
Chuck Yount, Principal Engineer, Intel Corporation
chuck.yount@intel.com

with contributed material from
• Alex Duran, Intel Corporation Iberia, Spain
• Alex Breuer & Josh Tobin, Univ. of CA, San Diego
• Alex Heinecke, Intel Labs

Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

October 4, 2017

mailto:chuck.yount@intel.com

Legal Disclaimers

Sept., 2017

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources
of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel
representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and
uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

Intel, Xeon, Xeon Phi, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Intel Corporation 2

http://www.intel.com/performance

Agenda

Background

 Introduction to HPC Stencil Algorithms via earthquake simulation

 Overview of the Intel® Xeon Phi™ and Intel® Xeon® Scalable Processors

YASK Framework for creating and tuning Stencil Code

 Vector-folding feature

 Automatic-tuning feature

 Current and future work

Summary

Sept., 2017 Intel Corporation 3

Application Domain: HPC Stencil Computation

 Iterative kernels that update elements in one or more N-dimensional grids using a fixed
pattern of computation on neighboring elements

 Fundamental algorithm in many scientific simulations, commonly used for solving
differential equations using finite-difference methods (FDM)

Weather Simulation

Seismic Modeling

Image Processing

Images from https://commons.wikimedia.org

Sept., 2017 Intel Corporation 5

https://commons.wikimedia.org/

Example: AWP-ODC-OS

AWP-ODC: Anelastic Wave Propagation-
Olsen, Day, Cui
 Software that simulates seismic wave

propagation after a fault rupture

 Widely used by the Southern California
Earthquake Center (SCEC) community

 In recent years has primarily run on GPU
accelerated supercomputers

AWP-ODC-OS
 First ever open source release in 2016 (BSD-2

license), including port to Intel Xeon Phi
processor, under development by San Diego
Supercomputer Center (SDSC) at Univ. of CA,
San Diego (UCSD)

Sept., 2017

• CyberShake Study 15.4 hazard map for

336 sites around Southern California

• Warm colors represent areas of high

hazard

Content on this slide courtesy of UCSD

Intel Corporation 6

AWP-ODC-OS Development Process

1. Geophysicists use differential
equations to represent velocity and
stress of rock and soil during an
earthquake

2. Derivatives are approximated
in both time and space (only x
dimension shown)

4. Stencils are coded and tuned
for HPC clusters (our focus)

3. Equations are expanded to
finite-difference stencils (this is
one of 15 stencils for AWP-ODC
staggered-grid formulation)

(𝑡 + 1)

Sept., 2017 Intel Corporation 7

Intel® Xeon Phi™ Processors and Intel® Xeon® Scalable Processors

Intel® Xeon Phi™ Product Family x200
(previously code-named Knights Landing, “KNL”)

Sept., 2017

Host Processor in Groveport Platform
Self-boot Intel® Xeon Phi™ processor

Intel Corporation 9

DDR4

Up to 72 cores with 4 hyper-threads each

MCDRAM MCDRAM

MCDRAM MCDRAM

DDR4
TILE:
(up to

36)

Tile IMC (integrated memory controller)EDC (embedded DRAM controller) IIO (integrated I/O controller)

KNL
Package

Enhanced Intel® Atom™ cores based on
Silvermont Microarchitecture

 2D Mesh Architecture
 Out-of-Order Cores
 3X single-thread vs. KNC

ISA
Intel® Xeon® Processor Binary-Compatible (w/Broadwell)

On-package memory
16GiB MCDRAM, ~490 GB/s Stream Triad

Platform Memory
Up to 384GiB DDR4-2400, ~90 GB/s Stream Triad

2VPU

Core

2VPU

Core
1MB
L2

HUB

Bi-directional
tile connections

KNL Architecture Overview

Sept., 2017 Intel Corporation 10

Cache Model
Ideal for large data size (>16GB)

cache blocking apps

Flat Model
Maximum bandwidth for data

reuse aware apps

Hybrid Model
Maximum flexibility for varied

workloads

Description
Hardware automatically manages the

MCDRAM as a “L3 cache” between CPU
and DDR memory

Manually manage how the app uses
the integrated on-package memory

and DDR for peak perf

Harness the benefits of both Cache and
Flat models by segmenting the
integrated on-package memory

Usage Model

 App and/or data set is very large and
will not fit into MCDRAM

 Unknown or unstructured memory
access behavior

 App or portion of an app or data
set that can be “locked” into
MCDRAM so it doesn’t get flushed
out

