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Legal Disclaimers
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Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or 
retailer.

No computer system can be absolutely secure. 

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources 
of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost 
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel 
representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and 
uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are 
accurate. 

Intel, Xeon, Xeon Phi, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. 

© 2016 Intel Corporation. 

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are 
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific 
instruction sets covered by this notice.

Notice revision #20110804
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Agenda

Background

 Introduction to HPC Stencil Algorithms via earthquake simulation

 Overview of the Intel® Xeon Phi™ and Intel® Xeon® Scalable Processors

YASK Framework for creating and tuning Stencil Code

 Vector-folding feature

 Automatic-tuning feature

 Current and future work

Summary
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Application Domain: HPC Stencil Computation

 Iterative kernels that update elements in one or more N-dimensional grids using a fixed 
pattern of computation on neighboring elements

 Fundamental algorithm in many scientific simulations, commonly used for solving 
differential equations using finite-difference methods (FDM)

Weather Simulation

Seismic Modeling

Image Processing

Images from https://commons.wikimedia.org
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Example: AWP-ODC-OS

AWP-ODC: Anelastic Wave Propagation-
Olsen, Day, Cui
 Software that simulates seismic wave 

propagation after a fault rupture

 Widely used by the Southern California 
Earthquake Center (SCEC) community

 In recent years has primarily run on GPU 
accelerated supercomputers

AWP-ODC-OS
 First ever open source release in 2016 (BSD-2 

license), including port to Intel Xeon Phi 
processor, under development by San Diego 
Supercomputer Center (SDSC) at Univ. of CA, 
San Diego (UCSD)

Sept., 2017

• CyberShake Study 15.4 hazard map for 

336 sites around Southern California

• Warm colors represent areas of high 

hazard

Content on this slide courtesy of UCSD
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AWP-ODC-OS Development Process 

1. Geophysicists use differential 
equations to represent velocity and 
stress of rock and soil during an 
earthquake

2. Derivatives are approximated 
in both time and space (only x
dimension shown)

4. Stencils are coded and tuned 
for HPC clusters (our focus)

3. Equations are expanded to 
finite-difference stencils (this is 
one of 15 stencils for AWP-ODC 
staggered-grid formulation)

(𝑡 + 1)
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Intel® Xeon Phi™ Processors and Intel® Xeon® Scalable Processors



Intel® Xeon Phi™ Product Family x200
(previously code-named Knights Landing, “KNL”)

Sept., 2017

Host Processor in Groveport Platform
Self-boot Intel® Xeon Phi™ processor
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DDR4

Up to 72 cores with 4 hyper-threads each

MCDRAM MCDRAM

MCDRAM MCDRAM

DDR4
TILE:
(up to 

36)

Tile IMC (integrated memory controller)EDC (embedded DRAM controller) IIO (integrated I/O controller)

KNL
Package

Enhanced Intel® Atom™ cores based on 
Silvermont Microarchitecture

 2D Mesh Architecture
 Out-of-Order Cores
 3X single-thread vs. KNC

ISA
Intel® Xeon® Processor Binary-Compatible (w/Broadwell)

On-package memory
16GiB MCDRAM, ~490 GB/s Stream Triad

Platform Memory
Up to 384GiB DDR4-2400, ~90 GB/s Stream Triad

2VPU

Core

2VPU

Core
1MB
L2

HUB

Bi-directional 
tile connections 

KNL Architecture Overview
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Cache Model
Ideal for large data size (>16GB) 

cache blocking apps

Flat Model
Maximum bandwidth for data 

reuse aware apps

Hybrid Model
Maximum flexibility for varied 

workloads

Description
Hardware automatically manages the 

MCDRAM as a “L3 cache” between CPU 
and DDR memory

Manually manage how the app uses
the integrated on-package memory 

and DDR for peak perf

Harness the benefits of both Cache and 
Flat models by segmenting the 
integrated on-package memory

Usage Model

 App and/or data set is very large and 
will not fit into MCDRAM

 Unknown or unstructured memory 
access behavior

 App or portion of an app or data 
set that can be “locked” into 
MCDRAM so it doesn’t get flushed 
out

