Supplementary Information

Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation

Yumeng Zhang\#, Shanlong Li\#,*, Xiping Gong, and Jianhan Chen*

Department of Chemistry
University of Massachusetts, Amherst, MA 01003, USA
\# Equal contributions

* Corresponding authors: shanlongli@umass.edu (Li); jianhanc@umass.edu (Chen)

Supplementary Tables

Table S1. Lennard-Jones parameters for all backbone atoms in HyRes-GPU.

Atom Type	$\varepsilon_{i}(\mathrm{kcal} / \mathrm{mol})$	$\boldsymbol{\varepsilon}_{\boldsymbol{i}}(\mathbf{1 - 4)}(\mathrm{kcal} / \mathrm{mol})$	$\boldsymbol{R}_{\min }(\AA)$
\mathbf{H}	-0.0149	-0.0498	0.225
\mathbf{C}	-0.0180	-0.1000	2.100
$\mathbf{C \alpha}$	-0.0073	-0.1000	2.365
$\mathbf{C \alpha (G l y)}$	-0.0172	-0.1000	2.235
\mathbf{N}	-0.0356	-0.2384	1.600
\mathbf{O}	-0.2390	-0.1159	1.600

Table S2. Sequences of all IDPs studied in the work. Peptides that have already been shown to drive phase separation are colored in blue.

ProTa	MSDAA VDTSS EITTK DLKEK KEVVE EAENG RDAPA NGNAE NEENG EQEAD NEVDE EEEEG GEEEE EEEEG DGEEE DGDED EEAES ATGKR AAEDD EDDDV DTKKQ KTDED D
SH4-UD	MGSNK SKPKD ASQRR RSLEP AENVH GAGGG AFPAS QTPSK PASAD GHRGP SAAFA PAAAE PKLFG GFNSS DTVTS PQRAG PLAGG
Sic1	GSMTP STPPR SRGTR YLAQP SGNTS SSALM QGQKT PQKPS QNLVP VTPST TKSFK NAPLL APPNS NMGMT SPFNG LTSPQ RSPFP KSSVK RT
Hst5	DSHAK RHHGY KRKFH EKHHS HRGY
$(\mathrm{Hst5})_{2}$	DSHAK RHHGY KRKFH EKHHS HRGYD SHAKR HHGYK RKFHE KHHSH RGY
FUS	```MASND YTQQA TQSYG AYPTQ PGQGY SQQSS QPYGQ QSYSG YSQST DTSGY GQSSY SSYGQ SQNTG YGTQS TPQGY GSTGG YGSSQ SSQSS YGQQS SYPGY GQQPA PSSTS GSYGS SSQSS SYGQP QSGSY SQQPS YGGQQ QSYGQ QQSYN PPQGY GQQNQ YNS```
LAF-1 RGG (WT)	MESNQ SNNGG SGNAA LNRGG RYVPP HLRGG DGGAA AAASA GGDDR RGGAG GGGYR RGGGN SGGGG GGGYD RGYND NRDDR DNRGG SGGYG RDRNY EDRGY NGGGG GGGNR GYNNN RGGGG GGYNR QDRGD GGSSN FSRGG YNNRD EGSDN RGSGR SYNND RRDNG GDG
LAF-1RGG (Shuffled)	MNNSG DNDRG SGNYG LRNSF GDDGY GDNGN DEGNS GYRNR GLGGD RADEY GNSGG NGDNE AAPNA SDRDD AHYYD SDDYD DGGGG RGSGG AGGGG ARGPG SNRAG RYGGG GRRGR GRGNG YNGNR SQRRR GGGRG RGNRG YRVGN GNGQS GGRNS RGGGG GNGGA NYGLE HHHHH H
A1 LCD	GSMAS ASSSQ RGRSG SGNFG GGRGG GFGGN DNFGR GGNFS GRGGF GGSRG GGGYG GSGDG YNGFG NDGSN FGGGG SYNDF GNYNN QSSNF GPMKG GNFGG RSSGG SGGGG QYFAK PRNQG GYGGS SSSSS YGSGR RF
TDP-43 CTD	```RQLER SGRFG GNPGG FGNQG GFGNS RGGGA GLGNN QGSNM GGGMN FGAFS INPAM MAAAQ AALQS SWGMM GMLAS QQNQS GPSGN NQNQG NMQRE PNQAF GSGNN SYSGS NSGAA IGWGS ASNAG SGSGF NGGFG SSMDS KSSGW GM```
Ddx4 LCD	MGDED WEAEI NPHMS SYVPI FEKDR YSGEN GDNFN RTPAS SSEMD DGPSR RDHFM KSGFA SGRNF GNRDA GECNK RDNTS TMGGF GVGKS FGNRG FSNSR FEDGD SSGFW RESSN DCEDN PTRNR GFSKR GGYRD GNNSE ASGPY RRGGR GSFRG CRGGF GLGSP NNDLD PDECM QRTGG LFGSR RPVLS GTGNG DTSQS RSGSG SERGG YKGLN EEVIT GSGKN SWKSE AEGGE S
GY-23	GHGLY GAGFA GHGLH GFAGH GLY
TDP-43 CR	$M^{311} \mathrm{NFGA}$ FSINP AMMAA AQAAL QSSWG MMGML ASQQN QSGPS GNNQN QGNMQ ${ }^{360}$

