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Whenever one attempts to comb a hairy ball flat, there will always be at least one tuft of hair at one point on the 
ball. This seemingly worthless sentence is an informal description of the hairy ball theorem, an invaluable 
mathematical weapon that has been proven useful to describe a variety of physical/biological 
processes/phenomena in terms of topology, rather than classical cause/effect relationships.  In this paper we will 
focus on the electrical brain field – electroencephalogram (EEG).  As a starting point we consider the recently-
raised observation that, when electromagnetic oscillations propagate with a spherical wave front, there must be 
at least one point where the electromagnetic field vanishes.  We show how this description holds also for the 
electric waves produced by the brain and detectable by EEG.  Once located these zero-points in EEG traces, we 
confirm that they are able to modify the electric wave fronts detectable in the brain.  This sheds new light on the 
functional features of a nonlinear, metastable nervous system at the edge of chaos, based on the neuroscientific 
model of Operational Architectonics of brain-mind functioning.  As an example of practical application of this 
theorem, we provide testable previsions, suggesting the proper location of transcranial magnetic stimulation’s 
coils to improve the clinical outcomes of drug-resistant epilepsy.   
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Spontaneous topological modifications in physical/biological systems may lead to novel functional features, 
indirectly dependent of exerted physical forces (Tozzi and Papo 2019).  Here we consider one of the most 
intriguing theorems of algebraic topology, the “hairy ball” theorem (HBT, or Poincaré–Brouwer theorem), which 
states that there is no non-vanishing continuous tangent vector field on even-dimensional n-spheres (Milnor 
1978; Eisenberg and Guy, 1979).  A naïve description asserts that “given at least some wind on Earth, there must 
at all times be a cyclone or anticyclone somewhere”.  HBT ensures the presence of at least one point on the 
sphere where the tangential components of vectors (and/or tensors) disappear.  HBT relates several physical 
phenomena to non-local topological effects, rather than to local physics (Tozzi and Papo, 2019; Bormashenko 
2016).  Indeed, HBT has been used to analyze nematic solid shells deformations (Modes and Warner, 2012), 
nanoparticle chains growth (DeVries et al, 2007), flux line patterns occurring when a magnetic field is applied to 
a type-II superconducting crystal (Layer and Forgan, 2010), patterns arising from dynamic surface - Marangoni-
like- instabilities (Bormashenko 2015) and the spin-base invariant formalism of Dirac fermions (Giesand 
Lippoldt, 2015).  Novel feasible applications of HBT have been recently suggested (Tozzi and Papo 2019) for 
the assessment of cell membrane surface tension, Uhlenbeck’s singularity removal theorem (Uhlenbeck, 1982; 
Tao and Tian 2004), dewetting transitions (Sharma and Reiter, 1996; Li et al., 2019), unconventional 
superconductors (Laver and Forgan, 2010), surface instabilities inherent for liquid/vapor interfaces 
(Bormashenko 2015), non-Hermitian degeneracies (Miri and Alù, 2019) which naturally arise in sparse neural 
networks (Amir et al., 2016).  HBT describes the collective dynamics of particles in spherical crystals (Yao, 
2019): in particular, it predicts defect-driven synchronized breathing modes, emerging around disclinations 
related to disruption of crystalline order (Yao, 2019).  Furthermore, HBT zero-velocity points appear in 
numerous physical problems, including rolling of solid bodies (Bormashenko and Kazachkov, 2017) and 
Leidenfrost droplets (Bormashenko 2019). 
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Here we start from the recent observation that HBT is also able to describe electromagnetic waves propagation 
(Bormashenko 2016).   When oscillations in a given medium display wave fronts topologically equivalent to a 
sphere, there must be at least one point of the wave front where electromagnetic fields’ vectors, speed and 
Poynting vector equal zero.  There exist certain so-called “dark directions”, well-known to engineers designing 
antennas (Liang et al. 2013), devoid of energy transport (Chen et al, 2019) and unavoidable for electromagnetic 
fields generated by multipoles characterized by vector spherical harmonics (Chen et al., 2019).  Here we make 