 Need to “lock” in a relatively small 
portion of an app or data set via the 
Flat model

 Remaining MCDRAM is configured as 
Cache

DRAM
8 or 4 GB 
MCDRAM

8 or 12GB
MCDRAM

Split Options: 
25/75% 

or 
50/50%

8GB/ 16GB
MCDRAM

Up to 
384 GB

DRAM

P
h

ys
ic

a
l A

d
d

re
ss

DRAM
16GB

MCDRAM

64B cache 
lines direct-mapped

1. NUMA = non-uniform memory access

Model configurable at boot time and software exposed through NUMA1

Sept., 2017

Integrated On-Package Memory Usage Models
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Intel® Xeon® Scalable Processors
(previously code-named Skylake Xeon, “SKX”)

• Above graphic shows maximum sockets. Two-socket platforms are common in HPC installations.
• Also available: Gold (5000 Series), Silver (4000 Series), and Bronze (3000 Series)

Sept., 2017 Intel Corporation 12



AVX-512CD

E5-2600
(SNB1)

SSE

AVX

E5-2600v3
(HSW1)

SSE

AVX

AVX2

AVX-512CD

x87/MMX x87/MMX

KNL
(Xeon Phi)

SSE

AVX

AVX2

x87/MMX

AVX-512F

AVX-512ER

AVX-512PF

AVX-512:
Foundation

• 512-bit  FP/Integer Vectors

• 32 SIMD registers

• 8 mask registers

• Vector gather/scatter

Conflict Detection for vectorizing

histogram-type algorithms

PreFetch gather/scatter

Exponential and Reciprocal instructions

Byte and Word integer SIMD elements

Double- and Quad-word int SIMD

Vector-Length orthogonality (128 and 

256-bit operations)1. Previous code-names of Intel® 
Xeon® processors

SIMD Instruction Sets

Sept., 2017 Intel Corporation 13

AVX-512BW

SKX
(Xeon)

SSE

AVX

AVX2

x87/MMX

AVX-512F

AVX-512VL

AVX-512DQ
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Intel® Xeon Phi™ & Xeon® Scalable on Top500
(Those in top 20 from June 2017 list, https://www.top500.org) 

Rank System Cores
Rmax
(TFlop/s)

6
Cori, Intel Xeon Phi 7250 68C 1.4GHz, DOE/SC/LBNL/NERSC, 
United States 

622,336 14,014.7

7
Oakforest-PACS, Xeon Phi 7250, 
Joint Center for Advanced High Performance Computing, Japan 

556,104 13,554.6

12
Stampede2, Xeon Phi 7250, Texas Advanced Computing 
Center/Univ. of Texas, United States 

285,600 6,807.1

13
MareNostrum, Xeon Platinum 8160, Barcelona Supercomputing 
Center, Spain 

148,176 6,227.2

14 Marconi - CINECA Cluster, Xeon Phi 7250, CINECA, Italy 241,808 6,223.0

16
Theta, Xeon Phi 7230,
DOE/SC/Argonne National Laboratory, United States 

231,424 5,884.6
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What Defined Tools of the trade

Thread 
Scaling

Increase concurrent thread
use across coherent shared 
memory

OpenMP, TBB, Cilk Plus

Vector 
Scaling

Use wide-vector (512-bit) 
instructions

Vector loops, vector 
functions, array notations

Cache 
Blocking

Use algorithms to reduce 
memory bandwidth pressure 
and improve cache hit rate

Blocking algorithms

Fabric 
Scaling

Tune workload to increased
node count

MPI

Data 
Layout

Optimize data layout for
unconstrained performance

AoSSoA, directives for 
alignment

X4
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Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8
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Y12
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X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

1

2

3

4

5

What is “Modernized” Code? (generic HPC advice)
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Category Example techniques for stencil code

Thread 
Scaling

• Typical: Evaluate multiple blocks in parallel using hyper-threading 
and multi-core

• Advanced: Use nested parallelism to increase cooperation between 
hyper-threads and/or KNL cores sharing a tile