 Need to “lock” in a relatively small
portion of an app or data set via the
Flat model

 Remaining MCDRAM is configured as
Cache

DRAM
8 or 4 GB
MCDRAM

8 or 12GB
MCDRAM

Split Options:
25/75%

or
50/50%

8GB/ 16GB
MCDRAM

Up to
384 GB

DRAM

P
h

ys
ic

a
l A

d
d

re
ss

DRAM
16GB

MCDRAM

64B cache
lines direct-mapped

1. NUMA = non-uniform memory access

Model configurable at boot time and software exposed through NUMA1

Sept., 2017

Integrated On-Package Memory Usage Models

Intel Corporation 11

Intel® Xeon® Scalable Processors
(previously code-named Skylake Xeon, “SKX”)

• Above graphic shows maximum sockets. Two-socket platforms are common in HPC installations.
• Also available: Gold (5000 Series), Silver (4000 Series), and Bronze (3000 Series)

Sept., 2017 Intel Corporation 12

AVX-512CD

E5-2600
(SNB1)

SSE

AVX

E5-2600v3
(HSW1)

SSE

AVX

AVX2

AVX-512CD

x87/MMX x87/MMX

KNL
(Xeon Phi)

SSE

AVX

AVX2

x87/MMX

AVX-512F

AVX-512ER

AVX-512PF

AVX-512:
Foundation

• 512-bit FP/Integer Vectors

• 32 SIMD registers

• 8 mask registers

• Vector gather/scatter

Conflict Detection for vectorizing

histogram-type algorithms

PreFetch gather/scatter

Exponential and Reciprocal instructions

Byte and Word integer SIMD elements

Double- and Quad-word int SIMD

Vector-Length orthogonality (128 and

256-bit operations)1. Previous code-names of Intel®
Xeon® processors

SIMD Instruction Sets

Sept., 2017 Intel Corporation 13

AVX-512BW

SKX
(Xeon)

SSE

AVX

AVX2

x87/MMX

AVX-512F

AVX-512VL

AVX-512DQ

“C
o

m
m

o
n

”
A

V
X

-5
1

2

14

Intel® Xeon Phi™ & Xeon® Scalable on Top500
(Those in top 20 from June 2017 list, https://www.top500.org)

Rank System Cores
Rmax
(TFlop/s)

6
Cori, Intel Xeon Phi 7250 68C 1.4GHz, DOE/SC/LBNL/NERSC,
United States

622,336 14,014.7

7
Oakforest-PACS, Xeon Phi 7250,
Joint Center for Advanced High Performance Computing, Japan

556,104 13,554.6

12
Stampede2, Xeon Phi 7250, Texas Advanced Computing
Center/Univ. of Texas, United States

285,600 6,807.1

13
MareNostrum, Xeon Platinum 8160, Barcelona Supercomputing
Center, Spain

148,176 6,227.2

14 Marconi - CINECA Cluster, Xeon Phi 7250, CINECA, Italy 241,808 6,223.0

16
Theta, Xeon Phi 7230,
DOE/SC/Argonne National Laboratory, United States

231,424 5,884.6

Sept., 2017 Intel Corporation

https://www.top500.org/
https://www.top500.org/system/178924
https://www.top500.org/site/48429
https://www.top500.org/system/178932
https://www.top500.org/site/50673
https://www.top500.org/system/179045
https://www.top500.org/site/48958
https://www.top500.org/system/179067
https://www.top500.org/site/49748
https://www.top500.org/system/178937
https://www.top500.org/site/47495
https://www.top500.org/system/178926
https://www.top500.org/site/47347

What Defined Tools of the trade

Thread
Scaling

Increase concurrent thread
use across coherent shared
memory

OpenMP, TBB, Cilk Plus

Vector
Scaling

Use wide-vector (512-bit)
instructions

Vector loops, vector
functions, array notations

Cache
Blocking

Use algorithms to reduce
memory bandwidth pressure
and improve cache hit rate

Blocking algorithms

Fabric
Scaling

Tune workload to increased
node count

MPI

Data
Layout

Optimize data layout for
unconstrained performance

AoSSoA, directives for
alignment

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

1

2

3

4

5

What is “Modernized” Code? (generic HPC advice)

Sept., 2017 Intel Corporation 16

Category Example techniques for stencil code

Thread
Scaling

• Typical: Evaluate multiple blocks in parallel using hyper-threading
and multi-core

• Advanced: Use nested parallelism to increase cooperation between
hyper-threads and/or KNL cores sharing a tile

