0698-3237 } \\ \text { O690-3237 }\end{array}$ |  |  | 28880 <br> $28+80$ | - $069898-3237$ |
| ${ }^{\text {ARP17 }}$ |  | 2 |  | 28480 28480 280 | - 0 O698-3193 |
| A7P18 ATR19 | - 0 O698-3123 |  |  |  | - 06950 -3237 |
| ${ }_{\text {a }}{ }_{\text {ATPP }}$ | O340-0238 $0340-0039$ |  |  |  | - $\begin{aligned} & 0340-0038 \\ & 0360-0039\end{aligned}$ |
| ${ }_{\text {artp }}$ | 0340-0038 |  | feedthru trearimal | 28480 | 0340-0039 |
| ${ }^{\text {atipe }}$ | O3400-039 $1820-0059$ | 2 | Inswat ine mishing |  |  |
|  |  | 1 |  | 01295 01295 |  |
| atus | 1826-0013 | 3 | icalinear | 28480 | ${ }^{28266-0013}$ |
| ${ }_{\text {a }}^{\text {ATus }}$ | 1826-0013 $1820-0076$ |  | ICPLINEAR matershave ff | (20480 |  |
| A17ur atue |  | i |  | ${ }_{28480}^{01298}$ |  |
|  |  | 1 | board assy:TG output <br> $C:$ Fro $C$ CEA <br> $C$ EFXD ELECT 100 UF <br>  |  | 08556-60008 $08556-20002$ CO23F101F1032522-COH $3001076025002-$ DSM $1500105 \times 9035 A 2$-DVS |
|  | - $\begin{aligned} & \text { 0180-0291 } \\ & 01800-1746\end{aligned}$ |  |  |  |  |
| ${ }_{\text {atci }}$ | ${ }_{0160-3223}$ | 1 |  | 56289 | ${ }_{1927682525}$ |
|  |  | 1 |  | (284809 |  |
| ${ }^{\text {ascy }}$ | 0160-2204 | 1 |  | ${ }_{7} 72136$ |  |
| ${ }_{\text {Aactio }}$ |  |  |  | (12929 | - 3 301-000-C040-7596 |
|  |  | , |  | ${ }_{93332}$ | ${ }_{\substack{02361 \\ 02361}}$ |
|  | 1910-0026 |  |  | ${ }_{0}^{93332}$ | ${ }_{\text {O2301 }}^{023}$ |
|  |  |  | Conwectirir s suan iniature series | ${ }_{98291}^{0763}$ | ${ }_{52-053-0000}$ |
|  |  |  |  | 9829 $\substack{98480}$ |  |
| ${ }^{88 L 2}$ | 9140-0237 |  | Coitiffo $2000{ }^{\text {che }} 5$ | ${ }_{\substack{28480 \\ 82142}}$ | 9140-0237 |
| ${ }_{\text {Asta }}^{\text {Ant }}$ | - $9100-2638$ | $\frac{1}{1}$ |  |  | ${ }_{9}$ |
| ${ }_{\substack{\text { ABAOI } \\ \text { A8O2 }}}$ |  | 5 | (STIRR |  |  |
| ${ }^{803}$ | 1253-0007 | $\downarrow$ | ISTRESI PNP | ${ }_{\substack{30131 \\ 28480}}$ |  |
|  | - |  | (tstarsi | $\underset{\substack{284880 \\ 28480}}{20}$ | ${ }^{1}$ |
| (18060 | 1855-0053 $1205-0011$ | $\stackrel{1}{1}$ | (tstrisin men | ${ }_{\substack{90131 \\ 98978}}^{2018}$ | ${ }_{\text {TK }}^{\text {T }}$ |
|  | -7057-0200 | ${ }_{2}^{3}$ |  | cose 28.80 | 0757-0220 |
| ${ }_{\text {Aara }}^{\text {Aab3 }}$ | - $015757-316$ |  |  |  |  |
| ${ }_{\substack{\text { ABR } \\ \text { ARS }}}$ |  |  | (ex | 28880 28480 | - |
| ${ }^{\text {ARR6 }}$ | cosa-3441 |  |  | ${ }^{2848080}$ | 0699-3441 |
|  | 0157-0316 $0757-0418$ |  |  | 23480 | -0757-0316 |
| ARAR ARRIO | 2100-1797 c757-0290 | 1 |  | 28880 28480 | 2100-1757 $0757-0290$ |
| ${ }^{\text {ARR11 }}$ | 0757-0290 |  |  | 28480 28480 | 0777-0290 |
| ${ }_{\text {A ARR13 }}$ | - $015757-2401$ |  |  |  | - |
|  |  |  |  | 286806 28460 |  |
|  |  |  |  |  |  |
|  | ( |  |  |  | - 08988 -3429 |
|  |  | 1 |  |  |  |
| $\begin{aligned} & A \text { AR21 } \\ & A B \\ & A 8 \\ & A A_{A} \\ & A B A I C L \end{aligned}$ | 0757-0280 08555-00020 08556-60029 $0180-0197$ | 1 1 1 |  <br>  <br>  |  | 0757-0280 <br> $08556-00020$ $08556-00021$ <br> 08556-60029 <br> 500225 X902042-DY 5 |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| abaicz | 0160-2266 | a | CIFXO CER 24 PF 58 500 YDCH | 72982 | 301-000-c060-240J |
|  | $0180-2055$ $0180-2055$ |  |  | 56289 56299 |  |
| AAAICS AAACG | $01600-2055$ 010058 016055 |  | C:FDD CER 0.01 UF | ${ }_{56289} 5689$ | ${ }_{\text {cozer }}$ |
| Abaics |  |  | Cifxo Cer 0.01 UF -80-208 100VVCH |  | C023F-101F 1032322-COH |
|  | - $\begin{aligned} & 0160-2035 \\ & 0160-2247\end{aligned}$ | 1 |  | (562809 |  |
|  |  |  | Ditodes | ${ }^{26480}$ | ${ }_{\text {coser }}$ |
|  |  |  | - | $\underset{\substack{29480 \\ 28480}}{2980}$ | ( $\begin{aligned} & 10534-8560 \\ & 10536-0560\end{aligned}$ |
|  |  |  |  | ${ }_{\substack{28480 \\ 07263}}$ |  |
| ${ }_{\text {abatcra }}^{\text {ata }}$ | 1901-0518 | 1 | DIooeihit CaRRIER | (22460 |  |
|  |  | 1 |  | 28880 07263 | O122-0069 fociose |
| Asalut AsAlL |  |  |  | 28880 | $9140-0237$ $9100-1636$ |
| ${ }_{\text {a Aata }}$ | - $91000-1650$ | 1 | COILCHOKE | ${ }_{\substack{28480 \\ 2480}}^{2080}$ | $9100-1636$ 9000.1530 |
| A8A191 ABA162 | $\underset{\substack{1853 \\ 1853-0034 \\ 1253}}{ }$ |  |  | 28880 28480 | - $\begin{gathered}1835-0034 \\ 1053-0034\end{gathered}$ |
| ${ }_{\text {A }}^{\text {A A A } 103}$ | 2853-0090 |  | tsprasi pmp | 28480 | 1853-0050 |
|  | - $\begin{aligned} & 2833-0050 \\ & 2800-2574\end{aligned}$ |  |  | 28880 <br> 28480 <br> 80 |  |
|  | (e996-3151 | $\stackrel{2}{2}$ |  | 268480 $\substack{28480 \\ 26480}$ |  |
| abatra | 0698-0083 |  |  |  |  |
| ${ }_{\substack{\text { ABALR } \\ \text { AAARO }}}$ |  |  |  |  | ${ }^{\text {O }}$ 06990-0093 |
|  |  | 1 |  |  | - $\begin{aligned} & \text { 0757-0465 } \\ & 0757-0438\end{aligned}$ |
| abalrs | 0698-3151 |  | R:FXD NET FLLM 2.87 CK OHK 18 1/8K | ${ }^{28480}$ | 0098-3151 |
|  | -0757-040 | 1 |  |  |  |
|  | - |  |  | ${ }_{\substack{28480}}^{2680}$ | - |
| ${ }^{\text {a }}$ | (0895-0033 | 3 |  |  |  |
|  | 09552-6044 |  | transforkerike (5 Pims |  |  |
|  | 1200-0770 |  | Sockerticrastal | ${ }_{92506}$ | 80000-A6-26 |
|  | - $08556-60009$ | 1 | ction boro assyitc converter |  |  |
| ${ }^{49}$ | 08556-20002 |  | Hous 1 NG: SHEELO | 28430 | 06556-20002 |
| ${ }_{4981}{ }_{4}$ |  |  |  |  | - 0 O856-20018 |
| ${ }^{49,24}$ |  |  |  | ${ }_{\substack{56289 \\ 56289}}$ | ${ }_{\text {cosem }}$ |
|  | O1800-3456 $0160-3456$ |  | CIFRD CER Ool Ue iox | 56889 56289 |  |
| A9cs | 0160-3436 |  |  |  | COST $72515102 \times$ E12-com |
| ${ }_{\text {a }}^{\text {Asci }}$ |  |  |  | 56208 56289 56299 |  |
|  | ${ }^{0160-3456}$ |  | ${ }_{\text {Ci }}$ | ${ }_{5}^{362699}$ | ${ }_{\text {cole }}$ |
| asc9 | 0150-2264 | : | CIFXO CER 20 of 58 S00voch | 72982 | 301-000-C060-2003 |
| ${ }_{\text {aseld }}^{\text {Asclio }}$ | - $\begin{array}{r}014000210 \\ 0100-2055\end{array}$ |  |  | 29880 56289 |  |
| ${ }^{\text {A } 9612}$ | ${ }^{0160-3439}$ |  |  | ¢ |  |
|  | O11 $0140-20055$ 019095 |  |  | $\underset{\substack{56289 \\ 28480}}{ }$ |  |
|  |  |  |  |  |  |
|  | - $01260-22568$ |  |  |  | ${ }^{301-000-C O C O-2405}$ |
| ${ }_{\text {ACRR }}$ | 19001-0050 | ! | (e) | 04713 0.7263 | ${ }_{\text {FDA }}{ }^{\text {S } 308}$ |
| ${ }_{\text {ascra }}$ | 1901-0050 |  | O100Et51 200 ma at iV | 07263 | ${ }_{\text {FDA }} 6308$ |
| ${ }_{\text {AgCR4 }}$ | 1991-0050 |  |  |  |  |
| ${ }_{\text {AOPA }}$ | - 120010.0050 |  | Oioets 200 MA AT IV | (97263 |  |
| A9, ${ }_{\text {a }}$ | - |  |  | ( | - |
|  | 2950-0043 |  | met utex $3 / 8-32 \times 7 / 16 \times 3 / 32$ |  |  |
| ${ }_{\text {A9PL }}^{\text {Al }}$ |  | - | COIL HOLOED CHOKE 5.60 UH | 28480 | 9100-1016 |
| ${ }_{\text {Ant }}$ | ${ }_{9} 910002247$ |  | ${ }^{\text {colle }}$ |  | - 9140002037 |
| ${ }_{\text {A994, }}^{\text {A }}$ |  | 1 |  |  |  |
|  |  |  | TSTR:SI Pnpi SELECTED FROM 2 [32514 |  |  |
| ${ }_{493}{ }^{49}$ | 18954-0.04 |  | TSTRESt MPM | ${ }_{28480}^{2880}$ | ${ }_{1954}^{19530404}$ |
| ${ }_{4}^{49045}$ | - $\begin{aligned} & 1853 \\ & 1854-0020 \\ & 1854-0019\end{aligned}$ | 1 |  | ${ }^{28480}$ | 1953-0020 |
| ${ }^{2995}$ | - |  |  |  | $\xrightarrow{1854} 120000097$ |


