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Supplementary Information
Model derivation

We suppose that the energy flux is driven entirely via diffusion
with coefficient �E dependent on the type of media. The energy
is consumed in proportion to the amount of cells present. For
cell motility, we assume it is driven both by chemokinesis and
chemotaxis. This leads to our general coupled system
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The system (S1) is defined on a dish of radius R subject to no-flux
boundary conditions. We assume the cells U, V are initially concen-
trated at the center with radius ⇢0  R and initial concentrations
U0, V0. Further, we assume that the energy density is uniformly
distributed on the plate with initial value E0. All parameters ex-
cept otherwise stated are independent of any of the state variables
(Ẽ, U, V ). The energy is consumed at rate �. Both cells can di-
vide at the maximal rate �, but are restricted by the energy density
Ẽ. The cells can grow to a local maximal density given by K.
This parameter is often cell line-dependent and is related to contact
inhibition and cells being able to grow on top of each other.

Before proceeding, we rescale our variables Ẽ, U, V . Define
E = Ẽ/E0, u = U/K, v = V/K. In other words, we are looking
at the change in energy relative to the initial amount and normalizing
the cells by their local carrying capacity density. This leads to a
natural redefinition of the energy sensitivity parameters ⇠i = ⌅i/E0

and �i = �i/E0.
Next, we rescale time in terms of the maximal growth rate ⌧ = �t

and introduce a characteristic length by L =
p
�/�. With this

rescaling, we have our main (non-dimensional) equations
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where we have defined �E = �E/�, a = �K/�, b = �/�.
We made a few choices that warrant further explanation. First,

we were mainly interested in the degree of infiltration that the het-
erogeneous population would make given a finite source of energy.
If the source was infinite, the growth rate term would never decay,
and the cells would eventually make their way across the entire
dish (both in simulations and eventually in experiments through

random motion, if permitted). This energy source term is also non-
trivial. For example, we can use a periodic energy source term
where q = q0 sin(2⇡t/T ), or we can use a constant source term
q = q0. Ultimately, any source term which does not decay to zero at
long times will eventually have the cells occupying the entire dish.
Since we are mostly interested in how far they can move given a
finite amount of energy, we avoided adding this additional term at
this time.

Second, the inclusion of a local carrying capacity is to prohibit
overgrowth of too many cells on top of each other. Different cell
lines are expected to have different K’s and cells that don’t have
this restriction can be modeled by taking K ! 1. This also
avoids potential overflow, when the half-maximal energy parameters
� ⌧ 1. Ultimately, energy-dependent growth in a finite resource
environment is a natural mechanism that stops growth, but a local
carrying capacity is also a natural parameter as we don’t expect
unbounded stacking of cells.

Third, additional compartments that model the tumor microenvi-
ronment (e.g. normal cells, matrix tissue) were purposely omitted.
The model has the ability to incorporate this through increasing com-
plexity in a modeling hierarchy by making the parameters related
to growth and motion dependent on these additional compartments.
For immobile structures such as matrix tissue, we could generalize
parameters to be spatially-dependent. For additional cell types (e.g.
normal cells), we can add compartments to the model with growth-
and motion-related parameters that are specific to the corresponding
cell type. In this regard, our model is flexible and amendable to
further additions.

Infiltration
An important question in cancer dynamics is infiltration into

and through tissue. The desire for cells to move is inherently tied
to the availability of nutrients and space. To this end we define
 (⌧) := [⇢(⌧)� ⇢0]/⇢0 where ⇢(0) = ⇢0, the initial radius of cell
seeding density.  can be thought of as a non-dimensional measure
of infiltration attained after time ⌧ . This dimensionless measure has
the added benefit of being scale-independent. An inherent difficulty
with random cell motility and calculating infiltration is that the
system always reaches the boundary in finite time. Instead we will
define the maximum degree of infiltration to be given by the time
needed for the total energy to be below a threshold " ⌧ 1. For
simulations, we took the 1-norm kEk1 < " = 1e� 4.

In general, the maximum degree of infiltration is difficult to pre-
dict analytically, so we will only consider the single population
case when obtaining our analytical estimates. We will also make
use of the simplification that most energy-type molecules (e.g. glu-
cose) have a diffusion coefficient that is very large, relative to cell
movement. This allows us to write the reduced model:
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The additional term (⇢/R)2 arises due to the fact that energy is
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now assumed to be homogeneous in space. Hence, (S2a) can be
integrated over space, but we must account for the fact that E
is uniform and u is non-zero only if r  ⇢(⌧). Performing this
integration leads to the modification in (S3a).