Vector
Scaling

• Typical: Use wide-vector (512-bit) instructions
• Advanced: Use KNL reciprocal instructions to improve division

performance when allowable

Cache
Blocking

• Typical: Use one level of blocking within a time-step to increase L2
reuse

• Advanced: Use additional level of blocking with temporal wave-
fronts to utilize KNL’s MCDRAM cache

Fabric
Scaling

• Typical: Use MPI to exchange halos between time-steps
• Advanced: Schedule MPI communication to occur simultaneously

with calculations of internal points

Data
Layout

• Typical: Align accesses on cache-line boundaries and use KNL’s
MCDRAM when possible

• Advanced: Use custom layout to enable vector-folding, which
reduces memory bandwidth demand (details following)

1

2

3

4

5

Modernizing Stencil Code

Challenges
 Implementing the

optimizations can be
complex and error-
prone

 Optimal tuning requires
trading off multiple
(sometimes conflicting)
optimizations, each with
multiple parameters

 Domain experts may
reject code that
obfuscates the
underlying math!

17Sept., 2017 Intel Corporation

Y.A.S.K.  Yet Another Stencil Kernel

What it is [and isn’t]

 A software framework to implement and tune stencil code for Intel® Xeon® processors
and Intel® Xeon Phi™ processors and coprocessors

 Not [just] a library because stencil formulation isn’t known a priori for all problems

Goals

 Create high-performing kernel code from a straightforward specification of stencil
equations in a domain-specific language (DSL)

 Provide a simple kernel-driver to test and tune stencil performance

– Expose optimization trade-off choices without requiring code changes

– Automate searching through the optimization design space

 Provide ability to integrate generated code into larger applications (work in progress)

Sept., 2017 Intel Corporation 18

YASK High-Level Flow

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary

Performance
results

Sept., 2017 Intel Corporation 19

𝑢 𝑡 → 𝑢(𝑡 + 1)

25 points
from 3D
grid u(t)

…are used to
compute 1

point in u(t+1)

𝑢 𝑡 + 1, 𝑖, 𝑗, 𝑘 = 𝑐0𝑢 𝑡, 𝑖, 𝑗, 𝑘

+

𝑟=1

4

𝑐𝑟 𝑢 𝑡, 𝑖 − 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖 + 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖, 𝑗 − 𝑟, 𝑘

…as
specified

by the RHS
of this
finite-

difference
equation

20

Example YASK Feature: Vector-Folding

Sept., 2017 Intel Corporation

Example 3D stencil:

𝑢 𝑡 → 𝑢(𝑡 + 1)

21Sept., 2017 Intel Corporation

Example 3D stencil:

𝑢 𝑡 → 𝑢(𝑡 + 1)

22Sept., 2017 Intel Corporation

Example 3D stencil:

𝑢 𝑡 → 𝑢(𝑡 + 1)

Repeat for u(t+2)…

“Halo” data

regions

Entire problem

domain—typically

billions of points

23Sept., 2017 Intel Corporation

Example 3D stencil:

24

Traditional 1D Vectorization

Sept., 2017

𝑢 𝑡 → 𝑢(𝑡 + 1)

25 8-element

input vectors

(200 points)

from u(t)

…to compute

8 points in

u(t+1)
Notice overlap

of vectors

along x axis

Intel Corporation

25

Traditional 1D Vectorization

Sept., 2017

𝑢 𝑡 → 𝑢(𝑡 + 1)

8 new vectors

must be read for

k±r points

(4 for k+r and 4 for

k-r for r=1..4)

Inner 3D loop iterates

in x direction, i.e.,

same dimension as

vectorization

Only 1 new vector

must be read for

i±r points due to

overlap along x axis

Total memory BW cost
for traditional “in-line”

vectors = 17 new vector
inputs for each vector of

output

8 new vectors

must be read for

j±r points

Intel Corporation

Traditional Memory Layout and Code Gen

1D vectorization

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

Logical indices in 2D with 8-element SIMD in x-dimension

1,1 1,2 1,3 … 1,8 1,9 … 2,1 2,2 2,3 … 2,8 2,9 …

Layout in memory (1D)

• Traditional 1D vectorization layout (8×1)
• Two aligned vectors are colored
• Aligned reads shown with bold borders done with

simple and efficient aligned vector loads

y

x

Sept., 2017 Intel Corporation 26

Traditional Memory Layout and Code Gen

1D vectorization

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

Logical indices in 2D with 8-element SIMD in x-dimension

1,1 1,2 1,3 … 1,8 1,9 … 2,1 2,2 2,3 … 2,8 2,9 …

Layout in memory (1D)

