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Abstract11

The exponential growth of assembled genome sequences greatly bene�ts metagenomics12

studies, providing a broader catalog of reference organisms on a variety of environments.13

However, currently available methods struggle to manage the increasing amount of sequences14

and their frequent updates. Indexing the current RefSeq is no longer possible on standard15

infrastructures and it can take days and hundreds of GB of memory on large servers. Few16

methods address these issues thus far, and even though many can theoretically handle large17

amounts of references, time/memory requirements are prohibitive in practice. As a result,18

many studies that require sequence classi�cation use the available tools in conjunction with19

often outdated and almost never truly up-to-date indices. This also means that the taxonomic20

composition of the reference database is not being adjusted based on the study performed.21

These factors can lead to unnecessary performance problems in the sequence classi�cation.22

Motivated by those limitations we created ganon, a k-mer based read classi�cation tool that23

uses Interleaved Bloom Filters in conjunction with a taxonomic clustering and a k-mer count-24

ing/�ltering scheme. Ganon provides an e�cient method for indexing references, keeping them25

updated. It requires less than 55 minutes to index the complete RefSeq of bacteria, archaea,26

fungi and viruses. The tool can further keep these indices up-to-date in a fraction of the time27

necessary to create them, allowing researchers to always work with the most recent references.28

Ganon makes it possible to query against very large reference sets and therefore it classi�es29

signi�cantly more reads and identi�es more species than similar methods. When classifying a30

high-complexity real dataset from the CAMI challenge against complete genomes from RefSeq,31

ganon shows strongly increased precision while exhibiting equal or better sensitivity compared32

with state-of-the-art tools. When classifying the same dataset against the complete RefSeq,33

ganon improved the F1-Score by 65% at the genus level. Ganon supports taxonomy- and34

assembly-level classi�cation as well as multiple indices and hierarchical classi�cation. The35

software is open-source and available at: https://gitlab.com/rki_bioinformatics/ganon36

1 Introduction37

Reference- and taxonomy-based short read classi�cation is a fundamental task in metagenomics.38

De�ning the origin of each read from an environmental sample, which can be done during [1] or39

after sequencing, is usually the �rst step prior to abundance estimation, pro�ling and assembly.40

Over the last years many tools have been speci�cally developed for this task [2, 3, 4, 5, 6] with41

di�erent strategies to achieve good performance classifying a large amount of short reads against42

a prede�ned and static set of reference sequences. Many of those approaches are taxonomy-based43

[7] and use this classi�cation to better understand the composition of samples.44
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The amount of complete or draft genomic sequences in public repositories is rapidly growing45

(Figure 1) due to advances in genome sequencing, improvements in read quality, length and cov-46

erage and also better algorithms for genome assembly. In addition, many partial and complete47

genome sequences come directly from metagenome-assembled genomes [8, 9, 10], a technique that48

boosts the growth of public repositories. This considerable amount of references poses a sizeable49

challenge for current tools that, in general, are not designed to deal with such amounts of data50

[11]. They also increase the already high computational cost of assigning millions of short reads51

to taxonomic targets.52

Figure 1: Number of available sequences in NCBI repositories from June 2007 to
December 2018 on a logarithmic scale. Microbial stands for Archaeal and Bacterial organisms
and CG stands for Complete Genomes. RefSeq Microbial has an uninterrupted and linear growth
on a logarithmic scale. Data collected from: https://ftp.ncbi.nlm.nih.gov/refseq/release/release-
statistics/ and https://www.ncbi.nlm.nih.gov/genbank/statistics/

Figure 1 shows the amount of reference sequences available over the last 11 years in the Gen-53

Bank [12] and RefSeq [13] repositories from NCBI. The growth is exponential. RefSeq sequences54

from Archaeal and Bacterial genomes are highlighted for being a commonly used reference set for55

classi�cation in metagenomics. Within an interval of two and a half years (from June 2015 to56