No chemotaxis infiltration estimate

Consider (S3a) - (S3b), we write the radially symmetric Lapla-
cian explicitly and obtain
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where n is the dimension (typically n = 2, 3, for circular or spher-
ical growth, respectively). We now seek traveling wave-like so-
lutions, where we assume that the wave speed is a slow func-
tion of r and ⌧ . The solution obtained will verify that these as-
sumptions are valid for our system. Our ansatz takes the form
u(r, ⌧) = U(r � ⌘⌧) = U(z). Note that in spatial equilibrium,
u = 1 is stable and u = 0 is an unstable steady state. If the unstable
state is what governs the wave speed, then the wave is said to be
“pulled", otherwise it is “pushed". Based on numerical simulations,
we assume that the state u = 1 is traveling across the domain and
therefore set u = 1 in (S4):
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Following a similar analysis conducted by Kaper et. al. [59], we
define the new spatial variable r = z + ⌘t = ⇢+ z̃. Treating ⇢ and
⌘ as slowly varying functions we can replace the above equation in
terms of z̃ ,
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Treating ⇢ as a large constant gives the effective speed:

⌘̃ = ⌘ +
b(n� 1)

⇢
. (S10)

We identify ⌘ = d⇢/d⌧ (the speed of the moving front) and so
we have the evolution of the front given by the following coupled
system:
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We see that our assumptions on the behavior of the traveling wave
are verified. Since ⇢ is assumed much larger than 0 and ⇢/R ⌧ 1,
E is a slowly varying function of time and ⇢ is a slowly varying
function of time and its size.

Estimating the degree of infiltration from equilibration
An interesting alternative to tracking the wave over time is to

assume it travels as a wave, but only record the density after the
system has reached uniformity. This is possible if the death rate
(which has been neglected) is much smaller than the time it would
take the cells to spread uniformly. If this is the case, we can bound
the degree of infiltration from only knowing the uniform value at the
end of the experiment. To see this, note that at the end of the wave,
with energy now 0, the total number of cells uT should remain fixed
and so:

uT = 2⇡

Z
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The uniform value ū at confluence leads to:
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Equating these gives an equation for the unknown ⇢(T ):

[⇢(T )]2 =
ūR
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Note that s 2 [0, 1] is a measure of distance in terms of the location
of the front. Let ⇤ be the width of the transition zone from u = 1 to
u = 0, then we may partition the integral noting that s < ⇤ implies
that u ⇡ 1

Z 1
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We now exploit the fact that hui = 1/2 in a symmetric integral
about the midpoint of the transition zone [45]. Combining and
simplifying gives the approximation for: ⇢(T )

⇢(T ) = R

r
2ū
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. (S17)

The infiltration is given by:
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R
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Since we assume that the transition width is unknown, we can bound
 by considering ⇤ = 0, 1.

Model calibration using spatial growth patterns
Coordinates of all spots within a well were calculated based on

Supplementary Fig. 1A. We calculated what percentage of the total
cells seeded per well (2⇥ 105) fall within a spot. This was used to
obtain the distribution of initial cell counts per spot (Supplementary
Fig. 1B). To calculate the confluence of each spot at the time of
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seeding, we assumed an average cell diameter of 26.77 µm and a
spot diameter of 350 µm (Supplementary Fig. 1C).

Cells detected within each spot three days post-seeding were
assigned to bins within a grid G̃ 2 R

20,20, whereby each entry of G̃
is associated with its corresponding xy-coordinates O 2 R

20,20,2.
The number of cells within each bin was averaged across all repli-
cates of a given ECM, p. Let c := maxp,i,j(G̃i,j(p)) be the number
of cells per bin at 100% confluence. For all p, G̃(p) was divided
by c to obtain the G(p) – the spatial distribution of confluence for
p. For all entries of G, we calculated the euclidean distance, Di,j ,
of its coordinates Oi,j to the origin (0, 0) of the MEMA spot. For
all bins Bt := {i, j|t� e  Di,j  t+ e} within distance t to the
origin, we then calculated the average confluence associated with
that distance as:

1

|Bt|
⇤
X

i,j2Bt

Gi,i (S19)

This was then compared to the confluence obtained from the sim-
ulations (Table 1) using the Wasserstein metric. 2.29% simulations
fell within the bottom 0.05% quantile of Wasserstein distances and
were considered representative for cellular growth on at least one
ECM.
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Supplementary Figure 1. MEMA array platform design. (A-C) Parameters inferred at the beginning of the MEMA assay. (A) Number of
spots per row and column of a single well: 35⇥ 20; Diameter of a single spot: 350 µm; Horizontal and vertical distances between centers of
two adjacent spots: 900 µm. Each spot image has 1600 x 1600 pixels, whereby 1 pixel = 321 nm. (B) Expected number of cells overlapping
with a spot was calculated from parameters in (A), assuming 2⇥ 105 cells were distributed uniformly throughout the entire well [11, 60]. (C)
Expected confluence per spot calculated from (B), assuming an average cell diameter of 26.77 µm. (D) Density distribution of spatial growth
patterns is shown in aggregate across all spots in (A). Cell densities were measured at the end of the MEMA assay, after exposing HCC1954
cells to HGF for three days.

