

TPM Provisioning

Version: 1.0

Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: bsi@bsi.bund.de Internet: https://www.bsi.bund.de © Federal Office for Information Security 2019

Table of Contents

1	Introduction	5
1.1	Concepts and terms	5
2	Technical Analysis	7
2.1	User Manual	9
Appendix		12
Persistent Objects		12
R	eferences	13
K	eywords and Abbreviations	14

Figures

Figure 1: TPM provisioning with the tpm2-tools toolset	7
Figure 2: Changing a set owner authorization value with tpm2_takeownership	8
Figure 3: Conversion of a Base64-encoded owner authorization value into binary form	8
Figure 4: Changing an owner authorization value set in Windows 10	9
Figure 5: Changing a lockout authorization value set in Windows 10	9

Introduction Introduction

1 Introduction

This document implements the work plan outlined in Work Package 5B of the project "SiSyPHuS Win10: Studie zu Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10" (orig., ger.). The project is contracted by the German Federal Office for Information Security (orig., ger., Bundesamt für Sicherheit in der Informationstechnik - BSI). The work planned as part of Work Package 5B has been conducted by ERNW GmbH in the time period between August and September 2019, in accordance with the time plan agreed upon by ERNW GmbH and the German Federal Office for Information Security.

As required by the German Federal Office for Information Security, the version of the Trusted Platform Module (TPM) standard in focus is 2.0. The release of the Windows 10 system in focus is Windows 10 Enterprise long-term servicing branch (LTSB) 2019. This work package is an extension of Work Package 5, conducted by ERNW GmbH in the time period between July and September 2017.

The objective of this work package is the development of a proof-of-concept (PoC) for provisioning the TPM outside of the Windows operating system. The TPM provisioning process involves multiple activities, such as setting an owner authorization value and storing a storage root key (SRK) in the TPM device ((ERNW_WP5), Section 2.5). The focus of this work is on setting an owner authorization value ((ERNW_WP5), Section 1.3). This process involves changing an already set owner authorization value, or specifying a new owner authorization value, and storing this value in the TPM. In this work, we use the tpm2-tools Linux toolset of version 3.1.3-2 (git_tpm2tools, 2019) for setting an owner authorization value in Linux.

1.1 Concepts and terms

This section introduces concepts and terms relevant for understanding the contents of this work. The TPM provides a rich set of mechanisms for access control over resources managed by the TPM (i.e. objects). Objects can be managed by four entities (also referred to as management entities in this work): the platform firmware, the owner administrator, the endorsement administrator, and the lockout administrator. The access control mechanisms provided by the TPM enables the TPM to make a distinction between these entities when it comes to managing TPM objects. Each of the management entities has its own domain of objects for management. The following introduces relevant related terms:

Authorization values: Each management entity authorizes itself for performing management operations in its domain by using an authorization value. This value is used for authorizing the execution of specific protected TPM commands and functionalities. These commands and functionalities are protected such that they can be executed only if a proof of authorization is provided to the TPM. This proof is in the form of authorization values. Setting authorization values is the process referred to as taking ownership of the TPM. The TPM supports the following authorization values:

- platform authorization: The platform firmware uses the platform authorization value (platformAuth) for managing the objects in its domain. The platform firmware has access to all protected TPM commands and functionalities. To the domain managed by the platform firmware belongs the TPM hardware chipset.
- owner authorization: The owner administrator uses the owner authorization value (ownerAuth) for managing the objects in its domain. The owner administrator has access to some protected TPM commands and functionalities. To the domain managed by the owner administrator belongs the data and key storage mechanism of the TPM ((ERNW_WP5), Section 1.3).
- endorsement authorization: The endorsement administrator uses the endorsement authorization value (endorsementAuth) for managing the objects in its domain. The endorsement administrator has access to some protected TPM commands and functionalities. To the domain managed by the endorsement administrator belongs the platform identification mechanism of the TPM. This mechanism is relevant when the identity of a given TPM-enabled platform has to be proved.