| Reference Designation | HP Part Number | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ${ }^{28480}$ | 0757-C279 |
|  | - |  | (itatiol |  |  |
|  |  | 1 |  | 284880 $\substack{8460}$ | - |
|  |  |  |  |  |  |
|  |  |  | REFXD NET FLL 287 OKM 12 I/ | ${ }^{29480}$ | - |
|  |  | 1 | (isfxo met fly |  |  |
| Asplo | 9757-0439 | 1 |  | ${ }_{28480}^{28880}$ | 0757-0439 |
| ${ }_{\text {a }}^{\text {APR12 }}$ | -9698-3136 | 1 |  | 28480 28480 2808 | -0790-3136 |
| ${ }_{\text {A }}^{\text {APR13 }}$ | -1957-0422 | 1 | Rex |  | ${ }^{\text {a }}$ |
| ${ }_{\text {AP9RL }}^{\text {A }}$ | O757-0401 $0698-083$ |  |  |  |  |
|  | 0698-0093 |  |  | ${ }^{28480}$ | 0098-0033 |
| 49817 | - $\begin{aligned} & \text { 9696-3334 } \\ & 0696-4037\end{aligned}$ | 1 |  | $c28880028460$ | - 0 O986-3334 |
|  |  | 2 |  |  |  |
| A9M1 |  | 1 | cable Assy | $23+80$ | 08443-60064 |
| ${ }_{410} 12$ |  | 1 |  | ${ }_{\substack{28480 \\ 28480}}^{2980}$ | - 0 2556-60012 |
| ${ }_{\text {Al }}^{\text {Aloct }}$ |  |  |  | ${ }_{\substack{56289 \\ 56298}}$ |  |
| ${ }^{\text {A } 10 C 3}$ | 0180-0116 |  | Cifxo elect des uf 1083 3yock | 36289 | ${ }^{19006055903542-D Y 5}$ |
| ${ }_{\text {Al }}^{\text {Alocs }}$ |  |  |  | ${ }_{\substack{56289 \\ 56299}}$ |  |
|  |  |  |  | St2299 07263 |  |
|  |  |  | diodetsilicon soma bany |  | focioss |
| A10CR3 Alocht | 1901-0.040 $1901-0040$ |  |  | -07263 |  |
|  |  |  |  | 02783 0.7263 0.263 |  |
|  |  |  |  |  |  |
| ${ }_{\text {a }}^{\text {Alof }}$ A | 21200001 | $\frac{1}{1}$ |  | 75913 $\substack{\text { 24860 } \\ 2480}$ |  |
| ${ }_{\text {Al }}^{\text {AloL }}$ |  |  |  | (inctis |  |
| ${ }_{4}{ }_{4} 1000^{\text {a }}$ | (1853-0012 | z | TSTRiSI PNP | ${ }_{60131}$ | 2N29040 |
|  | - | 1 |  |  |  |
| ${ }^{\text {Altan }}$ |  |  | (ex |  | - |
|  | - 06988 -3157 |  |  |  | - $06997-3157$ |
| ${ }_{\text {Alorpl }}^{\text {A10 }}$ | - 0 O556-80002 | 1 |  |  | - $08536-20002$ |
|  |  | ? |  |  | ${ }^{60098-325 N}$ |
| ${ }_{\text {Al1 }}^{1115}$ |  | $!$ |  |  |  |
| ${ }^{11162}$ | ${ }^{0.60000165}$ |  |  | 56289 <br> 56298 <br> 689 |  |
|  | - 0160.0105 |  |  |  | 192P56392-PIS |
| Altes Allct Alt |  |  |  | 26888 <br> 56289 <br> 8. |  |
|  |  |  |  |  | CO23F $201510323222-$ COH |
| ${ }_{\text {Al }}^{\text {Alicg }}$ |  |  |  | 56288 56269 |  |
| ${ }_{\text {Al }}^{\text {Alticio }}$ |  | 1 |  |  |  |
|  |  |  | COIL: MOLDEO CHOKE 5.60 UH |  |  |
| ${ }^{11112}$ | 9100-1618 |  |  | ${ }^{28480}$ | ${ }_{9} 900-1618$ |
| ${ }_{\text {Al }}^{\text {A112* }}$ | - $\begin{gathered}\text { 9100-1618 } \\ 1854-0639\end{gathered}$ |  | coiliniliob choke 5.60 UH | 边 284880 | 年 |
| ${ }_{\text {Aliri }}$ |  | 1 |  |  | ${ }_{0}^{20968-3040}$ |
| ${ }^{\text {Ald }} 1122$ | -9764-0019 |  |  |  | O774-0018 |
| ${ }_{\text {Al }}$ | - 6 O696-364 | ${ }_{1}^{2}$ |  |  | -0998-346 |
| ${ }_{\substack{\text { A }}}^{\text {A1129 }}$ | - $\begin{aligned} & 08988 \text {-3605 } \\ & 0757-0465\end{aligned}$ |  |  |  | -0698-3405 |
|  |  | 3 | TERMINAL L Sol Ler lug |  |  |
| ${ }_{\text {A }}^{\text {Alifp }}$ | - |  | Terminalisgider licg | $\substack{28480 \\ 26480}$ |  |
| All A1MAS | - | $\stackrel{2}{4}$ |  | ( $\begin{gathered}76530 \\ 71785\end{gathered}$ |  |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2100-2531 |  | FRONT PAMEL PART <br> R:VAR CEMMET 1OK OHM 2OT IIN 2W | 28460 | 2100-2531 |
| ${ }_{3}^{2}$ | 2950-000 $2190-0667$ |  |  | 73734 28480 | $\begin{aligned} & 9900 \\ & 2190-0067 \end{aligned}$ |
| $\stackrel{4}{5}$ | (0as53-2029 | 1 | BUSHING:FINE TUNE POT <br> RIVAR CERMEI 5K OHM 10\% LIN 2M |  | $\underbrace{\text { 20553-2029 }}_{\text {20, }}$ |
| $\stackrel{8}{7}$ | 1410-0088 <br> $2950-0001$ | : |  | ${ }_{73734}^{71041}$ | ${ }_{\substack{\text { 84002 } \\ 9062}}$ |
| , |  |  | WASHER:LOCK PH ERZ NP <br> SCREW:PAN HO PORI DR 6-32 $\times 1-1 / 4{ }^{-}$ | ¢0000 | $\begin{gathered} 080 \\ 080 \\ \hline \end{gathered}$ |
| 10 |  | 1 |  |  | ( $\begin{aligned} & 219000007 \\ & 5020-3.369\end{aligned}$ |
|  | 08553-2029 | 1 | bushimg tuming shaft | ${ }_{28480}$ | 08553-2028 |
| 13 14 14 | ${ }_{\text {cose }}^{3050-0017}$ | 1 | MASHER FFLAT PHOS BRONZ | $\substack{00000 \\ 28+880}$ | ${ }_{\text {O85 }}^{\text {0853-2039 }}$ |
| 13 10 16 |  |  |  |  | ¢ |
| ${ }_{17}$ | - 3 3030-0342 |  |  | ¢00000 | ${ }_{80}^{880}$ |
| ${ }_{19}^{18}$ | 08553-2020 | $\stackrel{1}{1}$ |  | 28480 <br> 28480 <br> 280 | ${ }_{\text {cose }}^{\text {O8553-2020 }}$ |
| 19 20 20 |  |  |  |  |  |
| 21 22 | - 146000.02996 | 1 |  | 28480 28460 |  |
| ${ }_{24}^{23}$ | O520-0127 |  |  | OU000 <br> 28480 | ${ }_{\text {O }}^{085}$ |
| 24 25 20 |  | 1 |  |  | - |
| 26 27 |  | 1 | (1atererow | ${ }_{\substack{28480 \\ 78189}}^{2480}$ | - 08553 -2018 |
| ${ }^{28}$ | 08556-00005 | 1 | ${ }^{\text {CuS } 5 \text { ET }}$ L LEFF | ${ }^{28480}$ | 08556-00005 |
| ${ }_{30}^{29}$ |  | 1 | SCREHPRA HD POII DR $0-32 \times 1 / 4 *$ | $\substack{20000 \\ 28480}$ | ${ }^{089853-2016}$ |
| ${ }^{31}$ | ${ }_{\substack{08553-2019 \\ 0855-00113}}$ | $\frac{1}{1}$ | (latatereak | 284800 <br> 28480 | - 0855352019 |
| 334 |  | $\stackrel{1}{1}$ | minomm Stitionat | 28880 | 09556-40002 |
| ${ }^{34}$ | (0855640003 | ${ }_{1}^{1}$ | ¢ | $\underbrace{28880}_{28480}$ | - $08556-40003$ |
| ${ }^{36}$ | cas53-6029 $2200-0103$ | 1 | (tiler ASTIEFT | 24880 O0000 | ${ }_{0}^{0855} 0$ |
| 38 39 |  | 1 |  | ${ }^{08717}$ | 102-ALIENS |
| 39 <br> 40 |  | $\frac{1}{1}$ |  | - | ${ }_{\substack{10258 \\ 08556-20003}}^{1055}$ |
| ${ }_{4}^{4}$ |  | 1 | PULLEY ASSYT RSGHT DILL CORO | 28480 28480 | ${ }_{\substack{0 \\ 82553-6030 \\ 800049}}$ |
| 43 | ${ }^{12600-0195}$ | 1 |  | 280800 | 1+60-0195 |
| 45 | ${ }^{236553-4001}$ |  | Sols |  |  |
| 4 | - | ${ }_{2}^{2}$ |  | $2 \times 880$ $2 \& \rightarrow 80$ |  |
| 48 | 2100-3060 | 2 | Rivar him 5x ohm sz lim ta (tot) | ${ }^{28480}$ | 3066 |
|  |  |  |  |  |  |
| 50 | 2100-2497 | 1 | (eam | ${ }_{28480}^{2080}$ | ${ }^{2100-2483}$ |
| 51 52 | $\underbrace{}_{\substack{\text { O2556-0006 } \\ 2360-0200}}$ | 1 | SUB-PANEL | 28.60 20000 | 08556-00006 |
| ${ }_{53} 5$ | ${ }_{\text {cke }}^{23100-2488}$ | 1 |  | ${ }_{\text {28480 }}$ | ${ }_{2}^{2080} \mathbf{2 1 0 0 - 2 4 8 8}$ |
| 54 | $2140-0259$ | 1 | Lampitincalescent liv 0.06a | 11744 | Cx8-1099 |
| 55 | 2100-3066 |  |  | 480 | 2100-3066 |
| ${ }_{59}^{56}$ | - $08553-0009$ | 1 |  |  | 09553-0009 |
| 58 | 08556-00004 | 1 |  | ${ }^{28489}$ | 08556-00006 |
| 99 | 3101-0070 | 1 | SHIT THE SLIDE | 79727 | 6-126 |
| 60 | 310 | 2 | Shitchislide dp3 pos. hiniature (SL DBm/DBV) | 78489 | 55 |
| -1 | $08556-00009$ | 1 | PLATE CONNECTOR FANEL: FRONT | 28880 <br> 28480 <br> 1890 | O8556-00099 |
| 62 63 64 64 | $08556-30002$ $3101-1299$ |  |  | 11590 |  |
| 64 65 | 3101-1299 |  |  | 1590 |  |
| 66 67 | - $\begin{aligned} & 08556-2013 \\ & 08556-20014\end{aligned}$ | 1 |  | 28480 88480 | - 085565620013 |

# SECTION VIII <br> SERVICE 

## 8-1. INTRODUCTION

8-2. This section provides instructions for troubleshooting and repairing the Hewlett-Packard Model 8556A Spectrum Analyzer LF Section.

## 8-3. Theory of Operation

8-4. Theory of operation appears on the foldout pages opposite the block diagram on Service Sheet 2 and on the pages opposite the schematic diagrams on Service Sheets 3 through 12. The block diagram on Service Sheet 2 is keyed to the remaining service sheets so that the reader may quickly locate the schematic and theory concerning any specific circuit.

## 8-5. Recommended Test Equipment

8-6. Test equipment and test equipment accessories required to maintain the LF Section are listed in Tables 1-4 and 1-5. Equipment other than that listed may be used if it meets the listed minimum specifications.

8-7. Board level troubleshooting without Extender Cable Assembly HP 11592 -60015 is not recommended. Component level troubleshooting and repair without the extender cable, Interconnection Cable Assembly HP 11592-60016, and the Extender Board HP 5060-0256 is not recommended. Selectro to BNC adapters HP 1250-1236 and HP 1250-1237 facilitate testing signal levels and waveshapes but are not absolutely necessary. (The TRACKING GEN OUT cable - red - can be used as a Selectro Plug to BNC adapter.)

## 8-8. Troubleshooting

8-9. The troubleshooting procedures in this manual fall into three categories.
$8-10$. The troubleshooting tree is designed to isolate trouble to the board or assembly level.

8-11. The troubleshooting block diagram is designed to be used as a quick reference by the technician who is familiar with the LF Section and does not wish to go through the troubleshootingtree. It will also isolate trouble to the board or assembly level.

8-12. Circuit level troubleshooting and analysis is provided on the foldout page opposite each sche-
matic. After the cause of a trouble has been isolated and corrected, check the troubleshooting information associated with that circuit for any adjustments that may have to be performed.

## 8-13. GENERAL SERVICE INFORMATION

8-14. Part Location Aids
8-15. The locations of chassis-mounted parts and major assemblies are shown in Figure 8-14. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the appropriate schematic diagram page or on the page opposite it. The part reference designator is the assembly designator plus the part designator. (Example: A10R9 is R9 on the A10 assembly.) For specific component description and ordering information refer to the parts list in Section VI.

## 8-16. Factory Selected Components

8 -17. Some component values are selected at the time of final checkout at the factory (see Table $8-1$ ). Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk (*). The recommended procedure for replacing a factory-selected part is as follows:
a. Try the original value, then perform the calibration test specified for the circuit in the performance and adjustment sections of this manual.
b. If calibration cannot be accomplished, try the typical value shown in the parts list and repeat the test.
c. If the test results are still not satisfactory, substitute various values within the tolerances specified in Table 8-1 until the desired result is obtained.

## 8-18. Diagram Notes

8-19. Table 8-3, Schematic Diagram Notes, provides information relative to symbols and measurement units shown in schematic diagrams.

