OPERATION AND SERVICE MANUAL

8556A SPECTRUM ANALYZER LF SECTION

Model 8556A

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the Hewlett-Packard Model 8556A Spectrum Analyzer LF Section. This section covers instrument identification, description, options, accessories, specifications and other basic information.

1-3. Figure 1-1 shows the Hewlett-Packard Model 8556A Spectrum Analyzer LF Section with the Model 8552B Spectrum Analyzer IF Section and the Model 141T Display Section. Also shown are the accessories supplied with the 8556A (see paragraph 1-15).

1-4. The various sections in this manual provide information as follows:

SECTION II, INSTALLATION, provides information relative to incoming inspection, power requirements, mounting, packing, shipping, etc.

SECTION III, OPERATION, provides information relative to operating the instrument.

SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.

SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs are made.

SECTION VI, REPLACEABLE PARTS, provides ordering information for all replaceable parts and assemblies.

SECTION VII, MANUAL CHANGES, normally will contain no relevant information in the original issue of a manual. This section is reserved to provide back-dating and up-dating information in manual revisions or reprints.

SECTION VIII, SERVICE, includes all information required to repair the instrument.

1-5. INSTRUMENTS COVERED BY MANUAL

1-6. Hewlett-Packard instruments carry a serial number (see Figure 1-2) on the back panel. When the serial number prefix on the instrument serial number plate of your instrument is the same as one of the prefix numbers on the inside title page of this manual, the manual applies directly to the instrument. When the instrument serial number prefix is not listed on the inside title page of this manual, manual change sheets and manual updating information is provided. Later editions or revisions to the manual will contain the required change information in Section VII.

Figure 1-2. Instrument Identification

1-7. DESCRIPTION

1-8. The Hewlett-Packard Model 8556A Spectrum Analyzer LF Section covers the frequency range from 20 Hz to 300 kHz. When it is combined with an IF Section and a Display Section it functions as the tuning section of a low frequency spectrum analyzer.

1-9. The analyzer electronically scans input signals and displays their frequency and amplitude on a CRT. The horizontal, x-axis, is calibrated in units of frequency and the vertical, y-axis, is calibrated in absolute units of voltage (μ V, mV, dBV) or power (dBm). Therefore, absolute and relative measurements of both amplitude and frequency can be made.

1-10. The horizontal (frequency) axis can be swept three different ways:

a. The center of the CRT is set to a frequency determined by the dial and the analyzer is swept symmetrically about that frequency.

b. The analyzer is not swept but is used as a fixed frequency receiver. Signal amplitude can be read on the CRT and signal modulation can be viewed as with an oscilloscope.

MODEL 8556A

Figure 1-1. Model 8556A Spectrum Analyzer LF Section with 8552B IF Section and 141T Display Section

1-0

Table 1-5. 7	Test Equipm	ent Accessorie	s (cont'd)
--------------	-------------	----------------	------------

Required Features	Suggested Model	Use*
Selectro Female to Selectro Female Test Cable, 2 each, 8 inches long (HP 11592-60002)	HP 11592A	A, T
Extender Board Assembly, 15 pins, 30 conductors, for plug-in circuit boards (HP 11592-60011)		
Fastener Assembly (2 each: HP 11592-2001 and HP 1390-0170)		
Selectro Jack-to-Jack Adapter (HP 1250-0827) Wrench, open end, 15/16 inch (HP 8710-0946) BNC Jack-to-OSM Plug Adapter (HP 1250-1200) OSM Plug-to-Plug Adapter (HP 1250-1158)		
Cable Assembly R and P Connector (HP 11592-60013)		
	Selectro Female to Selectro Female Test Cable, 2 each, 8 inches long (HP 11592-60002) Extender Board Assembly, 15 pins, 30 conductors, for plug-in circuit boards (HP 11592-60011) Fastener Assembly (2 each: HP 11592-2001 and HP 1390-0170) Selectro Jack-to-Jack Adapter (HP 1250-0827) Wrench, open end, 15/16 inch (HP 8710-0946) BNC Jack-to-OSM Plug Adapter (HP 1250-1200) OSM Plug-to-Plug Adapter (HP 1250-1158) Cable Assembly R and P Connector	Model Selectro Female to Selectro Female Test Cable, 2 each, 8 inches long (HP 11592-60002) HP 11592A Extender Board Assembly, 15 pins, 30 conductors, for plug-in circuit boards (HP 11592-60011) HP 11592A Fastener Assembly (2 each: HP 11592-2001 and HP 1390-0170) Selectro Jack-to-Jack Adapter (HP 1250-0827) Wrench, open end, 15/16 inch (HP 8710-0946) BNC Jack-to-OSM Plug Adapter (HP 1250-1158) OSM Plug-to-Plug Adapter (HP 1250-1158) Cable Assembly R and P Connector

Figure 1-5. HP 11592A Service Kit

SECTION II

2-1. INITIAL INSPECTION

2-2. Mechanical Check

2-3. Check the shipping carton for evidence of damage immediately after receipt. If there is any visible damage to the carton, request the carrier's agent be present when the instrument is unpacked. Inspect the instrument for physical damage such as bent or broken parts and dents or scratches. If damage is found refer to paragraph 2-6 for recommended claim procedures. If the instrument appears to be undamaged, perform the electrical check (see paragraph 2-4). The packaging material should be retained for possible future use.

2-4. Electrical Check

2-5. The electrical check consists of following the performance test procedures listed in Section IV. These procedures allow the operator to determine that the instrument is, or is not, operating within the specifications listed in Table 1-1. The initial performance and accuracy of the instrument are certified as stated on the inside front cover of this manual. If the instrument does not operate as specified, refer to paragraph 2-6 for the recommended claim procedure.

2-6. CLAIMS FOR DAMAGE

2-7. If physical damage is found when the instrument is unpacked, notify the carrier and the nearest Hewlett-Packard Sales and Service Office immediately. The Sales and Service Office will arrange for replacement without waiting for a claim to be settled with the carrier.

2-8. The warranty statement for the instrument is on the inside front cover of this manual. Contact the Sales and Service Office for information about warranty chaims.

2-9. PREPARATION FOR USE

CAUTION

Before applying power, check the rear panel slide switch on the Display Section for proper position (115 or 230 volts).

2-10. Shipping Configuration

2-11. Because of individual customer requirements, shipping configurations are flexible. Preparation for use is based on the premise that the LF and IF Sections are installed in a Display Section; thus, the Spectrum Analyzer is physically and functionally complete for use. Since the LF and IF Sections are usually received separately, the plug-ins must be mechanically fitted together, electrically connected and inserted in a display section or oscilloscope mainframe of the 140-series. For mechanical and electrical connections, refer to Figure 2-1 and parsgraph 2-20.

2-12. Power Requirements

2-13. The Spectrum Analyzer can be operated from a 50 to 60 hertz input line that supplies either a 115 volt or 230 volt ($\pm 10\%$ in each case) power. Consumed power varies with the plug-ins used but is normally less than 225 watts. Line power enters the Display Section or Mainframe, where it is converted to dc voltages, and then is distributed to the LF and IF Sections via internal connectors.

2-14. The 115/230 power selector switch at the rear of the Display Section must be set to agree with the available line voltage. If the line voltage is 115 volts, the slide switch must be positioned so that 115 is clearly visible. The instrument is internally fused for 115 volt operation, when shipped. If 230 volt source is to be used, refer to fuse replacement procedures in the Display Section manual.

2-15. Power Cable

2-16. To protect operating personnel, the National Electrical Manufacturers Association (NEMA) and the International Electrotechnical Commission (IEC) recommends that the instrument panel and cabinet be grounded. The Spectrum Analyzer is equipped with a three-conductor power cable; the third conductor is the ground conductor, and when the cable is plugged into an appropriate receptacle, the instrument is grounded. To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green lead on the adapter to ground.

2-17. Operating Environment

2-18. The Spectrum Analyzer uses a forced-air cooling system to maintain required operating temperatures within the instrument. The air intake and filter are located on the rear of the Display Section; air is exhausted through the side panel

Range:

sion setting.

With 8552B IF Section:

With 8552A IF Section:

panel on/off switch.

With 8552B IF Section:

frequency separation.

frequency separation.

With 8552A IF Section:

Scan Width:

0-30 kHz Range: ±500 Hz

0-300 kHz Range: ±3 kHz

0-30 kHz Range: ±1 kHz 0-300 kHz Range: ±5 kHz

Accuracy:

20 Hz to 300 kHz - 8552B IF Section

100 Hz to 300 kHz - 8552A IF Section

Scan Width: (On a 10 div, CRT horizontal axis.)

Zero: Analyzer is a fixed tuned reciever.

Tuning Dial Ranges of 0-30 kHz and 0-300 kHz.

Per Division: 10 calibrated scan widths from 20

0-10f: 10 calibrated preset scans, from 200 Hz to

200 kHz in a 1, 2, 5 sequence. Analyzer scans from

zero frequency to ten times the scan width per divi-

Center Frequency: After 1 hour warmup, zero and

300 kHz adjustments, and with the Fine Tune

centered, the dial indicates the display center

frequency within the following specifications:

Marker: RF markers every 20 kHz accurate to

within ±0.01%. Markers controlled by front

Frequency error between any two points on

the display is less than $\pm 3\%$ of the indicated

Frequency error between any two points on

the display is less than ±5% of the indicated

Hz/div to 20 kHz/div in a 1, 2, 5 sequence.

Table 1-1. Specifications

8556A/8552B/8552A

FREQUENCY

Stability:

Residual FM:

With 8552B IF Section: Sidebands >60 dB down 50 Hz or more from CW signal, scan time ≥1 sec/div, 10 Hz bandwidth.

With 8552A IF Section: Less than 20 Hz peak-to-peak.

Noise Sidebands: More than 90 dB below CW signal, 3 kHz away from signal, with a 100 Hz IF bandwidth.

Frequency Drift: (After 1 hour warmup.)

With 8552B IF Section: Less than 200 Hz/10 min.

With 8552A IF Section: Less than 1 kHz /10 min.

Resolution:

Bandwidth Ranges: IF bandwidths of 10 Hz (50 Hz for 8552A) to 10 kHz are provided in a 1, 3, 10 sequence.

Bandwidth Accuracy: Individual IF bandwidth 3 dB points calibrated to $\pm 20\%$ (10 kHz bandwidth $\pm 5\%$).

Bandwidth Selectivity: 60 dB/3 dB IF bandwidth ratios.

With 8552B IF Section: <11:1 for IF bandwidths from 10 Hz to 3 kHz; <20:1 for 10 kHz IF bandwidth. For 10 Hz bandwidth, 60 dB points are separated by less than 100 Hz.

With 8552A IF Section: <25:1 for IF bandwidths from 50 Hz to 300 Hz; <20:1 for IF bandwidths from 1 kHz to 10 kHz.

c. The analyzer is swept from 0 Hz to a higher frequency — selectable from 200 Hz to 200 kHz.

1-11. The vertical (amplitude) axis provides relative and absolute measurement capability in volts, dBV, dBm into 600 ohms unbalanced, and dBm into 50 ohms.

1-12. The LF Section's input is isolated from the instrument chassis so that the CRT display is free of line frequency spurious responses due to ground loops.

1-13. Accurate frequency calibration is provided by selecting 20 kHz markers.

1-14. The LF Section also contains a tracking generator that produces a calibrated signal that precisely tracks the analyzer tuning frequency. This signal can be used to test the frequency response of a device; it can also be used, with a frequency counter, for making frequency measurements that are accurate to 1 Hz (see Section III).

1-15. ACCESSORIES SUPPLIED

1-16. The 8556A LF Section requires a special knob on the IF Section in place of the standard LOG REF LEVEL control. The special knob has three scales: one is used for the LF Section log calibraton (red scale), one for log calibration with the RF Sections (black scale), and one for linear calibration with all units (blue scale). This knob and an allen wrench to install it are supplied with each 8556A. Extra knobs (HP 08556-00013) are available from the nearest HP Sales and Service Office.

1-17. The 8556A is supplied with the following accessories:

HP 11905A 600 ohm Feed Thru Termination HP 11048B 50 ohm Feed Thru Termination HP 11660A Tracking Generator Shunt (50 ohm output)

1-18. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-19. The 8556A LF Section must be mated with an IF Section, such as the 8552A or the 8552B, and a Display Section, such as the 140T or the 141T, before the units can perform as a spectrum analyzer.

1-20. IF Sections

1-21. The 8552A IF Section features calibrated bandwidths, log and linear amplitude calibration, and calibrated scan times. The 8552B IF Section

has all of the features of the 8552A and, in addition, manual scan, greater frequency stability, narrower bandwidths and an expanded log scale (2 dB per division).

1-22. Display Sections

1-23. The 140T Display Section is equipped with a fixed persistence, non-storage CRT; the 141T Display Section is equipped with a variable persistence, storage CRT. The 143S Display Section has a large screen (8x10 inch) CRT.

1-24. COMPATIBILITY

1-25. The 8556A LF Section is fully compatible with all current 8552A/B IF Sections; 8552A's with serial prefix 991 and below, and 8552B's with serial prefix 977 and below must be modified. The modification consists of adding a white-blue-grey (24 AWG) wire between 8552A/B connectors XA8 pin 8 and J3 pin 40. (See appropriate 8552 manual for location of connectors.)

NOTE

The 8556A requires a special knob on the IF Section in place of the standard LOG REF LEVEL control (see EQUIPMENT SUPPLIED).

1-26. The 8556A LF Section is fully compatible with all HP 140S/T, HP 141S/T, and HP 143S Display Sections. The 8556A can be used with HP 140A/B and 141A/B Oscilloscope Mainframes but some performance specifications will be slightly degraded. (For more information, contact your nearest Hewlett-Packard office.)

1-27. OPERATING ACCESSORIES

1-28. Operating accessories for use with the 8556A/8552/140 Spectrum Analyzer are listed in Table 1-3. They include a frequency counter, an oscilloscope camera, and various attenuators and probes.

1-29. TEST EQUIPMENT REQUIRED

1-30. Tables 1-4 and 1-5 list the test equipment and test equipment accessories required to check, adjust and repair the 8556A LF Section.

1-31. WARRANTY

1-32. The 8556A LF Section is warranted and certified as indicated on the inner front cover of this manual. For further information contact the nearest Hewlett-Packard Sales and Service Office; addresses are provided at the back of this manual.

Model 8556A

Table 1-1, Specifications (cont'd)

INPUT

Input Impedance: 1 M Ω shunted by ≈ 32 pF.

Maximum Input Level: 10V rms, ±200 Vdc. Ground terminals of BNC input connectors are isolated from the analyzer chassis ground to minimize ground loop pickup at low frequencies.

Maximum Voltage, Isolated Ground to Chassis Ground: ±100 Vdc.

Isolated Ground to Chassis Ground Impedance: 100 k Ω shunted by approximately 0.3 μ f.

GENERAL

Weight:

Scan Time: 16 internal scan rates from 0.1 ms/div to 10 sec/div in a 1, 2, 5 sequence.

Scan Time Accuracy:

0.1 ms/div to 20 ms/div: ±10% 50 ms/div to 10 sec/div: ±20%.

Power Requirements: 115 or 230 volts ±10%, 50 to 60 Hz, less than 225 watts.

Dimensions:

Model 140T or 141T Display Section: 9-1/5" high (including height of feet) x 16-3/4" wide x 18-3/8" deep (229 x 425 x 467 mm).

Model 143S Display Section: 21" high (including height of feet) x 16-3/4" wide x 18-3/8" deep (533 x 425 x 467 mm).

Model 8556A LF Section: Net, 8 lb (3,7 kg). Model 8552B IF Section: Net, 9 lb (4,1 kg). Model 8552A IF Section: Net. 9 lb (4.1 kg). Model 140T Normal Persistence Display Section: Net 37 lb (16,8 kg). Model 141T Variable Persistence Display Section: Net, 40 lb (18 kg). Model 143S Large Screen Display Section: Net 62 lb (28,1 kg).

Accessories Included:

Model 11660A Tracking Generator Shunt Model 11048B 50Ω Feed Thru Termination Model 11095A 600 Ω Feed Thru Termination

Absolute Amplitude Calibra Log Modes:	ation Range:	input signal level	harmonic and intermodulation disto products are all more than 70 dB belov input signal level 5 kHz to 300 kHz; 60 o Hz to 5 kHz. Third order intermodu										
dBm-600Ω	0 dBV = 1 V rms 0 dBm = 1 mW - 600Ω 0 dBm = 1 mW - 50Ω	products are more than 70 dB below the input signal level, 5 kHz to 300 kHz with signal separation >300 Hz.											
enced with input prope	Ω. dBm tanges are refer- rely terminated externally. 150 dBm/dBV to +10 steps. Log reference level continuously.	with the INPUT the input terminal related residual re below	Residual Reponses: (no signal present at input): with the INPUT LEVEL at -60 dBm/dBV and the input terminated with 600Ω or less, all line related residual responses from $0-500$ Hz are below -120 dBm/dBV. All other residual re- sponses are below -130 dBm/dBV.										
or 2 dB/div on a 16 only).	dB/div on a 70 dB display, 6 dB display (with 8552B	Gain Compression: above INPUT LE is less than 1 dB.	Gain Compression: For input signal level 20 dB above INPUT LEVEL setting gain compression is less than 1 dB.										
Linear Sensitivity: Fror 1, 2, 10 sequence. Li to X0.25 continuously	n 0.1 μ V/div to 1V/div in a inear sensitivity vernier X1 y.	INPUT LEVEL Con in 10 dB steps. indicates maxim	Accuracy ±0.2 um input leve	2 dB. Marking									
Dynamic Range:		spurious-free dyn	anne range,										
less source impedance	Specified with a 600Ω or ce and INPUT LEVEL at	Accuracy:	Log	Linear									
—60 dBm/dBV. 1 kHz I Mode Bandwic		Frequency Response: Switching Between Bandwidths (at 20°C), 100 Hz to 10 kHz:	±0.2 dB ±0.5 dB	±2.3% ±5.8%									
$dBm = 600\Omega < 130 dBm (2)$	180 nV)<142 dBm (18 nV) 250 nV)<150 dBm (25 nV) 250 nV)<152 dBV (25 nV) <40 nV	100 HZ to 10 kHz: 20 Hz to 10 kHz: 10 Hz to 10 kHz: Display:	±1.0 dB ±1.5 dB ±.25 dB/dB but not more than ±1.5 dB	±12% ±20% ±2.8% of full									
Spurious Responses: In LEVEL Setting: out	nput signal level \leq INPUT of band mixing responses,		over 70 dB display range										
	TRACKING (GENERATOR											
Frequency Range: Tracks to 300 kHz.	the analyzer tuning, 20 Hz	Output Impedance: 6	00Ω.										
	nuously variable from 100	Spectral Purity:											
mV rms to greater th circuit.	han 3V rms into an open	Residual FM: With 8552B IF Se With 8552A IF S											
Amplitude Accuracy: N LEVEL in CAL position is 100 mV ±0.3 dB into	on, output level at 100 kHz	Harmonic Signals: 2											
Frequency Response: ±	±0.25 dB 50 Hz to 300 kHz.	Spurious Outputs:	>50 dB down.										

Table 1-1. Specifications (cont'd)

AMPLITUDE

Table 1-2. Supplemental Performance Characteristics

FREQUENCY CHARACTERISTICS

- Range: With 300 kHz Center Frequency and 20 kHz/div Scan Width, analyzer will scan linearly to 400 kHz.
- **Center Frequency Control:** Approximately 10 turns to cover full dial indicator in both 0-30 kHz and 0-300 kHz ranges.
- Fine Tune: Single turn control, ±50 Hz on 0-30 kHz range, ±500 Hz on 0-300 kHz range.
- Zero Adjust: ±27 kHz range with 8552A, ±12 kHz range with 8552B.
- **0-10f Scan Mode:** With zero properly adjusted in PER DIVISION scan, 0 to 10f scan mode will scan from 0 (± 500 Hz or 0.2 div, whichever is greater) to ten times the scan width per division setting. Offset may be reduced to 0 readjusting frequency zero. Scan accuracy $\pm 5\%$.
- **Dynamic Range:** For operation from 5 kHz to 300 kHz with signal levels greater than INPUT LEVEL setting, see Figure 1-4 for typical distortion.

Accuracy:

Log Reference Level: INPUT LEVEL and LOG REF LEVEL controls provide continuous log reference levels from +10 dBm/dBV to -80 dBm/dBV (may be decreased to -92 dBm/dBV by using 12 dB Log Reference Level Vernier).

Figure 1-3. Typical Spectrum Analyzer Resolution

- Resolution: See Figure 1-3 for curves of typical 8556A/8552B/8552A Spectrum Analyzer resolution using different IF bandwidths.
- Warmup Drift: (Typical first hour's operation.)

With 8552B: 500 Hz With 8552A: 15 kHz

Long Term Drift: (Typical – at fixed center frequency after one hour warmup.)

With 8552B: 70 Hz/10 min With 8552A: 400 Hz/10 min

Temperature Drift: (Typical.)

With 8552B: 200 Hz/°C With 8552A: 2 kHz/°C

AMPLITUDE CHARACTERISTICS

Input Level: Provides 50 dB control of input preamplification and attenuation to prevent input overload. INPUT LEVEL markings of -00 dBm/dBV to --10 dBm/dBV indicate maximum input level for a minimum of 70 dB spurious-

Single input signal, 300 Hz to 300 kHz. Second and third harmonic distortion products typically 10 dB higher below 30 Hz.
 Two input signals, 5 kHz to 300 kHz with > 300 Hz signal separation.

***Two input signals, frequency below 5 kHz with <300 Hz signal separation.

Figure 1-4. Typical Spectrum Analyzer Distortion Products Table 1-2. Supplemental Performance Characteristics (cont'd)

AMPLITUDE CHARACTERISTICS (cont'd)

free dynamic range. Accuracy ± 0.2 dB (2.3%). Input may be overloaded up to 20 dB with the analyzer still providing useful measurement capability. See Figure 1.4.

Log Reference Level Control: Provides 90 dB of IF gain control in 10 dB steps to cover log and linear ranges. Accurate to ± 0.2 dB ($\pm 2.3\%$).

Log Reference Level Vernier: Provides continuous 12 dB range. Accurate to ± 0.1 dB ($\pm 1.2\%$) in 0, -6, -12 dB positions; otherwise ± 0.25 dB ($\pm 2.8\%$).

Log Reference Level, switching between 10 dB/div and 2 dB/div log scales (8552B only):

time or scan width) degrades absolute calibration for CW signals. Typically accurate to ± 1 position in scan width or scan time setting.

Display Uncalibrated Light: Warns if a combination

of control settings (IF or video bandwidth, scan

Temperature Stability: ±0.07 dB/°C.

Amplitude Stability: ±0.07 dB/°C in log, ±0.6

Video Filter: Averages displayed noise; bandwidth of 10 kHz, 100 Hz and (8552B only) 10 Hz. Bandwidth accuracy $\pm 20\%$.

DISPLAY CHARACTERISTICS

Variable Persistence/Storage (Model 141T):

- Plug-ins: Accepts Model 8550 series Spectrum Analyzer plug-ins and Model 1400 series time domain plug-ins.
- Cathode-ray Tube:

Type: Post-accelerator storage tube, 9000 volt accelerating potential; aluminized P31 phosphor; etched safety glass face-plate reduces glare.

Graticule: 8 x 10 division (approximately 7,1 x 8,9 cm) parallax-free internal graticule; five subdivisions per major division on horizontal and vertical axes.

Persistence:

Normal: Natural persistence of P31 phosphor (approximately 0.1 second).

Variable:

Normal Writing Rate Mode: Continuously variable from less than0.2 second to more than one minute (typically to two or three minutes).

Maximum Writing Rate Mode: Typically from 0.2 second to 15 seconds.

Erase: Manual; erasure takes approximately 350 ms; CRT ready to record immediately after erasure.

Storage Time: Normal writing rate; more than 2 hours at reduced brightness (typically 4 hours). More than one minute at maximum brightness. Fast Writing Speed: More than 15 minutes (typically 30 minutes) at reduced brightness or more than 15 seconds at maximum brightness. Functions Used with Time Domain Plug-ins Only:

Intensity modulation, calibrator, beam finder.

Normal Persistence (Model 140T):

Accuracy: ±0.6 dB

%/°C in linear.

Plug-ins: Same as 141T.

Cathode-ray Tube:

Type: Post-accelerator, 7300 volt potential medium-short persistence (P7) phosphor, tinted and etched saftety glass face-plate reduces glare. (Normal persistence of P7 phosphor approximately 3 sec.)

Graticule: 8 x 10 division (approximately 7,6 x 9,5 cm) parallax-free internal graticule; five subdivisions per major division on horizontal and vertical axes.

Functions Used with Time Domain Plug-ins Only: Same as 141T.

Normal Persistence Large Screen Display (Model 143S):

Plug-ins: Same as 141T.

Cathode Ray Tube:

Type: Post-accelerator, 20 kV accelerating potential aluminized P31 phosphor. (Persistence approximately 0.1 sec).

Graticule: 8 x 10 divisions (approximately 8 x 10-inch) parallax-free internal graticule, five subdivisions per major division on horizontal and vertical axes.

Functions Used with Time Domain Plug-ins Only: Same as 141T.

Table 1-3. Operating Accessories

Model Number	Description									
HP 10004A	10:1 Divider Probe (oscilloscope type)									
HP 1001A	Probe to BNC Adapter									
HP 1110A	Current Probe: Sensitivity: 1 mV/mA Bandwidth: 1700 Hz (3 dB down) 30 MHz (3 dB down)									
HP 5221B	Electronic Counter, Option 001 Frequency Range: 5 Hz to 10 MHz Sensitivity: 100 mV rms max Gate Time: .01, 0.1, 1 and 10 sec. Accuracy: ±0.001% ±1 count Readout: 6 digits									
HP 4437A	600 ohm Unbalanced Attenuator Range: 0-119.9 dB in 0.1 dB increments Accuracy: ± 0.2 dB to 90 dB ± 0.5 dB to 110 dB ± 1.0 dB to 119.9 dB Input Power: 1 watt max									
HP 197A	Oscilloscope Camera									

Table 1-4. Test Equipment

Item	Minimum Specifications	Suggested Model	Use*
AC Voltmeter	Voltage Range: 1 mV to 10V full scale (-10 to +2 dB on dB scale) Frequency Range: 20 Hz to 400 kHz Accuracy: ± (2.5% of full scale +2.5% of reading) AC to DC Converter Output: 1V dc for full scale meter deflection AC to DC Converter Accuracy: ± (1% of full scale +1% of reading) Input Impedance: 10 MΩ shunted by ≈ 25 pF	HP 400EL	P,A,T
Oscilloscope	Frequency Range: dc to 50 MHz AC or DC Coupling Sensitivity: 0.005 V/DIV Voltage Accuracy: ±3%	HP 180A/ 1801A/ 1820B	A, T
X10 Oscillo- scope Probe (2)	Resistance: 10 M Ω shunted by \approx 10 pF Division Accuracy: 3%	HP 10004A	A, T

*Use: Performance = P; Adjustment = A; Troubleshooting = T

GENERAL CHARACTERISTICS

Table 1-2. Supplemental Performance Characteristics (cont'd)

Scan Mode:

- Int: Analyzer repetitively scanned by internally generated ramp; synchronization selected by scan trigger.
- Single: Single scan with reset actuated by front panel pushbutton.
- Ext: Scan determined by 0 to +8 volt external signal; scan input impedance more than 10 kΩ.

Blanking: -1.5V external blanking signal required.

- Manual: Scan determined by front panel control; continuously variable across CRT in either direction (8552B only).
- Scan Trigger: For Internal Scan Mode, select between:
- Auto: Scan free runs.
- Line: Scan synchronized with power line frequency.
- Ext: Scan synchronized with more than 2 volt (20 volt max.) trigger signal (polarity selected by internally located switch in Model 8552 IF Section).
- Video: Scan internally synchronized to envelope of RF input signal (signal amplitude of 1.5 major divisions peak-to-peak required on display section CRT).

Auxiliary Outputs:

- Vertical Output: Approximately 0 to -0.8V for 8 division deflection on CRT display; approximately 100 Ω output impedance.
- Scan Output: Approximately -5 to +5V for 10 div CRT deflection, 5kΩ output impedance.
- Pen Lift Output: 0 to 14V (0V, pen down). Output available in Int and Single Scan modes and Auto, Line, and Video Scan Trigger.
- CRT Baseline Clipper: Front panel control adjusts blanking of CRT trace baseline to allow more detailed analysis of low repetition rate signals and improved photographic records to be made.
- EMI: Conducted and radiated interference is within requirements of MIL-1-16910C and MIL-1-6181D and methods CEO3 and REO2 of MIL-STD-461 (except 35 to 40 kHz) when 8556A and 8552B are combined in a 140T or 141T Display Section.

Temperature Range: Operating, 0°C to +55°C, storage, -40°C to +75°C.

Figure 2-1. LF Section and IF Section Interconnections

perforations. When operating the instrument, choose a location which provides at least three inches of clearance around the rear and both sides. Refer to the Display Section manual for maintenance instructions for the cooling system.

2-19. Interconnections

2-20. The LF and 1F Sections are normally shipped separately; the plug-ins must be mechanically fitted together, electrically connected, and then inserted in the Display Section or mainframe. To make these connections, refer to Figure 2-1 and proceed as follows:

a. Set the IF Section on a level bench. Locate slot near right rear corner of LF Section; also, locate metal tab on IF Section that engages with this slot.

b. Grasp the 8556A LF Section near middle of chassis and raise until it is a few inches above the IF Section.

c. Tilt LF Section until front of assembly is about 2 inches higher than the rear.

d. Engage assemblies in such a way that metal tab on the rear of the IF Section slips through the slot on LF Section.

 e. With the preceding mechanical interface completed, gently lower LF Section until electrical plug and receptacle meet.

f. Position LF Section as required to mate the plug and receptacle. When plug and receptacle are properly aligned, only a small downward pressure is required to obtain a snug fit.

g. After the LF and IF Sections are joined mechanically and electrically, the complete assembly is ready to insert in the Display Section.

h. Pick up the LF/IF Sections and center in opening of Display Section. Push forward until assembly fits snugly into Display Section.

i. Push in front panel latch to securely fasten assembly in place.

2-21. To separate the LF/IF Sections from Display Section and to separate the LF Section from the IF Section, proceed as follows:

a. Push front panel latch in direction of arrow until it releases.

b. Firmly grasp the middle of latch flange and pull LF/RF Sections straight out. c. Locate black press-to-release level near right front side of LF Section. Press this lever and simultaneously exert an upward pulling force on front edge of LF Section.

d. When the two sections separate at the front, raise LF Section two or three inches and slide metal tab at rear of IF Section out of the slot in which it is engaged.

2-22. STORAGE AND SHIPMENT

2-23. Original Packaging

2-24. The same containers and materials used in factory packaging can be obtained through the Hewlett-Packard Sales and Service Offices listed at the rear of this manual.

2-25. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating service required, return address, instrument model number and full serial number. Mark the container FRAGILE to assure careful handling.

2-26. In any correspondence refer to the instrument by model number and full serial number.

2-27. Other Packaging Materials

2-28. The following general instructions should be followed when repackaging with commercially available materials:

a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard Service Office or Center attach a tag indicating the type of service required, return address, model number and full serial number.)

b. Use a strong shipping container. A double wall carton made of 350 pound test material is adequate.

c. Use enough shock-absorbing material (threeto four-inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.

d. Seal the shipping container securely.

e. Mark the shipping container FRAGILE to assure careful handling.

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides complete operating instructions for the HP 8556A Spectrum Analyzer LF Section as used with an 8552 series IF Section and a 140 series Display Section.

3-3. PANEL FEATURES

3-4. Front panel controls, indicators and connectors are shown and briefly described in Figure 3-1. Rear panel controls and connectors are shown and described in Figure 3-2. For a detailed description of IF Section and Display Section controls and indicators, refer to their manuals.

3-5. OPERATOR'S CHECKS

3-6. Upon receipt of the analyzer, or when any plug-in is changed, perform the operational adjustments listed in Figure 3-2. This procedure corrects for minor differences between units and ensures that the LF Section, IF Section and Display Section are properly matched.

3-7. OPERATING CONSIDERATIONS

3-8. Front panel controls, indicators and connectors are shown and briefly described in Figure 3-1. The following information covers general operating considerations.

3-9. RF Input

3-10. The 8556A has an input impedance of 1 Megohm, shunted by approximately 32 pF, so compensated oscilloscope probes (see Table 1-3) can be connected directly to INPUT and used for in-circuit testing. To compensate an oscilloscope probe for use with the 8556A, use the probe's BNC adaptor to connect the probe tip to TRACKING GEN OUT. Adjust the probe for optimum signal flatness on the CRT display.

3-11. Use the feedthrough terminations, 50 ohm and 600 ohm, when the device to be tested must be terminated in its characteristic impedance (for example, when measuring dBm). To make a feedthrough termination for some other impedance, simply connect a resistor across the analyzer INPUT (connect the resistor to INPUT ground, not chassis ground). The value of the resistor should be equal to the characteristic impedance of the device.

CAUTION

Do not apply more than 10 V rms and ± 200 Vdc to INPUT.

3-12. Amplitude Ranges

3-13. The LOG/LINEAR switch on the IF Section works in conjunction with the dBm/dBV switch on the LF Section. With LINEAR selected, the analyzer measures voltage. With LOG selected (either 2 dB or 10 dB on the 8552B), the analyzer measures voltage in dBV (that is, dB referenced to 1 volt) or power in dBm. The LF Section is calibrated to measure dBm in 50 or 600 ohms.

3-14. To use 2 dB LOG, first find the signal using 10 dB LOG; display the desired portion of the signal on the top 16 dB of the CRT display, then switch to 2 dB LOG. The top of the display, the LOG REF graticule, remains the same. The -70 dB graticule line becomes -14 dB (each major division becomes 2 dB).

NOTE

Do not make any VERTICAL GAIN or POSITION adjustments in 2 dB LOG as the front panel calibration will become invalid.

3-15. The LOG REF LEVEL control on the IF Section has three scales (see EQUIPMENT SUP-PLIED in Section I): the red scale is used for LF Section log calibration, the black scale is used for RF Section log calibration, and the blue scale is used for linear calibration on all units. If the IF Section being used does not have the red scale, subtract 20 dB from the black scale to obtain the LOG REF level on the CRT.

3-16. First Mixer Balance

3-17. The first mixer in the 8556A is balanced to insure a low level of first local oscillator feedthrough appearing on the display. Excessive LO feedthrough may result in inaccurate amplitude calibration and excessive intermodulation distortion. With the dBm/dBV switch set to 50Ω dBm and INPUT LEVEL set to -60 dBm/dBV, the first LO feedthrough (zero frequency marker) should be below -80 dBm. If it is above this level, perform the first mixer balance adjustment specified below. amplifier is inserted, and the attenuator is set to 50 dB. If the amplifier response curve is at the -7 dB graticule line, the gain is 43 dB (50 dB - 7 dB).

3-47. Important Considerations. When using the tracking generator for swept response measurements, the spectrum analyzer BANDWIDTH and DISPLAY UNCAL light take on somewhat different significance. The BANDWIDTH setting mainly affects the average noise level and has only a secondary effect on resolution. Narrowing the BANDWIDTH improves dynamic range, but requires slower sweep rates. The DISPLAY UNCAL light in most cases will not apply. The best procedure in swept response measurements is to slow the scan rate until the display amplitude remains constant with changes in SCAN TIME PER DIVISION. At this point, the scan is the proper rate to satisfy the requirements of both the spectrum analyzer and the device under test.

3-48. Spurious responses are not displayed on the CRT due to the tracking signal source and receiver. Therefore, measurements may be made over a dynamic range limited only by gain compression as an upper limit and system noise as a lower limit.

3-49. Devices, such as filters, which may have attenuation greater than 100 dB can be measured. The response can be traced out on the CRT in two 70 dB segments, and the results can be photographed to give a composite picture.

3-50. Precise Frequency Measurements. It may be desired to measure the frequency of a low level signal which is close to a higher level signal. First, confirm that TRACK ADJ is correctly adjusted (see Figure 3-2), then connect a low frequency counter to the tracking generator's output. Using the MANUAL SCAN mode, scan the spectrum analyzer until you reach the peak of the signal response. The frequency displayed on the counter is the frequency of the signal. Resolution of 1 Hz is possible using narrow scan widths and bandwidths on the spectrum analyzer. (The counter gate time for this resolution is 1 second.)