an effort to describe the restrictions imposed by HBT on the spatial distribution of vectors E
r

 in the propagating 
electric waves extracted from electroencephalogram (EEG) traces.  Provided that the electric waves propagate 
spherically on the cerebral cortex, HBT dictates the occurrence of at least one point on the cortical surface at 
which vectors of the electric fields equal zero.  In other words, when a continuous tangential velocity field exists 
on a surface homeomorphic to a ball, zero velocity points will be necessarily present at the surface.  We show 
how this observation has major implications for the assessment of brain metastability, as well as for clinical 
applications: for example, the search for target zones for the use of transcranial magnetic stimulation (TMS).  
 
 
 
MATERIALS AND METHODS 
 
Hairy ball theorem and wave fronts propagation in physical systems.  Consider propagation of 
electromagnetic fields, when the wave front (i.e. the surface of the constant phase) displays a shape that is 

topologically equivalent to a sphere (i.e., the surface is characterized by the Euler number 2=χ ).  In this case, 

the vectors of the electric E
r

and magnetic H
r

fields form continuous tangential fields (Figure 1A).  HBT 
demands that the tangential component of the continuous vector field, defined on the surface topologically 
equivalent to a sphere, will be zero in at least one point located on the surface.  For further details, see Liang et 

al. 2013, Bormashenko, 2016, Chen et al, 2019.  Therefore, according to HBT, both E
r

 and  H
r

 have at least 
one point where fields are zero.  When both the fields simultaneously equal zero in the same point, we achieve 

0=E
r

, 0=H
r

, due to the equivalence EnH
rr

×= ˆ , where n̂ is the unit vector normal to the wave front.  In 

the same point, the Poynting vector HE
c

S
rrr

×=
π4

 equals zero too.  Because the group velocity of 

electromagnetic wave in this direction is zero, no transport of energy in the direction normal to the wave front in 
this point is possible and the “dark direction” is formed, whatever the physical source field could be (Liang et al. 
2013, Chen et al, 2019).  To provide an example, consider the hypothetical field (either electromagnetic or 
hydrodynamic, and so on) in Figure 1B, where the wave progression of the vectors displays a positive-curvature 
front.  According  to the HBT dictates, a point with zero value must exist on the wave front (Figure 1C), which 
causes a local perturbation of the field and leads to wave front deformation (Figure 1D).   
The vector field in principle may be normal to the surface in this point.  Apparently it is impossible for the 
vectors of the electric and magnetic field to be normal to the surface of the constant phase (in other words 
parallel to the wave vector), due to the transverse nature of the electromagnetic field.  It is noteworthy that the 
vectors of electric and magnetic fields will possess a zero point placed on the wave front at any given time, if the 
surface of the constant phase keeps the shape topologically equivalent to a sphere.  It is also worth to be 
underlined that HBT holds not just for spherical manifolds, but also for every manifold with positive-curvature, 
provided its genus is zero.  For example, Cummins et al. (2018) analyzed the motion of wind dispersed plants, 
reporting a vortex of recirculating air, which is detaching owing the flow passing through the pappus (Figure 
1E).  The occurrence of stagnation points (in this case two instead of one) can be noticed where the air velocity 
at the vortex surface  is zero.  The dandelion example suggests that the manifold does not need necessarily to be 
a sphere: HBT just requires that such manifold should be topologically equivalent to a sphere.  This observation 
will have important implications in the following.   
 
 
Looking for HBT in nervous electric waves.  In the sequel, we provide an effort to use HBT to analyze the 

EEG electric activity of the brain.  We choose to focus on the ELECTRIC E
r

field of the brain, rather than the 

MAGNETIC field H
r

, because the former is more powerful and easier to detect through simple EEG techniques. 
Indeed, the circular patterns and wave fronts of electric waves propagation can be easily identified in real EEG 
traces.  EEG traces do encompass electric waves with sphere-like wave fronts (Figure 1F).  The requirement of 
spherical currents is satisfied when we analyze brain electric activity: indeed, the shape of flux surfaces that 
contains current lines is closed and orientable in the brain, so that it is homeomorphic to a sphere ��.  Since the 
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electric field in the brain is nowhere vanishing and tangent to the surface, HBT rules out the possibility to 
describe nervous oscillations as taking place on a sphere.  Also, the “dark directions” can be predicted for the 
electric field generated by brain, when the field appears on the cortical surface topologically equivalent to a 
sphere.   
 