Table 8-1. Factory Selected Components

| Componant | Location | Range of Valuen | Sasia of Selection |
| :---: | :---: | :---: | :---: |
| A181 | Service Shent 9 | $\begin{gathered} 1.33 \mathrm{~K} \\ \text { to } \\ 1.21 \mathrm{~K} \\ \text { ohm } \end{gathered}$ | Sets upper limit of 300 $\mathbf{k H z}$ ADJ. Select for +15.85 V at tert point A (A11XA7 pin 5) with analyzur at as follows: <br> RANGE .... $0-300 \mathrm{kHz}$ FREQUENCY... 300 kHz FINE TUNE ..., cantered 300 kHz ADS . .... full cw |
| A8A1L3 | Servic: Sheet 7 | $\begin{gathered} 56.0 \\ \text { to } \\ 47.0 \\ \mu H \end{gathered}$ | Sots center of tuning range of TRACK AOJ. Select for range of $3 \mathrm{MHz} \pm 140 \mathrm{~Hz}$ of 3 MHz oscillator. (Incressing velue of ABA1L3 wil lower cemter of tuning range.) |
| A8R7 | Service Sheet 7 | $\left\lvert\, \begin{gathered} 38.0 \\ \text { to } \\ 42.2 \mathrm{hms} \end{gathered}\right.$ | Sets gain of A801 at 300 kHz . Selected to thet FLATNESS ADJ A8RS can adjust flatness within limitu. |

8-20. Servicing Aids on Printed Circuit Boards
8-21. The servicing aids include test points, transistor and integrated circuit designations, adjustment callouts and assembly stock numbers.

## 8-22. Circuit Board Extender

8-23. A 20 -pin extender board, HP $5060-0256$ is required to extend the circuit boards clear of the and test points. See Figure 8-1 for a typical example of extender board use.

## 8-24. GENERAL SERVICE HINTS

8-25. Etched Circuits
8-26. The etched circuit boards in the LF Section are of the plated-through type consisting of metalare of the plated-through type consisting of metalmaterial. The metallic conductors are extended through the component mounting holes by a plating process. Soldering can be done from either side of the board with equally good results. Table $8-2$ lists recommendations and precautions pertinent to etched circuit repair work.

[^1]8-2
b. Do not use a high-power soldering iron on tched circuit boards. Excessive heat may lift conductor or damage the board.
c. Use a suction device (Table 8-2) or wooden toothpick to remove solder from compoMETAL OBJECT SUCH AS AN AWL OR TWIST DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CONDUCTOR.
d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion. See Table -2 for recommendation.

## 8-27. Etched Conductor Repair

8-28. A broken or burned section of conductor can be repaired by bridging the damaged section with a length of tinned copper wire. Allow ade conductor before soldering wire into place.

8-29. Component Replacement
8-30. Remove defective component from board.

## NOTE

Axial lead components, such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board. Wrap leads of replacement component one turn around original leads. Solder wrapped connection, and clip off excess
lead.

8-31. If component was unsoldered, remove solder from mounting holes, and position component as original was positioned. DO NOT FORCE LEADS INTO MOUNTING HOLES; sharp lead ends may damage plated-through conductor.

8-32. Transistor Replacement. Transistors are packaged in many physical forms. This sometime results in confusion as to which lead is the collec tor, which is the emitter, and which is the base. Figures 8-2 and 8-3 show typical epoxy and metal case transistors and integrated circuits and the means of identifying the leads.

8-33. To replace a transistor, proceed as follows:
a. Do not apply excessive heat; see Table 8-2 for recommended soldering tools.
b. If possible, use long-nose pliers between transistor and hot soldering iron as a heat sink. The


Figure 8-1. 8556A LF Section with Circuit Board Extended
instant solder is melted, use desoldering aid to remove solder from mounting hole.
c. When installing replacement transistor, ensure sufficient lead length to dissipate soldering heat by using about the same length of exposed lead as useful for original transistor.
d. Integrated circuit replacement instructions are the same as those for transistors.
8-34. Some transistors are mounted on heat sinks for good heat dissipation. This requires good thermal contact with mounting surfaces. To assure coat both sides of the insulator with Dow Corning No. 5 silicone compound or equivalent before fastening the transistor to the chassis. Dow Corning No. 5 compound is available in 8 oz . tubes from Hewlett-Packard; order HP Part No. 8500-0059.

8-35. Diode Repiacement. Solid state diodes are in many physical forms. This sometimes results in
confusion as to which lead or connection is the cathode (negative) and which lead is the anode (positive), since not all diodes are marked with the some diode marking methods. If doubt exists as to some diode marking methods. If doubt exists as to polanity, an ohmmeter may be used to determine polarity of the ohms lead with respect to the common lead for the ohmmeter used. (For the HP Model 410B Vacuum Tube Voltmeter, the ohms lead is negative with respect to the common; for the HP Model 412A DC Vacuum Tube Voltmeter, the ohms lead is positive with respect to the common.) When the ohmmeter indicates the least diode resistance, the cathode of the diode is connected to the ohmmeter lead which is negative
with respect to the other lead.

## NOTE

Replacement instructions are the same a those listed for transistor replacement.


Figure 8-2. Examples of Diode and Transistor Marking Methods
Table 8-2. Etched Circuit Soldering Equipment

| ITEM | USE | SPECIFICATION | ItEm recommended |
| :---: | :---: | :---: | :---: |
| Soldaring tool | Soldering, unsoldering | Wittoge rating: 37-50; Tip Tomp: 750-800 ${ }^{\circ}$ | Ungar \#766 handie w/*Ungar \#1237 herring unit |
| Soldaring Tip | Soldering, unsoldering | -Shape: pointed | -Unger \# PLIII |
| De-soldering Aid | To remove molten solder from connaction | Suction device | Soldapullt by Edsyn Co., Ariota, California |
| Resin (flux) Solvent | Romove excess filux from soldered ares before application of protective coating | Must not dissolve etchad circuit base hoard | Freon; Acetone; Lecquer Thinner |
| Solder | Component replacement Circuit board repsir Wiring | Ressin (flux) core, high tin content (60/40 tin/eed), 18 gauge (SWG) proferrad |  |
| Protective Coating | Contamination, eorrosion protection | Good alectrical insulation, comosionprevention properties | Silicone Resin such as GE DRI-FILM* "88 |
|  of 850-900 detrees) and Unyar No. PLi $131 / 8^{\prime \prime}$ chisel thp. <br> **General Electric Co., Sulicone Producte Dept., Waterford, New Y ork, U.S.A. |  |  |  |

INTEGRATED CIRCUITS (PLASTIC ANO METAL CASEI


Figure 8-3. Integrated Circuit Packaging

8-36. LOGIC CIRCUITS AND SYMBOLS
8-37. The following paragraphs and illustrations provide basic information about logic circuits and provide basic information about logic circuits and is not within the scompe of this manual, it is believed that this material will help the technician experienced with analog devices, who has had little or no experience with digital circuits.

8-38. The circuits discussed are digital in nature; their outputs are always in one of two possible states, a " 1 " or " 0 ". These two states are also referred to as being either high (H) or low (L). The
igh and low states are relative; low must be less positive (more negative) than high, both states may be positive or negative, or high may be positive and low negative. In positive logic the more positive $(\mathrm{H})$ state is a logical " 1 " and the more negative (L) tate is a logical " 0 ". In negative logic the more negative (L) state is a logical " 1 " and the more positive $(\mathrm{H})$ state is a logical " 0 ".

8-39. Two of the basic "building blocks" of logic ircuits are the AND and OR gates. The symbols and truth tables for basic AND and OR gates are hown in Figure 8-4.


Figure 8-4. Basic AND and OR Gates

## 8-40. Basic AND Gate (Positive Logic)

8-41. The basic AND gate is a circuit which produces an output " 1 " when, and only when, a " 1 " is applied to all inputs. As shown in Figure 8-4, erminal $X$ will be high only when terminals $A$ and $B$ are both high. The dot (*) shown in the AND gate is the logic term for AND. The term for a imple two input AND gate is $X=A \cdot B$ ( $X$ equals $A$ and B). AND gates may be designed to have as many inputs as required to fill a specific requirement.

## 842. Basic OR Gate (Positive Logic)

8-43. The basic OR gate is a circuit which produces a " 1 " output when any one or all of the inputs are in the 1 state. As show in Figure 8-4, erminal $X$ will be high when either terminal $A$ or erminal B , or both are high. The + shown in the OR gate symbol is the logic term for OR. The term or a simple two input OR gate is $\mathrm{X}=\mathrm{A}+\mathrm{B}(\mathrm{X}$ equals A or B). OR gates may be designed to $h$ as many inputs as required for specific needs
$8-44$. The symbols for AND and OR gates differ in that AND gates symbols have a flat input side and rounded output side while OR gate symbols have a concave input side and a pointed output side.

## 8-45. Truth Tables

8-46. Truth tables provide a means of presenting, in tabular form, the output state of logic devices or any set of inputs. Truth tables contain one column for each of the inputs and a column for the output. In basic truth tables the column notations are usually H or L (for high and low) or, for binary notation, " 1 " or " 0 ".


|  | A |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | x | A | B | x | A | в | x | $\wedge$ | 8 |  |
| H | H | H | H | H | H | H | H | 1 | H | H |  |
| H | I | H | H | 1 | 1 | H | L | L | H | 1 | H |
| 1 | H | H | L | H | L | 1 | H | L | L | H | H |
| L | L | L | L | 1 | L | L | 1 | H | L | 1 | H |

Figure 8-6. Logic Comparison Diagrams
positive pulse at the set input will not affect the circuit. When a positive pulse is applied to the rese input it is coupled through C4 and CR2 to the base of Q2. Q2 begins to conduct and the negative going collector voltage is coupled through C3 to the base
of Q1 to cut off Q1. The process is regenerative Q1 is quickly cut off and Q2 saturates. The flip lop will remain in the reset state until a positive et pulse is applied through C2 and CR1 to th base of Q1


## 8-53. The RST Flip-Flop

8-54. Figure $8-8$ shows an RST flip-flop. It can be set and reset like the RS flip-flop and, in addition, it can be toggled back and forth between its two stable states. A positive pulse (or high) at the S input will set $Q$ high; a high at the $R$ input will set Q low. The circle on the symbol means that the trigger input responds to negative-going triggers. The flip-flop will switch between its two stable states on each input trigger. That is, if $Q$ is high, the next trigger will cause $Q$ to go low

## 8-55. Clocked JK Flip-Fiop

8-56. The clocked JK flip-flop may be assembled from an RS flip-flop, an inverter, and two AND gates. The flip-flop is shown in Figure 8-9 along with its truth table. It has three inputs and two low) triggers as indicated by the circle on the
symbol. Flip-flop response is determined by the values of the J and K inputs at the instant that the trigger pulse arrives at the clock input:
a. When J and K are low, the flip-flop will remain in whatever state it is in.
b. When $K$ is high and $J$ is low, the trigger will cause Q to go low (unless it is already low).
c. When J is high and K is low, the trigger will cause $Q$ to go high (unless it is already high).
d. When J and K are both high, the flip-flop will toggle between its two stable states. That is, if $Q$ is high, the next trigger will set $Q$ low.


Figure 8-8. RST Flip-Flop


Figure 8-9. The Clocked JK Flip-Flop

## 8-57. JK Master/Slave Flip-Flop

$8-58$. The JK master/slave flip-flop has the same truth table as the JK flip-flop. However, the sequence of operation is not the same. The regula JK flip-flop responds only to the negative portion of the input clock
a. While the trigger (or clock) pulse is high the J and K inputs are isolated from the flip-flop.
b. When the trigger goes low, the information at the J and K inputs is fed into the flip-flop to control its outputs.
c. When the trigger again goes high, the and $K$ inputs are isolated from the flip-flop.


Figure 8-11. Operational Amplifier Equivalent Circuit

## 66. Troubleshooting

8-67. An operational amplifier can be characterized as an ideal voltage amplifier having low output解 mpedance, high input impedance, and very thigh difference in the voltages applied to the two input rminals. In use, the amplifier drives the input voltage difference close to zero.

8-68. When troubleshooting an operational amplier, measure the voltages at the two inputs with no ignal applied; the difference between these voltages should be less than 10 mV . A difference oltage much greater than 10 mv indicates trouble the amplifier or its external circuitry. Uuall his difference will be nputs will be (for example $+20 \mathrm{~V},-12 \mathrm{~V}$ )

Next, check the amplifier's output voltage 8-69. Next, check the amplifier's output voltage It will probably also be close to one of the applied to see that the output conforms to the inputs. For example, if the inverting input is positive, the output should be negative; if the non-inverting input is positive, the output should be positive. I the output conforms to the inputs, check the amplifier's external circuitry. If the amplifier' output does not conform to its inputs, it is prob ably defective - replace it.

