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2. Abstract  19 

The dominant paradigm for analysing genetic variation relies on a central idea: all genomes 20 
in a species can be described as minor differences from a single reference genome. However, 21 
this approach can be problematic or inadequate for bacteria, where there can be significant 22 
sequence divergence within a species.  23 
Reference graphs are an emerging solution to the reference bias issues implicit in the “single-24 
reference” model. Such a graph represents variation at multiple scales within a population – 25 
e.g., nucleotide- and locus-level. 26 
The genetic causes of drug resistance in bacteria have proven comparatively easy to decode 27 
compared with studies of human diseases. For example, it is possible to predict resistance to 28 
numerous anti-tuberculosis drugs by simply testing for the presence of a list of single 29 
nucleotide polymorphisms and insertion/deletions, commonly referred to as a catalogue. 30 
We developed DrPRG (Drug resistance Prediction with Reference Graphs) using the bacterial 31 
reference graph method Pandora. First, we outline the construction of a Mycobacterium 32 
tuberculosis drug resistance reference graph, a process that can be replicated for other 33 
species. The graph is built from a global dataset of isolates with varying drug susceptibility 34 
profiles, thus capturing common and rare resistance- and susceptible-associated haplotypes.  35 
We benchmark DrPRG against the existing graph-based tool Mykrobe and the pileup-based 36 
approach of TBProfiler using 44,709 and 138 publicly available Illumina and Nanopore 37 
datasets with associated phenotypes. We find DrPRG has significantly improved sensitivity 38 
and specificity for some drugs compared to these tools, with no significant decreases. It uses 39 
significantly less computational memory than both tools, and provides significantly faster 40 
runtimes, except when runtime is compared to Mykrobe on Illumina data. 41 
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We discover and discuss novel insights into resistance-conferring variation for M. 42 
tuberculosis - including deletion of genes katG and pncA – and suggest mutations that may 43 
warrant reclassification as associated with resistance. 44 
 45 

3. Impact statement 46 

Mycobacterium tuberculosis is the bacterium responsible for tuberculosis (TB). TB is one of 47 
the leading causes of death worldwide; before the coronavirus pandemic it was the leading 48 
cause of death from a single pathogen. Drug-resistant TB incidence has recently increased, 49 
making the detection of resistance even more vital. In this study, we develop a new software 50 
tool to predict drug resistance from whole-genome sequence data of the pathogen using new 51 
reference graph models to represent a reference genome. We evaluate it on M. tuberculosis 52 
against existing tools for resistance prediction and show improved performance. Using our 53 
method, we discover new resistance-associated variations and discuss reclassification of a 54 
selection of existing mutations. As such, this work contributes to TB drug resistance 55 
diagnostic efforts. In addition, the method could be applied to any bacterial species, so is of 56 
interest to anyone working on antimicrobial resistance. 57 

4. Data summary 58 

The authors confirm all supporting data, code and protocols have been provided within 59 
the article or through supplementary data files. 60 
The software method presented in this work, DrPRG, is freely available from GitHub under 61 
an MIT license at https://github.com/mbhall88/drprg. We used commit 9492f25 for all results 62 
via a Singularity[1] container from the URI 63 
docker://quay.io/mbhall88/drprg:9492f25. 64 
All code used to generate results for this study are available on GitHub at 65 
https://github.com/mbhall88/drprg-paper. All data used in this work are freely available from 66 
the SRA/ENA/DRA and a copy of the datasheet with all associated phenotype information 67 
can be downloaded from the archived repository at https://doi.org/10.5281/zenodo.7819984 68 
or found in the previously mentioned GitHub repository. 69 
The Mycobacterium tuberculosis index used in this work is available to download through 70 
DrPRG via the command drprg index --download mtb@20230308 or from 71 
GitHub at https://github.com/mbhall88/drprg-index. 72 