3-51. This same method may be applied to the measurement of points on a frequency response curve. Use a high impedance counter and connect it to the tracking generator's output on a tee with the test device (see Figure 3-4). Then manually scan to a point of interest on the response curve and read the frequency. This method is useful when measuring the 3 dB or 6 dB bandwidth of a filter, discontinuities in a response characteristic, or identifying spurious modes on a device.

3-52. Variable Persistence and Storage Functions

3-53. With the 141T Display Section the operator can set trace persistence for a bright, steady trace that does not flicker, even on the slow sweeps required for narrow band analysis. The variable persistence also permits the display of low repetition rate pulses without flickering and, using the longest persistence, intermittent signals can be captured and displayed. The storage capability allows side-by-side comparison of changing signals.

3-54. Persistence and Intensity. The persistence and intensity determine how long a written signal will be visible. Specifically, PERSISTENCE controls the rate at which a signal is erased and INTENSITY controls the trace brightness as the signal is written. With a given PERSISTENCE setting, the actual time of trace visibility can be increased by greater INTENSITY. Since the PER-SISTENCE control sets the rate of erasing a written signal, it follows that a brighter trace will require more time to be erased. Conversely, a display of low intensity will disappear more rapidly. The same principle applies to a stored display to high and low intensity.

CAUTION

Excessive INTENSITY will damage the CRT storage mesh. The INTENSITY setting for any sweep speed should just eliminate trace blooming with minimum PERSISTENCE setting.

3-55. Storage. The storage controls select the storage mode in which the CRT functions. In ERASE, STORE and WRITING SPEED are disconnected and all written signals are removed from the CRT. The STORE selector disconnects the WRITING SPEED AND ERASE functions and implements signal retention at reduced intensity. In the STORE mode, PERSISTENCE and INTENSITY have no function.

3-56. Writing Speed. In the FAST mode, the rate of erasing a written display is decreased. Since the erasing rate is decreased, the entire screen becomes illuminated more rapidly and the display is obscured. The effective persistence and storage time are considerably reduced.

3-57. Photographic Techniques

3-58. Excellent signal photography is possible when the Spectrum Analyzer is used with an oscilloscope camera and when proper techniques are employed. Both the HP 196B and the 197A Oscilloscope Cameras attach directly to the analyzer's CRT bezel without adapters. Both cameras also have an Ultra-Violet light source that causes a uniform glow of the CRT phosphor. This gives the finished photograph a grey background that contrasts sharply with the white trace and the black graticule lines. Ultra-Violet illumination is normally used only when the CRT is of the non-

storage and fixed persistence type (140T Display Section). For a storage or variable persistence CRT (141T Display Section), a uniform gray background is obtained by simply taking the photograph in STORE rather than in VIEW.

3-18. Remove the top cover from the Display Section (with power off).

WARNING

Removing the top cover from the Display Section exposes the operator to dangerous potentials (up to 7000 volts).

3-19. Set the analyzer controls as follows:

FREQUENCY 0 kHz BANDWIDTH 3 kHz SCAN WIDTH PER DIVISION
PER DIVISION 10 kHz INPUT LEVEL -60 dBm/dBV
$dBm/dBV \dots 50 \Omega dBm$
BASE LINE CLIPPER ccw
VIDEO FILTER 10 kHz
SCAN TIME PER DIVISION . 5 MILLISECONDS
LOG/LINEAR 10 dB LOG
LOG REF LEVEL
SCAN MODE INT SCAN TRIGGER AUTO
POWER ON

NOTE

This procedure assumes that the analyzer is calibrated as specified in Figure 3-2 and has been allowed to warm up at least one-half hour.

3-20. Center the LO feedthrough signal on the display with the FREQUENCY control.

3-21. Using a non-metallic adjustment tool, alternately adjust C and R MIXER BALANCE ADJUSTMENTS (available on the LF Section top cover) to null the LO feedthrough.

3-22. When the signal is below -80 dBm, turn power off and replace the top cover.

3-23. OPERATING INSTRUCTIONS

3-24. The following instructions should enable an operator to make fast, accurate measurements with the low frequency analyzer. To define each instrument application is beyond the scope of this manual. For further details, there is a complete discussion of 8556A applications in Application Note 134. This application note is available from your local HP Sales and Service Office.

3-25. In general, operation of the Spectrum Analyzer may be accomplished through the following steps:

a. Set the analyzer to scan the appropriate frequency range with the proper resolution.

b. Adjust the amplitude scale as necessary for the measurement.

c. Complete the measurement, and interpret the results.

3-26. Setting the Frequency Scan

3-27. There are three ways to set the frequency scan on the 8556A. The first is the the 0-10f mode of operation. When this mode is selected, the spectrum analyzer scans from "zero" frequency to a preset upper limit selected by the PER DI-VISION control. For example, if the PER DI-VISION control is set to 10 kHz, and the 0-10f mode is selected, the spectrum analyzer will scan from 0 to 100 kHz, 10 kHz per division. Scans may be selected from 20 Hz per division to 20 kHz per division in a 1, 2, 5 sequence.

3-28. The second way to set the frequency scan is the PER DIVISION mode. In this mode, the frequency scan is symmetrical about the CENTER FRÉQUENCY tuned by the FREQUENCY control. The CENTER FREQUENCY dial indicates this frequency in two ranges, 0-30 kHz or 0-300 kHz. The horizontal scale is then selected by the PER DIVISION setting.

3-29. The third way is the ZERO scan mode. The spectrum analyzer becomes a fixed-tuned receiver at the frequency indicated by the CENTER FRE-QUENCY dial. In this mode, amplitude variations are displayed versus time on the CRT.

3-30. Once the proper frequency scan is chosen, the resolution needed for the particular measurement should be determined. Resolution is mainly a function of the IF bandwidth selected. As narrower IF bandwidths are used, the resolution increases. At the same time, the spectrum analyzer must be swept at a slower rate. The bandwidth used should be only as narrow as is necessary for the particular application. The best procedure is to select the bandwidth necessary for the desired resolution, and then slow the scan rate (SCAN TIME PER DIVISION) until the DISPLAY UNCAL light is unlit.

3-31. Adjusting the Amplitude Scale

3-32. Once the desired signals are displayed on the CRT the amplitude is set to give an optimum display. The first consideration is how the amplitude is to be measured. The 8556A can measure power in dBm (for 50 ohm or 600 ohm systems), and it can measure voltage on a linear scale or in dB referred to one volt (dBV) on a log scale.

3-33. If power is the desired parameter, set the dBm/dBV switch to dBm for the appropriate

	FRONT PAN	EL	FEATURES
0	DISPLAY UNCAL: warning light indicates that the CRT display has become uncalibrated due to incom- patible settings of SCAN WIDTH, SCAN TIME		dynamic range. This control should be set to agree with the signal level read on the CRT.
e	PER DIVISION, BANDWIDTH, and VIDEO FILTER controls. FREQUENCY: tunes the CENTER FREQUENCY in SCAN WIDTH PER DIVISION and ZERO scan	12	TRACKING GEN LEVEL: adjusts the output level of the tracking signal present at the TRACKING GEN OUT. When the CAL position is selected, it gives an output of 100 mV for calibrating the spectrum analyzer display. The output can be increased to 3V.
6	modes. FINE TUNE allows high resolution adjust- ments in narrow scans. ZERO ADJ: calibrates CENTER FREQUENCY dial for "zero" frequency.	(3	RANGE kHz: selects CENTER FREQUENCY dial range of 0-30 kHz or 0-300 kHz.
4	300 kHz ADJ: calibrates CENTER FREQUENCY dial for 300 kHz.	14	INPUT: one megohm unbalanced input for signals to be measured.
6	BANDWIDTH: selects resolution bandwidth of the spectrum analyzer from 10 Hz to 10 kHz in a 1, 3 sequence. (8552A, 50 Hz and 100 Hz to 300 kHz in a 1, 3 sequence.)	15	dBm/dBV: selects log display absolute calibration for dBV or dBm referred to 50 ohms or 600 ohms. For correct dBm measurements, an external termination of the proper impedance must be provided for the input signals.
_	AMPL CAL: calibrates display amplitude for abso- lute voltage and power measurements. CENTER FREQUENCY: dial indicates the CENTER FREQUENCY for SCAN WIDTH PER DIVISION and ZERO scan modes. Calibrated in 5 kHz incre-	16	TRACKING GEN OUT: output signal tracks the spectrum analyzer tuning frequency. The signal may be used for swept frequency response measurements or to drive a frequency counter for accurate fre- quency measurements. The signal output also serves to accurately calibrate the display for absolute
	ments for 0-300 kHz range and 500 Hz increments for 0-30 kHz range.	መ	amplitude.
8	SCAN WIDTH: selects spectrum analyzer frequency scanning mode. $O-101$ repetitively tunes the spec- trum analyzer from "zero" frequency to ten times the setting of the PER DIVISION control. (e.g., with	Ψ	20 KH2 MAHKEHS: places crystal controlled markers with 20 kHz spacing on CRT. These markers are accurate to 0.01%, and are useful for calibrating the frequency axis.
	PER DIVISION control set at 1 kHz, scan would be from 0-10 kHz, or 1 kHz per division.) PER DIVISION mode scans the spectrum analyzer sym- metrically about the CENTER FREQUENCY with a scan width set by the PER DIVISION control, in the	18	CAL OUTPUT:30 dBm, 30 MHz signal used for calibrating amplitude on other tuning sections (8553B, 8554L, 8555A).
_	ZERO scan mode, the analyzer becomes a fixed frequency receiver at the CENTER FREQUENCY.	-	PEN LIFT OUTPUT, TRIG/BLANK INPUT: provides +14 V pen lift signal for use with X-Y recorders during retrace in SINGLE and INT SCAN MODES
•	PER DIVISION: selects the CRT horizontal calibra- tion (frequency scale) in the PER DIVISION and 0-10f frequency scan modes.		with VIDEO, LINE, or AUTO SCAN TRIGGER. It serves as an input connector for external blanking signal in the EXT SCAN MODE. When EXT SCAN TRIGGER is selected, it becomes an input connector for the external trigger signal.
U	TRACKING ADJ: tunes the TRACKING GEN OUT frequency to precisely track the tuning frequency of the spectrum analyzer.	_	
0	INPUT LEVEL: adjusts the input signal level to the input mixer and input preamplifier to maximize		VERTICAL OUTPUT: provides output proportional to vertical deflection on CRT. Approximately 100 mV per major division with 100 ohm output impedance.

Figure 3-1. Front Panel Features (1 of 4)

FRONT PANEL F	FATURES			
			FRONT PANE	FEATURES
 tional to CRT horizontal deflection. 0 volts equals center screen with 1 volt per division (-5 to +5V full screen). Output voltage available in SINGLE, MAN. and INT SCAN MODES. In EXT SCAN MODE, the connector is used as an input for 0 to +8V external scan signal. DISPLAY ADJUST: these controls adjust the deflection circuit gain and offset levels to match the IF section to a particular display section. LOG REF LEVEL 'LINEAR SENSITIVITY: these controls set the absolute amplitude calibration of the CRT display. In the 10 dB LOG or 2 dB LOG modes, the sum of the two control settings determines the LOG REF LEVEL (top graticule line on CRT). In the LINEAR mode, the product of the two control settings determines the CRT scale factor in volts per division. A special knob is provided for use with the 8556A. This knob is described under OPERATING CONSIDERATIONS (paragraph 3-15). LOG/LINEAR: selects display mode for logarithmic for the control set in the section of the control set in the section. 	SINGLE: single scan initiated by front panel push- button. SCANNING lamp indicates time during which analyzer is being scanned. Initiates or resets scan when SINGLE SCAN MODE is selected. SCAN TIME PER DIVISION: selects time required to scan one major division on CRT display. Control acts as time base for time domain operation in ZERO scan. VIDEO FILTER: post detection low pass filter for effective averaging of distributed signals such as noise. Bandwidths of 10 KHz, 100 Hz, and 10 Hz selectable; nominal bandwidth 400 kHz in OFF position. (10 Hz position not available with 8552A.) BASE LINE CLIPPER: allows blanking of the bright base line area of the CRT for better photography and improved display of transient phenomena. MANUAL SCAN: controls spectrum analyzer hori- zontal scan in the MAN SCAN MODE. (Not available		<text><list-item><list-item><list-item></list-item></list-item></list-item></text>	 FEATURES STORE: stores the display on the CRT for extended viewing or photography. The CRT does not write in the STORE mode. POWER: controls power to the mainframe and to both plag-ins. ASTIG: adjusts the shape of the CRT spot. TRACE ALIGN: used to adjust the CRT trace to align with the horizontal graticule lines. CRT Graticule with LOG and LIN scales. LOG REF is the level used to reference the amplitude of displayed signals in the LOG display mode. LINEAR display amplitude is referenced from the baseline.
anspiay with scale factors of 10 db per division of 2 dB per division or LINEAR display with scale factor selected by LINEAR SENSITIVITY (2 dB per division not available with 8552A). 23 SCAN TRIGGER: selects synchronizing trigger when	zontal scan in the MAN SCAN MODE. (Not available on 8552A.) CAL 10V and 1V: 10V or 1V square wave used to calibrate time domain plug-ins ONLY. FOCUS: focuses CRT spot for best definition.			
AUTO: scan free runs.	BEAM FINDER: returns CRT trace to the center of the screen regardless of deflection potentials with time domain plug-ins ONLY.			
VIDEO: scan internal synchronized to envelope of RF input signal. Signal amplitude of 1.5 divisions peak-to-peak (min.) required on display section CRT.	NON STORAGE, CONV: defeats the storage and variable persistence features of the CRT. Persistence is that of the standard P31 phosphor. INTENSITY: adjusts the intensity of the trace on the CRT.			
	CAUTION			
INT.: analyzer repetitively scanned by internally generated ramp; synchronization selected by SCAN TRIGGER. SCANNING lamp indicates time during which analyzer is being scanned. EXT.: scan determined by externally applied 0 to	Excessive INTENSITY will damage the CRT storage mesh. Whenever trace blooming occurs, turn INTENSITY down.			
+8V signal at SCAN IN/OUT.				
	ERASE: erases the CRT in the WRITING SPEED FAST or STD mode of operation. CRT ready to record immediately after erasure.			
Distance 2.1 Proved Party I		յ լ	······································	

Figure 3-1. Front Panel Features (3 of 4)

Figure 3-1. Front Panel Features (4 of 4)

OPERATIONAL ADJUSTMENTS

1 INPUT POWER

a. Set 115/230 switch to correspond with available input voltage. (The instrument is fused for 115 volt, 50/60 Hz operation; if 230 volt power is used, refer to the Display Section service manual for fuse replacement procedures.)

b. Connect line power cord to instrument jack and to a line power outlet.

2 INTENSITY MODULATION

Set INT/EXT switch to INT. (Set to EXT only if CRT Z axis is to be externally modulated – normally only used with 1400 series oscilloscope plug-ins).

FOCUS AND ASTIGMATISM

a. Make the following instrument control settings:	
RANGE 0-300 kHz	
FREQUENCY 150 kHz	
FINE TUNE Centered	
BANDWIDTH 10 kHz	
SCAN WIDTH PER DIVISION	
PER DIVISION 20 kHz	
INPUT LEVEL	
dBm/dBVdBV	
20 kHz MARKERS Out	
SCAN TIME PER DIVISION 5 MILLISECONDS	
LOG REF LEVEL	
Vernier ccw	
LOG/LINEAR 10 dB LOG	
VIDEO FILTER OFF	ļ
SCAN MODE INT	
SCAN TRIGGER AUTO	
BASE LINE CLIPPER ccw	
WRITING SPEED STD	
PERSISTENCE	
INTENSITY 12 o'clock	
POWER ON	

b. Adjust INTENSITY as needed. (Whenever blooming occurs on CRT, turn INTENSITY down.) Set LOG REF LEVEL maximum counterclockwise. Using the VERTICAL POSITION control, bring the trace to the -40 dB graticule line.

c. Switch the SCAN MODE to MAN, and use the MANUAL SCAN to bring the CRT dot to the center of the screen. Adjust FOCUS and ASTIG for the smallest round dot possible.

TRACE ALIGNMENT

Set SCAN MODE to INT. Adjust TRACE ALIGN to set the trace parallel to the horizontal graticule lines.

6 HORIZONTAL POSITION AND GAIN

a. Alternately adjust HORIZONTAL GAIN and HORIZONTAL POSITION so that the trace just fills the horizontal graticule line.

b. Using the VERTICAL POSITION control, bring the trace to the bottom graticule line (ignore any slight misalignment of the trace).

6 VERTICAL POSITION AND GAIN

a. Connect TRACKING GEN OUT to the INPUT (do NOT use a feedthrough termination). Set the TRACKING GEN LEVEL to CAL. Set the VIDEO FILTER to 10 kHz. Use the LOG REF LEVEL vernier to set the trace to the -70 dB graticule line at the center of the CRT. (Adjust AMPL CAL counterclockwise, if necessary, to lower trace.)

b. Turn the LOG REF LEVEL clockwise 7 steps (without moving vernier) while observing the trace. The trace should move up the CRT in 10 dB steps. If it does not, adjust VERTICAL GAIN to bring the trace to the top graticule line.

c. Turn the LOG REF LEVEL fully counterclockwise and repeat steps 6 a. and 6 b. until no further adjustment is necessary.

AMPLITUDE CALIBRATION

a. Set the LOG REF LEVEL to -20 dBV (set vernier to zero). Adjust AMPL CAL to bring the trace to the top graticule line at the center of the screen.

b. Set the LOG/LINEAR switch to LINEAR, and set LINEAR SENSITIVITY to 20 mV per division. Make any fine adjustment of the AMPL CAL which is necessary to bring the trace to the fifth graticule line $(5 \times 20 \text{ mV} - 100 \text{ mV})$.

B TRACKING ADJUSTMENT

a. Return the LOG/LINEAR switch to 10 dB LOG. Set the LOG REF LEVEL to $-10\,$ dBV, and set the SCAN WIDTH to ZERO. Reduce the BAND-WIDTH to 10 Hz (50 Hz on 8552A). Adjust TRACK ADJ to bring the trace as high as possible on the screen.

b. Set the LOG/LINEAR switch to 2 dB LOG (or LINEAR) and repeat the peaking procedure, then return to 10 dB LOG.

OPERATIONAL ADJUSTMENTS

9 FREQUENCY CALIBRATION

a. Disconnect TRACKING GEN OUT from	
INPUT and set the controls as follows:	
FREQUENCY 0 kHz	
RANGE 0-30 kHz	
FINE TUNE Centered	
BANDWIDTH 300 Hz	
SCAN WIDTH PER DIVISION	
PER DIVISION 1 kHz	
20 kHz MARKERS In	
SCAN TIME PER DIVISION 50 MILLISECONDS	
VIDEO FILTER OFF	

b. Center LO feedthrough signal, at CENTER FREQUENCY graticule on the display, with ZERO ADJ. The dial should be accurately set to 0 kHz.

NOTE If using an 8552A IF Section and ZERO ADJ will not zero the LO feedthrough, see paragraph 5-30 in Section VI. c. Set RANGE to 0-300 kHz, and slowly tune FREQUENCY to 300 kHz, counting 20 kHz markers as they pass the CENTER FREQUENCY graticule on the display. Center the fifteenth marker (300 kHz) on the CENTER FREQUENCY graticule.

d. Adjust 300 kHz ADJ so that the dial reads 300 kHz when the fifteenth marker is centered.

e. Repeat steps 9b through 9d until no further adjustment is necessary.

NOTE

Some minor readjustment of tracking adjustment and frequency calibration controls may be necessary from time to time for narrowband operation. FREQUENCY CALIBRATION

INPUT and set the controls as follows:

OPERATIONAL ADJUSTMENTS COS Internet serting

b. Center LO feedthrough signal, at CENTER FREQUENCY graticule on the display, with ZERO ADJ. The dial should be accurately set to 0 kHz.

OPERATIONAL ADJUSTMENTS

NOTE If using an 8552A IF Section and ZERO ADJ will not zero the LO feedthrough, see paragraph 5-30 in Section VI.

a. Disconnect TRACKING GEN OUT from

FREQUENCY 0 kHz

BANDWIDTH 300 Hz

SCAN WIDTH PER DIVISION

 kHz when the fifteenth marker is centered.
 e. Repeat steps 9b through 9d until no further adjustment is necessary.

the CENTER FREQUENCY graticule.

NOTE

c. Set RANGE to 0-300 kHz, and slowly tune FREQUENCY to 300 kHz, counting 20 kHz markers

d. Adjust 300 kHz ADJ so that the dial reads 300

as they pass the CENTER FREQUENCY graticule on

the display. Center the fifteenth marker (300 kHz) on

Some minor readjustment of tracking adjustment and frequency calibration controls may be necessary from time to time for narrowband operation.

Figure 3-2. Operational Adjustments (3 of 3)

Figure 3-2. Operational Adjustments (2 of 3)

impedance (600 ohms or 50 ohms). The input should then be terminated with a feedthrough termination for the impedance selected.

3-34. For voltage measurements, the dBm/dBV switch can be set to dBV for a log display, or the LOG/LINEAR switch can be set to LINEAR for a linear display. If no feedthrough termination is used, the spectrum analyzer will display the open circuit voltage. If a feedthrough termination is used, the voltage displayed will be that developed across the impedance of the termination.

3-35. The next step is to insure that the spectrum analyzer is operating linearly. That is, that all spectral components displayed are present at the input and not generated in the spectrum analyzer. This is readily accomplished: read the amplitude of the largest signal on the CRT, and set the INPUT LEVEL control to the setting nearest this amplitude. For example, if the largest signal on the display reads -13 dBV, the INPUT LEVEL control would be set to -10 dBm/dBV.

3-36. Now set the LOG REF LEVEL or LINEAR SENSITIVITY controls to give the desired display. One convenient way to set the LOG REF LEVEL is to set the -10 dBm/dBV position under the right hand indicator light. The -60 dBm/dBV position will then fall under the left hand indicator light. In this position, setting the INPUT LEVEL control to the amplitude of the largest signal will bring that signal to the top of the CRT. This gives the widest possible display dynamic range for signals between -60 dBm/dBV and -10dBm/dBV.

3-37. Using the Tracking Generator

3-38. The tracking generator is a flat signal source whose output frequency precisely tracks the spectrum analyzer's tuning frequency. This output can be used as a source to test devices for frequency response. Also, by measuring the frequency of the tracking generator's output with a frequency counter, the frequency of signals appearing on the spectrum analyzer display can be precisely determined.

3-39. Frequency Response Measurements. The frequency scan of the spectrum analyzer is set in much the same way as described under paragraph 3-26. The tracking generator's output frequency is determined by the spectrum analyzer's scan. If a device is being tested from 0-20 kHz, it is only necessary to set the spectrum analyzer to scan 0-20 kHz using the 0-10f mode.

3-40. The device under test will be connected in the signal path between the TRACKING GEN OUT and the INPUT. Some consideration must be given to the input and output impedances of the test device. If the device has a 600 ohm input impedance, the tracking generator can be connected directly to the device. The 50-ohm Tracking Generator Shunt supplied with the 8556A should be used between the tracking generator and the test device for devices with a 50-ohm input impedance.

3-41. The output of the device should be terminated in its characteristic impedance. 50 ohm or 600 ohm devices can be terminated using the feedthrough terminations, and high impedance devices can be connected directly to the spectrum analyzer INPUT (see Figure 3-3). Measure devices which have a different impedance by using a simple resistive termination.

3-42. The tracking generator output level is 100 mV (-20 dBV) open circuit in the CAL position. This amounts to 50 mV (-26 dBV) across 600 ohms. If the 50 ohm shunt is used, the output will be 4.17 mV or -34.6 dBm into 50 ohms. The output level increases as TRACKING GEN LEVEL is turned clockwise from the CAL position.

3-43. System Calibration. The TRACKING GEN OUT should be connected through any necessary terminations to the spectrum analyzer INPUT. The TRACKING GEN LEVEL can then be adjusted to bring the trace to the top graticule line, thus providing a convenient reference. The INPUT LEVEL control should be set to -20 dBm/dBV and the LOG REF LEVEL set to 0 dBm/dBV for maximum measurement range on passive devices. (Use the dBm scale for 50 ohm devices and the dBV scale for 600 ohm devices.)

3-44. Insert the test device in the circuit, and its frequency response will be displayed directly on the CRT. Insertion loss can be read directly from the dB scale on the CRT.

3-45. Testing Amplifiers. When measuring amplifier frequency response, some provision must be made for the gain of the amplifier to prevent damage to the spectrum analyzer. A step attenuator should be added to the test setup to decrease the tracking generator level by a known amount (see Figure 3-4).

3-46. Set the attenuator to 0 dB and perform the calibration procedure described under System Calibration. Then the attenuation should be increased by an amount greater than the gain of the amplifier under test. The gain of the amplifier will be the sum of the attenuator setting and the dB reading from the CRT graticule at any point. (Remember, this is a negative number on the graticule.) For example, the spectrum analyzer is calibrated for a reference at the top of the CRT. Now a test

Figure 3-3. Typical Frequency Response Measurement (in 50 Ohms)

Figure 3-4. Typical Amplifier Frequency Response Measurement (in 600 Ohms) Using a Frequency Counter

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. This section provides instructions for performance testing the Model 8556A Spectrum Analyzer LF Section. Front panel checks for routine inspection are given in Table 4-1. The performance tests verify that the instrument meets the specifications listed in Table 1-1.

4-3. Perform the tests in procedural order with the test equipment called for, or with its equivalent. During the tests, all circuit boards, shields, covers and attaching hardware must be in place, and the LF and IF Sections must be installed in the Display Section. Allow the analyzer to warm up at least one hour before performing the tests.

4-4. EQUIPMENT REQUIRED

4-5. Test equipment and test equipment accessories for the performance tests (designated "P" in the "use" column) are specified in Tables 1-4 and 1-5. Equipment other than that listed may be used providing that it meets or exceeds the minimum specifications listed in the tables.

4-6. OPERATIONAL ADJUSTMENTS

4-7. Before proceeding to the performance tests, perform the operational adjustments specified in Figure 3-2 (in Section III). These adjustments correct for minor differences between units and ensure that the LF Section, IF Section and Display Section are properly calibrated.

4-8. FRONT PANEL CHECKS

4-9. The front panel checks provide a quick method for verifying that the LF Section is operating correctly. After performing the operational adjustments described in Figure 3-2, set the analyzer's controls as specified in Table 4-1 and perform the checks.

4-10. TEST SEQUENCE

4-11. The performance tests are suitable for incoming inspection, troubleshooting, and preventive maintenance. A test card for recording data is included at the back of this section.

4-12. Perform the tests in the following order:

- a. Allow analyzer to warm up one hour.
- b. Perform operational adjustments listed in Figure 3-2.
- c. Perform front panel checks listed in Table 4-1.
- d. Perform the performance tests in the order given.

4-13. Each test is arranged so that the specification is written as it appears in Table 1-1. Next is a description of the test that includes any special instructions. Each test that requires test equipment has a test setup drawing and a list of required equipment.

PERFORMANCE TESTS

4-14. TRACKING GENERATOR AMPLITUDE

SPECIFICATIONS:

Amplitude Range: Continuously variable from 100 mV rms to greater than 3 V rms into an open circuit. Amplitude Accuracy: With TRACKING GEN LEVEL in CAL position, output level at 100 kHz is 100 mV ±0.3 dB into an open circuit.

Frequency Response: ±0.25 dB, 50 Hz to 300 kHz.

DESCRIPTION: An AC Voltmeter is used to measure the amplitude range and accuracy and the frequency response of the tracking generator.

EQUIPMENT:

AC Voltmeter												
Frequency Counter												
24" BNC Cable Assy												HP 11086A

PROCEDURE:

1. Connect equipment as shown in Figure 4-1, connecting AC Voltmeter directly to TRACKING GEN OUT with 24" BNC cable.

2. Set analyzer as follows:

RANGE											. 0-300 kHz
FREQUENCY											
SCAN WIDTH											
TRACKING GEN LEVE	L.										. CAL 100 mV

Figure 4-1. Tracking Generator Test Setup

3. Set voltmeter to measure 100 mV. It should read 100 mV ± 3.5 mV.

Amplitude Accuracy: 96.5 _____103.5 mV

4. Disconnect BNC cable from voltmeter and connect it to Frequency Counter. Set TRACKING GEN LEVEL fully clockwise, and tune FREQUENCY and FINE TUNE for a 50 Hz reading on counter.

Function	Procedure	Result
Calibration	1) Perform operational adjustments specified in Section III (Figure 3-2), then set analyzer as follows: RANGE RANGE 0-300 kHz FREQUENCY 0 kHz BANDWIDTH 10 kHz SCAN WIDTH PER DIVISION PER DIVISION 20 kHz INPUT LEVEL -30 dBm/dBV dBm/dBV 600Ω dBm 20 kHz MARKERS Out SCAN TIME PER DIVISION 50 MILLISECONDS LOG/LINEAR LOG REF LEVEL -20 dBm/dBV VIDEO FILTER OFF SCAN MODE INT SCAN TRIGGER AUTO	1) Analyzer calibrates normally.
BASE LINE CLIPPER	 2) Turn BASE LINE CLIPPER full clockwise. 3) Turn BASE LINE CLIPPER full counterclock- wise. 	2) At least bottom two divisions blank on CRT.
Scan	 Turn SCAN TIME PER DIVISION through its range. Return SCAN TIME PER DIVISION to 50 MILLISECONDS. Center LO feedthrough on CRT with FREQUENCY. 	 Scan occurs in all positions.
BANDWIDTH & SCAN WIDTH PER DIVISION	6) Reduce SCAN WIDTH PER DIVISION to 20 Hz, reducing BANDWIDTH to maintain LO feedthrough about 2 divisions wide. Reduce SCAN TIME PER DIVISION to keep DIS- PLAY UNCAL lamp unlit; keep signal centered with FREQUENCY and FINE TUNE.	6) LO feedthrough nar- rows as BAND- WIDTH is reduced and widens as SCAN WIDTH PER DI- VISION is reduced.
SCAN WIDTH 0—10f	 Set SCAN WIDTH to 0-10f, PER DIVISION to 20 kHz, BANDWIDTH to 1 kHz, and SCAN TIME PER DIVISION to 50 MILLISECONDS. 	7) LO feedthrough appears at left graticule on CRT.
	8) Depress 20 kHz MARKERS switch.	8) Markers appear at about every major
DISPLAY UNCAL light	9) Increase SCAN TIME PER DIVISION to 20 MILLISECONDS.	 DISPLAY UNCAL light illuminates.

PERFORMANCE TESTS

4-14. TRACKING GENERATOR AMPLITUDE (cont'd)

5. Set voltmeter to measure 3 volts. Disconnect BNC cable from counter and re-connect it to voltmeter. Voltmeter should read $\ge 3V$:

Amplitude Range: 3V

- 6. Reset TRACKING GEN LEVEL to CAL 100 mV, and reset voltmeter to measure 100 mV.
- Slowly tune. FREQUENCY from 50 Hz (set in step 5) to 300 kHz. Voltmeter should indicate a maximum variation of 0.5 dB (±0.25 dB) through entire range:

Frequency Response: _____ 0.5 dB

4-15. MARKER ACCURACY

SPECIFICATION: RF markers every 20 kHz accurate to within ±0.01%.

DESCRIPTION: The tracking generator is peaked to ensure that it is accurately tracking the analyzer tuning, and a frequency counter is connected to TRACKING GEN OUTPUT. Marker accuracy is tested using MANUAL SCAN (with 8552B IF Section) or ZERO SCAN (with 8552A IF Section) to tune the analyzer to the markers.

Figure 4-2. Marker Accuracy Test Setup

EQUIPMENT:

Frequency Counter															HP 5327C
BNC Cable Assembly															. HP 10503A
Tuning Tool (or small	sc	tev	٨d	riv	er)									HP 8710-1010

PROCEDURE:

1. Connect equipment as shown in Figure 4-2, connecting TRACKING GEN OUT to analyzer INPUT with BNC cable.

PERFORMANCE TESTS

4-15. MARKER ACCURACY (cont'd)

2. Set analyzer as follows:

RANGE		•																									- ()—	300) kH	[2
																														kH	
																										÷			-	tere	
																														52A	
																														ER	
PER DIVISION																															
		ι.		÷	÷	•	٠	•	٠	٠	٠	•	٠	٠	•	•	٠	٠	•	٠	٠	٠	•	٠	•		•		. 1	. kH	z
TRACKING GE	N	L.	E١	/ E	L	•																					C	lal	10() m`	v
INPUT LEVEL																										_	20	d'	8m	/dB	v
dBm/dBV																			-	Ē.										dB	
20 kHz MARKE	R	s						-		-	-	•	•	÷.		•	•	•	·	•	•	·	•	•	•	·	·	÷	•	. Or	•
			rx7	τĊ	τ'n	NT.		•	·	•	•	•		•	•	•	•	•	·	•	•	•	•	٠.	:.		÷.,			. 01	11
SCAN TIME PE	n	D1	I V	10	IO	μN.		•	•	•	•	٠	•	•	•	٠	٠	٠	•	•		•	•	þ	Μ	ш	L	.SE	CO	ND	s
LOG REF LEVI	ΞL		•	•		٠			•																				-10	dB	v
LOG/LINEAR																											1	10	dB	LO	G
VIDEO FILTER																														OF	_
SCAN MODE																														. IN	
SCAN TRIGGE	÷																												• •	. IN	1
			÷	·	•	٠	·	·	٠	·	•	•	•	•	•	•	•	•				•	•						Α	UT(2
BASE LINE CLI	PI	?E	ĸ		·	٠	·	•	•	•	·	·	·	·		•	•			•										ccv	N

- 3. Using tuning tool or small screwdriver, adjust TRACK ADJ to peak trace as high as possible on CRT display.
- 4. Set LOG/LINEAR to LINEAR and LINEAR SENSITIVITY to 20 mV/DIV and, again, peak trace.
- Disconnect TRACKING GEN OUT from analyzer INPUT; connect TRACKING GEN OUT to Frequency Counter (if necessary, increase TRACKING GEN LEVEL to get reading on counter).
- 6. Depress 20 kHz MARKERS switch, set BANDWIDTH to 300 Hz, and set SCAN WIDTH to PER DIVISION. Set LINEAR SENSITIVITY to 2 mV/DIV, SCAN TIME PER DIVISION to 50 MILLISECONDS, and center 300 kHz marker on CRT display with FREQUENCY and FINE TUNE.
- Set SCAN WIDTH PER DIVISION to 20 Hz, BANDWIDTH to 10 Hz, and SCAN MODE to MAN. Use MANUAL SCAN knob to set dot on CRT to peak of marker. Frequency Counter should read 300 kHz ±30 Hz:

Marker Accuracy: 299,970 _____ 300,030 Hz

NOTE

With 8552A IF Section, perform test with SCAN WIDTH set to ZERO and BANDWIDTH set to 50 Hz; peak trace with FINE TUNE to get reading.

- 8. Set SCAN MODE to INT, and tune FREQUENCY down to next marker (should be at 280 kHz).
- 9. Set SCAN MODE to MAN and use MANUAL SCAN knob to set dot on CRT to peak of marker. Counter should read 280 kHz ±28 Hz:

Marker Accuracy: 279,972 _____ 280,028 Hz

PERFORMANCE TESTS

4-16. SCAN WIDTH ACCURACY (cont'd)

With 8552B IF Section, ± 0.24 major divisions: +3.76 _____+4.24

With 8552A IF Section, ±0.4 major divisions: +3.60 ____+4.40

NOTE

If 8556A appears to be out of tolerance, re-check scan width accuracy at 160, 220, and 280 kHz. If 8556A scan width accuracy is within tolerance at any frequency, check IF Section scan time accuracy.

4-17. CENTER FREQUENCY ACCURACY

SPECIFICATION: After 1 hour warmup, zero and 300 kHz adjustments, and with the FINE TUNE centered, the dial indicates the display center frequency within the following specifications:

With 8552B IF Section: 0-30 kHz Range: ±500 Hz 0-300 kHz Range: ±3 kHz

With 8552A IF Section: 0-30 kHz Range: ±1 kHz 0-300 kHz Range: ±5 kHz

DESCRIPTION: Dial accuracy is tested using internal 20 kHz markers. Any error between the CENTER FREQUENCY dial reading and the marker frequency is measured on the CRT display.