Vector 
Scaling

• Typical: Use wide-vector (512-bit) instructions
• Advanced: Use KNL reciprocal instructions to improve division 

performance when allowable

Cache 
Blocking

• Typical: Use one level of blocking within a time-step to increase L2 
reuse

• Advanced: Use additional level of blocking with temporal wave-
fronts to utilize KNL’s MCDRAM cache

Fabric 
Scaling

• Typical: Use MPI to exchange halos between time-steps
• Advanced: Schedule MPI communication to occur simultaneously 

with calculations of internal points

Data 
Layout

• Typical: Align accesses on cache-line boundaries and use KNL’s 
MCDRAM when possible

• Advanced: Use custom layout to enable vector-folding, which 
reduces memory bandwidth demand (details following)

1

2

3

4

5

Modernizing Stencil Code

Challenges
 Implementing the 

optimizations can be 
complex and error-
prone

 Optimal tuning requires 
trading off multiple 
(sometimes conflicting) 
optimizations, each with 
multiple parameters

 Domain experts may 
reject code that 
obfuscates the 
underlying math!

17Sept., 2017 Intel Corporation



Y.A.S.K.  Yet Another Stencil Kernel

What it is [and isn’t]

 A software framework to implement and tune stencil code for Intel® Xeon® processors 
and Intel® Xeon Phi™ processors and coprocessors

 Not [just] a library because stencil formulation isn’t known a priori for all problems 

Goals

 Create high-performing kernel code from a straightforward specification of stencil 
equations in a domain-specific language (DSL)

 Provide a simple kernel-driver to test and tune stencil performance

– Expose optimization trade-off choices without requiring code changes

– Automate searching through the optimization design space

 Provide ability to integrate generated code into larger applications (work in progress)

Sept., 2017 Intel Corporation 18



YASK High-Level Flow

Optimized stencil 
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with 
OpenMP, prefetch code, 

etc.

Other C++ code

Intel C++ 
compiler

Executable 
stencil kernel 

binary

Performance 
results

Sept., 2017 Intel Corporation 19



𝑢 𝑡 → 𝑢(𝑡 + 1)

25 points 
from 3D 
grid u(t)

…are used to 
compute 1 

point in u(t+1)

𝑢 𝑡 + 1, 𝑖, 𝑗, 𝑘 = 𝑐0𝑢 𝑡, 𝑖, 𝑗, 𝑘

+  

𝑟=1

4

𝑐𝑟 𝑢 𝑡, 𝑖 − 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖 + 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖, 𝑗 − 𝑟, 𝑘

…as 
specified 

by the RHS 
of this 
finite-

difference 
equation 

20

Example YASK Feature: Vector-Folding
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Example 3D stencil:



𝑢 𝑡 → 𝑢(𝑡 + 1)

21Sept., 2017 Intel Corporation

Example 3D stencil:



𝑢 𝑡 → 𝑢(𝑡 + 1)

22Sept., 2017 Intel Corporation

Example 3D stencil:



𝑢 𝑡 → 𝑢(𝑡 + 1)

Repeat for u(t+2)…

“Halo” data 

regions

Entire problem 

domain—typically 

billions of points

23Sept., 2017 Intel Corporation
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Traditional 1D Vectorization

Sept., 2017

𝑢 𝑡 → 𝑢(𝑡 + 1)

25 8-element 

input vectors

(200 points) 

from u(t)

…to compute 

8 points in 

u(t+1)
Notice overlap 

of vectors 

along x axis

Intel Corporation
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Traditional 1D Vectorization

Sept., 2017

𝑢 𝑡 → 𝑢(𝑡 + 1)

8 new vectors 

must be read for 

k±r points

(4 for k+r and 4 for 

k-r for r=1..4)

Inner 3D loop iterates 

in x direction, i.e., 

same dimension as 

vectorization

Only 1 new vector 

must be read for 

i±r points due to 

overlap along x axis

Total memory BW cost 
for traditional “in-line” 

vectors = 17 new vector 
inputs for each vector of 

output

8 new vectors 

must be read for 

j±r points

Intel Corporation



Traditional Memory Layout and Code Gen

1D vectorization

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

Logical indices in 2D with 8-element SIMD in x-dimension

1,1 1,2 1,3 … 1,8 1,9 … 2,1 2,2 2,3 … 2,8 2,9 …

Layout in memory (1D)