• Traditional 1D vectorization layout (8×1)
• Two aligned vectors are colored
• Unaligned reads shown with bold borders done with unaligned

load or two aligned loads plus a simple shift instruction

y

x

Sept., 2017 Intel Corporation 27

28

2D Vector-Folding

Sept., 2017

𝑢 𝑡 → 𝑢(𝑡 + 1)

4x2x1 micro-block in

x and y dimensions

Twenty-five

4x2x1 input

vectors

Notice overlap

of vectors

along x and y

axes

Intel Corporation

29

2D Vector-Folding

Sept., 2017

Inner 3D loop

iterates in z

direction, i.e.,

perpendicular

to 2D vector

Only 1 new

vector must

be read for

k±r points

2 new vectors

must be read for

i±r points

4 new 4x2x1 vectors

must be read for j±r
points

Total memory BW cost for 4x2x1
vector with z-axis loop= 7 new vector
inputs for each vector of output (2.4x

lower than in-line)

Intel Corporation

2D “4x2” vector folding

y

x

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 1,5 1,6 1,7 1,8 2,5 2,6 2,7 2,8 1,9 …

• 2D vector folding layout (8×1)
• Two aligned vectors are colored
• Aligned reads shown with bold borders done with simple and

efficient aligned vector loads

Layout in memory (1D)

Sept., 2017

Vector-Folding Memory Layout and Code Gen

Intel Corporation 30

Logical indices in 2D with 8-element SIMD in x and y dimensions

2D “4x2” vector folding

y

x

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 1,5 1,6 1,7 1,8 2,5 2,6 2,7 2,8 1,9 …

• 2D vector folding layout (8×1)
• Two aligned vectors are colored
• Unaligned read shown with bold borders done by loading aligned vectors and

then shuffling the requisite elements via an AVX-512 permute instruction

Layout in memory (1D)

Sept., 2017

Vector-Folding Memory Layout and Code Gen

Intel Corporation 31

Logical indices in 2D with 8-element SIMD in x and y dimensions

32

Results of Vector-Folding on AWP-ODC-OS

Sept., 2017 Intel Corporation

• Performance measured in
number of Lattice Update
Points per Second,
updating 15 grids

• Kernel performance only
(does not include surface
boundary updates)

• See ISC’17 paper for
more details

Up to 1.6x
performance
gain

Content on this slide
courtesy of UCSD

Traditional 1D layout

2D layout selected

Example YASK Feature: Automatic Tuner

Challenge

 Dozens of possible optimization strategies

 Some of these can take hundreds of values (e.g., cache-block dimensions)

 Leads to combinatorial explosion in size of possible design space

Solution

 Use genetic algorithm to select optimizations and tune parameters

 Tuner repeats the following sequence until convergence

– Chooses optimization strategies and parameters based on random values (first
generation) or mutation and crossover (subsequent generations)

– Runs stencil compiler, loop compiler, C++ compiler, and kernel itself

– Inputs resulting performance as fitness

Sept., 2017 Intel Corporation 33

YASK High-Level Flow with Tuner

Sept., 2017

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary

Performance
results

Automated

Tuner

Intel Corporation 34

35

Results of Auto-Tuning on AWP-ODC-OS

Sept., 2017 Intel Corporation

• 13 generations of 200
individuals each

• Best individual
(highlighted) found in 8th

generation

• Performance measured in
number of Lattice Update
Points per Second,
updating 15 grids

• Kernel performance only
(does not include surface
boundary updates) 0

200

400

600

800

1000

1200

1400

1600

1800

0 400 800 1200 1600 2000 2400

M
LU

P
S

Genetic Algorithm Individual

Additional YASK Features

Cache-blocking with nested OpenMP

 Two levels of OpenMP parallelism applied to “block” and “sub-block” sub-domains

 Allows efficient use of level 1 and 2 local caches shared between threads and/or cores

Temporal wave-front blocking

 Allows efficient use of large shared cache (e.g., Xeon Phi MCDRAM in cache mode)

MPI halo exchange

 Allows domain decomposition across compute nodes in a cluster

36Sept., 2017 Intel Corporation

37

Experimental Platforms

Sept., 2017 Intel Corporation

Products
KNL

(Intel® Xeon Phi™
Processor 7250)

SkyLake/Wolf Pass
(Intel® Xeon® Gold 6148/

Platinum 8160/
Platinum 8180)

Broadwell
(Intel® Xeon® E5-2697 v4)