PROCEDURE:

1. Set analyzer as follows:

RANGE																								
FREQUENCY																							20 k	
FINE TUNE																						Ce	nte:	red
BANDWIDTH																							300	
SCAN WIDTH																							ISI	
PER DIVISION																							1 k	
INPUT LEVEL																							n/d	
dBm/dBV .																	٠			•			d	BV
20 kHz MARKI																								
SCAN TIME PE	R	D	IV	IS	ю	N											50) [M]	L	LIS	EC	ON	\mathbf{DS}
LOG REF LEV																							0 d)	
LOG/LINEAR																				-	10) dI	B L	
VIDEO FILTEI	2															•						•	0	FF
SCAN MODE																							. I	
SCAN TRIGGE	R																				• •		AU	то
BASE LINE CL	IP	PE	R					•		•		•	·	•	•	·	•		•	·	• •		. (cw

2. Using FREQUENCY control, center the dial marker on the CENTER FREQUENCY dial every 20 kHz from 20 kHz to 300 kHz (for example, 40 kHz, 60 kHz, 80 kHz, etc.). At each 20 kHz point, a 20 kHz marker should appear at CENTER FREQUENCY graticule on the CRT within the tolerance shown below:

With 8552B IF Section: -3 - +3 divisions With 8552A IF Section: -5 - +5 divisions

PERFORMANCE TESTS

4-16. SCAN WIDTH ACCURACY

SPECIFICATION:

With 8552B IF Section:

Frequency error between any two points on the display is less than $\pm 3\%$ of the indicated frequency separation.

With 8552A IF Section:

Frequency error between any two points on the display is less than $\pm 5\%$ of the indicated frequency separation.

DESCRIPTION: Internal 20 kHz markers are used to test scan width accuracy on the CRT display.

PROCEDURE:

1. Set analyzer as follows:

RANGE																															
FREQUENCY																													100) kF	Iz
FINE TUNE																														tere	
BANDWIDTH																														l kF	
SCAN WIDTH																														SIO	
PER DIVISION																													- 20) kF	Ιz
INPUT LEVEL			-																								20	d'	Bm	/dB	v
dBm/dBV .	•	•																												dB	
20 kHz MARKE																														. 1	
SCAN TIME PE	R	D	ΙV	IS	IC	N																		50	M	III	ΓL	SE	CCC)NE	\mathbf{s}
LOG REF LEV) dB	
LOG/LINEAR																														LO	
VIDEO FILTER																											•			OF	•
SCAN MODE																														. IN	T
SCAN TRIGGE																														ΛUT	
BASE LINE CL	IP	P 1	sк		·	•	•	•	٠	٠	•	·	٠	•	٠	٠	·	·	·	٠	•	٠	•	•	•	٠	·	·	•	. cc	w

- Note that a 20 kHz marker appears at about every major division on the CRT display. Tune FREQUENCY and FINE TUNE to center a marker on the -4 graticule line (see Figure 4-3).
- Measure amount of error, in divisions, that the marker deviates from the +4 graticule line. Marker should appear on the +4 graticule line plus or minus the specified tolerance (for IF Section being used):

With 8552B IF Section, ±0.24 major divisions: +3.76_____+4.24

With 8552A IF Section, ± 0.4 major divisions: $\pm 3.60 - \pm 4.40$

- Set BANDWIDTH to 300 Hz, SCAN TIME PER DIVISION to 0.1 SECONDS, and SCAN WIDTH PER DIVISION to 5 kHz. Turn FREQUENCY and FINE TUNE to center a marker on the -4 graticule line.
- Measure amount of error, in divisions, that the marker deviates from the +4 graticule line. Marker should appear on the +4 line plus or minus the specified tolerance:

Figure 4-3. Scan Width Accuracy Display

PERFORMANCE TESTS

4-17. CENTER FREQUENCY ACCURACY (cont'd)

3. Switch SCAN WIDTH PER DIVISION to 500 Hz, and switch RANGE to 0-30 kHz. Tune FREQUENCY to 0 kHz and adjust ZERO ADJ to center LO feedthrough on CENTER FREQUENCY graticule. Then tune FREQUENCY to center the dial marker on the CENTER FREQUENCY dial at 20 kHz. The 20 kHz marker should appear at CENTER FREQUENCY graticule on CRT plus or minus the specified tolerance (in major divisions):

With 8552B IF Section: -1 _____+1 divisions With 8552A IF Section: -2 ____+2 divisions

4-18. FREQUENCY RESPONSE

SPECIFICATION: Log: ±0.2 dB; Linear: 2.3%.

DESCRIPTION: The tracking generator's output is calibrated with an AC Voltmeter and used to test the analyzer's frequency response. The analyzer (with the tracking generator) is set to 20 Hz (if using an 8552B IF Section) or 100 Hz (if using an 8552A IF Section). The analyzer is then tuned slowly to 300 kHz. Any variations in frequency response are read on a Digital Voltmeter connected to VERTICAL OUTPUT.

Figure 4-4. Frequency Response Test Setup

PERFORMANCE TESTS

4-18. FREQUENCY RESPONSE (cont'd)

EQUIPMENT:

AC Voltmeter
Digital Voltmeter (2)
Frequency Counter
BNC Cable Assy
BNC Tee
Cable Assy
Cable Assy
Tracking Gen Shunt
50 Ohm Feed Thru Termination
24" BNC Cable Assy (2)
Tuning Tool (or small screwdriver)

1. Connect equipment as shown in Figure 4-4, connecting TRACKING GEN OUT to analyzer INPUT through the Tracking Gen Shunt, BNC Tee, 24" BNC Cable Assembly, and the 50 Ohm Feed Thru Termination. Connect AC Voltmeter to BNC Tee at feed thru with a 24" BNC Cable Assembly; connect first Digital Voltmeter to DC OUTPUT on rear panel of AC Voltmeter. Connect second Digital Voltmeter to VERTICAL OUTPUT on IF Section.

2. Set analyzer as follows:

RANGE .0-30 kHz FREQUENCY .5 kHz FINE TUNE	
SCAN WIDTH 50 Hz (8552A) SCAN WIDTH	
INPUT LEVEL	
20 kHz MARKERS	
SCAN TIME PER DIVISION	
LINEAR SENSITIVITY 10 mV/DIV VIDEO FILTER 100 Hz	
SCAN MODE	
BASE LINE CLIPPER	

- 3. Using tuning tool or small screwdriver, adjust TRACK ADJ to peak trace as high as possible on CRT display.
- 4. Disconnect Tracking Gen Shunt from TRACKING GEN OUT and connect Frequency Counter to TRACKING GEN OUT. Set Frequency Counter to measure 100 Hz. Tune FREQUENCY and FINE tune down until counter reads 20 Hz (with 8552B) or 100 Hz (with 8552A). Disconnect counter and re-connect Tracking Gen Shunt to TRACKING GEN OUT.
- Set AC Voltmeter to measure 30 mV full scale. Set first Digital Voltmeter (connected to AC Voltmeter) to measure 1.000 volts. Adjust TRACKING GEN LEVEL for a 1.000 V reference on first Digital Voltmeter.
- 6. Set second Digital Voltmeter (connected to analyzer VERTICAL OUTPUT) to measure 1.000 volts. Adjust LINEAR SENSITIVITY for a 700.0 mV reference on second Digital Voltmeter.

PERFORMANCE TESTS

4-18. FREQUENCY RESPONSE (cont'd)

7. Tune FREQUENCY control to frequencies noted below. At each frequency, re-adjust TRACKING GEN LEVEL for a 1.000 volt reading on first Digital Voltmeter, then note reading on second Digital Voltmeter (don't re-adjust LINEAR SENSITIVITY). Second Digital Voltmeter should read 700.0 ±16.1 mV.

Frequency	Reading
1 kHz	683.9 716.1 mV
3 kHz	683.9 716.1 mV
5 kHz	683.9 716.1 mV
10 kHz	683.9 716.1 mV
20 kHz	683.9 716.1 mV
30 kHz	683.9 716.1 mV

Set RANGE to 0-300 kHz and tune FREQUENCY control to frequencies noted below. Again, re-adjust 8. TRACKING GEN LEVEL for a 1.000 volt reading on first Digital Voltmeter. Second Digital Voltmeter should read 700.0 ±16.1 mV.

Frequency	Reading
50 kHz	683.9 716.1 mV
100 kHz	683.9 716.1 mV
150 kHz	683.9 716.1 mV
200 kHz	683.9 716.1 mV
250 kHz	683.9 716.1 mV
300 kHz	683.9 716.1 mV

4-19. AVERAGE NOISE LEVEL

SPECIFICATION: Specified with a 600 ohm or less source impedance and INPUT LEVEL at -60 dBm/dBV.

Mode	1 kHz IF Bandwidth	10 Hz IF Bandwidth
$dBm = 50 \ \Omega$ $dBm = 600 \ \Omega$ dBV Linear	<pre>< -122 dBm (180 nV) < -130 dBm (250 nV) < -132 dBV (250 nV) < 400 nV</pre>	

DESCRIPTION: Average noise level is observed on the analyzer's calibrated CRT display with no signal input and the analyzer INPUT terminated in 600 ohms.

NOTE

The 10 Hz bandwidth specification can be checked only when using an 8552B IF Section.

EQUIPMENT:

600 Ohm Feed Thru Termination		HP 11095A
-------------------------------	--	-----------

PROCEDURE:

1. Connect 600 Ohm Feed Thru Termination to INPUT. Set the analyzer as follows:

RANGE														•														0-30 kHz
FREQUENCY																												
FINE TUNE																												
BANDWIDTH	٠	·	·	·	·	•	٠	·	٠	٠	·	·	·	•	·	٠	·	·	·	·	•	٠	•	·	•	•	·	1 kHz

PERFORMANCE TESTS

4-19. AVERAGE NOISE LEVEL (cont'd)

SCAN WIDTH																								. 7.	ER)	0
INPUT LEVEL																					_	e'n	۰. م	D	ap	ŭ
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		00	u	ыш	чub	v
20 kHz MARKERS .				•	•	•	•																		Qu	ıt
SCAN TIME PER DIVIS	ION																		50	Μ	II.	Ľ.Ť.	SF	003	ND	s
LOG/LINEAR				•	•																			LIN	EA.	R
LINEAR SENSITIVITY																						0	1		IDT.	
DINEAR DENDITIVIT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•		•	U	·. L	μν.	$ \mathbf{D} $	v
Vernier																									CC	w
VIDEO FILTER																										
SCAN MODE																									IN	т́
SCAN TRIGGER																								A	UT	0
BASE LINE CLIPPER																										
DADE DIRE CHIFFER	• •	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	٠	•	٠	٠	•	٠		c¢	N

2. Observe average noise level on CRT display. It should be less than 400 nV (the 4 graticule line on the CRT represents 400 nV). Tune the analyzer to 300 kHz using FREQUENCY and RANGE controls; the average noise level should be less than 400 nV throughout the range:

LINEAR noise level: _____ 400 nV

```
NOTE
```

Average noise level is read at the mid-point of the noise on the CRT display (see Figure 4-5).

3. Set LOG/LINEAR to 10 dB LOG. In turn, set dBm/dBV switch to 50 Ω dBm, dBV, and 600 Ω dBm; at each setting, tune the analyzer from 7 kHz to 300 kHz and read the average noise level. It should be as specified below:

50 Ω dBm noise level, < -122 dBm: _____ -122 dBm

dBV noise level, <-132 dBV:_____ -132 dBV

600 Ω dBm noise level, <-130 dBV: _____ -130 dBV

4. If using an 8552B IF Section, set BANDWIDTH to 10 Hz and check average noise level from 100 Hz to 300 kHz in all four modes. It should be as specified below:

LINEAR noise level, < 40 nV: 40 nV	
50 Ω dBm noise level, <-142 dBm:142 dB	Bm
dBV noise level, <-152 dBV:152 dBV	
600 Ω dBm noise level, < -150 dBm:150 d	Bm

Figure 4-5. Average Noise Level Display

PERFORMANCE TESTS

4-20. RESIDUAL RESPONSES

SPECIFICATION: (No signal present at INPUT.) With the INPUT LEVEL AT -60 dBm/dBV and the input terminated with 600 ohms or less, all line related residual responses from 0 to 500 Hz are below -120 dBm/dBV. All other residual responses are below -130 dBm/dBV.

DESCRIPTION: Residual responses are signals that appear on the display with no input signal. To measure them, a reference is selected so that -120 and -130 dBm/dBV are easily determined, and the display is searched for signals appearing above this reference.

EQUIPMENT:

1. Connect 50 Ohm Feed Thru Termination to INPUT and set analyzer as follows:

RANGE		. 0—30 kHz
FREQUENCY		0 kHz
FINE TUNE		. Centered
BANDWIDTH		100 Hz
SCAN WIDTH		R DIVISION
		100 Hz
INPUT LEVEL		0 dBm/dBV
dBm/dBV		. 50Ω dBm
	••••••••••••••••••••••••••••••••••••••	
SCAN TRIGGER		AUTO

NOTE

Instruments that radiate magnetic spurs (such as counters, power supplies, etc.) should not be operating near 8556A during this test.

- 2. Using FREQUENCY and FINE TUNE, tune LO feedthrough (0 Hz) to far left graticule line on CRT display (see Figure 4-6).
- 3. Set BANDWIDTH to 10 Hz (with 8552B IF Section) or 50 Hz (with 8552A IF Section). Set SCAN TIME PER DIVISION to 2 SECONDS.
- 4. Measure residual responses from the point that the skirt of the LO feedthrough crosses the -40 dB graticule on the CRT (-120 dBm) to CENTER FREQUENCY graticule (500 Hz). They should be below -120 dBm:

Line Related Residual Responses: _____120 dBm

NOTE

Check that peak of LO feed through is below -80 dBm. If it is not, null it (see Section III) and re-check line related residual responses.

PERFORMANCE TESTS

4-20. RESIDUAL RESPONSES (cont'd)

Model 8556A

 Check that any residual responses from 500 Hz (CENTER FREQUENCY graticule) to 1 kHz (far right graticule line) are below -130 dBm:

Residual Responses, 500 Hz to 1 kHz: _____-130 dBm

 Set BANDWIDTH to 30 Hz (8552B) or 50 Hz (8552A), SCAN WIDTH PER DIVISION to 2 kHz and SCAN TIME PER DIVISION to 5 SECONDS. Tune FREQUENCY to 11 kHz. All residual responses should be below -130 dBm:

Residual Responses, 1 kHz to 20 kHz: _____130 dBm

7. Set RANGE to 0–300 kHz and tune FREQUENCY to 30 kHz. All residual responses should be below -130 dBm:

Residual Responses, 20 kHz to 40 kHz: _____130 dBm

8. Tune FREQUENCY slowly to 300 kHz. All residual responses should be below -130 dBm:

Residual Responses, 40 kHz to 300 kHz: _____130 dBm

Figure 4-6. Residual Responses Display

PERFORMANCE TESTS

4-21. SPURIOUS RESPONSES

SPECIFICATION: Input signal level \leq INPUT LEVEL setting: out of band mixing responses, harmonic and intermodulation distortion products are all more than 70 dB below the input signal level 5 kHz to 300 kHz; 60 dB, 20 Hz to 5 kHz. Third order intermodulation products are more than 70 dB below the input signal level, 5 kHz to 300 kHz with signal separation >300 Hz.

DESCRIPTION: An oscillator, with low harmonic distortion, is connected through a bandpass filter, to the analyzer. Any harmonic distortion due to the analyzer is read on the CRT display. Then intermodulation distortion is checked using a two-tone test.

Figure 4-7. Spurious Responses Test Setup

EQUIPMENT:

Test Oscillator															
Oscillator															
BNC Tee														HI	2 1250-0781
BNC Cable Assy															
Cable Assy															HP 11000A
Cable Assy															HP 11001A
Filter Set												V	Vhi	ite	Model 2640

PROCEDURE:

1. Connect Oscillator through Filter Set to analyzer INPUT as shown in Figure 4-7.

PERFORMANCE TESTS

4-21. SPURIOUS RESPONSES (cont'd)

2. Set analyzer as follows:

P. Martin	
RANGE	2
FREQUENCY	,
FINE TUNE	
DANDUUTOUT	
The second	
500 Hz	
INPUT LEVEL	1
dBm/dBV	7
20 kHz MARKERS	
SCAN TIME PER DIVISION	
LOG/LINEAR	2
	r
LOG REF LEVEL	
Vernier	1
BASE LINE CLIPPER	,
VIDEO FILTER	
SCAN MODE	
SUAN TRIGGER	

- Switch Filter Set to 50 kHz filter. Set Oscillator for a 50 kHz, CW signal at -10 dBV. Center signal on analyzer CRT display with FREQUENCY and FINE TUNE. Set signal peak to CRT LOG REF graticule with Oscillator AMPLITUDE vernier.
- 4. Tune FREQUENCY to 100 kHz and 150 kHz; at both frequencies all signals on CRT should be below -70 dB graticule line.

Harmonic Distortion: _____70 dB

- Switch Filter Set to 500 Hz filter. Set SCAN WIDTH to 0-10f, and set Oscillator for a 500 Hz, CW signal at -10 dBV. If necessary, set signal peak to CRT LOG REF graticule with Oscillator AMPLITUDE vernier.
- Set BANDWIDTH to 30 Hz (with 8552B) or 50 Hz (with 8552A) and set SCAN TIME PER DIVISION to 2 SECONDS. All harmonics of 500 Hz (1 kHz, 1.5 kHz, etc.) should be below -60 dB graticule line:

Harmonic Distortion: _____ -60 dB

- 7. Disconnect Filter Set from analyzer INPUT. Connect Test Oscillator and Oscillator to BNC Tee; connect BNC Tee directly to INPUT.
- Set one oscillator for a 70 kHz, CW signal (f₁), and the other oscillator for a 90 kHz, CW signal (f₂). Set both oscillator output attenuators to -40 dBm.
- 9. Set INPUT LEVEL to -40 dBV, and SCAN WIDTH PER DIVISION to 20 kHz. Set SCAN TIME PER DIVISION to 2 SECONDS and BANDWIDTH to 300 Hz. Set both oscillator AMPLITUDE verniers so that both signal peaks are 3 dB below LOG REF graticule on CRT display.

PERFORMANCE TESTS

4-21. SPURIOUS RESPONSES (cont'd)

10. Refer to Figure 4-8; the signals at 140 kHz $(2f_1)$ and 180 kHz $(2f_2)$ are oscillator second harmonics. Any second order intermodulation product (due to the analyzer) will occur at 160 kHz $(f_1 + f_2)$. Any third order intermodulation products will occur at 50 kHz $(2f_1 - f_2)$ and at 110 kHz $(2f_2 - f_1)$. The intermodulation products should all be below -70 dB graticule line:

Intermodulation Products Above 5 kHz: _____70 dB

- 11. Set one oscillator for a 1.7 kHz, CW signal (f_1) , and the other oscillator for a 2 kHz, CW signal (f_2) .
- 12. Set SCAN WIDTH PER DIVISION knob to 500 Hz, and set BANDWIDTH to 30 Hz (with 8552B IF Section) or 50 Hz (with 8552A IF Section). If necessary, tune ZERO ADJ until LO feedthrough is centered at far left graticule line.
- 13. If necessary, use oscillator AMPLITUDE verniers to set both signal peaks 3 dB below LOG REF graticule on CRT. The signals at 3.4 kHz $(2f_1)$ and 4.0 kHz $(2f_2)$ are oscillator second harmonics. Any second order intermodulation product will occur at 3.7 kHz $(f_1 + f_2)$; this will always be centered between the two second harmonics. Any third order intermodulation product will occur at 1.4 kHz $(2f_1 f_2)$ and at 2.3 kHz $(2f_2 f_1)$. The intermodulation products should all be below -60 dB graticule line:

Intermodulation Products Below 5 kHz: _____60 dB

NOTE

With the 8552A IF Section, the close-in third order intermodulation products will be hidden in the skirts of the fundamental frequencies.

Figure 4-8. Intermodulation Distortion Products Display

PERFORMANCE TESTS

4-22. RESIDUAL FM

SPECIFICATION: With 8552B IF Section: Sidebands >60 dB down 50 Hz or more from CW signal, scan time ≥1 sec/div, 10 Hz bandwidth. With 8552A IF Section: Less than 20 Hz peak-to-peak.

DESCRIPTION: The test is written in two parts: the first part is for the 8552B and tests residual FM by checking a stable, CW signal for close-in sidebands. The second part is for the 8552A; the signal is slope detected on the linear portion of the IF filter skirt, then any detected FM is displayed in the time domain.

Figure 4-9. Residual FM Test Setup

EQUIPMENT:

Oscillator Cable Assy	• •	•		•		•	•															. HP 204D
Cable Assy 600 Ohm Feed Th																						
TEDITER.					-			•	•	•	•	•	•	•	•	•	٠	•	٠	·	٠	HP 11095A

PROCEDURE:

- 1. Connect equipment as shown in Figure 4.9, connecting the oscillator to analyzer INPUT through the 600 Ohm Feed Thru Termination.
- 2. Set analyzer as follows:

D LYCH	
RANGE	
FREQUENCY	0-30 kHz
	2 kHz
	Centered
	100 11-
SCAN WIDTH	. 100 Hz
PER DIVISION	DIVISION
TATION TO A STREAM	. 500 Hz
	U dDm (JDV
20 kHz MARKERS	JUDIII/UDV
dBm/dBV	Out
dBm/dBV SCAN TIME PER DIVISION	600 Ω dBm
	RECONDO
	TO UP LOG
VIDEO FILTER	J dBm/dBV
DAGE I INFO OF THE STATE	OFF
	INT
SCAN TRIGGER	· · · IN I
	. AUTO

 Set oscillator for a 2 kHz, CW signal at -20 dBm (read on analzyer CRT). Set NORM/LOW DIST switch on oscillator rear panel to LOW DIST. If using an 8552B IF Section, proceed to step 4. If using an 8552A IF Section, skip to step 6.

Model 8556A

PERFORMANCE TESTS

4-23. NOISE SIDEBANDS

SPECIFICATION: More than 90 dB below CW signal, 3 kHz away from signal with a 100 Hz IF bandwidth.

DESCRIPTION: A stable CW signal is applied to the analyzer. The amplitude of the noise sidebands are measured on the CRT display.

Figure 4-11. Noise Sidebands Test Setup

EQUIPMENT:

Oscillator Cable Assy	·		•	•	•	•				•			•										. HP 204D
Cable Assy . 600 Ohm Food	÷	·	. 'n	.	· · .	•	.:	•	•	·	٠	٠	٠	٠	•	٠	•	·					HP 11001A
600 Ohm Feed	T1	urt	11	. er	m	ma	LIC	m		·	·	·	·	•	•	•	•	٠		•			HP 11095A

PROCEDURE:

1. Connect equipment as shown in Figure 4-11, connecting the Oscillator to analyzer INPUT through the 600 Ohm Feed Thru Termination.

2. Set analyzer as follows:

RANGE .																												
FREQUENCY	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	٠	•	•		•	0-30 kHz
FREQUENCY FINE TUNE	•	•	•	•	•	•	•	٠	٠	•	·	٠	٠	٠	٠	٠	•	•	•	٠								. 15 kHz
THE TONE	٠	•	٠	٠	٠	٠																						Centered
BANDWIDTH																												100.11
SCAN WIDTH																		•	•	•	•	•	•	•	•	DT	'n	DUUGLON
PER DIVISION	í						•	•	•	•	•		•	•	•	•	•	•	·	•	•	•	•	•	·	PE	к	DIVISION
INPUT LEVEL		•	•	•	·	٠	•	•	•	•	•	•	•	•	٠	·	٠	•	٠	·	٠	٠	·	•	•	•		2 kHz
		÷	•	·	•	•	٠	٠	٠	٠	•	٠	٠	•	•	•	•	•	•							-	20	dBm/dBV
20 kHz MARKH	2 R	0																										~ ~ ~
ubm/ub* .																												0000 IDII
SCAN TIME PE	R	D	īν	IS	IO	N						-	-			•	•	•	•	•	•	•	•	•	•		÷	00032 0 00
LOG/LINEAR		-						•	•	•	•	•	•	•	•	·	•	·	•	•	•	•	•	٠	٠	0	.э	SECONDS
LOG/LINEAR	БТ		•	•	•	•	•	•	٠	•	٠	•	•	٠	٠	٠	٠	•	•	٠	·					•	1	i0 dB LOG
LOG REF LEV	сı	-	•	•	•	·	٠	•	·	٠	٠	•	•	٠		•											0	dBm/dBV

PERFORMANCE TESTS

4-22. RESIDUAL FM (cont'd)

- Center signal on CRT display with FREQUENCY and FINE TUNE. Set BANDWIDTH to 10 Hz, SCAN TIME PER DIVISION to 2 SECONDS and SCAN WIDTH to 20 Hz. Re-center signal if necessary and set VIDEO FILTER to 10 Hz.
- All sidebands 2.5 divisions (50 Hz) from CENTER FREQUENCY graticule should be below -60 dB graticule line (see Figure 4-10):

60 Hz Sidebands (8552B): _____60 dB

- If using an 8552A, set LOG/LINEAR to LINEAR and LINEAR SENSITIVITY to 10 mV/DIV. Center signal on CRT display with FREQUENCY and FINE TUNE; set SCAN WIDTH PER DIVISION to 200 Hz and BANDWIDTH to 100 Hz.
- Using LINEAR SENSITIVITY vernier, set signal peak to top horizontal graticule line (see Figure 4-10). Then FINE TUNE so that upward slope of signal intersects CENTER FREQUENCY graticule line 1 division from the top. Note where upward slope of signal intersects middle (4) horizontal graticule line.

Horizontal Displacement: _____ divisions

- 8. Use the horizontal displacement to calculate demodualtion sensitivity:
 - a. Convert horizontal displacement into hertz. For example, (200 Hz SCAN WIDTH PER DIVISION) x (0.2 div) = 40 Hz.
 - b. Calculate demodulation sensitivity by dividing the vertical displacement in divisions into horizontal displacement in Hz. For example, <u>40 Hz 13.1 Hz</u>

3 div div

- 9. Turn SCAN WIDTH to ZERO. Tune FREQUENCY and FINE TUNE for a response level within the calibrated three division range (from 1 division from the top to the center horizontal graticule line).
- 10. Measure the peak-to-peak deviation and multiply it by the demodulation sensitivity obtained in step 8b above. For example, 0.5 div p-p signal deviation x 13.3 $\underline{\text{Hz}} = 6.65 \text{ Hz}$.

div

Residual FM (8552A): _____ 20 Hz

PERFORMANCE TESTS

4-23. NOISE SIDEBANDS (cont'd)

VIDEO FILTER																									OFF
BASE LINE CLIPPER	•	•	·	•	•	·	·	•	•	•	•			÷											. ccw
BASE LINE CLIPPER	·	•	•	•	•	·	•	•	·	•	•	•	·	·	•	•	•	•					_		. INT
SCAN MODE	٠	٠	٠	٠	•	•	·		·	·	•	•	•	•	•	•	•	•	·	•	•	·		-	AUTO
SCAN TRIGGER		•	٠	•	•	٠	·	•	·	·	•	•	•	•	•	·	•	•	•	•	·	·	•	•	

 Set Oscillator for a 15 kHz, CW signal at about 0 dBm. Center the signal on analyzer CRT display with FREQUENCY and FINE TUNE.

- Set signal peak to LOG REF graticule on CRT with Oscillator AMPLITUDE vernier. Set VIDEO FILTER to 10 Hz (with 8552B IF Section) or 100 Hz (with 8552A IF Section). Set SCAN TIME PER DIVISION to 5 SECONDS.
- Set LOG REF LEVEL to -20 dBm. Average level of noise sidebands more than 1.5 division (3 kHz) away from signal should be below -70 dB graticule (-90 dBm).

Noise Sidebands, >90 dB down: _____90 dBm

NOTE

Average level of noise sidebands is read at the mid-point of the noise on the CRT display (see Figure 4.12).

4-24. INPUT LEVEL CONTROL AND GAIN COMPRESSION

SPECIFICATIONS:

INPUT LEVEL Control: -10 to -60 dBm/dBV in 10 dB steps.

Accuracy ±0.2 dB. Marking indicates maximum input levels for 70 dB spurious-free dynamic range. Gain Compression: For input signal level 20 dB above INPUT LEVEL setting, gain compression is less than 1 dB.

PERFORMANCE TESTS

DESCRIPTION: A Test Oscillator's calibrated attenuator is used to test the accuracy of the INPUT LEVEL control. Any error is read on a Digital Voltmeter connected to the analyzer's VERTICAL OUTPUT. Next, compression is checked by setting the oscillator 20 dB above the INPUT LEVEL setting.

EQUIPMENT:

Test Oscillator												
Digital Voltmeter					H)	P 3	148	0B	/3	48	4A	, Option 042
BNC Cable Assy												HP 10503A
50 Ohm Feed Thru Termination												HP 11048B
Cable Assy						•						HP 11001A

PROCEDURE:

1. Connect equipment as shown in Figure 4-13, connecting the Test Oscillator to INPUT through the 50 Ohm Feed Thru Termination and the Digital Voltmeter to VERTICAL OUTPUT.

Figure 4-12. Noise Sidebands Display

PERFORMANCE TESTS

4-25. TRACKING GENERATOR SPECTRAL PURITY

SPECIFICATIONS: Harmonic Signals: >40 dB down. Spurious Outputs: >50 dB down.

NOTE

Testing the analyzer's residual FM also tests the tracking generator's residual FM.

DESCRIPTION: A separate Spectrum Analyzer is used to measure the harmonic and spurious outputs from the 8556A under test.

Figure 4-14. Tracking Generator Spectral Purity Test Setup

EQUIPMENT:

Spectrum Analyzer											HP 8556A/8552B/141T
50 Ohm Feed Thru	Term	ina	itior	n i							HP 11048B
BNC Cable Assy .											HP 10503A

NOTE

If a second spectrum analyzer is not available, an HP 310A Wave Analyzer can be used to test spectral purity.

PROCEDURE:

1. Connect equipment as shown in Figure 4-14, connecting TRACKING GEN OUT of 8556A under test to INPUT of separate Spectrum Analyzer; connect through 50 Ohm Feed Thru Termination.

PERFORMANCE TESTS

4-24, INPUT LEVEL CONTROL AND GAIN COMPRESSION (cont'd)

2. Set analyzer as follows:

RANGE																											0	⊢:	300	kHz
FREQUENCY																													50	kHz
FINE TUNE																												С	ente	ered
BANDWIDTH																				•									10	kHz
SCAN WIDTH			•																							\mathbf{PE}	R :	DГ	VIS	ION
PER DIVISION																													. 1	kHz
INPUT LEVEL			•	•																							10	dE	3m/a	iBV
20 kHz MARKI	ER	\mathbf{s}																												Out
																														lBm
SCAN TIME PE																														
LOG/LINEAR															•											•	1	.0 c	IB I	JOG
LOG REF LEV																														
Vernier																														
VIDEO FILTEI									•		•															•		•	100) Hz
BASE LINE CL																														ccw
		•																												INT
SCAN TRIGGE	R		·	٠	٠	·	·	·	•	·	·	·	·	·	·	·	·	·	·	•	·	·	٠	•	·	·		·	AL	JTO

- 3. Set Digital Voltmeter on a range that will measure 700.0 mV. Set Test Oscillator OUTPUT ATTENUATOR to -10 dBm; adjust oscillator frequency to 50 kHz and amplitude controls (COARSE and FINE) for zero on dBm meter scale.
- 4. Adjust analyzer FREQUENCY and FINE TUNE to peak signal at center of CRT display. Set SCAN WIDTH to ZERO. Adjust oscillator amplitude controls until Digital Voltmeter reads -700.0 mV.
- 5. To test INPUT LEVEL control, set INPUT LEVEL and oscillator OUTPUT ATTENUATOR as shown below. In each case, voltmeter should read -700.0 ± 2.0 mV:

INPUT LEVEL/OUTPUT ATTENUATOR Settings	INPUT LEVEL Error
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Reference -698.0 -702.0 mV -698.0 -702.0 mV

- 6. To test gain compression, set analyzer INPUT LEVEL and oscillator OUTPUT ATTENUATOR to -10 dBm and adjust oscillator amplitude controls for zero on dBm meter scale.
- Set oscillator OUTPUT ATTENUATOR to +10 dBm; set LINEAR SENSITIVITY to 0.2 V/DIV. Digital Voltmeter should read -700 ±84 mV:

-616 _____-784 mV

Table 4-2. Performance Test Record (1 of 2)

	ett-Packard Model 8556A rum Analyzer LF Section	Test Pe	erformed by	
Serial	No		Date	
Para. No.	Test Description	Measurement Units	Min. Actual	Max.
4-14. Step: 3. 5. 7.	Tracking Generator Amplitude Amplitude Accuracy Amplitude Range Fequency Response	mV V dB	96.5	103.5 0.5
4-15. Step: 7. 9.	Marker Accuracy Marker Accuracy (300 kHz) Marker Accuracy (280 kHz)	Hz Hz	299,970 279,972	300,03 280,02
4-16. Step: 3. 5.	Scan Width Accuracy With 8552B (20 kHz/DIV) With 8552A (20 kHz/DIV) With 8552B (5 kHz/DIV) With 8552B (5 kHz/DIV) With 8552A (5kHz/DIV)	Divisions Divisions Divisions Divisions	+3.76 +3.60 +3.76 +3.60	+4.24 +4.40 +4.24 +4.40
4-17 . Step: 2. 3.	Center Frequency Accuracy With 8552B (0-300 kHz) With 8552A (0-300 kHz) With 8552B (0-30 kHz) With 8552A (0-30 kHz)	Divisions Divisions Divisions Divisions	$\begin{array}{cccc} -3 & & & \\ -5 & & & \\ -1 & & & \\ -2 & & & \\ \end{array}$	+3 +5 +1 +2
4-18: Step: 7.	Frequency Response 1 kHz 3 kHz 5 kHz 10 kHz 20 kHz 30 kHz	mV mV mV mV mV mV	683.9	761.1 761.1 761.1 761.1 761.1 761.1
8.	50 kHz 100 kHz 150 kHz 200 kHz 250 kHz 300 kHz	mV mV mV mV mV mV	683.9	761.1 761.1 761.1 761.1 761.1 761.1 761.1
4-19. Step: 2. 4.	Average Noise Level Linear (1 kHz) 50Ω dBm (1kHz) dBV (1 kHz) 600Ω dBm (1 kHz) Linear (10 Hz) 50Ω dBm (10 Hz) dBV (10 Hz)	nV dBm dBV dBm nV dBm dBV		$\begin{array}{r} 400 \\ -122 \\ -132 \\ -130 \\ 40 \\ -142 \\ -152 \\ -152 \end{array}$
4-20. Step: 4. 5. 6.	600Ω dBm (10 Hz) Residual Responses Line Related 500 Hz to 1 kHz 1 kHz to 20 kHz	dBm dBm dBm dBm		-150 -120 -130 -130

PERFORMANCE TESTS

4-25. TRACKING GENERATOR SPECTRAL PURITY (cont'd)

2. Set 8556A under test as follows:

RANGE																						•					•	0-	-30 kHz
FREQUENCY	٠	•	·	٠	·	·	·	·	·	·	٠	·	·	·	٠	·	•	٠	·	·	·	·	·	·	·	·	•	·	20 kHz
SCAN WIDTH TRACKING G		T i	דים		r.	·	•	·	•	·	·	•	·	·	٠	·	·	·	•	·	·	·	·	•	·	·	•	·	Full cw
I RACKING G.	ch tr	κ Τ	· E	A ID	-		٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1

3. Set separate Spectrum Analyzer as follows:

RANGE	00 kHz
FREQUENCY	00 kHz
FINE TUNE	entered
BANDWIDTH	300 Hz
SCAN WIDTH	. 0—10f
PER DIVISION	20 kHz
INPUT LEVEL	m/dBV
20 kHz MARKERS	Out
dBm/dBV	ΩdBm
SCAN TIME PER DIVISION	CONDS
LOG/LINEAR	B LOG
LOG REF LEVEL	m/dBV
VIDEO FILTER	. OFF
SCAN MODE	INT
SCAN TRIGGER	
BASE LINE CLIPPER	ccw

 Using separate Spectrum Analyzer LOG REF LEVEL vernier, position peak of 20 kHz signal at LOG REF graticule on CRT. All harmonics of 20 kHz (40 kHz, 60 kHz, 80 kHz, etc.) should be below -40 dB graticule:

Harmonics: _____ -40 dB

5. Switch Spectrum Analyzer SCAN WIDTH to PER DIVISION. All harmonics of 20 kHz should be below -40 dB graticule:

Harmonics: _____ -40 dB

- Switch SCAN WIDTH to 0-10f. On 8556A under test, set TRACKING GEN LEVEL to CAL 100 mV. Disconnect 50 Ohm Feed Thru from Spectrum Analyzer INPUT; connect BNC Cable Assembly directly to INPUT.
- 7. Set Spectrum Analyzer LOG REF LEVEL to 0 dBm and use vernier to reset peak of 20 kHz signal to LOG REF graticule on CRT.
- 8. All spurious signals on CRT (that is, all signals excepting LO feedthrough, 20 kHz, and 20 kHz harmonics) should be below -50 dB graticule line:

Spurious: _____ -50 dB

9. Switch SCAN WIDTH to PER DIVISION. All spurious signals should be below -50 dB graticule line:

Spurious: _____ -50 dB

Table 4-2. Performance Test Record (cont'd)

Para. No.	Test Description	Measurement Units	Min Actual Max
4-20. 7. 8.	Residual Responses (cont'd) 20 kHz to 40 kHz 40 kHz to 300 kHz	dBm dBm	-130 -130
4-21 . Step 4. 6. 10.	Spurious Responses Harmonic Distortion (5 kHz to 300 kHz) Harmonic Distortion (20 Hz to 5 kHz) Intermod. Products Above 5 kHz Intermod. Products Below 5 kHz	dB dB dB dB	$ \begin{array}{c} - & - & 70 \\ - & - & 60 \\ - & - & 70 \\ - & - & 60 \end{array} $
4-22. Step 5. 7. 10.	Residual FM 60 Hz Sidebands (8552B) Horizontal Displacement Residual FM (8552A)	dB Divisions Hz	60 20
4-23. Step 5.	Noise Sidebands Noise Sidebands	dBm	90
4-24. Step 5.	Input Level Control and Gain Compression INPUT LEVEL: -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Gain Compression	mV mV mV mV mV mV mV	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4-25. Step 4. 5. 8.	Tracking Generator Spectral Purity Harmonics Harmonics Spurious Spurious	dB dB dB dB	

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes adjustments required to return the analyzer LF Section to peak operating condition when repairs are required. Included in this section are test setups, and check and adjustment procedures. A test card for recording data is included at the back of this section. Adjustment location photographs are contained in foldouts in Section VIII.