• Traditional 1D vectorization layout (8×1)
• Two aligned vectors are colored
• Aligned reads shown with bold borders done with 

simple and efficient aligned vector loads

y

x
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Traditional Memory Layout and Code Gen

1D vectorization

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

Logical indices in 2D with 8-element SIMD in x-dimension

1,1 1,2 1,3 … 1,8 1,9 … 2,1 2,2 2,3 … 2,8 2,9 …

Layout in memory (1D)

• Traditional 1D vectorization layout (8×1)
• Two aligned vectors are colored
• Unaligned reads shown with bold borders done with unaligned 

load or two aligned loads plus a simple shift instruction 

y

x
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2D Vector-Folding

Sept., 2017

𝑢 𝑡 → 𝑢(𝑡 + 1)

4x2x1 micro-block in 

x and y dimensions

Twenty-five 

4x2x1 input 

vectors

Notice overlap 

of vectors 

along x and y 

axes

Intel Corporation
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2D Vector-Folding

Sept., 2017

Inner 3D loop 

iterates in z 

direction, i.e., 

perpendicular

to 2D vector

Only 1 new 

vector must 

be read for 

k±r points

2 new vectors 

must be read for 

i±r points

4 new 4x2x1 vectors 

must be read for j±r
points

Total memory BW cost for 4x2x1 
vector with z-axis loop= 7 new vector 
inputs for each vector of output (2.4x 

lower than in-line)

Intel Corporation



2D “4x2” vector folding

y

x

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 1,5 1,6 1,7 1,8 2,5 2,6 2,7 2,8 1,9 …

• 2D vector folding layout (8×1)
• Two aligned vectors are colored
• Aligned reads shown with bold borders done with simple and 

efficient aligned vector loads

Layout in memory (1D)

Sept., 2017

Vector-Folding Memory Layout and Code Gen
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2D “4x2” vector folding

y

x

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 1,5 1,6 1,7 1,8 2,5 2,6 2,7 2,8 1,9 …

• 2D vector folding layout (8×1)
• Two aligned vectors are colored
• Unaligned read shown with bold borders done by loading aligned vectors and 

then shuffling the requisite elements via an AVX-512 permute instruction

Layout in memory (1D)

Sept., 2017

Vector-Folding Memory Layout and Code Gen
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Logical indices in 2D with 8-element SIMD in x and y dimensions
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Results of Vector-Folding on AWP-ODC-OS

Sept., 2017 Intel Corporation

• Performance measured in 
number of Lattice Update 
Points per Second, 
updating 15 grids

• Kernel performance only 
(does not include surface 
boundary updates)

• See ISC’17 paper for 
more details

Up to 1.6x 
performance 
gain

Content on this slide 
courtesy of UCSD

Traditional 1D layout

2D layout selected



Example YASK Feature: Automatic Tuner

Challenge

 Dozens of possible optimization strategies

 Some of these can take hundreds of values (e.g., cache-block dimensions)

 Leads to combinatorial explosion in size of possible design space

Solution

 Use genetic algorithm to select optimizations and tune parameters

 Tuner repeats the following sequence until convergence

– Chooses optimization strategies and parameters based on random values (first 
generation) or mutation and crossover (subsequent generations)

– Runs stencil compiler, loop compiler, C++ compiler, and kernel itself

– Inputs resulting performance as fitness
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YASK High-Level Flow with Tuner

Sept., 2017

Optimized stencil 
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with 
OpenMP, prefetch code, 

etc.