Sockets -TDP 1S - 215W 2-150W/

2-150W/

2-205W

2-145W

Frequency –

Cores/socket –

Threads – L3

cache

1.4 GHz - 68 – 272 - NA 2.4 GHz - 20 – 80 – 27.5MiB/

2.1 GHz – 24 – 96 – 33 MiB/

2.5 GHz – 28 – 112 – 38.5 MiB

2.3 GHx – 18 – 72 – 45 MiB

DDR4 96 GiB 2400 MHz 192 GiB 2666 MHz 128 GiB 2400 MHz

MCDRAM 16 GiB (Quadrant Flat) N/A N/A

Turbo On On On

Compiler version Intel C++ compiler 17.0.4 Intel C++ compiler 17.0.4 Intel C++ compiler 17.0.4

OS RHEL7.2 RHEL 7.3 RHEL7.2

YASK Performance

Sept., 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Measurements created by UC San Diego San
Diego Supercomputer Center (SDSC) as of Oct., 2016. See complete configuration details on "Configuration" slide. *Other names and brands may be claimed as the property of others

Intel Corporation 38

AWP:
• 10242 × 128

problem size
• N.B.: Results are

in grid updates
per sec, 15× the
lattice updates
in previous slide

Iso3DFD:
• 10243 problem

size
• 16th order-

accurate in
space, 2nd order-
accurate in time
acoustic wave

Xeon Phi:
• Both problems

fit within 16 GiB
MCDRAM in flat
mode

0

5

10

15

20

25

AWP stencil Iso3DFD stencil

B
il

li
o

n
 g

ri
d

 u
p

d
a

te
s

/
se

c

Xeon E5-2697 v4 Xeon Gold 6148 Xeon Platinum 8160

Xeon Platinum 8180 Xeon Phi 72102

http://www.intel.com/benchmarks
https://anl.app.box.com/v/IXPUG2016-presentation-13

39

Project engagements

 Imperial College London (ICL):
Integrating YASK as a backend to Devito,
a symbolic finite-difference solution
software

 Barcelona Supercomputing Center (BSC):
Applying YASK to full staggered-grid
formulation for energy exploration

 Univ. of CA San Diego (UCSD): Continued
support of AWP

Software development

 Creating a documented API (application-
programmer interface) for both the
stencil compiler and kernel [almost
done]

 Generalizing the 3D grids to nD arrays to
allow 1D and 2D stencils as well as mixed
array sizes in stencils (e.g., for absorbing
boundary-condition arrays) [almost
done]

 Allowing domain subsets via conditional
equations [in progress]

Current Work Items

Sept., 2017 Intel Corporation

Development Process with Devito

1. Geophysicists use differential
equations to represent velocity and
stress of rock and soil during an
earthquake

2. Derivatives are approximated
in both time and space (only x
dimension shown)

4. Stencils are coded and tuned
for HPC clusters (our focus)

3. Equations are expanded to
finite-difference stencils (this is
one of 15 stencils for AWP-ODC
staggered-grid formulation)

(𝑡 + 1)

Sept., 2017 Intel Corporation 40

YASK High-Level Flow with Devito

Sept., 2017

Optimized stencil
calculation and prefetch

code

Stencil-
compiler

Python module

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Stencil-kernel
Python module

Results

Devito
(Python)

Intel Corporation 41

PDE(s) and
data

PDE(s) translated
to stencil AST

Data to be stored in
vector-folding format

42

Additional workloads (skills: HPC workload
familiarity)

 Provide more real-world example stencils in
YASK distribution

 Adapt more applications to use YASK

Add useful interfaces (skills: C++)

 Add file and/or network I/O to read/write data

 Integrate with data-visualization package

Improve cluster performance (skills: OpenMP,
MPI, C++)

 Reorganize work to allow MPI communication
to occur in parallel with computation

 Enable temporal wave-front computation on
multiple MPI ranks

Improve open-source package (skills: SW
eng.)