5. Introduction 73 

Human industrialisation of antibiotic production and use over the last 100 years has led to a 74 
global rise in prevalence of antibiotic resistant bacterial strains. The phenomenon 75 
was even observed within patients in the first clinical trial of streptomycin as a drug for 76 
tuberculosis (TB) in 1948[2], and indeed as every new drug class has been introduced, so has 77 
resistance followed. Resistance mechanisms are varied, and can be caused by point mutations 78 
at key loci (e.g., binding sites of drugs[3,4]), frame-shifts rendering a gene non-functional[5],  79 
horizontal acquisition of new functionality via a new gene[6], or by up-regulation of efflux 80 
pumps to reduce the drug concentration within the cell[7].  81 
 82 
Phenotypic and genotypic methods for detecting reduced susceptibility to drugs play 83 
complementary roles in clinical microbiology. Carefully defined phenotypic assays are used 84 
to give (semi)quantitative or binary measures of drug susceptibility; these have the benefit of 85 
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being experimental, quantitative measurements, and are able to detect resistance caused by 86 
hitherto unknown mechanisms. Prediction of drug resistance from genomic data has different 87 
advantages. Detection of a single nucleotide polymorphism (SNP) is arguably more 88 
consistent than a phenotypic assay, as it is not affected by whether the resistance it causes is 89 
near some threshold defining a resistant/susceptible boundary. Additionally, combining 90 
sequence datasets from different labs is more reliable than combining different phenotypic 91 
datasets, and using sequence data allows one to detect informative genetic changes (e.g., a 92 
tandem expansion of a single gene to form an array, thus increasing dosage). More subtly, 93 
defining the cut-off to separate resistant from susceptible is only simple when the minimum 94 
inhibitory concentration distribution is a simple bimodal distribution; in reality it is 95 
sometimes a convolution of multiple distributions caused by different mutations, and genetic 96 
data is sometimes needed to deconvolve the data and choose a threshold[8,9]. 97 
 98 
The key requirement for a genomic predictor is to have an encodable understanding of the 99 
genotype-to-phenotype map. Research has focussed on clinically important pathogens, 100 
primarily Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Pseudomonas 101 
aeruginosa and Mycobacterium tuberculosis (MTB). The challenges differ across species; 102 
almost all bacterial species are extremely diverse, with non-trivial pan-genomes and 103 
considerable horizontal gene transfer causing transmission of resistance genes[10]. In these 104 
cases, species are so diverse that detection of chromosomal SNPs is affected heavily by 105 
reference bias[11]. Furthermore, there is an appreciable proportion of resistance which is not 106 
currently explainable through known SNPs or genes [12–14]. At the other extreme, MTB has 107 
almost no accessory genome, and no recombination or plasmids[15]. Resistance appears to be 108 
caused entirely by mutations, indels, and rare structural variants, and simple sets of rules ("if 109 
any of these mutations are present, or any of these genes inactivated, the sample is resistant") 110 
work well for most drugs[16]. MTB has an exceptionally slow growth rate, meaning culture-111 
based drug susceptibility testing (DST) is slow (2-4 weeks depending on media), and 112 
therefore sequencing is faster[17]. As part of the end TB strategy, the WHO strives towards 113 
universal access to DST[18], defining Target Product Profiles for molecular 114 
diagnostics[19,20] and publishing a catalogue of high-confidence resistance mutations 115 
intended to provide a basis for commercial diagnostics and future research[16]. There was a 116 
strong community-wide desire to integrate this catalogue into software for genotypic 117 
resistance prediction, although independent benchmarking confirmed there was still need for 118 
improvement[12]. Hence, there is a continuing need to improve the understanding of the 119 
genetic basis of resistance and integrate it into software for genotypic DST. 120 
  121 
In this paper we develop and evaluate a new software tool for genotypic DST for MTB, built 122 
on a generic framework that can be used for any bacteria. Several tools have been developed 123 
previously[21–25]. Of these, only Mykrobe and TBProfiler work on Illumina and Nanopore 124 
data, and both have been heavily evaluated previously[22,23,26,27] - so we benchmark 125 
against these. Mykrobe uses de Bruijn graphs to encode known resistance alleles and thereby 126 
achieves high accuracy even on indel calls with Nanopore data[27]. However it is unable to 127 
detect novel alleles in known resistance genes, nor to detect gene truncation or deletion, 128 
which would be desirable. TBProfiler is based on mapping and variant calling (by default 129 
using Freebayes[28]), and detects gene deletions using Delly[29].  130 
  131 
Our new software, called DrPRG (Drug resistance Prediction with Reference Graphs), builds 132 
on newer pan-genome technology than Mykrobe[11] using an independent graph for each 133 
gene in the catalogue, which makes it easier to go back-and-forth between VCF and the 134 
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graph. To build an index, it takes as input a catalogue of resistant variants (a simple 4-column 135 
TSV file), a file specifying expert rules (e.g. any missense variant between codons X and Y in 136 
gene Z causes resistance to drug W), and a VCF of population variation in the genes of 137 
interest. This allows it to easily incorporate the current WHO-endorsed catalogue[16], which 138 
is conservative, and for the user to update the catalogue or rules with minimal effort. Finally, 139 
to provide resistance predictions, it takes a prebuilt index (an MTB one is currently provided) 140 
and sequencing reads (FASTQ). 141 
  142 
We describe the DrPRG method, and to evaluate it, gather the largest MTB dataset of 143 
sequencing data with associated phenotype information and reveal novel insights into 144 
resistance-determining mutations for this species. 145 

6. Methods 146 

DrPRG is a command-line software tool implemented in the Rust programming language. 147 
There are two main subcommands: build for building a reference graph and associated 148 
index files, and predict for producing genotypic resistance predictions from sequencing 149 
reads and an index (from build) . 150 