• lockout authorization: The lockout administrator uses the lockout authorization value (lockoutAuth) for managing the objects in its domain. The lockout administrator has access to some protected TPM commands and functionalities. To the domain managed by the lockout administrator belongs the mechanism for protection against brute-force attacks, where an attacker tries different authorization values discussed in this section, until one succeeds. When the lockout mechanism has been triggered, the TPM prevents the usage of specific protected TPM commands and functionalities. In order to reset the lockout mechanism, the lockout administrator must provide the lockoutAuth value.

Authorization types: The TPM supports three authorization methods involving the authorization values discussed in this section: password, hash message authentication code (HMAC), and policy (tcgtpm, 2019). TPM users, such as the Windows 10 operating system, configure the authorization method to be used when taking ownership of the TPM. The password and HMAC authorization methods authorize TPM commands and functionalities based on knowledge of a secret stored in the TPM device. The policy authorization method, also known as extended authorization (EA), authorizes TPM commands and functionalities based on conditions. These conditions can be combined with the AND and OR logical operations (e.g., a specific Platform Configuration Register (PCR) state AND a correct secret).

Hierarchy: A hierarchy is collection of objects that are managed by a given management entity. At the root of a hierarchy is a root key to which other objects (e.g., keys and arbitrary data) may be attached. A hierarchy can be persistent (retained through a system reboot) or volatile (erased at each system reboot). The TPM provides three persistent hierarchies: the platform, endorsement, and owner hierarchy. These hierarchies belong to the domains managed by the platform firmware, the endorsement administrator, and the owner administrator, respectively.

The platform hierarchy enables secure storage for platform manufacturers to store platform-related objects. This includes cryptographic material to protect the update mechanisms of the core root of trust for measurement ((ERNW_WP5), Section 1.3) in order to comply with NIST SP 800-147 (see (nist_sp_800-147b, 2019)).

The endorsement hierarchy enables secure storage of objects relevant for proving the identity of a given TPM-enabled platform. This includes the endorsement key, which is unique for each manufactured TPM device.

The owner hierarchy enables secure storage of objects relevant to TPM users, including the Windows 10 operating system. This includes encryption of arbitrary data using the root key of the owner hierarchy (i.e., the SRK) and storage of encryption keys in the non-volatile memory of the TPM.

2 Technical Analysis

This section presents a proof-of-concept implementation for setting of an owner authorization value in Linux. In this work, we use the tpm2-tools toolset (git_tpm2tools, 2019) for provisioning the TPM in Linux, including setting an owner authorization value. Figure 1 depicts the use of the different tools that are part of tpm2-tools for provisioning a TPM device. The tool tpm2_takeownership is used for setting authorization values and storing them in the TPM, that is, for taking ownership of the TPM (see [1] in Figure 1). The -o parameter of tpm2_takeownership specifies the owner authorization value to be set. In the scenario depicted in Figure 1, the password authorization method is used. The tool

tpm2_createprimary (see [2] in Figure 1) is used to generate an SRK under the set owner authorization value ((ERNW_WP5), Section 1.3). The tool tpm2_evictcontrol (see [3] in Figure 1) is used to store a previously generated SRK in a persistent, non-volatile, memory location in the TPM. The tools tpm2_listpersistent and tpm2_readpublic (see [4] in Figure 1) are used to view attributes of a previously generated SRK.

Figure 1: TPM provisioning with the tpm2-tools toolset

We now present how the owner authorization value, set as part of the TPM provisioning process depicted in Figure 1, can be changed with the tpm2-tools toolset across the boundaries of the operating system that has provisioned the TPM. To this end, we used the tool tpm2_takeownership to successfully change the previously set owner authorization value in another, live-booted Linux system (see Figure 2). In order to change a set owner authorization value, the tpm2_takeownership tool is executed such that:

- the -O parameter specifies the old owner authorization value; and
- the -o parameter specifies the new owner authorization value.