December 2018) the RefSeq Microbial of Complete Genomes (CG) grew more than four times,57

with 2.5 times more species represented in the most recent set (1529 to 3850). Looking at the same58

data point (end of 2018), the complete RefSeq Microbial has >12 times base pairs and >5 times59

species compared to the CG set. These data exemplify that databases are growing fast and the60

variation among them is signi�cant. These repositories are becoming too big to be analyzed by61

standard hardware and if the observed growth continues, all this wealth of data will be constrained62

to just a few groups with resources available to process them.63

The choice of the data to perform reference-based classi�cation is an important step and a known64

issue in metagenomics [14]. As a rule of thumb, the more sequences the better the classi�cation.65

But even complete sets of sequences are not evenly distributed throughout the taxonomic tree, such66

that di�erent taxa are represented in di�erent levels of quantity and quality. In addition, most67

of the taxa are still unknown and do not have any genomic sequence or entry in the taxonomic68

tree. This requires the tools to consistently remain up to date with the latest releases of public69

repositories, a task that is not trivial when dealing with very large amounts of sequences. Most of70

the tools lack the ability to update their own indices and databases, and currently many analyses71

are performed with outdated resources.72

For example, the RefSeq Microbial repository from the beginning of 2018 is 10% less taxonomic73

diverse than it is today (mid. 2019). An even older RefSeq release from June 2015 lacks 27% of74

today's taxonomic diversity. Further, a commonly used subset of RefSeq, the microbial complete75
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genomes, covers only 15% of the available diversity of the full repository (December 2018). As76

an example, the latest release of kraken's [15] MiniKraken database (as of 18-Oct-2017) based77

on complete bacterial, archaeal, and viral genomes, although helpful to obtain fast insights on78

community composition, comprises only 11% of the total taxonomic diversity available on the79

latest RefSeq release from January 4th 2019. Metagenomics analyses based on those releases80

are prone to underperform and miss potential species of interest. However, the use of outdated81

references or "pre-built" indices is still common practice [16]. Most methods are able to build82

custom databases but unable to update them. Weekly or daily updates with the most recent data83

are almost impossible given the time requirements to re-build those indices.84

The sequence classi�ers MetaPhlAn [17] and Kaiju [18] created alternatives to cover most of85

the diversity contained in public sequence repositories by selecting a subset of marker genes and86

protein sequences, respectively. On one hand, those methods are very powerful, such that they87

provide fast and precise community pro�les given their reduced index sizes. On the other hand,88

when analyzing whole genome sequences of complex environments, organisms with low abundance89

are easily missed due to their lack of complete genomic coverage. In addition, current methods90

using complete genome sequences struggle with the present amount of available data [11].91

Given these limitations, we developed ganon, a new reference and taxonomy-based short read92

classi�cation tool for metagenomics. Ganon uses Interleaved Bloom Filters (IBF) [19] to represent93

very large amounts of sequences into a searchable index. This enables the indexing of large sets of94

references (e.g. complete RefSeq) in faster time and with low memory consumption, consequently95

improving read classi�cation for whole metagenomics sequencing experiments. Ganon also provides96

updatable indices, which can incorporate new released sequences in short time. The classi�cation97

method, which is based on the k-mer counting lemma and a progressive �ltering step, improves98

the precision of the classi�cation without harming sensitivity when compared to state-of-the-art99

tools. Ganon was developed in C++ using the SeqAn library [20] and Python. The code is open100

source and freely available from: https://gitlab.com/rki_bioinformatics/ganon101

2 Methods102

Ganon classi�es reads against a set of reference sequences to �nd their exact or closest taxonomic103

origin. The method can also work in a further specialized level (e.g. assembly). Clustering and104

indexing steps are necessary before classi�cation, where the reference sequences will be grouped into105

taxonomic groups and processed into a searchable index. Ganon indices store all k-mers present106

in the reference sequences into a specialized type of Bloom �lter. Once the index is created, ganon107

classi�es the reads based on the k-mer counting lemma together with a post-�ltering step providing108

a unique or multiple classi�cations for each read. Multiple classi�cations are solved optionally with109

the lowest common ancestor (LCA) algorithm [21]. The following sections will further explain each110

of these steps in detail.111

2.1 Indexing112

Ganon indices are based on the k-mer content of the reference sequences, in other words, it uses113

all possible substrings of length k of the given sequences. Instead of using standard methods for114

k-mer storage, which can have high memory and space consumption when k is high (> 15), we115

opted for Bloom �lters [22], a space-e�cient probabilistic data structure. Since the goal of the tool116

is to classify sequences based on their taxonomic origin, multiple Bloom �lters would be necessary117

to represent each distinct group of sequences belonging to a certain taxonomic level (e.g. species).118