Table S3. Experimental R_{g} and the corresponding measurement conditions including temperature (T), salt concentration ($C_{\text {salt }}$), and pH . The lengths of the proteins ($N_{\text {res }}$) are also listed.

Protein	$N_{\text {res }}$	$R_{\mathrm{g}}(\mathrm{nm})$	T (K)	$\mathrm{C}_{\text {salt }}(\mathrm{M})$	pH
α-synuclein ${ }^{1}$	140	3.55	293	0.2	7.4
ACTR ${ }^{2}$	71	2.6	278	0.2	7.4
$\text { Ash1 }{ }^{3,4}$	83	2.9	293	0.15	7.5
hNHE1cdt ${ }^{2}$	131	3.63	278	0.2	7.4
$\text { IBB }^{5}$	97	3.20	277	0.16	7.4
$\text { K18 }{ }^{5}$	130	3.80	277	0.16	7.4
$\mathrm{N} 49^{5}$	36	1.59	277	0.16	7.4
$\mathrm{N} 98^{5}$	151	2.86	277	0.16	7.4
NLS^{5}	44	2.40	277	0.16	7.4
$\text { NSP }^{5}$	176	4.10	277	0.16	7.4
$N^{\prime} L^{5}$	112	3.00	277	0.16	7.4
$\text { NUS }^{5}$	115	2.49	277	0.16	7.4
p53 (1-93) ${ }^{6}$	93	2.87	293	0.15	6.8
ProTa ${ }^{7,8}$	111	3.79		0.15	7.0
SH4-UD ${ }^{9}$	85	2.90	277	0.22	7.5
$\text { Sic1 }{ }^{10}$	92	3.21	298	0.16	7.5
$\text { Hst5 }{ }^{11}$	24	1.38	293	0.15	7.5
(Hst5)2 ${ }^{11}$	48	1.87	298	0.15	7.0
FUS ${ }^{12}$	163	3.32	297	0.15	7.4
LAF-1 RGG (WT)¹3	176	3.08	293	0.15	7.4
LAF-1 RGG (shuffled) ${ }^{13}$	176	3.0	293	0.15	7.4
A1 LCD ${ }^{14}$	137	2.76	298	0.15	7.0
TDP-43 CTD ${ }^{15}$	147	2.8	298	0.2	6.1
Ddx4 LCD ${ }^{16}$	236	3.61	297	0.15	6.5

Table S4. Experimental and simulated $C_{\text {sat }}$ for TDP-43 CR variants.