The output of the tools tpm2_listpersistent and tpm2_readpublic shows that changing the owner authorization value in the live-booted Linux system has no impact on the SRK generated as part of the TPM provisioning process conducted earlier. This shows that changing a set owner authorization value across the boundaries of Linux operating systems is technically feasible.

Technical Analysis Technical Analysis

Figure 2: Changing a set owner authorization value with tpm2_takeownership

We now analyze whether changing a set owner authorization value across the boundaries of a Windows and a Linux operating system is technically feasible. We first analyze whether an owner authorization value, set during a TPM provisioning process conducted by Windows 10 (see (ERNW_WP5), Section 2.5), can be changed in a live-booted Linux system using the tpm2_takeownership tool. The owner authorization value generated by Windows 10 is a 20-byte long binary sequence. Windows 10 can be configured to store the owner authorization value in a Base64-encoded form at the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TPM\WMI\Admin\OwnerAuthFull (see (ERNW_WP5), Section 3.1.2). For this owner authorization value to be changed in Linux using the tpm2_takeownership tool, it has to be converted to its binary form so that it can be specified as the -O parameter of the tool. Figure 3 depicts a conversion of a Base64-encoded owner authorization value into its binary form using PowerShell commands (ERNW_WP8, n.d.).

PS C:\Users\dphillips> Get-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Services\TPM\WMI\Admin\
LastAuthLevel : 4
OwnerAuthStatus : 1
OwnerAuthFull : jN4eiezBYiaytCBvf0eW4oxXZcg=
LockoutHash : e03102F9WZG4aiu5/1Y6DkiLxqg=
[...]
PS C:\Users\dphillips> [System.Convert]::FromBase64String('jN4eiezBYiaytCBvf0eW4oxXZcg=').GetType()
ISPUblic ISSerial Name BaseType
True Byte[] System.Array
PS C:\Users\dphillips> [ISystem.BitConverter]::ToString([System.Convert]::FromBase64String('jN4eiezBYiaytCBvf0eW4oxXZcg=')).Replace("-","")
RCDE1E89ECC16226B284206F7F4796E28C5765C8

Figure 3: Conversion of a Base64-encoded owner authorization value into binary form

Figure 4 depicts the execution of the tpm2 takeownership tool for changing the owner authorization value that has been previously set during a TPM provisioning process conducted by Windows 10. The $-\circ$ parameter of the tool specifies the set owner authorization value in its binary form (see Figure 3). The execution of tpm2 takeownership fails with the error code 0x9a2. The tpm2 rc decode tool, part of the tpm2-tools toolset, can be used to decode this code (see Figure 4). The output of tpm2 rc decode indicates that there is an issue related with the owner authorization value specified by the $-\circ$ parameter of tpm2 takeownership. We suspect that the issue is related to a second factor for authorizing the TPM functionality of changing an owner authorization value set in Windows 10. This may be the case in the scenario where Windows 10 configures the HMAC or policy authorization methods when taking ownership of the TPM. In order to evaluate this hypothesis, we attempted to change the lockout authorization value set during the TPM provisioning process conducted by Windows 10 (see (ERNW WP5), Section 1.3). Windows 10 sets the same value both as an owner and as a lockout authorization value (see (ERNW WP5), Section 2.5). Therefore, if changing the lockout authorization value succeeds, the error code 0x9a2 is not related to the owner authorization value specified by the -O parameter of tpm2 takeownership itself, but to a second factor for authorizing the TPM functionality of changing an owner authorization value set in Windows 10. Hence, the hypothesis is confirmed.