6.1 Constructing a resistance-specific reference graph and index 151 

The build subcommand of DrPRG requires a Variant Call Format (VCF) file of variants 152 
from which to build a reference graph, a catalogue of mutations that confer resistance or 153 
susceptibility for one or more drugs, and an annotation (GFF) and FASTA file of the 154 
reference genome. 155 
For this work, we used the reference and annotation for the MTB strain H37Rv (accession 156 
NC_000962.3) and the default mutation catalogue from Mykrobe (v0.12.1)[12,26]. 157 
To ensure the reference graph is not biased towards a particular lineage or susceptibility 158 
profile, we selected samples from a VCF of 15,211 global MTB samples[30]. We randomly 159 
chose 20 samples from each lineage 1 through 4, as well as 20 samples from all other 160 
lineages combined. In addition, we included 17 clinical samples representing MTB global 161 
diversity (lineages 1-6)[31,32] to give a total of 117 samples. In the development phase of 162 
DrPRG we also found it necessary to add some common mutations not present in these 177 163 
samples; as such, we added 48 mutations to the global VCF (these mutations are listed in 164 
archived repository – see Data summary). We did not add all catalogue mutations as there is a 165 
saturation point for mutation addition to a reference graph, and beyond this point, 166 
performance begins to decay[33]. 167 
The build subcommand turns this VCF into a reference graph by extracting a consensus 168 
sequence for each gene and sample. We use just those genes that occur in the mutation 169 
catalogue and include 100 bases flanking the gene. A multiple sequence alignment is 170 
constructed for each gene from these consensus sequences with MAFFT (v7.505)[34,35] and 171 
then a reference graph is constructed from these alignments with make_prg (v0.4.0)[11]. 172 
The final reference graph is then indexed with pandora[11]. 173 

6.2 Genotypic resistance prediction 174 

Genotypic resistance prediction of a sample is performed by the predict subcommand of 175 
DrPRG. It takes an index produced by the build command (see Constructing a resistance-176 
specific reference graph and index) and sequencing reads – Illumina or Nanopore are 177 
accepted. To generate predictions, DrPRG discovers novel variants (pandora), adds these to 178 
the reference graph (make_prg and MAFFT), and then genotypes the sample with respect 179 
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to this updated graph (pandora). The genotyped VCF is filtered such that we ignore any 180 
variant with less than 3 reads supporting it and require a minimum of 1% read depth on each 181 
strand. Next, each variant is compared to the catalogue. If an alternate allele has been called 182 
that corresponds with a catalogue variant, resistance (‘R’) is noted for the drug(s) associated 183 
with that mutation. If a variant in the VCF matches a catalogue mutation, but the genotype is 184 
null (‘.’), we mark that mutation, and its associated drug(s), as failed (‘F’). Where an alternate 185 
allele call does not match a mutation in the catalogue, we produce an unknown (‘U’) 186 
prediction for the drug(s) that have a known resistance-conferring mutation in the relevant 187 
gene. 188 
DrPRG also has the capacity to detect minor alleles and call minor resistance (‘r’) or minor 189 
unknown (‘u’) in such cases. Minor alleles are called when a variant (that has passed the 190 
above filtering) is genotyped as being the susceptible (reference) allele, but there is also read 191 
depth on the resistant (alternate) allele above a given minor allele frequency parameter (--192 
maf; default is 0.1 for Illumina data). Minor allele calling is turned off by default for 193 
Nanopore data as we found it led to a drastic increase in the number of false positive calls 194 
(this is also the case for Mykrobe and TBProfiler). 195 
When building the index for DrPRG and making predictions, we also accept a file of “expert 196 
rules” for calling variants of a certain class. A rule is associated with a gene, an optional 197 
position range, a variant type, and the drug(s) that rule confers resistance to. Currently 198 
supported variant types are missense, nonsense, frameshift, and gene absence. 199 
The output of running predict is a VCF file of all variants in the graph and a JSON file of 200 
resistance predictions for each drug in the index, along with the mutation(s) supporting that 201 
prediction and a unique identifier to find that variant in the VCF file (see Supplementary 202 
Section S1 for an example). The reference graph gene presence/absence (as determined by 203 
pandora) is also listed in the JSON file. 204 

