Phylogenetic Analyses and Comparative Genomics of Vitamin B₆ (Pyridoxine) and Pyridoxal Phosphate Biosynthesis Pathways

Gerhard Mittenhuber*

Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, F.-L. Jahnstr. 15, D-17487 Greifswald, Germany

Abstract

Vitamin B₆ in its active form pyridoxal phosphate is an essential coenzyme of many diverse enzymes. Biochemistry, enzymology and genetics of de novo vitamin B₆ biosynthesis have been primarily investigated in Escherichia coli. Database searches revealed that the key enzymes involved in ring closure of the aromatic pyridoxin ring (PdxA; PdxJ) are present mainly in genomes of bacteria constituting the γ subdivision of proteobacteria. The distribution of DXS, a transketolase-like enzyme involved in vitamin B₆ biosynthesis as well as in thiamine and isoprenoid biosynthesis and the distribution of vitamin B_6 modifying enzymes (PdxH: oxidase; PdxK: kinase) was also analyzed. These enzymes are also present in the genomes of animals. Two recent papers (Ehrenshaft et al., 1999, Proc. Natl. Acad. Sci. USA. 96 : 9374-9378; Osmani et al., 1999, J. Biol. Chem. 274 : 23565-23569) show the involvement of an extremely conserved protein (a member of the UPF0019 or SNZ family) found in all three domains of life (bacteria, archaea, eukarya) in an alternative vitamin B₆ biosynthesis pathway. Members of this family were previously identified as a stationary phase inducible protein in yeast, as an ethylene responsible protein in plants and in a marine sponge, as a singlet oxygen resistance protein in Cercospora nicotianae and as a cumene hydroperoxide and H₂O₂ inducible protein in *Bacillus* subtilis. In yeast, the SNZ protein interacts with another protein called SNO which also represents a member of a highly conserved protein family (called UPF0030 or SNO family). Phylogenetic trees for the DXS, PdxA, PdxJ, PdxH, PdxK, SNZ and SNO protein families are presented and possible implications of the two different vitamin B₆ biosynthesis pathways in cellular metabolism are discussed. A radically different view of bacterial evolution (Gupta, 2000, Crit. Rev. Microbiol. 26: 111-131) which proposes a linear rather than a treelike evolutionary relationship between procaryotic species indicates that the $\boldsymbol{\gamma}$ subdivision of proteobacteria represents the most recently evolved

Received August 2, 2000; accepted September 4, 2000.

bacterial lineage. This proposal might help to explain why the PdxA/PdxJ pathway is largely restricted to this subdivision.

Introduction

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B₆, is an essential cofactor of many enzymes involved in amino acid metabolism in all cells (for reviews see Dolphin et al., 1986; Dakshinamurti, 1990). The most common reactions involve (1) transaminases catalyzing the conversion of α -ketoacids to amino acids, and (2) amino acid racemases producing D-amino acids originating from L-amino acids (Grogan, 1988). But PLP is also a coenzyme of (3) sulfinate desulfinase catalyzing the removal of elemental sulfur and selenium atoms from L-cysteine, Lcystine, L-selenocysteine, and L-selenocystine to produce L-alanine (Mihara et al., 1997), (4) of glycogen phosphorylases (Helmreich, 1992), (5)of diaminopelargonic acid synthase, an enzyme involved in biotin synthesis (Kack et al., 1999) and (6) of 1aminocyclopropane-1-carboxylate synthase (Rottmann et al., 1991) synthesizing 1-aminocyclopropane-1-carboxylic acid (ACC) - the precursor of the plant hormone ethylene from S-adenosylmethionine. Despite these vast differences in the nature of the reactions catalyzed by PLP-dependent enzymes, their three-dimensional structures share common structural elements (Capitani et al., 1999, Denessiouk et al., 1999, Kack et al., 1999, Schneider et al., 2000).

The biochemistry of *de novo* PLP biosynthesis has been studied in the gramnegative model organism *Escherichia coli* (Hill and Spenser, 1996). Also, molecular cloning and characterization of genes coding for enzymes involved in PLP biosynthesis was performed using this organism, mainly by Malcolm E. Winkler and coworkers: The PLP precursor pyridoxine 5'-phosphate (PNP) is synthesized by the PdxA and PdxJ enzymes using 4phosphohydroxy-L-threonine (4PHT; synonym: 3hydroxyhomoserine) and 1-deoxy-D-xylulose 5-phosphate (DXP) as substrates (Lam *et al.*, 1992; Zhao and Winkler, 1996; Cane *et al.*, 1998; Laber *et al*, 1999). PNP is oxidized to the active coenzyme PLP by the action of PdxH oxidase, a flavoprotein (Lam and Winkler, 1992; Zhao and Winkler, 1995; Notheis *et al.*, 1995).

The two substrates DXP and 4PHT are supplied by two independent pathways (Figure 1), which are both linked to carbohydrate metabolism, *i.e.* glycolysis and the pentose phosphate cyle: DXP, which is also a precursor in isoprenoid and thiamine (vitamin B₁) biosynthesis (Begley *et al.*, 1999) is synthesized by the transketolase-like enzyme DXP-synthase (DXS) (Sprenger *et al.*, 1997; Lois *et al.*, 1998) using pyruvate and D-glyceraldehyde-3-

^{*}For correspondence. Email mittenhu@microbio4.biologie.unigreifswald.de; Tel. +49-3834-864218; Fax. +49-3834-864202.

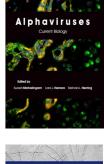
Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at **caister.com**

- MALDI-TOF Mass Spectrometry in Microbiology Edited by: M Kostrzewa, S Schubert (2016) www.caister.com/malditof
- Aspergillus and Penicillium in the Post-genomic Era Edited by: RP Vries, IB Gelber, MR Andersen (2016) www.caister.com/aspergillus2
- The Bacteriocins: Current Knowledge and Future Prospects Edited by: RL Dorit, SM Roy, MA Riley (2016) www.cajster.com/bacteriocins
- Omics in Plant Disease Resistance Edited by: V Bhadauria (2016) www.caister.com/opdr
- Acidophiles: Life in Extremely Acidic Environments Edited by: R Quatrini, DB Johnson (2016) www.caister.com/acidophiles
- Climate Change and Microbial Ecology: Current Research and Future Trends Edited by: J Marxsen (2016) www.caister.com/climate
- Biofilms in Bioremediation: Current Research and Emerging Technologies Edited by: G Lear (2016) www.caister.com/biorem
- Microalgae: Current Research and Applications Edited by: MN Tsaloglou (2016) www.caister.com/microalgae
- Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives Edited by: H Shintani, A Sakudo (2016) www.caister.com/gasplasma
- Virus Evolution: Current Research and Future Directions Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016) www.caister.com/virusevol
- Arboviruses: Molecular Biology, Evolution and Control Edited by: N Vasilakis, DJ Gubler (2016) www.caister.com/arbo
- Shigella: Molecular and Cellular Biology Edited by: WD Picking, WL Picking (2016) www.caister.com/shigella
- Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
 Edited by: AM Romaní, H Guasch, MD Balaguer (2016)
 www.caister.com/aquaticbiofilms
- Alphaviruses: Current Biology Edited by: S Mahalingam, L Herrero, B Herring (2016) www.caister.com/alpha
- Thermophilic Microorganisms Edited by: F Li (2015) www.caister.com/thermophile



Climate Change and



- Flow Cytometry in Microbiology: Technology and Applications Edited by: MG Wilkinson (2015) www.caister.com/flow
- Probiotics and Prebiotics: Current Research and Future Trends Edited by: K Venema, AP Carmo (2015) www.caister.com/probiotics
- Epigenetics: Current Research and Emerging Trends Edited by: BP Chadwick (2015) www.caister.com/epigenetics2015
- Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications Edited by: A Burkovski (2015) www.caister.com/cory2
- Advanced Vaccine Research Methods for the Decade of Vaccines Edited by: F Bagnoli, R Rappuoli (2015) www.caister.com/vaccines
- Antifungals: From Genomics to Resistance and the Development of Novel Agents Edited by: AT Coste, P Vandeputte (2015) www.caister.com/antifungals
- Bacteria-Plant Interactions: Advanced Research and Future Trends Edited by: J Murillo, BA Vinatzer, RW Jackson, et al. (2015) www.caister.com/bacteria-plant
- Aeromonas
 Edited by: J Graf (2015)
 www.caister.com/aeromonas
- Antibiotics: Current Innovations and Future Trends Edited by: S Sánchez, AL Demain (2015) www.caister.com/antibiotics
- Leishmania: Current Biology and Control Edited by: S Adak, R Datta (2015) www.caister.com/leish2
- Acanthamoeba: Biology and Pathogenesis (2nd edition) Author: NA Khan (2015) www.caister.com/acanthamoeba2
- Microarrays: Current Technology, Innovations and Applications Edited by: Z He (2014) www.caister.com/microarrays2
- Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications Edited by: D Marco (2014) www.caister.com/n2

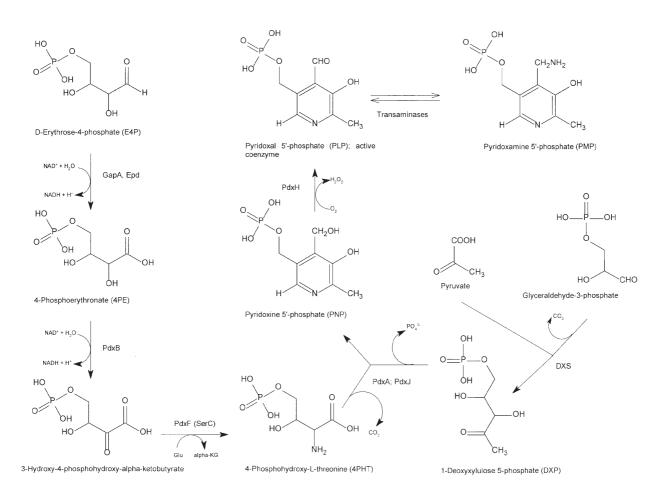


Figure 1. The *de novo* PLP biosynthesis pathway used by *E. coli*. The key enzymes PdxA and PdxJ catalyze synthesis of the pyridine ring. The precursors 4PHT and DXP can be readily produced from intermediates of the pentose phosphate cycle and of glycolysis, respectively.

E. <i>coli</i> genes coding for enzymes involved n pyridoxine piosynthesis	Enzymatic function of gene product	References	Similarities in <i>B. subtilis</i>	Predicted enzymatic function of gene product	Expectation value
gapA	Glyceraldehyde 3-P dehydrogenase A	Yang <i>et al</i> ., 1998b	gap gapB	Glyceraldehyde-3-phosphate dehydrogenase Glyceraldehyde-3-phosphate dehydrogenase	4.5e-101 5.0e-86
epd (gapB)	Erythrose-4-P dehydrogenase	Yang <i>et al.</i> , 1998b	gapB gap	Glyceraldehyde-3-phosphate dehydrogenase Glyceraldehyde-3-phosphate dehydrogenase	1.6e-80 1.3e-73
odxB	Erythronate-4-phosphate dehydrogenase?	Schoenlein <i>et al.</i> , 1989	serA yoaD	Phosphoglycerate dehydrogenase Unknown; similar to phosphoglycerate dehydrogenase	3e-22 1e-12
			yvcT	Unknown; similar to glycerate dehydrogenase	2e-09
dxF (serC)	Phosphoserine aminotransferase	Drewke et al., 1996	serC	Phosphoserine aminotransferase	8e-78
lxs	DXP (Deoxy-xylulose-P) synthase	Sprenger et al., 1997;	yqiE pdhB	Unknown; similar to unknown proteins pyruvate dehydrogenase (E1 beta subunit).	3.1e-141 1.5e-11
odxA	Pyridoxine biosynthesis	Lois <i>et al.</i> , 1998 Roa <i>et al.</i> , 1989; Cane <i>et al.</i> , 1998	spolIID	Regulation of genes controlled by mother cell-specific sigma factors σ^{E} and σ^{K}	0.37
dxJ	Pyridoxine biosynthesis	Lam <i>et al.</i> , 1992	spollB	Spore development	0.29
and a		Takiff <i>et al.</i> , 1992	vtxH	General stress protein	0.71
dxH	Pyridoxine-phosphate oxidase	Notheis et al., 1995	vdaG	General stress protein	0.0091
dxK	Vitamin B ₆ kinase	Yang et al., 1996	thiD	Phosphomethylpyrimidine kinase	6.6e-13
	-	C ,	yjbV	unknown; similar to phosphomethylpyrimidine kinase	1.1e-08
odxY	Alternative vitamin B ₆ kinase	Yang <i>et al</i> ., 1998a	yjbV	Unknown; similar to phosphomethylpyrimidine kinase	0.0008
			thiD	Phosphomethylpyrimidine kinase	0.0014

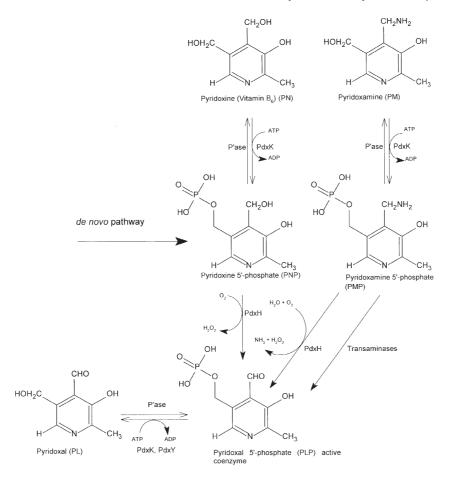


Figure 2. The salvage pathway PLP biosynthesis pathway found in *E. coli*. Similar reactions are performed also by higher organisms, including mammals. Note that *E. coli* possesses two pyridoxal kinases (PdxK, PdxY). PdxK exhibits broader substrate specifity. PLP homoeostasis is achieved by relatively unspecific phosphatases (P'ases).

phosphate as substrates. The other intermediate 4PHT (Zhao and Winkler, 1996) is formed in a series of reactions involving two oxidation steps and one transamination step in a pathway similar to serine biosynthesis (Lam and Winkler, 1990) starting from erythrose-4-phosphate (E4P), a central metabolite of the pentose phosphate pathway. E4P is also a precursor of aromatic amino acids (Ltryptophan, L-phenylalanine and L-tyrosine) and aromatic vitamins (p-aminobenzoate, p-hydroxybenzoate, 2,3dihydroxybezoate) and it is produced directly by the action of transketolases TktA and TktB (Zhao and Winkler, 1994). These enzymes use D-glycerinaldehyde-3-phosphate and D-fructose-6-phosphate as substrates to produce Dxylulose-5-phosphate and E4P. In the first oxidation step, E4P is converted to 4-phosphoerythronate (4PE) by the action of dehydrogenases GapA or Epd (GapB) (Yang et al., 1998b). 4PE is further oxidized by the PdxB dehydrogenase (Lam and Winkler, 1990) to 3-hydroxy-4phosphohydroxy- α -ketobutyrate. By a transamination reaction using glutamate as donor, this compound is finally transformed into 4PHT by the action of the PdxF (SerC) transaminase, a pyridoxal 5'-phosphate containing enzyme (Drewke et al., 1996).