5-3. Record data, taken during adjustments, in the spaces provided or in the data test card at the end of this section. Comparison of initial data with data taken during periodic adjustments assists in preventive maintenance and troubleshooting.

5-4. TEST EQUIPMENT REQUIRED

5-5. Tables 1-4 and 1-5 contain a tabular list of test equipment and test accessories required in the adjustment procedures. In addition, the tables contain the required minimum specifications and a suggested manufacturers model number.

5-6. In addition to the test equipment and test accessories in Tables 1-4 and 1-5, a Display Section and an IF Section are required. Perform the Display Section and IF Section adjustments prior to performing the LF Section adjustments.

5-7. Posidriv Screwdrivers

5-8. Many screws in the instrument appear to be Phillips, but are not. Table 1-5 gives the name and number of the Posidriv screwdrivers designed to fit these screws. To avoid damage to the screw slots, Posidriv screwdrivers should be used.

5-9. Blade Tuning Tools

5-10. For adjustments requiring a non-metallic metal-blade tuning tool, use the J.F.D. Model No. 5284 (HP 8710-1010). In situations not requiring non-metallic tuning tools, an ordinary small screw-driver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjustment control in the analyzer. This is especially critical when tuning variable slug-tuned inductors, and variable capacitors.

5-11. HP 11592A Service Kit

5-12. The HP 11592A Service Kit is an accessory item available from Hewlett-Packard for use in

maintaining both the LF and IF Sections of the spectrum analyzer. Some adjustments can be made without this kit by removing the top cover from both the LF Section and the Display Section. However, this procedure exposes dangerous potentials in the Display Section chassis and should not be used unless absolutely necessary. All adjustments can and should be performed with the analyzer plug-ins installed on the extender cables provided in the service kit. The kit can be obtained by contacting the nearest Hewlett-Packard Sales and Service Office.

5-13. Table 1-5, Test Equipment Accessories, contains a detailed description of the contents of the service kit, and any item in the kit may be ordered separately. In the case of the 11592.60015 Extender Cable Assembly, the wiring is especially critical and fabrication should not be attempted. However, other items in the kit may be built if desired.

5-14. Extender Cable Installation

5-15. Push the front panel latch in the direction indicated by the arrow until the latch disengages and pops out from the panel. Pull the plug-ins out of the instrument. Remove the top cover of the LF Section.

5-16. Place the plate end of the HP 11592-60015 Extender Cable Assembly in the Display Section and press firmly into place so that the plugs make contact. The plate and plugs cannot be installed upside down as the plate has two holes corresponding to the two guide rods in the mainframe.

5-17. Connect the upper cable plug to the LF Section and the lower cable plug to the IF Section. The plugs are keyed so that they will go on correctly and will not make contact upside down.

5-18. FACTORY SELECTED COMPONENTS

5-19. Table 8-1 contains a list of factory selected components by reference designation, basis of selection, and schematic diagram location. Factory selected components are designated by an asterisk (*) on the schematic diagrams in Section VIII.

5-20. RELATED ADJUSTMENTS

5-21. These adjustments should be performed when the troubleshooting information in Section VIII indicates that an adjustable circuit is not operating correctly. Perform the adjustments after repairing, or replacing, the circuit. The troubleshooting procedures specify the required adjustments. 5-22. Perform any required Display Section and IF Section adjustments before performing the LF Section adjustments. Also, perform the voltage checks in paragraph 5-23 before performing any of the following adjustments.

Model 8556A

ADJUSTMENTS

5-23. VOLTAGE CHECKS

REFERENCE: Service Sheet 12 and IF Section and Display Section Operating and Service Manuals.

DESCRIPTION: Dc operating voltages for the LF Section are obtained from the Display Section, the IF Section, and an isolated power supply in the LF Section. If any of the operating voltages are out of limits, they should be corrected before performing any of the LF Section adjustments.

Figure 5-1. Voltage Checks Test Setup

EQUIPMENT:

Digital Voltmeter .												HF	3	480	B/3	348	4A	. Op	otio	n 04	2
Cable Acces															•				· T T (002	n
Extender Cable Assy					•		•	•	•	•	·	·	• •	• •	•	H.	Ρ1	15	92-6	001	0

ADJUSTMENTS

5-23. VOLTAGE CHECKS (cont'd)

PROCEDURE:

- 1. Extend LF and IF Sections on Extender Cable Assembly as shown in Figure 5-1.
- Connect Digital Voltmeter from -10V test point and +20V test point (located on A7 assembly cover) to chassis ground. The voltages should be -10 ±0.02V and +20 ±0.10V:

-9.98______-10.02V

+19.90 _____ +20.10V

- 3. If either voltage is out of limits, see IF Section Operating and Service Manual.
- 4. Connect voltmeter from -12.6V test point and +100V test point (located at left, rear of Master Board Assembly A11) to chassis ground. The voltages should be -12.6 ±0.2V and +100 ±1.0V:

-12.4 _____ -12.8V

```
+99.0_____+101.0V
```

- 5. If either voltage is out of limits, see Display Section Operating and Service Manual.
- 6. Connect voltmeter from -12.6VF test point (located at left, rear of master board) to chassis ground. (20 kHz MARKERS button on analyzer front panel should be out.) The voltage should be $-11.5 \pm 0.5V$:

-11.0 _____ -12.0V

Connect voltmeter from 20 VI test point and -20 VI test point (located on A5 assembly cover) to A5 assembly cover ground (not chassis ground). The voltages should be +20 ±2V and -20 ±2V:

+18 _____+22V

--18 ___ -22V

8. If any of the voltages checked in steps 6 and 7 are out of limits, see Service Sheet 12 in this manual.

Adjustments

Model 8556A

ADJUSTMENTS

5-24. PRE-ATTENUATOR ADJUSTMENTS: COMP AND C IN (cont'd)

2. Set analyzer as follows (controls not specified do not apply):

																				5	0Ω	dB	m
INPUT LEVEL				•		·						 						-4	40	dl	Bm/	'dB'	V

3. Set Test Oscillator for a 3 kHz -27 dBm signal as follows:

FREQUENCY																	
RANGE																	
OUTPUT ATTENUATOR																	
AMPLITUDE															-7	dBn	a -

- 4. Set AC Voltmeter to measure -10 dB.
- 5. Adjust Test Oscillator AMPLITUDE (COARSE and FINE) so that AC Voltmeter reads -10.00 dB.
- 6. Set analyzer INPUT LEVEL to -30 dBm/dBV. Increase 3 kHz signal from Test Oscillator exactly 30 dB by setting OUTPUT ATTENUATOR to +10 dBm.
- 7. The AC Voltmeter should read -10 dB ±0.20 dB:

-9.8____-10.2 dB

- 8. Set Test Oscillator to 300 kHz by setting RANGE to X100K (don't change oscillator signal amplitude).
- 9. Adjust COMP capacitor A5C7 until AC Voltmeter reads within ±0.10 dB of reading in step 7 (taken at 3 kHz):

(step 7) ±0.10 dB, 0.10 _____ 0.10 dB

- 10. Disconnect AC Voltmeter, Test Oscillator, and 50 Ohm Feed Thru Termination from analyzer. Don't re-connect green cable (A3W1) to A5J2 (OUTPUT). Set analyzer dBm/dBV switch to dBV and input level to -40 dBm/dBV.
- 11. Connect the 24 inch BNC cable assembly to L-C Meter UNKNOWN L or C input, and set meter to measure 32 pF. Null cable capacitance by zeroing the meter, then connect cable to analyzer INPUT.
- 12. The L-C Meter should read approximately 32 pF ($\mu\mu$ F):

≈ 32 pF____

 Set analyzer INPUT LEVEL to -30 dBm/dBV. Adjust C IN capacitor A5C6 until L-C Meter reads within ±0.5 pF of reading in step 12:

(step 12) ±0.5 pF, 0.5 ____0.5 pF

14. Disconnect L-C Meter from analyzer INPUT. Re-connect green cable (A3W1) to A5J2 (OUTPUT). Perform mixer balance adjustments specified in paragraph 5-26.

5-24. PRE-ATTENUATOR ADJUSTMENTS: COMP AND C IN

REFERENCE: Service Sheet 4.

DESCRIPTION: Pre-attenuator attenuation is checked. Then its flatness is set, adjusting COMP capacitor A5C7, so that attenuation at 300 kHz equals attenuation at 3 kHz. C IN capacitor A5C6 is adjusted so that INPUT capacitance does not change when the attenuator is used.

Figure 5-2. Pre-Attenuator Adjustment Test Setup

EQUIPMENT:

L-C Meter		 Tektronix Type 130
Test Oscillator		 HP 651B
AC Voltmeter		 HP 400EL
50 Ohm Feed Thru T	ermination	 HP 11048B
BNC Cable Assy		 HP 10503A
		HP 11086A
Adapter		 HP 1250-1236
Adapter		 HP 1250-0071
		HP 11592-60015
Tuning Tool		 HP 8710-1010

PROCEDURE:

1. Connect equipment as shown in Figure 5-2, disconnecting green cable (A3W1) so that AC Voltmeter can be connected to A5J2 (OUTPUT). Connect Test Oscillator to analyzer INPUT through 50 Ohm Feed Thru Termination.

ADJUSTMENTS

5-25. 50.150 MHz LOCAL OSCILLATOR ADJUSTMENT: A6T1

REFERENCE: Service Sheet 5.

DESCRIPTION: Transformer A6T1 is tuned to peak the signal from the 50.150 MHz local oscillator. Then the signal's frequency and amplitude are checked.

EQUIPMENT:

Oscilloscope																							. E	IP	1	80)A	/1:	301	LA/	182	20I	3
Frequency Counter	·	Ţ	Ĵ.	÷	÷		÷	÷	2	÷	÷	÷	÷																. !	ΗP	532	270	2
BNC Cable Assy																													н.	ΡIJ	υəι	13/	٩.
Adapter	•	·	·	•		·	•	•	•	•	•	·	·		Ċ	-	Ì	÷	÷		÷							н	P 1	25	0-1	236	ô
Extender Cable Assy	•	•	•	•	•		·	•	•	•	·	·	·	•			•	·	•	-	•	·					H	P 1	15	92	-60	01	ō
Extender Board		•	•	•	•		•	•	1	•	•	•	•	•	•	·	•	·	·	•	·							н	PF	06	0-0	25(6
Tuning Tool	·	•	·	•	·	٠	·	•	·	•	•	•	•	·	•	•	•	•	·	•	•	•	• •		• •	• •	• •	н	рЯ	71	0-1	010	ñ
Tuning Tool		٠	•	٠		٠	٠	٠	٠	•	•	٠	•	•	٠	٠	٠	٠	•	•	•	٠	•	•	• •	• •	• •		1 0		• •		·

PROCEDURE:

- Connect equipment as shown in Figure 5-3. Remove Frequency Converter Assembly A6 from chassis and re-install on extender board. Connect Oscilloscope to A6J3 using BNC cable and adapter.
- 2. Set Oscilloscope to measure 50.150 MHz at about 1V peak-to-peak by setting TIME/DIV to 0.1 μsec and VOLTS/DIV to 0.2V.
- 3. Using non-metallic tuning tool, tune transformer A6T1 for maximum signal on Oscilloscope. Signal level should be 0.9V to 1.6V peak-to-peak.

0.9____1.6V P-P

ADJUSTMENTS

5-25. 50.150 MHz LOCAL OSCILLATOR ADJUSTMENT: A6T1 (cont'd)

- 4. Disconnect BNC cable from Oscilloscope and connect it to Frequency Counter. Set counter to measure 50.150 MHz.
- 5. Oscillator frequency should be 50.150 MHz ± 3.0 kHz:

50.147 _____ 50.153 MHz

 Disconnect BNC cable from A6 assembly; remove extender board and install assembly into chassis. Re-connect cables to A6J1, J2 and J3. Perform mixer balance adjustments as specified in paragraph 5-26.

5-26. MIXER BALANCE ADJUSTMENTS: C, R and Z

REFERENCE: Service Sheet 5

DESCRIPTION: C, R and Z MIXER BALANCE are adjusted until LO feedthrough measures less than -80 dBm.

Figure 5-4. Mixer Balance Adjustments Test Setup

EQUIPMENT:

Extender Cable Assy											H	ŦΡ	11592-60015
Tuning Tool												. F	HP 8710-1010
50 Ohm Feed Thru Termination				•					•				. HP 11048B

PROCEDURE:

1. Extend LF and IF Sections on Extender Cable Assembly as shown in Figure 5-4. The A6 assembly should be mounted in chassis with all screws in place. Connect 50 Ohm Feed Thru Termination to analyzer INPUT.

ADJUSTMENTS

5-26. MIXER BALANCE ADJUSTMENTS: C, R and Z (cont'd)

2. Set analyzer controls as follows:

FREQUENCY BANDWIDTH SCANWIDTH PER DIVISION INPUT LEVEL	1	•		•	•		•				•	•	•	•	•	•	•	•	•	•	•	•	PI	ER	Ċ	ыv	3 /IS 10	kH IO kH	Iz N Iz
dBm/dBV BASE LINE CL																				•	•				. 1	50	Ω	dΒ	m
VIDEO FILTE SCAN TIME PI	R														•		•										10	kŀ	Ιz
LOG/LINEAR LOG REF LEV	'EL																								. •	4	10	β	m
SCAN MODE SCAN TRIGGE																													

NOTE

This procedure assumes that analyzer has been allowed to warm up at least one-half hour and that it is calibrated as specified in Section III, Figure 3-2.

- 3. Center LO feedthrough signal on display with FREQUENCY control.
- 4. Using non-metallic adjustment tool, adjust C and R MIXER BALANCE (A6R5 and C12) for best null of LO feedthrough.
- 5. Adjust Z MIXER BALANCE (A6C22) for LO feedthrough null, then repeat steps 4 and 5 until LO feedthrough is below -40 dB graticule on display (<-80 dBm):

6. Secure top cover on 8556A. Repeat step 4 until LO feedthrough is below -40 dB graticule line.

____ -80 dBm

5-27. TRACKING GENERATOR ADJUSTMENTS: AMPL ADJ and FLATNESS ADJ

REFERENCE: Service Sheet 7

DESCRIPTION: Tracking generator level is adjusted at 100 kHz, flatness is adjusted at 300 kHz, and flatness is checked across the band from 20 kHz to 300 kHz. Then the generator's ability to deliver power into a load is checked.

NOTE

The following adjustments assume that the analyzer meets its frequency specifications.

ADJUSTMENTS

5-27. TRACKING GENERATOR ADJUSTMENTS: AMPL ADJ and FLATNESS ADJ (cont'd)

EQUIPMENT:

AC Voltmeter	<u>.</u>		•																								HP 40	DOEL	
ooo onni reeu	1 nru	- 1 er	m	nat	101	٦.																					110 110	00 E A	
24" BNC Cable Tuning Tool .																												1010	
Extender Cable	Assy						:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	1	HP	11592-6	0015	

PROCEDURE:

- Connect equipment as shown in Figure 5-5, connecting AC Voltmeter directly to TRACKING GEN OUT with 24" BNC cable.
- 2. Set analyzer as follows (controls not specified do not apply):

FREQUENCY		ь Н7
DOAN WIDIN	75	חמי
	0_900	1.11.
INAUNING GEN LEVEL	CAT 100	
20 KHZ MARKERS	· · · · · · · · · · · · · · · · · · ·	Out

- Set AC Voltmeter to read 100 mV full scale and adjust AMPL ADJ (A8A1R1) so that voltmeter reads exactly 100 mV (use non-metallic tuning tool).
- Set FREQUENCY to 300 kHz and adjust FLATNESS ADJ (A8R9) so that voltmeter reads exactly 100 mV.

ADJUSTMENTS

5-28. FREQUENCY CALIBRATION ADJUSTMENT: OFFSET ADJ, 300 kHz ADJ and ZERO ADJ (cont)

PROCEDURE:

Model 8556A

- Connect equipment as shown in Figure 5-6, connecting Digital Voltmeter between Scan Width Switch Assembly A2, wafer S2-1R lug 11¹/₂ (where white-red-gray, 928, wire is connected) and chassis ground.
- 2. Set analyzer controls as follows:

FREQUENCY	
FINE TUNE	
RANGE	0—300 kHz
BANDWIDTH	
SCAN WIDTH	DIVISION
PER DIVISION	1 kHz
INPUT LEVEL	0 dBm/dBV
BASE LINE CLIPPER	ccw
VIDEO FILTER	OFF
SCAN TIME PER DIVISION	ISECONDS
LOG/LINEAR	10 dB LOG
SCAN MODE	INT
SCAN TRIGGER	AUTO

- 3. Center 300 kHz ADJ, and center OFFSET ADJ (A7R13). Center LO feedthrough signal at CENTER FREQUENCY graticule with ZERO ADJ. Dial should be accurately set to 0 kHz.
- 4. Adjust OFFSET ADJ for 0.0 ± 5.0 mV read on voltmeter.
- Set BANDWIDTH to 100 Hz and PER DIVISION to 100 Hz; center signal on display with ZERO ADJ. Switch RANGE to 0-30 kHz; signal shift should be less than 150 Hz:

_____ 150 Hz

- Set BANDWIDTH to 1 kHz, PER DIVISION to 20 kHz and RANGE to 0-300 kHz; push 20 kHz MARKERS switch.
- Slowly tune FREQUENCY to 300 kHz counting 20 kHz markers as they pass CENTER FREQUENCY graticule on display. Center fifteenth marker (300 kHz) on CENTER FREQUENCY graticule; adjust 300 kHz ADJ so that dial reads 300 kHz when fifteenth marker (300 kHz) is centered.
- 8. Tune FREQUENCY to 0 kHz. Adjust ZERO ADJ to center LO feedthrough (0 Hz) on display.
- 9. Repeat steps 7 and 8 until no further adjustment is necessary.

5-29. ANALOGIC CHECKS

REFERENCE: Service Sheet 10 and IF Section Operating and Service Manual.

DESCRIPTION: Perform the display calibration check tabulated below. If an adjustment is required, refer to the analogic adjustment procedure in the IF Section manual.

If the table indicates that the DISPLAY UNCAL light should be off, it is acceptable for the light to be on if the light subsequently goes off when either SCAN TIME PER DIVISION or SCAN WIDTH PER DIVISION is switched one position counter-clockwise.

ADJUSTMENTS

5-27. TRACKING GENERATOR ADJUSTMENTS: AMPL ADJ and FLATNESS ADJ (cont'd)

5. Slowly tune FREQUENCY from 300 kHz to 20 kHz. The voltmeter should indicate a maximum variation of 5 mV through entire range:

____ 5 mV

 Connect 600 Ohm Feed Thru Termination between TRACKING GEN OUT and AC Voltmeter. Set TRACKING GEN LEVEL full clockwise. Voltmeter should read ≥ 1.5 V:

1.5 V _____

7. Slowly tune FREQUENCY from 20 kHz to 300 kHz. The voltmeter should indicate a maximum variation of 80 mV through entire range:

____ 80 mV

5-28. FREQUENCY CALIBRATION ADJUSTMENT: OFFSET ADJ, 300 kHz ADJ, and ZERO ADJ

REFERENCE: Service Sheet 9

DESCRIPTION: OFFSET ADJ is adjusted, and the dial is calibrated with the ZERO ADJ and 300 kHz ADJ controls.

NOTE

This procedure assumes that analyzer horizontal display calibration has been performed (see Figure 3-2 in Section III).

EQUIPMENT

Digital Voltmeter .													H	, 3	48	0B	/3	848	4A Option 04	42
Cable Assy																			. HP 11002	2A
Extender Cable Assy						•	•			•	•	•	•		•	•	•	н	P 11592-6001	15

ADJUSTMENTS

5-29. ANALOGIC CHECKS (cont'd)

Table 5-1. Analogic Display Calibration Check

	SCAN TIME	BAND-	SCAN WIDTH		DISPLAY UNCAL
VIDEO FILTER	PER DIVISION	WIDTH	PER DIVISION	SCAN WIDTH	LIGHT
10 Hz	2 SECONDS	100 Hz	1 kHz	PER DIVISION	OFF
10 Hz	1 SECOND	100 Hz	1 kHz	PER DIVISION	ON
100 Hz	0.2 SECONDS	1 kHz	10 kHz	PER DIVISION	OFF
100 Hz	0.1 SECONDS	1 kHz	10 kHz	PER DIVISION	ON
10 kHz	10 MILLISECONDS	3 kHz	20 kHz	PER DIVISION	OFF
10 kHz	5 MILLISECONDS	3 kHz	20 kHz	PER DIVISION	ON
OFF	5 MILLISECONDS	3 kHz	20 kHz	ZERO	OFF*
OFF	2 MILLISECONDS	10 kHz	20 kHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	3 kHz	20 kHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	1 kHz	20 kHz	PER DIVISION	ON
OFF	20 MILLISECONDS	1 kHz	10 kHz	PER DIVISION	OFF
OFF	20 MILLISECONDS	300 Hz	10 kHz	PER DIVISION	ON
OFF	50 MILLISECONDS	300 Hz	2 kHz	PER DIVISION	OFF
OFF	50 MILLISECONDS	100 Hz	2 kHz	PER DIVISION	ON
OFF	0.1 SECONDS	100 Hz	500 Hz	PER DIVISION	OFF
OFF	0.1 SECONDS	100 112	500 HZ	FER DIVISION	OFF
OFF	0.1 SECONDS	30 Hz	500 Hz	PER DIVISION	ON
OFF	0.2 SECONDS	30 Hz	100 Hz	PER DIVISION	OFF
OFF	0.2 SECONDS	10 Hz	100 Hz	PER DIVISION	ON
OFF	0.5 SECONDS	10 Hz	20 Hz	PER DIVISION	OFF
OFF	0.5 SECONDS	300 Hz	20 Hz	PER DIVISION	OFF
OFF	0.2 SECONDS	300 Hz	20 kHz	PER DIVISION	ON
OFF	0.2 SECONDS	300 Hz	10 kHz	PER DIVISION	OFF
OFF	0.1 SECONDS	300 Hz	10 kHz	PER DIVISION	ON
OFF	0.1 SECONDS	300 Hz	5 kHz	PER DIVISION	OFF
OFF	50 MILLISECONDS	300 Hz	5 kHz	PER DIVISION	ON
OFF	50 MILLISECONDS	300 Hz	2 kHz	PER DIVISION	OFF
OFF	20 MILLISECONDS	300 Hz	2 kHz	PER DIVISION	ON
OFF	20 MILLISECONDS	300 Hz	1 kHz	PER DIVISION	OFF
OFF	10 MILLISECONDS	300 Hz	1 kHz	PER DIVISION	ON
OFF	10 MILLISECONDS	300 Hz	500 Hz	PER DIVISION	OFF
ODE			500.11		
OFF	5 MILLISECONDS	300 Hz	500 Hz	PER DIVISION	ON
OFF	5 MILLISECONDS	300 Hz	200 Hz	PER DIVISION	OFF
OFF	2 MILLISECONDS	300 Hz	200 Hz	PER DIVISION	ON
OFF	2 MILLISECONDS	300 Hz	100 Hz	PER DIVISION	OFF
OFF	1 MILLISECOND	300 Hz	100 Hz	PER DIVISION	ON
OFF	1 MILLISECOND	300 Hz	50 Hz	PER DIVISION	OFF
*No exception	allowed.		• • • • • • • • •		
1					

ADJUSTMENTS

5-30. 8552A 47 MHz LO ADJUSTMENT

REFERENCE: Service Sheet 9 and 8552A IF Section Operating and Service Manual.

DESCRIPTION: On some HP Model 8552A Spectrum Analyzer IF Sections, long term aging may have caused the center frequency of the 47 MHz LO to drift beyond the zero adjustment range of the 8556A. If this is the case, the following simplified 47 MHz LO adjustment procedure can be used to readjust center frequency and tuning accuracy.

EQUIPMENT:

Extender Cable Assy (if not available, see step 1)	HP 11592-60015
Tuning Tool	HP 8710-1010

PROCEDURE:

- 1. Extend LF and IF Sections on Extender Cable Assembly (see paragraph 5-15 for step-by-step procedure). If the Extender Cable Assembly is not available, the adjustment can be made with the LF and IF Sections installed in the Display Section:
 - a. Remove 8552A and 8556A from Display Section.
 - b. Remove bottom covers from Display Section and 8552A.
 - c. Place Display Section on left side and plug 8552A and 8556A into Display Section. Be careful that 8552A does not hang up on Display Section guide rails.

CAUTION

Removing the Display Section bottom cover exposes dangerous potentials (up to 7000 volts).

- 2. Turn analyzer on and allow to warm up at least one hour.
- 3. Set analyzer as follows:

RANGE
FREQUENCY
FINE TUNE
BANDWIDTH
SCAN WIDTH
PER DIVISION
INPUT LEVEL
ZERO ADJ
300 kHz ADJ
20 kHz MARKERS
SCAN TIME PER DIVISION
LOG/LINEAR
LOG REF LEVEL
BASE LINE CLIPPER
SCAN MODE
SCAN TRIGGER

4. If necessary, adjust HORIZONTAL POSITION and GAIN on 8552A for a 10 division horizontal trace.

5. Depress 20 kHz MARKERS switch. Markers should appear at approximately every major vertical graticule line on CRT. Switch 20 kHz MARKERS switch out.

Table 5-2. Check and Adjustment Test Record

	ett-Packard Model 8556A rum Analyzer LF Section	Test Pe	Test Performed by			
Serial	No		Date			
Para. No.	Test Description	Measurement Units	Min. Actual Max.			
5-23. Step: 2. 4. 4. 6. 7. 7.	Voltage Checks 10 Volt Supply +20 Volt Supply 12.6 Volt Supply +100 Volt Supply 12.6 Volts Filtered +20 Volts Isolated 20 Volts Isolated	Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5-24. Step: 7. 9. 12. 13.	Pre-Attenuator Adjustments Pre-Attenuator (30 ± 0.10 dB): at 3 kHz at 300 kHz INPUT Capacitance Pre-Attenuator Capacitance	dB dB pF pF	$\begin{array}{c c} -9.8 & -10.2 \\ 0.10 & 0.10 \\ \approx 32 & 0.5 \\ 0.5 & 0.5 \end{array}$			
5.25. Step: 3. 5.	50.15 MHz Oscillator Adjustment Signal Level Frequency	V P-P MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
5-26. Step:5. 6.	Mixer Balance Adjustment LO Feedthrough Level LO Feedthrough Level	dBm dBm	80 80			
5.27 , Step: 5. 6. 7.	Tracking Generator Adjustments Flatness Max. Into Load Flatness at Max.	mVrms Vrms mVrms	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
5-28. Step: 6.	Frequency Calibration Adjustment RANGE Switch Shift	Hz	150			

5-30. 8552A 47 MHz LO ADJUSTMENT (cont'd)

- 6. Using non-metallic tuning tool, slowly adjust 8552A A3A2C4 (see Assembly and Adjustment Locations photo in 8552A manual) until the LO feedthrough appears on the CRT (about ±1 turn); then adjust 8552A A3A2C4 until LO feedthrough is centered on far left graticule line (see Figure 5-7).
- 7. Depress 20 kHz MARKERS switch. With LO feedthrough centered on far left graticule line, markers should be evenly spaced with ninth marker (180 kHz) within ±0.2 division (4 kHz) of the +4 graticule line. If not, adjust 8552A A5R42 TUNING RANGE and A3A2C4 until the 20 kHz markers are aligned on the graticule lines and the LO feedthrough is centered on the far left graticule line. (A5R42 varies marker spacing and A3A2C4 varies location of markers.)
- Tune FREQUENCY to 0 kHz (FINE TUNE centered), and set SCAN WIDTH PER DIVISION to 1 kHz and SCAN TIME PER DIVISION to 5 MILLISECONDS.
- Adjust 8552A A2A3C4 until LO feedthrough is centered within ±2 divisions of center graticule line. Center LO feedthrough exactly on center graticule line with 8556A ZERO ADJ.
- 10. Tune FREQUENCY to 300 kHz. Adjust 8556A 300 kHz ADJ to center 300 kHz marker on center graticule line.
- 11. Turn analyzer off, remove 8552A and 8556A from Display Section, replace bottom covers, and reinstall 8556A and 8552A.

Figure 5-7. 47 MHz LO Adjustment Display

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. Table 6-1 is an index of reference designations and abbreviations used in Hewlett-Packard manuals.

6-3. Table 6-3 lists 8556A replaceable parts in alpha-numerical order of their reference designation.

6-4. Table 6-2 lists code number identification of part manufacturers. (Manufacturer's code and part number are supplied for each part listed in Table 6-3).

6-5. ORDERING INFORMATION

6-6. To obtain replacement parts, address order or inquiry to your local HP Sales and Service Office (see list at rear of manual for address). Identify parts by their HP part number.

6-7. To obtain a part that is not listed, include:

- a. Instrument model number.
- b. Instrument serial number.
- c. Description of the part.
- d. Function and location of the part.