According to HBT, the circular propagation of concentric electric waves must display zero-points on their wave 
fronts.  Further, when electric waves propagate from a given brain area, the wave front must necessarily be 
locally perturbed by these zero-points.  For the purpose of this study to assess whether and how HBT permits a 
novel description of electric fields’ propagation in the brain, we analyzed EEG traces of three subjects that were 
presented emotional visual stimuli, according to the procedure described by Jaušovec and Jaušovec (2010).  The 
emotional stimuli were color slides selected from the International Affective Pictures System (Lang et al., 2005) 
according to the valence dimension: emotionally positive (valence ratings from 7.2 to 8.2), neutral (valence 
ratings from 4.4 to 6.2), and negative (valence ratings from 1.3 to 2.0). The discrimination of picture categories 
occurred during passive viewing and was internally driven – the respondents were not asked to make any 
judgments or motor responses.  EEG was recorded using a Quick-Cap with sintered (Silver/Silver Chloride; 
8mm diameter) electrodes.  Using the Ten-twenty Electrode Placement System of the International Federation, 
the EEG activity was monitored over nineteen scalp locations (Fp1, Fp2, F3, F4, F7, F8, T3,T4, T5, T6, C3, C4, 
P3, P4, O1, O2, Fz, Cz and Pz) during the visual task.  ll leads were referenced to linked mastoids (A1 and A2), 
and a ground electrode was applied to the forehead.  Additionally, vertical eye movements were recorded with 
electrodes placed above and below the left eye.  The digital EEG data acquisition and analysis system 
(SynAmps) had a bandpass of 0.15-100.0 Hz.  At cutoff frequencies, the voltage gain was approximately –6dB.  
The 19 EEG traces of the three subjects were digitized online at 1000 Hz with a gain of 1000 (resolution of  084 
μV/bit in a 16 bit A to D conversion), and stored on a hard disk.  Epochs were automatically screened for 
artifacts.  All epochs showing amplitudes above +/-50 microV (less than 3%) were excluded, to avoid that the 
traces could be artifacts of the visualizing algorithm while plotting the EEG power maps.   The EEG study was 
done according with Declaration of Helsinki and was approved by the Ethics Committee of the University of 
Maribor, Slovenia.   
To practically identify the occurrence of zero-points of electric activity in the real EEG traces, we evaluated 
two different plots: a) the raw data, i.e., a table displaying the electric values in μV in every cortical area for 
every time in ms; 2) a 2-D temporal reconstruction of EEG waves.  We evaluated the changes in electric 
activity occurring in the first 500 ms after the presentation of emotional stimuli.   
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Figure 1.  Schematic illustration of pattern propagation of oscillations in physical systems, including the brain.  

Figure 1A.  Propagating electromagnetic wave. S
r

stands for the Poynting vector. Note that the concentric 
patterns of electric propagation give rise to a wave front with a surface topologically equivalent to a sphere.  
Modified from Bormashenko (2016).  Figures 1B-D.  Simulation of a hypothetical world sheet in spacetime 
depicting a generic flow equipped with a positive-curvature wave front (modified from Beekman, 2011).  When 
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the wave front proceeds (1B), the occurrence of the tangential components of vectors (1C) leads to modifications 
in vectors trajectories and, consequently, to distortions in the wave front (1D).  In this simulation, the vanishing 
point of the wave front predicted by HBT is illustrated by a prohibition sign.    Figure 1E. Sketch of dandelion 
and the vortexes it generates.  The arrows illustrate the field of velocities at the vortex surface. The two 
prohibition signs depict the stagnation points dictated by HBT.  Modified from Cummins et al. (2018).  Figure 
1F.  The concentric, positive-curvature patterns typical of electromagnetic fields can be also found when 
examining the electric waves’ temporal propagation in two-dimensional EEG traces.   
 