Additionally, PLP can be synthesized by a salvage pathway (Figure 2) that uses B_6 -vitamers pyridoxal (PL), pyridoxine (PN) and pyridoxamine (PM) present in the growth medium (Hill and Spenser, 1996; Yang *et al.*, 1996,

Yang *et al.* 1998a). In this pathway, the substrates PL, PN and PM are phosphorylated by kinases to form PLP, PNP and pyridoxamine 5'-phosphate (PMP). Two different kinases exhibiting a different substrate specifity have been identified in *E. coli*: The PN/PL/PM kinase PdxK (Yang *et al.*, 1996) and the PL kinase PdxY (Yang *et al.*, 1998a) PNP and PMP are oxidized to PLP by the PdxH oxidase (Zhao and Winkler, 1995) which functions in both pathways. Alternatively, PMP can be converted to PLP by the action of transaminases. Similar salvage pathways involving oxidases and kinases exist in mammalian cells (Choi *et al.*, 1987; Hanna *et al.* 1997; McCormick and Chen, 1999) which do - of course - not possess the *de novo* pathway. PLP Homoeostasis is maintaned by relatively unspecific PLP phosphatases.

In contrast to the detailed knowledge concerning PLP biosynthesis in *E. coli*, only one early report (Pflug and Lingens, 1978) deals with vitamin B₆ biosynthesis in the grampositive model organism *Bacillus subtilis*. In order to identify genes whose products might participate in PLP biosynthesis in this organism, BLAST searches were perfomed at the "SubtiList" database (Moszer *et al.*, 1995; Moszer, 1998) using the sequences of *E. coli* PLP biosynthesis enzymes as queries. As shown in Table 1, the PdxA/J sequences are not present in the *B. subtilis* genome. It was concluded that *B. subtilis* might use another pathway.

Table 2. Alphabetical list of species analyzed for enzymes of vitamin B₆ metabolism and information about the phylogenetic status. Abbrevations of names are used in the phylogenetic trees and the Tables.

organism	Phylogenetic position Abbreviation	
ctinobacillus actinomycetemcomitans	Proteobacteria; γ subdivision; Pasteurellaceae	Aac
eropyrum pernix	Archaea; Crenarchaeota; Desulfurococcales; Desulfurococcaceae	Ape
caligenes eutrophus (Ralstonia eutropha)	Proteobacteria; β subdivision; Ralstonia group	Aeu
rabidopsis thaliana	Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Rosidae; eurosids II; Brassicales; Brassicaceae	Ath
rchaeoglobus fulgidus	Archaea; Euryarchaeota; Archaeoglobales; Archaeoglobaceae	Afu
auifex aeolicus	Aquificales; Aquificaceae	Aae
quifex pyrophilus	Aquificales; Aquificaceae	Ару
rtemisia annua	Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Asteridae; euasterids II; Asterales; Asteraceae; Asteroideae; Anthemideae	Aar
acillus anthracis	Firmicutes; Bacillus/Clostridium group; Bacillus/Staphylococcus group; Bacillus cereus group	Bar
acillus halodurans	Firmicutes; Bacillus/Clostridium group; Bacillus/Staphylococcus group	Bha
acillus stearothermophilus	Firmicutes; Bacillus/Clostridium group; Bacillus/Staphylococcus group	Bst
acillus subtilis	Firmicutes; Bacillus/Clostridium group; Bacillus/Staphylococcus group	Bsu
ordetella bronchiseptica	Proteobacteria; β subdivision; Alcaligenaceae	Bbr
ordetella pertussis	Proteobacteria; β subdivision; Alcaligenaceae	Bpe
adyrhizobium japonicum	Proteobacteria; α subdivision; Bradyrhizobium group	Bja
ırkholderia cepacia	Proteobacteria; β subdivision; Burkholderia group	Bce
aenorhabditis elegans	Eukaryota; Metazoa; Nematoda; Secernentea; Rhabditia; Rhabditida; Rhabditida; Rhabditida; Rhabditidae; Peloderinae	Cel
ampylobacter jejuni	Proteobacteria; ε subdivision; Campylobacter group	Cje
andida albicans	Eukaryota; Fungi; Ascomycota; Saccharomycetes; Saccharomycetales; Anamorphic Saccharomycetales	Cal
apsicum annuum (bell pepper)	Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Asteridae; euasterids I; Solanales; Solanaceae; Chloroplast	Car
a <i>tharanthus roseus</i> (rosy periwinkle) adagascar periwinkle)	Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Asteridae; euasterids I; Gentianales; Apocynaceae	Cro
aulobacter crescentus		Ccr
aulobacter crescentus ercospora nicotianae	Proteobacteria; α subdivision; Caulobacter group	Ccr
ercospora nicotlanae hlamydia muridarum	Eukaryota; Fungi; Ascomycota; Pleosporales; Leptosphaeriaceae; anamorphic Leptosphaeriaceae	UII
	Bacteria; Chlamydiales; Chlamydiaceae	0
nlamydia pneumoniae	Bacteria; Chlamydiales; Chlamydiaceae	Cpr
hlamydophila pneumoniae)	Pastaria: Chlamudialaa: Chlamudiaaaaa	C+
nlamydia trachomatis	Bacteria; Chlamydiales; Chlamydiaceae Green sulfur bacteria	Ctr
nlorobium tepidum		Cte
ostridium acetobutylicum	Bacteria; Firmicutes; Bacillus/Clostridium group; Clostridiaceae	Cac
ostridium difficile	Bacteria; Firmicutes; Bacillus/Clostridium group; Clostridiaceae	Cdi
orynebacterium diphteriae	Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Corynebacterineae; Corynebacteriaceae	Cdi
halococcoides ethenogenes	Green non-sulfur bacteria; Dehalococcoides group	Det
einococcus radiodurans	Thermus/Deinococcus group; Deinococcales	Dra
esulfovibrio vulgaris	Proteobacteria; δ subdivision	Dvu
osophila melanogaster	Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea; Drosophilidae	Dm
mericella nidulans (Aspergillus nidulans)	Eukaryota; Fungi; Ascomycota; Eurotiales; Trichocomaceae; anamorphic Trichocomaceae	Eni
winia herbicola	Proteobacteria; y subdivision; Enterobacteriaceae	Ehe
cherichia coli	Proteobacteria; y subdivision; Enterobacteriaceae	Eco
phorbia pulcherrima	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids I; Malpighiales; Euphorbiaceae	Ερι
ancisella tularensis	Proteobacteria; γ subdivision; Thiomicrospira group; Francisella group	Ftu
eobacter sulfurreducens	Proteobacteria; δ subdivision; Geobacteriaceae	Gsı
aemophilus ducreyi	Proteobacteria; y subdivision; Pasteurellaceae	Hdu
aemophilus influenzae	Proteobacteria; γ subdivision; Pasteurellaceae	Hin
elicobacter pylori	Proteobacteria; e subdivision; Helicobacter group	Нру
evea brasiliensis (rubber tree)	Eukaryota; Viridiplantae; Streptophyta Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta;	Hbr
	Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids I; Malpiniales; Euphorbiaceae	
omo sapiens (man)	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia; Eutheria; Primates; Catarrhini; Hominidae	Hsa
ebsiella pneumoniae	Proteobacteria; γ subdivision; Enterobacteriaceae	Kpr
egionella pneumophila	Proteobacteria; y subdivision; Legionellaceae	Lpn
copersicon esculentum (tomato)	Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Asteridae;	Les
entha piperita (peppermint)	euasterids I; Solanales; Solanaceae; Solanum Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; Asteridae;	Мрі
, , , , , ,	euasterids I; Lamiales; Lamiaceae;	
ethanobacterium thermoautotrophicum	Archaea; Euryarchaeota; Methanobacteriales; Methanobacteriaceae	Mth
ethanococcus jannaschii	Archaea; Euryarchaeota; Methanococcales; Methanococcaceae	Mja
ethanococcus vannielii	Archaea; Euryarchaeota; Methanococcales; Methanococcaceae	Mva
ycobacterium avium	Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Corynebacterineae; Mycobacteriaceae;	Ma
vcobacterium bovis	Mycobacterium avium complex (MAC) Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Corynebacterineae; Mycobacteriaceae	Mb
	Mycobacterium tuberculosis complex	
ycobacterium leprae	Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Corynebacterineae; Mycobacteriaceae	Mle
cobacterium tuberculosis	Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Corynebacterineae; Mycobacteriaceae; Mycobacterium tuberculosis complex	Mtu
ycoplasma capricolum	Firmicutes; Bacillus/Clostridium group; Mollicutes	Мса
coplasma genitalium	Firmicutes; Bacillus/Clostridium group; Mollicutes	Mge
xococcus xanthus	Proteobacteria; δ subdivision; Myxobacteria; Myxcococcales; Cystobacterinae	Mxa
isseria gonorrhoeae	Proteobacteria; β subdivision; Neisseriaceae	Ngo
visseria meningitidis	Proteobacteria; β subdivision; Neisseriaceae	Nm
steurella multocida	Proteobacteria; γ subdivision; Pasteurellaceae	Pm
chia angusta (Hansenula polymorpha)	Eukaryota; Fungi; Ascomycota; Saccharomycetes; Saccharomycetales; Saccharomycetaceae	Par
asmodium falciparum	Eukaryota; Alveolata; Apicomplexa; Haemosporida;	Pfa
prphyromonas gingivalis	CFB group; Bacteriodaceae	Pgi
eudomonas aeruginosa	Proteobacteria; y subdivision; Pseudomonas group	Pae
seudomonas putida	Proteobacteria; y subdivision; Pseudomonas group	Ppu
rococcus abyssi	Archaea; Euryarchaeota; Thermococcales; Thermococcaceae	Pab
rococcus furiosus	Archaea; Euryarchaeota; Thermococcales; Thermococcaceae	Pfu
rococcus horikoshii	Archaea; Euryarchaeota; Thermococcales; Thermococcaceae	Pho
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi;	Rnc
attus norvegicus (rat)		
attus norvegicus (rat)	Muridae Murinae	

Rhodobacter capsulatus	Bacteria; Proteobacteria; α subdivision; Rhodobacter group	Rca
(Rhodopseudomonas capsulata)		
Rhodobacter sphaeroides	Bacteria; Proteobacteria; $lpha$ subdivision; Rhodobacter group	Rsph
(Rhodopseudomonas sphaeroides)		
Rhodovulum sulfidophilum	Bacteria; Proteobacteria; α subdivision; Rhodobacter group	Rsu
(Rhodobacter sulfidophilus)		
Roseobacter denitrificans	Bacteria; Proteobacteria; $lpha$ subdivision; Rhodobacter group	Rde
(Erythrobacter sp. OCh 114)		
<i>Oryza sativa</i> (rice)	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae	Osa
Ovis aries (sheep)	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea; Bovidae; Caprinae	Oar
Saccharomyces cerevisiae	Eukaryota; Fungi; Ascomycota; Schizosaccharomycetales; Saccharomycetaceae	Sce
Salmonella paratyphi	Proteobacteria; γ subdivision; Enterobacteriaceae	Spa
Salmonella typhi	Proteobacteria; γ subdivision; Enterobacteriaceae	Sty
Salmonella typhimurium	Proteobacteria; γ subdivision; Enterobacteriaceae	Stym
Schizophyllum commune	Eukaryota; Fungi; Basidiomycota; Hymenomycetes; Stereales; Schizophyllaceae	Sco
Schizosaccharomyces pombe	Eukaryota; Fungi; Ascomycota; Schizosaccharomycetales; Schizomycetaceae	Spo
Shewanella putrefaciens	Proteobacteria; γ subdivision; Alteromonadaceae	Spu
Sinorhizobium meliloti	Proteobacteria; α subdivision; Rhizobiaceae	Sme
Sphingomonas aromaticivorans	Proteobacteria; α subdivision; Zymomonas group	Sar
Solanum tuberosum (potato)	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots: Asteridae; euasterids I; Solanales; Solanaceae; Solanum; Potato	Stu
Staphylococcus aureus	Firmicutes; Bacillus/Clostridium group; Bacillus/Staphylococcus group	Sau
Stellaria longipes	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Euphyllophytes; Spermatophyta; Magnoliophyta;	Slo
3,	eudicotyledons; Core eudicots; Caryophyllidae; Caryophyllales; Caryophyllaceae	
Stellaria media	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Euphyllophytes; Spermatophyta; Magnoliophyta;	Smed
o	eudicotyledons; Core eudicots; Caryophyllidae; Caryophyllales; Caryophyllaceae	0
Streptococcus pneumoniae	Firmicutes; Bacillus/Clostridium group; Streptococcaceae	Spn
Streptomyces coelicolor	Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Streptomycineae; Streptomycetaceae	Sco
Streptomyces sp CL190	Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Streptomycineae; Streptomycetaceae	SspCL190
Suberites domuncula	Eukaryota; Metazoa; Porifera; Demospongiae; Tetractinomorpha; Hadromerida Suberitidae	Sdo
Suberites ficus	Eukaryota; Metazoa; Porifera; Demospongiae; Tetractinomorpha; Hadromerida; Suberitidae	Sfi
Sulfolobus solfataricus	Archaea; Crenarchaeota; Sulfolobales; Sulfolobaceae	Sso
Sus scrofa (pig)	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae;	Ssc
Synechocystis sp.	Cyanobacteria; Chroococcales	Ssp
Synechococcus leopoliensis	Cyanobacteria; Chroococcales	Sle
Thermotoga maritima	Bacteria; Thermotogales	Tma
Thiobacillus ferrooxidans	Proteobacteria; γ subdivision	Tfe
Treponema denticola	Bacteria; Spirochaetales; Spirochaetaceae	Tde
Treponema pallidum	Bacteria; Spirochaetales; Spirochaetaceae	Тра
Trypanosoma brucei	Eukaryota; Euglenozoa; Kinetoplastida; Trypanosomatidae	Tbr
Vibrio cholerae	Proteobacteria; γ subdivision; Vibrionaceae	Vch
Yersinia pestis	Proteobacteria; γ subdivision; Enterobacteriaceae	Ype
Zymomonas mobilis	Proteobacteria; α subdivision; Sphingomonas group	Zmo