## 8-70. DIAL CALIBRATION PROCEDURE

8 -71. To restring the frequency dial, follow the procedure outlined in Figure 8-12. After the dial is restrung, or after the frequency tuning pot R3 is replaced, perform the following adjustments.
a. Switch RANGE from $0-30 \mathrm{kHz}$ to $0-300$ kHz . The final zeros on the CENTER FREQUENCY dial should all be completely visible.
b. Turn FREQUENCY full counterlockise The dial pointer should indicate $3 / 4$ to $11 / 4$ smail divisions to the left of 0 kHz .
c. Turn FREQUENCY full clockwise. The dial pointer should indicate at least $3 / 4$ of a small division to the right of 300 kHz .
d. If necessary, loosen the set screws on the gear shaft of the FREQUENCY pot and re-position the gear slightly by turning the FREQUENCY knob while the pot is at either stop. Then r tighten the set screws and repeat steps $b$ and $c$.

Perform the frequency calibration adjust ments specifled in Section V .


1. Remove top cover
. Tune to low end of scale.
b. Remove front panel assembly from side paneis.
c. Remove scale assembly.
d. Remove tuning knobs.
e. Remove 2 screws which hold gearbox to pane assembly.
f. Remove left pully at left end of pointer slot.
2. To replace string on right side of pointer:
a. Remove pointer from slot, detach old string.
a. Remove pointer from slot, detach old string.
b. Access to fixed end of string is through the hole in the front gearbox plate. Line up dial drum with this hole so that old string may be withdrawn.
c. Pass a new piece of dial string (about $151 / 3^{\prime \prime}$ ) through the hole and double knot the fixed end. Clip off excess string and draw the knot into the hole.
. Heset the tuning shaft fully ccw .
. Pass the free end of the string into the right end of he pointer slot. Tie it to the pointer spring where
Replace pointer in slot.

g. Replace gearbox screws.
h. Turn shaft fully cw.
i. Loosen fixing screw at opposite end of string and adjust string tension so that pointer is stretched adjust string tension so phat p .
j. Reassemble, using reverse procedure in 1 .
3. To replace string on left side of pointer:
a. Remove pointer from slot and remove old string.
b. Tie approximately $12^{\prime \prime}$ of dial string (use double knot) to the pointer spring and replace pointer in slot.
c. Replace gearbox screws.
d. Turn shaft fully cw
e. Place dial string on pulleys.
f. Wrap string around dial drum,and tie under screwhead, while maintaining about $3 / 16$ " stretch on pointer spring.
g. Reassemble, using reverse of procedure in 1.
4. Check calibration; adjust by moving the 29 tooth gear on the tuning pot shaft. Perform dial calibration procedure.

## SCHEMATIC DIAGRAM NOTES

Resistance is in ohms, inductance is in microhenries, capacitance is in microfarads unless otherwise noted
$\mathrm{P} / \mathrm{O}=$ part of.
*Asterisk denotes a factory-selected value. Value shown is typical. Capacitors may be omitted or resistors jumpered.

Screwdriver adjustment.
Panel control.Encloses front panel designations.
Encloses rear panel designations.

Circuit assembly borderline

-     -         -             -                 -                     - 

Other assembly borderline


Heavy line with arrows indicates path and direction of main signal.
Heavy dashed line with arrows indicates path and direction of main feedback.
Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.

1 Numbers in stars on circuit assemblies show locations of test points.
Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number identifies the narrower stripe; e.g. 947 denotes white base, yellow wide stripe, violet narrow stripe.

Arrow indicates direction of contact movement when relay is energized.

## Chassis ground.

$\frac{1}{V} \quad$ Isolated ground.

Indicates non-shorting switch contact.

Indicates shorting switch contact.
Indicates voltage isolated from chassis ground
Indicates voltage-isolated-filtered.

## OVERALL TROUBLESHOOTING TREE

## INTRODUCTION

The overall troubleshooting tree can be used to quickly isolate trouble to the circuit board, or assembly, level. To implement repair, turn to the indicated service sheet and follow the troubleshooting procedure.

After repairing a circuit board, perform the adjustment procedures, if any, specified in the troubleshooting procedure.

## TROUBLESHOOTING

Equipment:
AC Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 400EL
Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . .

Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . HP . . . . . . . . . . . . . . . HP 10004 A
Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 651 B
BNC Cable Assy (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 1250-1236
Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP HP1250-1238
50 Ohm Feed Thru Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extender Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 1159260015
Interconnection Cable Assy
HP 11592-60015

## Extender Cable Installation

Remove the LF Section and IF Section from the Display Section; install the Extender Cable Assembly in the Display Section and connect the appropriate plugs to the LF and IF Sections. Separate the LF and IF Sections and connect the Interconnection Cable Assembly. (See the step-by-step procedure on Service Sheet 1.)

## Measurement Procedure

Use the $8552 \mathrm{~A} / \mathrm{B}-8556 \mathrm{~A}$ Trouble Isolation Troubleshooting Tree to isolate trouble to the 8556A. This tree will also branch to the Frequency Troubleshooting Table or to the Amplitude or Tracking Generator Troubleshooting Trees. The latter will branch to a specific Service Sheet.

Set the analyzer controls as specified on the troubleshooting tree, and apply any specified signals using the Test Oscillator, BNC Cable Assembly, and Adapters. Check the dc voltages with the Digital Voltmeter; check the peak-to-peak voltages with the Oscilloscope, and check the rms voltages with the $A C$ Voltmeter. The AC Voltmeter is also used, with the 50 Ohm Feed Thru Termination, to check the power ( dBm ) readings.

## Note

The quickest way to isolate trouble to the 8556 A is to substitute a known-good tuning section (such as an 8553 B ) for the 8556 A . If the trouble persists the malfunction is located in the IF Section or the Display Section.

| Set analyzer controls as follows: |  |
| :---: | :---: |
| bange | .. $0-300 \mathrm{kHz}$ |
| FREQUENCY | ... 150 kHz |
| SCAN WIDTH | PER DIVISION |
| per division | .... 20 kHz |
| SCAN TIME PER DIVISION | ., 1 SECOND |
| SCAN MODE | ... SINGLE |




|  | Component | Service Sheet | Photo |
| :---: | :---: | :---: | :---: |
| A1 | Bandwidth Switch | 9, 10, 11 | Figures 8-40, 43 |
| A2 | Scan Width Switch | 9,10 | Figures 8-36, 41 |
| A3 | Input Level Switch | 4, 5, 7, 11 | Figures 8-24, 31, 44 |
| A4 | (Reserved for Balanced Input) | (3) |  |
| A5 | Pre-Attenuator and Preamplifier | 4 | Figure 8-22 |
| A6 | Frequency Converter | 5 | Figure 8-25 |
| A7 | Frequency Control and Marker Generator | 8,9 | Figures 8-34, 37 |
| A8 | Tracking Generator Output | 7 | Figures 8-29, 30 |
| A9 | Tracking Generator Frequency Converter | 6 | Figure 8-27 |
| A10 | Power Supply | 12 | Figure 8-46 |
| A11 | Master Board | $4,5,6,7,8,9,12$ | Figures 8-21, 47 |
|  | Component | Service Sheet | Photo/Location |
| C1 | . | 4 | Figure 8-14 |
| DS1 | DISPLAY UNCAL Lamp | 12 | Figure 6-1 |
| J1 | INPUT 1 M $\Omega$ | 4 | Figure 8-14 |
| J2 | TRACKING GEN OUT $600 \Omega$ | 7 | Figure 8.14 |
| P1 | Not Assigned |  |  |
| P2 | LF Section/Display Section | 12 | Figure 8-14 |
| P3 | LF Section/IF Section | 4, 6, 9, 10, 11, 12 | Figure 8-14 |
| R1 | TRACK ADJ | 7 | Figure 8-14 |
| R2 | Not Assigned |  |  |
| R3 | FREQUENCY | 9 | Figure 8-14 |
| R4 | FINE TUNE | 9 | Figure 8-14 |
| R5 | 300 kHz ADJ | 9 | Figure 8-14 |
| R6 | ZERO ADJ | 9 | Figure 8-14 |
| R7 | AMPL CAL | 11 | Figure 8-14 |
| S1 | $\mathrm{dBm} / \mathrm{dBV}$ | 4 | Figure 8-14 |
| S2 | 20 kHz MARKERS | 8 | Figure 8-14 |
| S3 | RANGE kHz | 9 | Figure 8-14 |
| W1 | Signal Input - Gray | 4 | Figure 8-14 |
| W2 | 50 MHz Out - White | 5 | Figure 8-14 |
| W3 | 47 MHz LO Input - White | 6 | Figure 8-14 |
| W4 | Tracking Gen Out - Red | 7 | Figure 8-14 |
| W5 | $\mathrm{dBm} / \mathrm{dBV}$ - Orange | 4 | Figure 8-14 |
| XA11 |  | 4, 7, 8, 9, 12 | Figure 8-14 |



Table 8-5. Connector P2 Pin Identification


Table 8-6. Connector P3 Pin Identification

| Connector P3 | Wire Color Code | Function |
| :---: | :---: | :---: |
| Pin 1 | 912 | $0.03 \mathrm{kHz}(8552 \mathrm{~B}) / 0.05 \mathrm{kHz}$ ( 8552 A ) Bandwidth |
| 2 | 913 | 0.10 kHz Bandwidth |
| 3 | 914 | 0.30 kHz Bandwidth |
| 4 | 915 | 1.0 kHz Bandwidth |
| 5 | 926 | Frequency Tune Voltage |
| 6 | 3 | $\pm 5 \mathrm{~V}$ Scan Sawtooth |
| 7 | 5 | Linear Gain Compensation |
| 8 | 6 | Linear Gain Compensation |
| 9 | 938 | LOG REF LEVEL Lamp No. 4 |
| 10 | 945 | LOG REF LEVEL Lamp No. 5 |
| 11 | 946 | LOG REF LEVEL Lamp No. 6 (right) |
| 12 | 90 | Sensing Ground |
| 13 | - | Open |
| 14 | 925 | 0.01 kHz Bandwidth (8552B Only) |
| 15 | 904 | 8552A/B Sensing for ZERO ADJ |
| 16-24 | - | Open |
| 25 | 916 | 10 kHz Bandwidth |
| 26 | 902 | 30 kHz Bandwidth ( +20 V Out) |
| 27 | 902 | 100 kHz Bandwidth ( +20 V Out) |
| 28 | - | 300 kHz Bandwidth (Open) |
| 29 | 96 | To AMPL CAL Pot |
| 30 | 957 | Normal Analogic Line |
| 31 | 934 | 47 MHz LO Scan Voltage |
| 32 | 9 | ZERO ADJ Voltage |
| 33 | 935 | LOG REF LEVEL Lamp No. 1 (left) |
| 34 | 936 | LOG REF LEVEL Lamp No. 2 |
| 35 | 937 | LOG REF LEVEL Lamp No. 3 |
| 36 | 907 | -10 Volts |
| 37 | 902 | +20 Volts |
| 38 | 956 | VIDEO FILTER Analogic Line |
| 39 | 958 | ZERO SCAN Analogic Disable Line |
| 40 | 968 | LOG/LINEAR Sensing |
| 41 |  | Open |
| A1 | Clear | 50 MHz IF |
| A2 | Clear | 47 MHz Auxiliary Line |

Troubleshooting 1 Diagram \& Conn.
Identifica

SERVICE SHE

Table 8-7. Connector XA11 Pin Identification

| Connector XAl1 | Wire Color Code | Function |
| :---: | :---: | :---: |
| Pin 1 | - | Open |
| 2 | - | Open |
| 3 | 1 | Pre-Atten Relay Coil Return |
| 4 |  | Open |
| 5 | 907 | -10 Volts |
| 6 | 917 | $0-200 \mathrm{kHz}$ Scan Tune Offset |
| 7 | 901 | RANGE kHz Switch |
| 8 | 926 | Frequency Tune Voltage |
| 9 | 923 | Scan Width Attenuator Input |
| 10 | 95 | Scan-Offset Amplifier Offset Input |
| 11 | 91 | Tune-Offset Amplifier Frequency Tune Input |
| 12 | 947 | TRACK ADJ Supply |
| 13 | - | Open |
| 14 | - | Open |
| 15 | 905 | To DISPLAY UNCAL Lamp |
| A | - | Open |
| B | - | Open |
| C | 2 | Pre-Atten Relay Coil Supply |
| D | 968 | LOG/LINEAR Sensing |
| E | 97 | -12.6 Volts |
| F | 948 | RF Markers Switch |
| H | 928 | Tune-Offset Amplifier Output |
| J | 98 | FINE TUNE Pot |
| K | 927 | Voltage - Follower Amplifier Input |
| L | 93 | Scan - Offset Amplifier Scan Input |
| M | 902 | +20 Volts |
| N | 967 | TRACK ADJ Voltage |
| P | - | Open |
| R | 0 | Chassis Ground |
| S | - | Open |

SERVICE SHEET 1

## INTRODUCTION

## General

The troubleshooting block diagram can be used to quickly isolate trouble to the circuit board, or assembly, level. To implement repair, turn to the and follow the troubleshooting procedure

## Related Adjustments

After repairing a circuit board, perform the adjustment procedures, if any, specified in the troubleshooting procedure.