This approach provides a straightforward but impractical solution since it requires classi�cation119

against multiple �lters. This is solved by interleaving the Bloom �lters, a technique previously120

described for the DREAM-Yara tool [19] and also part of the SeqAn library [20]. TaxSBP is used121

to separate sequences into taxonomic groups and to distribute them better into equal-sized clusters.122

2.1.1 TaxSBP123

TaxSBP [https://github.com/pirovc/taxsbp] uses the NCBI Taxonomy database [23] to generate124

clusters of sequences that are close together in the taxonomic tree. It does this based on an imple-125

mentation of the approximation algorithm for the hierarchically structured bin packing problem126

[24]. As de�ned by Codenotti et al. this clustering method �[...] can be de�ned as the problem of127
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distributing hierarchically structured objects into di�erent repositories in a way that the access to128

subsets of related objects involves as few repositories as possible�, where the objects are sequences129

assigned to taxonomic nodes of the taxonomic tree. Sequences are clustered together into groups130

limited by a maximum sequence length size of its components. Splitting sequences into smaller131

chunks with overlapping ends is supported. TaxSBP supports one level of specialization after the132

leaf nodes of the tree, making it possible to further cluster sequences by strain or assembly infor-133

mation that is not directly contained in the NCBI Taxonomy database (Figure 2 A). TaxSBP can134

also pre-cluster members of a certain taxonomic level, preventing them to be split among clusters.135

It can further generate clusters with exclusive ranks, which are guaranteed to be unique in their136

cluster. The tool was developed alongside the distributed indices concept [19] and supports the137

update of pre-generated clusters. Since TaxSBP uses the "pre-clustered" taxonomic tree informa-138

tion, the algorithm is very e�cient and requires very few computational resources, thus having139

potential use in many other bioinformatics applications.140

2.1.2 IBF141

A Bloom �lter is a probabilistic data structure that comprises a bit vector and a set of hash142

functions. Each of the functions maps a key value (k-mer in our application) to one of the bit143

positions in the vector. Collisions in the vector are possible, meaning that distinct k-mers can be144

set to the same bit positions in the vector. Those overlaps can be avoided with a larger bit vector,145

thus reducing the probability of false positives.146

An Interleaved Bloom Filter (IBF) is a combination of several (b) Bloom �lters of the same147

size (n) with the same hash functions into one bit vector (Figure 2 D). Each i-th bit of every148

Bloom �lter is interleaved, resulting in a �nal IBF of size b ∗ n. Querying in this data structure is149

possible by retrieving the sub-bit vectors for every hash function and merging them with a logical150

AND operation, which will result in a �nal bit vector indicating the membership for the query, as151

depicted in Figure 2 in the DREAM-Yara manuscript by [19].152

Aiming at the classi�cation based on taxonomic levels (e.g. species, genus, ...) or assembly153

level, TaxSBP is set to cluster the input sequences into exclusive groups (Figure 2 B). Every group154

will contain only sequences belonging to the same taxon or assembly unit, but the same unit can155

be split into several groups. Groups are limited by a prede�ned threshold of the sum of the base156

pair length of its elements and sequences can be sliced into smaller pieces to better generate equal157

sized clusters.158

Each of those clusters will correspond to a single Bloom �lter that is interleaved in a �nal IBF159