dph1t1ps@dx0002?~ ~ tpm2_takeownersnip -0 "nex:9da86e6eadc1d0/981e03e25ab1t429feacad511" -0 "nex:8cde1e89ecc16226b2b4206f/t4/96e28c5/65c8" -V					
ERROR on line: "109" in file: "tools/tpm2_takeownership.c": Could not change hierarchy for Owner. TPM Error:0x9a2					
ERROR on line: "165" in file: "tools/tpm2_tool.c": Unable to run tpm2_takeownership					
aphillips@ux0002:~ → tpm2_rc_aecode 0x9a2					
error layer					
hex: 0x0					
identifier: TSS2 TPM RC LAYER					
description: Error produced by the TPM					
format 1 error code					
hex: 0x22					
identifier: TPM2 RC BAD AUTH					
description: authorization failure without DA implications					
session					
hex: 0x100					
identifier: TPM2 RC 1					
description: (null)					

Figure 4: Changing an owner authorization value set in Windows 10

We attempted to change the set lockout authorization value with the tpm2_takeownership tool, such that the -L parameter specifies the set lockout authorization value (i.e., the set owner authorization value, see Figure 5). This attempt succeeds (see Successfully changed hierarchy for Lockout in Figure 5). This indicates that changing an owner authorization value set in Windows 10 is a TPM functionality that is protected by a second authorization factor, in addition to the owner authorization value itself. This, in turn, indicates that changing an owner authorization value set in a given Windows 10 instance cannot cross the boundary of the Windows instance.

dphillips@0x0002:~|+ tpm2_takeownership -l "hex:9da86e6eadcld0798le03e25ab1f429feacad511" -L "hex:8cdele89ecc16226b2b4206f7f4796e28c5765c8" -V
INFO on line: "114" in file: "tools/tpm2_takeownership.c": Successfully changed hierarchy for Lockout
dphillips@0x0002:~|+ tpm2 takeownership -c -L "hex:9da86e6eadcld0798le03e25ab1f429feacad511" -V

uphittips@xxxxxz.~|= tpmz_takeownership -t -t nex.suadoedeadtidx/soleosezsabil423/eataosii -

Figure 5: Changing a lockout authorization value set in Windows 10

If a given TPM device is provisioned in Linux (see Figure 1), the owner authorization value set in Linux cannot be used in the context of Windows 10. We observed that in such a scenario, Windows 10 does not reprovision the TPM. In addition, the non-programmatic TPM configuration capabilities of Windows 10 ((ERNW_WP5), Section 3.1.2) do not enable users to manually input the owner authorization value in order to execute protected TPM commands and functionalities (e.g., changing the set owner authorization value). This is because a Windows 10 instance does not consider a TPM device trustworthy when the ownership of it has been taken in another operating system instance.

2.1 User Manual

This section provides step-by-step instructions for provisioning a non-initialized TPM outside of the Windows operating system with tpm2-tools in Linux. The TPM provisioning process involves taking ownership of the TPM and storing an SRK in the TPM device. It is relevant to emphasize that if the TPM has already been provisioned in Windows 10, it first must be cleared by the firmware so that the TPM provisioning process in Linux succeeds. The TPM provisioning approach presented in this section involves only the password-based authorization type (see Section **Error! Reference source not found.**). The tpm2-tools command-line argument presented as part of this approach are relevant for taking ownership of the TPM and storing an SRK in it. Taking ownership of the TPM means storing authorization values for password-based authorization.

Step 1. Use tpm2_getrandom to generate a strong random byte sequence that will be used as an authorization value.

Synopsis:

tpm2_getrandom [argument]

The output defaults to the stdout.

Example: Generate a random 20-byte sequence and convert the output data to hex without a leading "0x".

```
[tpm2_getrandom 20 | xxd -ps]
```

Step 2. Use tpm2_takeownership to store the random byte sequence generated in Step 1 in the TPM as an authorization value.

Synopsis:

tpm2 takeownership [options]

The random values provided to tpm2_takeownership can be in two forms: string and hexstring. By default, tpm2_takeownership assumes that provided values are in string form. The value form can be specified with the following prefixes:

str: indicates a value in string form.

hex: indicates a value in hex-string form [example: "hex:8079cd2e066b53c0"].