Other C++ code

Intel C++ 
compiler

Executable 
stencil kernel 

binary

Performance 
results

Automated 

Tuner

Intel Corporation 34
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Results of Auto-Tuning on AWP-ODC-OS

Sept., 2017 Intel Corporation

• 13 generations of 200 
individuals each

• Best individual 
(highlighted) found in 8th

generation

• Performance measured in 
number of Lattice Update 
Points per Second, 
updating 15 grids

• Kernel performance only 
(does not include surface 
boundary updates) 0
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Additional YASK Features

Cache-blocking with nested OpenMP

 Two levels of OpenMP parallelism applied to “block” and “sub-block” sub-domains

 Allows efficient use of level 1 and 2 local caches shared between threads and/or cores

Temporal wave-front blocking

 Allows efficient use of large shared cache (e.g., Xeon Phi MCDRAM in cache mode)

MPI halo exchange

 Allows domain decomposition across compute nodes in a cluster

36Sept., 2017 Intel Corporation
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Experimental Platforms
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Products
KNL 

(Intel® Xeon Phi™ 
Processor 7250)

SkyLake/Wolf Pass
(Intel® Xeon® Gold 6148/

Platinum 8160/
Platinum 8180)

Broadwell
(Intel® Xeon® E5-2697 v4)

Sockets -TDP 1S - 215W 2-150W/

2-150W/

2-205W

2-145W

Frequency –

Cores/socket –

Threads – L3 

cache

1.4 GHz - 68 – 272 - NA 2.4 GHz - 20 – 80 – 27.5MiB/

2.1 GHz – 24 – 96 – 33 MiB/

2.5 GHz – 28 – 112 – 38.5 MiB

2.3 GHx – 18 – 72 – 45 MiB

DDR4 96 GiB 2400 MHz 192 GiB 2666 MHz 128 GiB 2400 MHz 

MCDRAM 16 GiB (Quadrant Flat) N/A N/A

Turbo On On On

Compiler version Intel C++ compiler 17.0.4 Intel C++ compiler 17.0.4 Intel C++ compiler 17.0.4

OS RHEL7.2 RHEL 7.3 RHEL7.2



YASK Performance

Sept., 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Measurements created by UC San Diego San 
Diego Supercomputer Center (SDSC) as of Oct., 2016. See complete configuration details on "Configuration" slide.  *Other names and brands may be claimed as the property of others
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AWP:
• 10242 × 128 

problem size
• N.B.: Results are 

in grid updates 
per sec, 15× the 
lattice updates 
in previous slide

Iso3DFD:
• 10243 problem 

size
• 16th order-

accurate in 
space, 2nd order-
accurate in time 
acoustic wave

Xeon Phi:
• Both problems 

fit within 16 GiB
MCDRAM in flat 
mode

0
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AWP stencil Iso3DFD stencil
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Xeon E5-2697 v4 Xeon Gold 6148 Xeon Platinum 8160

Xeon Platinum 8180 Xeon Phi 72102

http://www.intel.com/benchmarks
https://anl.app.box.com/v/IXPUG2016-presentation-13
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Project engagements

 Imperial College London (ICL): 
Integrating YASK as a backend to Devito, 
a symbolic finite-difference solution 
software

 Barcelona Supercomputing Center (BSC): 
Applying YASK to full staggered-grid 
formulation for energy exploration

 Univ. of CA San Diego (UCSD): Continued 
support of AWP

Software development

 Creating a documented API (application-
programmer interface) for both the 
stencil compiler and kernel [almost 
done]

 Generalizing the 3D grids to nD arrays to 
allow 1D and 2D stencils as well as mixed 
array sizes in stencils (e.g., for absorbing 
boundary-condition arrays) [almost 
done]

 Allowing domain subsets via conditional 
equations [in progress]

Current Work Items

Sept., 2017 Intel Corporation



Development Process with Devito

1. Geophysicists use differential 
equations to represent velocity and 
stress of rock and soil during an 
earthquake

2. Derivatives are approximated 
in both time and space (only x
dimension shown)

4. Stencils are coded and tuned 
for HPC clusters (our focus)

3. Equations are expanded to 
finite-difference stencils (this is 
one of 15 stencils for AWP-ODC 
staggered-grid formulation)

(𝑡 + 1)
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YASK High-Level Flow with Devito

Sept., 2017

Optimized stencil 
calculation and prefetch

code

Stencil-
compiler 

Python module

Loop compiler

Nested loops with 
OpenMP, prefetch code, 

etc.