(Figure 2 C-D). Here a trade-o� between the number of groups, their maximum size and the k-mer160

content of each group is important. The false positive rate of a Bloom �lter depends mainly on its161

bit vector size and the number of inserted elements. In general, the more base pairs a particular162

cluster has, the higher the number of distinct k-mers. This requires the Bloom �lter to be bigger163

in order to achieve low false positive rates when querying. In ganon indices, the group with the164

most unique k-mers will de�ne the size and the maximum false positive rate of the �nal IBF since165

all groups have to be equal-sized by de�nition. Thus the previous clustering step is crucial to166

achieve a good trade-o� between the number of groups, their sizes and k-mer content. The lower167

the taxonomic level, the more fragmented the clusters. For example: if a reference set has 2000168

species groups, there will be at least the same number of clusters when building at the species169

level. The higher the taxonomic level, the fewer the number of clusters, since they can be grouped170

together, thereby producing smaller �lters. This trade-o� and parameterization is automatically171

calculated by ganon, with a single option to de�ne the maximum memory available to build an172

index.173

The IBF has an inherent capability of updating since it is fragmented into many sub-parts.174

Adding new sequences to a previously generated IBF is as easy as setting the bit positions of the175

k-mers from the new sequences to their known clusters or appending new clusters to the existing176

�lter. To remove sequences from the IBF, all bit positions of the updated cluster are set to zero177

and the cluster is re-created from the updated content.178

The IBF is the main data structure for ganon indices to perform alignment-free classi�cation179

while DREAM-Yara, the tool that originally proposed the IBF, is a read mapper that uses the180

same data structure to �lter reads to further perform distributed alignment. At the end of the181

building process, the ganon index will consist of an IBF based on a maximum classi�cation level182

chosen (taxonomic rank or assembly) and auxiliary �les for the classi�cation step.183
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Figure 2: Classi�cation levels, taxonomic distribution and Interleaved Bloom Filter
A) Empty circles are inner nodes of the tree; circles marked with an "x" are leaf nodes (also
referenced in this manuscript as �taxid� nodes); full lines represent taxonomic relations, dotted
lines represent the extension of the taxonomic classi�cation to the assembly and sequence level.
Species+ represents all taxonomic groups that are more speci�c than species with species in the
lineage (e.g. subspecies, species group, no rank). B) A toy example of sequences clustered by
species into equal-sized groups, performed by TaxSBP C) Sequences are fragmented into k-mers
and with a given number of hash functions, those k-mers are inserted into equal-sized bit-vectors
(Bloom Filters) D) The Interleaved Bloom Filter, representing the previously generated bit-vectors
with each bit interleaved.

2.2 Classifying184

The read classi�cation is based on the well-studied k-mer counting lemma [25, 26]. All k-mers185

from given reads are looked up on the indices previously generated. If a minimum number of186

matches between the read and the reference is achieved, a read is considered classi�ed. Based on187

incremental error rates, multiple classi�cations for each read are �ltered out and only the best ones188

are selected. When the �ltering cannot de�ne a single origin for a read, an optional LCA step is189

applied to join multiple matching reads into their lowest common ancestor node in the taxonomic190

tree.191

2.2.1 K-mer counting lemma192

The k-mer counting lemma can be de�ned as the minimum number of k-mer sequences of a read193

that should match against reference k-mers in order to be considered present in a set with a certain194

number of errors allowed. Given a read, R, with length l, the number of possible k-mers with length195

k in this read can be de�ned as:196

kmersR = lR − k + 1 (1)

An approximate occurrence of R in a set of references has to share at least197

kcountR = kmersR − k · e (2)

k-mers, where e is the maximum number of errors/mismatches allowed.198

2.2.2 Filtering199

A read can be assigned to multiple references with di�erent error rates, thus a �ltering step is200

necessary to decrease the number of false assignments. The applied k-mer counting lemma provides201
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k-mer counts for each read against the reference sequences. From this count it is possible to estimate202

the number of mismatches a read has. For example: for k = 19 and length = 100, a read with 50203

19-mers matching a certain reference will optimally have 2 mismatches. This calculation can be204

achieved by solving the Equation 2 equation for e.205

Assuming that reads with fewer mismatches have a higher chance of being correct, the following206

�ltering is applied: �rst, only matches against references with no mismatches are kept (all k-mers207

matching). If there are no such assignments, matches with only 1 error are kept. If there are none,208

matches with only 2 errors are kept and so on up to the maximum number of errors allowed (e in209