A = sascmbly F = fuse P = plug V = vacuum tuba, methodoll BT = battery J = filter Q = transfor methodoll BT = battery J = jack R = transfor Methodoll CC = capacitor K = relay RT = thermistor VR = voltage CP = coupler L = inductor S = switch VR = voltage CR = device signaling (lamp) MK = meter TB = test point Y = cable DS = device signaling (lamp) MK = metophalical part U = integrated circuit Z = tuned cavity E = misc electronic part MP = method and are N/O = normally open RMO = rack mount only AFC = automatic frequency control HDW = hardware N/O = normally open RMS = row chance BFO = best frequency oscilla- BF IER = hour(s) = partare coff. SD = stow-blow BFO = bet frequency oscilla- BH IER = intermediate freq BF NFR = not recompended fied rec SECT = setion(s) <t< th=""></t<>
C = capacitor K = relay R T = thermistor VR = voltage CP = coupler L = inductor S = switch regulator CR = diode LS = loud speaker T = transformer W = cable DL = delay line LS = loud speaker T = transformer W = cable DL = delay line MM = meter TB = terminal board X = socket DS = device signaling (lamp) MK = microphone TP = test point Y = crystal E = misc electronic part MP = mechanical part U = integrated circuit Z = tuncd cavity, network AFC = automatic frequency HD = hearies N/O = normally open normally open RMS = rootmate anguare service costing AMPL = amplifter HR = hearies N/O = service costing reservice costing reservice costing BFO = beat frequency oscilla- to reservice HR = hour(s) NPN = reservice costing SC = service (soft) BF CU = beat prequency oscilla- to reservice MPG = inspregated NPN = negative-positive SE = selenium BH = binder head IMPG = inspregated NRFR = not recommended SEMCON = semiconductor BP = bandpass INCD = incandecent NRFR = not recommended SEMCON = se
CR = diode LS = loud speaker T = transformer W = cable DL = delay line M = meter TB = transformer W = cable DS = device signaling (lamp) MK = microphone TP = tetpoint Y = crystal E = misc electronic part MF = mechanical part U = integrated circuit Z = tuncd cavity, network ABBREVIATIONS - - - - - - - - AFC = amperes H = henries N/O = normally open RMS = rack mount only AFC = automatic frequency HDW = heardware NOM = normally open RMS = rock-mean square AMPL = amplifier HEX = heardware NOM = normally open RMS = rock-mean square BFO = beat frequency oscilla- HR = hour(t) Partice order SE = slow-blow ber cup ober jlium copper HF = intermediate freq negative-positive SE = selenium BH = binder head IMPG = impregated NRFR = negative-positive SE = selenium
DS = device signaling (lamp) MK = microphone TP = tetpoint Y = crystal E = misc electronic part MP = microphone TP = tetpoint Y = crystal ABBREVIATIONS - microphone TU = integrated circuit Z = tuned cavity, network AFC = amperes H = henries N/O = normally open RMO = rack mount only AFC = automatic frequency HDW = heardware NOM = normally open RMO = rack mount only AMPL = amplifier HEX = heardware NOM = normally open RMS = rack mount only BFO = beat frequency oscilla- HE = hour(s) caro tem- voltage voltage BFC U = beat frequency oopper HF = Hertz NFN = negative-positive- SE selenium BH = binder head IMPG = impregated freq negative-positive- SE selenium BP = binder head IMPG = impregated NRFR = negative-positive- SE selenium BP = binder head IMPG = impregated for field re- SI silicon
A = amperes H = berivers N/O = normally open RMO = rack mount only AFC = automatic frequency HDW = hardware NOM = norminal RMO = rack mount only AFC = automatic frequency HDW = hardware NOM = norminal RMS = root-mean square AMPL = amplifier HG = mercury zero (zero ten- voltage BFO = best frequency oscilla- HR = hour(s) perature coef- S-B = slow-blow BFO = best frequency oscilla- HR = hour(s) SCR = screw voltage BF CU = beryllium cooper IF = intermediate freq negative-positive- SEC = selenium BH = binder head IMPG = impregated NRFR = norecommended SEMICON semiconductor BP = bandpass INCD = incandescent for field re- SI = silicon
AFC = automatic frequency HDW = hardware NOM = nominal RMS = noot-mean square AFC = automatic frequency HEX = hardware NOM = nominal RMS = noot-mean square AMPL = amplifier HG = mercury zero (zero item- voltage voltage BFO = beat frequency oscilla- tor HR = hour(s) persature coef- ficient) SCR = screw BE CU = beat/jlium copper IF = intermediate freq negative-positive- negative SECT = secion(a) BH = binder head IMPG = impregated for field re- SI = silicon SEMICON secion(a)
control HEX = hexagonal NPO = negative positive RWV = reverse working AMPL = amplifier HG = mercury zero (zero ten- voltage voltage BFO = beat frequency oscilla- tor HR = hour(s) perature coef- ficient) SCR = screw BFO = beat frequency oscilla- tor HF = intermediate freq intermediate freq NPN = negative-positive- negative SEC = selenium BH = binder head IMPG = intermediate freq intermediate freq negative oscilla- negative SEMICON semiconductor BH = binder head IMPG = intermediate freq intermediate freq negative oscilla- for field recommended SEMICON semiconductor
HR = hour(s) perature cof- S-B = slow-blow BFO = beat frequency oscilla- tor Hz = Hertz ficient) SCR = screw BE CU = beryllium copper IF = intermediate freq negative-positive- negative SEC = selenium BH = binder head IMPG = impregated NRFR = norecommended SEMICON semiconductor BP = bandpass INCD = incandescent for field re- for field re- stion SI = silicon
tor NPN = negative-positive- BE CU = beryllium copper IF = intermediate freq negative- BH = binder head IMPG = impregated NRFR = not recommended SEMICON = semiconductor BP = bandpass INCD = incandescent for field re- SI = slicon
BH = binder head IMPG = impregnated NRFR = not recommended SEMICON = semiconductor BP = bandpass INCD = incandescent for field re- SI = silicon
BRS = brass INCL = include(s) Discement SIL = silver
BWO = backward wave oscilla- INS = insulation(ed) NSR = not separately SL = slide
tor INT = internal replaceable SPG = spring CCW = counterclockwise OBD = order by SST = Staiplers theal
CCW = counterclockwise OBD = order by SST = Stainless steel CER = ceramic K = kilo = 1000 description SR = split ring CMO = coninet mount only OH = oval head STL = steel
COEF = coefficient LH = left hand OX = oxide
COMP = composition LK WASH = lock washer PC = printed circuit 12 TD = time delay
$CONN = connector$ LPF = low pass filter $rr = picciarads = 10^{-2}$ TGL = toggie CP = codmission plata THD = thread
$CRT = cathode-ray tube$ $M = milli = 10^{-3}$ PHL = Phillips TOL = tolerance
$MEC = met_{a} - met_{a} - met_{a} - voltage$ DEPC = deposited carbon MET FLM = metial film DNP = porting more film T = traveling wave
DR = drive MFR = manufacturer positive positive
$ENCAP$ = encapsulated MINAT = ministure POLY = polystrene μ = micro = 10° ENCAP = encapsulated MOM = momentary PORC = porcelain
BAA - catenari MOS = metalized POS = position(s) VAR = variable enbetrate POT = potentiometer VDCW = deworking volte
FH = flat head MTG = mounting Fr = peak-to-peak
FXD = fixed PWV = pear working voit- w/ - with age = watts W = working inverse
G = giga (10 ⁹) N/C = normally closed RECT = rectifier voltage GE = germanium NE = neon RF = radio frequency WW = wirewound
GL = glass NIPL = nickel plate RH = round head or W/O = without GRD = ground(ed) NIPL = nickel plate RH = round head or W/O = without

Table 6-2. Reference Designators and Abbreviations used in Parts List

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part N
Al Alcri Alri Alrz Alr3	08556-60026 1901-0025 0757-0274 0757-0465 0698-3453	1 3 1 5 1	SWITCH ASSY'BANDWIDTH Diddetsilicon Ioma/IV Rifkd Net Fin 1.21k ohn 1x 1/64 Rifkd Net Fin 100k ohn 1x 1/64 Rifkd Net Fin 196k ohn 1x 1/64	28480 07263 28480 28480 28480	08556-60026 FD 2387 0757-0274 0757-0465 0698-3453
AIR4 AIR5 AIR6 AIR7 AIR8	0698-3161 0698-3161 0698-3161 0698-3161 0698-4534 0698-4521	2 1 2 2	R:FXD NET FLM 38.3K CHM IX 1/6W R:FXD NET FLM 76.3K CHM IX 1/6W R:FXD NET FLM 76.3X CHM IX 1/6W R:FXD NET FLM 309K CHM IX 1/6W R:FXD NET FLM 134K CHM IX 1/6W	28480 26460 26460 28460 28460 28460	0698-3161 0698-4507 0698-3161 0698-4534 0698-4534
AIR9 AIR10 AIR11 AIR12 AIR13	0698-4534 0698-4521 0757-0458 0698-3148 C698-4487	1 1 1	RIFXD NET FLN 309K DHH 1% 1/8H RIFXD NET FLN 154K DHH 1% 1/8H RIFXD NET FLN 151,K CHH 1% 1/8H RIFXD FLN 102K DHH 1% 1/8H RIFXD FLN 25.5K DHH 1% 1/8H	28480 28480 28480 28480 28480 28480	C698-4534 0698-4521 0757-0458 0698-3148 0698-4487
A1R14 ALS1 A2 A2R1 A2R2	0698-3157 3100-3012 08556-60027 0698-6296 0698-7533	3 1 1 2	A:FXD NET FLN 19-6K CHN 13 1/8W Switch:Rotary 7 Position Switch Assy:Scanhoth Rifxd NET FLN 20-00 Chn 0-253 1/8W Rifxd FL 930 Chn 0-253 1/8M	26480 28480 28480 28480 28480 28480	0698-3157 3100-3012 08556-60027 0698-6296 0698-7533
A2R3 A2R4 A2R5 A2R6 A2R7	0698-4190 0698-7888 0698-7532 0698-7533 0698-4190	2 1 1	RIFXD NET FLN 50 0HM 0-25% 1/8W Rifxd Fln 22-2 0HM 0-25% 1/8W Rifxd Fln 100 0HM 0-25% 1/8W Rifxd Fln 30 0HM 0-25% 1/8W Rifxd Rif Fln 30 0HM 0-25% 1/8W	28480 28480 28480 28480 28480 28480	0698-4190 0698-7888 0698-7532 0698-7533 0698-4190
A2R8 A2R9 A2R10 A2R11 A2R12	0698-6299 C698-7916 0698-6315 0698-6302 0757-0488	1 1 1 4	R:FXD NET FLN 100.40 DHN 0.25% 1/8M R:FXD FLN 301.2 DHN 0.25% 1/8M R:FXD NET FLN 303.1 DHN 0.25% 1/8M R:FXD NET FLN 995 DHN 0.25% 1/8M R:FXD NET FLN 996 DHN 1% 1/8M	28480 28480 28480 28480 28480	0698-6299 0698-7916 0698-6315 0698-6302 0757-0488
A2R13 A2R14 A2R15 A2R15 A2R16 A2R17	0757-0488 0757-0488 0757-0488 0698-3260 0698-3260	6	AIFXD NET FLN 909K DHN 1X 1/8W Rifxd NET FLN 909K DHN 1X 1/8W Rifxd NET FLN 909K DHN 1X 1/8W Rifxd NET FLN 464K DHN 1X 1/8W Rifxd NET FLN 464K DHN 1X 1/8W	28460 28480 28460 28460 28480 28480	0757-0488 0757-0488 0757-0488 0698-3260 0698-3260
A2R18 A2R19 A2R20 A2R21 A2R21 A2R22	0698-3260 0698-3260 0698-3260 0698-3260 0698-3260 0698-3271	2	RIFXD MET FLM 466K DHM 1% 1/8M Rifxd MET FLM 115K DHM 1% 1/8M	28460 28460 28480 28460 28460 28460	0698-3260 0698-3260 0698-3260 0698-3260 0698-3260 0698-3271
AZR 23 A2S1 A2S2 A3 A3MP1	0698-3271 3100-3011 08556-60028 5040-0218	1 1 1	REFXD MET FLW 115K UHW 1X 178W Swiichtrotary dual concentric Part of S1 Switch ASSY11NPUT Level Couplersswiich Smaft	28480 28480 28460 28480	0698-3271 3100-3011 08556-60028 5040-0218
A3R1 A3R2 A3R3 A3R4 A3R5	0698-7915 0698-7912 C698-7914 0698-7913 2100-3107	1 1 1 1	R:FXD FLM 900.0 DHM 0.25% 1/8M R:FXD FLM 111.1 GHM 0.25% 1/8M R:FXD FLM 216.2 DHM 0.25% 1/8M R:FXD FLK 146.3 DHM 0.25% 1/8M R:VAR CRNFT 10K DHM 10% 10CCL0G LW	28480 28480 28480 28480 28480 28480	0698-7915 0698-7912 0698-7914 0698-7913 2100-3107
A3R6 A351 A3W1 A3W2 A3W3	0757~0798 3100-3010 08556-60011 08556-60010 08556-60014	1 1 1 1	A:FXD NET FLM 110 ONN 1% 1/2W Switch:ROTARY 6 POSITION Cable Assy:INPUT converter Cable Assy:INPUT converter Cable Assy:ICUEVEL	28480 28480 28480 28480 28480 28480	0757-0798 3100-3010 08556-60011 08556-60010 08556-60014
A4 A5 A5 A5 A5C1	08556-60005 08556-20002 08556-20018 0180-0094	1 5 2	NOT ASSIGNED Board Assy:pre-Attenuator-Am Mousing:Shifed ShifedD:Housing C:Fry Elect 100 uf +75-10% 25VDCW	28480 28460 28460 56289	08556-60005 08556-20002 08556-20018 3001076025002
A5C2 A5C3 A5C4 A5C5 A5C6	0160-0127 0180-0094 0160-0127 0180-2376 0121-0105	5 1 2	C:FXD CER 1.0 UF 20% 25VDCH C:FXD ELECT 100 UF +75-10% 25VDCH C:FXD CER 1.0 UF 20% 25VDCH C:FXD AL ELECT 3.5 UF +50-10% 200VDCH C:FXD AL ELECT 3.5 UF +50-10% 200VDCH C:FXD AL ELECT 3.5 UF +50-10% 200VDCH	56289 56289 56289 56289 56289 28480	5C13CS-CHL 30D107G025DD2 5C13CS-CHL 39D257 0121-0105
A5C7 A5C8 A5C9 A5C10 A5C11	0121-0105 0180-1714 0180-0291 0160-2261 0160-2257	1 3 1 1	CIVAR CER 9-35 PF NPD GFRAD ELECT 330 UF 10% &VDCM GFRAD ELECT 1.0 UF 10% 35VDCW GFRAD CER 15 PF 5% 500VDCM GFRAD CER 10 PF 5% 500VDCM	28480 28480 56289 72982 72982	0121-0105 0180-1714 15001 05x9035/ 301-NP0-15 PF 301-000-C0H0-
A5C12 A5C13 A5CR1 A5CR2 A5CR3	0180-1907 0180-1819 1901-0025 1901-0025 1901-0025	2 1 2	C:FXD AL ELECT 560 UF +75-10% 6VDCM G:FXD ELECT 100 UF +75-10% 50VDCM Didde:Silicon 100MA/1V Didde:Silicon 100MA/1V Didde:Silicon 350	56289 28480 07263 07263 28480	30056760060H 0180-1819 FD 2387 FD 2387 1901-0376

See introduction to this section for ordering information

Table 6-2. Manufacturers' Code List

MFR ND.	MANUFACTURER NAME	ADDRESS	CODE
00000	U.S.A. COMMON	ANY SUPPLIER OF U.S.A.	
01121	ALLEN BRADLEY CO.	MILWAUKEE, WIS.	53204
01295	TEXAS INSTRUMENTS INC. SEMICONDUCTOR COMPONENTS DIV.	DALLAS, TEX.	75231
04713	NOTOROLA SEMICONDUCTOR PROD.INC.	PHOENIX. ARIZ.	85008
07263	FAIRCHILD CAMERA & INST. CORP. SEMICONDUCTOR DIV.	MOUNTAIN VIEW. CALIF.	94040
08664	BRISTOL CO. THE	WATERBURY. CONN.	06720
08717	SLOAN CO. THE	SUN VALLEY, CALIF.	91 3 5 2
12574	GULTON IND. INC. DATA SYSTEM DIV.	ALBUQUERQUE, N.M.	87108
28480	HEWLETT-PACKARD COMPANY	PALO ALTO, CALIF.	94304
36196	STANWYCK COIL PROD. LTD.	HAWKSBURY UNTARIO, CANADA	
56289	SPRAGUE ELECTRIC CO.	N. ADAMS, MASS.	01247
70276	ALLEN MEG. CO.	HARTFORD, CONN.	06101
71041	BOSTON GEAR WORKS DIV N. AMERICAN ROCKWELL CORP.	QUINCY, MASS.	02171
71468	ITT CANNON ELECT. INC.	LOS ANGELES, CALIF.	90031
71590	GLOBE UNION INC. CENTRALAB DIV.	WILWAUKEE, WISC.	53201
71744	CHICAGO MINIATURE LAMP WORKS	CHICAGO, ILL.	60640
71785	CINCH MFG. CO. DIV TRW INC.	ELK GROVE VILLAGE, ILL.	
72136	ELECTRO MOTIVE MEG. CO. INC.	WILLIMANTIC, CONN.	06226
72982	ERIE TECHNOLOGICAL PROD. INC.	ERIE, PA.	16512
73734	FEGERAL SCREW PROD. INC.	CHICAGO, ILL.	60618
74970	JOHNSON E.F. CO.	WASECA, MINN.	56093
75042	INTERNATIONAL RESISTANCE CO. INC.	PHILADELPHIA, PA.	19108
75915	LIFTELFUSE INC.	DES PLAINES, ILL.	60016
76530	CINCH MONADNOCK MILLS DIV. TRW INC.	CITY OF INDUSTRY, CALIF.	91746
78189	SHAKEPROOF DIV. ILLINDIS TODL WORKS	ELGIN, ILL.	60120
78488	STACKPOLE CARBON CO.	ST. MARYS, PA.	15857
79727	CONTINENTAL-WIRT ELECTRONICS CORP.	PHILADELPHIA, PA.	19144
60131	ELECTRONIC INDUSTRIES ASSOCIATION	WASHINGTON D.C.	20006
82142	AIRCO SPEER ELECT. COMP.	DU BOIS, PA.	15801
91506	AUGAT INC.	ATTLEBORD, MASS.	02 703
93332	SYLVANIA ELECTRIC PROD. INC. SEMICONDUCTOR DIV.	HOBURN, MASS.	01801
98291	SEALECTRD CORP.	MAMARONECK, N.Y.	10544
98975	INTERNATIONAL ELECT. RESEARCH CORP.	BURBANK, CALIF.	91502
99800	DELEVAN ELECTRONICS CORP.	E. AURORA, N.Y.	14052

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
ASCR4 ASCR5 ASCR6 ASJ1 ASJ2	1901-0376 1902-0064 1902-0064 1250-1195 1250-1195	2 5	DIODE≓SILICON 35¥ DIODE BREAKODONI7.5¥ DIODE BREAKODONI7.5¥ CONNECTORIRF SUB-HINIATURE SERIES CONNECTORIRF SUB-HINIATURE SERIES	28480 28480 28480 98291 98291	1901-0376 1902-0064 1902-0064 52-053-0000 52-053-0000
A5KL A5K2 A5Q1 A5Q2 A5Q3	0490-1011 0490-0965 1853-0050 1853-0050 1853-0050	1 1 5	RELAYIZAY 125C Relayirred 1290C 0.5A TSTRISI PNP TSTRISI PNP TSTRISI PNP	28480 28480 28480 28480 28480 28480	0490-1011 0490-0965 1853-0050 1853-0050 1853-0050
45Q4 45R1 45R2 45R3 45R4	1855-0372 0757-0401 0757-0401 0698-7922 6698-7917	1 9 1	TSTR:FET SI N-CHANNEL R:FKD NET FLM 100 CHM 13 1/8W R:FKD NET FLM 100 CHM 13 1/8W R:FKD FLM 906K CHM 0-25% 1/8W R:FKD FLM 32.6K CHM 0-25% 1/8W	28480 28480 28480 28480 28480 28480	1855-0372 0757-0401 0757-0401 0698-7922 0698-7917
4585 4586 4587 4588 4589	0675-1011 0757-0344 0698-7920 0698-7919 0698-7918	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R:FXD COMP 100 OHM 108 1/8W R:FXD MET FLM 1-00 MEGOHM 13 1/4W R:FXD FK 126-6 OHM 0-253 1/8W R:FXD FLM 1516-0 OHM 0-253 1/8W R:FXD FLM 798-0 OHM 0-253 1/8W	01121 28480 28480 28480 28480 28480	88-1011 0757-0344 0698-7920 0698-7919 0698-7918
A5R10 A5R11 A5R12 A5R13 A5R14	0698-7921 0698-3150 0757-0442 0698-3162 0698-3455	1 1 1 3	R1FXD FLM 1953 DHN 0.253 1/8W R1FXD MET FLM 2.37K OHN 1% 1/8W R1FXD MET FLM 10.0K OHN 1% 1/8W R1FXD MET FLM 46.4K OHN 1% 1/8W R1FXD MET FLM 46.4K OHN 1% 1/8W	28480 28480 28480 28480 28480 28480	0698-7921 0698-3150 0757-0442 0698-3162 0698-3455
A5R15 A5R16 A5R17 A5R18 A5R18	C698-7967 O698-3455 O698-3155 O757-0444 O757-0290	1 1 1	R:FXD FLM 2.5K DHM 0.25% 1/8W R:FXD MET FLM 261K DHM 1% 1/8M R:FXD MET FLM 364K DHM 1% 1/8M R:FXD MET FLM 12.1K DHM 1% 1/8W R:FXD MET FLM 12.1K DHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0698-7967 0698-3455 0698-3155 0757-0444 0757-0290
ASR20 ASTP1 ASTP1 ASTP2 ASTP2	0757-0401 0340-0038 0340-0039 0340-0038 0340-0038	:	R:FXD MET FLN 100 DHM 13 1/8W FEEDTHRU:TERNINAL INSULATOR:BUSHING FEEDTHRU:TERNINAL INSULATOR:BUSHING	28480 28480 28460 28460 28480 28480	0757-0401 0340-0038 0340-0039 0340-0038 0340-0038
A6 A6 A6C1 A6C2 A6C3	08556-60006 08556-20002 0160-0975 0160-0975 0160-0975 0180-0197	1 2 4	BOARD ASSYIFREQUENCY CONVERTER Housingishield Cfrad CFR 0-001 UF 20% 75VDCW Cfrad CFR 0-001 UF 20% 75VDCW Cfrad CFR 0-001 UF 10% 20VDCW	28480 28480 12574 12574 56289	08556-60006 08556-20002 SSM001-98 SSM001-98 1500225X9020A2-DYS
A6C4 A6C5 A6C6 A6C7 A6C8	0180-0197 0160-3456 0180-1907 0160-3449 0160-2130	23 1 2	CIFKD ELECT 2.2 UF 10% 20VDCW CIFKD CER .001 UF 10% 250VDCW CIFKD AL ELECT 560 UF 475-10% 6VDCW CIFKD CER 2000 PF 10% 250VDCW CIFKD MICA 865 PF 1%	56289 56289 56289 56289 28480	150D225X9020A2-DYS C067F251F102XE12-CDH 30D567G006DH2-DSM C0678251F202KS25-CDH 0160-2130
A6C9 A6C10 A6C11 A6C12 A6C13	0160-0300 0160-2130 0160-2244 0121-0453 0160-2238	1 1 1	C:FXD NY 0.0027 UF 200VDCW C:FXD MICA 865 PF 1% C:FXD CEA 865 PF 1% C:FXD CEA 8.04/-0.25 PF 500VDCW C:FXD CEA 1.5 PF 500VDCW	56289 28480 28480 74970 72982	192P27292-PTS 0160-2130 0160-2244 187-103-105 301-000-C0K0-159C
A6C14 A6C15 A6C16 A6C17 A6C18	0160-3456 0160-3456 0160-3456 0160-2206 0160-2207	1	CIFND CER001 UF 10% 250VDCM CIFND CER.001 UF 10% 250VDCW CIFND CER.001 UF 10% 250VDCW CIFND MICA 140 PF 5% CIFND MICA 14 PF 5%	56289 56289 56289 28480 28480	C 06 7F 25 1F 102K E12-CDH C 06 7F 25 1F 102K E12-CDH C 06 7F 25 1F 102K E12-CDH 0 160-22 06 0 160-2307
A6C19 A6C20 A6C21 A6C22 A6C22 A6C23	0160-3456 0160-3456 0160-3456 0121-0454 0160-2262	1 1	CIFKO CER -001 UF 10% 25040CM CIFKO CER -001 UF 10% 25040CM CIFKD CER -001 UF 10% 25040CM CIFKD CER 10-71.0 PF 25040C CIFKD CER 16 PF 5% 50040CM	56289 56289 56289 74970 72982	C067F251F102KE12-CDH C067F251F102KE12-CDH C067F251F102KE12-CDH 187-0106-105 301-000 CDG0 160J
A6C24 A6C25 A6C26 A6C27 A6C27	0160-3456 0160-3456 0160-3456 0160-3456 10534-8560	8	CIFRO CER JOOI UF 108 250YDCW CIFRO CER JOOI UF 108 250YDCW CIFRO CER JOOI UF 108 250YDCW CIFRO CER JOOI UF 108 250YDCW DIODEISLICOW NATCHEO QUAD(NSR)	562 89 56289 56289 56289 28480	C 06 7F 25 1F 102K E12-CDH C 06 7F 25 1F 102K E12-CDH C 06 7F 25 1F 102K E12-CDH C 06 7F 25 1F 102K E12-CDH 105 34-8560
A6CR2 A6CR3 A6CR4 A6CR5 A6J1	10534-8560 10534-8560 10534-8560 1902-3104 1250-1195	1	DIDDEISILICON MATCHED QUAD(NSR) DIDDEISILICON MATCHED QUAD(NSR) DIDDEISILICON MATCHED QUAD(NSR) DIDDEISERARDUN 5.427 58 Connectorirf Sum-Hiniature Series	28480 28480 28480 04713 98291	10534-8560 10534-8560 10534-8560 5210939-110 52-053-0000
A6J2 A6J2 A6J2 A6J3 A6J3	08443-20011 1250-1194 2950-0043 08443-20011 1250-1194	3 3	CONNECTOR:RECESS Connector:rf bulkhead receptacle nuffire:3/8-32 x 7/16 x 3/32 Connector:rf bulkhead receptacle	28480 98291 00000 28480 98291	08443-20011 52-045-4610 080 08443-20011 52-045-4610

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A6J3 A6L1 A6L2 A6L3 A6L3	2950-0043 9140-0158 9140-0237 9140-0237 9100-2255	1 6 2	NUTIHEX 3/8-32 X 7/16 X 3/32 CGILIFKD RF 1 UH 103 CGILIFKD 200 UH 53 CGILIFKD 200 UH 53 CGIL/CHARE 0.47 UH 103	00000 99800 28480 28480 28480	08D 1025-20 9140-0237 9140-0237 9100-2255
A6L5 A6L6 A6L7 A6L8 A6L9	9100-2255 9140-0179 9140-0179 9140-1616 9100-1616 9100-0368	2 1 1	COIL/CHOKE 0.47 UH 10% COIL/CHOKE 22.0 UH 10% COIL/CHOKE 22.0 UH 10% COIL/CHOKE 1.50 UH 10% COIL/CHOKE 1.50 UH 10%	28480 28480 28480 99800 36196	9100-2255 9140-0179 9140-0179 1537-16 18-3303M
46Q1 46Q2 46Q3 46Q3 46Q4	1854-0019 1854-0019 1854-0019 1205-0037 1854-0247	5 2 1	TSTRISI NPM TSTRISI NPM TSTRISI NPM HEAT SINKITRANSISTOR TSTRISI NPM	28480 28480 28480 28480 28480 28480	1854-0019 1854-0019 1854-0019 1205-0037 1854-0247
AGR1 Agr2 Agr3 Agr4 Agr5	0757-0465 0698-3443 0757-0346 0757-0346 2100-2632	3 4 1	R:FXD MET FLM 100K OHM 13 1/8W R:FXD MET FLM 287 OHM 13 1/8W R:FXD MET FLM 10 OHM 13 1/8W R:FXD MET FLM 10 OHM 13 1/8W R:VAR FLM 100 OHM 103 L1W 1/2W	28480 28480 28480 28480 28480 28480	0757-0465 0698-3443 0757-0346 0757-0346 2100-2632
A6R6 A6R7 A6R8 A6R9 A6R10	0757-0400 0757-0400 0757-0401 0757-0401 0757-0401 0698-0082	2	R:FKD MET FLM 90-9 DFM 1% 1/8M R:FKD MET FLM 90-9 DFM 1% 1/8M R:FKD MET FLM 100 DFM 1% 1/8M R:FKD MET FLM 464 DFM 1% 1/8M R:FKD MET FLM 464 DFM 1% 1/8M	284 80 284 80 284 80 284 80 284 80 284 80	0757-0400 0757-0400 0757-0401 0757-0401 0698-0082
AGR11 AGR12 AGR13 AGR14 AGR15	0757-0401 0698-0083 0757-0317 0757-0317 0757-0346	8 2	RIFXD MET FLM 100 OHM 1% 1/8M RiFXD MET FLM 1.96K OHM 1% 1/8M RiFXD MET FLM 1.33K OHM 1% 1/8M RiFXD MET FLM 1.33K OHM 1% 1/8M RiFXD MET FLM 10 OHM 1% 1/8M	28480 28480 28480 28480 28480 28480	0757-0401 0698-0083 0757-0317 0757-0317 0757-0346
A6R16 A6R17 A6R18 A6R19 A6R20	0698-3431 0757-0198 0757-0346 0757-0394 0698-3443	2 1 2	R:FXD MET FLM 23-7 OHM 18 1/8W R:FXD MET FLM 100 OHM 18 1/2W R:FXD MET FLM 100 OHM 18 1/8M R:FXD MET FLM 51.1 OHM 18 1/8M R:FXD MET FLM 287 OHM 18 1/8M	28480 28460 28480 28480 28480 28480	0698-3431 0757-0198 0757-0346 0757-0394 0698-3443
Å6R21 A6R22 A6R23 A6R24 A6R25	0757-0394 0698-3441 0757-1094 0757-1094 0757-0397	3 3 2	RIFKD MET FLM 51.1 OHM 1% 1/8W RIFKD MET FLM 215 OHM 1% 1/8W RIFKD MET FLM 1.47K OHM 1% 1/8W RIFKD MET FLM 1.47K OHM 1% 1/8W RIFKD MET FLM 68.1 OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0394 0698-3441 0757-1094 0757-1094 0757-0397
A6R26 A6R27 A6R28 A6T1 A6T2	0698-3429 0757-0799 0698-0082 08556-80001 08556-80003	3 1 1 2	RIFXD NET FLN 19-6 OFM 1X 1/8N RifXD NET FLN 121 Ofm 1X 1/2M RifXD NET FLN 464 Ofm 1X 1/8W Transformertiund Transformertie	28480 26480 28480 28480 28480 28480	0698-3429 0757-0799 0698-0082 08556-80001 08556-80003
A6T3 A6Y1 A7 A7 A7C1	08556-80003 0410-0427 08556-60007 08556-20002 0160-2055	1 1 17	TRANSFORMER:RF Crystal:quart; 50.150 MH2 Board Assy:frequency Control Housing:Shiteld Cifxd Cer 0.01 uf +00-201 100ydcw	28480 28480 28480 28480 56289	08556-80003 0410-0427 08556-60007 08556-60002 C023F101F102522-CDH
A7C2 A7C3 A7C4 A7C5 A7C5 A7C6	0160-2055 0160-3456 0160-2055 0160-2055 0160-2055		C1FXD CER 0.01 UF +00-20% 100VDCM C1FXD CER 001 UF 103 250VDCM C1FXD CER 0.01 UF +00-20% 100VDCM C1FXD CER 0.01 UF +80-20% 100VDCM C1FXD CER 0.01 UF +80-20% 100VDCM	56289 56289 56289 56289 56289 56289	C023F101F103Z522-CDH C067F251F102KE12-CDH C023F101F103Z522-CDH C023F101F103Z522-CDH C023F101F103Z522-CDH
A7C7 A7C8 A7C9 A7C10 A7C11	0160-2055 0180-0197 0160-3060 0180-0116 0180-0116	2	CIFXD CER 0.01 UF +80-201 10040CW CIFXD ELECT 2.2 UF 101 2040CM CIFXD EECT 0.1 UF 201 201 2040CM CIFXD ELECT 6.6 UF 101 3540CCM CIFXD ELECT 6.6 UF 101 3540CCM	56289 56289 56289 56289 56289 56289	C023F101F103ZS22-CDH 1500225X9020A2-DYS 3C42A-CHL 1500685X9035B2-DYS 1500685X9035B2-DYS
A7CR1 A7L1 A7L2 A7Q1 A7R1	1902-3106 9140-0118 9140-0118 1853-0001 0757-0419	1 2 1 2	DIDDE:BREAKDOWN SILICON 5.76V Collifxo 500 UH 5% Collifxo 500 UH 5% TSTR:SI PAPISELECTED FROM 2011321 Rifxo Met Fin 681 OMH 1% 1/Am	28480 26480 28480 28480 28480 28480	1902-3106 9140-0118 9140-0118 1853-0001 0757-0419
A7R2 A7R3 A7R4 A7R5 A7R6	0757-0442 0757-1094 0757-0419 0757-0401 0698-3615	4	RIFXD MET FLN 10-0K OMM 13 1/8M RIFXD MET FLN 1.47K OMM 13 1/8M RIFXD MET FLN 601 OMM 13 1/8M RIFXD MET FLN 100 OMM 13 1/8M RIFXD MET FLN 47 OMM 53 2/8	28480 28480 28480 28480 28480 28480	0757-0442 0757-1094 0757-0419 0757-0401 0698-3615
A7R7 A7R8 A7R9 A7R10 A7R11	0698-3154 0683-1555 0698-7996 0698-3237 0698-3154	2 1 1 4	RIFXD MET FLN 4.22K OMM 1X 1/8M RIFXD COMP 1.5 MEGOHM 3X 1/4M RIFXD FLN 555.5 DWM 0.23X 1/8M RIFXD FLN 5K OMM 0.23X 1/8M RIFXD MET FLN 4.25K OMM 1X 1/8M	284 80 01121 284 80 284 80 284 80 284 80	0698-3154 C8 1555 0698-7996 0698-3237 0698-3154

See introduction to this section for ordering information

See introduction to this section for ordering information

Reference

A7R12

A7R13

A7R14

A7R15 A7R16

A7817

A7R18

A7819

A7TP1

A7TP1

ATTP2

ATTP2

A7U1 A7U2

ATU3

A7U4

A7U5

A7U6 A7U7

A7U8

48

A8 A8C1

A8C 2 A8C3

A 8C 4 A 8C 5

A8C6 A8C7

ABCS

A8C9

A8C10 A8C11

ABCRI

ABCR2

ABCR3 ABCR4

ABJL

ABJZ

A8L1

ASL2

ABL 3

ABL4

A8Q1 A8Q2

A8Q3

A8Q4 A8Q5

A8Q6 A8Q6

48R 1

ABR2 ABR3

A8R4

A8R5

A8R6

ABR 7

488.9

ASRID

A8R11

A8812

ASR14

48813

AaR15

ABR16

48817

A8818

A8R19

A8R20

ABR 21

A8

A8A1

6-6

ABA1C1

Designation

Table 6-3. Replaceable Parts

	2	Table 6-3. Replaceable Parts						Table 6
HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	Reference Designation	HP Part Number	Qty	
0698-3455 2100-1762 0698-3236 0698-3237 0698-3237	1	R:FXD MET FLM 261K ONM 1% 1/8M R:VAR NM 20K 5% 10 R:FXD FLM 15% ONM 0.25% 1/8M R:FXD FLM 5K ONM 0.25% 1/8M R:FXD FLM 5K ONM 0.25% 1/8M	28480 75042 28480 28480 28480	0698-3455 CT-106-4 0698-3236 0698-3237 0698-3237	ABA1C2 ABA1C3 ABA1C4 ABA1C5 ABA1C5 ABA1C6	0160-2266 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	2	C:FXD C:FXD C:FXD C:FXD C:FXD C:FXD
0698-3193 0698-3193 0698-3237 0340-0038 0340-0039	2	R:FXD FLN 10K 0HM 0.25% 1/8W R:FXD FLN 10K 0HM 0.25% 1/8W R:FXD FLN 5K 0HM 0.25% 1/8M FEEDTHRUITERNIMAL INSULATOR BUSHING	28480 28480 28480 28480 28480 28480	0698-3193 0698-3193 0698-3237 0340-0038 0340-0039	A8A1C7 A8A1C8 A8A1CR1 A8A1CR2 A8A1CR2 A8A1CR3	0160-2055 0160-2247 10534-8560 10534-8560 10534-8560	1	C:FX0 C:FXD D100E D100E 0100E
0340-0038 0340-0039 1820-0055 1820-0055 1820-0055 1820-0069	2 1	FEEDTHRU:TERMINAL Insulator:Bushing Iciti Decade Counter Iciti Decade Counter Iciti Decade Counter Iciti Dual +-Inp Pos Nand Gate	28480 28480 01295 01295 01295	0340-0038 0340-0039 SN4356 SN4356 SN4344	ABALCR5 Abalcr5 Abalcr6 Abalcr7 Abalcr9	10 534-8560 1901-0040 1901-051 8 0122-0049 1901-0040	1 1	0100E 0100E 0100E 0100E 0100E
1826-0013 1826-0013 1820-0076 1820-0054 1826-0013	3 1 1	ICILINEAR ICILINEAR ICITLOUAL MASTER/SLAVE FF ICITTLOUAL 2-INPUT NAND GATE ICILINEAR	28480 28480 01295 01295 28480	1826-0013 1826-0013 SN4355 SN4342 1826-0013	A8A1L1 A8A1L2 A8A1L3 A8A1Q1 A8A1Q2	9140-0237 9100-1636 9100-1630 1853-0034 1853-0034	1 1 3	COIL: COIL/COIL/COIL/COIL/COIL/COIL/COIL/COIL/
08556-60008 08556-20002 0160-2055 0180-0094 0180-0291	1	BDARD ASSY:TG DUTPUT HOUSING:SNIELD CIFKD CER 0.01 UF +80−2011 LOOVDCM CIFKD ELECT 100 UF +75−1031 2SVDCM CIFKD ELECT 1.0 UF 1043 35VDCM	28480 28480 56289 56289 56289	08556-60008 08556-20002 C023F101F103Z522-CDH 3001076025DD2-DSM 1500105X9035A2-DYS	A8A1Q3 A8A1Q4 A8A1R1 A8A1R1 A8A1R2 A8A1R3	1853-0050 1853-0050 2100-2574 0698-3151 0698-3440	1 2 1	TSTRIS TSTRIS RIVAR RIFXD RIFXD
0180-0291 0180-1746 0160-3823 0160-2415 0180-2338	2 1 1 1	C:FXD ELECT 1.0 UF 10% 35VDCW C:FXD ELECT 1:5 UF 10% 20VDCW C:FXD PUV 0.0068 UF 5% 200VDCW C:FXD TW 0.0082 UF 5% 200VDCW C:FXD TMT. 650 UF 20% 20VDCW	56289 28480 56289 28480 56289	1500105X9035A2-DYS 0180-1746 192868252E 0160-2415 1090657X0020T2-DYP	A8A1R4 A8A1R5 A8A1R5 A8A1R6 A8A1R7 A8A1R8	0698-0083 0698-0083 0757-0465 0757-0438 0698-3151	ı	RIFXD RIFXD RIFXD RIFXD RIFXD
0160-2204 0160-2254 0180-0094 1910-0016 1910-0016	1 1 3	C:FXD MICA 100PF 5% C:FXD CER 7.5 PF 500VDCW C:FXD ELECT 100 UF 475-10% 25VDCM Didde:Germanium 100ma/0.85V 60P1V Didde:Germanium 100ma/0.85V 60P1V	721 36 72982 562 89 93332 93332	RDN 15 F1 01 J3C 301–000–CCHO–75 9C 3001 07 G02 5 DD2–DSM 0 23 61	ABA1R9 ABA1R10 ABA1R11 ABA1R12 ABA1R12 ABA1R12	0757-0440 0698-0083 0698-0083 0698-0083 08552-6044	1	R:FXD R:FXD R:FXD R:FXD TRANSF
1910-0016 1901-0040 1250-1195 1250-1195 9140-0237	9	DIODE:GERMANIUR IOOMA/O.85V 60PIV DIODE:SILICON 30NA 30NV CONNECTORRF SUG-MINIATURE SERIES CONNECTORRF SUB-MINIATURE SERIES COLLIFRO 200 UH 53	93332 07263 96291 96291 26480	D2361 FDG1088 52-053-0000 52-053-0000 9140-0237	ABALT2 ABALXY1 ABALY1 A9 A9 A9	08552-6044 1200-0770 0410-0196 08556~60009 08556~20002	1 1 1	TRANSF SOCKET CRYSTA BOARD HOUSTA
9140-0237 9100-2463 9100-3309 1854-0404 1854-0404	1 1 5	COILIFXD 200 UH 58 COIL/CHORE 6-8 UH 38 CUIL224 UH 38 TSTR:SI NPM TSTR:SI NPM	28480 82142 28480 28480 28480	9140-0237 4435-2H 9100-3309 1854-0404 1854-0404	A9 A9C1 A9C2 A9C3 A9C4	08556-20018 0160-3456 0160-3060 0160-3456 0160-3456		SHIELD C:FXD C:FXD C:FXD C:FXD
1853-0007 1854-0404 1854-0404 1854-0404 1854-0053 1205-0011	1 1 1	TSTRISI PHP TSTRISI HPH TSTRISI HPH TSTRISI HPH Heat Dissipator:for to-5 and to-9 cases	80131 28480 28480 80131 98978	2N3251 1854-0404 1854-0404 ZN2218 TXBF-032-0258	A9E5 A9E6 A9E7 A9E8 A9E9	0160-3456 0160-3456 0160-3456 0160-3456 0160-2264	1	C:FX0 C:FX0 C:FX0 C:FX0 C:FX0
0757-0280 0757-0316 0698-3441 0757-0442 0757-0290	3 2	R:FXD MET FLM IK OMM 1% 1/8M R:FXD MET FLM 42.2 OMM 1% 1/8M R:FXD MET FLM 215 OMM 1% 1/8M R:FXD MET FLM 10.0K OMM 1% 1/8M R:FXD MET FLM 6.19K OMM 1% 1/8M	28480 28480 28480 28480 28480 28480	0757-0280 0757-0316 0698-3441 0757-0442 0757-0290	A9010 A9011 A9012 A9013 A9014	0140-0210 0160-2055 0160-3439 0160-2055 0140-0193	1 1 1	CIFXD CIFXD CIFXD CIFXD CIFXD
0698-3441 0757-0316 0757-0418 2100-1757 0757-0290	2 1	R:FRO MET FLM 215 CHM 1% 1/6W R:FRO MET FLM 42.2 Chm 1% 1/6W R:FRO MET FLM 615 CHM 1% 1/6W R:FRO MET FLM 615 X TYPE V 1W R:FRO MET FLM 6-19K CHM 1% 1/6W	28480 28480 26480 28480 28480 28480	0698-3441 0757-0316 0757-0418 2100-1757 0757-0290	A9C15 A9C16 A9CR1 A9CR2 A9CR3	0160-2055 0160-2266 1902-3139 1901-0050 1901-0050	;	C:FXD C:FXD D100E: D100E: D100E:
0757-0290 0757-0401 0757-0442 0757-0442 0757-0442 0757-0418		R:FXD MET FLM 6.19K OHM 1% 1/6W R:FXD MET FLM 100 OHM 1% 1/6W R:FXD MET FLM 10.0K OHM 1% 1/6W R:FXD MET FLM 10.0K OHM 1% 1/6W R:FXD MET FLM 619 OHM 1% 1/6W	28480 28480 28480 28480 28480 28480	0757-0290 0757-0401 0757-0442 0757-0442 0757-0442 0757-0443	A9CR4 A9CR5 A9J1 A9J1 A9J1	1901-0050 1901-0050 1250-1194 08443-20011 2950-0043		DIODE: DIODE: CONNEC CONNEC NUT:HE
0757-0280 0698-3429 0757-0158 0757-1100 0757-0460	1 1 1	R:FXD MET FLN 1K DH44 1X 1/8M R:FXD MET FLN 19.6 DH41 1X 1/8W R:FXD MET FLN 610 DH41 1X 1/2M R:FXD FLN 600 DH41 1X 1/8M R:FXD MET FLN 61-9K OH41 XI 1/8M	28480 28480 28480 28480 28480 28480	0757-0280 0698-3429 0757-0158 0757-1100 0757-0460	A9L1 A9L2 A9L3 A9L4 A9Q1	9100-1618 9140-0237 9100-2247 9140-0121 1854-0019	4 1 1	COIL:M COIL:F COIL:F COIL:F TSTR:S
0757-0280 08556-00020 08556-00021 08556-60029 0180-0197	1 1 1	RIFXD MET FLM 1K DHM 1X 1/8W INSULATOR:3 HM2 DSCILLATOR Coveris Mak2 DSCILLATOR Board Assy:3 HM2 DSCILLATOR CIFXD ELECT 2.2 UF 105 2000cw	28480 28480 28480 28480 28480 56289	0757-0280 08556-00020 08556-00021 08556-60029 1500225X9020A2-DYS	A9Q2 A9Q3 A9Q4 A9Q5 A9Q5	1853-0034 1854-0404 1853-0020 1854-0019 1205-0037	1	TSTR:S TSTR:S TSTR:S TSTR:S HEAT S