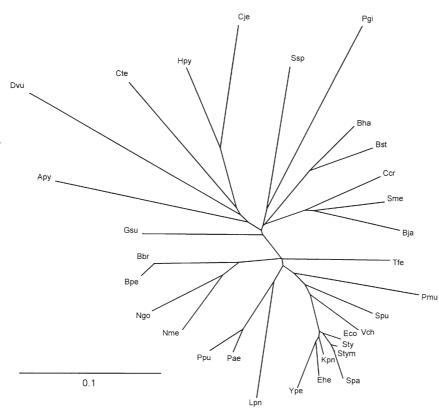
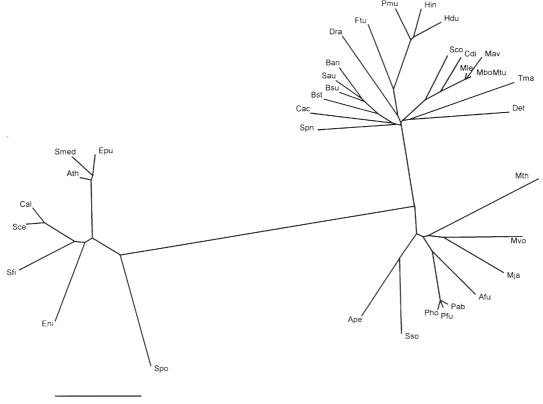


Figure 3. Unrooted phylogenetic tree based on 16S rRNA sequences. Sequences from all organisms in which a *pdxA* (and/or a *pdxJ* gene) was detected (see Tables 5, 6; Figures 6, 7), were included in the dataset used for construction of the tree.

Table 3. Information on small subunit rRNA sequences was not available for some organisms in which gene sequences coding for enzymes involved in vitamin B6 metabolism were identified. A closely related organism was chosen instead for construction of the rRNA derived tree.

Organism without information about small subunit rRNA	Related organism included in the rRNA derived phylogenetic tree
Hevea brasiliensis	Euphorbia pulcherrima
Stellaria longipes	Stellaria media
Suberites domuncula	Suberites ficus

Two recent reports (Ehrenshaft et al., 1999; Osmani et al., 1999) which investigate pyridoxine biosynthesis in the fungus Emericella (Aspergillus) nidulans and singlet oxygen resistance in the fungus Cercospora nicotianae show that these organisms do not possess PdxA/J-like enzymes but instead an alternative pathway is involved in PLP biosynthesis. This conclusion was based on the observation that mutations in an extremely conserved gene result in pyridoxine autotrophy in both species. These mutations also result in methylene blue sensitivity. Methylene blue, a photosensitizer, is involved in the production of deleterious singlet oxgen molecules in the presence of light.


No biochemical information about this pathway is yet available but this pathway appears to be conserved in bacteria, archaea and eukarya, the three domains of life according to the classification of Woese et al. (1990). In this paper, an attempt is made to characterize the

phylogenetic relationships of the different PLP biosynthesis pathways. Phylogenetic trees for the DXS, PdxA, PdxJ, PdxH and PdxK proteins as well as for proteins representative of the newly described pathway are presented. In selected cases, these trees are compared to rRNA derived phylogenetic trees. Furthermore, possible physiological and evolutionary implications of the different pathways are discussed.

Two 16S/18S Ribosomal RNA Derived Phylogenetic Trees

In order to provide a basis for the phylogenetic analyses of *de novo* PLP biosynthesis pathways, two phylogenetic trees based on the sequences of the small subunit RNA (16S or 18S rRNA) were constructed. The same parameters were used in the CLUSTALW alignments in every case. Every organism in whose genome an enzyme related to de novo PLP biosynthesis was detected was included in one of the trees. These organisms are listed in alphabetical order in Table 2. Furthermore, information of the phylogenetic status (based on the analysis of rRNA sequences) and a three letter abbreviation for the identification of the organism in the tables and trees are given. However, for a few of the organisms harbouring genes whose products are related to PLP biosynthesis, no information about the rRNA sequences was available in the databases. In all but one cases, rRNA sequences from closely related organisms were available and included in the trees (see Table 3).

Pmi

0.1

Figure 4. Unrooted phylogenetic tree based on 18S/16S rRNA sequences. Sequences from all organisms in which a yaaD-like gene (see Table 9; Figure 10) was detected, were included in the dataset used for construction of the tree.

The first tree (Figure 3) comprises organisms (belonging mostly to the γ subdivision of proteobacteria) in which the PdxA/PdxJ heterodimer is responsible for vitamin B₆ biosynthesis whereas the second contains organisms in which the alternative pathway is operating. In the second tree (Figure 4), a clear classification of the organisms into the three domains of life bacteria, archaea and eukarya can be observed (Woese *et al.*, 1990).

The DXS Derived Tree

DXS orthologs (COG number COG0743; see Tatusov *et al.*, 2000) identified by database searches are listed in Table 4A. Figure 5 shows an unrooted phylogenetic tree of DXS orthologs and other enzymes. Sprenger *et al.* (1997) also included transketolases and dehydrogenase subunits as well as other related proteins in their phylogenetic tree. For normalization, these and other newly identified protein sequences (see Table 4B) were also included in the alignment used for construction of this tree. Clustering of these proteins which are more or less related to DXS in four distinct groups and the clear separation of these groups from the remaining proteins included in the tree supports the idea that these proteins indeed represent DXP synthases.

Organisms harbouring genes encoding DXP synthases also include organisms which do not possess vitamin B₆ biosynthesis genes (see below) (i.e. Chlamydia and Treponema species, Plasmodium falciparum; Note that these organisms were not included in the rRNA derived trees). This might reflect the fact that DXP is also an intermediate in mevalonate independent biosynthesis of isopentenyl diphosphate which in turn is universal precursor of isoprenoid synthesis (for a phylogenetic analysis of both pathways see Boucher and Doolittle, 2000). This pathway is present in bacteria and plants, but absent in animals. Therefore, this pathway might constitute targets for novel antibacterials (Kuzuyama et al., 2000a,b). In plants, mutations in genes encoding DXP synthases affect a wide variety of physiological functions due to the inability of isoprenoid biosynthesis (Bouvier et al., 1998; Lange et al., 1998). The plant enzymes are most closely related to the DXS found in the genomes of the α subdivision of proteobacteria (C. crescentus, S. meliloti, photosynthetic bacteria). In photosynthetic bacteria, genes encoding DXS are located in the vicinity of genes encoding components of the photosynthetic apparatus (Youvan et al., 1984; Kortlüke et al., 1997; Masuda et al., 1999). Interestingly, DXS from cyanobacteria (Synechococcus) (Miller et al., 1999) are closely related to those originating from grampositive bacteria.

The PdxA Derived Tree

PdxA orthologs (COG1995) identified by database searches are listed in Table 5. Figure 6 shows an unrooted phylogenetic tree of PdxA orthologs. Most of the PdxA orthologs were identified in genomes of proteobacteria (Stackebrandt *et al.*, 1988). Many of these can be attributed to the γ subdivision of proteobacteria which form a tight cluster around the PdxA protein of *E. coli*. Remerkable exceptions are *Erwinia herbicola*, whose PdxA ortholog is

related to two *Bordetella* species (ß subdivision) and Pasteurella multocida whose PdxA ortholog is related to Geobacter sulfurreducens (δ subdivision). The PdxA orthologs of Helicobacter pylori and Campylobacter jejuni (ɛ subdivision) as well as those of Sinorhizobium meliloti and Caulobacter crescentus (α subdivision) are also clustered. Two of the PdxA orthologs are from grampositive bacteria, namely Bacillus halodurans and Bacillus stearothermophilus which appear to be closely related. Two of the PdxA paralogs are located on catabolic plasmids: pNL1 of Sphingomonas aromaticivorans (Romine et al., 1999) (α subdivision) and plasmid pMOP of Burkholderia (Pseudomonas) cepacia (Saint and Romas, 1996) (β subdivision). Both plasmids encode degradation pathways for aromatic substances and the plasmid encoded PdxA orthologs are closely related. Because the plasmid encoded PdxA sequences might not represent the PdxA sequences of the hosts, these paralogs were called "ORF" in Table 5 and in Figure 6.

The PdxJ Derived Tree

PdxJ (COG0854) orthologs identified by database searches are listed in Table 6. Figure 7 shows an unrooted phylogenetic tree of PdxJ orthologs. As demonstrated for the PdxA orthologs, most of the PdxJ orthologs were identified in the y subdivision of proteobacteria. However, the cluster formed by this group is not as tight as seen in the PdxA derived tree but nevertheless exhibiting an overall similar pattern of relatedness. No PdxJ paralogs were observed in the unfinished genomes of the grampositive species *B. halodurans* and *B. stearothermophilus* and in the complete sequence of the catabolic plasmid pNL1 from S. aromaticivorans. Also, no PdxJ paralogs were detected in the unfinished genomes of P. multocida, S. meliloti, and E. herbicola. However, PdxJ orthologs were observed in the unfinished genomes of Aquifex pyrophilus (the PdxJ ortholog is closely related to that one of A. aeolicus), L. pneumophila, B. japonicum (this PdxJ ortholog is related to the ortholog of C. crescentus which both belong to the α subdivision). The PdxJ orthologs of C. jejuni and H. pylori (ɛ subdivision) are closely related whereas all orthologs of all other species (P. gingivalis, D. vulgaris, S. spec., G. sulfurreducens) appear at different positions compared to the PdxA derived tree.

The PdxH Derived Tree

PdxH orthologs (COG0259) identified by database searches are listed in Table 7. Figure 8 shows an unrooted phylogenetic tree of PdxH orthologs. Since PdxH is an enzyme participating in the salvage pathway of PLP biosynthesis, this tree also includes PdxH orthologs found in animals. PdxH orthologs of the γ subdivision of proteobacteria again form a tight cluster. Exceptions are the PdxH orthologs of *B. bronchiseptica* and *B. pertussis*, of *P. aeruginosa*, of *N. meningitidis* and *N. gonorhoeae*, of *H. influenzae* and *H. ducreyi*, of *T. ferroxidans* and the ortholog of *L. pneumophila* which curiously appears to form a cluster with the PdxH orthologs of animals (*C. elegans*, *R. norvegicus*, *H. sapiens*). The PdxH ortholog from *D. melanogaster* is related to those found in mycobacteria.

Table 4A. Dxs orthologs. The sequence of the Dxs protein of *E. coli* was used as query sequence. Members of this family are listed in alphabetical order. In several cases, the combination "DXS species name" was replaced by a number in the DXS derived tree (Figure 5). This number is listed in the rightmost column.