Equation 2). Similar �ltration methods (also known as mapping by strata) were previously used in210

read mappers such as Yara [19]. If a read is classi�ed in several references within the same range211

of errors, they are all reported since it is not possible to de�ne which one has a higher chance of212

being correct based on the k-mer count information. Given our clustering approach, some groups213

can share the same identi�cation target (e.g. one species was split in two or more clusters due to214

a large amount of sequences). These cases are treated specially by reporting only the match with215

more k-mer similarities since they belong to the same classi�cation group.216

Ganon also provides a way to further �lter the unique classi�cations with a di�erent error217

rate for reads that matched against just one reference group. This �lter will be applied after the218

standard �ltration and will re-classify a low scored read to its parent taxonomic level if it scores219

below a certain threshold. This can be applied for �ltering at low levels (e.g. assembly) since the220

classi�cation in those levels should be more precise with less mismatches. This feature is also useful221

to avoid classi�cations that only happen due to a lack of related genomes (e.g. a low score match222

on the only representative species of a lineage).223

In summary, ganon indices represent groups of reference sequences clustered by taxonomy or224

assembly group. All k-mers from the reads are extracted and compared against an index by225

applying the k-mer counting lemma to select candidates. This is done based on a user de�ned226

optimal number of errors. All matches within the error rate are �ltered and one or more matches227

are reported. At the end, an optional LCA method can be applied for reads with multiple matches228

with a more conservative and less precise taxonomic classi�cation, thus resulting in one match for229

each read. Additionally, ganon supports classi�cation based on multiple indices in a user-de�ned230

hierarchy, with independent error rates for each index (Supplementary Material 1 - Section 2.4).231

3 Results232

We evaluated ganon against a set of well-established methods from recent benchmarks [3, 4, 6] that233

performs short read classi�cation and supports indexing of large sets of reference sequences. The234

aim here is to compare in equal conditions the methods regarding input data, reference sequences235

and taxonomy. We compared ganon against kraken [15], one of the most used k-mer based methods236

for metagenomics short read classi�cation. We also included krakenuniq [27], which uses the basic237

kraken algorithm and also allows classi�cation on more speci�c levels after taxonomic assignments238

(e.g. up to assembly or sequence level). We further compare the results against centrifuge [28] that239

uses the Burrows-Wheeler transform (BWT) and the Full-text index in Minute space (FM-)index240

for indexing and aims to reduce the index size by compressing similar sequences together. Clark241

[29], another k-mer approach that uses common k-mers between reference sequences was also eval-242

uated. Diamond [30] an alignment tool for short DNA sequencing reads against protein reference243

databases was also included. Here we consider only the direct read classi�cation capabilities of244

the tools. Further functionalities such as the estimation of a presence of a certain organism or245

abundance estimation were not covered. All steps performed in the evaluation were compiled in a246

benchmark pipeline (version 1.0.0) available from https://github.com/pirovc/ganon_benchmark.247

Ganon and the other evaluated tools are reference-based, meaning all classi�cations are made248

based on previously generated sequence data. The choice of the underlying database is therefore249

crucial. We use the same sequences and taxonomic database version for all tools when creating250

their indices to guarantee a fair comparison. The NCBI RefSeq repository was the chosen source251

of sequences since it provides a curated and very extensive set of references. Two subsets of RefSeq252

were extracted: a set of only complete genomes from the groups Archaea, Bacteria, Fungi and Viral253

(RefSeq-CG) and a complete set of all genomes from the same groups (RefSeq-ALL) both dating254

from 19-December-2018 (Table 1). Genomic DNA data was obtained for all tools. Protein sequence255

data from annotated genome assemblies was obtained for diamond (Supplementary Material 1 -256

Table 5). Taxonomic information was obtained at the same dates as the sequences. Additionally,257
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an old set of only Bacterial complete genomes from 02-June-2015 (RefSeq-OLD) was included to258

evaluate the tool's performance on an outdated and less diverse set of references.259

Base pairs # assemblies # sequences

RefSeq-OLD 9,632,441,987 3,042 5,242
RefSeq-CG 46,986,899,184 19,623 33,029
RefSeq-ALL 587,607,072,429 147,713 15,201,684