## TROUBLESHOOTING

## Equipment

Oscilloscope . . . . . . . . . HP 180A/1801A/1820B Digital Vollmeter HP $3480 \mathrm{~B} / 3 . \ldots$ HP 10004A Cable Assy . . . . . . . . . Test Oscillator . . . . . . . . . . . . . . . . . . . . . . HP 651B BNC Cable Assy (2) . . . . . . . . . . . . . . HP 10503A
Adapter HP 1250-1236
dapte
Extender Cable Assy . . . . . . . . . . . . HP 11592-60015
Interconnection Cable Assy . . . . HP 11592-60016

## Extender Cable Installation

Push the front panel latch in the direction indicated by the arrow until the latch disengages and pops out from the panel. Pull the plug-ins out of he instrument. Locate the black press-to-releas button on the right side of the LF Section. Press When the two fections pull the two sections apart raise the two sections separate at the front panel, section by two section until it is above the lower Disengage the metal tab-slot connection and separate the sectios. Pemove top and bottom covers from the LF Section.

Place the plate end of the HP 11592-60015 Exten der Cable Assembly in the Display Section and contact. The plate and so that the plugs mak upside down as the plate has two holes cormend ing to the two guide rods in the mainframe.

Connect the upper cable plug to the LF Section and the lower cable plug to the IF Section. Th plugs are keyed so that they will go on correctly and will not make contact upside down. Connect HP 11592-60016 Interconnection Cable Assembly between the LF and IF Sections. The connectors on the cable are keyed by the shape of the plup and the arrangement of the pins. Press the connec tors firmly together and extend the instruments as far apart as the cable will allow without putting stress on the connectors.

## Measurement Procedure

Set the analyzer controls as specified on the block diagram. Set the Test Oscillator for the signal shown and apply the signal to INPUT. Apply power to the analyzer.

## NOTE

The meter on the HP 651B Test Oscillator is calibrated to read volts into 50 (or 600 ) ohms. If the oscillator is terminated in a high impedance, such as the analyzer INPUT, its meter will read one-half the applied voltage. Use a 50 -ohm Feed Thru termination or set the oscillator for half
the desired voltage.

Check the de voltages shown with a Digital Voltmeter. If the voltages are incorrect, see Service Sheet 12.
Check the waveforms shown with an oscilloscope: use a BNC cable and adapters to check waveforms check waveforms at test points the X10 probe to connector pins (connector pins and cilabl board ottom of 8556 A chassis).

Bollow the intuctions
Follow the instructions listed under waveforms. or example, check the signal at A6J3 by removing the brown cable (A9W1) from jack A6J3 and connecting an oscilloscope to the jack with an adapter and a BNC cable.


## SERVICE SHEET 2

## SIMPLIFIED ANALYZER BLOCK DIAGRAM

The Hewlett-Packard Model 8556A LF Section was designed to be used with an 8552 series IF Section and a 140 series Display Section. When the three units are combined they function as a low frequency spectrum analyzer. The analyzer operates like a swept receiver. It electronically scans an input signal and displays the frequency and amplitude of its composite components on a CRT.

The analyzer's tuning section, the 8556A, contains circuits that amplify the signal and shift its frequency to put it in the IF passband. The LF Section also has a tracking generator and a marker generator.

The IF Section contains a local oscillator that is swept, in frequency, by the same sawtooth that sweeps the CRT. This swept LO is mixed with the signal from the LF Section; the resulting 3 MHz signal passes through bandwidth shaping circuits, a log/linear amplifier, a rectifier, and is sent to the Display Section

The Display Section has a CRT that displays the signal's amplitude vs. its frequency. Because the amplifiers and oscillators in the analyzer are calibrated, the signal's voltage ( $\mathrm{mV}, \mu \mathrm{V}, \mathrm{dBV}$ ) or power ( dBm ) and frequency can be read directly on the CRT.

## LF SECTION BLOCK DIAGRAM

## Pre-Attenuator and Preamplifier

The input signal passes through the pre-attenuator to the preamplifier. The pre-attenuator has 0 or 30 dB of attenuation, depending upon the position of the INPUT LEVEL switch. The preamplifier has a high impedance input and its gain depends upon the way the signal's amplitude is being measured; the gain is set by the IF Section LOG/LINEAR switch and the LF Section $\mathrm{dBm} / \mathrm{dBV}$ switch.

## Post-Attenuator and Frequency Converter

From the preamplifier the signal is fed through the post-attenuator and a low pass filter to a balanced mixer. The post-attenuator works in conjunction with the pre-attenuator. Together they attenuate the input signal from 0 to 50 dB depending upon the setting of the INPUT LEVEL switch. This attenuation reduces spurious mixing products in the mixer, insuring that the mixer is not over-driven.

The low pass filter prevents high frequency signals from reaching the mixer; its cut-off frequency is about 1 MHz . The balanced mixer combines the 20 Hz to 300 kHz input with 50.150 MHz from the crystal oscillator. The difference frequency is fed through the buffer amplifier to the IF Section.

## 20 kHz Marker Circuits

When the 20 kHz MARKERS switch is depressed, 3 MHz from the tracking generator is fed to the marker dividers. This division results in narrow, 20 kHz pulses which are then fed into the input signal path. The 0.33 microsecond width of the pulse ensures that 20 kHz markers will extend to 300 kHz with no significant amplitude decrease.

Block Diagram
SERVICE SHEET 2

## SERVICE SHEET 2 (cont'd)

## Frequency Control Circuits

The frequency of the 47 MHz LO (located in the IF Section) is determined by:
a. The voltage from the voltage follower.
b. The voltage from the scan-offset amplifier and scan width attenuator.
c. The voltage from the ZERO ADJ pot.

When SCAN WIDTH is set to PER DIVISION or ZERO, the voltage to the voltage follower is determined by the output of the tune-offset amplifier (which sums the voltages from the FREQUENCY and FINE TUNE controls), and by the RANGE switch. In 0-10f, the input to the voltage follower is pre-set.

When SCAN WIDTH is set to PER DIVISION or 0-10f, the ramp from the IF Section is processed by the scan-offset amplifier and attenuated by the scan width attenuator (attenuation is in proportion to the PER DIVISION setting). This ramp then sweeps the 47 MHz LO. The ramp is not used when SCAN WIDTH is set to ZERO.

## Tracking Generator Frequency Converter

The tracking generator produces a signal which precisely tracks the spectrum analyzer tuning frequency. The signal from the 47 MHz LO in the IF Section is fed through an amplifier to a balanced mixer. There it is mixed with 50.150 MHz from the frequency converter. The difference frequency ( $3-3.3$ MHz ) is filtered, amplified and fed to another balanced mixer.

## Tracking Generator Output

The balanced mixer mixes 3 MHz from the crystal oscillator with 3 to 3.3 MHz from the frequency converter. The crystal oscillator can be tuned to center the tracking generator signal in the IF passband. The difference frequency from the balanced mixer is filtered and sent to the output amplifier. The gain of the amplifier is controlled by the TRACKING GEN LEVEL control. The amplifier's output is 100 mV in CAL (into an open circuit) and can be increased to about 3 volts.



TRACKING GENERATOR OUTPUT



## SERVICE SHEET 4

## THEORY OF OPERATION

## General

The Pre-Attenuator and Preamplifier Assembly A5 contains the The Pre-Attenuator and Preamplifier Assembly A5 contains the
pre-attenuator and the preamplifier, and it is isolated from chassis ground. pre-attenuator and the preamplifier, and it is isolated from chassis ground Preamplifier power is supplied by the Power Supply Assembly A10 (see originates on the A10 assembly.

## Pre-Attenuator

The pre-attenuator is used in the last three positions of the INPUT LEVEL switch. The switch controls relay A5K1, and resistors A11R1 and R2 isolate K 1 from chassis ground. The pre-attenuator is a 30 dB voltage divider. C IN capacitor A5C6 adjusts attenuator capacitance so that LF Section input capacitance does not change when the attenuator is used. COMP capacitor A5C7 adjusts attenuator flatness. A5R5 and A5CR3 through CR6 protect the preamplifier from input overloads.

## Preamplifier

A5Q1 through Q4 and associated circuitry form a feedback amplifier. Q4 is a A5Q1 through Q4 and associated circuitry form a feedback amplifier. Q4 is a low hoise, junction amplifier that matches the low impedance at the drain of Q4 to the high
impedance at the base of Q2; this provides high voltage gain. Q2 provides high current gain and some voltage gain. Q1 isolates the collector of Q2 from the A5 assembly's 100 ohm output impedance. The gain of the amplifier is controlled by the feedback from the emitter of Q1 to the source of Q4.

With the LOG/LINEAR switch on the IF Section set to LINEAR, open circuit gain is 8 dB . With LOG/LINEAR set to LOG (either 2 dB or 10 dB ) -12.6 V turns on A11Q1, which turns on A5K2. This adds the feedback divider to the amplifier, and the $\mathrm{dBm} / \mathrm{dBV}$ switch controls amplifier feedback through A5R7, R8 and R9. Therefore, the gain of the amplifie depends upon the settings of the LOG/LINEAR and the $d B m / d B V$ switches.

## TROUBLESHOOTING

Equipment:
Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . HP 3480B/3484A Option 042 Test Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 651B AC Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 400EL BNC Cable Assy (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 10503A Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 11002A Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 1159 1250-1236 Extender Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 5060-0256

## Genera

Normally trouble is isolated to the Pre-Attenuator and Preamplifier Normally trouble is isolated to the Pre-Attenuator and Preamplifie Assembly A5 using the overall troubleshooting tree or the troubleshooting
block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

## SERVICE SHEET 4 (cont'd)

## Supply Voltages and Isolation

With Digital Voltmeter measure voltage at +20 VI and -20 VI test points on assembly cover. The voltages should be $+20 \pm 2 \mathrm{~V}$ and $-20 \pm 2 \mathrm{~V}$. Connect test leads from assembly cover to chassis ground and measure resistance; it should be about 100 K ohms.

If either of the above checks are out of limits, remove A5 assembly from chassis and re-check (voltages will be $++28 \pm 4 \mathrm{~V}$ and $-28 \pm 4 \mathrm{~V}$.) If checks are still out of limits, see Service Sheets 5 and 12 .

## Pre-Attenuator

Connect AC Voltmeter to A5J2 (OUTPUT) and Test Oscillator to analyzer NPUT (on front panel). Set osculator for a 3 kHz signal and check that
 $\mathrm{dBm} / \mathrm{dBV}$ to $-30 \mathrm{dBm} / \mathrm{dBV}$. Set oscillator to 300 kHz and again check attenuation.

## SERVICE SHEET 4 (cont'd

Troubleshooting Tree


If the checks outlined above indicate pre-attenuator malfunction, remove A5 assembly from chassis and re-install on extender board. Check that relay anirin operating epairing pre-attenuator, perform adjustments specified in paragraph 5-24

## Preamplifier

Connect Test Oscillator directly to AC Voltmeter; set oscillator for 3 kHz and a -30.00 dB reading on voltmeter (about 25 mV ). Connect oscillator to nalyzer INPUT and connect voltmeter to A5J2 (OUTPUT). Don't change oscillator signal amplitude. Set INPUT LEVEL switch to $-40 \mathrm{dBm} / \mathrm{dBV}$ and LOG/LINEAR switch to LINEAR. The voltmeter should read -22.00 dB $\pm 0.20 \mathrm{~dB}$ (for a preamplifier open circuit gain of 8 dB ).
Set LOG/LINEAR switch to LOG and $\mathrm{dBm} / \mathrm{dBV}$ switch to dBV . The voltmeter should read $-15.00 \pm 0.20 \mathrm{~dB}$ (for a pre-amplifier open circuit gain voltmeter
of 15 dB ).
Set $\mathrm{dBm} / \mathrm{dBV}$ switch to $600 \Omega \mathrm{dBm}$. The voltmeter should read -12.88 dB $\pm 0.20 \mathrm{~dB}$ (for a preamplifier open circuit gain of 17.22 dB ).
Set $\mathrm{dBm} / \mathrm{dBV}$ switch to $50 \Omega \mathrm{dBm}$. The voltmeter should read -2.00 dB $\pm 0.20 \mathrm{~dB}$ (for a preamplifier open circuit gain of 28 dB ). Repeat the checks with oscillator set to 300 kHz .

NOTE
If using 8552 B IF Section with serial prefix 977 and below, or 8552 A with serial prefix 991 and below, check that $I F$ Section connectors XA8 pin 8 and J3 pin 40 are connected together (should be electrical short). If not, connect them with a length of 968 (white-blue-grey) wire ( 24 AWG).

If the checks outlined above indicate preamplifier malfunction, remove A5 assembly from chassis and re-install on extender board. Check that relay A5K2 is operating correctly; check dBm/dBV switch S1 and A5Q1 through Q4. After repairing preamplifier, perform mixer balance adjustments specified in paragraph 5-26.

Service
Model 8556A

## SERVICE SHEET 4 (cont'd)

Troubleshooting Tree



Figure 8-21. Master Board Assembly A11 Component Locations


SERVICE SHEET 4


## SERVICE SHEET 5

## THEORY OF OPERATION

## General

The post attenuator operates in conjunction with the pre-attenuator to ontrol the level of signals reaching the balanced mixer. If INPUT LEVEL is always set to the level of the input signal, distortion in the mixer will be minimum. Isolated ground (see Service Sheets 4 and 12) continues into Input Level Assembly A3 and into Frequency Converter Assembly A6 to the mixer.