Options:

[-o, -owner-password=ownerAuth] stores a value as an ownerAuth.

[-e, -endorse-password=endorsementAuth] stores a value as an endorsementAuth.

[-1, -lock-password=lockoutAuth] stores a value as a lockoutAuth.

Example: Store the hex-string values 801, 802, and 803 in the TPM as an owner, endorsement, and lockout authorization values, respectively.

```
[tpm2 takeownership -o "hex:801" -e "hex:802" -1 "hex:803"]
```

Step 3. Use tpm2_createprimary to generate an asymmetric key that is to be stored in the non-volatile memory of the TPM as the SRK.

Synopsis:

tpm2 createprimary[options]

This command generates a key under the owner, platform, or the endorsement hierarchy (see Section **Error! Reference source not found.**).

The output of this command includes the address (in the context of the volatile memory of the TPM) at which the generated key is stored.

Options:

[-H, -hierarchy=object] specifies the hierarchy under which the key is generated: o specifies the owner hierarchy, p specifies the platform hierarchy, and e specifies the endorsement hierarchy.

[-P, -pwdp=auth] specifies the authorization value for the hierarchy specified with -H.

[-g, -hash=hashAlgorithm] specifies the hash algorithm for hashing the name of the key assigned by the TPM.

[-G, -kalg=keyAlgorithm] specifies the algorithm type for the key to be generated

Example: Create a key under the owner hierarchy.

tpm2_createprimary -H o -g sha256 -G rsa -P "hex:801"

Step 4. Use tpm2_evictcontrol to store the key generated in Step 3 in the non-volatile memory of the TPM, under the owner hierarchy (see Appendix, "Persistent Objects"). This is effectively the SRK.

Synopsis:

tpm2_evictcontrol [options]

This command stores or removes a key in, or from, the non-volatile memory of the TPM.

Options:

[-A, -auth=Auth] specifies a hierarchy: \circ specifies the owner hierarchy, p specifies the platform hierarchy, and \circ specifies the endorsement hierarchy

[-P, -pwdp=auth] specifies the authorization value for the hierarchy specified with -A.

[-H, -handle=] specifies the address (in the context of the volatile memory of the TPM) of the key generated in Step 3 (see Step 3)

[-S, -persistent=persistentHandle] specifies address (in the context of the non-volatile memory of the TPM) at which the key generated in Step 3 should be stored. These addresses are pre-defined (see "SRK" in the Appendix, "Persistent Objects")

Example: Store a key in the non-volatile memory of the TPM, at the address 0x81000001.

tpm2_evictcontrol -A o -H 0x80000000 -S 0x81000001 -P "hex:ownerAuth"

Appendix

Persistent Objects

Object name	Reserved addresses
EK	0x81010001
EK Certificate	0x01C00002
SRK	0x81000001
IDevID Key	0x81020000
IDevID Certificate	0x01C90000

Table 1: Pre-defined addresses for storing objects

References

- ERNW_WP5. (kein Datum). SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10): Work Package 5.
- ERNW_WP8. (kein Datum). SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10): Work Package 8.

git_tpm2tools. (30. 08 2019). Von https://github.com/tpm2-software/tpm2-tools abgerufen *nist_sp_800-147b*. (11. 11 2019). Von https://csrc.nist.gov/publications/detail/sp/800-147b/final abgerufen

tcgtpm. (30. 08 2019). Von https://trustedcomputinggroup.org/resource/a-practical-guide-to-tpm-2-0/ abgerufen

Keywords and Abbreviations

EA: extended authorization	6
HMAC: hash message authentication code	6, 8
LTSB: long-term servicing branch	5
PCR: Platform Configuration Register	6
PoC: proof of concept	5
SRK: storage root key	5, 7, 9
TPM: Trusted Platform Module	5, 6, 7, 8, 9, 11