Abbreviation	Number of residues	Accession or contig number	Number in Figure 5
Dxs Aae	628	O67036	
DXS1 Aan	713 (fragment)	AF182286	
Dxs Aac	616	gnlIOUACGT_714IA.actin_Contig381	1
CLA1 Ath	739	O49738	
Dxs Ban	633 (fragment)	gnlITIGR_1392lbanth_1573	
Dxs Bbr	402 (fragment)	gnllSanger_518lbbronchi_Contig1028	
Dxs Bpe	600 (fragment)	gnllSanger_520IB.pertussis_Contig273	
Dxs Bst	626 (fragment)	gnIIUOKNOR_1422lbstear_Contig1135	
Dxs Bsu TKT2 Can	633	P54523 O78328	2
Dxs Cac	719 619	gnllGTClC.aceto_gnl	2
Dxs Cac Dxs Ccr	611 (fragment)	gnilTIGRIC.crescentus 4671	
Dxs Cdi	635	gnllSanger_1717lcdiph_Contig146	
Dxs Cdif	621	gnllSanger_1496lcdifficile_Contig995.1	
Dxs Cje	615	CAB72788	
TC0608 Cmu	632	AAF39439	
TktB2 Cpn	644	Q9Z6J9	
DXS Cre	735	O81954	3
DXS Cro	716	O82676	
Dxs Cte	644	gnIITIGRIC.tepidum_3419	
Dxs Ctr	640	O84335	4
Dxs Det	633	gnllTIGR_61435ldeth_1549	
Dxs Dra	629	Q9RUB5	
Dxs Eco	620	AF035440	5
Dxs Hin	625	P45205	6
Dxs Hpy	618	Q9ZM94	7
Dxs Hdu Dxa Kan	617	gnIIHTSC_730Iducreyi	7
Dxs Kpn DXS Les	201 719	gnllWUGSC_573lkpneumo_B_KPN.Contig68 Q9XH50	8
Dxs Mav	641	gnllTIGRIM.avium_5	0
Dxs Mbo	638	gnllSanger 1765Imbovis Contig727	9
TktB Mle	736	U15181	0
DXS Mpi	724	O64904	
Dxs Mtu	638	O07184	10
Rv3379c Mtu	536	O50408	
Dxs Ngo	637	gnllOUACGT_485INgon_Contig10	11
Dxs Nme	637	CAB83880	12
CLA1 Osa	594	O22567	13
ESTS AU078063 Osa	628	Q9SNQ1	
Dxs Pae	627	gnllPAGP_287IPaeruginosa_Contig1	14
Dxs Pgi	633	gnIITIGRIP.gingivalis_GPG.con	
DXS Pfa	1205		45
Dxs Pmu	614 631	gnIICBCUMN_747IPmultocida	15 16
Dxs Ppu Dxs Rca	641	gnllTIGRlpputida_all_432 P26242	10
Orf1 Rde	354 (fragment)	O69774	
Orf641 Rsph	105 (fragment)	Q9RFB7	
Orf641 Rsu	107 (fragment)	Q9WXE4	
SC6A5.17 Sco	656	Q9X7W3	
SC7B7.10 Sco	353 (fragment)	O50507	
SC1C3.01 Sco	341 (fragment)	O69843	
Dxs Ssp	640	P73067	
Dxs SspCL190	631	Q9RBN6	
Dxs Sle	636	Q9R6S7	
Dxs Sme	210 (fragment)	gnllStanford_382lsmelil_423035E12.x1	
Dxs Spu	622	gnIITIGR_24Isputre_6412	
Dxs Sty	620 884 (fra series at)	gnllSanger_601lS.typhi_Contig23	17
Dxs Tde	304 (fragment)	gnlITIGR_158ltdent_gtd242	
Dxs Tfe	624	gnllTIGRIt_ferrooxidans_3343	
TM1770 Tma TktB Tpa	608 630	Q9X291 O83796	
Dxs Vch	626	gnllTIGRIV.cholerae 666 1760 Bert	
Dxs Vcn Dxs Ype	619	gnllSanger 632IY.pesits Contig763	
		3	

The PdxH orthologs of yeasts are closely related; the PdxH ortholog of S. coelicolor is also located in this cluster. The expression of the PdxH ortholog of *M. xanthus* is developmentally regulated (the gene was previously named *fprA* by Shimkets, 1990); this protein forms a cluster with those of other species of the α subdivision.

The PdxK Derived Tree

PdxK orthologs (COG2240) identified by database searches are listed in Table 8. Figure 9 shows an unrooted phylogenetic tree of PdxK orthologs. As the PdxH tree, this tree also contains orthologs found in animals and

Table 4B. For comparison, several proteins distantly related to DXS were also included in the DXS derived tree (Figure 5). This table lists and names these enzymes.

Description/	Description/ Number of Accession					
Abbreviation	residues	number				
2-oxoisovalerate	dehydrogenase ß	subunit				
2-oxoisovalerate dehydrogenase β subunit OdbB Bsu 327 P37941						
OdbB Ppu	339	P09061				
	ogenase E1 β sub					
OdpB Mca	339	MCU62057				
ODPB Sce	366	P32473				
PdhB Tfe	355	TFU81808				
	ogenase E1 α sub					
ODPA Ath	389	P52901				
OdpA Bsu	370	P21881				
ODPA Hsa	1410	M24848				
		MCU62057				
		TFU81808				
Transketolase cli						
TktC Aeu	627	P21725				
TktA Bsu	667	P45694				
TktA Hin	665	P43757				
TktA Mge	643	P47312				
DAS Pan	710	P06834 (formaldehyde transketolase)				
TKL1 Sce	679	P23254				
TktC Stu	694 (fragment)	S58083				
Transketolase cl						
APE0583 Ape	322	Q9YEJ5				
TKT1 Hsa	623	P29401				
TKT2 Hsa	557	P51854				
TktC Mja	316	Q58092				
Tkt2 Pab	317	Q9V1I1				
Y4MN Rsp	345	P55573				
(on plasmid PNG						
	,					

yeasts. The PdxK orthologs found in the γ subdivision again form a cluster. The PdxY paralog of *E. coli* is closely related to the orthologs of *Y. pestis* and *K. pneumoniae*. It might be interesting to investigate whether the less related paralogs of both *Pseudomonas* species and those of *H. ducreyi*, *P. multocida*, *A. actinomycetemcomitans* share the limited substrate specificity of PdxY of *E. coli* (Yang *et al.*, 1998a). The PdxK orthologs of yeast form a cluster; some species (*C. albicans*, *S. pombe*) possess paralogous enzymes. PdxK orthologs found in animals form a cluster which also (in contrast to the PdxH derived tree) includes PdxK of *D. melanogaster*. *O. aries* (sheep) possesses two paralogous enzymes. The PdxK protein of *B. burgdorferi* does not seem related to any other enzyme.

A Novel Pathway for De Novo PLP Biosynthesis

Two recent papers (Ehrenshaft *et al.*, 1999; Osmani *et al*, 1999) show that an extremely conserved gene found in all three domains of life (Ehrenshaft *et al.*, 1998) is involved in *de novo* synthesis of vitamin B₆ in two fungal species (named *pyroA* in *Emericella* (*Aspergillus*) *nidulans* and *SOR1* in *Cercospora nicotianae*. Both papers include database searches in complete and unfinished genomes which demonstrate the (1) absence of the *pdxAlJ* genes in genomes of organisms in which *pyroA/SOR1* orthologs are

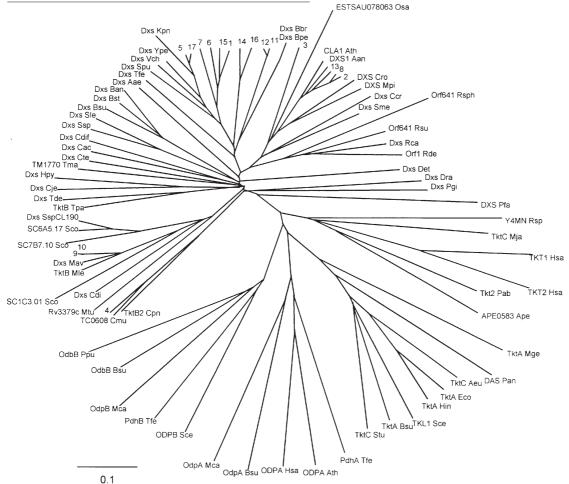


Figure 5. The DXS derived, unrooted phylogenetic tree (see Table 4A). This tree also includes enzymes which are closely related to DXS (see Table 4B).

Table 5. PdxA orthologs. The sequence of the PdxA	protein of E. coli was used as query sequence.	Members of this family are listed in alphabetical order.

Abbreviation	Number of residues	Accession or contig number		
PdxA Aae	320	O67019		
PdxA Bbr	324	gnllSanger_518lbbronchi_Contig1035		
Orf Bce (on plasmid pMOP)	258 (fragment)	P94285		
PdxA Bha	334	Q9RC88		
PdxA Bpe	325	gnllSanger_520IB.pertussis_Contig273		
PdxA Bst	281 (fragment)	gnIIUOKNOR-1422lbstear_Contig389		
PdxA Ccr	378	gnIITIGRIC.crescentus_4741		
PdxA Cje	364	CAB73493		
PdxA Cte	334	gnIITIGRIC.tepidum_3495		
PdxA Dvu	218	gnllTIGR_881Idvulg_gdv165		
PdxA Ehe	105 (fragment)	Q47824		
PdxA Eco	329	P19624		
PdxA Gsu	233 (fragment)	gnllTIGR_35554lgsulf_GGS_1274		
PdxA Hpy	307	Q9ZJ28		
PdxA Kpn	330	gnllWUGSC_573lkpneumo_B_KPN.Contig823		
PdxA Lpn	193 (fragment)	gnIICUCGC_446IIpneumo_WG.008.47-R.0820		
PdxA Ngo	330	gnllOUACGT_485INgon_Contig11		
PdxA Nme	335	AAF40652		
PdxA Pae	325	gnllPAGP_287IPaeruginosa_Contig1		
PdxA Pgi	365	gnIITIGRIP.gingivalis_GPC.con		
PdxA Pmu	337	gnIICBCUMN_747IPm70seq.fasta		
PdxA Ppu	333	gnllTIGRlpputida_all_133		
Orf Sar (Orf 1158 on plasmid pNL1)	330	O85987		
PdxA Spa	327	gnllWUGSC_32027lspara_B_SPA.0.23420		
PdxA Sme	147 (fragment)	gnllStanford_382Ismelil_423023E01.x1		
PdxA Ssp	349	Q55982		
PdxA Spu	330	gnllTIGR_24lsputre_6410		
PdxA Sty	329	gnllSanger_601IS.typhi_Contig1691		
PdxA Stym	151 (fragment)	gnllWUGSC_99287lstmlt2-E2.Contig220		
PdxA Tfe	297 (fragment)	gnllTIGRIt_ferrooxidans_2902		
PdxA Vch	330	gnllTIGRIV.cholerae_666_1760_Bert		
PdxA Ype	334	gnllSangerl_632IY.pesits_Contig766		

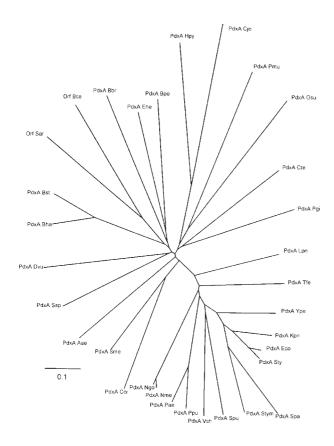


Figure 6. The PdxA derived, unrooted phylogenetic tree (see Table 5).

present (2) the presence of the pdxA/J genes in genomes of organisms in which pyroA/SOR1 orthologs are absent. In accordance with these studies, the present work also did not detect pdxA/J orthologs in completely sequenced genomes of Archaea (M. jannaschii, P. horikoshii, M. thermoautotrophicum, A. fulgidus) and in genomes of obligately parasitic bacteria (Mycoplasma pneumoniae, Mycoplasma genitalium, Treponema pallidum, Chlamydia trachomatis, Rickettsia prowazekii). Both papers note that many parasites lack both pdxA/J and pyroA/SOR1 orthologs. In the databases, members of the latter group are included in the "UPF0019 (SNZ) family". Several different functions (singlet oxygen resistance, ethylene responsive protein, stress inducible protein) have been assigned to this protein (see Table 9). In yeast, it has been shown that paralogs (called SNO1-3) of another highly conserved sequence in the databases are located upstream of each of three paralogs (called SNZ1-3) (Braun et al., 1996; Padilla et al., 1998). This family is called "UPF0030 (SNO) family". Expression of adjacent SNZ and SNO genes is coregulated and the Snz1 and Sno1 proteins interact in a two-hybrid assay (Padilla et al., 1998). Interestingly, studies on the origin of the nitrogen atom in pyridoxine synthesized de novo by yeast cells have demonstrated that this atom is derived from the amido group of glutamine in this organism, whereas the labelled nitrogen atom was not incorporated into pyridoxine by E. coli (Tazuya et al. 1995). The authors concluded that different pyridoxine pathways are present in these species.

In an elegant *in silico* analysis of an operon encoding these protein families (called SnzA and SnzB in their paper),

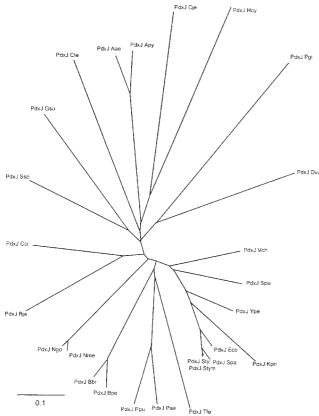


Figure 7. The PdxJ derived, unrooted phylogenetic tree (see Table 6).

Galperin and Koonin (1997) analyze the molecular anatomy of the putative proteins, postulate an interaction between both proteins and propose a novel link between histidine and purine biosynthesis. They also note the absence of the operon in the completely sequenced genomes of *E. coli* and *S. spec.* In *B. subtilis*, the *yaaD* and *yaaE* genes which are organized as a two-gene operon encode these highly conserved proteins.

The YaaD Derived Phylogenetic Tree (the UPF0019 or SNZ Family)

YaaD orthologs (COG0214; the COG database describes these proteins as predicted phosphate utilizing enzymes involved in pyridoxine/purine/histidine biosynthesis) identified by database searches are listed in Table 9. Figure 10 shows an unrooted phylogenetic tree of YaaD orthologs. The YaaD of B. subtilis ortholog is located within a cluster consisting of orthologs found in other grampositive bacteria and interestingly, also two Orf's originating from P. multocida and H. ducreyi (y subdivision of proteobacteria, family Pasteurellaceae). The HI1647 protein of H. influenzae is closely related to an Orf found in the genome of S. pneumoniae (Bacillus/Clostridium group and less related to IP1 of F. tulariensis (y subdivision), DR1367 of D. radiodurans (Thermus/Deinococcus group) and to an Orf identified in the genome of C. acetobutylicum (Bacillus/ Clostridium group). Orthologs found in the Euryarchaeota M. thermoautotrophicum, A. fulgidus, M. jannaschii, P. furiosus and two other Pyrococcus species also form a cluster, whereas the ortholog of another species grouped within the Euryarchaeota, M. vanielli, is associated with those of two Crenarchaeota species, A. pernix and S. solfataricus. Mycobacterial orthologs form a cluster with those found in S. coelicolor and C. diphteriae. This is in good agreement with the phylogenetic position of these bacteria (Actinobacteridae). The two yeast paralogs SNZ1 and SNZ2 form a cluster with an Orf found in the genome of C. albicans, whereas the third, YEM4, is more closely

Abbreviation	Number of residues	Accession or contig number	
PdxJ Aae	242	O67417	
PdxJ Apy	236 (fragment)	P46212	
PdxJ Bbr	246	gnllSanger_518lbbronchi_Contig2500	
PdxJ Bja	249	AAD02936	
PdxJ Bpe	242	gnllSanger_520IB.pertussis_Contig307	
PdxJ Ccr	254	gnIITIGRIC.crescentus_4777	
PdxJ Cje	257	CAB73492	
PdxJ Cte	237	gnIITIGRIC.tepidum_3495	
PdxJ Dvu	243	gnllTIGRIdvulg_gdv190	
PdxJ Eco	243	U36841	
PdxJ Gsu	169 (fragment)	gnllTIGR_35554lgsulf_GGS_1618	
PdxJ Hpy	262	O26102	
PdxJ Kpn	243	gnllWUGSC_573lkpneumo_B_KPN.Contig1545	
PdxJ Ngo	242	gnllOUACGT_485INgon_Contig11	
PdxJ Nme	242	Q9RQV9	
PdxJ Pae	243	gnllPAGP_287IPaeruginosa_Contig1	
PdxJ Pgi	238	Q51843	
PdxJ Ppu	240	gnllTIGRlpputida_all_749	
PdxJ Spa	200 (fragment)	gnllWUGSC_32027lspara_B_SPA.0.18908	
PdxJ Spu	245	gnllTIGR_24Isputre_6422	
PdxJ Ssp	221	P72776	
PdxJ Sty	243	gnllSanger_601IS.typhi_Contig1689	
PdxJ Stym	243	gnllWUGSC_99287lstmlt2Contig1447	
PdxJ Tfe	241	gnIITIGRIt_ferrooxidans_2940	
PdxJ Vch	243	gnllTIGRIV.cholerae_666_1760_Bert	
PdxJ Ype	243	GnllSanger_632IY.pesits_Contig769	

Table 6. PdxJ orthologs. The sequence of the PdxJ protein of E. coli was used as query sequence. Members of this family are listed in alphabetical order.