Table 1: Genomic DNA of reference sequences used for evaluations. Protein data infor-
mation can be found in the Supplementary Material 1 - Table 5. Detailed information
of each dataset can be found in the Supplementary Material 1 - Section 1.5.1. Data
was downloaded using https://github.com/pirovc/genome_updater

The selected reference sets contain over-represented taxonomic groups with several assemblies260

for a single species. For example: the Escherichia coli species group is represented by 634 assem-261

blies, accounting for almost 7% of all base pairs in the RefSeq-CG. This is even more pronounced262

on RefSeq-ALL, with 13,259 E. Coli assemblies representing more than 11% of the base pairs in263

the whole set. In RefSeq-CG, the 92 most over-represented species have as many base pairs as264

the remaining 11,372 species. In RefSeq-ALL this ratio is 14 to 29,047 (Supplementary Material265

1 - Figure 1). This unbalanced distribution of references may not only bias analysis but also in-266

troduces redundancy to the set when aiming classi�cation at taxonomic levels. Therefore, when267

not classifying at assembly level, we removed over-represented assemblies from our reference set,268

keeping only the 3 biggest assemblies of each taxonomic group (Table 2, Supplementary Material269

1 - Figure 2).270

Base pairs # species # leaf taxids # assemblies # sequences

RefSeq-CG-top-3 2.9e10 (62%) 11,464 (100%) 14,071 (100%) 15,171 (77%) 24,290 (74%)
RefSeq-ALL-top-3 2.1e11 (36%) 29,061 (100%) 51,292 (100%) 56,805 (38%) 4,400,402 (29%)

Table 2: Reference sequences after over-representation �ltering. Percentages in brackets
show the amount of data left compared to the original set (Table 1). Protein data information can
be found in the Supplementary Material 1 - Table 5.

For classi�cation we used reads from the �rst CAMI Challenge [6]. Sets of simulated and real271

datasets mimicking commonly used environments and settings were obtained, representing multiple272

closely related strains, plasmid and viral sequences. These samples were divided into 3 categories:273

low, medium and high complexity with increasing number of organisms and di�erent sequencing274

pro�les providing a well-produced and challenging dataset to analyze. The simulated reads were275

generated based on public data (NCBI, SILVA46) and an exact ground truth assignment is provided276

for each read down to sequence level. The real dataset was obtained from newly sequenced genomes277

of 700 microbial isolates and 600 circular elements and a ground truth is provided at taxonomic278

levels. Here we used one high complexity sample from both categories to perform evaluations and279

benchmark the tools (Supplementary Material 1 - Table 6).280

The classi�cation results were evaluated in terms of sensitivity and precision in two di�erent281

ways: cumulative- and rank-based. Details on their di�erences can be found in the Supplementary282

Material 1 - Section 1.7. In short, the cumulative-based evaluation will compare how well tools283

perform up to a certain taxonomic level, considering only the taxon of their �nal classi�cation284

level. The rank-based evaluation considers the full lineage of each classi�cation. For example:285

in a cumulative-based evaluation, values of sensitivity and precision at family level will account286

cumulatively for all sequences classi�ed at subsequent taxonomic levels (genus, species, species+)287

up to (and including) the family level. In a rank-based evaluation, family level sensitivity and288

precision values are calculated based on the family assignment from the lineage of the classi�ed289

sequences. The cumulative-based evaluation provides a better way to compare tools and their290

ability to correctly classify sequences to their targets. The rank-based approach will better compare291

how tools perform at a speci�c taxonomic level. In this work we will use both methodologies292

to compare the results of the evaluated methods. Additionally, we evaluated all scenarios with293

AMBER [31], an independent tool for assessment of metagenome binners with a similar approach294
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to the rank-based evaluation. The complete cumulative-based, rank-based and amber results are295

in the Supplementary Material 2.296

The results for the CAMI simulated and real datasets should be interpreted considering the297

depth of classi�cation. Most tools classify at a certain taxonomic level, either speci�c rank (e.g.298

species) or any taxon. Clark provides only species assignments and it was evaluated together with299

all other tools providing results at any taxonomic level (centrifuge, diamond, ganon, and kraken).300