 Design and document C++ and Python APIs

 Write better documentation

 Add automated testing and performance-
evaluation processes

Improve stencil robustness (skills:
compiler internals, polyhedral model)

 Enable more complex stencil expressions to
be efficiently compiled

 Evaluate expression dependencies correctly

 Stretch: replace compilation with JIT binary
or LLVM IL code-generator

Future Work and Opportunities

Sept., 2017 Intel Corporation

43

Software available

 YASK: https://github.com/01org/yask
(MIT OS license) with several example
stencils

 ICL’s Devito:
https://github.com/opesci/devito (MIT
OS license) with tutorials and examples

 UCSD’s AWP-ODC-OS:
https://github.com/HPGeoC/awp-odc-os
(BSD OS license)

Related collateral

 Devito project:
http://www.opesci.org/devito-public

 High Performance GeoComputing Lab
(AWP): http://hpgeoc.sdsc.edu

 Email chuck.yount@intel.com for copies
of other conference papers and
presentations

Resources

Sept., 2017 Intel Corporation

https://github.com/01org/yask
https://github.com/opesci/devito
https://github.com/HPGeoC/awp-odc-os
http://www.opesci.org/devito-public
http://hpgeoc.sdsc.edu/
mailto:chuck.yount@intel.com

Summary

HPC Stencil Code
 Use numerical methods to approximate solutions to differential equations

Intel® Xeon Phi™ Processors (Knights Landing)
 New AVX-512 instruction set architecture

 Up to 72 cores of 4 hyper-threads each

 High-bandwidth on-package MCDRAM

Intel® Xeon® Scalable Processors (Skylake)
 Brings AVX-512 to Xeon product line

 Up to 28 cores per socket; 2 and 4-socket platforms available

Tuning Stencil Code for the Xeon Phi with YASK
 Framework for rapid prototyping and tuning

 Turnkey solution for application of multiple complex performance features

Sept., 2017 Intel Corporation 44

Iso3DFD Stencil Example

 51-point stencil

 16th order accurate in space, 2nd order accurate in time

 61 FP ops

Sept., 2017 Intel Corporation 47

YASK Input Specification for Iso3DFD Stencil
#include "StencilBase.hpp"

class Iso3dfdStencil : public StencilRadiusBase {

protected:

Grid pressure; // time-varying 3D pressure grid.

Grid vel; // constant 3D vel grid.

Param coeff; // stencil coefficients.

public:

Iso3dfdStencil(StencilList& stencils, int radius=8) :

StencilRadiusBase("iso3dfd", stencils, radius) {

INIT_GRID_4D(pressure, t, x, y, z);

INIT_GRID_3D(vel, x, y, z);

INIT_PARAM_1D(coeff, r, radius + 1); }

virtual void define(const IntTuple& offsets) {

GET_OFFSET(t); GET_OFFSET(x); GET_OFFSET(y); GET_OFFSET(z);

GridValue np = pressure(t, x, y, z) * coeff(0);

for (int r = 1; r <= _radius; r++) {

np += coeff(r) *

(pressure(t, x-r, y, z) + pressure(t, x+r, y, z) +

pressure(t, x, y-r, z) + pressure(t, x, y+r, z) +

pressure(t, x, y, z-r) + pressure(t, x, y, z+r)); }

np = (2.0 * pressure(t, x, y, z))

- pressure(t-1, x, y, z) // subtract pressure at t-1.

+ (np * vel(x, y, z)); // add velocity term.

pressure(t+1, x, y, z) IS_EQUIV_TO v;

}

};

Declare grids and
coefficient array

Define equation for
pressure at t+1

Sept., 2017 Intel Corporation 48

18.4 G
points/sec

YASK Auto-tuner Applied to Iso3dfd

1,125.1

0

200

400

600

800

1,000

1,200

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

T
h
ro

u
g
h
p
u
t

(G
F
L
O

P
S
)

Individuals evaluated

Sept., 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on
Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.

Intel Corporation 49

http://www.intel.com/benchmarks

YASK Optimizations Applied to Iso3DFD

0
.7

1
.5 5
5

.3 2
7

8
.7

5
5

4
.9

5
7

2
.2

6
3

9
.7

6
6

9
.7

8
9

0
.5

9
4

8
.8

1
,0

0
8

.3

1
,0

7
5

.4

0

200

400

600

800

1,000

1,200

Th
ro

u
gh

p
u

t
(G

FL
O

P
S)

Feature added or setting changed

17.6 G
points/sec

Sept., 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on
Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.

Intel Corporation 50

http://www.intel.com/benchmarks

AWP-ODC Numerics

Finite Difference code

 Staggered-grid scheme

 Fourth-order accurate in space and second-order accurate in time

Fifteen grids updated in every time-step

 3 velocity grids

 6 stress grids

 6 grids for auxiliary memory-variables required for accurate high-
frequency simulation

Fifteen stencils

 Nine 13-point stencils

 Six 9-point stencils

Free-surface boundary computation every time-step

Sept., 2017

AWP-ODC stencils, starting from top left:
velocity/stress update, memory variable stencil,
boundary stencil

Intel Corporation 51

Content on this slide courtesy of UCSD

Today’s Code Investment Carries Forward

MKL MPI

TBBOpenMP

Knights Landing Enabled
Performance Libraries & Runtimes

Intel® AVX-512

Cache Mode For
High Bandwidth Memory

Knights Landing Enabled
Compilers

KNL
Enhancements

(memory,
architecture,

bandwidth, etc.)