Table 7. PdxH orthologs. The sequence of the PdxH protein of E. coli was used as query sequence. Members of this family are listed in alphabetical order.

Abbreviation	Number of residues	Accession or contig number	
PdxH Aac	210	gnllOUACGT_714IA.actin_Contig268	
PdxH Bbr	210	gnllSanger_518lbbronchi_Contig2279	
PdxH Bpe	210	gnllSanger_520IB.pertussis_Contig299	
PDXH Cal	247	gnllStanford_5476IC.albicans_Con4-2649	
PdxH Ccr	222	gnIITIGRIC.crescentus_4753	
PDXH Cel	253	Q20939	
CG2649 Dme	484	Q9VHZ5	
PdxH Dra	214	Q9RX20	
PdxH Eco	218	AE000259	
PdxH Hdu	209	gnllHTSC_730lducreyi	
PdxH Hin	229	P44909	
CDNAFLJ10535FIS Hsa	261	BAA91668	
PdxH Kpn	207 (fragment)	gnllWUGSC_573lkpneumo_B_KPN.Contig410	
PdxH Lpn	215	gnllCUCGC 446llpneumo WG.MF177.110597	
PdxH Mav	209	gnllTIGRIM.avium_27	
PdxH Mbo	218	gnllSanger 1765Imbovis Contig637	
PdxH Mle	219	O33065	
PdxH Mtu	224	O06207	
FprA Mxa	270	M29288	
PdxH Ngo	210	gnllOUACGT 485INgon contig 10	
PdxH Nme	210	AAF41734	
PdxH Pae	215	gnllPAGP_287IPaeruginosa_Contig1	
PdxH Pgi	214	gnllTIGRIP.gingivalis GPC.con	
PDXH Rno	261	088794	
PDX3 Sce	228	P38075	
PdxH Sco	229	074250	
PdxH Spa	218	gnllWUGSC 32027Ispara B SPA.0.12565	
SPAC1093.02 Spo	231	Q9UTQ1	
PdxH Spu	212	gnllTIGRIsputre_6418	
PdxH Ssp.	230	P74211	
PdxH Stym	220	gnllWUGSC 99287lstmlt2Contig1471	
PdxH Tfe	218	gnIITIGRIt_ferrooxidans_2934	
PdxH Vch	211	gnilTIGRIV.cholerae 666 1758 Ernie	
PdxH Ype	217	gnllSanger_632IY.pesits_Contig743.0	
ForA Zmo	192	gnilSanger_632l Y.pesits_Contig743.0 Q9RNP3	

related to the fungal proteins PYROA of *E. nidulans* and PDX1 (SOR1) of *C. nicotianae*. In several plant species, members of this family have been identified by screening for ethylene inducible proteins: The ER1 protein of *H. brasiliensis*, the rubber tree, was identified as a stress (ethylene and salicylic acid responsive) inducible protein (Sivasubramaniam *et al.*, 1995). This protein is highly related to two paralogs of *A. thaliana*, whereas a third paralog of this species is distantly related to the ortholog of another plant, *S. longipes*. Interestingly, a member of this family was also identified as an ethylene responsive protein in a primitive animal, the marine sponge *S. domuncula* (Krasko *et al.*, 1999). This protein exhibits the deepest branching within the YaaD derived tree.

The YaaE Derived Phylogenetic Tree (the UPF0030 or SNO Family)

YaaE orthologs (COG0311; the COG database describes these proteins as glutamine amidotransferases possibly involved in histidine and purine biosynthesis) identified by database searches are listed in Table 10. Figure 11 shows an unrooted phylogenetic tree of YaaE orthologs. Compared to the YaaE derived tree similar relationships between the members of this family can be observed. Interesting differences include: (1) The absence of a cluster consisting of euryarchaeotal YaaE orthologs (*A. fulgidus, M. thermoautotrophicum, M. jannaschii*, three *Pyrococcus* species) near the group of gram positive orthologs (including YaaE). The orthologs of these species are grouped within the other archaeal orthologs (*A. pernix, S. solfataricus*). (2) YaaE orthologs were not detected in plants and in filamentous fungi. Some proteins have been annotated as HisH-like proteins in the databases. Galperin and Koonin (1997) noted that the annotation as HisH-like proteins might be a mistake: For example, the *H. influenzae* genome contains a complete histidine biosynthesis operon containing a HisH ortholog exhibiting high similarity to other HisH proteins. Nevertheless, the HI1648 protein belonging to this conserved family is described as putative amidotransferase HisH in the databases.

Discussion

A PdxA ortholog has been identified in the incomplete genomes of *B. halodurans* (Takami *et al.*, 1999) and *B. stearothermophilus*. However, no PdxJ-like counterpart has yet been identified in the genome of these species. These bacteria might be the only representatives of grampositive bacteria in which the vitamin B₆ biosynthesis pathway catalyzed by PdxA/J enzymes is functional. Also, no PdxJ ortholog is encoded in the complete plasmid sequence of the catabolic plasmid pNL1 of *S. aromaticivorens*. This plasmid contains 79 genes that encode enzymes associated with the transport or degradation of biphenyl, naphthalene, m-xylene, and p-cresol (Romine *et al.*, 1999).

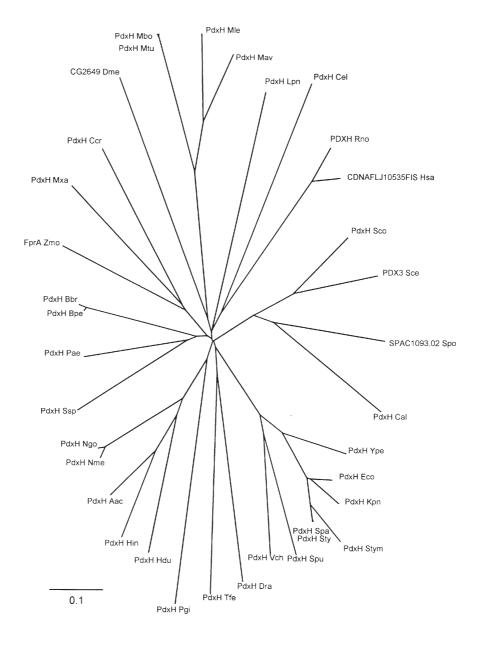


Figure 8. The PdxH derived, unrooted phylogenetic tree (see Table 7).

pNL1 encodes several genes associated with integration and recombination, including two group II intron-associated maturases. These genes were identified in the replication region, suggesting that pNL1 is able to undergo integration and excision events with the chromosome and/or other portions of the plasmid. It might be therefore possible that the PdxA ortholog of pNL1 represents the chromosomally encoded *pdxA* gene of *S. aromaticivorans*. Interestingly, pMOP, a plasmid involved in 4-methylphthalate catabolism in *Burkholderia cepacia* also encodes a PdxA ortholog which is closely related to that encoded on pNL1. These observations might indicate a previously unrecognized participation of vitamin B_6 in the biotechnologically important catalysis of degradation of aromatic compounds.

It remains unclear why the present study failed to identify orthologs of PdxH and PdxK in the genomes of archaea and grampositive bacteria. The only exceptions are the PdxH ortholog of *S. coelicolor* and PdxH enzymes of mycobacteria. In animals, both enzymes exhibit closer relationships to their bacterial paralogs than one might expect as indicated by the rRNA derived tree.

The alternative *de novo* vitamin B_6 biosynthesis pathway encoded by the SNZ/SNO family is clearly more widely distributed and evolutionary well conserved when compared to the rRNA derived tree. Woese (1998) and also Doolittle (1999a) postulated that evolution and history of life cannot be properly represented as tree. The "universal ancestor" is viewed as a "diverse community of cells that survives and evolves as a biological unit" (Woese, 1998). A web- or net-like pattern of horizontal or lateral gene transfers between lineages of organisms – as observed by comparative genomics of twenty completely sequenced microbial genomes – has been proposed to describe accurately relationships between all living species (Doolittle, 1999b).

Table 8. PdxK orthologs. The sequence of the PdxK protein of E. coli was used as query sequence. Members of this family are listed in alphabetical order.

Abbreviation	Number of residues	Accession or contig number		
PdxK Aae	285	gnllOUACGT_714IA.actin_Contig384		
PdxK Bbr	326 (fragment)	gnlSanger_518lbbronchi_Contig2120.1		
PdxK Bpe	283	gnllSanger_520IB.pertussis_contig345		
PDXK Cal	349	gnllStanford_5476IC.albicans_Con4-2753		
CAC20C1_15 Cal	295	O94003		
PdxK Ccr	283	gnIITIGRIC.crescentus_4669		
PdxK Cdi	286	gnllSangre_1717lcdiph_Contig 101		
PDXK Cel	348	AF003142		
CG4446 Dme	494	Q9VSW3		
PdxK Dra	329	Q9RYX0		
PdxK Eco	283	P40191		
PdxY Eco	287	P77150		
PdxY Hin	288	P44690		
PDXK Hsa	312	O00764		
PdxK Kpn	287	gnllWUGSC 573lkpneumo B KPN.Contig1561		
PDXK Oar	312	P82197		
PDXY Oar	297 (fragment)	Q9XSD8		
PdxK Pae	288	gnllPAGP_287IPaeruginosa_Contig1		
PdxK Pmu	286	gnIICBCUMN-747IPmultocida		
PdxK Ppu	290	gnllTIGRIpputida_all_105		
PDXK Rno	312	035331		
YEC9 Sce	312	P39988		
PdxK Spa	269 (fragment)	gnllWUGSC_32027lspara_B_SPA.0.263		
SPCC18.10 Spo	340	O74860		
SPAC6F6.11c Spo	309	O14242		
PDXK Ssc	322	O46560		
PdxK Sty	278 (fragment)	gnllSanger_601IS.typhi_Contig7		
PdxK Stym	287	P40192		
PDXK Tbr	300	O15927		
PdxK Ype	286	gnllSanger 632IY.pesits Contig743.0		

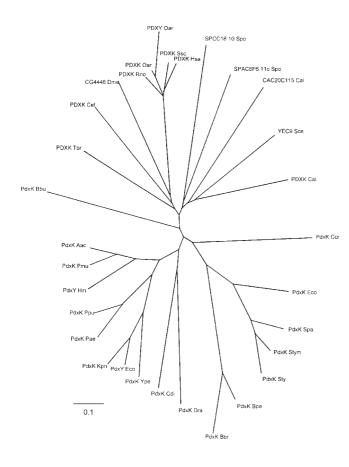
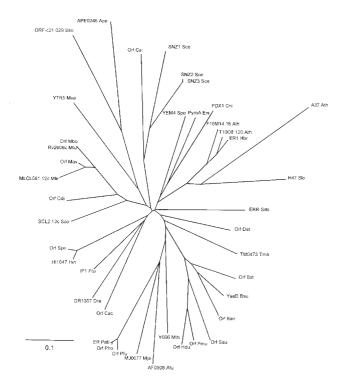



Figure 9. The PdxK derived, unrooted phylogenetic tree (see Table 8).

Evaluating the available dataset, a few organisms might possess both pathways: These are B. stearothermophilus and P. multocida. In the unfinished genomes of both species, PdxA (but not yet PdxJ) orthologs and both SNZ/SNO orthologs were identified. Three species of the family Pasteurellaceae, y subdivision of proteobacteria (P. multocida, H. influenzae, H. ducreyi) possess the SNZ/SNO pathway, whereas all other proteobacteria use the PdxA/J pathway for vitamin B₆ biosynthesis. All these observations might indicate that the common precursor of the y subdivision of proteobacteria used the SNZ/SNO pathway in the first instance. During evolution of the proteobacteria the snz/sno like genes were most likely deleted for some unknown reason and the PdxA/ J dependent pathway evolved in this proteobacterial lineage.