Other C++ code

Intel C++ 
compiler

Stencil-kernel 
Python module

Results

Devito
(Python)
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PDE(s) and 
data

PDE(s) translated 
to stencil AST

Data to be stored in 
vector-folding format
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Additional workloads (skills: HPC workload 
familiarity)

 Provide more real-world example stencils in 
YASK distribution

 Adapt more applications to use YASK

Add useful interfaces (skills: C++)

 Add file and/or network I/O to read/write data

 Integrate with data-visualization package

Improve cluster performance (skills: OpenMP, 
MPI, C++)

 Reorganize work to allow MPI communication 
to occur in parallel with computation

 Enable temporal wave-front computation on 
multiple MPI ranks

Improve open-source package (skills: SW 
eng.)

 Design and document C++ and Python APIs

 Write better documentation

 Add automated testing and performance-
evaluation processes

Improve stencil robustness (skills: 
compiler internals, polyhedral model)

 Enable more complex stencil expressions to 
be efficiently compiled

 Evaluate expression dependencies correctly

 Stretch: replace compilation with JIT binary 
or LLVM IL code-generator

Future Work and Opportunities

Sept., 2017 Intel Corporation
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Software available

 YASK: https://github.com/01org/yask
(MIT OS license) with several example 
stencils

 ICL’s Devito: 
https://github.com/opesci/devito (MIT 
OS license) with tutorials and examples

 UCSD’s AWP-ODC-OS: 
https://github.com/HPGeoC/awp-odc-os
(BSD OS license)

Related collateral

 Devito project: 
http://www.opesci.org/devito-public

 High Performance GeoComputing Lab 
(AWP): http://hpgeoc.sdsc.edu

 Email chuck.yount@intel.com for copies 
of other conference papers and 
presentations

Resources
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Summary

HPC Stencil Code
 Use numerical methods to approximate solutions to differential equations

Intel® Xeon Phi™ Processors (Knights Landing)
 New AVX-512 instruction set architecture

 Up to 72 cores of 4 hyper-threads each

 High-bandwidth on-package MCDRAM

Intel® Xeon® Scalable Processors (Skylake)
 Brings AVX-512 to Xeon product line

 Up to 28 cores per socket; 2 and 4-socket platforms available

Tuning Stencil Code for the Xeon Phi with YASK
 Framework for rapid prototyping and tuning

 Turnkey solution for application of multiple complex performance features
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Iso3DFD Stencil Example

 51-point stencil

 16th order accurate in space, 2nd order accurate in time

 61 FP ops
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YASK Input Specification for Iso3DFD Stencil
#include "StencilBase.hpp"

class Iso3dfdStencil : public StencilRadiusBase {

protected:

Grid pressure;    // time-varying 3D pressure grid.

Grid vel;         // constant 3D vel grid.

Param coeff;      // stencil coefficients.

public:

Iso3dfdStencil(StencilList& stencils, int radius=8) :

StencilRadiusBase("iso3dfd", stencils, radius) {

INIT_GRID_4D(pressure, t, x, y, z);

INIT_GRID_3D(vel, x, y, z);

INIT_PARAM_1D(coeff, r, radius + 1);   }

virtual void define(const IntTuple& offsets) {

GET_OFFSET(t); GET_OFFSET(x); GET_OFFSET(y); GET_OFFSET(z);

GridValue np = pressure(t, x, y, z) * coeff(0);

for (int r = 1; r <= _radius; r++) {

np += coeff(r) *

(pressure(t, x-r, y, z) + pressure(t, x+r, y, z) +

pressure(t, x, y-r, z) + pressure(t, x, y+r, z) +

pressure(t, x, y, z-r) + pressure(t, x, y, z+r));  }

np = (2.0 * pressure(t, x, y, z))

- pressure(t-1, x, y, z) // subtract pressure at t-1.