Exploit NEW
features…

Knights Landing

Parallelization, threading, vectorization,
cache-blocking, MPI+OpenMP

hybridization…

To carry forward most key code modernizations

RECOMPILE

For additional gains

TUNE

Sept., 2017 Intel Corporation 52

Thread Scaling for Stencils

Algorithm characteristics
 Threading stencils is often straight-forward within a single grid and time-step

– Many stencils update elements in one grid at a given time-step based only on elements in other
grids or the same grid at previous time-steps

– Some updates across multiple grids may be independent within a time-step
– In these cases, all elements can be updated in parallel trivially

 Threading across multiple dependent grids and time-steps is more challenging
– Requires more complex synchronization to observe dependencies

Techniques
 Example techniques to implement dependent threading include temporal wave-fronts and diamond

tiling
 Threading software

– Older code tends to use multiple single-threaded MPI tasks even on a single node
– Often does not scale well to many threads available on KNL socket (up to 288)
– More modern code uses OpenMP or MPI+OpenMP or MPI w/shared memory on a node
– More advanced threading may include task scheduling to avoid global synchronization

Sept., 2017 Intel Corporation 53

Vector Scaling for Stencils

Algorithm characteristics

 The nature of “stencils” is application of a fixed pattern to multiple elements

 Elements within a grid are usually independent as discussed earlier

 Thus, SIMD vectorization can be applied in a straight-forward manner

Techniques

 Straight-forward vectorization along one dimension often results in many cache-line
reads, many unused elements, and low reuse between vectors

 “Vector-folding” is a technique to vectorize in two or more dimensions, increasing
reuse and thus decreasing memory-bandwidth requirements

– Speed-ups of >1.5x have been observed in several real-world stencils

– See HPCC’15 paper “Vector Folding: improving stencil performance via multi-
dimensional SIMD-vector representation”

Sept., 2017

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

Intel Corporation 54

Cache Blocking for Stencils

Algorithm characteristics
 Stencil codes are very often memory-bound

 Stencil equations typically input multiple neighboring values (increasing with accuracy)
 These factors make cache-blocking critical for high performance

Techniques
 Most cache-blocking is implemented via simple loop-tiling with each OpenMP thread working on

separate tiles
 Advanced techniques leverage sharing of KNL caches between threads

– Each L1 data cache is shared by 4 hyper-threads in a core
– Each L2 cache is shared by 2 cores in a tile
– Tiles can be sub-divided into slabs or similar partitions, and threads that share these caches can

cooperate within them, increasing reuse and decreasing evictions
 To leverage the MCDRAM cache shared by all cores, an addition level of tiling may be used

– See PMBS’16 paper “Effective Use of Large High-Bandwidth Memory Caches in HPC Stencil
Computation via Temporal Wave-Front Tiling”

 In addition, prefetching data into L1 and/or L2 cache may improve performance

Sept., 2017 Intel Corporation 55

Fabric Scaling for Stencils

Algorithm characteristics
 As with threading and SIMD, independence of solutions within a time-step facilitate

partitioning across nodes

 Access to multiple neighboring values that are common across partitions requires
synchronizing data

Techniques
 Use of “halo” or “ghost” regions is the most common solution to reduce communications

within a time-step as shared data is accessed
– Halos must be exchanged between nodes to keep data consistent
– Application of tiling across time-steps requires more sophisticated exchanges, usually

consisting of exchanging more data but less often

 MPI is the most common software used, but other alternatives are in the works

 Global synchronization can cause under-utilization of nodes on large clusters and/or on
clusters with nodes of heterogeneous performance

Sept., 2017 Intel Corporation 56

Data Layout for Stencils

Algorithm characteristics
 Many problems consist of multi-dimensional domains across multiple grids, which could be

implemented naïvely with a multi-dimensional array-of-structures (AoS)

 Access to many neighboring elements and/or grids may cause translation look-aside buffer
(TLB) pressure when multiple pages are accesses

Techniques
 Structure-of-arrays layout (SoA) is typical for multi-grid problems to enable vectorization

 Options to reduce TLB pressure
– Using huge pages, e.g., via transparent huge pages (THP) in Linux
– Reordering index nesting in grids, e.g., TXYZ  XYTZ
– Tiling the layout itself