6.3 Benchmark 205 

We compare the performance of DrPRG against Mykrobe (v0.12.1)[26] and TBProfiler 206 
(v4.3.0)[22] for MTB drug resistance prediction. Mykrobe is effectively a predecessor of 207 
DrPRG; it uses genome graphs, in the form of de Bruijn graphs, to construct a graph of all 208 
mutations in a catalogue and then genotypes the reads against this graph. TBProfiler is a more 209 
traditional approach which aligns reads to a single reference genome and calls variants from 210 
that alignment via a pileup. 211 
A key part of such a benchmark is the catalogue of mutations, as this generally accounts for 212 
the majority of differences between tools[26]. As such, we use the same catalogue for all 213 
tools to ensure any differences are method-related - not catalogue disparities. The catalogue 214 
we chose is the default one provided in Mykrobe[12]. It is a combination of the catalogue 215 
described in Hunt et al. [26] and the category 1 and 2 mutation and expert rules from the 216 
2021 WHO catalogue[16]. This catalogue contains mutations for 14 drugs: isoniazid, 217 
rifampicin, ethambutol, pyrazinamide, levofloxacin, moxifloxacin, ofloxacin, amikacin, 218 
capreomycin, kanamycin, streptomycin, ethionamide, linezolid, and delamanid. 219 
We used Mykrobe and TBProfiler with default parameters, except for a parameter in each 220 
indicating the sequencing technology of the data as Illumina or Nanopore and the TBProfiler 221 
option to not trim data (as we do this in Quality control). 222 
We compare the prediction performance of each program using sensitivity and specificity. To 223 
calculate these metrics, we consider a true positive (TP) and true negative (TN) as a case 224 
where a program calls resistance and susceptible, respectively, and the phenotype agrees; a 225 
false positive (FP) as a resistant call by a program but a susceptible phenotype, with false 226 
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negatives (FN) being the inverse of FP. We only present results for drugs in the catalogue and 227 
where at least 10 samples had phenotypic data available. 228 
To benchmark the runtime and memory usage of each tool, we used the Snakemake 229 
benchmark feature within our analysis pipeline[36]. 230 

6.4 Datasets 231 

We gathered various MTB datasets where whole-genome sequencing data (Nanopore or 232 
Illumina) were available from public repositories (ENA/SRA/DRA) and associated 233 
phenotypes were accessible for at least one drug present in our catalogue[16,27,37–49]. 234 
All data was downloaded with fastq-dl (v1.1.1; https://github.com/rpetit3/fastq-dl). 235 

6.5 Quality control 236 

All downloaded Nanopore fastq files had adapters trimmed with porechop (v0.2.4; 237 
https://github.com/rrwick/Porechop), with the option to discard any reads with an adapter in 238 
the middle, and any reads with an average quality score below 7 were removed with nanoq 239 
(v0.9.0)[50]. Illumina reads were pre-processed with fastp (v0.23.2)[51] to remove adapter 240 
sequences, trim low quality bases from the ends of the reads, and remove duplicate reads and 241 
reads shorter than 30bp. 242 
Sequencing reads were decontaminated as described in Hall et al.[27] and Walker et al.[16]. 243 
Briefly, sequenced reads were mapped to a database of common sputum contaminants and the 244 
MTB reference genome (H37Rv; accession NC_000962.3)[52] keeping only those reads 245 
where the best mapping was to H37Rv. 246 
After quality control, we removed any sample with average read depth less than 15, or where 247 
more than 5% of the reads mapped to contaminants.  248 
Lineage information was extracted from the TBProfiler results (see Benchmark). 249 

6.6 Statistical Analysis 250 

We used a Wilcoxon rank-sum paired data test from the Python library SciPy[53] to test for 251 
significant differences in runtime and memory usage between the three prediction tools. 252 
The sensitivity and specificity confidence intervals were calculated with a Wilson’s score 253 
interval with a coverage probability of 95%. 254 

7. Results 255 

To benchmark DrPRG, Mykrobe, and TBProfiler, we gathered an Illumina dataset of 45,702 256 
MTB samples with a phenotype for at least one drug. After quality control (see Quality 257 
control), this number reduced to 44,709. In addition, we gathered 142 Nanopore samples, of 258 
which 138 passed quality control. In Figure 1 we show all available drug phenotypes for 259 
those interested in the dataset, yet our catalogue does not offer predictions for all drugs listed 260 
(see Benchmark). Lineage counts for all samples that passed quality control and have a 261 
single, major lineage call can be found in Table 1. 262 
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 263 
Figure 1: Drug phenotype counts for Illumina (upper) and Nanopore (lower) datasets. Bars are stratified and 264 
coloured by whether the phenotype is resistant (R; orange) or susceptible (S; green). Note, the y-axis is log-scaled. 265 
PAS=para-aminosalicylic acid 266 

Table 1: Lineage counts from the Illumina and Nanopore datasets, covering main lineages 1-9 (L1-L9) and the three 267 
livestock-associated lineages (La1-La3) as defined in [54] 268 