TDP-43 CR	Experimental $\boldsymbol{C}_{\text {sat }}(\boldsymbol{\mu M})^{17}$	Simulated $\boldsymbol{C}_{\text {sat }}(\boldsymbol{\mu M})$
WT	13.7 ± 1.5	23.1 ± 3.4
WT Δ Hel	--	27.4 ± 3.2
G335A	5.4 ± 0.7	14.2 ± 2.0
G335A- HHel	--	14.7 ± 0.8
G338A	4.6 ± 0.6	21.1 ± 3.1
A326P	--	44.5 ± 4.2
M337P	15.9 ± 0.9	44.7 ± 4.5
G335S	10.9 ± 0.3	16.8 ± 4.9
Q331K	15.5 ± 0.3	34.4 ± 3.5
G335D	10.5 ± 0.4	22.5 ± 2.5
G335N	9.0 ± 0.4	18.1 ± 5.3

Supplementary Movies

Movie S1: Spontaneous phase separation of WT GY-23 starting from a fully dispersed initial configuration. The simulation was performed in HyRes-GPU at 300 K and lasted 2000 ns . The simulation box contains 200 copies in $45 \times 45 \times 45 \mathrm{~nm}^{3}$, for a total concentration of $\sim 3.6 \mathrm{mM}$.

Movie S2: Spontaneous phase separation of WT GY-23 starting from a preformed high-density initial configuration. The simulation was performed in HyRes-GPU at 300 K and lasted 2000 ns. The simulation box contains 200 copies in $45 \times 45 \times 45 \mathrm{~nm}^{3}$, for a total concentration of $\sim 3.6 \mathrm{mM}$.

Movie S3: Spontaneous phase separation of TDP-43 CR WT starting from a preformed highdensity initial configuration. The simulation was performed in HyRes-GPU at 300 K and lasted 2000 ns . The simulation box contains 200 copies and is $60 \times 60 \times 60 \mathrm{~nm}^{3}$, for a total concentration of $\sim 1.5 \mathrm{mM}$.

Movie S4: Spontaneous phase separation of TDP-43 CR G335A starting from a preformed highdensity initial configuration. The simulation was performed in HyRes-GPU at 300 K and lasted 2000 ns . The simulation box contains 200 copies and is $60 \times 60 \times 60 \mathrm{~nm}^{3}$, for a total concentration of $\sim 1.5 \mathrm{mM}$.

Movie S5: Spontaneous phase separation of TDP-43 CR A326P starting from a preformed highdensity initial configuration. The simulation was performed in HyRes-GPU at 300 K and lasted 2000 ns . The simulation box contains 200 copies and is $60 \times 60 \times 60 \mathrm{~nm}^{3}$, for a total concentration of $\sim 1.5 \mathrm{mM}$.

Supplementary Figures

Figure S1. The probability distributions of $R_{\mathrm{g}}, R_{\text {ee }}$, and residue helicity of (AAQAA) ${ }_{3}$ (A) and KID (B) sampled from HyRes-GPU and HyRes II (CPU) at 300 K .

Figure S2. Preparation of the initial conformations for phase separation simulations of (A) GY-23 and (B) TDP-43 CR. Similar procedures were used for both WT peptides and their mutants.

Figure S3. The density of the largest droplets during six simulations of WT GY-23 at 300 K initiated from the compact and dispersed initial conformation, respectively.

Figure S4. Finite-size effects on the simulation of GY-23 condensates. (A) The droplet was first identified using DBSCAN with a radius of 2.5 nm . The density profile was then calculated as a function of radius around the center of the droplet. (B) Density profiles of the final droplet of WT GY-23 at equilibrium at four selected temperatures. The box size is 45 nm . (C) The initial compact configurations WT GY-23 with three different box sizes but at the same total concentration of 3.6 mM . (D) Density profiles were calculated for droplets at phase equilibrium from simulations of WT GY-23 with three different box sizes as shown in (C).

Figure S5. (A) Numbers of WT GY-23 peptides that remain in the preformed droplet as a function of simulation time at different simulation temperatures. (B) MSD of GY-23 in the dilute (black) and condensed (blue) phases at 300 K as a function of time.
(A)

(B)

(C)

(D)

(E)

(F)

Figure S6. Phase separation of WT and mutant GY-23 peptides. The left column plots the number of peptides in the largest cluster as a function of simulation time at temperatures ranging from 260 up to 310 K . Traces at $260 \mathrm{~K}, 280 \mathrm{~K}$ and 300 K are highlighted using solid lines, with representative final snapshots shown.