## Post Attenuator

The post attenuator contains a 20 dB L-pad, a $10 \mathrm{~dB} \mathrm{L-pad}$ and a straight through connection. They are selected sequentially ( $0,10 \mathrm{~dB}, 20 \mathrm{~dB}, 0,10$ $\mathrm{dB}, 20 \mathrm{~dB}$ ) as INPUT LEVEL is turned counterclockwise. Each L-pad is a simple voltage divider with an impedance of 100 ohms.

## Low Pass Filter

The signal from the post attenuator is fed into a low pass filter. Its cut-off frequency is about 1 MHz and its input and output impedance is 100 ohms. The 20 kHz markers, when used, join the signal path at the filter (see Service Sheet 8).

## Balanced Mixer

The dual balanced mixer has a matched diode quad and adjustments to null local oscillator feedthrough. The diode quad is composed of four, matched ot carrier diodes and carrier suppression is about 90 dB when properly balanced.

## Buffer Amplifier

The buffer amplifier isolates the balanced mixer from the IF Section. The amplifier input has an impedanced matching circuit and its gain is about 2 dB.

### 50.150 MHz Local Oscillator

The 50.150 MHz local oscillator is a crystal controlled Colpitts. Feedback is through the capacitive voltage divider in the tank circuit. The oscillator output is fed through A6Q3 to the mixer; Q3 has a voltage gain of about 2 . The output is fed to the tracking generator through A6Q1; Q1 has slightly less than unity gain.

## TROUBLESHOOTING

## Equipment:

Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 180A/1801A/1820B X10 Oscilloscope Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 10004A Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . HP 3480B/3484A Option 042 AC Voltmeter BNC Cable Assy Cable Ase Assy (2) Cable Assy

## SERVICE SHEET 5 (cont'd)

## Adapter

. HP 1250-1236
Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 1250-1237
Extender Board ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 5060-0256

## General

Normally trouble is isolated to the post attenuator and the Frequency Converter Assembly A6 using the overall troubleshooting tree or the roubleshooting bly and proch. the schematic should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; remove the A6 assembly from the chassis and re-install it on the extender board.

## solation

Disconnect yellow cable (A3W2) from A6J1 (INPUT); using Digita Voltmeter, measure resistance from outer conductor of J1 to chassis ground. The voltmeter should indicate an open circuit. If it indicates less than an open circuit, check components in low pass filter and balanced mixer, expecially capacitors that bridge isolated ground and chassis ground.

## Post Attenuator

Connect Test Oscillator to analyzer INPUT. Connect AC Voltmeter to yellow cable (A3W2) with adapter. Set analyzer INPUT LEVEL to - 60 $\mathrm{dBm} / \mathrm{dBV}$ and adjust oscillator for 0 dBm reference on voltmeter (at about 3 $\mathbf{k H z}$ ). Check that voltmeter reads as follows while switching INPUT LEVEL:

| INPUT LEVEL | Voltmeter |
| :---: | :---: |
| $-60 \mathrm{dBm} / \mathrm{dBV}$ | 0 dB (reference) |
| $-50 \mathrm{dBm} / \mathrm{dBV}$ | $-10 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$ |
| $-40 \mathrm{dBm} / \mathrm{dBV}$ | $-20 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$ |
| $-30 \mathrm{dBm} / \mathrm{dBV}$ | $-30 \mathrm{~dB}($ reference $)$ |
| $-20 \mathrm{dBm} / \mathrm{dBV}$ | $-40 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$ |
| $-10 \mathrm{dBm} / \mathrm{dBV}$ | $-50 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$ |

If the checks outlined above indicated post attenuator malfunction, check components associated with post attenuator on Input Level Assembly A3.

## Low Pass Filter

Connect Test Oscillator to analyzer INPUT; connect Oscilloscope (with X10 probe) to test point A (junction of A6C10, L7, R2 and T3). Set analyzer controls as follows:

```
INPUT LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 30 dBm/dBV
```




Set oscillator for $3 \mathrm{kHz}, 200 \mathrm{mV}$ signal (at the 50 ohm output).

## SERVICE SHEET 5 (cont'd)

## NOTE

The meter on the HP 651B Test O read volts into 50 (or 600) ohn erminated in a high impedance, sucl Feed Thru Tead one-half the applit eed Thru Te desired voltage.

Check that yellow cable (A3W2) is connec test point A should be 3 kHz sine wave at al level is incorrect check components in low pass filter, perform mixer balance adjustme

### 50.150 MHz Local Oscillator

Connect Oscilloscope (with X10 probe) to should be 50.150 MHz sine wave, 0.9 V to A6J3 disconnected). Connect probe to test be 50.150 MHz sine wave, 3.2 V to 4.8 V should be $50.150 \mathrm{MHz} \pm 3.0 \mathrm{kHz}$ ).
If signal is incorrect at one test point but amplifier. If signal is incorrect at both associated components. After repairing oscil adjustment specified in paragraph 5-25 al specified in paragraph 5-26.

## Balanced Mixer

Connect Test Oscillator to analyzer INPUT; probe) to test point $D$ (junction of A6T3, C2 Set analyzer controls and Test Oscillator as Signal at test point D should be 3 kHz mc schematic. Envelope amplitude at test point 0.4 V p-p with clear cable at J 2 disconn $\epsilon$ perform mixer balance adjustments specified

Troubleshooting $T$.


## SERVICE SHEET 5 (cont'd)

## NOTE

The meter on the HP 651B Test Oscillator is calibrated to read volts into 50 (or 600 ) ohms. If the oscillator is terminated in a high impedance, such as the anallyzer INPUT, Feed Thru Termination or set the oscillator for half the desired voltage.

Check that yellow cable (A3W2) is connected to A6J1 (INPUT). Signal at est point A should be 3 kHz sine wave at approximatley 0.2 V p-p. If signa level is incorrect check components in low pass filter. After repairing low pass filter, perform mixer balance adjustments specified in paragraph 5-26.

### 50.150 MHz Local Oscillator

Connect Oscilloscope (with X10 probe) to test point C (A6Q1-c). Signal Connect 50.150 MHz sine A6J3 disconnected). Connect probe to tost point p-p (with brown cable to be 50.150 MHz sine wave, 3.2 V to $4.8 \mathrm{~V} \mathrm{p}-\mathrm{p}$. (In both cases, frequency should be $50.150 \mathrm{MHz} \pm 3.0 \mathrm{kHz}$ ).
If signal is incorrect at one test point but not at both, check appropriate amplifier. If signal is incorrect at both test points, check A6PQ2 and ssociated components. After repairing oscillator, perform 50.150 oscillato adjustment specified in paragraph 5-25 and mixer balance adjustments specified in paragraph 5-26.

## Balanced Mixer

Connect Test Oscillator to analyzer INPUT; connect Oscilloscope (with X10 probe) to test point D (junction of A6T3, C22, C23 and L9).
Set analyzer controls and Test Oscillator as specified in low pass filter test. Signal at test point D should be 3 kHz modulation envelope as shown on chematic. Envelope amplitude at test point E (J2) should be approximately incorrect, check components in buffer amplifier After repeiring aitude is perform mixer balance adjustments specified in paragraph 5.26 .

Troubleshooting Tree



## SERVICE SHEET 6

## THEORY OF OPERATION

## Genera

The tracking generator produces a signal that precisely tracks the spectrum analyzer tuning frequency. It does this by combining the 47 MHz LO fron the IF Section with the 50.150 MHz LO from the LF Section, combining the difference frequency ( 3 to 3.3 MHz ) with 3 MHz , and amplifying the secon difference frequency ( 0 to 300 kHz ). The circuits associated with the firs frequency conversion are on the Tracking Generator Frequency Converte Assembly A9.

## 47 MHz Amplifier

The signal at A9J1 is $47 \mathrm{MHz} \pm 150 \mathrm{kHz}$ and comes from the IF Section 4 ? MHz LO. Signal amplitude at J 1 is about -7 dBm , and is amplified by A9Q1 and Q2; signal amplitude at the mixer is about 1.2 V p-p. The dual balanced mixer combines 50.150 MHz from the Frequency Converter Assembly A6 with $47 \mathrm{MHz} \pm 150 \mathrm{kHz}$ from the amplifier, takes
the 3 to 3.3 MHz difference frequency and feeds it to the low pass filter, Filter cut-off frequency is about 5 MHz .

## 3 MHz Amplifier

A9Q3, Q4 and Q5 form the 3 MHz amplifier, and the 3 to 3.3 MHz signal a the amplifier input is about 120 mV . The amplifier increases this to a level of about 1.2 V p-p which is fed to the balanced mixer in the Trackin Generator Output Assembly A8

## TROUBLESHOOTING

## Equipment:

Oscilloscope
Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 180A/1801A/1820B
X10 Oscilloscope Probe . . . . . . . 18 HP 10004 Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 …
 Extender Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extender Board

## General

Normally trouble is isolated to the Tracking Generator Frequency Converter Assembly A9 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; remove the A9 assembly from the chassis and re-install it on the extender board.

## ERVICE SHEET 6 (cont'd)

## 47 MHz Amplifier

Connect oscilloscope (with X10 probe) to test point A (A9Q1-b). Set SCAN WIDTH to ZERO; signal should be 46.85 to 47.15 MHz sine wave pproximately 0.22 to 0.42 V p-p. If not, check 47 MHz Oscillator in IF Section.

Connect oscilloscope (with X10 probe) to test point B (A9Q2-c). Signal should be 46.85 to 47.15 MHz sine wave at approximately 1.2 V p-p. If not, check 47 MHz amplifier circuits.

## Balanced Mixer

Connect oscilloscope (with X10 probe) to test point C (A6Q3-b). Set SCAN WIDTH to ZERO. Signal should be 3.0 to 3.3 MHz sine wave at approximately 0.35 V p-p. If not, check balanced mixer and low pass filter circuits.

## 3 MHz Amplifier

Connect Oscilloscope (with X10 probe) to test point 1. Set SCAN WIDTH to ZERO. Signal should be as shown on schematic: $3.0-3.3 \mathrm{MHz}, 1.0 \pm 0.3 \mathrm{~V}$ p-p. If not, check 3 MHz amplifier circuits.

Troubleshooting Tree


## Service

## SERVICE SHEET 6 (cont'd)

## 47 MHz Amplifier

Connect oscilloscope (with X10 probe) to test point A (A9Q1-b). Set SCAN Connect oscilloscope (with X10 probe) to test point A (A9Q1-b). Set SCAN WIDTH to ZERO; signal should be 46.85 to 47 MHz Oscillator in IF approximately 0.22 to 0.42 V p-p. If not, check 47 MHz Osculator in FF
Section.

Connect oscilloscope (with X10 probe) to test point B (A9Q2-c). Signal Connect oscilloscope (with X10 probe) to test point B (A) 4.2 V p-p. If not, check 47 MHz amplifier circuits.

## Balanced Mixer

Connect oscilloscope (with X10 probe) to test point C (A6Q3-b). Set SCAN Connect oscilloscope (with Cl probe be 3.0 to 3.3 MHz sine wave at pproximately 0.35 V p-p. If not, check balanced mixer and low pass filter approxir

## 3 MHz Amplifier

Connect Oscilloscope (with X10 probe) to test point 1. Set SCAN WIDTH to ZERO. Signal should be as shown on schematic: $3.0-3.3 \mathrm{MHz}, 1.0 \pm 0.3 \mathrm{~V}$ $\mathrm{p}-\mathrm{p}$. If not, check 3 MHz amplifier circuits.

Troubleshooting Tree





## ERVICE SHEET 7

THEORY OF OPERATION
General
The tracking generator produces a signal that precisely tracks the spectrum analyzer tuning frequency; 3 to 3.3 MHz from the Tracking Generato Frequency Converter Assembly A9 is mixed with 3 MHz . The difference frequency ( 0 to 300 kHz ) is filtered, amplified, and fed to the front panel.

## Balanced Mixer

The balanced mixer combines the 3 to 3.3 MHz signal with 3 MHz from the 3 MHz oscillator and feeds the difference frequency to a low pass filter. The mixer uses a matched diode quad

## 3 MHz Oscillator

A8A1Q3 and Q4 form a crystal oacillator. The transistors alternately turn on and off, producing a high amplitude 3 MHz signal.

Varactor A8A1CR7 is used as the fine frequency control element, and the range of varactor control is $\pm 140 \mathrm{~Hz}$. A8A1 L3 is selected to center the range of varactor control at 3 MHz .

A8Q2, CR5 and CR6 limit the 3 HMz signal so that it is flat over the frequency range of the oscillator. The signal level from the balanced mixer depends upon the level of the 3 MHz oscillator signal, so the 3 MHz signal, controlled by AMPL ADs ABA1x1,'s ousput level is relatively insensitive to changes in signal level from the frequency converter (see Service Sheet 6), racking generator amplitude calibration is maintained when the LF Section is used with different IP Sections.