Centrifuge, ganon and krakenuniq are also able to classify sequences at assembly level. Centrifuge301

outputs at sequence level, thus an extra step of applying an LCA algorithm for non-unique matches302

was necessary to generate results at assembly and taxonomic levels. Given the availability of the303

ground truth, only simulated data was evaluated up to assembly level while real data was evaluated304

at taxonomic levels.305

3.1 Indexing306

The set of reference sequences from RefSeq-OLD/CG/ALL (Table 1) and RefSeq-CG/ALL-top-3307

(Table 2) were used as inputs to generate the indices for each evaluated tool. Here evaluation is308

done by total run-time, memory consumption and �nal index size (Table 3 and 4).309

Reference Method time Memory Index size

RefSeq-OLD centrifuge 02:51:03 105 4
clark 04:07:56 161 35
diamond 00:08:07 30 3
ganon 00:02:08 24 16
kraken 02:04:16 93 79

RefSeq-CG-top-3 centrifuge 06:51:25 269 12
clark 08:45:31 243 81
diamond 00:10:33 28 10
ganon 00:07:01 68 63
kraken 04:53:31 200 184

RefSeq-ALL-top-3 diamond 00:36:23 32 76
ganon 00:54:48 266 267

Table 3: Build times, memory consumption and index sizes at taxonomic level. Memory
and Index size in GiB. All tools build at taxonomic leaf nodes (taxid) besides clark building at
species level. Tools running more than 24 hours to build were not considered. 48 threads were
used for all tools. Computer speci�cations and parameters used are in the Supplementary Material
1 - Section 1.1 and 1.4. Krakenuniq was not evaluated on taxonomic level since it runs exactly the
same base algorithm as kraken in this con�guration.

Reference Method time Memory Index size

RefSeq-OLD centrifuge 02:51:03 105 4
ganon 00:02:22 32 25
krakenuniq 02:06:41 93 79

RefSeq-CG centrifuge 12:32:08 459 21
ganon 00:10:49 108 100
krakenuniq 08:54:56 345 204

RefSeq-ALL ganon 02:30:47 530 539

Table 4: Build times, memory consumption and index sizes at assembly level. Memory
and Index size in GiB. Tools running more than 24 hours to build were not considered. 48 threads
were used for all tools. Computer speci�cations and parameters used are in the Supplementary
Material 1 - Section 1.1 and 1.4

When indexing the RefSeq-CG-top-3 at taxonomic levels (Table 3), the evaluated tools took310

between 7 minutes and 8 hours, resulting in ganon being the fastest and clark the slowest. We do311
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not consider runs taking more than 24 hours to build indices, given that they clearly do not scale312

well enough to index high amounts of data and will not be able to keep indices up-to-date in a313

reasonable amount of time for new data (Supplementary Material 1 - Section 2.2). Ganon shows314

a signi�cant overall reduction in memory consumption and run-time compared to the other tools315

besides diamond. However, diamond is the only tool using protein data, accounting approximately316

for a third of the volume of the genomic data. Ganon builds 41 times faster than kraken, the317

second fastest using the same data source. Centrifuge achieves the lowest index size with the318

cost of having the highest memory consumption. Additionally, ganon is able to generate smaller319

indices at the cost of speed in the classi�cation step, without harming sensitivity. Ganon indices320

for RefSeq-CG-top-3 can be as small as 21GiB. RefSeq-ALL-top-3 was built in under an hour for321

diamond and ganon, with diamond providing a smaller �lter and lower memory consumption. We322

could not run centrifuge, clark, kraken and krakenuniq for RefSeq-ALL on our infrastructure, given323

computational limitations or long execution time. A recent publication [11] reported that kraken324

and consequently krakenuniq both need 11 days to build a database for the bacterial RefSeq version325

80, an approximate of the RefSeq-ALL here evaluated, with a more powerful server consisting of326

64 cores of E7-8860v4 CPUs and three terabytes of memory. Estimated run times for these tools327

in the evaluated datasets can be found in the Supplementary Material 1 - Figure 6.328

When building indices on assembly level (Table 4), ganon took around 10 minutes to index329

RefSeq-CG while the second fastest tool, krakenuniq, took almost 9 hours. Given our computa-330

tional and time limitations, ganon was the only tool able to build indices on assembly level for the331