+ (np * vel(x, y, z));    // add velocity term.

pressure(t+1, x, y, z) IS_EQUIV_TO v;

}

};

Declare grids and 
coefficient array

Define equation for 
pressure at t+1
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18.4 G 
points/sec

YASK Auto-tuner Applied to Iso3dfd
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating 
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on 
Intel® Xeon Phi™  processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.
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YASK Optimizations Applied to Iso3DFD
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating 
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on 
Intel® Xeon Phi™  processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.
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AWP-ODC Numerics

Finite Difference code

 Staggered-grid scheme

 Fourth-order accurate in space and second-order accurate in time

Fifteen grids updated in every time-step

 3 velocity grids

 6 stress grids

 6 grids for auxiliary memory-variables required for accurate high-
frequency simulation

Fifteen stencils

 Nine 13-point stencils

 Six 9-point stencils

Free-surface boundary computation every time-step

Sept., 2017

AWP-ODC stencils, starting from top left: 
velocity/stress update, memory variable stencil, 
boundary stencil
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Today’s Code Investment Carries Forward

MKL MPI

TBBOpenMP

Knights Landing Enabled 
Performance Libraries & Runtimes

Intel® AVX-512

Cache Mode For
High Bandwidth Memory

Knights Landing Enabled 
Compilers

KNL 
Enhancements 

(memory, 
architecture, 

bandwidth, etc.)

Exploit NEW 
features…

Knights Landing

Parallelization, threading, vectorization, 
cache-blocking, MPI+OpenMP 

hybridization…

To carry forward most key code modernizations

RECOMPILE

For additional gains

TUNE
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Thread Scaling for Stencils

Algorithm characteristics
 Threading stencils is often straight-forward within a single grid and time-step

– Many stencils update elements in one grid at a given time-step based only on elements in other 
grids or the same grid at previous time-steps

– Some updates across multiple grids may be independent within a time-step
– In these cases, all elements can be updated in parallel trivially

 Threading across multiple dependent grids and time-steps is more challenging
– Requires more complex synchronization to observe dependencies

Techniques
 Example techniques to implement dependent threading include temporal wave-fronts and diamond 

tiling
 Threading software

– Older code tends to use multiple single-threaded MPI tasks even on a single node
– Often does not scale well to many threads available on KNL socket (up to 288)
– More modern code uses OpenMP or MPI+OpenMP or MPI w/shared memory on a node
– More advanced threading may include task scheduling to avoid global synchronization
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Vector Scaling for Stencils

Algorithm characteristics

 The nature of “stencils” is application of a fixed pattern to multiple elements

 Elements within a grid are usually independent as discussed earlier

 Thus, SIMD vectorization can be applied in a straight-forward manner

Techniques

 Straight-forward vectorization along one dimension often results in many cache-line 
reads, many unused elements, and low reuse between vectors

 “Vector-folding” is a technique to vectorize in two or more dimensions, increasing 
reuse and thus decreasing memory-bandwidth requirements

– Speed-ups of >1.5x have been observed in several real-world stencils

– See HPCC’15 paper “Vector Folding: improving stencil performance via multi-
dimensional SIMD-vector representation”

Sept., 2017
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Cache Blocking for Stencils

Algorithm characteristics
 Stencil codes are very often memory-bound

 Stencil equations typically input multiple neighboring values (increasing with accuracy)
 These factors make cache-blocking critical for high performance

Techniques
 Most cache-blocking is implemented via simple loop-tiling with each OpenMP thread working on 

separate tiles
 Advanced techniques leverage sharing of KNL caches between threads

– Each L1 data cache is shared by 4 hyper-threads in a core
– Each L2 cache is shared by 2 cores in a tile
– Tiles can be sub-divided into slabs or similar partitions, and threads that share these caches can 

cooperate within them, increasing reuse and decreasing evictions
 To leverage the MCDRAM cache shared by all cores, an addition level of tiling may be used

– See PMBS’16 paper “Effective Use of Large High-Bandwidth Memory Caches in HPC Stencil 
Computation via Temporal Wave-Front Tiling”

 In addition, prefetching data into L1 and/or L2 cache may improve performance
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Fabric Scaling for Stencils

Algorithm characteristics
 As with threading and SIMD, independence of solutions within a time-step facilitate 

partitioning across nodes

 Access to multiple neighboring values that are common across partitions requires 
synchronizing data

Techniques
 Use of “halo” or “ghost” regions is the most common solution to reduce communications 

within a time-step as shared data is accessed
– Halos must be exchanged between nodes to keep data consistent
– Application of tiling across time-steps requires more sophisticated exchanges, usually 

consisting of exchanging more data but less often

 MPI is the most common software used, but other alternatives are in the works

 Global synchronization can cause under-utilization of nodes on large clusters and/or on 
clusters with nodes of heterogeneous performance
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Data Layout for Stencils