 To benefit from vector-folding discussed earlier, a data-layout transformation to a grid of
folded vectors is essential

Sept., 2017 Intel Corporation 57

Experimental Configurations
Configuration details: YASK HPC Stencils, iso3DFD Kernel

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo

On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat* Enterprise

Linux Server release 6.7

Configuration details: YASK HPC Stencils, AWP-ODC Kernel

Intel® Xeon® processor E5-2680 v3: Single Socket Intel® Xeon® processor E5-2680 v3, 2.5 GHz (Turbo Off) , 12 Cores,

12 Threads (HT off), DDR4 128GiB, CentOS* 6.7

Intel® Xeon Phi™ processor 7210: Intel® Xeon Phi™ processor 7210, 64 cores, 256 threads, 1300 MHz core freq. (Turbo

On), MCDRAM 16 GiB, DDR4 96GiB 2133 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo

On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

NVIDIA Tesla* K20X (Kepler): Part number 900-22081-0030-000, 1x GK110 CPU, 2688 cores, 732 MHz core freq, 6GiB

2.6GHz GDDR5

NVIDIA M40 (Maxwell): Part number TCSM40M-PB, 3072 cores, 948 MHz base freq, 12 GiB GDDR5

NVIDIA Titan X (Pascal): 3072 cores, 1000 MHz base freq, 12 GiB GDDR5

*Other names and brands may be claimed as the property of othersSept., 2017 Intel Corporation 58

Example Stencil-Compiler Feature:
Automatic Prefetch Generation

Full prefetch function loads
all 7 cache lines

This example
stencil reads from
7 cache lines (after
vectorization):

The stencil compiler
generates the
following prefetch
functions:

X-direction prefetch
function loads only these 3
leading cache lines

Y-direction prefetch
function loads only these 5
leading cache lines

y

x

Sept., 2017 Intel Corporation 59

Worldwide Training

Intel® Parallel Computing Centers

Commercial ISVs Embracing
Intel® Xeon Phi™ processor Family

Intel® Modern Code

FREE…Worldwide Training
and Teaching Resources

Parallel Programming
Reference Books

Click on the images to learn more

Colfax training
with access to a
36-node cluster

Sept., 2017 Intel Corporation 60

https://software.intel.com/en-us/ipcc/teaching
https://software.intel.com/en-us/ipcc/teaching
software.intel.com/modern-code
software.intel.com/modern-code
https://software.intel.com/en-us/ipcc/training
https://software.intel.com/en-us/ipcc/training
https://software.intel.com/en-us/articles/parallel-programming-books
https://software.intel.com/en-us/articles/parallel-programming-books
https://software.intel.com/en-us/xeonphionlinecatalog
https://software.intel.com/en-us/xeonphionlinecatalog
https://software.intel.com/en-us/ipcc/teaching
https://software.intel.com/en-us/ipcc/teaching
https://colfaxresearch.com/
https://colfaxresearch.com/

IXPUG Community Forum

The Intel® Xeon Phi™ User's Group (IXPUG) is an independent global users group whose mission is to

provide a forum for the free exchange of information that enhances the usability and efficiency of scientific

and technical applications running on large High Performance Computing (HPC) systems using the Intel®

Xeon Phi™ processor. IXPUG is administered by representatives of member sites that operate large Phi-

based HPC systems.

• IXPUG Monthly Tuning Meetings: conference calls to inform the Intel® Xeon Phi™ processor community of

relevant updates and share techniques, results, and methodologies.

Sept., 2017 Intel Corporation 61

62

Bio

Chuck received his PhD degree in ECE from Carnegie Mellon University in
Pittsburgh, Pennsylvania, USA. He is currently a Principal Engineer in the
Software and Services Group at Intel Corporation. His work includes developing
analysis and optimization techniques for HPC applications on many-core
products including the YASK open-source software framework for stencil-code
optimization.

63

Abstract

Stencil computation is an important class of algorithms used in a large variety
of scientific-simulation applications, especially those arising from finite-
difference solutions of differential equations representing the behavior of
physical phenomenon such as heat dispersion or seismic activity. This talk
provides a brief review of stencil computation and Intel® Xeon® and Xeon Phi™
processors, and it describes the YASK (Yet Another Stencil Kernel) framework
that simplifies the tasks of defining stencil functions, generating high-
performance code targeted for various Intel platforms, and running tuning
experiments. A couple of example YASK features are explained, performance
results are given, and future work is described.