 
 
 
 
RESULTS 
 
 
According to our topological approach, the concentric wave fronts of EEG electric activity can be assessed in 
terms of HBT.  When EEG traces display zero values in some areas at a given time, predictable changes in 
electric wave fronts must occur elsewhere.  Looking at the table of EEGs raw data from the three subjects 
presented with visual stimuli, we detected the occurrence of about 15-20 zero-points/500 ms, with different 
electrode scalp locations and different timing (Figure 2).  We did not find a predictable path in both timing and 
location of the newly-formed zero-points.    
To compare the occurrence of zero-points in raw data with the modifications of electric wave fronts, we 
examined the corresponding EEG 2D temporal plots from the three subjects (Figure 3A).  A spatio-temporal 
correlation can be found between the sudden occurrence of zero-points and the subsequent onset of warped wave 
fronts.  Indeed, almost ubiquitously, the occurrence of a zero-point is followed with a delay of 20-30 ms by the 
formation of a wave front in areas far apart the zero-points.  See Figure 3B for further details.       
In particular, in Figure 3A, the 14 detected zero-points were followed by the above-described, predictable 
electric wave front pattern in 13/14 (92.85%) cases.   
Therefore, the occurrence of zero-points is able to modify the circular propagation of electric waves and to give 
rise to deformations of the wave fronts.  In the case of the electric activity of the brain during visual stimulation, 
the occurrence of wave front modifications can be visually predicted when examining the location and the timing 
of the zero-points in the EEG two-dimensional plots.    
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Figure 2.  Raw data from EEG activity in a subject who underwent emotional stimuli.  The results are plotted as 
electric activity (in μV) across different brain areas vs time locations (in ms).   The red squares illustrate the 
electrode location and the timing of the electric activity almost equaling zero μV.   
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Figure 3.  The role of HBT in modifying the electric activity of the brain in a subject presented with visual 
stimuli.  The prohibition signs illustrate the points where electric zero-values occur in the first 500 ms after the 
stimuli.  Note the  occurrence of wave fronts, depicted as concentric increases or decreases of cool and warm 
colors.  Figure 3B.  Magnification of two short frames from the Figure 3A.  When the vanishing zero-points 
(prohibition signs) appear in a given area, concentric wave fronts (blue concentric areas) arise in different areas 
after about 20-30 ms (curved arrows) and tend to propagate in a direction opposite to the zero-points (straight 
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dotted arrows). Therefore, the occurrence of vanishing zero-points allows to predict the rise and the progression 
of the ensuing electric wave front.   
 
 
 
 
 
DISCUSSION 
 
Starting from the observation that HBT constraints the vectors’ spatial distribution of electric and magnetic 
fields in the far Fraunhofer region (Bormashenko 2016), we used this simple theorem from algebraic topology to 
describe the electric activity (EEG) of the brain. Indeed, the vectors of electric fields are equipped at least with 
one zero point placed on the wave front at any given time, in case of the wave front’s shape is topologically 
equivalent to a sphere. In this study, we showed that zero-points can be reliably identified in  EEG signals and 
that they give rise to predictable wave fronts of electric diffusion. In what follows we will place our findings in 
the context of brain-mind research, as well as provide an illustrative example for a clinical application.   
 