Lineage Illumina Nanopore 

La1 239 0 

La2 7 0 

La3 71 0 

L1 3907 32 

L2 12870 38 

L3 5803 9 

L4 20731 59 

L5 63 0 

L6 78 0 

L7 3 0 

L9 1 0 

 269 

7.1 Sensitivity and specificity performance 270 

We present the sensitivity and specificity results for Illumina data in Figure 2 and Suppl. 271 
Table S1 and the Nanopore data in Figure 3 and Suppl. Table S2.  272 
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When comparing DrPRG’s performance to that of Mykrobe and TBProfiler, we look for 273 
instances where the confidence intervals do not overlap; indicating a significant difference. 274 
With Illumina data (Figure 2 and Suppl. Table S1), DrPRG achieves significantly greater 275 
sensitivity than Mykrobe for rifampicin (96.4% [96.0-96.7] vs. 95.6% [95.2-95.9]), 276 
streptomycin (85.3% [84.4-86.3] vs. 83.1% [82.1-84.1]), amikacin (85.6% [83.9-87.1] vs. 277 
80.8% [78.9-82.5]), capreomycin (77.5% [75.2-79.7] vs. 71.8% [69.3-74.1]), kanamycin 278 
(83.7% [82.1-85.2] vs. 79.9% [78.2-81.5]), and ethionamide (75.2% [73.7-76.8] vs. 71.4% 279 
[69.7-73.0]), with no significant difference for all other drugs. In terms of sensitivity, there 280 
was no significant difference between DrPRG and TBProfiler except for ethionamide, where 281 
DrPRG was significantly more sensitive (75.2% [73.7-76.8] vs. 71.5% [69.8-73.1]). For 282 
specificity, there was no significant difference between the tools except that DrPRG and 283 
Mykrobe were significantly better than TBProfiler for rifampicin (97.8% [97.6-98.0] vs. 284 
97.2% [97.0-97.4]). There was no significant difference in sensitivity or specificity for any 285 
drug with Nanopore data. 286 

 287 
Figure 2: Sensitivity (upper panel; y-axis) and specificity (lower panel; y-axis) of resistance predictions for different 288 
drugs (x-axis) from Illumina data. Error bars are coloured by prediction tool. The central horizontal line in each 289 
error bar is the sensitivity/specificity and the error bars represent the 95% confidence interval. Note, the sensitivity 290 
panel’s y-axis is logit-scaled. This scale is similar to a log scale close to zero and to one (100%), and almost linear 291 
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around 0.5 (50%). The red dashed line in each panel represents the minimal standard WHO target product profile 292 
(TPP; where available) for next-generation drug susceptibility testing for sensitivity and specificity. INH=isoniazid, 293 
RIF=rifampicin, EMB=ethambutol, PZA=pyrazinamide, LFX=levofloxacin, MFX=moxifloxacin, OFX=ofloxacin, 294 
AMK=amikacin, CAP=capreomycin, KAN=kanamycin, STM=streptomycin, ETO=ethionamide, LZD=linezolid, 295 
DLM=delamanid.  296 

 297 
Figure 3: Sensitivity (upper panel; y-axis) and specificity (lower panel; y-axis) of resistance predictions for different 298 
drugs (x-axis) from Nanopore data. Error bars are coloured by prediction tool. The central horizontal line in each 299 
error bar is the sensitivity/specificity and the error bars represent the 95% confidence interval. Note, the sensitivity 300 
panel’s y-axis is logit-scaled. This scale is similar to a log scale close to zero and to one (100%), and almost linear 301 
around 0.5 (50%). The red dashed line in each panel represents the minimal standard WHO target product profile 302 
(TPP; where available) for next-generation drug susceptibility testing for sensitivity and specificity. INH=isoniazid, 303 
RIF=rifampicin, EMB=ethambutol, OFX=ofloxacin, AMK=amikacin, CAP=capreomycin, KAN=kanamycin, 304 
STM=streptomycin, ETO=ethionamide. 305 

In both figures, we show the minimal requirements from the WHO target product profiles for 306 
sensitivity and specificity of genotypic drug susceptibility testing[19] as red dashed lines. 307 
Note, a sensitivity target is not specified by the WHO for ethambutol (EMB), capreomycin 308 
(CAP), kanamycin (KAN), streptomycin (STM), or ethionamide (ETO). For Illumina data, all 309 
tools’ predictions for rifampicin, isoniazid, levofloxacin, moxifloxacin and amikacin are 310 
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above the sensitivity minimal requirement target. TBProfiler also exceeds the target for 311 
pyrazinamide, which DrPRG misses by 0.2%. No drug’s sensitivity target was achieved with 312 
Nanopore data. For specificity, the tools are all very similar and either exceed or fall below 313 
the threshold together (see Figure 2). The target of >98% is met by all tools on Illumina data 314 
only for ofloxacin, amikacin, linezolid, and delamanid. Mykrobe also exceeds the target for 315 
capreomycin. As such, amikacin is the only drug where both sensitivity and specificity 316 
performance exceed the minimal requirement of the WHO target product profiles. Only 317 
capreomycin and kanamycin specificity targets are exceeded (by all tools) with Nanopore 318 
data. 319 
However, for Illumina data, we did find that likely sample-swaps or phenotype instability[55] 320 
could lead to some drugs being on the threshold of the WHO target product profiles. If we 321 
excluded samples where all three tools make a FP call for the strong isoniazid and rifampicin 322 
resistance-conferring mutations katG S315T (n=152) and rpoB S450L (n=119) [16] 323 
respectively, all three tools would exceed the isoniazid specificity target of 98% - thus 324 
meeting both sensitivity and specificity targets for isoniazid. In addition, DrPRG and 325 
Mykrobe would meet the rifampicin specificity target of 98% – leading to both targets being 326 
met for rifampicin for these two tools. As previously reported [55,56], we also found a lot of 327 
instability in the ethambutol result caused by embB mutations M306I (n=827) and M306V 328 
(n=519) being called for phenotypically susceptible samples (FP) by all three tools. Other 329 
frequent consensus FP calls included: fabG1 c-15t, which is associated with ethionamide 330 
(n=441) and isoniazid (n=241) resistance; rrs a1401g, which is associated with resistance to 331 
capreomycin (n=241), amikacin (n=70), and kanamycin (n=48). In addition there were 332 
common false positives from gyrA mutations A90V and D94G, which are associated with 333 
resistance to the fluoroquinolones levofloxacin (n=108 and n=70, respectively), moxifloxacin 334 
(n=419 and n=349) and ofloxacin (n=19 and n=17), and are known to cause heteroresistance 335 
and minimum inhibitory concentrations (MIC) close to the critical concentration 336 
threshold[57–59]. 337 