Figure S7. Conformational properties of monomeric GY-23 peptides. Probability distributions of (A) R_{g}, (B) $R_{\text {ee }}$, (C) average residue helicity, and (D) β structure propensity of WT GY-23 and five mutants at 300 K . The vertical lines in panels A and B mark the average values.

Figure S8. β-structure properties in the condensed phase of WT GY-23 at 280 K (left column) and 260 K (right column). (A) The propensities of intra- and inter- β structures. (B) Distributions of the fractions of peptides involved in all β-structures, β-bridges, and β-sheets in the droplet.

Figure S9. Residue contacts of GY-23 variants. Probability maps of inter-molecular residueresidue contacts in the condensed phases of (A) WT (at 300 K), and (B-E) H2K, H12K, H15K, and H 20 K at 280 K . (F) Average mumbers of intermolecular contacts per frame for residues H 2 , $\mathrm{H} 12, \mathrm{H} 15$, and H 20 in the condensate of WT GY-23 at 300 K .

Figure S10. Helix-helix interactions in condensed phase. (A) A representative snapshot of the condensate of WT highlighting the presence of partial helices. Note that these partial helices are dispersed and do not form preferential interactions. (B) Fraction of helix-helix contacts ($f_{\text {helix-helix }}$) for each residue of WT, G335A, G338A, A326P, and M337P in blue, orange, green, red and purple, respectively. (C) Correlation between the average residue helicity and fraction of involvement in helix-helix contacts for WT, G335A, G338A, A326P, and M337P in blue, orange, green, red and purple, respectively. Dashed lines are the linear fit with R^{2} shown in the key.

Figure S11. Probability differences of intermolecular backbone-backbone contacts between WT and $\mathrm{WT}^{+\Delta h e l}$ TDP-43 CR condensates The difference was calculated through subtracting the contact probabilities in the condensed phase of WT by those of $\mathrm{WT}^{+\Delta h e l}$. Positive values (red) represent higher contact probabilities in the WT case, while negative values (blue) represent lower contact probabilities compared to the $\mathrm{WT}^{+ \text {thel }}$ case.

Figure S12. The effect of Ala on intermolecular residue-residue contact probabilities. (A-B) Probability differences of inter-molecular residue-residue contacts between WT and G335A-shel and between $\mathrm{WT}^{+\Delta h e l}$ and G335A. The difference was calculated through subtracting the contact probabilities in the condensed phase of former variant by those of the latter one. Positive values (red) represent higher contact probability in the former variant, while negative values (blue) show lower contacts compared to the latter one.

Figure S13. Probability differences of inter-molecular residue-residue contacts between WT and M337P. The difference was calculated through subtracting the contact probabilities in the condensed phase of WT by that of M337P. Positive values (red) represent higher contact probability in the WT case, while negative values (blue) show lower contact probabilities compared to the M337P case.