One of the most promising theoretical neural frameworks is the general theory of brain-mind operational 
architectonics (OA) (Fingelkurts and Fingelkurts, 2004).  According to OA, the simplest mental/cognitive 
operations are correlated with local 3D-fields produced by transient functional neuronal assemblies, while 
complex mental/cognitive operations are produced by joining a number of simple operations (temporal coupling 
of local 3D-fields by means of operational synchrony, OS) in form of metastable operational modules (OM) of 
varied life-span.  Nested OA displays a peculiar brain operational space–time (OST) (Figure 4B) that is best 
captured by EEG measurement (Fingelkurts and Fingelkurts, 2017). At the EEG level, simple mental operations 
(phenomenal qualities, emotions, and so on) are equivalent to the EEG quasi-stationary segments, within which 
the local fields generated by transient functional neuronal assemblies are expressed. The quasi-stationary EEG 
segments within each local EEG signal are marked by boundaries in the form of rapid transitional 
processes/periods (RTPs) (Figure 4A), i.e., abrupt EEG amplitude changes observed within a short-time 
window.  We suggest that RTPs could be correlated with the occurrence of HBT zero-points.  Indeed, in 
comparison to the length of quasi-stationary segments, each RTP has a very short duration and can therefore be 
treated as a point, i.e., the HBT zero-point of our topological approach.  Furthermore, the number of RTPs fits 
well with the number of HBT zero points: the number of RPTs per each minute local-EEG (at least during restful 
wakefulness with closed eyes) is about 61-351, depending on the frequency range, with a progressive increase 
from delta to gamma frequency range (Fingelkurts and Fingelkurts, 2015).  In turn, the RTP range of temporal 
durations is produced on timescales corresponding to 100-900 ms range, while the occurrence of zero-points is 
followed by changes in electric wave fronts after 20-30 ms.   
The transition from one segment to another reflects the moment of abrupt switching from one neuronal 
assembly’s operation to another (Figure 2A).  The events similar to RTPs are referred to as renewal (or critical) 
events: namely, the crucial events that reset the memory of the system. This property is correlated with the 
physical phenomenon of “intermittency” and is compatible with self-organized criticality found both in physical 
systems and in the brain.  Since the beginning and the end of discrete operations performed by local neuronal 
assemblies are marked by sharp changes (RTPs) in the amplitude of local EEG signals, the simultaneous 
occurrence of such RTPs from different local EEG signals within the multichannel EEG recording could provide 
evidence of synchronization of simple operations performed by neuronal assemblies (located in different brain 
areas) that participate in the same functional act as a group (Figure 4B), e.g., executing a particular complex 
operation responsible for a subjective presentation of complex objects, scenes or thoughts.  HBT can be 
correlated with the general theory of brain-mind OA, that considers the brain as a metastable system (Fingelkurts 
and Fingelkurts, 2004, 2017): in HBT terms, the complex mental operations (reflected in the transitory 
spatiotemporal EEG patterns formed by synchronized quasi-stationary segments separated by the RTPs) could 
be correlated with  the HBT-related electric zero-points that give rise to RTPs (Figure 3C).   
 