Very recently, the widely accepted three domain proposal by Woese et al. (1990) has been guestioned and critized by Gupta (Gupta, 2000). Briefly, his approach includes the inclusion of ultrastructural characteristics of cells (*i.e.* organisms surrounded by a single membrane (monoderms) are phylogenetically older and distinct from cells bounded by both an inner and an outer membrane (diderms) whereas a periplasmatic space is created) and the examination of "signature sequences" (Gupta, 1998a, 1998b) (i.e. conserved insertions or deletions restricted to specific taxa; "indels") in dif ferent proteins for the analysis of phylogenetic relationships. These comparisons resulted in the observation of a close relatedness between grampositive bacteria and archaea (Gupta, 1998a) and in the proposal of a linear evolutionary relationship among bacterial taxa (Gupta, 2000) postulating that each major

eubacterial phylum evolved from the preceding one instead randomly from any of the previously existing taxa. According to this linear scheme (Figure 3 in Gupta, 2000) the γ subdivision of proteobacteria represents the most current lineage of prokaryotic evolution whereas grampositive bacteria and archaea are among the oldest representatives of prokaryotes. These observations might indicate that the PdxA/PdxJ enzyme system represents a relatively novel invention of evolution. The distribution spectrum of the two different vitamin B_6 biosynthesis pathways among the prokaryotes is in agreement with this proposal.

Osmani *et al.* (1999) ask why two different pathways for *de novo* vitamin B_6 biosynthesis have evolved. This question cannot be answered right now but a few thoughts might shed some light on this problem:

(1) In the genome of the "modern" bacterium *E. coli*, the *pdxA* and *pdxJ* genes are located within complex operons (*surA-pdxA-ksgA-apaG-apaH* operon; *rnc-era-recO-pdxJ-acpS* operon) containing a variety of other

Figure 10. The YaaD derived, unrooted phylogenetic tree (see Table 9).

Table 9. YaaD orthologs. The sequence of the YaaD protein of *B. subtilis* was used as query sequence. The function assigned to each protein - as present in the databases - is also listed. Members of this family are listed in alphabetical order.

Abbreviation	Function	Number of residues	Accession or contig number
AF0508 Afu	Hypothetical ethylene-inducible protein homolog	336	O29742
APE0246 Ape	hypothetical ethylene-responsive protein	337	Q9YFK2
F16M14.16 Ath	putative ethylene inducible protein	309	O80448
T10O8_120 Ath	pyridoxine biosynthesis protein-like	309	CAB81924
A37 Ath	hypothetical protein	314	Q9ZNR6
Orf Ban	-	295	gnllTIGR_1392lbanth_1786
Orf Bst	-	256 (fragment)	gnllUOKNOR_1422lbstear_Contig1128
YaaD Bsu	Unknown	294	D26185
Orf Cac	-	291	gnllGTClC.aceto_gnl
Orf Can	-	292	gnllStanford_5476IC.albicans_Con4-2682
Orf Cdi	-	300	gnllSanger_1717lcdiph_Contig131
PDX1 Cni (SOR1)	pyridoxine biosynthesis protein; singlet oxygen resistance gene	343	O59905
Orf Det	-	293	gnllTIGR_61435IDeth 1562
DR1367 Dra	singlet oxygen resistance protein, putative	307	Q9RUL7
PYROA Eni	pyridoxine biosynthesis protein	304	Q9UW83
IP1 Ftu	hypothetical protein	239	O69190
ER1 Hbr	ethylene inducible protein	309	Q39963
Orf Hdu		295	gnllHTSC_730lducreyi
HI1647 Hin	hypothetical protein	291	P45293
Orf Mav		292	gnIITIGRIM.avium_155
Orf Mbo		299	gnllSanger_1765Imbovis_Contig637
MJ0677 Mja	ethylene-inducible protein homolog	330	Q58090
MLCL581.12c Mle	hypothetical protein	333	O07145
Y666 Mth	ethylene-inducible protein	293	O26762
Rv2606c Mtu	hypothetical protein	299	O06208
YTR5 Mva	hypothetical protein in tRNA/5S rRNA cluster	237 (fragment)	Q50841
Er Pab	ethylene-responsive protein	335	Q9V0J7
Orf Pfu	-	332	gnIIUCHGR_2261IMM11-MM11 00540
Orf Pho		326 (fragment)	bp 1222808-1221831 of chromosome
Orf Pmu		295	gnllCBCUMN_747IPm70seq.fasta
Orf Sau		295	gnllSanger_1280_3lsaureusmr_Contig766
SNZ1 Sce	stress induced protein	297	Q03148
SNZ2 Sce	stress induced protein	298	P53824
SNZ3 Sce	member of the stationary phase-induced gene family	298	NP_011127
SCL2.13c Sco	hypothetical protein	303	CAB70925
ERR Sdo	ethylene responsive receptor	306	Q9U5K
H47 Slo	hypothetical protein	235 (fragment)	Q41348
Orf Spn	-	296	gnIITIGRIS.pneumoniae_3478
YEM4 Spo	putative stress-induced protein	296	O14027
ORF-c21_029 Sso	hypothetical protein	338	Q9UWX3
TM0473 Tma	conserved hypothetical protein	293	Q9WYU4

Table 10. YaaE orthologs. The sequence of the YaaE protein of *B. subtilis* was used as query sequence. The function assigned to each protein - as present in the databases - is also listed. Members of this family are listed in alphabetical order.

Abbreviation	Function	Number of residues	Accession or contig number	
HisH Afu	imidazoleglycerolphosphate synthase, subunit H, putative	198	O29741	
APE0244 Ape	hypothetical protein	186	Q9YFK4	
Orf Ban	-	196	gnllTIGR_1392lbanth_1786	
Orf Bst	-	196	gnllUOKNOR_1422lbstear_Contig1128	
YaaE Bsu	hypothetical protein	196	P37528	
Orf Cac	-	186	gnllGTCIC.aceto_gnl	
Orf Cal	-	249	gnl Stanford 5476 C. albicans Con4-269	
Orf Cdi		185	gnllSanger_1717lcdiph_Contig131	
Orf Det		195	gnllTIGR_61435ldeth_1513	
DR1366 Dra	probable amidotransferase HisH	196	Q9RUL8	
Orf Hdu	-	189	gnlIHTSC 730Iducreyi	
HI1648 Hin	conserved hypothetical protein	175	P45294	
Orf Mav	-	193	gnllTIGRIM.avium_155	
Orf Mbo	-	225 (fragment)	gnllSanger 1765Imbovis Contig637	
MJ1661 Mja	hypothetical protein	186	Q59055	
HisH Mle	Amidotransferase HisH homolog	219	Q49637	
MTH190 Mth	conserved protein	192	O26292	
Rv2604c Mtu	hypothetical protein	198	O06210	
HisH-like Pab	Imidazoleglycerolphosphate synthase, subunit H, putative	196	Q9V0J6	
Orf Pfu	-	197	gnIIUCHGR 2261IMM11-MM11	
PH1354 Pho	hypothetical protein	196	O59079	
Orf Pmu	-	193	gnllCBCUMN_747IPm70seq.fasta	
Orf Sau	-	186	gnllOUACGT_1280ls.aureus_Contig628	
SNO1 Sce	hypothetical protein	224	Q03144	
SNO2 Sce	hypothetical protein	222	P53823	
SNO3 Sce	member of a stationary phase induced protein family	222	NP_011126.1	
SCL2.12c Sco	hypothetical protein	202	CAB70924	
Orf Spn	-	193	gnllTIGRIS.pneumoniae_3478	
SPAC222.08c Spo	hypothetical protein	234	Q9UTE4	
ORF-c21_028 Sso	hypothetical protein	200	Q9UWX4	
TM0472 Tma	putative amidotransferase	188	Q9WYU3	

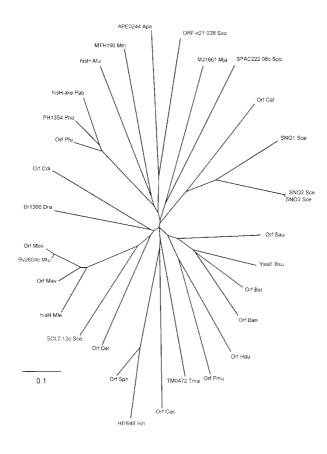


Figure 11. The YaaE derived, unrooted phylogenetic tree (see Table 10).

genes involved in important cellular functions (Table 11; Table 11 gives also an overview about possible orthologs of these genes identified in B. subtilis). Both operons are subjected to complex transcriptional regulation mechanisms (Roa et al., 1989; Lam et al., 1992; Matsunaga et al., 1996). Many of these proteins are somehow associated with the ribosomal RNA: The KsgA protein is a 16S rRNA methyltransferase (van Gemen et al., 1987), the rnc gene product RNAse III is involved in maturation of ribosomal RNA (Matsunaga et al., 1996), the essential Era protein binds to 16S rRNA (Meier et al., 2000). Interestingly, suppressor mutations of a cold sensitive era mutation have been mapped in the ksgA gene (Lu and Inouye, 1998), indicating that of the gene products of both operons not only PdxA and PdxJ but also KsgA and Era perform proteinprotein interactions. Era is a small G-protein widely conserved in eubacteria and eukaryotes. Although essential for bacterial growth and implicated in diverse cellular processes (Britton et al., 1998, Johnstone et al., 1999), its actual function remains unclear. The ApaH protein also performs an important function in bacterial growth: It inactivates AppppA (Ap4A), an alarmone synthesized by aminoacyl-tRNA-synthetases (Brevet et al., 1989) in response to oxidative stress (Bochner et al., 1982; Lee et al., 1983). Interestingly, mutations in apaH result in an increased frequency of cell division (Lévêque et al., 1990, Nishimura et al., 1997). At least the rnc-era-recO-pdxJacpS operon seems to be conserved in B. japonicum (Bairl and Müller, 1998) and P. aeruginosa (Powell et al., 1999). In E. coli (and presumably its close relatives), transcription of the pdxA and pdxJ genes seems to be coupled fundamental cellular processes.

n the operon containing odxA	Enzymatic function of gene product; comments	References	Similarities in <i>B. subtilis</i>	Enzymatic function of gene product; comments	Expectation value	References
surA	periplasmic peptidyl-prolyl isomerase required for stationary phase survival	Tormo <i>et al.</i> , 1990; Lazar <i>et al</i> . 1998	prsA yacD	protein secretion (post-translocation chaperonin) unknown; similar to protein secretion PrsA homolog.	9.3e-10 0.00014	Kontinen <i>et al.</i> , 1999 Kontinen and Sarvas 1993; Jacobs <i>et al.</i> , 1993
odxA	a heterodimer consisting of PdxA and PdxJ catalyzes final step of pyridoxine 5'-phosphate biosynthesis using 4-phospho-hydroxy- L-threonine and 1-Deoxy-D-xylulose 5-phosphate	Laber <i>et al.</i> , 1999	none			1990
ksgA	S-Adenosylmethionine-6-N',N'-adenosyl (rRNA) dimethyltransferase	van Gemen <i>et al.</i> , 1987	ksgA	dimethyladenosine transferase; second gene in a three gene operon containing also yabF and yabG	1.1e-33	
apaG	Unknown	Lévêque <i>et al.</i> , 1990	trxB	thioredoxin reductase	0.045	
apaH	Diadenosine tetraphosphatase	Lévêque <i>et al.</i> , 1990	yjbP	unknown; similar to diadenosine tetraphosphatase; monocistronic	1.2e-10	
E. <i>coli</i> genes n the operon containing <i>odxJ</i>	Enzymatic function of gene product; comments	References	Similarities in <i>B. subtilis</i>	Enzymatic function of gene product; comments	Expectation value	References
rnc	RNase III; cleaves double-stranded RNA	Matsunaga <i>et al.</i> , 1996	rncS	Ribonuclease III; monocistronic	2.0e-34	Wang and Bechhofer
era	Essential GTPase; ras-likeG-protein; binds to 16S rRNA	Britton <i>et al.</i> , 1998 Johnstone <i>et al.</i> , 1999 Meier <i>et al.</i> , 2000	bex	GTP-binding protein; complements <i>era</i> mutants; 5.1e-61 upstream of <i>recO</i>		
recO	Conjugational recombination and repair; DNA-binding protein; RecA-like strand assimilation	Morrison <i>et al.</i> , 1989 Luisi-De Luca and Kolodner, 1994	recO	involved in DNA repair and homologous recombination null mutant leads to high sensitivity to DNA-damaging agents and toreduced efficiency of plasmid transformation (intramolecular recombination) and chromosomal transformation (intermolecular recombination)	to high sensitivity to DNA-damaging uced efficiency of plasmid tramolecular recombination)	
odxJ acpS (dpi)	see <i>pdxA</i> Acyl-carrier protein	Lambalot and	see Table 2 <i>vdcB</i>	unknown; similar to holo-acyl-carrier protein synthase;	2.1e-16.	

(2) The *de novo* PLP biosynthesis pathway of *E. coli* contains a PLP-dependent transamination reaction catalyzed by the PdxF (SerC) enzyme, thus representing a "hen and egg"-paradox. It seems very likely that the PdxA/PdxJ dependent *de novo* pathway evolved after vitamin B₆ vitamers (which can be modified by the salvage pathway) were already present in the environment of *E. coli* due to the "alternative" pathway. This pathway most probably avoids PLP-dependent transamination steps and instead uses vitamin B₆ independent (Massière and Badet-Denisot, 1998; Huang and Raushel, 1999) HisH-like amidotransferases for transfer of nitrogen atoms. Interestingly, PdxF (SerC) is also involved in regulation of the frequency of septation (Mouslim *et al.*, 2000).

(3) The discovery of the "alternative" pathway has been connected with the realization that vitamin B_6 is implicated in stress responses and particularly in cellular antioxidant defense (Ehrenshaft et al., 1999, Bilski et al., 2000), namely in singlet oxygen resistance. Also, the YaaD protein of B. subtilis has been identified as a cumene hydroperoxide and H₂O₂ inducible protein (Antelmann et al., 1997). In cells grown in sporulation medium, the YaaD protein is subjected to an unusual posttranslational modification, guanylation (Mitchell et al., 1992). Two reports indicate that vitamin B₆ might also have some protective function against these oxidants. Manganese dipyridoxyl diphosphate, a magnetic resonance imaging contrast agent possesses antioxidative and cardioprotective properties (Brurok et al., 1999). Vitamin B₆ provides a similar protective effect against cumene hydroperdoxide as does this compound (Meyer et al., 1992). Assuming the correctness of Gupta's theory of linear procaryotic evolution, these observations might indicate that vitamin

 B_6 biosynthesis represents an ancient response to oxidative stress.