Supplementary Figure 2. Hypothetical example of the influence of population heterogeneity on reproducibility across MEP repli-
cates. Probability of sampling given % low-ploidy cells when drawing 31 cells from a polyploid population (x-axis). Maximum probability
shows true hypothetical incidence of low-ploidy cells (55% of the population). Probability was multiplied by the number of replicates (14) to
obtain the values along the y-axis.
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Supplementary Figure 3. Validation of ploidy as biomarker of drug sensitivity across breast cancer cell lines in an independent
dataset. (A) High-ploidy breast cancer cell lines are resistant to cytotoxic drugs, but tend to be more sensitive to inhibitors of mTOR, EGFR
and WNT signaling pathways. In a multivariate regression model of drug sensitivities molecular subtype alone (Fig. 1B), could explain
11% of the variability in IC50 values across cell lines (adjusted R-square = 0.109; p < 1e-5). Including ploidy into the model did minimally
improve its predictive accuracy (adjusted R-square = 0.116; p < 1e-5). (B) However, an interaction term between ploidy and drug category
increased accuracy to explain 14% of variability in drug sensitivity across cell lines (adjusted R-square = 0.142; p < 1e-5).
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Supplementary Figure 4. Posterior parameter distributions per ECM. Best parameter fits for sensitivity to low energy (A), energy
consumption rates (B) and chemotactic/haptotactic coefficients (C), stratified by the ECM they best explain.
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Supplementary Figure 5. Correlation between inferred model parameters and RNA-seq derived signatures. Model parameters a

(energy consumption rate; A) and � (sensitivity to low energy; B) vary across ECMs (x-axis), and this variability correlates with the
expression of the corresponding ECM (y-axis). RNA-seq derived signatures were not used in any way to infer any model parameter.
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Supplementary Figure 6. Estimating the ploidies of co-existing clones in the HCC1954 cell line. (A) The bimodal distribution of DAPI
content (x-axis) across EdU+ HCC1954 cells (y-axis) was used to infer the DNA contents of two clones thought to co-exist in the cell line
(here denoted x and y respectively). The distribution informs the location of y as a function of x and the relative proportions of the two
populations can also be read from the bimodal distributions of their S-phase cells. P denotes the population-average ploidy of the HCC1954
cell line (4.2). Solving for x yields ploidies 3.17 and 5.47 for the low and high-ploidy clone respectively. (B) Silhouette coefficient of each
cell’s assignment to one of the two clusters in (A). 18.9% of assignments (11 out of 58 cells) are ambiguous (silhouette coefficient < 0.6).
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Parameter Pearson coefficient p-value
Metabolism of vitamins and cofactors 0.661 0.001

Metabolism of water-soluble vitamins and cofactors 0.597 0.005
Cytochrome P450 - arranged by substrate type 0.564 0.010

Hyaluronan metabolism 0.560 0.010
Hyaluronan uptake and degradation 0.560 0.010
Glycerophospholipid biosynthesis 0.556 0.011
O-linked glycosylation of mucins 0.553 0.011

Synthesis of PC 0.546 0.013
Termination of O-glycan biosynthesis 0.529 0.017

Abacavir transport and metabolism 0.520 0.019
Advanced glycosylation endproduct receptor signaling 0.513 0.021

Purine catabolism 0.513 0.021
EPH-ephrin mediated repulsion of cells 0.510 0.022

The canonical retinoid cycle in rods (twilight vision) 0.506 0.023
Keratinization 0.505 0.023

RA biosynthesis pathway 0.501 0.024
Dectin-2 family 0.501 0.025

POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation 0.490 0.028
Biological oxidations 0.486 0.030

GPVI-mediated activation cascade 0.472 0.036
Attenuation phase 0.470 0.037

Lipoprotein metabolism 0.468 0.037
CD28 dependent PI3K/Akt signaling 0.466 0.038

Activation of SMO -0.464 0.040
Protein-protein interactions at synapses -0.446 0.049

Ephrin signaling 0.445 0.049
CD28 co-stimulation 0.444 0.050

Supplementary Table 1. REACTOME pathways correlated to ploidy across 20 breast cancer cell lines from CCLE.
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Supplementary Table 2. Drug classification.
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Supplementary Table 3. Conversion between dimensional and non-dimensional model parameters. Prior distributions of dimensionless
parameters were drawn from the indicated ranges while ensuring uniform priors of dimensional parameters. The spatial growth patterns
resulting from these prior distributions were compared to the MEMA data to obtain the maximum posterior estimates for dimensional
parameters shown here.
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