Mfr Description Mfr Part Number Code XD CER 24 PF 5% 500VDCW XD CER 0.01 UF +80-20% 100VDCW 72982 301-000-C0G0-240J 56289 C023F101F1032S22-CDH C023F101F103Z522-CDH C023F101F103Z522-CDH 56289 562 89 C023F101F1032S22-CDH XD CER 0.01 UF +80-20% 100VDCW XD CER 3.9 PF 500VDCW 56289 72982 C023F101F103Z522-CDH 301-NP0-3.9 PF 10534-8560 DEISILICON MATCHED QUAD(NSR) DEISILICON MATCHED QUAD(NSR) 28480 28480 10534-8560 DEISILICON MATCHED QUAD(NSR) 28460 10534-8560 DE:SILICON MATCHED QUAD(NSR) DE:SILICON 30MA 30WV 28480 10534-8560 07263 FDG1088 1901-0518 DE HOT CARRIER 28480 28480 0122-0049 DEISILICON JOHA JOHY 07263 FDG1088 L:FXD 200 UH 5% 9140-0237 26480 L/CHOKE 110 UH 5% 28480 9100-1630 RISI PNP(SELECTED FROM 2N3251) 1853-0034 28480 SI PNP(SELECTED FROM 2N3251) 28480 1853-0050 ISI PNP 26480 R:SI PNP AR CERMET 500 DHM 10% LIN 1/2W 28480 1853-0050 28480 XD NET FLM 2.87K DHM 13 1/8W XD NET FLM 196 DHM 13 1/8W 28480 0698-3151 28480 0698-3440 D NET FLN 1.96K OHN 18 1/8W 28480 0698-0083 XD MET FLN 1.96K OHM 1% 1/8W XD NET FLN 100K OHM 1% 1/8W 28480 0698-0083 D NET FLM 5-11K DHN 1% 1/8W 26480 0757-0438 XD NET FLM 2.87K DHM 1\$ 1/6W 28480 0698-3151 XD HET FLM 7.50K DHM 1% 1/8W XD MET FLM 1.96K DHM 1% 1/8W 28480 0757-0440 28480 0698-0083 D HET FLM 1.96K OHH 1% 1/8W 28480 XD MET FLM 1.96K OHM 12 1/8H NSFORMERIAF (5 PIN) 28480 0698-0083 28480 08552-6044 SFORMER: RF 15 PINI 28480 08552-6044 ETICRYSTAL 91506 8000-AG-26 TALIQUARTZ 28480 0410-0196 D ASSYITG CONVERTER 28480 08556-60009 INGISHIELD 28480 08556-20002 LD: HOUS ING 26480 08556-20018 CD CER .001 UF 108 250VDCW 562 89 C067F251F102KE12-CDH 56289 3C42A-CHL C067F251F102KE12-CDH CD CER .001 UF 10% 250VDCW 562 89 56289 C067F251F1C2KE12-CDH X0 CER .001 UF 10% 250VDCW X0 CER .001 UF 10% 250VDCW 56289 56289 C 06 7F 25 1F 102K E12-CDH C067E251E102KE12+C0H D CER .001 UF 10% 250VDCW 562 89 C067F251F102KE12-CDH O CER .001 UF 10% 250VDCW 56289 C067F251F102KE12-CDH D CER 20 PF 58 500VDCW 72982 301-000-C0G0-200J O MICA 270 PF 5% 28480 0140-0210 D CER 0.01 UF +80-20% 100VDCW 562 89 C023F101F103ZS22-CDH 0160-3439 C POLY 0.039 UF 5% 200VDCW C023F101F103Z522-CDH 56289 D MICA 82 PF 58 28480 0140-0193 D CER 0.01 UF +80-20% 100VDCW 56289 C023F101F103Z522-CDH CD CER 24 PF 5% 500VDCH 72982 301-000-COG0-240J 04713 SZ10939-158 E:SI 200 MA AT 1V 07263 FDA 6308 EISI 200 MA AT 1V 07263 FDA 6308 E:SI 200 MA AT 1V 07263 FDA 6308 EISI 200 MA AT 1V 07263 FDA 6308 ECTOR:RF BULKHEAD RECEPTACLE 98291 52-045-4610 ECTOR:RECESS 28480 08443-20011 00000 080 *MOLDED CHOKE 5.60 UH *FXD 200 UH 5% 28480 9100-1618 28480 9140-0237 1FXD RF 0.10 UH 10% 28480 9100-2247 FXD 1.8 UH 28480 9140-0121 ISI NPN SI PNP(SELECTED FROM 2N3251) 28480 1853-0034 IST NPN IST PNP(SELECTED FROM 2N3702) IST NPN 28480 1854-0404 28480 1853-0020 28480 1854-0019 SINKITRANSISTOR 28480 1205-0037

See introduction to this section for ordering information

Table 6-3 Replaceable Parts

6-7

Model 8556A

Model 8556A

Table 6-3. Replaceable Parts

				1	able 6-3. Replaceable Parts		
r de	Mfr Part Number	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
80 80 80 80 80	0 757- C2 79 0 757- 0397 0 757- 04 17 0 757- 02 76 0698- 3429	Alixa7 Alixa8 Alixa9 Alixa10	1251-2034 1251-1631 1251-1631 1251-1631 1251-1631		CDHM:PC 20(2X10) CDNTACTS CONMECTORIPC (1 X 10) 10 CONTACT CONMECTORIPC (1 X 10) 10 CONTACT CONMECTORIPC (1 X 10) 10 CONTACT CHASSIS PARTS	76530 71785 71785 71785 71785	65-716C 252-10-30-310 252-10-30-310 252-10-30-310
80 80 80	0757-0420 0698-3443 0698-3431	C1 J1 J2	0160-3448	1	CIFXE CER 1000 PF 10% 1000VOCW Part of W1 Part of W4	56289	C0678251F102K525-CDH
80 80	0757-0815 0757-0439	J2 P2 P2	1251-0055 08555-00002	1	CONNECTOR: MALE 24 CONTACTS SHIELD: CONNECTOR	28480 28480	1251-0055 08555-00002
80 80 60 80	0698-3136 0757-0422 0757-0403 0757-0401	P3 P3 R2 S1	1251-2081 08556-40001 3101-1533	1 1	CONNECTOR:R AND P 41 MALE CONTACT Supporticonnector Mot Assigned Switchislide OP3 PDS. Miniature Cable Assylumbal Imput	71468 28480 78488	DDN-43W2-P 08556-40001 SS-93
80 60 80 80 80 80	0698-0083 0698-0083 0698-3334 0698-4037 08552-6044 08452-6041	W1 W2 W3 W4 W5 XA11	08556~60024 08556~60016 08556~60015 08556~60023 08556~60017 1251~2799	1 1 1 1	CABLE ASSYIONBAL IMPUT CABLE ASSYIF INTERFACE CABLE ASSYIIO INTERFACE CABLE ASSYITO OUTPUT CABLE ASSYITO OUTPUT CABLE ASSYIF POSITION SWITCH CONWECTORFHC (2 X 15) 30 CONTACT	28480 28480 28480 28480 28480 28480 71785	08556-60024 08556-60016 08556-60015 08556-60023 08556-60017 251-15-30-400
80 80 80 89	08443-60064 08556-60012 08556-00008 5C13CS-CML C023F101F1032S22-CDH		0370-0102 0370-0114	1	MISCELLANEOUS K'NDBJRED BAR ISCAN WIDTHI KNDBJRED W/ARROW 5/8" OD 1/8" SHAFT (FINE TUNE)	28480 28480	0370-0102 0370-0114
89 89 89 89	1 50D6 85 X 903 582 – DY S 1 50D6 85 X 903 582 – DY S 5C1 3C S – C NL 5C1 3C S – C NL		0370-0116 0370-0151 3050-0004	1 1 2	KNOB:BLACK ROUND(FREQUENCY) KNOB:ROUND FOR 0.125= DIA SHAFT (TG LEVEL) Masher:Fibre .3125 OD	28480 28480 73734	0370-0116 0370-0151 NG. 1460
63 63 63 63 63 63	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088 FDG1088		8710-0864 5040-0274 08555-0001 08556-00001 08556-00012 08556-00013	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WRENCH:HEX KEY Foot,plug-in Coverbottom Panelirear Covertop Dialirkob if(8552 log Ref Level)	08664 28480 28480 28480 28480 28480 28480	116 5040-0274 08555-00017 08556-0001 08556-00012 08556-00013
15 80 80 80 31	312001. 9100-1642 9140-0137 9140-0137 2N2904A		08556-00014 08556-00015 08556-00016 08556-00022	1 1 1 1	DIALIKNOB BANDWIDTH Dialiknob Scan Dialiknob Input Shielo Haghetic	28480 28480 28480 28480 28480	08556-00014 08556-00015 08556-00015 08556-00016 08556-00022
31 80 80 80 80	2N2904A 0698-7233 0757-0465 0698-3157 0698-3157		110488 11095A 11660A	1 1 1	TERNINALISO OHH Terninalisoo Ohm Shuntitg	28480 28480 28480	110488 11095A 11660A
60 80 80 89	08556-80002 08443-00041 6008-32CN 08556-60001 192P56392-PTS	9					
89 89 89 80 80	192P56392-PTS 192P56392-PTS 192P56392-PTS 0180-1746 C067F251F102KE12-CDH						
89 89 89 89 89 80	C023F101F1032S22-CDH C067F251F102KE12-CDH C067F251F102KE12-CDH C067F251F102KE12-CDH 9140-0052						
80 80 80 31 80	9100-1618 9100-1618 9100-1618 2N3053 0698-3640						
80 80 80 80 80	0764-0018 0698-3405 0698-3465 0698-3465 0757-0465						
80 80 80 30 85	0360-0124 0360-0124 0360-0124 65-716C 252-10-30-310						
				See introc	luction to this section for ordering information		

Table 6-3. Replaceable Parts

	r	<u> </u>			
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A9R1 A9R2 A9R3 A9R4 A9R5	0757-0279 0757-0397 0757-0417 0757-0276 0698-3429	1 1 1	RIFKD NET FLN 3.16K DHN 1% 1/8M RIFKD NET FLN 66.1 DHN 1% 1/8M RIFKD NET FLN 56.2 HN 1% 1/8M RIFKD NET FLN 1.9 OHN 1% 1/8M RIFKD NET FLN 1.9 OHN 1% 1/8M	28480 28480 28480 28480 28480 28480	0 757- C2 79 0 757- 03 97 0 757- 04 17 0 757- 02 76 06 98- 34 29
A9R6 A9R7 A9R8 A9R9 A9R10	0757-0420 0698-3443 C698-3431 0757-0815 0757-0439	1 1 1	R:FXD NET FLN 750 OHN 1% 1/8W R:FXD NET FLN 287 OHN 1% 1/8W R:FXD NET FLN 287 OHN 1% 1/8W R:FXD NET FLN 562 OHN 1% 1/2W R:FXD NET FLN 562 OHN 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0420 0698-3443 0698-3431 0757-0815 0757-0439
A9R11 A9R12 A9R13 A9R14 A9R15	0698-3136 0757-0422 0757-0403 0757-0401 0698-0083	1 1 1	R:FXD MET FLM 17.6K DHM 1% 1/8M R:FXD MET FLM 909 DHM 1% 1/8M R:FXD MET FLM 121 DHM 1% 1/8M R:FXD MET FLM 100 DHM 1% 1/8M R:FXD MET FLM 1.96K CHM 1% 1/8M	26480 28480 28460 28460 28480 28480	0698-3136 0757-0422 0757-0403 0757-0401 0698-0083
A9R16 A9R17 A9R18 A9T1 A9T1	0698-0083 0698-3334 0698-4037 08552-6044 08443-00041	1 1 2	R:FXD MET FLN 1,96K CHM 1% 1/8W R:FXD MET FLN 178 CHM 1% 1/2W R:FXD MET FLN 46-4 CHM 1% 1/6W TRANSFORMER:RF (5 PIN) TEST POINT	26460 28460 28480 28480 28480	0698-0083 0698-3334 0698-4037 08552-6044 08443-00041
A9W1 A10 A10 A10C1 A10C2	C8443-60064 C8556-60012 O8556-00008 O160-0127 O160-2055	1 1 1	CABLE ASSY Board Assy:Pomer Supply Housing:Cover Power Supply CfFXD Cer 1.0 UF 20% 25VDCM CfFXD Cer 0.01 UF 40-20% 100VDCM	28480 28480 28480 56289 56289	08443-60064 08556-60012 08556-00008 5C13CS-CML C023F101F1032S22-CDH
A10C3 A10C4 A10C5 A10C5 A10C6 A10CR1	0180-0116 0180-0116 0160-0127 0160-0127 1901-0040		C:FXD ELECT 6-8 UF 108 35VDCW C:FXD ELECT 6-8 UF 108 35VDCW C:FXD ELECT 6-8 UF 108 35VDCW C:FXD CER 1-0 UF 208 25VDCW D:DDF:SILCON 30A 30W	56289 56289 56289 56289 56289 07263	1 500685 X903582-DY S 1 500685 X903582-DY S 5C13C S-CNL 5C13C S-CNL FDG1088
A10CR2 A10CR3 A10CR4 A10CR5 A10CR5	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON SONA 30WV DIDDE:SILICON 30AA 30WV DIDDE:SILICON 30AA 30WV DIDDE:SILICON 30AA 30WV DIDDE:SILICON 30AA 30WV DIDDE:SILICON 30AA 30WV	07263 07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A 10F 1 A 10L 1 A 10L 2 A 10L 3 A 10Q 1	2110-0001 9100-1642 9140-0137 9140-0137 1853-0012	1 1 2 2	FUSE11 AMP 250V COLUCHOKE 270.0 UF 5% COLUFRO RF 1000 UM 5% COLUFRO RF 1000 UM 5% TSTR:51 PMP	75915 28480 26480 28480 80131	312001. 9100-1642 9140-0137 9140-0137 2N2904A
ALOQ2 ALORI ALORZ ALOR3 ALOR4	1853-0012 0698-7233 0757-0465 0698-3157 0698-3157	1	TSTRISI PNP Rifkd Fln 750 DHN 2% 1/8N Rifkd Net Fln 100k DHN 1% 1/8N Rifkd Net Fln 19.6K DHN 1% 1/8M Rifkd Net Fln 19.6K DHN 1% 1/8M	80131 28480 28480 28480 28480 28480	2N2904A 0698-7233 0757-0465 0698-3157 0698-3157
A10T1 A10TP1 A10xF1 A11 A11C1	08556-80002 08443-00041 2110-0269 08556-60001 0160-0165	1 2 1 4	TRANSFORMER:POWER SUPPLY TEST POINT Clipfies 0.250" DIA BOARD ASSYINASTER CIFKD MY 0.056 UF 10T 200WDCW	28480 28480 91506 28480 56289	08556-80002 08443-00041 6008-32CN 08556-60001 192P56392-PTS
A11C2 A11C3 A11C4 A11C5 A11C6	0160-0165 0160-0165 0160-0165 0180-1746 0160-3456		CIFXD NY 0.056 UF 10% 200VDCM CIFXD NY 0.056 UF 10% 200VDCW CIFXD NY 0.056 UF 10% 200VDCW CIFXD FLECT 15 UF 10% 20VDCW CIFXD CER .001 UF 10% 20VDCW	56289 56289 56289 28480 56289	192P56392-PTS 192P56392-PTS 192P56392-PTS 0180-1746 C067F251F102KE12-CDH
A11C7 A11C8 A11C9 A11C9 A11C10 A11L1	0160-2055 0160-3456 0160-3456 0160-3456 9160-3456 9140-0052	1	CIFKD CER 0-01 UF +80-205 10000CW CIFKD CER -001 UF 107 25000CW CIFKD CER -001 UF 107 25000CW CIFKD CER -001 UF 107 25000CW CD1LIFKD KF 3-3 MHY	56289 56289 56289 56289 28480	C023F101F103ZS22-CDH C067F251F102RE12-CDH C067F251F102RE12-CDH C067F251F102RE12-CDH 9140-0052
A11L2 A11L3 A11L4 A11Q1 A11R1	9100-1618 9100-1618 9100-1618 1854-0039 0698-3640	1	COLLINGLDED CHOKE 5.60 UH Collinglded Choke 5.60 UH Collinglded Choke 5.60 UH TSTRISI NPN Rifko Met Ox 1.8K OHM 5% 2W	28480 28480 28480 80131 28480	9100-1618 9100-1618 9100-1618 2N3053 0698-3640
A1182 A1183 A1184 A1185 A1185 A1186	0764-0018 0698-3405 0698-3346 0698-3405 0757-0465	1 2 1	R:FKD MET FLM 4700 DHM 5% 2W R:FKD MET FLM 422 OHM 1% 1/2W R:FKD MET FLM 422 OHM 1% 1/2W R:FKD MET FLM 422 OHM 1% 1/2W R:FKD MET FLM 100K DHM 1% 1/2M	28480 28480 28480 28480 28480 28480	0764~0018 0698-3405 0698-3346 0698-346 0698-3405 0757-0465
A11TP1 A11TP2 A11TP3 A11XA5 A11XA6	0360-0124 0360-0124 0360-0124 1251-2034 1251-1631	3 2 4	TERMINALISOLDER LUG TERMINALISOLDER LUG TERMINALISOLDER LUG CONNIPC 20(2210) CONTACTS CONNIPC 20(2210) CONTACT	28480 28480 26480 76530 71785	0360-0124 0360-0124 0360-0124 65-716C 252-10-30-310

Model 8556A

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	2100-2531		FRONT PANEL PARTS R:VAR CERNET 10K OHM 20% LIN 2H	28460	2100-2531
2 3	2950-0006 2190-0067		(R4 FINE TUNE) Nut:Hex 1/4-32 Thread Washer:Lock for 1/4" How	73734 28480	9000 2190-0067
4	08553-2029 2100-2528	1	BUSHING:FINE TUNE POT R:VAR CERNET 5K OHM 10% LIN 2W	28480 28480	08553-2029 2100-2528
6 7	1410-0088 2950-0001	1	(R3 FREQUENCY) Bushing:1/4 DIA Nut:Hex Brs NP 3/8-32 x 1/2	71041 73734	B46-2 9002
8	2190-0016		WASHER:LOCK PH BRZ NP	00000	080
9 10 11 12	2360-0133 2190-0007 5020-3349 08553-2028	1 1	SCREN:PAN HD POZI DR 6-32 K 1-1/4" WASHER:INT LOCK Ø6 SHAFT:SST BUSHING:TUNING SHAFT	00000 28480 28480 28480 28480	080 2190-0007 5020-3349 08553-2028
13 14 15 16 17	3050-0017 08553-2039 3030-0145 3030-0342 3030-0007	ı	WASHER:FLAT PHOS BRONZE SPUR GEAR:201 ScrewsSet 6-32 x 1/8" LG ScrewsSet 6-32 x 5/32" LG ScrewsSet S5T 4-40 x 1/8"	00000 28480 70276 00000 00000	080 08553-2039 080 080 080
18 19 20 21 22	08553-2020 08553-2021 5000-0206 1460-0299 08553-2040	1 1 1	FLYNHEEL Shaftimain tuning Springingaher Wirffornianti-backlash Spur Gearilzt	28480 28480 28480 28480	08553-2020 08553-2021 5000-0206 1460-0299 08553-2040
22 23 24 25 26 27	0533-2040 0520-0127 08553-6034 08553-2022 08553-2018 2420-0001	1	STAN GENTILL' SCREUFAR HD POZI DR 2-56 X 3/16" GEAR AND HUB ASSY SPACERISCARDX PLATE:FRONT NUTTHEX ST NP 6-32 X 5/16 W/LUCKWASHER	28480 00000 28480 28480 28480 28480 78189	080 08553-2034 08553-2022 08553-2018 08058
28 29 30 31 32	08556-00005 2360-0193 08553-2016 08553-2019 08553-00113	1 1 1 1	GUSSET:LEFT Screw:Pan HD POZI DR 6-32 X 1/4= BushingPamel Plate:Rear Spring:Window	28460 00000 28480 28480 28480	08558-00005 080 08553-2016 08553-2019 08553-00113
33 34 35 36 37	08556-40002 08556-40003 08553-0016 08553-6029 2200-0103	1 1 1 1	WINDOM:STATIONARY WINDOM:SLIDING SPRING-WINDOM PULLEY ASYSLEFT SCREW:SST PMH POZI DR 4-40 X 1/4#W/LK	28480 28480 28480 28480 28480 00000	08556-40002 08556-40003 08553-0016 08553-6029 080
38 39 40 41 42	1450-0371 1450-0153 08556-20003 08553-6030 8200-0049	1 1 1 1	LENSILAMPHOLDER, AMBER Lampholderfor T-1 Series Extrusion:Engrave Pulley Assy:Right Dial Cord	08717 08717 28480 28480 28480	102-A(LENS) 1025R 08556-20003 08553-6030 8200-0049
43 44 45 46 47	1460-0195 2360-0193 08553-4001 00197-47403 1460-0199	1 1 2 1	SPRING:EXTENSION Screyspan nd Pozi dr 6-32 x 1/4" Pointer Button:detent Spring:extension	2 84 80 00000 28480 28480 28480	1460-0195 OBD 08553-4001 00197-47403 1460-0199
48	2100-3066	2	R:VAR WH 5K OHH 5% LIN 1W (10T) (R6 ZERO ADJ)	28480	2100-3066
49 50	08556-00007 2100-2487	1	BRACKET:POT R:VAR COMP 500 OHM 20% LIN 1/2W (R5 300KHZ ADJ)	28480 28480	08556-00007 2100-2487
51 52 53	08556-00006 2360-0200 2100-2488	1	SUB-PANEL Screw:Flat HD POZI DR 6-32 X 1/2" R:VAR COMP 10K DHM 20% LIN 1/2W	28480 00000 28480	08556-00006 080 2100-2488
54	21 40-0259	ı	(R7 AMPL CAL) LAMP:INCANDESCENT 12V 0.06A	71 744	CM8-1099
55	2100-3066		(DS1) Rivar ww.5K.dhn 5% Lin iw (107)	28480	2100-3066
56 57	08553-0009 2200-0165	1	(R] TRACK ADJ) Bracket:Pot Screwiflat HD Pozi Dr 4-40 x 1/4"	28480 00000	08553-0009 080
58 59	08556-00004 3101-0070	1	GUSSET:RIGNT Switch:Slide	28480 79727	08556-00004 G-126
60	3101-1533	2	(S3 RANGE KHZ) Switchfslide DP3 PCS. Miniature (S1 DBM/DBV)	78488	55-93
61	08556-00009	ı	PLATE:CONNECTOR	28480 28480	08556-00009 08556-00002
62 63	08556-00002 3101-1299	1	FANEL:FRONT NOT ASSIGNED Switch:Pushbutton DPDT(52 20KHZ MARKER)	28480 71590	08556-00002 PB-1
64 65 66 67	08556-20013 08556-20014	1	NOT ASSIGNED KNOB: PUSH KNOB: TURN	28480 28480	08556-20013 08556-20014

See introduction to this section for ordering information

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides instructions for troubleshooting and repairing the Hewlett-Packard Model 8556A Spectrum Analyzer LF Section.

8-3. Theory of Operation

8-4. Theory of operation appears on the foldout pages opposite the block diagram on Service Sheet 2 and on the pages opposite the schematic diagrams on Service Sheets 3 through 12. The block diagram on Service Sheet 2 is keyed to the remaining service sheets so that the reader may quickly locate the schematic and theory concerning any specific circuit.

8-5. Recommended Test Equipment

8-6. Test equipment and test equipment accessories required to maintain the LF Section are listed in Tables 1-4 and 1-5. Equipment other than that listed may be used if it meets the listed minimum specifications.

8-7. Board level troubleshooting without Extender Cable Assembly HP 11592-60015 is not recommended. Component level troubleshooting and repair without the extender cable, Interconnection Cable Assembly HP 11592-60016, and the Extender Board HP 5060-0256 is not recommended. Selectro to BNC adapters HP 1250-1236 and HP 1250-1237 facilitate testing signal levels and waveshapes but are not absolutely necessary. (The TRACKING GEN OUT cable — red — can be used as a Selectro Plug to BNC adapter.)

8-8. Troubleshooting

8-9. The troubleshooting procedures in this manual fall into three categories.

8-10. The troubleshooting tree is designed to isolate trouble to the board or assembly level.

8-11. The troubleshooting block diagram is designed to be used as a quick reference by the technician who is familiar with the LF Section and does not wish to go through the troubleshootingtree. It will also isolate trouble to the board or assembly level.

8-12. Circuit level troubleshooting and analysis is provided on the foldout page opposite each sche-

matic. After the cause of a trouble has been isolated and corrected, check the troubleshooting information associated with that circuit for any adjustments that may have to be performed.

8-13. GENERAL SERVICE INFORMATION

8-14. Part Location Aids

8-15. The locations of chassis-mounted parts and major assemblies are shown in Figure 8-14. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the appropriate schematic diagram page or on the page opposite it. The part reference designator is the assembly designator plus the part designator. (Example: A10R9 is R9 on the A10 assembly.) For specific component description and ordering information refer to the parts list in Section VI.

8-16. Factory Selected Components

8-17. Some component values are selected at the time of final checkout at the factory (see Table 8-1). Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk (*). The recommended procedure for replacing a factory-selected part is as follows:

a. Try the original value, then perform the calibration test specified for the circuit in the performance and adjustment sections of this manual.

b. If calibration cannot be accomplished, try the typical value shown in the parts list and repeat the test.

c. If the test results are still not satisfactory, substitute various values within the tolerances specified in Table 8-1 until the desired result is obtained.

8-18. Diagram Notes

8-19. Table 8-3, Schematic Diagram Notes, provides information relative to symbols and measurement units shown in schematic diagrams.

Table 8-1. Factory Selected Components

Component	Location	Range of Values	Basis of Selection
A1R1	Service Sheet 9	1.33K to 1.21K ohms	Sets upper limit of 300 kHz ADJ, Select for +15.85 V at test point A (A11XA7 pin 5) with anal- yzer set as follows: RANGE 0-300 kHz FREQUENCY 300 kHz FINE TUNE cantered 300 kHz ADJ full cw
A8A1L3	Service Sheet 7	56.0 to 47.0 بطر	Sets center of tuning range of TRACK ADJ. Select for range of 3 MHz ±140 Hz of 3 MHz oscillator. (In- creasing value of A8A1L3 wilk lower center of tuning range.)
A8R7	Service Sheet 7	38.0 to 42.2 ohms	Sets gain of A8Q1 at 300 kHz. Selected so that FLATNESS ADJ A8R9 can adjust flatness within limits.

8-20. Servicing Aids on Printed Circuit Boards

8-21. The servicing aids include test points, transistor and integrated circuit designations, adjustment callouts and assembly stock numbers.

8-22. Circuit Board Extender

8-23. A 20-pin extender board, HP 5060-0256 is required to extend the circuit boards clear of the chassis. This provides easy access to components and test points. See Figure 8-1 for a typical example of extender board use.

8-24. GENERAL SERVICE HINTS

8-25. Etched Circuits

8-26. The etched circuit boards in the LF Section are of the plated-through type consisting of metallic conductors bonded to both sides of insulating material. The metallic conductors are extended through the component mounting holes by a plating process. Soldering can be done from either side of the board with equally good results. Table 8-2 lists recommendations and precautions pertinent to etched circuit repair work.

 a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components. b. Do not use a high-power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.

c. Use a suction device (Table 8-2) or wooden toothpick to remove solder from component mounting holes. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CON-DUCTOR.

d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion. See Table 8-2 for recommendation.

8-27. Etched Conductor Repair

8-28. A broken or burned section of conductor can be repaired by bridging the damaged section with a length of tinned copper wire. Allow adequate overlay and remove any varnish from etched conductor before soldering wire into place.

8-29. Component Replacement

8-30. Remove defective component from board.

NOTE

Axial lead components, such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board. Wrap leads of replacement component one turn around original leads. Solder wrapped connection, and clip off excess lead.

8-31. If component was unsoldered, remove solder from mounting holes, and position component as original was positioned. DO NOT FORCE LEADS INTO MOUNTING HOLES; sharp lead ends may damage plated-through conductor.

8-32. Transistor Replacement. Transistors are packaged in many physical forms. This sometimes results in confusion as to which lead is the collector, which is the emitter, and which is the base. Figures 8-2 and 8-3 show typical epoxy and metal case transistors and integrated circuits and the means of identifying the leads.

8-33. To replace a transistor, proceed as follows:

a. Do not apply excessive heat; see Table 8-2 for recommended soldering tools.

b. If possible, use long-nose pliers between transistor and hot soldering iron as a heat sink. The

Figure 8-1. 8556A LF Section with Circuit Board Extended

instant solder is melted, use desoldering aid to remove solder from mounting hole.

c. When installing replacement transistor, ensure sufficient lead length to dissipate soldering heat by using about the same length of exposed lead as useful for original transistor.

d. Integrated circuit replacement instructions are the same as those for transistors.

8-34. Some transistors are mounted on heat sinks for good heat dissipation. This requires good thermal contact with mounting surfaces. To assure good thermal contact for a replacement transistor, coat both sides of the insulator with Dow Corning No. 5 silicone compound or equivalent before fastening the transistor to the chassis. Dow Corning No. 5 compound is available in 8 oz. tubes from Hewlett-Packard; order HP Part No. 8500-0059.

8-35. Diode Replacement. Solid state diodes are in many physical forms. This sometimes results in

confusion as to which lead or connection is the cathode (negative) and which lead is the anode (positive), since not all diodes are marked with the standard symbols. Figure 8-2 shows examples of some diode marking methods. If doubt exists as to polarity, an ohmmeter may be used to determine the proper connection. It is necessary to know the polarity of the ohms lead with respect to the common lead for the ohmmeter used. (For the HP Model 410B Vacuum Tube Voltmeter, the ohms lead is negative with respect to the common: for the HP Model 412A DC Vacuum Tube Voltmeter. the ohms lead is positive with respect to the common.) When the ohmmeter indicates the least diode resistance, the cathode of the diode is connected to the ohmmeter lead which is negative with respect to the other lead.

NOTE

Replacement instructions are the same as those listed for transistor replacement.

Model 8556A

Figure 8-2. Examples of Diode and Transistor Marking Methods

Table 8-2.	Etched	Circuit	Soldering	Equipment
------------	--------	---------	-----------	-----------

ITEM	USE	SPECIFICATION	ITEM RECOMMENDED
Soldering tool	Soldering, unsoldering	Wattage rating: 37—50; Tip Temp: 750-800°	Unger #766 handle w/*Unger #1237 heating uni
Soldering Tip	Soldering, unsoldering	*Shape: pointed	*Ungar #PL111
De-soldering Aid	To remove molten solder from connection	Suction device	Soldapulit by Edsyn Co., Arleta, California
Resin (flux) Solvent	Remove excess flux from soldered area before ap- plication of protective coating	Must not dissolve etched circuit base board	Freon; Acetone; Lecquer Thinner
Solder	Component replacement Circuit board repair Wiring	Resin (flux) core, high tin content (60/40 tin/lead), 18 gauge (SWG) preferred	
Protective Coating	Contamination, corro- sion protection	Good electrical insulation, corrosion- prevention properties	Silicone Resin such as GE DRI-FILM**88

Figure 8-3. Integrated Circuit Packaging

8-36. LOGIC CIRCUITS AND SYMBOLS

8-37. The following paragraphs and illustrations provide basic information about logic circuits and symbols. While a complete treatment of the subject is not within the scope of this manual, it is believed that this material will help the technician experienced with analog devices, who has had little or no experience with digital circuits.