Switched Buffer Amplifier
Buffer amplifier A8A1Q1 is normally off. It is activated by negative voltage from the marker generator circuits whenever the 20 kHz MARKERS switch is depressed (see Service Sheet 8). When the amplifier is on it feeds 3 MHz to the marker generator

## Low Pass Filter

A8Q1 is a buffer amplifier that isolates the filter from the mixer. A8Q2 solates the filter from the output amplifier. FLATNESS ADJ A8R9 in the emitter of Q1 adjusts the flatness of the high end of the filter by varying the filter's input resistance. The filter is flat to 300 kHz

Output Amplifier
A8Q3 through Q6 form a feedback amplifier. A6 provides enough current so that at maximum signal with the output shorted the amplifier does not clip. Amplifier gain is controlled by TRACKING GEN LEVEL control A3R5; gain is variable from 3 to 100 ( 10 to 40 dB ). When TRACKING GEN 3 and delivers 100 mV into an open circuit ( 50 mV into 600 ohms ). As TRACKING GEN LEVEL is turned clockwise, A8R12, R13C8, and A3R5 divide the feedback and amplifier gain increases.

TROUBLESHOOTING
Equipment:

| Digital Voltmeter | 42 |
| :---: | :---: |
| AC Voltmeter | HP 400EL |
| BNC Cable Assy | HP 10503A |
| Cable Assy | HP 11002A |
| Oscilloscope | HP 180A/1801A/1820B |
| X10 Oscilloscope Probe | HP 10004A |
| Extender Cable Assy | HP 11592-60015 |
| Extender Board | HP 5060-0256 |
| Frequency Counter | HP 5327 |

## General

Normally trouble is isolated to the Tracking Generator Output Assembly A8 using the overall troubleshooting tree or the troubleshooting block diagram. isolate trouble to the circuit level using the troubleshooting tree and in isolating trouble to a specific component
Extend the LF and IF Sections on the extender cables; remove the A8 assembly from the chassis and re-install it on the extender board.

## 3 MHz Oscillator

Depress 20 kHz MARKERS switch and connect Oscilloscope (with X10 probe) to test point C (A11XA8 pin 2); signal should be as shown on probe) to test point C (A11XA8 pin 2); signal should be as shown on C and vary TRACK ADJ, on analyzer front panel, through its full range. Frequency should vary (from 3 MHz ) at least $\pm 140 \mathrm{~Hz}$. (Factory selected component A8A1L3 sets center of variation, see Table 8-1.)
If checks indicate oscillator malfunction, remove cover from 3 MHz Oscillator Assembly A8A1 and check A8A1Q1, Q3, Q4 and associated components. After repairing oscillator, perform tracking generator adjustments spacified in paragraph 5-27

## NOTE

A8A1 can usualy be repaired without unsoldering entire
board. If it becomes necessary to unsolder A8A1, unsolder board. If it becomes necessary to unsolder A8A1, unsolder eral Service Hints). Excess heat or force on pins will pull plating off board.

## Balanced Mixer

Connect Oscilloscope (with X10 probe) to test point D (A8Q1-b); signal should be modulation envelope as shown on schematic: about $3 \mathrm{MHz}, 0.12$ $V$ p-p. If not, remove cover from 3 MHz Oscillator Assembly A8 and check balanced mixer, A8A1Q1 and associated components. After repairing mixer,
perform tracking generator adjustments specified in paragraph 5-27.

## Low Pass Filter

Connect Oscilloscope (with X10 probe) to test point E (A8Q2e); should be 20 Hz to 300 kHz sine wave, approximately $0.1 \mathrm{~V} \mathrm{p}-\mathrm{p}$. I
check Q8Q1, Q2 and associated components. After repairing filter, pe tracking generator adjustments specified in paragraph 5-27.

## Output Amplifier

Set TRACKING GEN LEVEL to CAL 100 mV and connect oscillosex test point $F$ (A8Q6-e); signal should be 20 Hz to 300 kHz sine wave, 0 p-p. If not, check A8Q3 through Q6 and associated components. repairing amplifier, perform tracking generator adjustments specif

Troubleshooting Tree


## Service

## SERVICE SHEET 7 (cont'd)

## Low Pass Filter

Connect Oscilloscope (with X10 probe) to test point E (A8Q2-e); signal should be 20 Hz to 300 kHz sine wave, approximately 0.1 V p-p. If not, check Q8Q1, Q2 and associated components. After repairing filter, perform tracking generator adjustments specified in paragraph 5-27.

## Output Amplifier

 Set TRACKING GEN LEVEL to CAL 100 mV and connect oscilloscope to test point F (A8Q6-e); signal should be 20 Hz to 300 kHz sine wave, 0.28 V p-p. If not, check A8Q3 through Q6 and associated components. After repairing amplifier, perform tracking generator adjustments specified inparagraph $5-27$.

Troubleshooting Tree



Figure 8-29. Tracking Generator Output Assy A8 Component Locations


Figure 8-30. 3 MHz Oscillator Assy A8A1 Component Locations


Figure 8-31. Input Level Switch Assy Component Locations


## SERVICE SHEET 8

## THEORY OF OPERATION

## General

The 20 kHz marker circuits apply markers to the input signal path when the 20 kHz MARKERS switch is depressed. A7Q1 turns on and applies -5 V to A7U1, U2, U3, U6 and U7. It also applies negative voltage through A7R1 to Q1 on the 3 MHz Oscillator Assembly A8A1 (see Service Sheet 7). A8A1Q amplifies 3 MHz and feeds it to the 20 kHz marker circuits. The input 3 MHz sine wave is clipped by A7U7C and fed to the divide by 3 circuits.

## Divide by 3 Circuits

A7U6 is dual JK master/slave flip-flop, and U6A and U6B form a Johnson or shift, counter. The counter has four possible states: binary $0,1,2$ and 3 or shift, counter. The counter has four possible states: binary $0,1,2$ and 3 .
In normal operation the counter cycles through binary counts 1,2 and 3 , In normal operation the counter cycles through binary counts 1,2 and 3 changing from one to the other on the negative half cycle of each input puse. cycle itself out. U7B, connected to the $Q$ outputs, clears flip-flop U6B if and only if, the counter cycles into binary 0 . The counter's output is decoded by NAND gate U7A, inverted by U7D, and fed to the divide by 50 circuit. The output at U7D is a 1 MHz pulse, $0.33 \mu$ s wide.

## Divide by 50 Circuit

A7U1, U2 and U3 form series, or ripple, counter circuits that divide the 1 MHz pulse by 50 without changing its $0.33 \mu \mathrm{~s}$ pulse width. U1 divides the pulse by 10 and feeds it to U2 and to quad-input NAND gate U3. U2 divides the pulse by 2 and divides the input from U1 by 5 and sends both outputs to U3. When all four inputs of U3 are high, its output goes low. As shown in he timing diagram, this results in a 20 kHz pulse with a very narrow pulse will extend beyond 300 kHz without significent amplitude decreases marker

## TROUBLESHOOTING

## Equipment:

Oscilloscope X10 Oscilloscope Probe (2) $\qquad$ HP 180A/1801A/1820B Cable Assy eter ............................. HP 3 .......... HP 10004A xtender Cable Asgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extender Board . . . . . . . . . . . . . . . . . . HP 11592.60015

## General

Normally trouble is isolated ot the Frequency Control and Marker Generator Assembly A7 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematics should assist in isolating trouble to a specific component.
Extend the LF and IF Sections on the extender cables; remove the A7 assembly from the chassis and re-install it on the extender board.

## SERVICE SHEET 8 (cont'd

## Switched Power Supply

Push 20 kHz MARKERS switch and check voltages shown on schematic with a Digital Voltmeter. If voltages are incorrect, check A7Q1 and associated circuitry.

## Divide By 3 Shift Counter

Push 20 kHz MARKERS switch and connect Oscilloscope (with X10 probes) to test points 1 and 2. Check pulse amplitudes and widths as shown on schematic. Check that pulse relationships approximate those shown in shift counter timing diagram. If checks indicate shift counter malfunction, check A7U6, U7 and associated circuitry.

## Divide By 50 Counter

Push 20 kHz MARKERS switch and connect Oscilloscope (with X10 probes) to test pointa 2 and 3. Check pulse amplitudes and widths as shown on schematic. Check that pulse relationships approximate those shown in counter timing diagram. If checks indicate shift counter malfunction, check A7U1, U2, U3 and associated circuitry.

Troubleshooting Tree
Check A703
4. $\sqrt{13}$
${ }_{1} 12$
$\square$
-
$\qquad$ 13 [1] ᄃ




## SERVICE SHEET 9

## THEORY OF OPERATION

## General

The frequency control circuits provide control voltages to the 47 MHz LO in the IF Section. The three voltages are:
a. Center frequency control - corresponds to dial frequency, set by FREQUENCY and FINE TUNE knobs.
b. Ramp control - determines width of frequency scan, set by SCAN WIDTH knobs.
c. Zero adjustment - compensates for drift in IF Section 47 MHz LO, set by ZERO ADJ knob.

Center Frequency Control Circuits
The output of tune amplifier A7U4 can be set from 0 to +15 V by the FREQUENCY and FINE TUNE knobs; this corresponds to dial settings of 0 to 300 kHz .300 kHz ADJ R5 sets dial accuuracy at 300 kHz . OFFSET ADJ A7R13 is used to set the amplifier's output to 0 V when the dial is at 0 Hz .

When RANGE kHz switch S 3 is set to $0-30$, it adds a voltage divider to the output of A7U4. This divider divides A7U4's output by 10 ; a 0 to 1.5 V swing corresponds to dial settings of 0 to 30 kHz .
When SCAN WIDTH is set to ZERO and PER DIVISION, A7U4's output is fed to A7U5 and on to the IF Section 47 MHz LO control circuits. When SCAN WIDTH is set to 0-10f the voltage sent to the IF Section through A7U5 is determined by PER DIVISION switch S1-4F (more about A7U5 below).

## Ramp Control Circuits

When SCAN WIDTH is set to ZERO, the ramp from the IF Section scan circuits is disabled by S2-IF, and scan-offset amplifier output is 0 V . This prevents the IF Section 47 MHz LO from being swept (however, its frequency is still set by the center frequency control circuits).
When SCAN WIDTH is set to PER DIVISION or 0-10f, the -5 V to +5 V ramp from the IF Section scan circuits is fed to scan-offset amplifier A7U8 -5 V to +5 V ramp. This ramp is fed to the scan width attenuator and on to the IF Section 47 MHz LO control circuits. The amplitude of the ramp determines the frequency range over which the 47 MHz LO is swept.

When SCAN WIDTH is set to $0-10$ f and PER DIVISION is set to 10 kHz or less, A7U8 is offset 5 V . This offsets the ramp so that it sweeps from 0 to +10 V . The 0 to +10 V ramp is then sent through the scan width attenuator to the IF Section. The offset ramp will sweep the 47 MHz LO from 0 Hz to a frequency determined by the ramp's amplitude. To prevent control of the 47 MHz LO by the frequency control circuits the input to the voltage follower amplifier A7U5 is referenced to 0 V .

When SCAN WIDTH is set to $0-10 \mathrm{f}$ and PER DIVISION is set to 20 kHz , the offset is applied to voltage follower amplifier A7U5. Scan-offset amplifier offset is applied to voltage follower amplifier A.
A7U8 is not offset and its output is a -5 V to +5 V ramp. In all other respects operation is as described when PER DIVISION is set to 10 kHz or less.

## SERVICE SHEET 9 (cont'd)

## Zero Adjustment Circuit

ZERO ADJ pot R6 is in a divider network from +20 V to ground. It can change the 47 MHz LO in the HP 8552 B about 24 kHz , and in the HP 8552 A about 54 kHz . When the LF Section is connected to an HP 8552B, P3 pin 15 is connected to $+20 \mathrm{~V} ; \mathrm{P} 3$ pin 15 is open when connected to an HP 8552A. This compensates for operating differences between the IF Sections.

## TROUBLESHOOTING

Equipment:
Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 180A/1801A/1820B X10 Oscilloscope Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 10004A Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 1102A Extender Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 11592-60015 Extender Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 5060-0256

## General

Normally trouble is isolated to the Frequency Control and Marker Generator Assembly A6 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below.

Extend the LF and IF Sections on the extender cables; remove the A7 assembly from the chassis and re-install it on the extender board.

Center Frequency Control Circuits
Connect Digital Voltmeter to test point A (A11XA7 pin 5) and set analyzer controls as follows:
FREQUENCY .................................... 0 kHz (set accurately) FINE TUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Hz



The voltmeter should read $0.0 \pm 5.0 \mathrm{mVdc}$. If not, adjust OFFSET ADJ The voltmeter should
(A7R13) until it does.
(A7R13) until it does.
Tune FINE TUNE from full clockwise to full counter-clockwise; the voltage at test point A should swing about $50 \pm 5 \mathrm{mVdc}$. Re-center FINE TUNE.
Set FREQUENCY to 300 kHz . Tune 300 kHz ADJ (on front panel) from full clockwise to full counter-clockwise; the voltage at test point A should swing from 15.50 to 15.85 Vdc .
Adjust 300 kHz ADJ until voltage at test point a is +15.40 V . (Factory select value A1R1 sets 300 kHz ADJ range, see Table 8-1.) Switch RANGE to 0-30 kHz ; the voltage should be $+1.540 \pm 0.008 \mathrm{~V}$

Set RANGE to $0-300 \mathrm{kHz}$ and connect voltmeter to test point B (Al1XA7 pin 8); the voltage should be $+15.40 \pm .01$ V. Set SCAN WIDFH to $0.10 f$; the voltage should decrease to $0.0 \pm .01 \mathrm{~V}$. Set PER DIVISION to 20 kHz ; the voltage should be $+5.00 \pm 0.05 \mathrm{~V}$.