In conclusion, the well studied PdxA/PdxJ de novo vitamin B₆ biosynthesis pathway is restricted primarly to E. coli and its relatives where it seems to be coupled to cellular growth; the other, widely distributed pathway is stress inducible. B. subtilis, which has been used in biotechnology for the overproduction of another vitamin, riboflavin (Mack et al., 1998; Sauer and Bailey, 1999) might be also the organism of choice to elucidate the biochemical and enzymological aspects of this conserved pathway. Given the magnitude of genes of unknown function in completely sequenced microbial genomes, it will be also interesting to learn whether comparative analysis of the presence and/or absence of certain genes in individual genomes might also be used to prove (or disprove) Gupta's hypothesis of linear evolutionary relationships in prokaryotes.

Experimental Procedures

For the initial comparison of E. coli and B. subtilis genes, protein sequences of E. coli were obtained at the "ColiBri" database (http://genolist.pasteur.fr/ Colibri/) and a BLAST Search was performed at the "SubtiList" website (http://genolist.pasteur.fr/SubtiList) (Moszer et al., 1995, Moszer, 1998). The sequences of small subunit rRNA's (16S or 18S rRNA) were retrieved from databases (SRS6 system (http://srs6.ebi.ac.uk/) or Genbank (http:// www.ncbi.nlm.nih.gov:80/entrez/)). Using the deduced protein sequences of the pdxA, pdxJ, pdxH, pdxK genes of E. coli and of the yaaD and yaaE genes of B. subtilis as query sequences, BLAST searches (Altschul et al, 1997) were performed at http://dove.embl-heidelberg.de/Blast2/. BLAST searches of unfinished microbial genomes were performed at http:// www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html. Raw DNA sequences were translated using the program "Translate tool" at http:// www.expasy.ch/tools/dna.html. The COG database can be assessed at http://www.ncbi.nlm.nih.gov/COG. Alignments were generated using CLUSTALW (Thompson et al., 1994) at http://www.ebi.ac.uk/clustalw/. Phylogenetic trees were constructed using the data from the alignments

with the help of the program TreeView (http://taxonomy.zoology.gla.ac.uk/ rod/treeview.html; Page, 1996) and edited using the program Metafile Companion (http://www.companionsoftware.com/).

Acknowledgements

This work was performed in the lab of Michael Hecker, whose support is gratefully acknowledged. I thank Michael Hecker and Ulrich Zuber for comments on the manuscript. Sequences of unfinished microbial genomes were obtained at the website of "The Institute of Genomic Research" (TIGR) at http://www.tigr.org. Sequencing of unfinished genomes is in progress at several institutions funded by a variety of organizations: This listing includes "name of organism (institution(s); source of funding)" and can be also viewed http://www.tigr.org/tdb/mdb/mdbinprogress.html. actinomycetemcomitans (University of Oklahoma; National Institute of Dental Research (NIDR)); B. anthracis (TIGR; Office of Naval Research (ONR)/Department of Energy (DOE)/National Institute of Allergy and Infectious Diseases (NIAD)); B. halodurans (Japan Marine Science and Technology Center); B. stearothermophilus (University of Oklahoma; National Science Foundation (NSF); B. bronchiseptica, B. pertussis, C. difficile, N. meningitidis, Y. pestis (Sanger Centre; Beowulf Genomics); C. albicans (Sanger Centre; Beowulf Genomics and also at Stanford University; NIDR/National Institutes of Health (NIH)/Burroughs Wellcome Fund); C crescentus, C. tepidum, D. ethenogenes, D. vulgaris, S. putrefaciens, T. ferrooxidans (TIGR/DOE); C. acetobutylicum (Genome Therapeutics; DOE); C. diphteriae (Sanger Centre/World Health Organization (W.H.O.)/Public Health Laboratory; Beowulf Genomics); C. trachomatis, C. pneumoniae (Genset); F. tularensis (European and North American Consortium); G. sulfurreducens (TIGR/University of Massachusetts, Amherst/DOE); H. ducreyi (NIAID); K. pneumoniae, S. paratyphi, S. typhimurium (Washington University Consortium); L. pneumophila (Columbia Genome Center; NIAID); M. avium, V. cholerae (TIGR/NIAID); M. bovis (Sanger Centre/Institut Pasteur/VLA Weybridge; MAFF/Beowulf Genomics); M. leprae (Sanger Centre; The New York Community Trust); N. gonorrhoeae (University of Oklahoma; NIAID); P. multocida (University of Minnesota; US Department of Agriculture - National Reserach Initiative (USDA-NRI)/Minnesota Turkey Growers Association); P. gingivalis (TIGR/Forsyth Dental Center; NIDR); P. aeruginosa (University of Washington/PathoGenesis; Cystic Fibrosis Foundation/PathoGenesis); P. putida (TIGR/German Consortium; DOE/ Bundesministerium für Bildung und Forschung (BMBF); P. furiosus (Center of Marine Biotechnology/University of Utah; DOE); S. typhi, S. pombe (Sanger Centre; Wellcome Trust); S. meliloti (European and Canadian Consortium/Stanford University; European Union); S. aureus (TIGR; NIAID/ Merck Genome Research Institute (MGRI)); S. pneumoniae (TIGR; TIGR/ NIAID/MGRI); S. coelicolor (Sanger Centre/John Innes Centre; Biotechnology and Biological Sciences Research Council (BBSRC)/Beowulf Genomics); S. solfataricus (Canadian and European Consortium); T. denticola (TIGR/University of Texas).

This paper is dedicated to the memory of Gerald D. Shockman.

References

- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
- Antelmann, H., Bernhardt, J., Schmid, R., Mach, H., Völker U., and Hecker, M. 1997. First steps from a two-dimensional protein index towards a response-regulation map for *Bacillus subtilis*. Electrophoresis 18: 1451-1463.
- Bairl, A., and Müller, P. 1998. A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division. Mol. Gen. Genet. 260: 346-356.
- Begley, T.P., Downs, D.M., Ealick, S.E., McLafferty, F.W., van Loon, A.P., Taylor, S., Campobasso, N., Chiu, H.J., Kinsland, C., Reddick, J.J., and Xi, J. 1999. Thiamin biosynthesis in prokaryotes. Arch. Microbiol. 171: 293-300.
- Bilski, P., Li, M.Y., Ehrenshaft, M., Daub, M.E., and Chignell, C.F. 2000. Vitamin B₆ (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 71: 129-134.
- Bochner, B.R., Lee, P.C., Wilson, S.W., Cutler, C.W., and Ames, B.N. 1984. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37: 225-232.
- Boucher, Y., and Doolittle, W.F. 2000. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37: 703-716.
- Bouvier, F., D'Harlingue, A., Suire, C., Backhaus, R.A., and Camara, B. 1998. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 117: 1423-1431.

- Braun, E.L., Fuge, E.K., Padilla, P.A., and Werner-Washburne, M. 1996. A stationary-phase gene in *Saccharomyces cerevisiae* is a member of a novel, highly conserved gene family. J. Bacteriol. 178: 6865-6872.
- Brevet, A., Chen, J., Lévêque, F., Plateau, P., and Blanquet, S. 1989. *In vivo* synthesis of adenylylated bis(5'-nucleosidyl) tetraphosphates (Ap4N) by *Escherichia coli* aminoacyl-tRNA synthetases. Proc. Natl. Acad. Sci. USA. 86: 8275-8279.
- Britton, R.A., Powell, B.S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J.R., and Court, D.L. 1998. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in *Escherichia coli*. Mol. Microbiol. 27: 739-750. (Erratum: Mol. Microbiol. 1998. 28: 1391-1393).
- Brurok, H., Ardenkjaer-Larsen, J.H., Hansson, G., Skarra, S., Berg, K., Karlsson, J.O., Laursen. I., and Jynge, P. 1999. Manganese dipyridoxyl diphosphate: MRI contrast agent with antioxidative and cardioprotective properties? Biochem. Biophys. Res. Commun. 254: 768-772.
- Cane, D.E., Hsiung, Y., Cornish, J.A., Robinson, K., and Spenser, I.D. 1998. Biosynthesis of vitamin B₆: the oxidation of 4-(phosphohydroxy)-L-threonine by PdxA. J. Am. Chem. Soc. 120: 1936-1937.
- Capitani, G., Hohenester, E., Feng, L., Storici, P., Kirsch, J.F., and Jansonius, J.N. 1999. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J. Mol. Biol. 294: 745-756.
- Choi, S.Y., Churchich, J.E., Zaiden, E., and Kwok, F. 1987. Brain pyridoxine-5-phosphate oxidase. Modulation of its catalytic activity by reaction with pyridoxal 5-phosphate and analogs. J. Biol. Chem. 262: 12013-12017. Dakshinamurti, K. (ed.). 1990. Vitamin B₆. Ann. N.Y. Acad. Sci. Vol. 585.
- Denessiouk, K.A., Denesyuk, A.I., Lehtonen, J.V., Korpela, T., and Johnson,
- M.S. 1999. Common structural elements in the architecture of the cofactorbinding domains in unrelated families of pyridoxal phosphate-dependent enzymes. Proteins 35: 250-261.
- Dolphin, D., Poulson, R., and Avramovic, O. 1986. Vitamin B_6 pyridoxal phosphate: chemical, biochemical and medical aspects. Wiley Interscience, New York, New York.
- Doolittle, W.F. 1999a. Phylogenetic classification and the universal tree. Science 284: 2124-2129.
- Doolittle, W.F. 1999b. Lateral genomics. Trends Cell Biol. 9: M5-8.
- Drewke, C., Klein, M., Clade, D., Arenz, A., Müller, R., and Leistner, E. 1996. 4-O-phosphoryl-L-threonine, a substrate of the *pdxF(serC)* gene product involved in vitamin B₆ biosynthesis. FEBS Lett. 390: 179-182.
- Ehrenshaft, M., Jenns, A.E., Chung, K.-R., and Daub, M.E. 1998. SOR1, a gene required for photosensitizer and singlet oxygen resistance in *Cercospora* fungi, is highly conserved in divergent organisms. Mol. Cell 1: 603-609.
- Ehrenshaft, M., Bilski, P., Li, M.Y., Chignell, C.F., and Daub, M.E. 1999. A highly conserved sequence is a novel gene involved in de novo vitamin B₆ biosynthesis. Proc. Natl. Acad. Sci. USA. 96: 9374-9378.
- Fernandez, S., Kobayashi, Y., Ogasawara, N., and Alonso, J.C. 1999. Analysis of the *Bacillus subtilis recO* gene: RecO forms part of the RecFLOR function. Mol. Gen. Genet. 261: 567-573.
- Galperin, M.Y., and Koonin, E.V. 1997. Sequence analysis of an exceptionally conserved operon suggests enzymes for a new link between histidine and purine biosynthesis. Mol Microbiol. 24: 443-445.
- Grogan, D.W. 1988. Temperature-sensitive murein synthesis in an *Escherichia coli pdx* mutant and the role of alanine racemase. Arch. Microbiol. 150: 363-367.
- Gupta, R.S. 1998a. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol. Microbiol. 29: 695-707.
- Gupta, R.S. 1998b. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukarvotes. Microbiol. Mol. Biol. Rev. 62: 1435-1491.
- Gupta, R.S. 2000. The natural evolutionary relationships among prokaryotes. Crit. Rev. Microbiol. 26: 111-131.
- Hanna, M.C., Turner, A.J., and Kirkness, E.F. 1997. Human pyridoxal kinase. cDNA cloning, expression, and modulation by ligands of the benzodiazepine receptor. J. Biol. Chem. 272: 10756-10760.
- Helmreich, E.J. 1992. How pyridoxal 5'-phosphate could function in glycogen phosphorylase catalysis. Biofactors 3: 159-172.
- Hill, R.E., and Spenser, I.D. 1996. Biosynthesis of vitamin B₆. In: Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S Reznikoff, M. Riley. M. Schaechter, and H.E. Umbarger, eds. ASM Press, Washington, D.C. p. 695-703.
- Huang, X., and Raushel, F.M. 1999. Deconstruction of the catalytic array within the amidotransferase subunit of carbamoyl phosphate synthetase. Biochemistry 38: 15909-15914.
- Jacobs, M., Andersen, J.B., Kontinen, V., and Sarvas M. 1993. *Bacillus* subtilis PrsA is required *in vivo* as an extracytoplasmic chaperone for

secretion of active enzymes synthesized either with or without prosequences. Mol. Microbiol. 8: 957-966.