8-38. The circuits discussed are digital in nature; their outputs are always in one of two possible states, a "1" or "0". These two states are also referred to as being either high (H) or low (L). The high and low states are relative; low must be less positive (more negative) than high, both states may be positive or negative, or high may be positive and low negative. In positive logic the more positive (H) state is a logical "1" and the more negative (L) state is a logical "0". In negative logic the more negative (L) state is a logical "1" and the more positive (H) state is a logical "0".

8-39. Two of the basic "building blocks" of logic circuits are the AND and OR gates. The symbols and truth tables for basic AND and OR gates are shown in Figure 8-4.

Figure 8-4. Basic AND and OR Gates

8-40. Basic AND Gate (Positive Logic)

8-41. The basic AND gate is a circuit which produces an output "1" when, and only when, a "1" is applied to all inputs. As shown in Figure 8-4, terminal X will be high only when terminals A and B are both high. The dot (\bullet) shown in the AND gate is the logic term for AND. The term for a simple two input AND gate is X = A*B (X equals A and B). AND gates may be designed to have as many inputs as required to fill a specific requirement.

8-42. Basic OR Gate (Positive Logic)

8-43. The basic OR gate is a circuit which produces a "1" output when any one or all of the inputs are in the "1" state. As shown in Figure 8-4, terminal X will be high when either terminal A or terminal B, or both are high. The + shown in the OR gate symbol is the logic term for OR. The term for a simple two input OR gate is X = A + B (X equals A or B). OR gates may be designed to have as many inputs as required for specific needs.

8-44. The symbols for AND and OR gates differ in that AND gates symbols have a flat input side and a rounded output side while OR gate symbols have a concave input side and a pointed output side.

8-45. Truth Tables

8-46. Truth tables provide a means of presenting, in tabular form, the output state of logic devices for any set of inputs. Truth tables contain one column for each of the inputs and a column for the output. In basic truth tables the column notations are usually H or L (for high and low) or, for binary notation, "1" or "0".

847. Logic Inversion 8-48. Adding inversion to AND and OR gates changes their characteristics. Inversion is usually

changes their characteristics. Inversion is usually accomplished by adding an inverter stage (common emitter) in front of an input or after an output. A circle is added to the input or output leads of the symbol to indicate the portion of the circuit in which the inversion takes place. The simplest of these devices are AND and OR gates in which the output is inverted. These gates are called NAND (for Not AND) and NOR (for Not OR). Basic NAND and NOR gates are shown in Figure 8-5. When all inputs and outputs of an AND gate are inverted, it functions as an OR gate. When all inputs and outputs of an OR gate are inverted, it functions as an AND gate. Figure 8-6 provides information relative to various gate inversion functions.

8-49. BINARY CIRCUITS AND SYMBOLS

8-50. Many types of flip-flops are used in binary circuits. Each half of a flip-flop is in one of two states at any given time. The outputs are complementary; when one stage is on, the other is off. The text identifies these outputs as Q and \overline{Q} . The outputs are termed 1 and 0, high and low, or true and false, by the same rules that apply to AND and OR gates.

8-51. Reset-Set (RS) Flip-Flop

8-52. Figure 8-7 shows an RS flip-flop. The RS flip-flop has two inputs, S for set and R for reset (sometimes labeled S for set and C for clear). Assume that initially Q is high (Q2 off) and Q is low (Q1 on). In this state the flip-flop is set and a

Figure 8-5. Basic NAND and NOR Gates

Figure 8-6. Logic Comparison Diagrams

positive pulse at the set input will not affect the circuit. When a positive pulse is applied to the reset input it is coupled through C4 and CR2 to the base of Q2. Q2 begins to conduct and the negative going collector voltage is coupled through C3 to the base

of Q1 to cut off Q1. The process is regenerative; Q1 is quickly cut off and Q2 saturates. The flipflop will remain in the reset state until a positive set pulse is applied through C2 and CR1 to the base of Q1.

Service

8-53. The RST Flip-Flop

8-54. Figure 8-8 shows an RST flip-flop. It can be set and reset like the RS flip-flop and, in addition, it can be toggled back and forth between its two stable states. A positive pulse (or high) at the S input will set Q high; a high at the R input will set Q low. The circle on the symbol means that the trigger input responds to negative-going triggers. The flip-flop will switch between its two stable states on each input trigger. That is, if Q is high, the next trigger will cause Q to go low.

8-55. Clocked JK Flip-Flop

8-56. The clocked JK flip-flop may be assembled from an RS flip-flop, an inverter, and two AND gates. The flip-flop is shown in Figure 8-9 along with its truth table. It has three inputs and two outputs. The clock input is fed by negative (or low) triggers as indicated by the circle on the symbol. Flip-flop response is determined by the

values of the J and K inputs at the instant that the

a. When J and K are low, the flip-flop will

b. When K is high and J is low, the trigger

c. When J is high and K is low, the trigger will cause Q to go high (unless it is already high).

d. When J and K are both high, the flip-flop

will toggle between its two stable states. That is, if

Q is high, the next trigger will set Q low.

will cause Q to go low (unless it is already low).

trigger pulse arrives at the clock input:

remain in whatever state it is in.

Figure 8-9. The Clocked JK Flip-Flop

8-57. JK Master/Slave Flip-Flop

8-58. The JK master/slave flip-flop has the same truth table as the JK flip-flop. However, the sequence of operation is not the same. The regular JK flip-flop responds only to the negative portion of the input clock:

a. While the trigger (or clock) pulse is high, the J and K inputs are isolated from the flip-flop.

b. When the trigger goes low, the information at the J and K inputs is fed into the flip-flop to control its outputs.

c. When the trigger again goes high, the J and K inputs are isolated from the flip-flop.

Figure 8-8. RST Flip-Flop

Figure 8-10. JK Master/Slave Flip-Flop

8-59. Figure 8-10 shows one way to assemble a JK master/slave flip-flop. This flip-flop responds to both the positive and the negative portions of the input clock:

a. While the trigger (or clock) pulse is high, the master flip-flop is isolated from the slave flip-flop and J and K information is fed into the master.

b. When the trigger goes low, the J and K inputs to the master are disabled. At the same time the information in the master flip-flop is fed into the slave to control the slave's outputs.

c. When the trigger again goes high, the master is isolated from the slave and J and K information is again fed into the master flip-flop.

8-60, Preset and Clear

8-61. Note in Figure 8-10 that the slave flip-flop has preset and clear inputs connected to it through inverters. Whenever a low is applied to the preset

inverter, the Q output will go high. And whenever a low is applied to the clear inverter, the Q output will go low. These inputs are used in counters and other logic circuits to set flip-flops to a known state, regardless of their other inputs.

8-62. OPERATIONAL AMPLIFIERS

8-63. Circuits and Symbols

8-64. Operational amplifiers are widely used as summing amplifiers, offset amplifiers, buffers and level detectors in regulated power supplies. The particular function is determined by external circuit connections.

8-65. Figure 8-11 shows a typical operational amplifier. Circuit A is a non-inverting buffer amplifier with a gain of 1. Circuit B is a non-inverting amplifier with gain determined by the resistance of R1 and R2. Circuit C is an inverting amplifier with gain determined by R2 and R1. Circuit D shows typical circuit connections and parameters. It is assumed that the amplifier has high gain, low output impedance and high input impedance.

8-66. Troubleshooting

8-67. An operational amplifier can be characterized as an ideal voltage amplifier having low output impedance, high input impedance, and very high gain. Also the output voltage is proportional to the difference in the voltages *applied* to the two input terminals. In use, the amplifier drives the input voltage difference close to zero.

8-68. When troubleshooting an operational amplifier, measure the voltages at the two inputs with no signal applied; the difference between these voltages should be less than 10 mV. A difference voltage much greater than 10 mV indicates trouble in the amplifier or its external circuitry. Usually this difference will be several volts and one of the inputs will be very close to an applied circuit operating voltage (for example, ± 20 V, -12 V).

8-69. Next, check the amplifier's output voltage. It will probably also be close to one of the applied circuit potentials: ground, $\pm 20V$, $\pm 12V$, etc. Check to see that the output conforms to the inputs. For example, if the inverting input is positive, the output should be negative; if the non-inverting input is positive, the output should be positive. If the output conforms to the inputs, check the amplifier's external circuitry. If the amplifier's output does not conform to its inputs, it is probably defective \pm replace it.

Model 8556A

Model 8556A

8-70. DIAL CALIBRATION PROCEDURE

8-71. To restring the frequency dial, follow the procedure outlined in Figure 8-12. After the dial is restrung, or after the frequency tuning pot R3 is replaced, perform the following adjustments:

a. Switch RANGE from 0-30 kHz to 0-300 kHz. The final zeros on the CENTER FREQUENCY dial should all be completely visible.

b. Turn FREQUENCY full counterclockwise. The dial pointer should indicate ³/₄ to 1¹/₄ small divisions to the left of 0 kHz.

c. Turn FREQUENCY full clockwise. The dial pointer should indicate at least ¾ of a small division to the right of 300 kHz.

d. If necessary, loosen the set screws on the gear shaft of the FREQUENCY pot and re-position the gear slightly by turning the FREQUENCY knob while the pot is at either stop. Then retighten the set screws and repeat steps b and c.

e. Perform the frequency calibration adjustments specified in Section V.

	SCHEMATIC DIAG	RAM NOT	ES		
	Resistance is in ohms, inductance is in microhenries, capacitance is in micro- farads unless otherwise noted. P/O = part of.				
	*Asterisk denotes a factory-selected value. Value shown is typical. Capacitors may be omitted or resistors jumpered.				
1	Screwdriver adjustment.	0	Panel control.		
	Encloses front panel designations.				
	Circuit assembly borderline.				
	Other assembly borderline.				
	Heavy line with arrows indicates pat	h and dire	ction of main signal.		
	Heavy dashed line with arrows indic	ates path a	nd direction of main feedback.		
€w	Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.				
位	Numbers in stars on circuit assemblies show locations of test points.				
\bigcirc	Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number identifies the narrower stripe; e.g. 947 denotes white base, yellow wide stripe, violet narrow stripe.				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Arrow indicates direction of contact movement when relay is energized.				
Ť	Chassis ground.				
$\checkmark$	Isolated ground.				
o∎0	Indicates non-shorting switch contact.				
⊶ֈթ	Indicates shorting switch contact.				
VI	Indicates voltage isolated from chassis ground				
VIF	Indicates voltage-isolated-filtered.				

Model 8556A

## OVERALL TROUBLESHOOTING TREE

### INTRODUCTION

The overall troubleshooting tree can be used to quickly isolate trouble to the circuit board, or assembly, level. To implement repair, turn to the indicated service sheet and follow the troubleshooting procedure.

After repairing a circuit board, perform the adjustment procedures, if any, specified in the troubleshooting procedure.

# TROUBLESHOOTING

### Equipment:

AC Voltmeter
Oscilloscope
X10 Oscilloscope Probe HP 10004A
Digital Voltmeter HP 3480B/3484A, Option 042
Cable Assy HP 1102A
Test Oscillator HP 651B
BNC Cable Assy (2) HP 10503A
Adapter
Adapter HP1250-1237
50 Ohm Feed Thru Termination HP 11048B
Extender Cable Assy HP 11592-60015
Interconnection Cable Assy HP 11592-60016

### Extender Cable Installation

Remove the LF Section and IF Section from the Display Section; install the Extender Cable Assembly in the Display Section and connect the appropriate plugs to the LF and IF Sections. Separate the LF and IF Sections and connect the Interconnection Cable Assembly. (See the step-by-step procedure on Service Sheet 1.)

## Measurement Procedure

Use the 8552A/B-8556A Trouble Isolation Troubleshooting Tree to isolate trouble to the 8556A. This tree will also branch to the Frequency Troubleshooting Table or to the Amplitude or Tracking Generator Troubleshooting Trees. The latter will branch to a specific Service Sheet.

Set the analyzer controls as specified on the troubleshooting tree, and apply any specified signals using the Test Oscillator, BNC Cable Assembly, and Adapters. Check the dc voltages with the Digital Voltmeter; check the peak-to-peak voltages with the Oscilloscope, and check the rms voltages with the AC Voltmeter. The AC Voltmeter is also used, with the 50 Ohm Feed Thru Termination, to check the power (dBm) readings.

#### Note

The quickest way to isolate trouble to the 8556A is to substitute a known-good tuning section (such as an 8553B) for the 8556A. If the trouble persists the malfunction is located in the IF Section or the Display Section. 8552A/B - 8556A TROUBLE ISOLATION TROUBLESHOOTING TREE

TRACKING GENERATOR TROUBLESHOOTING TREE (no tracking generator output)



AMPLITUDE TROUBLESHOOTING TREE (display missing or amplitute incorrect)



FAULT	TEST
No Markers	a. Check Tracking Generator output at front panel: 3V rms minimum (TRACKING GEN LEVEL full clockwise).
Inaccurate Fre- quency Indication	b. Check ÷ 150 circuitry at XA7 Pin 2 or XA6 Pin 8: 20 kHz comb approximately 130 mV p-p.
	c. Check coupling into mixer at A6C7: 130 mV p-p.
Inaccurate Fre- quency Indication	<ul> <li>a. Check ZERO ADJ voltages at white wire on rear of R6 (ZERO ADJ). Approximate range: +4.6 to +6.7V (8552A) or +6.3 to +8.8 V (8552B).</li> </ul>
	<ul> <li>b. Check 300 kHz voltage at white/orange wire on 300 kHz ADJ R5. Approximate range: 14.8 to 16V.</li> </ul>
	c. Check TUNE voltage to IF plug-in at XA7 Pin 8 or XA11 Pin 8: adjustable from 0–15V approximate.
	d. Check TUNE voltage at white/red/violet wire on back of rear wafer of SCAN WIDTH switch S2 (or XA7 Pin 9): 0 to 15V approximate.
Inaccurate Scan Width	a. Measure scan voltage at white/orange/yellow wire connected to second wafer from rear of SCAN WIDTH switch S1. The level should be about 10V p-p in 20 kHz/DIV and diminish propor- tionally with decreasing scan width.
	b. Check 8552A/B Scan Accuracy.
Noisy or Unstable Sweep	<ul> <li>Check integrated circuits on A7 FREQUENCY control assembly.</li> </ul>
	b. In 8552A/B check frequency control and 47 MHz VTO.

Table 8-4.	Assembly	and Com	ponent	Locations
------------	----------	---------	--------	-----------

	Component	Service Sheet	Photo
A1	Bandwidth Switch	9, 10, 11	Figures 8-40, 43
A2	Scan Width Switch	9,10	Figures 8-36, 41
A3	Input Level Switch	4, 5, 7, 11	Figures 8-24, 31, 44
A4	(Reserved for Balanced Input)	(3)	1.9400 0 21, 02, 1
A5	Pre-Attenuator and Preamplifier	4	Figure 8-22
A6	Frequency Converter	5	Figure 8-25
A0 A7	Frequency Control and Marker Generator	8,9	Figures 8-34, 37
A8	Tracking Generator Output	7	Figures 8-29, 30
A9	Tracking Generator Frequency Converter	6	Figure 8-27
A10	Power Supply	12	Figure 8-46
A10	Master Board	4, 5, 6, 7, 8, 9, 12	Figures 8-21, 47
AII	Master Doald	4, 5, 0, 7, 6, 5, 12	Figures 0-21, 47
	Component	Service Sheet	Photo/Location
C1	.	4	Figure 8-14
DS1	DISPLAY UNCAL Lamp	12	Figure 6-1
J1	INPUT 1 M $\Omega$	4	Figure 8-14
J2	TRACKING GEN OUT 600 $\Omega$	7	Figure 8-14
P1	Not Assigned	•	1.9.00011
P2	LF Section/Display Section	12	Figure 8-14
P3	LF Section/IF Section	4, 6, 9, 10, 11, 12	Figure 8-14
R1	TRACK ADJ	7	Figure 8-14
R2	Not Assigned	·	1.9.00011
R3	FREQUENCY	9	Figure 8-14
R4	FINE TUNE	9	Figure 8-14
R5	300 kHz ADJ	9	Figure 8-14
R6	ZERO ADJ	9	Figure 8-14
R7	AMPL CAL	11	Figure 8-14
S1	dBm/dBV	4	Figure 8-14
S1 S2	20 kHz MARKERS	8	Figure 8-14
S2 S3	RANGE kHz	9	Figure 8-14
W1	Signal Input – Grav	5 4	Figure 8-14
W2	50 MHz Out – White	5	Figure 8-14
W2 W3	47 MHz LO Input – White	6	Figure 8-14
W3 W4	Tracking Gen Out – Red	7	Figure 8-14
W4 W5	dBm/dBV - Orange	4	Figure 8-14
XA11		4, 7, 8, 9, 12	Figure 8-14
AAH		1, 1, 0, 0, 14	LIGHTO D-TT





# Table 8-5. Connector P2 Pin Identification

Connector P2	Wire Color Code	Function	Connector P3	Wire Color
Pin 1	-	Connects to Pin 4		
2	92	+100 Volts	Pin 1	912
3	•	Open	2	913
4	<u>-</u>	Connects to Pin 1	3	914
5-7	-	Open	4	915
01		Open	5	926
8	0	-12.6 Volts Ground Return	6	3
9	-	Open	7	5
10	905	To DISPLAY UNCAL Lamp	8	6
11		Connects to Pin 12	9	938
12	-	Connects to Pin 11	10	945
13-15	_	Open	11	946
16	92	+100 Volts	12	90
17-20	-	Open	13	
21	97	-12.6 Volts	14	925
	97		15	904
22		Open		
23	-	Connects to Pin 24	16-24	
24	-	Connects to Pin 23	25	916
			26	902
			27	902
			28	-
			29	96
			30	957
			31	934
			32	9
			33	935
			34	936
			35	937
			36	907
			37	902
			38	956
			39	958
			40	968
			41	
			A1	Clea
			A2	Clea

# Table 8-6. Connector P3 Pin Identification

ector P3	Wire Color Code	Function
1	912	0.03 kHz (8552B)/0.05 kHz (8552A) Bandwidth
2	913	0.10 kHz Bandwidth
3	914	0.30 kHz Bandwidth
4	915	1.0 kHz Bandwidth
5	926	Frequency Tune Voltage
6	3	±5V Scan Sawtooth
7	5	Linear Gain Compensation
8	6	Linear Gain Compensation
9	938	LOG REF LEVEL Lamp No. 4
10	945	LOG REF LEVEL Lamp No. 5
11	946	LOG REF LEVEL Lamp No. 6 (right)
12	90	Sensing Ground
13	-	Open
14	925	0.01 kHz Bandwidth (8552B Only)
15	904	8552A/B Sensing for ZERO ADJ
16-24	-	Open
25	916	10 kHz Bandwidth
26	902	30 kHz Bandwidth (+20V Out)
27	902	100 kHz Bandwidth (+20V Out)
28		300 kHz Bandwidth (Open)
29	96	To AMPL CAL Pot
30	957	Normal Analogic Line
31	934	47 MHz LO Scan Voltage
32	9	ZERO ADJ Voltage
33	935	LOG REF LEVEL Lamp No. 1 (left)
34	936	LOG REF LEVEL Lamp No. 2
35	937	LOG REF LEVEL Lamp No. 3
36	907	-10 Volts
37	902	+20 Volts
38	956	VIDEO FILTER Analogic Line
39	958	ZERO SCAN Analogic Disable Line
40	968	LOG/LINEAR Sensing
41		Open
A1	Clear	50 MHz IF
A2	Clear	47 MHz Auxiliary Line

Troubleshooting 1 Diagram & Conn Identifico

SERVICE SHE

#### Model 8556A

# Table 8-7. Connector XA11 Pin Identification

Connector XA11	Wire Color Code	Function
Pin 1		Open
2	<u> </u>	Open
-	1	Pre-Atten Relay Coil Return
4	· ·	Open
5	907	-10 Volts
U		10 10103
6	917	0–200 kHz Scan Tune Offset
7	901	RANGE kHz Switch
8	926	Frequency Tune Voltage
9	923	Scan Width Attenuator Input
10	95	Scan-Offset Amplifier Offset Input
10	30	Scan-Offset Amplifier Offset Input
11	91	Tune-Offset Amplifier Frequency Tune Input
12	947	TRACK ADJ Supply
13	-	Open
13		Open
15	905	To DISPLAY UNCAL Lamp
10	900	TO DISPLAT UNCAL Lamp
А		Open
В	-	Open
Ċ	2	Pre-Atten Relay Coil Supply
D	968	LOG/LINEAR Sensing
Ē	97	-12.6 Volts
5		12.0 7016
F	948	RF Markers Switch
н	928	Tune-Offset Amplifier Output
J	98	FINE TUNE Pot
ĸ	927	Voltage – Follower Amplifier Input
L	93	Scan – Offset Amplifier Scan Input
<u> </u>		som onser amplinet som input
М	902	+20 Volts
N	967	TRACK ADJ Voltage
P		Open
R	0	Chassis Ground
S		Open
6	-	open

# Model 8556A

# **SERVICE SHEET 1**

# INTRODUCTION

# General

The troubleshooting block diagram can be used to quickly isolate trouble to the circuit board, or assembly, level. To implement repair, turn to the service sheet that covers the faulty circuit board and follow the troubleshooting procedure.

# **Related Adjustments**

After repairing a circuit board, perform the adjustment procedures, if any, specified in the troubleshooting procedure.

# TROUBLESHOOTING

### Equipment

Oscilloscope HP 180A/1801A/1820B
X10 Oscilloscope Probe HP 10004A
Digital Voltmeter, HP 3480B/3484A, Option 042
Cable Assy HP 11002A
Test Oscillator
BNC Cable Assy (2) HP 10503A
Adapter
Adapter
Extender Cable Assy HP 11592-60015
Interconnection Cable Assy HP 11592-60016

# Extender Cable Installation

Push the front panel latch in the direction indicated by the arrow until the latch disengages and pops out from the panel. Pull the plug-ins out of the instrument. Locate the black press-to-release button on the right side of the LF Section. Press the button and firmly pull the two sections apart. When the two sections separate at the front panel, raise the upper section until it is above the lower section by two or three inches at the front panel. Disengage the metal tab-slot connection at the rear and separate the sections. Remove top and bottom covers from the LF Section. Place the plate end of the HP 11592-60015 Extender Cable Assembly in the Display Section and press firmly into place so that the plugs make contact. The plate and plugs cannot be installed upside down as the plate has two holes corresponding to the two guide rods in the mainframe.

Connect the upper cable plug to the LF Section and the lower cable plug to the IF Section. The plugs are keyed so that they will go on correctly and will not make contact upside down. Connect HP 11592-60016 Interconnection Cable Assembly between the LF and IF Sections. The connectors on the cable are keyed by the shape of the plug and the arrangement of the pins. Press the connectors firmly together and extend the instruments as far apart as the cable will allow without putting stress on the connectors.

# Measurement Procedure

Set the analyzer controls as specified on the block diagram. Set the Test Oscillator for the signal shown and apply the signal to INPUT. Apply power to the analyzer.

### NOTE

The meter on the HP 651B Test Oscillator is calibrated to read volts into 50 (or 600) ohms. If the oscillator is terminated in a high impedance, such as the analyzer INPUT, its meter will read one-half the applied voltage. Use a 50-ohm Feed Thru termination or set the oscillator for half the desired voltage.

Check the dc voltages shown with a Digital Voltmeter. If the voltages are incorrect, see Service Sheet 12.

Check the waveforms shown with an oscilloscope: use a BNC cable and adapters to check waveforms at cable plugs and jacks, and use the X10 probe to check waveforms at test points and circuit board connector pins (connector pins are available on the bottom of 8556A chassis).

Follow the instructions listed under waveforms. For example, check the signal at A6J3 by removing the brown cable (A9W1) from jack A6J3 and connecting an oscilloscope to the jack with an adapter and a BNC cable.



# SERVICE SHEET 2

### SIMPLIFIED ANALYZER BLOCK DIAGRAM

The Hewlett-Packard Model 8556A LF Section was designed to be used with an 8552 series IF Section and a 140 series Display Section. When the three units are combined they function as a low frequency spectrum analyzer. The analyzer operates like a swept receiver. It electronically scans an input signal and displays the frequency and amplitude of its composite components on a CRT.

The analyzer's tuning section, the 8556A, contains circuits that amplify the signal and shift its frequency to put it in the IF passband. The LF Section also has a tracking generator and a marker generator.

The IF Section contains a local oscillator that is swept, in frequency, by the same sawtooth that sweeps the CRT. This swept LO is mixed with the signal from the LF Section; the resulting 3 MHz signal passes through bandwidth shaping circuits, a log/linear amplifier, a rectifier, and is sent to the Display Section.

The Display Section has a CRT that displays the signal's amplitude vs. its frequency. Because the amplifiers and oscillators in the analyzer are calibrated, the signal's voltage (mV,  $\mu$ V, dBV) or power (dBm) and frequency can be read directly on the CRT.

#### LF SECTION BLOCK DIAGRAM

#### Pre-Attenuator and Preamplifier

The input signal passes through the pre-attenuator to the preamplifier. The pre-attenuator has 0 or 30 dB of attenuation, depending upon the position of the INPUT LEVEL switch. The pre-amplifier has a high impedance input and its gain depends upon the way the signal's amplitude is being measured; the gain is set by the IF Section LOG/LINEAR switch and the LF Section dBm/dBV switch.

### Post-Attenuator and Frequency Converter

From the preamplifier the signal is fed through the post-attenuator and a low pass filter to a balanced mixer. The post-attenuator works in conjunction with the pre-attenuator. Together they attenuate the input signal from 0 to 50 dB depending upon the setting of the INPUT LEVEL switch. This attenuation reduces spurious mixing products in the mixer, insuring that the mixer is not over-driven.

The low pass filter prevents high frequency signals from reaching the mixer; its cut-off frequency is about 1 MHz. The balanced mixer combines the 20 Hz to 300 kHz input with 50.150 MHz from the crystal oscillator. The difference frequency is fed through the buffer amplifier to the IF Section.

#### 20 kHz Marker Circuits

When the 20 kHz MARKERS switch is depressed, 3 MHz from the tracking generator is fed to the marker dividers. This division results in narrow, 20 kHz pulses which are then fed into the input signal path. The 0.33 microsecond width of the pulse ensures that 20 kHz markers will extend to 300 kHz with no significant amplitude decrease.

## SERVICE SHEET 2 (cont'd)

#### **Frequency Control Circuits**

The frequency of the 47 MHz LO (located in the IF Section) is determined by:

- a. The voltage from the voltage follower.
- b. The voltage from the scan-offset amplifier and scan width attenuator.
- c. The voltage from the ZERO ADJ pot.

When SCAN WIDTH is set to PER DIVISION or ZERO, the voltage to the voltage follower is determined by the output of the tune-offset amplifier (which sums the voltages from the FREQUENCY and FINE TUNE controls), and by the RANGE switch. In 0-10f, the input to the voltage follower is pre-set.

When SCAN WIDTH is set to PER DIVISION or 0–10f, the ramp from the IF Section is processed by the scan-offset amplifier and attenuated by the scan width attenuator (attenuation is in proportion to the PER DIVISION setting). This ramp then sweeps the 47 MHz LO. The ramp is not used when SCAN WIDTH is set to ZERO.

#### Tracking Generator Frequency Converter

The tracking generator produces a signal which precisely tracks the spectrum analyzer tuning frequency. The signal from the 47 MHz LO in the IF Section is fed through an amplifier to a balanced mixer. There it is mixed with 50.150 MHz from the frequency converter. The difference frequency (3-3.3 MHz) is filtered, amplified and fed to another balanced mixer.

#### Tracking Generator Output

The balanced mixer mixes 3 MHz from the crystal oscillator with 3 to 3.3 MHz from the frequency converter. The crystal oscillator can be tuned to center the tracking generator signal in the IF passband. The difference frequency from the balanced mixer is filtered and sent to the output amplifier. The gain of the amplifier is controlled by the TRACKING GEN LEVEL control. The amplifier's output is 100 mV in CAL (into an open circuit) and can be increased to about 3 volts.

Block Diagram



PRE-ATTENUATOR AND PREAMPLIFIER

THZ - 300 RHZ

SERVICE SHEET & RESERVED FOR OPTIONAL INPUTS.

OUTPUT AMPLIEIER

TRACKING GEN LEVEL

INPUT

IMO

TRACKING GENERATOR OUTPUT

TRACKING

60002-

PRE-ATTENUATOR 0 OR 30 dB

d

INPUTTEVEL

IF SECTION

LOGILINEAR

SERVICE SHEET 3

PREAMPERFIER

dBm dBV dBm

SERVICE SHEET 4

500Q

20 kHz MARKER CIRCUITS

20 kHz MARKERS

**B**IT I

-00

VITCHED BUFFER

AMPLIFIER

300 KHZ LOW PASS

Figure 8-16. Simplified Analyzer Block Diagram



### SERVICE SHEET 4

#### THEORY OF OPERATION

#### General

The Pre-Attenuator and Preamplifier Assembly A5 contains the pre-attenuator and the preamplifier, and it is isolated from chassis ground. Preamplifier power is supplied by the Power Supply Assembly A10 (see Service Sheet 12); the isolated ground used by the input circuitry also originates on the A10 assembly.

### **Pre-Attenuator**

The pre-attenuator is used in the last three positions of the INPUT LEVEL switch. The switch controls relay A5K1, and resistors A11R1 and R2 isolate K1 from chassis ground. The pre-attenuator is a 30 dB voltage divider. C IN capacitor A5C6 adjusts attenuator capacitance so that LF Section input capacitance does not change when the attenuator is used. COMP capacitor A5C7 adjusts attenuator flatness. A5R5 and A5CR3 through CR6 protect the preamplifier from input overloads.

### Preamplifier

A5Q1 through Q4 and associated circuitry form a feedback amplifier. Q4 is a low noise, junction FET with high input impedance. Q3 is a common base amplifier that matches the low impedance at the drain of Q4 to the high impedance at the base of Q2; this provides high voltage gain. Q2 provides high current gain and some voltage gain. Q1 isolates the collector of Q2 from the A5 assembly's 100 ohm output impedance. The gain of the amplifier is controlled by the feedback from the emitter of Q1 to the source of Q4.

With the LOG/LINEAR switch on the IF Section set to LINEAR, open circuit gain is 8 dB. With LOG/LINEAR set to LOG (either 2 dB or 10 dB), -12.6 V turns on A11Q1, which turns on A5K2. This adds the feedback divider to the amplifier, and the dBm/dBV switch controls amplifier feedback through A5R7, R8 and R9. Therefore, the gain of the amplifier depends upon the settings of the LOG/LINEAR and the dBm/dBVswitches,

#### TROUBLESHOOTING

#### Equipment:

Digital Voltmeter HP 3480B/3484A Option 04	2
Test Oscillator	
AC Voltmeter HP 400E	L
BNC Cable Assy (2) HP 10503.	
Cable Assy	
Adapter	
Extender Cable Assy HP 11592-6001	
Extender Board	

#### General

Normally trouble is isolated to the Pre-Attenuator and Preamplifier Assembly A5 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

#### SERVICE SHEET 4 (cont'd)

#### Supply Voltages and Isolation

With Digital Voltmeter measure voltage at  $\pm 20$  VI and  $\pm 20$  VI test points on assembly cover. The voltages should be  $\pm 20 \pm 2$  V and  $\pm 20 \pm 2V$ . Connect test leads from assembly cover to chassis ground and measure resistance; it should be about 100K ohms.

If either of the above checks are out of limits, remove A5 assembly from chassis and re-check (voltages will be  $\pm 28 \pm 4$  V and  $-28 \pm 4$  V.) If checks are still out of limits, see Service Sheets 5 and 12.

### Pre-Attenuator

Connect AC Voltmeter to A5J2 (OUTPUT) and Test Oscillator to analyzer INPUT (on front panel). Set oscillator for a 3 kHz signal and check that attenuation is 30 dB  $\pm 0.20$  dB when INPUT LEVEL is switched from -40 dBm/dBV to -30 dBm/dBV. Set oscillator to 300 kHz and again check attenuation.

If the checks outlined above indicate pre-attenuator malfunction, remove A5 assembly from chassis and re-install on extender board. Check that relay A5K1 is operating correctly, then check components in 30 dB pad. After repairing pre-attenuator, perform adjustments specified in paragraph 5-24.

#### Preamplifier

Connect Test Oscillator directly to AC Voltmeter; set oscillator for 3 kHz and a -30.00 dB reading on voltmeter (about 25mV). Connect oscillator to analyzer INPUT and connect voltmeter to A5J2 (OUTPUT). Don't change oscillator signal amplitude. Set INPUT LEVEL switch to -40 dBm/dBV and LOG/LINEAR switch to LINEAR. The voltmeter should read -22.00 dB  $\pm 0.20$  dB (for a preamplifier open circuit gain of 8 dB).

Set LOG/LINEAR switch to LOG and dBm/dBV switch to dBV. The voltmeter should read  $-15.00 \pm 0.20$  dB (for a pre-amplifier open circuit gain of 15 dB).

Set dBm/dBV switch to  $600\Omega$  dBm. The voltmeter should read -12.88 dB  $\pm 0.20$  dB (for a preamplifier open circuit gain of 17.22 dB).

Set dBm/dBV switch to  $50\Omega$  dBm. The voltmeter should read -2.00 dB  $\pm 0.20$  dB (for a preamplifier open circuit gain of 28 dB). Repeat the checks with oscillator set to 300 kHz.

### NOTE

If using 8552B IF Section with serial prefix 977 and below, or 8552A with serial prefix 991 and below, check that IF Section connectors XA8 pin 8 and J3 pin 40 are connected together (should be electrical short). If not, connect them with a length of 968 (white-blue-grey) wire (24 AWG).

If the checks outlined above indicate preamplifier malfunction, remove A5 assembly from chassis and re-install on extender board. Check that relay A5K2 is operating correctly; check dBm/dBV switch S1 and A5Q1 through Q4. After repairing preamplifier, perform mixer balance adjustments specified in paragraph 5-26.

# Service

#### SERVICE SHEET 4 (cont'd)



Pre-Attenuator and Pre-Amplifier

# Model 8556A

Model 8556A

# SERVICE SHEET 4 (cont'd)





Figure 8-21. Master Board Assembly A11 Component Locations









#### Service

# SERVICE SHEET 5

# THEORY OF OPERATION

## General

The post attenuator operates in conjunction with the pre-attenuator to control the level of signals reaching the balanced mixer. If INPUT LEVEL is always set to the level of the input signal, distortion in the mixer will be minimum. Isolated ground (see Service Sheets 4 and 12) continues into Input Level Assembly A3 and into Frequency Converter Assembly A6 to the mixer.

# Post Attenuator

The post attenuator contains a 20 dB L-pad, a 10 dB L-pad and a straight through connection. They are selected sequentially (0, 10 dB, 20 dB, 0, 10 dB, 20 dB) as INPUT LEVEL is turned counterclockwise. Each L-pad is a simple voltage divider with an impedance of 100 ohms.

# Low Pass Filter

The signal from the post attenuator is fed into a low pass filter. Its cut-off frequency is about 1 MHz and its input and output impedance is 100 ohms. The 20 kHz markers, when used, join the signal path at the filter (see Service Sheet 8).

# Balanced Mixer

The dual balanced mixer has a matched diode quad and adjustments to null local oscillator feedthrough. The diode quad is composed of four, matched hot carrier diodes and carrier suppression is about 90 dB when properly balanced.

# **Buffer Amplifier**

The buffer amplifier isolates the balanced mixer from the IF Section. The amplifier input has an impedanced matching circuit and its gain is about 2 dB.

# 50.150 MHz Local Oscillator

The 50.150 MHz local oscillator is a crystal controlled Colpitts. Feedback is through the capacitive voltage divider in the tank circuit. The oscillator output is fed through A6Q3 to the mixer; Q3 has a voltage gain of about 2. The output is fed to the tracking generator through A6Q1; Q1 has slightly less than unity gain.

# TROUBLESHOOTING

# Equipment:

Oscilloscope	HP 180A/1801A/1820B
X10 Oscilloscope Probe	
Digital Voltmeter	. HP 3480B/3484A Option 042
Test Oscillator	HP 651B
AC Voltmeter	HP 400 EL
BNC Cable Assy (2)	HP 10503A
Cable Assy	HP 11002A

# SERVICE SHEET 5 (cont'd)

Adapter	 . HP 1250-1236
Adapter	
Extender Cable Assy	
Extender Board	 . HP 5060-0256

### General

Normally trouble is isolated to the post attenuator and the Frequency Converter Assembly A6 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; remove the A6 assembly from the chassis and re-install it on the extender board.