7.2 Evaluation of potential additions to the WHO catalogue 338 

False negatives are much harder to investigate as it is not known which mutation(s) were 339 
missed as they are presumably not in the catalogue if all tools failed to make a call. However, 340 
looking through those FNs where DrPRG makes an “unknown” resistance call, we note some 341 
potential mutations that may need reclassification or inclusion in the WHO catalogue. For 342 
delamanid FNs, we found five different nonsense mutations in the ddn gene in seven samples 343 
– W20* (n=2), W27* (n=1), Q58* (n=1), W88* (n=2), and W139* (n=1) – none of which 344 
occurred in susceptible samples. We also found 13 pyrazinamide FN cases with a nonstop 345 
(stop-loss) mutation in pncA – this mutation type was also seen in two susceptible samples. 346 
Another pncA mutation, T100P, was also observed in 10 pyrazinamide FN samples and no 347 
susceptible samples. T100P only appears once in the WHO catalogue data (“solo” in a 348 
resistant sample). As such, it was given a grading of uncertain significance. As our dataset 349 
includes those samples in the WHO catalogue dataset, this means an additional nine isolates 350 
have been found with this mutation - indicating this may warrant an upgrade to ‘associated 351 
with resistance’. We found an interesting case of allele combinations, where nine ethambutol 352 
FN samples have the same two embA mutation c-12a and c-11a and embB mutation P397T - 353 
this combination is only seen in two susceptible samples. Interestingly, embB P397T and 354 
embA c-12a don't appear in the WHO catalogue, but have been described as causing 355 
resistance previously[60]. Three katG mutations were also detected in isoniazid FN cases. 356 
First, G279D occurs in eight missed resistance samples and no susceptible cases. This 357 
mutation is graded as ‘uncertain significance’ in the WHO catalogue and was seen solo in 358 
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four resistant samples in that data. Singh et al. performed a protein structural analysis caused 359 
by this mutation and found it produced “an undesirable effect on the functionality of the 360 
protein”[61]. Second, G699E occurs in eight FN samples and no susceptible cases, but has a 361 
WHO grading of ‘uncertain significance’ based on six resistant isolates; thus, we add two 362 
extra samples to that count. And third, N138H occurs in 14 FN samples and one susceptible. 363 
In seven of these cases, it co-occurs with ahpC mutations t-75g (n=2) and t-76a (n=5). This 364 
mutation occurs in only three resistant isolates in the WHO catalogue dataset, giving it an 365 
uncertain significance, but we add a further 11 cases. This mutation has been found to cause a 366 
high isoniazid MIC and be associated with resistance[62,63]. 367 