One established the occurrence of events dictated by HBT, the next question is: has this observation testable 
applications? Below we illustrate one of the potential clinical applications of HBT.  Let us consider the case of 
epilepsy. The occurrence of points where brain oscillations vanish provides us with a novel way to use (TMS).  
TMS is a focal electrical brain stimulation induced by powerful magnetic fields (Chung et al., 2016; Kohli and 
Casson, 2019).  Low frequency repetitive rTMS (0.3-1 Hz) decreases cortical excitability, suggesting a potential 
therapeutic advantage for patients with drug-resistant epilepsy (Jan et al., 2017; Gersner et al., 2016).  Chen et al. 
(2016) retrospectively analyzed the evidence for the efficacy of TMS in drug-resistant epilepsy, evaluating 
studies that used rTMS of any frequency, duration, intensity and setup (focal or vertex treatment).  
Excruciatingly, the evidence for efficacy of rTMS for reduction in seizure rate/frequency is still lacking, due to 
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the extreme variability in outcome reporting (Jan et al., 2017).  There is still no agreement on optimized 
stimulation parameters and patterns of rTMS for epilepsy, because TMS effects vary across individuals and 
depend on a large number of factors: frequency, number of stimuli within a train, stimulation intensity, type of 
coil, coil position, duration of stimulation, and inter-train interval.   
In this uncertain context, an HBT approach to epileptic seizures suggests that the area of onset of pathological 
spikes might be characterized by an impaired amount of topologically vanishing points: in particular, it might be 
hypothesized an increase in number of zero points (Figure 5A).  The occurrence of vanishing points gives us the 
possibility to draw a testable prevision: to achieve the best therapeutic effect in epilepsy, rTMS treatments must 
use not solid, coherent beams, rather hollow magnetic beams, i.e., cylindrical beams with internal cavities devoid 
of magnetic stream.  Indeed, the use of cylindrical hollow beams is suggested by HBT-related topology: when a 
sphere with genus zero becomes a torus (i.e., a manifold with genus equal or higher than one), HBT does not 
hold anymore.  To provide an example, the Figure 5B, left side, illustrates the rotation of a rigid ball around a 
fixed axis OO1: it is easy to see that O and O1  are zero velocity points, in touch with HBT’s dictates.  In turn, the 
zero velocity points disappear when the ball is drilled completely through, because HBT does not hold anymore 
in case of a manifold being a torus with genus one (Figure 5C, left side).  The same holds for the circular wave 
fronts of the brain electric activity (Figures 5B-C, right side): in rTMS, terms, the hollow beam corresponds to 
the production of a torus inside the circular wave front (Figure 5C, right side).  In case of a manifold with 
genus one artificially provoked by rTMS’s external waves,  HBT does not hold anymore: this means that the 
normal electric activity of the brain with impaired zero-points can be restored.  In a HBT account, epilepsy can 
be compared to Marangoni-like instabilities: the pathological zero-points are modified by rTMS-mediated 
forces, reversing the unwanted seizure oscillations and restoring the normal cortical function.   
 
To sum up, clear-cut topological theorems, such as, e.g., the Borsuk-Ulam theorem described by Tozzi et al. 
(2017), can be used to make sense of experimentally observed neuroscientific phenomena.  In particular, here we 
discussed the implications of HBT-correlated zero-valued points in nervous dynamical systems, describing how 
mathematical-related events, such as vector  modifications, generate changes in brain features that comply with 
strict topological requirements. 
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Figure 4. Schematic illustration of the Operational Architectonics methodology and possible relation to HBT.  
All RTPs should be HBT zero-points: here, for sake of simplicity, just a few HBT zero-points are illustrated 
(prohibition signs).  It must be reminded, however, that all RTPs should be HBT zero-points.    Figures 4A-C. 
Schematic illustration of EEG assessment of (A) neuronal assembly’s dynamics and relation of this dynamics to 
simple operations and (B) nested large-scale conglomerates of synchronized neuronal assemblies in the form of 
nested operational modules (OMs) and (C) their relation to a stream of complex operations or 
cognitive/conscious acts. RTP – rapid transitional period (boundary between quasi-stationary EEG segments 
within the same local EEG signal); SC – synchrocomplex – momentary synchronization of RTPs among several 
local EEG signals within short temporal window of synchronization; Gray shapes illustrate individual 
(simple)OMs; Red line illustrates complex OMs.  Figure 4C schematically depicts the functional structures of 
phenomenological consciousness, cognition and behavior functionally isomorphic with the structure of 
electrophysiological level. Cognitive, phenomenological, and behavioral levels illustrate the ever-changing 
stream of cognitive/phenomenal/behavioral acts, where each momentarily stable pattern is a particular 
cognitive/phenomenal/behavioral macro-operation (thought/image/act) separated by transitive fringes (RTPs). 
This figure is modified from Tozzi et al. (2017). 
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Figure 5A.  Recorded surface EEG (displayed in a bipolar transverse montage) showing a left parietal EEG 
seizure onset.  Modified from: Beleza et al. (2010).   The number of vanishing points (prohibition signs) is 
depicted as increasing after the seizure onset.  Figure 4B.  Rotation of a rigid ball  (left) compared with an 
electric concentric wave front (right).  In both cases, the occurrence of zero-points (prohibition signs) is required 
by HBT.  Modified from: Bormashenko and Kazachkov (2017).  Figure 4C.  The occurrence of a torus removes 
the zero-points in both the rigid ball and the electric wave front.  See text for further details.   
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