Algorithm characteristics
 Many problems consist of multi-dimensional domains across multiple grids, which could be 

implemented naïvely with a multi-dimensional array-of-structures (AoS)

 Access to many neighboring elements and/or grids may cause translation look-aside buffer 
(TLB) pressure when multiple pages are accesses

Techniques
 Structure-of-arrays layout (SoA) is typical for multi-grid problems to enable vectorization

 Options to reduce TLB pressure
– Using huge pages, e.g., via transparent huge pages (THP) in Linux
– Reordering index nesting in grids, e.g., TXYZ  XYTZ
– Tiling the layout itself

 To benefit from vector-folding discussed earlier, a data-layout transformation to a grid of 
folded vectors is essential
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Experimental Configurations
Configuration details: YASK HPC Stencils, iso3DFD Kernel

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo 

On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat* Enterprise 

Linux Server release 6.7

Configuration details: YASK HPC Stencils, AWP-ODC Kernel

Intel® Xeon® processor E5-2680 v3: Single Socket Intel® Xeon® processor E5-2680 v3, 2.5 GHz (Turbo Off) , 12 Cores, 

12 Threads (HT off), DDR4 128GiB, CentOS* 6.7

Intel® Xeon Phi™ processor 7210: Intel® Xeon Phi™ processor 7210, 64 cores, 256 threads, 1300 MHz core freq. (Turbo 

On), MCDRAM 16 GiB, DDR4 96GiB 2133 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo 

On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

NVIDIA Tesla* K20X (Kepler): Part number 900-22081-0030-000, 1x GK110 CPU, 2688 cores, 732 MHz core freq, 6GiB 

2.6GHz GDDR5 

NVIDIA M40 (Maxwell): Part number TCSM40M-PB, 3072 cores, 948 MHz base freq, 12 GiB GDDR5

NVIDIA Titan X (Pascal): 3072 cores, 1000 MHz base freq, 12 GiB GDDR5

*Other names and brands may be claimed as the property of othersSept., 2017 Intel Corporation 58



Example Stencil-Compiler Feature: 
Automatic Prefetch Generation

Full prefetch function loads 
all 7 cache lines

This example 
stencil reads from 
7 cache lines (after 
vectorization):

The stencil compiler 
generates the 
following prefetch
functions:

X-direction prefetch
function loads only these 3 
leading cache lines

Y-direction prefetch
function loads only these 5 
leading cache lines

y

x
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Worldwide Training

Intel® Parallel Computing Centers

Commercial ISVs Embracing 
Intel® Xeon Phi™ processor Family

Intel® Modern Code

FREE…Worldwide Training 
and Teaching Resources

Parallel Programming 
Reference Books

Click on the images to learn more

Colfax training 
with access to a 
36-node cluster
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IXPUG Community Forum

The Intel® Xeon Phi™ User's Group (IXPUG) is an independent global users group whose mission is to 

provide a forum for the free exchange of information that enhances the usability and efficiency of scientific 

and technical applications running on large High Performance Computing (HPC) systems using the Intel® 

Xeon Phi™ processor. IXPUG is administered by representatives of member sites that operate large Phi-

based HPC systems.

• IXPUG Monthly Tuning Meetings: conference calls to inform the Intel® Xeon Phi™ processor community of 

relevant updates and share techniques, results, and methodologies.
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Abstract

Stencil computation is an important class of algorithms used in a large variety 
of scientific-simulation applications, especially those arising from finite-
difference solutions of differential equations representing the behavior of 
physical phenomenon such as heat dispersion or seismic activity. This talk 
provides a brief review of stencil computation and Intel® Xeon® and Xeon Phi™ 
processors, and it describes the YASK (Yet Another Stencil Kernel) framework 
that simplifies the tasks of defining stencil functions, generating high-
performance code targeted for various Intel platforms, and running tuning 
experiments. A couple of example YASK features are explained, performance 
results are given, and future work is described.