Supplementary References

(1) Ahmed, M. C.; Skaanning, L. K.; Jussupow, A.; Newcombe, E. A.; Kragelund, B. B.; Camilloni, C.; Langkilde, A. E.; Lindorff-Larsen, K. Refinement of alpha-Synuclein Ensembles Against SAXS Data: Comparison of Force Fields and Methods. Front Mol Biosci 2021, 8, 654333. DOI: 10.3389/fmolb.2021.654333.
(2) Kjaergaard, M.; Norholm, A. B.; Hendus-Altenburger, R.; Pedersen, S. F.; Poulsen, F. M.; Kragelund, B. B. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci 2010, 19 (8), 1555-1564. DOI: 10.1002/pro. 435.
(3) Martin, E. W.; Holehouse, A. S.; Grace, C. R.; Hughes, A.; Pappu, R. V.; Mittag, T. Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation. J Am Chem Soc 2016, 138 (47), 15323-15335. DOI: 10.1021/jacs.6b10272.
(4) Jin, F.; Grater, F. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. Plos Computational Biology 2021, 17 (5). DOI: ARTN e1008939
10.1371/journal.pcbi.1008939.
(5) Fuertes, G.; Banterlea, N.; Ruff, K. M.; Chowdhury, A.; Mercadante, D.; Koehler, C.; Kachala, M.; Girona, G. E.; Milles, S.; Mishra, A.; et al. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. P Natl Acad Sci USA 2017, 114 (31), E6342-E6351. DOI: 10.1073/pnas. 1704692114.
(6) Wells, M.; Tidow, H.; Rutherford, T. J.; Markwick, P.; Jensen, M. R.; Mylonas, E.; Svergun, D. I.; Blackledge, M.; Fersht, A. R. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (15), 57625767. DOI: 10.1073/pnas. 0801353105.
(7) Uversky, V. N.; Gillespie, J. R.; Fink, A. L. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins-Structure Function and Genetics 2000, 41 (3), 415-427. DOI: Doi 10.1002/1097-0134(20001115)41:3<415::Aid-Prot130>3.3.Co;2-Z.
(8) Baul, U.; Chakraborty, D.; Mugnai, M. L.; Straub, J. E.; Thirumalai, D. Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins. J Phys Chem B 2019, 123 (16), 3462-3474. DOI: 10.1021/acs.jpcb.9b02575.
(9) Arbesu, M.; Maffei, M.; Cordeiro, T. N.; Teixeira, J. M. C.; Perez, Y.; Bernado, P.; Roche, S.; Pons, M. The Unique Domain Forms a Fuzzy Intramolecular Complex in Src Family Kinases. Structure 2017, 25 (4), 630-+. DOI: 10.1016/j.str.2017.02.011.
(10) Gomes, G. N. W.; Krzeminski, M.; Namini, A.; Martin, E. W.; Mittag, T.; Head-Gordon, T.; Forman-Kay, J. D.; Gradinaru, C. C. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. J Am Chem Soc 2020, 142 (37), 15697-15710. DOI: 10.1021/jacs.0c02088.
(11) McCaslin, T. G.; Pagba, C. V.; Yohannan, J.; Barry, B. A. Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide. Sci Rep-Uk 2019, 9. DOI: ARTN 17303
10.1038/s41598-019-52676-7.
(12) Murthy, A. C.; Dignon, G. L.; Kan, Y.; Zerze, G. H.; Parekh, S. H.; Mittal, J.; Fawzi, N. L. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 2019, 26 (7), 637-648. DOI: 10.1038/s41594-019-0250-x.
(13) Schuster, B. S.; Dignon, G. L.; Tang, W. S.; Kelley, F. M.; Ranganath, A. K.; Jahnke, C. N.; Simpkins, A. G.; Regy, R. M.; Hammer, D. A.; Good, M. C.; et al. Identifying sequence
perturbations to an intrinsically disordered protein that determine its phase-separation behavior. P Natl Acad Sci USA 2020, 117 (21), 11421-11431. DOI: 10.1073/pnas.2000223117.
(14) Bremer, A.; Farag, M.; Borcherds, W. M.; Peran, I.; Martin, E. W.; Pappu, R. V.; Mittag, T. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem 2022, 14 (2), 196-+. DOI: 10.1038/s41557-021-00840-w.
(15) Conicella, A. E.; Dignon, G. L.; Zerze, G. H.; Schmidt, H. B.; D'Ordine, A. M.; Kim, Y. C.; Rohatgi, R.; Ayala, Y. M.; Mittal, J.; Fawzi, N. L. TDP-43 alpha-helical structure tunes liquidliquid phase separation and function. P Natl Acad Sci USA 2020, 117 (11), 5883-5894. DOI: 10.1073/pnas. 1912055117.
(16) Brady, J. P.; Farber, P. J.; Sekhar, A.; Lin, Y. H.; Huang, R.; Bah, A.; Nott, T. J.; Chan, H. S.; Baldwin, A. J.; Forman-Kay, J. D.; et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. P Natl Acad Sci USA 2017, 114 (39), E8194-E8203. DOI: 10.1073/pnas. 1706197114.
(17) Conicella, A. E.; Dignon, G. L.; Zerze, G. H.; Schmidt, H. B.; D’Ordine, A. M.; Kim, Y. C.; Rohatgi, R.; Ayala, Y. M.; Mittal, J.; Fawzi, N. L. TDP-43 α-helical structure tunes liquid-liquid phase separation and function. Proceedings of the National Academy of Sciences 2020, 117 (11), 5883-5894. DOI: doi:10.1073/pnas. 1912055117.