### Isolation

Disconnect yellow cable (A3W2) from A6J1 (INPUT); using Digital Voltmeter, measure resistance from outer conductor of J1 to chassis ground. The voltmeter should indicate an open circuit. If it indicates less than an open circuit, check components in low pass filter and balanced mixer, expecially capacitors that bridge isolated ground and chassis ground.

### Post Attenuator

Connect Test Oscillator to analyzer INPUT. Connect AC Voltmeter to yellow cable (A3W2) with adapter. Set analyzer INPUT LEVEL to -60 dBm/dBV and adjust oscillator for 0 dBm reference on voltmeter (at about 3 kHz). Check that voltmeter reads as follows while switching INPUT LEVEL:

INPUT LEVEL	Voltmeter
60 dBm/dBV 50 dBm/dBV 40 dBm/dBV 30 dBm/dBV 20 dBm/dBV 10 dBm/dBV	0 dB (reference) - 10 dB ±0.2 dB - 20 dB ±0.2 dB - 30 dB (reference) - 40 dB ±0.2 dB - 50 dB ±0.2 dB

If the checks outlined above indicated post attenuator malfunction, check components associated with post attenuator on Input Level Assembly A3.

# Low Pass Filter

Connect Test Oscillator to analyzer INPUT; connect Oscilloscope (with X10 probe) to test point A (junction of A6C10, L7, R2 and T3). Set analyzer controls as follows:

INPUT LEVEL	
dBm/dBV	50 Ω dBm
LOG/LINEAR	LOG

Set oscillator for 3 kHz, 200 mV signal (at the 50 ohm output).

Post Attenuator and Frequency Converter

SERVICE SHEET 5 🌓

# SERVICE SHEET 5 (cont'd)

# NOTE

The meter on the HP 651B Test O read volts into 50 (or 600) ohn terminated in a high impedance, such its meter will read one-half the applie Feed Thru Termination or set the desired voltage.

Check that yellow cable (A3W2) is connectest point A should be 3 kHz sine wave at an level is incorrect check components in low pass filter, perform mixer balance adjustme

# 50.150 MHz Local Oscillator

Connect Oscilloscope (with X10 probe) to should be 50.150 MHz sine wave, 0.9 V to A6J3 disconnected). Connect probe to test be 50.150 MHz sine wave, 3.2 V to 4.8 V should be 50.150 MHz ±3.0 kHz).

If signal is incorrect at one test point but amplifier. If signal is incorrect at both associated components. After repairing oscil adjustment specified in paragraph 5-25 a specified in paragraph 5-26.

### **Balanced Mixer**

Connect Test Oscillator to analyzer INPUT; probe) to test point D (junction of A6T3, C2

Set analyzer controls and Test Oscillator as Signal at test point D should be 3 kHz mc schematic. Envelope amplitude at test point 0.4 V p-p with clear cable at J2 disconne incorrect, check components in buffer amp perform mixer balance adjustments specified

#### Troubleshooting T



# SERVICE SHEET 5 (cont'd)

### NOTE

The meter on the HP 651B Test Oscillator is calibrated to read volts into 50 (or 600) ohms. If the oscillator is terminated in a high impedance, such as the analyzer INPUT, its meter will read one-half the applied voltage. Use a 50-ohm Feed Thru Termination or set the oscillator for half the desired voltage.

Check that yellow cable (A3W2) is connected to A6J1 (INPUT). Signal at test point A should be 3 kHz sine wave at approximatley 0.2 V p-p. If signal level is incorrect check components in low pass filter. After repairing low pass filter, perform mixer balance adjustments specified in paragraph 5-26.

### 50.150 MHz Local Oscillator

Connect Oscilloscope (with X10 probe) to test point C (A6Q1-c). Signal should be 50.150 MHz sine wave, 0.9 V to 1.6 V p-p (with brown cable to A6J3 disconnected). Connect probe to test point B (A6Q3-c); signal should be 50.150 MHz sine wave, 3.2 V to 4.8 V p-p. (In both cases, frequency should be 50.150 MHz ±3.0 kHz).

If signal is incorrect at one test point but not at both, check appropriate amplifier. If signal is incorrect at both test points, check A6Q2 and associated components. After repairing oscillator, perform 50.150 oscillator adjustment specified in paragraph 5-26 and mixer balance adjustments specified in paragraph 5-26.

### Balanced Mixer

Connect Test Oscillator to analyzer INPUT; connect Oscilloscope (with X10 probe) to test point D (junction of A6T3, C22, C23 and L9).

Set analyzer controls and Test Oscillator as specified in low pass filter test. Signal at test point D should be 3 kHz modulation envelope as shown on schematic. Envelope amplitude at test point E(J2) should be approximately 0.4 V p-p with clear cable at J2 disconnected. If envelope amplitude is incorrect, check components in buffer amplifier. After repairing amplifier, perform mixer balance adjustments specified in paragraph 5-26.



Model 8556A

Model 8556A



Figure 8-24. Input Level Switch Assembly A3 Component Locations



SERVICE Figure 8-25. Frequenc SHEET 5

Figure 8-25. Frequency Converter Assy A6 Component Locations

8-24



Figure 8-26. Post-Attenuator & Frequency Converter: A3 and A6

## SERVICE SHEET 6

### THEORY OF OPERATION

### General

The tracking generator produces a signal that precisely tracks the spectrum analyzer tuning frequency. It does this by combining the 47 MHz LO from the IF Section with the 50.150 MHz LO from the LF Section, combining the difference frequency (3 to 3.3 MHz) with 3 MHz, and amplifying the second difference frequency (0 to 300 kHz). The circuits associated with the first frequency conversion are on the Tracking Generator Frequency Converter Assembly A9.

### 47 MHz Amplifier

The signal at A9J1 is 47 MHz  $\pm 150$  kHz and comes from the IF Section 47 MHz LO. Signal amplitude at J1 is about -7 dBm, and is amplified by A9Q1 and Q2; signal amplitude at the mixer is about 1.2 V p-p.

### **Balanced Mixer**

The dual balanced mixer combines 50.150 MHz from the Frequency Converter Assembly A6 with 47 MHz  $\pm$ 150 kHz from the amplifier, takes the 3 to 3.3 MHz difference frequency and feeds it to the low pass filter. Filter cut-off frequency is about 5 MHz.

#### 3 MHz Amplifier

A9Q3, Q4 and Q5 form the 3 MHz amplifier, and the 3 to 3.3 MHz signal at the amplifier input is about 120 mV. The amplifier increases this to a level of about 1.2 V pp which is fed to the balanced mixer in the Tracking Generator Output Assembly A8.

#### TROUBLESHOOTING

### Equipment:

Oscilloscope	. HP 180A/1801A/1820B
X10 Oscilloscope Probe	HP 10004A
Digital Voltmeter HP	3480B/3484A Option 042
Cable Assy	HP 11002A
Extender Cable Assy	HP 11592-60015
Extender Board	

#### General

Normally trouble is isolated to the Tracking Generator Frequency Converter Assembly A9 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; remove the A9 assembly from the chassis and re-install it on the extender board.

## Service

Model 8556A

### SERVICE SHEET 6 (cont'd)

### 47 MHz Amplifier

Connect oscilloscope (with X10 probe) to test point A (A9Q1-b). Set SCAN WIDTH to ZERO; signal should be 46.85 to 47.15 MHz sine wave approximately 0.22 to 0.42 V p-p. If not, check 47 MHz Oscillator in IF Section.

Connect oscilloscope (with X10 probe) to test point B (A9Q2-c). Signal should be 46.85 to 47.15 MHz sine wave at approximately 1.2 V p-p. If not, check 47 MHz amplifier circuits.

### **Balanced Mixer**

Connect oscilloscope (with X10 probe) to test point C (A6Q3-b). Set SCAN WIDTH to ZERO. Signal should be 3.0 to 3.3 MHz sine wave at approximately 0.35 V p-p. If not, check balanced mixer and low pass filter circuits.

#### **3 MHz Amplifier**

Connect Oscilloscope (with X10 probe) to test point 1. Set SCAN WIDTH to ZERO. Signal should be as shown on schematic: 3.0-3.3 MHz,  $1.0\pm0.3$  V p-p. If not, check 3 MHz amplifier circuits.



Troubleshooting Tree

#### Service

### Model 8556A

# Model 8556A

### SERVICE SHEET 6 (cont'd)

#### **47 MHz Amplifier**

Connect oscilloscope (with X10 probe) to test point A (A9Q1-b). Set SCAN WIDTH to ZERO; signal should be 46.85 to 47.15 MHz sine wave approximately 0.22 to 0.42 V p-p. If not, check 47 MHz Oscillator in IF Section.

Connect oscilloscope (with X10 probe) to test point B (A9Q2-c). Signal should be 46.85 to 47.15 MHz sine wave at approximately 1.2 V p-p. If not, check 47 MHz amplifier circuits.

### **Balanced Mixer**

Connect oscilloscope (with X10 probe) to test point C (A6Q3-b). Set SCAN WIDTH to ZERO. Signal should be 3.0 to 3.3 MHz sine wave at approximately 0.35 V p-p. If not, check balanced mixer and low pass filter circuits.

### **3 MHz Amplifier**

Connect Oscilloscope (with X10 probe) to test point 1. Set SCAN WIDTH to ZERO. Signal should be as shown on schematic: 3.0-3.3 MHz,  $1.0 \pm 0.3$  V p.p. If not, check 3 MHz amplifier circuits.



A9 e,

Figure 8-27. Tracking Generator Frequency Converter Assy A9 Component Locations SHEET 6



Figure 8-28. Tracking Generator Frequency Converter: A9

Service

# SERVICE SHEET 7

### THEORY OF OPERATION

### General

The tracking generator produces a signal that precisely tracks the spectrum analyzer tuning frequency; 3 to 3.3 MHz from the Tracking Generator Frequency Converter Assembly A9 is mixed with 3 MHz. The difference frequency (0 to 300 kHz) is filtered, amplified, and fed to the front panel.

### Balanced Mixer

The balanced mixer combines the 3 to 3.3 MHz signal with 3 MHz from the 3 MHz oscillator and feeds the difference frequency to a low pass filter. The mixer uses a matched diode quad.

### **3 MHz Oscillator**

A8A1Q3 and Q4 form a crystal oscillator. The transistors alternately turn on and off, producing a high amplitude 3 MHz signal.

Varactor A8A1CR7 is used as the fine frequency control element, and the range of varactor control is ±140 Hz. A8A1L3 is selected to center the range of varactor control at 3 MHz.

A8Q2, CR5 and CR6 limit the 3 HMz signal so that it is flat over the frequency range of the oscillator. The signal level from the balanced mixer depends upon the level of the 3 MHz oscillator signal, so the 3MHz signal, controlled by AMPL ADJ A8A1R1, is used to amplitude calibrate the tracking generator. Because the mixer's output level is relatively insensitive to changes in signal level from the frequency converter (see Service Sheet 6), tracking generator amplitude calibration is maintained when the LF Section is used with different IF Sections.

#### Switched Buffer Amplifier

Buffer amplifier A8A1Q1 is normally off. It is activated by negative voltage from the marker generator circuits whenever the 20 kHz MARKERS switch is depressed (see Service Sheet 8). When the amplifier is on it feeds 3 MHz to the marker generator.

#### Low Pass Filter

A8Q1 is a buffer amplifier that isolates the filter from the mixer. A8Q2 isolates the filter from the output amplifier. FLATNESS ADJ A8R9 in the emitter of Q1 adjusts the flatness of the high end of the filter by varying the filter's input resistance. The filter is flat to 300 kHz.

#### **Output Amplifier**

A8Q3 through Q6 form a feedback amplifier. A6 provides enough current so that at maximum signal with the output shorted the amplifier does not clip. Amplifier gain is controlled by TRACKING GEN LEVEL control A3R5; gain is variable from 3 to 100 (10 to 40 dB). When TRACKING GEN LEVEL is full counter-clockwise (CAL 100 mV), the amplifier has a gain of 3 and delivers 100 mV into an open circuit (50 mV into 600 ohms). As TRACKING GEN LEVEL is turned clockwise, A8R12, R13C8, and A3R5 divide the feedback and amplifier gain increases.

# SERVICE SHEET 7 (cont'd)

### TROUBLESHOOTING

#### Equipment:

Digital Voltmeter
AC Voltmeter HP 400EL
BNC Cable Assy HP 10503A
Cable Assy
Discilloscope
(10 Oscilloscope Probe HP 10004A
Extender Cable Assy HP 11592-60015
Extender Board
Frequency Counter

### General

Normally trouble is isolated to the Tracking Generator Output Assembly A8 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; remove the A8 assembly from the chassis and re-install it on the extender board.

# **3 MHz Oscillator**

Depress 20 kHz MARKERS switch and connect Oscilloscope (with X10 probe) to test point C (A11XA8 pin 2); signal should be as shown on schematic: about 3 MHz, 4 V p-p. Connect Frequency Counter to test point C and vary TRACK ADJ, on analyzer front panel, through its full range. Frequency should vary (from 3 MHz) at least  $\pm$  140 Hz. (Factory selected component A8A1L3 sets center of variation, see Table 8-1.)

If checks indicate oscillator malfunction, remove cover from 3 MHz Oscillator Assembly A8A1 and check A8A1Q1, Q3, Q4 and associated components. After repairing oscillator, perform tracking generator adjustments specified in paragraph 5-27.

## NOTE

A8A1 can usualy be repaired without unsoldering entire board. If it becomes necessary to unsolder A8A1, unsolder the six pins with a recommended desoldering tool (see General Service Hints). Excess heat or force on pins will pull plating off board.

### **Balanced Mixer**

Connect Oscilloscope (with X10 probe) to test point D (A8Q1-b); signal should be modulation envelope as shown on schematic: about 3 MHz, 0.12 V p-p. If not, remove cover from 3MHz Oscillator Assembly A8 and check balanced mixer, A8A1Q1 and associated components. After repairing mixer, perform tracking generator adjustments specified in paragraph 5-27.

# Service

### SERVICE SHEET 7 (cont'd)

### Low Pass Filter

Connect Oscilloscope (with X10 probe) to test point E (A8Q2-e); should be 20 Hz to 300 kHz sine wave, approximately 0.1 V p-p. I check Q8Q1, Q2 and associated components. After repairing filter, pe tracking generator adjustments specified in paragraph 5-27.

#### Output Amplifier

Set TRACKING GEN LEVEL to CAL 100 mV and connect oscillosce test point F (A8Q6-e); signal should be 20 Hz to 300 kHz sine wave, 0 p-p. If not, check A8Q3 through Q6 and associated components. repairing amplifier, perform tracking generator adjustments specifi paragraph 5-27.

#### Troubleshooting Tree



Tracking Generator Output

## Service

Model 8556A

# Model 8556A

### SERVICE SHEET 7 (cont'd)

### Low Pass Filter

Connect Oscilloscope (with X10 probe) to test point E (A8Q2-e); signal should be 20 Hz to 300 kHz sine wave, approximately 0.1 V p-p. If not, check Q8Q1, Q2 and associated components. After repairing filter, perform tracking generator adjustments specified in paragraph 5-27.

# **Output Amplifier**

Set TRACKING GEN LEVEL to CAL 100 mV and connect oscilloscope to test point F (A8Q6-e); signal should be 20 Hz to 300 kHz sine wave, 0.28 V p-p. If not, check A8Q3 through Q6 and associated components. After repairing amplifier, perform tracking generator adjustments specified in paragraph 5-27.

Troubleshooting Tree





Figure 8-29. Tracking Generator Output Assy A8 Component Locations



Figure 8-30. 3 MHz Oscillator Assy A8A1 Component Locations



Figure 8-31. Input Level Switch Assy Component Locations



REFERENCE DESIGNATIONS VITHIN DUTLINED (-------) ASSERBLIES ARE ABBREVIATED. FILL DESIGNATION IN-CLUDES ASSERBLY NURBER 4.8. R1 OF ASSERBLY AT 15 AIRI. DESIGNATIONS OF OTHER COMPONENTS ARE COMPLETE AS HOWN.

# SERVICE SHEET 8

# THEORY OF OPERATION

### General

The 20 kHz marker circuits apply markers to the input signal path when the 20 kHz MARKERS switch is depressed. A7Q1 turns on and applies -5 V to A7U1, U2, U3, U6 and U7. It also applies negative voltage through A7R1 to Q1 on the 3 MHz Oscillator Assembly A8A1 (see Service Sheet 7). A8A1Q1 amplifies 3 MHz and feeds it to the 20 kHz marker circuits. The input 3 MHz sine wave is clipped by A7U7C and fed to the divide by 3 circuits.

## **Divide by 3 Circuits**

A7U6 is dual JK master/slave flip-flop, and U6A and U6B form a Johnson, or shift, counter. The counter has four possible states: binary 0, 1, 2 and 3. In normal operation the counter cycles through binary counts 1, 2 and 3, changing from one to the other on the negative half cycle of each input pulse. If the counter ever cycled into binary 0 (both  $\overline{Q}$  outputs low) it would not cycle itself out. U7B, connected to the Q outputs, clears flip-flop U6B if, and only if, the counter cycles into binary 0. The counter's output is decoded by NAND gate U7A, inverted by U7D, and fed to the divide by 50 circuit. The output at U7D is a 1 MHz pulse, 0.33 µs wide.

### **Divide by 50 Circuit**

A7U1, U2 and U3 form series, or ripple, counter circuits that divide the 1 MHz pulse by 50 without changing its  $0.33 \ \mu s$  pulse width. U1 divides the pulse by 10 and feeds it to U2 and to quad-input NAND gate U3. U2 divides the pulse by 2 and divides the input from U1 by 5 and sends both outputs to U3. When all four inputs of U3 are high, its output goes low. As shown in the timing diagram, this results in a 20 kHz pulse with a very narrow pulse width ( $0.33 \ \mu s$ ). The narrow pulse width insures that the 20 kHz markers will extend beyond 300 kHz without significant amplitude decreases.

#### TROUBLESHOOTING

#### Equipment:

Oscilloscope	HP 1804/18014/1820B
X10 Oscilloscope Probe (2)	HP 10004 A
Digital Voltmeter	3480B/3484A Option 043
Cable Assy	HP 11002A
Extender Cable Assy	HP 11592-60015
Extender Board	HP 5060-0256

## General

Normally trouble is isolated of the Frequency Control and Marker Generator Assembly A7 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below. The voltages listed on the schematics should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; remove the A7 assembly from the chassis and re-install it on the extender board.

### Service

#### SERVICE SHEET 8 (cont'd)

### Switched Power Supply

Push 20 kHz MARKERS switch and check voltages shown on schematic with a Digital Voltmeter. If voltages are incorrect, check A7Q1 and associated circuitry.

## **Divide By 3 Shift Counter**

Push 20 kHz MARKERS switch and connect Oscilloscope (with X10 probes) to test points 1 and 2. Check pulse amplitudes and widths as shown on schematic. Check that pulse relationships approximate those shown in shift counter timing diagram. If checks indicate shift counter malfunction, check A7U6, U7 and associated circuitry.

## **Divide By 50 Counter**

Push 20 kHz MARKERS switch and connect Oscilloscope (with X10 probes) to test points 2 and 3. Check pulse amplitudes and widths as shown on schematic. Check that pulse relationships approximate those shown in counter timing diagram. If checks indicate shift counter malfunction, check A7U1, U2, U3 and associated circuitry.

Troubleshooting Tree



Model 8556A

### Model 8556A



SERVICE



Ξ

# SERVICE SHEET 9

# THEORY OF OPERATION

# General

The frequency control circuits provide control voltages to the 47 MHz LO in the IF Section. The three voltages are:

a. Center frequency control - corresponds to dial frequency, set by FREQUENCY and FINE TUNE knobs.

b. Ramp control — determines width of frequency scan, set by SCAN WIDTH knobs.

c. Zero adjustment — compensates for drift in IF Section 47 MHz LO, set by ZERO ADJ knob.

# **Center Frequency Control Circuits**

The output of tune amplifier A7U4 can be set from 0 to  $\pm 15$  V by the FREQUENCY and FINE TUNE knobs; this corresponds to dial settings of 0 to 300 kHz. 300 kHz ADJ R5 sets dial accuuracy at 300 kHz. OFFSET ADJ A7R13 is used to set the amplifier's output to 0 V when the dial is at 0 Hz.

When RANGE kHz switch S3 is set to 0-30, it adds a voltage divider to the output of A7U4. This divider divides A7U4's output by 10; a 0 to 1.5 V swing corresponds to dial settings of 0 to 30 kHz.

When SCAN WIDTH is set to ZERO and PER DIVISION, A7U4's output is fed to A7U5 and on to the IF Section 47 MHz LO control circuits. When SCAN WIDTH is set to 0-10f the voltage sent to the IF Section through A7U5 is determined by PER DIVISION switch S1-4F (more about A7U5 below).

## **Ramp Control Circuits**

When SCAN WIDTH is set to ZERO, the ramp from the IF Section scan circuits is disabled by S2-IF, and scan-offset amplifier output is 0 V. This prevents the IF Section 47 MHz LO from being swept (however, its frequency is still set by the center frequency control circuits).

When SCAN WIDTH is set to PER DIVISION or 0-10f, the -5 V to +5 V ramp from the IF Section scan circuits is fed to scan-offset amplifier A7U8. In PER DIVISION the scan-offset amplifier has unity gain so its output is a -5 V to +5 V ramp. This ramp is fed to the scan width attenuator and on to the IF Section 47 MHz LO control circuits. The amplitude of the ramp determines the frequency range over which the 47 MHz LO is swept.

When SCAN WIDTH is set to 0-10f and PER DIVISION is set to 10 kHz or less, A7U8 is offset 5 V. This offsets the ramp so that it sweeps from 0 to +10 V. The 0 to +10 V ramp is then sent through the scan width attenuator to the IF Section. The offset ramp will sweep the 47 MHz LO from 0 Hz to a frequency determined by the ramp's amplitude. To prevent control of the 47 MHz LO by the frequency control circuits the input to the voltage follower amplifier A7U5 is referenced to 0 V.

When SCAN WIDTH is set to 0-10f and PER DIVISION is set to 20 kHz, the offset is applied to voltage follower amplifier A7U5. Scan-offset amplifier A7U8 is not offset and its output is a -5 V to +5 V ramp. In all other respects operation is as described when PER DIVISION is set to 10 kHz or less.

# SERVICE SHEET 9 (cont'd)

## Zero Adjustment Circuit

ZERO ADJ pot R6 is in a divider network from  $\pm 20$  V to ground. It can change the 47 MHz LO in the HP 8552B about 24 kHz, and in the HP 8552A about 54 kHz. When the LF Section is connected to an HP 8552B, P3 pin 15 is connected to  $\pm 20$  V; P3 pin 15 is open when connected to an HP 8552A. This compensates for operating differences between the IF Sections.

# TROUBLESHOOTING

## Equipment:

Oscilloscope	HP 180A/1801A/1820B
X10 Oscilloscope Probe	HP 10004A
Digital Voltmeter HP 3	3480B/3484A Option 042
Cable Assy	HP 1102A
Extender Cable Assy	HP 11592-60015
Extender Board	HP 5060-0256

## General

Normally trouble is isolated to the Frequency Control and Marker Generator Assembly A6 using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to the circuit level using the troubleshooting tree and procedures outlined below.

Extend the LF and IF Sections on the extender cables; remove the A7 assembly from the chassis and re-install it on the extender board.

## **Center Frequency Control Circuits**

Connect Digital Voltmeter to test point A (A11XA7 pin 5) and set analyzer controls as follows:

FREQUENCY	 	 	 	 	 0 kHz (set a	accurately)
FINE TUNE	 	 	 	 	 	. Centered
BANDWIDTH	 	 	 	 	 	100 Hz
SCAN WIDTH						
PER DIVISION	 	 	 	 	 	10 kHz
RANGE	 	 	 	 • • • •	 0	—300 kHz

The voltmeter should read 0.0  $\pm 5.0$  mVdc. If not, adjust OFFSET ADJ (A7R13) until it does.

Tune FINE TUNE from full clockwise to full counter-clockwise; the voltage at test point A should swing about  $50 \pm 5$  mVdc. Re-center FINE TUNE.

Set FREQUENCY to 300 kHz. Tune 300 kHz ADJ (on front panel) from full clockwise to full counter-clockwise; the voltage at test point A should swing from 15.50 to 15.85 Vdc.

Adjust 300 kHz ADJ until voltage at test point a is +15.40 V. (Factory select value A1R1 sets 300 kHz ADJ range, see Table 8-1.) Switch RANGE to 0-30 kHz; the voltage should be  $+1.540 \pm 0.008$  V.

Set RANGE to 0-300 kHz and connect voltmeter to test point B (A11XA7 pin 8); the voltage should be  $\pm 15.40 \pm .01$  V. Set SCAN WIDTH to 0-10f; the voltage should decrease to 0.0  $\pm .01$  V. Set PER DIVISION to 20 kHz; the voltage should be  $\pm 5.00 \pm 0.05$  V.

# SERVICE SHEET 9 (cont'd)

If checks indicate center frequency control circuit malful A7U4, U5 and associated circuitry.

After repairing center frequency control circuits, perfor calibration adjustment procedure specified in paragraph 5-28.

## NOTE

After replacing the frequency tuning pot R3, perfor dial calibration procedure in paragraph 8-70.

## **Ramp Control Circuits**

Connect Digital Voltmeter to test point C (A11XA7 pin L) an controls as follows:

SCAN WIDTH	
PER DIVISION SCAN TIME PER DIVISION	
SCAN MODE SCAN TRIGGER	

The voltage at test point C should be  $-5.00 \pm 0.01$  V. Set SC. INT and connect Oscilloscope (with X10 probe) to test point should be 10 V p-p sawtooth as shown on schematic. If che above are bad, check scan generator circuits in IF Section.

Set SCAN WIDTH to 0-10f, Scan MODE to SINGLE and conr. to test point D (A11XA7 pin 10). The voltmeter should read - Set PER DIVISION to 10 kHz; the voltmeter should read  $0.0 \pm$ 

Set SCAN WIDTH to PER DIVISION, PER DIVISION to connect voltmeter to test point E (934 wire at A2S1 lug 12). ' should read as indicated for the following scan widths:

PER DIVISION	Voltmeter reading
20 kHz	-5.000 ±0.050 V
10 kHz	-2.500 ±0.025 V
5 kHz	-1.250 ±0.013 V
2 kHz	-500.0 ±5.0 mV
1 kHz	-250.0 ±2.5 mV
500 Hz	-125.0 ±1.3 mV
200 Hz	-50.00 ±0.50 mV
100 Hz	-25.00 ±0.25 mV
50 Hz	-12.50 ±0.14 mV
20 Hz	-5.00 ±0.07 mV

If checks indicate ramp control circuit malfunction, check A7U attenuator and associated circuits. After repairing ramp cor perform frequency calibration adjustment procedure specified 5-28.

# Model 8556A

SERVICE SHEET 9

# SERVICE SHEET 9 (cont'd)

## Zero Adjustment Circuit

# Set analyzer as follows:

FREQUENCY	0 kHz
FINE TUNE	Centered
BANDWIDTH	3 kHz
SCAN WIDTH	PER DIVISION
PER DIVISION	10 kHz
INPUT LEVEL	10 dBm/dBV
BASE LINE CLIPPER	
VIDEO FILTER	OFF
SCAN TIME PER DIVISION	
LOG/LINEAR	10 dB LOG
LOG REF LEVEL	10 dBm/dBV
SCAN MODE	INT
SCAN TRIGGER	AUTO

Tune ZERO ADJ (on front panel) from full counter-clockwise to full clockwise. The LO feedthrough signal on the CRT should shift as follows:

- a. with 8552A IF Section, 54 ±2 kHz
- b. with 8552B IF Section, 24 ±2 kHz

If not, check R6, ZERO ADJ pot and associated circuitry. After repairing zero adjustment circuit, perform frequency calibration adjustment procedure specified in paragraph 5-28.









Figure 8-37. Frequency Control and Marker Generator Assy A7 **Component** Locations

PIO LF SECTION 8556A







# SERVICE SHEET 10

# THEORY OF OPERATION

The DISPLAY UNCAL lamp DS1 illuminates when SCAN WIE DIVISION, BANDWIDTH, SCAN TIME and VIDEO FILTER are s combination of positions which does not permit accurate calibratianalyzer (see Figure 8-39). The DISPLAY UNCAL lamp is illumin simulated signal and has no actual connection to signal processing ci

The LF Section Scan Width Switch Assembly A2 and Bandwidt Assembly A1 both have switch wafers devoted exclusively to ana the IF Section the Scan Time Switch Assembly and Video Filter St have analogic wafers.) When SCAN WIDTH is set to PER DIV. 0-10f, current is added to the two buss lines (956 and 957  $\cdot$ BANDWIDTH and PER DIVISION. In the IF Section this current is with the current added by SCAN TIME and VIDEO FILTER.  $\cdot$ current on either buss line is high enough to bias the light driver Section into conduction, it turns on and lights the DISPLAY UNC (see Service Sheet 12). When SCAN WIDTH is set to ZERO, the circuit is disabled.

# TROUBLESHOOTING

Equipment:

igital Voltmeter	1
able Assy	Í

# General

When trouble has been isolated to the LF Section analogic, perform lowing checks;

Remove the LF and IF Sections from the Display Section and disco LF Section from the IF Section. Remove the top and bottom co the LF Section.

Unsolder the 2 white-green-blue (956) wires from lug  $5\frac{1}{2}$  of S1-1R white-green-violet (957) wires from lug 6 of S1-1F of Bandwidt Assembly A1.

## **Bandwidth Switch Resistance Measurement**

With 956 and 957 wires removed, and LF Section disconnected Section and Display Section, measure resistance from lug 5½ (where 956 wire was connected) to lug 7 of S1-2F (where 95 connected). Also, measure resistance from lug 6½ of S1-1F (where was connected) to lug 7 of S1-2F.

# Model 8556A

# Model 8556A



# SERVICE SHEET 10 (cont'd)

Resistance should be within 2% of values tabulated below for each BANDWIDTH position.

	Resistance $(k \Omega) \pm 2\%$			
BANDWIDTH	S1-1R, lug 5½ to S1-2F, lug 7	S1-1F, lug 6 to S1-2F, lug 7		
10 kHz	48.33	31.22		
3 kHz	43.25	26.13		
1 kHz	39.85	22.73		
300 Hz	37.35	20.28		
100 Hz	35.54	18.46		
30 Hz	34.13	17.04		
10 Hz	44.78	14.04		

## Scan Width Switch Resistance Measurement

With 956 and 957 wires removed from Bandwidth Switch Assembly A1, and LF Section disconnected from IF Section and Display Section, measure resistance from Scan Width Switch Assembly A2 lug 6 of S1-2F (where 956 wire is connected) to lug 2 of S2-1F (where 958 wire is connected). Also, measure resistance from lug 5 of S1-2R (where 957 wire is connected) to lug 2 of S2-1F.

Resistance should be within 2% of values tabulated below for each SCAN WIDTH PER DIVISION position.

SCAN WIDTH PER DIVISION	Resistance $(k \Omega) \pm 2\%$ For Both Measurements
20 kHz	61.78
10 kHz	67.24
5 kHz	74.88
2 kHz	86.30
1 kHz	106.1
500 Hz	144.8
200 Hz	260.8
100 Hz (and below)	open (OVER RANGE)

Measure resistance from lug 6 of S1-2F (where 956 wire is connected) to lug 5 of S2-1F (where 2 wire is connected). Also, measure resistance from lug 5 of S1-2R (where 957 wire is connected) to lug 5 of S2-1F.

Resistance should be within 2% of values tabulated below for each SCAN WIDTH PER DIVISION position.

SCAN WIDTH PER DIVISION	Resistance $(k\Omega) \pm 2\%$ For Both Measurements
100 Hz (and above)	open (OVER RANGE)
50 Hz	483.3
20 Hz	256.0

Make any necessary repairs, re-solder 956 and 957 wires to Bandwidth Switch Assembly A1, and perform analogic checks as specified in paragraph 5-29.



Figure 8-40. Bandwidth Switch Assembly A1 Component Locations







## Service

# Model 8556A

## Model 8556A

#### SERVICE SHEET 11

## THEORY OF OPERATION

The AMPL CAL pot controls a calibration amplifier in the IF Section. The calibration amplifier is used to calibrate the analyzer's absolute amplitude. See the 3 MHz IF Amplifier circuit description in the IF Section manual.

## Input Level Switch

Two wafers of the Input Level Switch Assembly A3 control circuits in the IF Section. S1-2R lights index lamps on the LOG REF LEVEL switch. S1-3R is part of the linear gain compensation network; see the Log/Linear Amplifier circuit description in the IF Section manual.

## **Bandwidth Switch**

The portion of the Bandwidth Switch Assembly shown provides positive or negative voltages that select and bypass bandwidth circuits in the IF Section. See the bandwidth circuit descriptions in the IF Section manual.

# TROUBLE SHOOTING

## Equipment:

Digital Voltmeter	HP 3480B/3484A Option 042
Cable Assy	HP 11002A
Extender Cable Assy	HP 11592 60015
Interconnection Cable Assy	HP 11592-60016

Normally trouble is isolated to the IF Section control circuits after troubleshooting the IF Section. Isolate trouble to a specific component using the Digital Voltmeter to check the voltages and resistances shown on the schematic.

Extend the LF and IF Sections on the extender cables; separate the LF Section from the IF Section and install the interconnection cable. Check and, if necessary, repair the components and assemblies shown.









Figure 8-44. Input Level Switch Assembly A3 Component Locations

SERVICE SHEET 11 P/O LF SECTION 8556A



8-3'

### Service

#### Model 8556A

# Model 8556A



## THEORY OF OPERATION

## General

The sources for the supply voltages used in the LF Section are shown.

### **Isolated Power Supply**

The Pre-Attenuator and Preamplifier Assembly A5 (see Service Sheet 4) is isolated from chassis ground. The Power Supply Assembly A10 provides isolated supply voltages for the preamplifier and an isolated ground for all of the input circuitry. This prevents line related signals being introduced into the input signal path.

A10Q1 and Q2 saturate, in turn, and send current ramps through the primary windings of A10T1. The switching rate of Q1 and Q2 is about 500 kHz. The current ramps induce a voltage in the secondary of T1. The voltage is rectified by the bridge rectifier, filtered and sent to the master board. On the master board the voltages are again filtered and fed to the preamplifier. A11R6 is a bleeder resistor that prevents static charges from building up in the isolated circuits.

### TROUBLE SHOOTING

## Equipment:

Oscilloscope	HP 180A/1801A/1820B
X10 Oscilloscope Probe	HP 10004A
Digital Voltmeter I	IP 3480B/8484A Option 042
Cable Assy	HP 11002A
Extender Cable Assy	HP 11592-60015
Interconnection Cable Assy	HP 11592-60016
Extender Board	HP 5060-0256
General	

Normally trouble is isolated of the Power Supply Assembly A10 and the voltage distribution circuits using the overall troubleshooting tree or the troubleshooting block diagram. Isolate trouble to a specific circuit using the procedures outlined below. The voltages listed on the schematic should assist in isolating trouble to a specific component.

Extend the LF and IF Sections on the extender cables; separate the LF Section from the IF Section and install the interconnection cable. Remove the A10 assembly from the chassis and re-install it on the extender board.

## Isolation

Remove Pre-Attenuator and Preamplifier Assembly A5 from chassis. Connect Digital Voltmeter from A5 assembly cover to chassis ground and measure resistance. It should be about 100 k ohms. If not, remove A10 assembly from chassis and re-check. If resistance is about 100 k ohms with A10 removed, check A1071, bridge rectifier, and filter on A10 assembly. If resistance is less than 100 k ohms with A10 removed, check filter circuits on Master Board Assembly A11 (some of these circuits are shown on Service Sheet 4).

## Isolated Power Supply

Connect Oscilloscope (with X10 probe) to test point 1. Waveform should be as shown on schematic: 400 to 600 kHz, 25 to 30 V p-p. If not, check 400-600 kHz oscillator (A10Q1, Q2 and associated circuitry).

Connect Digital Voltmeter across  $\pm 20$  VI and  $\pm 20$  VI test points on Pre-Attenuator and Preamplifier Assembly A5. The voltage should be  $40 \pm 4$  V dc. If not, check bridge rectifier and filter circuits.



Figure 8-46. Power Supply Assembly A10 Component Locations





Figure 8-47. Master Board Assy A11 Component Locations