7.3 Detection of large deletions 368 

There are expert rules in the WHO catalogue which treat gene loss-of-function (any 369 
frameshift or nonsense mutation) in katG, ethA, gid, and pncA as causing resistance for 370 
isoniazid, ethionamide, streptomycin, and pyrazinamide, respectively[16]. Although 371 
examples of resistance caused by gene deletion are rare[64–68], with a dataset of this size 372 
(n=44,709), we can both evaluate these rules, and compare the detection power of DrPRG 373 
and TBProfiler for identifying gene deletions (Mykrobe does not, although in principle it 374 
could). In total we found 206 samples where DrPRG and/or TBProfiler identified deletions of 375 
ethA, katG, or pncA. Although many of these isolates did not have phenotype information for 376 
the associated drug (n=100), the results are nevertheless striking (Figure 4). Given the low 377 
false-positive rate of pandora for gene absence detection[11], these no-phenotype samples 378 
provide insight into how often gene deletions are occurring in clinical samples. 379 
Of the 34 isolates where katG was identified as being absent, and an isoniazid phenotype was 380 
available, all 34 were phenotypically resistant. DrPRG detected all 34 (100% sensitivity) and 381 
TBProfiler identified 26 (76.5% sensitivity). Deletions of pncA were detected in 56 isolates, 382 
of which 49 were phenotypically resistant. DrPRG detected 47 (95.9% sensitivity) and 383 
TBProfiler detected 46 (93.9% sensitivity). Lastly, ethA was found to be missing in 16 384 
samples with an ethionamide phenotype, of which 10 were phenotypically resistant. Both 385 
DrPRG and TBProfiler correctly predicted all 10 (100% sensitivity). No gid deletions were 386 
discovered. We note that the TP calls made by Mykrobe were due to it detecting large 387 
deletions that are present in the catalogue, which is understandable given the whole gene is 388 
deleted.  389 
We conclude that DrPRG is slightly more sensitive at detecting large deletions than 390 
TBProfiler (and Mykrobe) for katG, and equivalent for pncA and ethA. However we note that 391 
the WHO expert rule which predicts resistance to isolates missing specific genes appears 392 
more accurate for katG (100% of isolates missing the gene are resistant) than for pncA (87% 393 
resistant) and ethA (62.5% resistant). 394 
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 395 
Figure 4: Impact of gene deletion on resistance classification. The title of each subplot indicates the gene and drug it 396 
effects. Bars are coloured by their classification and stratified by tool. Count (y-axis) indicates the number of gene 397 
deletions for that category. The NA bar (white with diagonal lines) indicates the number of samples with that gene 398 
deleted but no phenotype information for the respective drug. TP=true positive; FN=false negative; TN=true negative; 399 
FP=false positive; NA=no phenotype available. 400 

7.4 Runtime and memory usage benchmark 401 

The runtime and peak memory usage of each program was recorded for each sample and is 402 
presented in Figure 5. DrPRG (median 161 seconds) was significantly faster than both 403 
TBProfiler (307 seconds; p≤0.0001) and Mykrobe (230 seconds; p≤0.0001) on Illumina data. 404 
For Nanopore data, DrPRG (250 seconds) was significantly faster than TBProfiler (290 405 
seconds; p≤0.0001), but significantly slower than Mykrobe (213 seconds; p=0.0347). In 406 
terms of peak memory usage, DrPRG (Illumina median peak memory 58MB; Nanopore 407 
277MB) used significantly less memory than Mykrobe (1538MB; 1538MB) and TBProfiler 408 
(1463MB; 1990MB) on both Illumina and Nanopore data (p≤0.0001 for all comparisons). 409 
 410 
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 411 
Figure 5: Benchmark of the maximum memory usage (left panels) and runtime (right panels) from Illumina (upper 412 
row) and Nanopore (lower row) data. Each point and violin is coloured by the tool, with each point representing a 413 
single sample. Statistical annotations are the result of a Wilcoxon rank-sum paired data test on each pair of tools. 414 
Dashed lines inside the violins represent the quartiles of the distribution. Note, the x-axis is log-scaled. 415 