## SERVICE SHEFT 9 (cont'd)

If checks indicate center frequency control circuit malfur A7U4, U5 and associated circuitry.

After repairing center frequency control circuits, perfor calibration adjustment procedure specified in paragraph 5-28.

## NOTE

After replacing the frequency tuning pot R3, perfor dial calibration procedure in paragraph 8-70.

## Ramp Control Circuits

Connect Digital Voltmeter to test point C (A11XA7 pin L) an controls as follows:

SCAN WIDTH
PER DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PI
SCAN TIME PER DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 MII SCAN MODE

The voltage at test point $C$ should be $-500 \pm 0.01 \mathrm{~V}$. INT and connect Oscilloscope (with X10 probe) to test point should be 10 V p-p sawtooth as shown on schematic. If che above are bad, check scan generator circuits in IF Section.

Set SCAN WIDTH to 0-10f, Scan MODE to SINGLE and conr. to test point D (A11XA7 pin 10). The voltmeter should read -
Set DIVISION to 10 kHz ; the voltmeter should read
Set SCAN WIDTH to PER DIVISION, PER DIVISION to connect voltmeter to test point E (934 wire at A2S1 lug 12). should read as indicated for the following scan widths:

| PER DIVISION | Voltmeter readin |
| :---: | :---: |
| 20 kHz | $-5.000 \pm 0.050 \mathrm{~V}$ |
| 10 kHz | $-2.500 \pm 0.025 \mathrm{~V}$ |
| 5 kHz | $-1.250 \pm 0.013 \mathrm{~V}$ |
| 2 kHz | $-500.0 \pm 5.0 \mathrm{mV}$ |
| 1 kHz | $-250.0 \pm 2.5 \mathrm{mV}$ |
| 500 Hz | $-125.0 \pm 1.3 \mathrm{mV}$ |
| 200 Hz | $-50.00 \pm 0.50 \mathrm{mV}$ |
| 100 Hz | $-25.00 \pm 0.25 \mathrm{mV}$ |
| 50 Hz | $-12.50 \pm 0.14 \mathrm{mV}$ |
| 20 Hz | $-5.00 \pm 0.07 \mathrm{mV}$ |

If checks indicate ramp control circuit malfunction, check A7U attenuator and associated circuits. After repairing ramp cor perform frequency calibration adjustment procedure specified

## SERVICE SHEET 9 (cont'd)

## Zero Adjustment Circuit

Set analyzer as follows:
FREQUENCY $\qquad$
$\qquad$
$\qquad$ 0 kHz


 PER DIVISION ...................................................... 10 kHz INPUT LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10 \mathrm{dBm} / \mathrm{dBV}$

 SCAN TIME PER DIVISION . . . . . . . . . . . . . . . . . . . . . . 5 MILLISECONDS

 SCAN TRIGGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tune ZERO ADJ (on front panel) from full counter-clockwise to full clockwise. The LO feedthrough signal on the CRT should shift as follows:
a. with 8552 A IF Section, $54 \pm 2 \mathrm{k} \mathrm{Hz}$
b. with 8552B IF Section, $24 \pm 2 \mathrm{kHz}$

If not, check R6, ZERO ADJ pot and associated circuitry. After repairing zero adjustment circuit, perform frequency calibration adjustment procedure specified in paragraph 5-28.

## Troubleshooting Tree




Figure 8-36. Scan Width Switch Assembly A2 Component Locations


Figure 8-37. Frequency Control and Marker Generator Assy A7


## SERVICE SHEET 10

## THEORY OF OPERATION

The DISPLAY UNCAL lamp DS1 illuminates when SCAN WIL DIVISION, BANDWIDTH, SCAN TIME and VIDEO FILTER are : combination of positions which does not permit accurate calibratianalyzer (see Figure 8-39). The DISPLAY UNCAL lamp is illumin simulated signal and has no actual connection to signal processing ci

The LF Section Scan Width Switch Assembly A2 and Bandwidt Assembly A1 both have switch wafers devoted exclusively to ana the IF Section the Scan Time Switch Assembly and Video Filter Sy have analogic wafers.) When SCAN WIDTH is set to PER DIV: $0-10 \mathrm{f}$, current is added to the two buss lines ( 956 and 957 , BANDWIDTH and PER DIVISION. In the IF Section this current is with the current added by SCAN TIME and VIDEO FILTER. 1 current on either buss line is high enough to bias the light driver Section into conduction, it turns on and lights the DISPLAY UNC (see Service Sheet 12). When SCAN WIDTH is set to ZERO, the circuit is disabled.

## TROUBLESHOOTING

Equipment:
Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . HP 3480B/3484A O
$\qquad$

## General

When trouble has been isolated to the LF Section analogic, perforn lowing checks;
Remove the LF and IF Sections from the Display Section and disco LF Section from the IF Section. Remove the top and bottom co the LF Section
Unsolder the 2 white-green-blue (956) wires from lug $51 / 2$ of S1-1R white-green-violet ( 957 ) wires from lug 6 of S1-1F of Bandwid Assembly A1.

## Bandwidth Switch Resistance Measurement

With 956 and 957 wires removed, and LF Section disconnected Section and Display Section, measure resistance from lug $5^{1 / 2}$ (where 956 wire was connected) to lug 7 of S1-2F (where 9E connected). Also, measure resistance from lug $61 / 2$ of $\mathrm{S} 1-1 \mathrm{~F}$ (where was connected) to lug 7 of S1-2F.

## SERVICE SHEET 10 (cont'd)

Resistance should be within $2 \%$ of values tabulated below for each BANDWIDTH position.

| BANDWIDTH | Resistance (k $\Omega$ ) $\pm 2 \%$ |  |
| :---: | :---: | :---: |
|  | S1-1R, lug $5 / 2$ <br> to S1-2F, lug 7 | S1-1F, lug 6 <br> to S1-2F, lug 7 |
| 10 kHz | 48.33 | 31.22 |
| 3 kHz | 43.25 | 26.13 |
| 1 kHz | 39.85 | 22.73 |
| 300 Hz | 37.35 | 20.28 |
| 100 Hz | 35.54 | 18.46 |
| 30 Hz | 34.13 | 17.04 |
| 10 Hz | 44.78 | 14.04 |

Scan Width Switch Resistance Measurement
With 956 and 957 wires removed from Bandwidth Switch Assembly A1, and LF Section disconnected from IF Section and Display Section, measure resistance from Scan Width Switch Assembly A2 lug 6 of S1-2F (where 956 wire is connected) to lug 2 of $\mathrm{S} 2-1 \mathrm{~F}$ (where 958 wire is connected). Also, measure resistance from lug 5 of S1-2R (where 957 wire is connected) to lug 2 of S2-1F.
Resistance should be within $2 \%$ of values tabulated below for each SCAN Resistance should be within $2 \%$
WIDTH PER DIVISION position.

| SCAN WIDTH <br> PER DIVISION | Resistance $(\mathrm{k} \Omega) \pm 2 \%$ <br> For Both Measurements |
| :---: | :---: |
| 20 kHz | 61.78 |
| 10 kHz | 67.24 |
| 5 kHz | 74.88 |
| 2 kHz | 86.30 |
| 1 kHz | 106.1 |
| 500 Hz | 144.8 |
| 200 Hz |  |
| 100 Hz (and below) | 260.8 |
|  | open (OVER RANGE) |

Measure resistance from lug 6 of S1-2F (where 956 wire is connected)to lug 5 of S2-1F (where 2 wire is connected). Also, measure resistance from lug 5 of S1-2R (where 957 wire is connected) to lug 5 of S2-1F.
Resistance should be within $2 \%$ of values tabulated below for each SCAN Resistance should be within $2 \%$
WIDTH PER DIVISION position.

| SCAN WIDTH <br> PER DIVISION | Resistance $(\mathrm{k} \Omega) \pm 2 \%$ <br> For Both Measurements |
| :---: | :---: |
| 100 Hz (and above) | open (OVER RANGE) |
| 50 Hz | 483.3 |
| 20 Hz | 256.0 |

Make any necessary repairs, re-solder 956 and 957 wires to Bandwidth Make any necessary repairs, re-soler analogic checks as specified in paragraph 5-29.


Figure 8-40. Bandwidth Switch Assembly A1 Component Locations


SERVICE SHEET 10

Figure 8-41. Scan Width Switch Assy A2 Component Locations


## SERVICE SHEET 11

## THEORY OF OPERATION

The AMPL CAL pot controls a calibration amplifier in the IF Section. The calibration amplifier is used to calibrate the analyzer's absolute amplitude. See the $3 \mathbf{M H z}$ IF Amplifier circuit description in the IF Section manual

## Input Level Switch

Two wafers of the Input Level Switch Assembly A3 control circuits in the IF Section. S1-2R lights index lamps on the LOG REF LEVEL switch. S1-3R is ection. S1-2R lights index lamps on the LOG REF LEVEL switch. S1-3R is part of the linear gain compensation network; see the Log/Linear Amplifier

## Bandwidth Switch

The portion of the Bandwidth Switch Assembly shown provides positive or negative voltages that select and bypass bandwidth circuits in the IF Section. See the bandwidth circuit descriptions in the IF Section manual.

## TROUBLE SHOOTING

## Equipment

$\qquad$ HP 3480B/3484A Option 042
 Extender Cabion Cable Assy . . . . . . . . . . . . . . . . . . . . . . . HP 11592-60016

Normally trouble is isolated to the IF Section control circuits after troubleshooting the IF Section. Isolate trouble to a specific component using the Digital Voltmeter to check the voltages and resistances shown on the schematic.

Extend the LF and IF Sections on the extender cables; separate the LF Section from the IF Section and install the interconnection cable. Check and, if necessary, repair the components and assemblies shown.


Figure 8-43. Bandwidth Switch Assembly A1 Component Locations



## SERVICE SHEET 12

THEORY OF OPERATION

## General

The sources for the supply voltages used in the LF Section are shown.
Isolated Power Supply
The Pre-Attenuator and Preamplifier Assembly A5 (see Service Sheet 4) is isolated from chassis ground. The Power Supply Assembly A10 provides isolated supply voltages for the preamplifier and an isolated ground for all of the input circuitry This prevents line related signals being introduced into the input signal path

A10Q1 and Q2 saturate, in turn, and send current ramps through the primary windings of A10T1. The switching rate of Q1 and Q2 is about 500 kHz . The current ramps induce a voltage in the secondary of T1. The voltage is rectified by the bridge rectifier, filtered and sent to the master board. On the master board the voltages are again filtered and fed to the preamplifier. A11R6 is a bleeder resistor that prevents static charges from building up in the isolated circuits.

## TROUBLE SHOOTING

## Equipment:

Oscilloscope HP 180A/1801A/1820B
 Digital Voltmeter $\qquad$ A Option 042 Extender Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP . HP 1159260015 Interconnection Cable Assy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 11592-60016 Extender Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 5060-0256 General
Normally trouble is isolated ot the Power Supply Assembly A10 and the voltage distribution circuits using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to a specific circuit using the procedures outlined specific component.

Extend the LF and IF Sections on the extender cables; separate the LF Section from he IF Section and install the interconnection cable. Remove the A10 assembly from he chassis and re-install it on the extender board.
Isolation
Remove Pre-Attenuator and Preamplifier Assembly A5 from chassis. Connect Digital oltmeter from A5 assembly cover to chassis ground and measure resistance. It should be about 100 k ohms. If not, remove A10 assembly from chassis and re-check. If resistance is about 100 k ohms with A10 removed, check A10T1, bridge rectifier, and filter on A10 assembly. If resistance is less than 100 k ohms with A10 emoved, check filter circuits on Master Board Assembly A11 (some of these circuits re shown on Service Sheet 4).

Isolated Power Supply
Connect Oscilloscope (with X10 probe) to test point 1. Waveform should be as hown on schematic: 400 to $600 \mathrm{kHz}, 25$ to 30 V p-p. If not, check $400-600 \mathrm{kHz}$ oscillator (A10Q1, Q2 and associated circuitry).
Connect Digital Voltmeter across +20 VI and -20 VI test points on Pre-Attenuator and Preamplifier Assembly A5. The voltage should be $40 \pm 4 \mathrm{~V}$ dc. If not, check bridge rectifier and filter circuits.
$8-38$


Figure 8-46. Power Supply Assembly A10 Component Locations


SERVICE
Figure 8-47. Master Board Assy A11 Component Locations SHEET 12



[^0]:    *No exception allowed.

[^1]:    a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.