- Johnstone, B.H., Handler, A.A., Chao, D.K., Nguyen, V., Smith, M., Ryu, S.Y., Simons, E.L., Anderson, P.E., and Simons, R.W. 1999. The widely conserved Era G-protein contains an RNA-binding domain required for Era function *in vivo*. Mol. Microbiol. 33: 1118-1131.
- Kack, H., Sandmark, J., Gibson, K., Schneider, G., and Lindqvist, Y. 1999. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5'-phosphate-dependent enzymes. J. Mol. Biol. 291: 857-876.
- Kontinen, V.P., Saris, P., and Sarvas, M. 1991. A gene (*prsA*) of *Bacillus subtilis* involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273-1283.
- Kontinen, V.P., and Sarvas, M. 1993. The PrsA lipoprotein is essential for protein secretion in *Bacillus subtilis* and sets a limit for high-level secretion. Mol. Microbiol. 8: 727-737.
- Kortlüke, C., Breese, V., Gad'on, N., Labahn, A., and Drews, G. 1997. Structure of the *puf* operon of the obligately aerobic, bacteriochlorophyll alpha-containing bacterium *Roseobacter denitrificans* OCh114 and its expression in a *Rhodobacter capsulatus puf puc* deletion mutant. J. Bacteriol. 179: 5247-5258.
- Krasko, A., Schroeder, H.C., Perovic, S., Steffen, R., Kruse, M., Reichert, W., Mueller, I.M., and Mueller, W.E.G. 1999. Ethylene modulates gene expression in cells of the marine sponge *Suberites domuncula* and reduces the degree of apoptosis. J. Biol. Chem. 274: 31524-31530.
- Kuzuyama, T., Takagi, M., Takahashi, S., and Seto, H. 2000a. Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from *Streptomyces sp.* strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 182: 891-897.
- Kuzuyama, T., Takahashi, S., Takagi, M., and Seto, H. 2000b. Characterization of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme involved in isopentenyl diphosphate biosynthesis, and identification of its catalytic amino acid residues. J. Biol. Chem. 275: 19928-19932.
- Laber, B., Maurer, W., Scharf, S., Stepusin, K., and Schmidt, F.S. 1999. Vitamin B₆ biosynthesis: formation of pyridoxine 5'-phosphate from 4-(phosphohydroxy)-L-threonine and 1-deoxy-D-xylulose-5-phosphate by PdxA and PdxJ protein. FEBS Lett. 449: 45-48.
- Lam, H.M., and Winkler, M.E. 1990. Metabolic relationships between pyridoxine (vitamin B_6) and serine biosynthesis in *Escherichia coli* K-12. J. Bacteriol. 172: 6518-6528.
- Lam, H.M., Tancula, E., Dempsey, W.B., and Winkler, M.E. 1992. Suppression of insertions in the complex *pdxJ* operon of *Escherichia coli* K-12 by *lon* and other mutations. J. Bacteriol. 174: 1554-1567.
- Lam, H.M., and Winkler, M.E. 1992. Characterization of the complex *pdxHtyrS* operon of *Escherichia coli* K-12 and pleiotropic phenotypes caused by *pdxH* insertion mutations. J. Bacteriol. 174: 6033-6045.
- Lambalot, R.H., and Walsh, C.T. 1995. Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J. Biol. Chem. 270: 24658-24661.
- Lange, B.M., Wildung, M.R., McCaskill, D., and Croteau, R. 1998. A family of transketolases that directs isoprenoid biosynthesis via a mevalonateindependent pathway. Proc. Natl. Acad. Sci. USA. 95: 2100-2104.
- Lazar, S.W., Almiron, M., Tormo, A., and Kolter, R. 1998. Role of the *Escherichia coli* SurA protein in stationary-phase survival. J. Bacteriol. 180: 5704-5711.
- Lee, P.C., Bochner, B.R., and Ames, B.N. 1983. AppppA, heat-shock stress, and cell oxidation. Proc. Natl. Acad. Sci. USA. 80: 7496-7500.
- Lévêque, F., Blanchin-Roland, S., Fayat, G., Plateau, P., and Blanquet, S. 1990. Design and characterization of *Escherichia coli* mutants devoid of Ap4N-hydrolase activity. J. Mol. Biol. 212: 319-329.
- Lois, L.M., Campos, N., Putra, S.R., Danielsen, K., Rohmer, M., and Boronat, A. 1998. Cloning and characterization of a gene from *Escherichia coli* encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA. 95: 2105-2110.
- Lu, Q., and Inouye, M. 1998. The gene for 16S rRNA methyltransferase (*ksgA*) functions as a multicopy suppressor for a cold-sensitive mutant of *era*, an essential RAS-like GTP-binding protein in *Escherichia coli*. J. Bacteriol. 180: 5243-5246.
- Luisi-DeLuca, C., and Kolodner, R. 1994. Purification and characterization of the *Escherichia coli* RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J. Mol. Biol. 236: 124-138.
- Mack, M., van Loon, A.P., and Hohmann, H.P. 1998. Regulation of riboflavin biosynthesis in *Bacillus subtilis* is affected by the activity of the flavokinase/ flavin adenine dinucleotide synthetase encoded by *ribC*. J. Bacteriol. 180:

950-955.

- Massière, F., and Badet-Denisot, M.A. 1998. The mechanism of glutaminedependent amidotransferases. Cell. Mol. Life Sci. 54: 205-222.
- Masuda, S., Yoshida, M., Nagashima, K.V.P, Shimada, K., and Matsuura, K. 1999. A new cytochrome subunit bound to the photosynthetic reaction center in the purple bacterium, *Rhodovulum sulfidophilum*. J. Biol. Chem. 274: 10795-10801.
- Matsunaga, J., Dyer, M., Simons, E.L., and Simons, R.W. 1996. Expression and regulation of the *rnc* and *pdxJ* operons of *Escherichia coli*. Mol. Microbiol. 22: 977-989.
- McCormick, D.B., and Chen, H. 1999. Update on interconversions of vitamin B_6 with its coenzyme. J. Nutr. 129: 325-327.
- Meier, T.I., Peery, R.B., McAllister, K.A., and Zhao, G. 2000. Era GTPase of *Escherichia coli*: binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates. Microbiology 146: 1071-1083.
- Meyer, B.U., Schneider, W., and Elstner, E.F. 1992. Peroxide-dependent amino acid oxidation and chemiluminescence catalysed by magnesiumpyridoxal phosphate-glutamate complex. Biochem. Pharmacol. 44: 505-508.
- Mihara, H., Kurihara, T., Yoshimura, T., Soda, K., and Esaki, N. 1997. Cysteine sulfinate desulfinase, a NIFS-like protein of *Escherichia coli* with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J. Biol. Chem. 272: 22417-22424.
- Miller, M., Heuser, T., and Zimmer, W. 1999. A Synechococcus leopoliensis SAUG 1402-1 operon harbouring the 1-deoxyxylulose 5-phosphate synthase gene and two additional openreading frames is functionally involved in the dimethylallyl diphosphate synthesis. FEBS Lett. 460: 485-490.
- Mitchell, C., Morris, P.W, and Vary, J.C. 1992. Amino acid sequences of several *Bacillus subtilis* proteins modified by apparent guanylylation. Mol. Microbiol. 6:1579-1581.
- Morrison, P.T, Lovett, S.T., Gilson, L.E., and Kolodner, R. 1989. Molecular analysis of the *Escherichia coli recO* gene. J. Bacteriol. 171: 3641-3649.
- Moszer, I., Glaser, P., and Danchin, A. 1995. SubtiList: a relational database for the *Bacillus subtilis* genome. Microbiology 141: 261-268.
- Moszer, I. 1998. The complete genome of *Bacillus subtilis*: From sequence annotation to data management and analysis. FEBS Lett. 430: 28-36.
- Mouslim, C., Cano, D.A., Flores, A., and Casadesús, J. 2000. Regulation of septation: a novel role for SerC/PdxF in *Salmonella*? Mol. Gen. Genet. 264: 184-192.
- Nishimura, A., Moriya, S., Ukai, H., Nagai, K., Wachi, M., and Yamada, Y. 1997. Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) controls the timing of cell division in *Escherichia coli*. Genes to Cells 2: 401-413.
- Notheis, C., Drewke, C., and Leistner, E. 1995. Purification and characterization of the pyridoxol-5'-phosphate:oxygen oxidoreductase (deaminating) from *Escherichia coli*. Biochim. Biophys. Acta 1247: 265-271.
- Osmani, A.H., May G.S., and Osmani, S.A. 1999. The extremely conserved pyroA gene of Aspergillus nidulans is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J. Biol. Chem. 274: 23565-23569.
- Padilla, P.A., Fuge, E.K., Crawford, M.E., Errett, A., and Werner-Washburne, M. 1998. The highly conserved, coregulated SNO and SNZ gene families in *Saccharomyces cerevisiae* respond to nutrient limitation. J. Bacteriol. 180: 5718-5726.
- Page, R.D.M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. CABIOS. 12: 357-358.
- Pflug, W., and Lingens, F. 1978. Vitamin B₆ biosynthesis in *Bacillus subtilis*. Hoppe Seylers Z. Physiol. Chem. 359: 559-570. (Article in German).
- Powell, B., Peters, H.K. III, Nakamura, Y., and Court, D. 1999. Cloning and analysis of the *rnc-era-recO* operon from *Pseudomonas aeruginosa*. J. Bacteriol. 181: 5111-5113.
- Roa, B.B., Connolly, D.M., and Winkler, M.E. 1989. Overlap between *pdxA* and *ksgA* in the complex *pdxA-ksgA-apaG-apaH* operon of *Escherichia coli* K-12. J. Bacteriol. 171: 4767-4777.
- Romine, M.F., Stillwell, L.C., Wong, K.K., Thurston, S.J., Sisk, E.C., Sensen, C., Gaasterland T., Fredrickson, J.K., and Saffer, J.D. 1999. Complete sequence of a 184-kilobase catabolic plasmid from *Sphingomonas aromaticivorans* F199. J. Bacteriol. 181: 1585-1602.
- Rottmann, W.H., Peter, G.F., Oeller, P.W., Keller, J.A., Shen. N.F., Nagy, B.P., Taylor, L.P., Campbell, A.D., and Theologis, A. 1991. 1aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J. Mol. Biol. 222: 937-961.
- Saint, C.P., and Romas, P. 1996. 4-Methylphthalate catabolism in *Burkholderia (Pseudomonas) cepacia* Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiology 142: 2407-2418.

- Sauer, U., and Bailey, J.E. 1999. Estimation of P-to-O ratio in *Bacillus subtilis* and its influence on maximum riboflavin yield. Biotechnol. Bioeng. 64: 750-754.
- Schneider, G., Kack, H., and Lindqvist, Y. 2000. The manifold of vitamin B₆ dependent enzymes. Structure Fold Des. 8: R1-6.
- Schoenlein, P.V., Roa, B.B., and Winkler, M.E. 1989. Divergent transcription of *pdxB* and homology between the *pdxB* and *serA* gene products in *Escherichia coli* K-12. J. Bacteriol. 171: 6084-6092.
- Shimkets, L.J. 1990. The Myxococcus xanthus FprA protein causes increased flavin biosynthesis in Escherichia coli. J. Bacteriol. 172: 24-30.
- Sivasubramaniam, S., Vanniasingham, V.M., Tan, C.T. and Chua, N.H. Characterisation of HEVER, a novel stress-induced gene from *Hevea brasiliensis*. 1995. Plant Mol. Biol. 29: 173-178.
- Sprenger, G.A., Schorken, U., Wiegert, T., Grolle, S., de Graaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S., and Sahm, H. 1997. Identification of a thiamin-dependent synthase in *Escherichia coli* required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA. 94: 12857-12862.
- Stackebrandt, E., Murray, R.G.E., and Trüper, H.G. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives." Int. J. Syst. Bacteriol. 38 : 321-325.
- Takami, H., Takaki, Y., Nakasone, K., Sakiyama, T., Maeno, G., Sasaki, R., Hirama, C., Fuji, F., and Masui, N. 1999. Genetic analysis of the chromosome of alkaliphilic *Bacillus halodurans* C-125. Extremophiles 3: 227-233.
- Takiff, H.E., Baker, T., Copeland, T., Chen, S.M., and Court, D.L. 1992. Locating essential *Escherichia coli* genes by using mini-Tn10 transposons: the *pdxJ* operon. J. Bacteriol. 174: 1544-1553.
- Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36.
- Tazuya, K., Adachi, Y., Masuda, K., Yamada, K., and Kumaoka, H. 1995. Origin of the nitrogen atom of pyridoxine in *Saccharomyces cerevisiae*. Biochim. Biophys. Acta 1244: 113-116.
- Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
- Tormo, A., Almiron, M., and Kolter, R. 1990. *surA*, an *Escherichia coli* gene essential for survival in stationary phase. J. Bacteriol. 172: 4339-4347.
- van Gemen, B., Koets, H.J., Plooy, C.A., Bodlaender, J., and van Knippenberg, P.H. 1987. Characterization of the *ksgA* gene of *Escherichia coli* determining kasugamycin sensitivity. Biochimie 69: 841-848.
- Wang, W., and Bechhofer, D.H. 1997. Bacillus subtilis RNase III gene: cloning, function of the gene in Escherichia coli, and construction of Bacillus subtilis strains with altered rnc loci. J. Bacteriol. 179: 7379-7385.
- Woese, C.R., Kandler, O., and Wheelis, M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA. 87: 4576-4579.
- Woese, C. 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA. 95: 6854-6859.
- Yang, Y., Zhao, G., and Winkler, M.E. 1996. Identification of the *pdxK* gene that encodes pyridoxine (vitamin B₆) kinase in *Escherichia coli* K-12. FEMS Microbiol. Lett. 141: 89-95.
- Yang, Y., Tsui, H.C., Man, T.K., and Winkler, M.E. 1998a. Identification and function of the *pdxY* gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate biosynthesis in *Escherichia coli* K-12. J. Bacteriol. 180:1814-1821.
- Yang, Y., Zhao, G., Man, T.K., and Winkler, M.E. 1998b. Involvement of the gapA- and epd (gapB)-encoded dehydrogenases in pyridoxal 5'phosphate coenzyme biosynthesis in *Escherichia coli* K-12. J. Bacteriol. 180: 4294-4299.
- Youvan, D.C., Bylina, E.J., Alberti, M., Begusch, H., and Hearst, J.E. 1984. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from *R. capsulata*. Cell 37: 949-957.
- Zhao, G., and Winkler, M.E. 1994. An *Escherichia coli* K-12 *tktA tktB* mutant deficient in transketolase activity requires pyridoxine (vitamin B_6) as well as the aromatic amino acids and vitamins for growth. J. Bacteriol. 176: 6134-6138.
- Zhao, G., and Winkler, M.E. 1995. Kinetic limitation and cellular amount of pyridoxine (pyridoxamine) 5'-phosphate oxidase of *Escherichia coli* K-12. J. Bacteriol. 177: 883-891.
- Zhao, G., and Winkler, M.E. 1996. 4-Phospho-hydroxy-L-threonine is an obligatory intermediate in pyridoxal 5'-phosphate coenzyme biosynthesis in *Escherichia coli* K-12. FEMS Microbiol. Lett. 135: 275-280.