8. Discussion 416 

In this work, we have presented a novel method for making drug resistance predictions with 417 
reference graphs. The method, DrPRG, requires only a reference genome and annotation, a 418 
catalogue of resistance-conferring mutations, a VCF of population variation from which to 419 
build a reference graph, and (optionally) a set of rules for types of variants in specific genes 420 
which cause resistance. We apply DrPRG to the pathogen M. tuberculosis, for which there is 421 
a great deal of information on the genotype/phenotype relationship, and a great need to 422 
provide good tools which implement and augment current and forthcoming versions of the 423 
WHO catalogue. We illustrate the performance of DrPRG against two existing methods for 424 
drug resistance prediction – Mykrobe and TBProfiler.  425 
 426 
We benchmarked the methods on a high-quality Illumina sequencing dataset with associated 427 
phenotype profiles for 44,709 MTB genomes; the largest known dataset to-date[16]. All tools 428 
used the same catalogue and rules, and for most drugs, there was no significant difference 429 
between the tools. However, DrPRG did have a significantly higher specificity than 430 
TBProfiler for rifampicin predictions, and sensitivity for ethionamide predictions. DrPRG’s 431 
sensitivity was also significantly greater than Mykrobe’s for rifampicin, streptomycin, 432 
amikacin, capreomycin, kanamycin, and ethionamide. Evaluating detection of gene loss, we 433 
found DrPRG was more sensitive to katG deletions than TBProfiler.  434 
We also benchmarked using 138 Nanopore-sequenced MTB samples with phenotype 435 
information, but found no significant difference between the tools. This Nanopore dataset 436 
was quite small and therefore the confidence intervals were large for all drugs. Increased 437 
Nanopore sequencing over time will provide better resolution of the overall sensitivity and 438 
specificity values and improve the methodological nuances of calling variants from this 439 
emerging, and continually changing, sequencing technology. 440 
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DrPRG also used significantly less memory than Mykrobe and TBProfiler on both Nanopore 441 
and Illumina data. In addition, the runtime of DrPRG was significant faster than both tools on 442 
Illumina data and faster than TBProfiler on Nanopore data. While the absolute values for 443 
memory and runtime for all tools mean they could all easily run on common computers found 444 
in the types of institutions likely to run them, the differences for the Nanopore data warrant 445 
noting. As Nanopore data can be generated “in the field”, computational resource usage is 446 
critical. For example, in a recent collaboration of ours with the National Tuberculosis 447 
program in Madagascar[27], Nanopore sequencing and analysis are regularly performed on a 448 
laptop, meaning memory usage is sometimes a limiting factor. DrPRG’s median peak 449 
memory was 277MB, meaning it can comfortably be run on any laptop and other mobile 450 
computing devices[69]. 451 
It is clear from the Illumina results that more work is needed to understand resistance-452 
conferring mutations for delamanid and linezolid. However, we did find that nonsense 453 
mutations in the ddn gene appear likely to be resistance-conferring for delamanid – as has 454 
been noted previously[39,70–72]. We also found a novel (likely) mechanism of resistance to 455 
pyrazinamide - a nonstop mutation in pncA. Phenotype instability in embB at codon 306 was 456 
also found to be the main driver in poor ethambutol specificity, as has been noted 457 
elsewhere[55,56], indicating the need to further investigate cofactors that may influence the 458 
phenotype when mutations at this codon are present. 459 
Gene absence/deletion detection allowed us to confirm that the absence of katG – a 460 
mechanism which is rare in clinical samples[64–67,73] - is highly likely to confer resistance 461 
to isoniazid. Additionally, we found that the absence of pncA is likely to cause resistance to 462 
pyrazinamide, as has been noted previously[68]. One finding that requires further 463 
investigation is the variability in ethionamide phenotype when ethA is absent. We found that 464 
only 63% of the samples with ethA missing, and an ethionamide phenotype, were resistant. 465 
An et al. have suggested that ethA deletion alone does not always cause resistance and there 466 
might be an alternate pathway via mshA[74]. 467 
Given the size of the Illumina dataset used in this work, the results provide a good marker of 468 
Illumina whole-genome sequencing’s ability to replace traditional phenotyping methods. 469 
With the catalogue used in this study, DrPRG meets the WHO’s target product profile for 470 
next-generation drug-susceptibility testing for both sensitivity and specificity for amikacin, 471 
and sensitivity only for rifampicin, isoniazid, levofloxacin, and moxifloxacin. However, if we 472 
exclude cases where all tools call rpoB S450L or katG S315T for phenotypically susceptible 473 
samples (these are strong markers of resistance[16] and therefore we suspect sample-swaps or 474 
phenotype error[75]), DrPRG also meets the specificity target product profile for rifampicin 475 
and isoniazid. For the other first-line drugs ethambutol and pyrazinamide, ethambutol does 476 
not have a WHO target and DrPRG’s sensitivity is 0.2% below the WHO target (although the 477 
confidence interval spans the target), while the specificity target is missed by 0.8%. 478 
The primary limitation of the DrPRG method relates to minor allele calls. DrPRG uses 479 
pandora for novel variant discovery, which combines a graph of known population variants 480 
(which can be detected at low frequency) with de novo detection of other variants if present at 481 
above ~50% frequency. Thus, it can miss minor allele calls if the allele is absent from its 482 
reference graph. While this issue did not impact most drugs, it did account for the majority of 483 
cases where DrPRG missed pyrazinamide-resistant calls (in pncA), but the other tools 484 
correctly called resistance. Unlike most other genes, where there are a relatively small 485 
number of resistance-conferring mutations, or they’re localised to a specific region (e.g. the 486 
rifampicin-resistance determining region in rpoB), resistance-conferring mutations are 487 
numerous - with most being rare - and distributed throughout pncA[16,76,77]. Adding all of 488 
these mutations will, and does, lead to decreased performance of the reference graph[33], and 489 
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so improving minor allele calling for pyrazinamide remains a challenge we need to revisit in 490 
the future. 491 
One final limitation is the small number of Nanopore-sequenced MTB isolates with 492 
phenotypic information. In order to get a clearer picture of the sensitivities and specificities 493 
this sequencing technology can provide, we need much larger and more diverse data. 494 
 495 
In conclusion, DrPRG is a fast, memory frugal software program that can be applied to any 496 
bacterial species. We showed that on MTB, it performs as well as, or better than two other 497 
commonly used tools for resistance prediction. We also collected and curated the largest 498 
dataset of MTB Illumina-sequenced genomes with phenotype information and hope this will 499 
benefit future work to improved genotypic drug susceptibility testing for this species. While 500 
we applied DrPRG to MTB in this study, it is a framework that is agnostic to the species. 501 
MTB is likely one of the bacterial species with the least to gain from reference graphs given 502 
its relatively conserved (closed) pan-genome compared to other common species[78]. As 503 
such, we expect the benefits and performance of DrPRG to improve as the openness of the 504 
species’ pan-genome increases[11]; especially given its good performance on a reasonably 505 
closed pan-genome. 506 
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