RefSeq-ALL dataset, taking 2 hours and 30 minutes.332

3.2 Updating333

Ganon is the only tool among the evaluated ones that allows for incremental updates on previously334

generated indices. We evaluated this functionality on Bacterial sequences added to RefSeq-CG335

dating from 19-December-2018 to 21-January-2019, comprising 2.77 Gbp, 1307 sequences, 370336

species from which 213 are new to the reference set and 716 new assemblies (Supplementary337

Material 1 - Table 4). Updating the ganon index based on RefSeq-CG with this dataset �nished338

under 5 minutes, less than half of the time necessary to create the index (Table 4).339

3.3 Classifying340

Figure 3 compares in a cumulative-based fashion the results of one simulated high complexity341

dataset (CAMI toy set) classi�ed against the indices based on RefSeq-OLD, RefSeq-CG-top-3342

and RefSeq-ALL-top-3. In this analysis we can observe how each method performs classifying343

reads to their ground truth targets up to a certain taxonomic level. The overall improvement344

in terms of sensitivity and precision is clear when using a more complete and up-to-date set of345

references (RefSeq-ALL-top-3), since they provide higher coverage for the evaluated ground truth346

targets (Supplementary Material 1 - Figure 5). The highest F1-Score at any taxonomic level is347

achieved with ganon using RefSeq-ALL-top-3. Diamond shows an increase in performance at higher348

taxonomic levels but performs poorly at species level. Clark classi�es only at species level and has349

no improvements in higher taxonomic levels. Metrics for the complete RefSeq-CG and RefSeq-ALL350

di�er slightly from the respective top-3 sets, therefore they were not included in the evaluations351

(Supplementary Material 1 - Section 2.3.1). This indicates that over-representation �ltering does352

not a�ect the results but it can speed up analysis.353

When looking at the metrics by each rank individually (Table 5, Supplementary Material 1 -354

Figure 7), the overall precision and sensitivity values are greater, since incorrect classi�cations at355

lower levels are not penalized in this type of evaluation. Besides diamond, which underperforms356

at species level, all tools have overall similar performance values using RefSeq-OLD and RefSeq-357

CG-top-3. However, ganon shows improvement on sensitivity on all levels with RefSeq-ALL-top-3,358

being 12% more sensitive at species level and reaching 99.27% precision at genus level. For lower359

ranks (species and species+) results were mainly limited by the availability of reference sequences360

(Supplementary Material 1 - Figure 5).361

The same analysis was performed on real data (CAMI challenge set). This set is more challeng-362

ing since most of the species in the sample are novel and, still to this date, mostly not present in363

the analyzed repositories of reference sequences (Supplementary Material 1 - Figure 5). As stated364

by the CAMI results [6], tools performed poorly in this dataset in terms of sensitivity (Figure 4).365

Here the impact of a larger and up-to-date set of references (RefSeq-ALL-top-3) is more evident,366
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Figure 3: Cumulative-based precision, sensitivity and F1-Score for the simulated reads.
Colors represent di�erent reference sets: blue = RefSeq-OLD, orange = RefSeq-CG-top-3, red =
RefSeq-ALL-top-3

Reference Method Sensitivity Precision F1-Score

RefSeq-OLD centrifuge 41.49% 79.60% 54.55%
clark 41.13% 84.29% 55.29%
diamond 4.96% 29.30% 8.49%
ganon 40.78% 88.68% 55.87%
kraken 41.23% 83.92% 55.30%

RefSeq-CG-top-3 centrifuge 43.57% 79.12% 56.19%
clark 42.93% 82.43% 56.45%
diamond 11.30% 74.41% 19.62%
ganon 41.86% 87.56% 56.64%
kraken 43.14% 82.32% 56.61%

RefSeq-ALL-top-3 diamond 13.10% 88.64% 22.82%
ganon 53.99% 94.91% 68.83%

Table 5: Rank-based precision, sensitivity and F1-Score values for the simulated reads
at species level The use of a larger reference set with RefSeq-ALL-top-3 signi�cantly improves
results. Only ganon and diamond indexed the RefSeq-ALL-top-3 in less than 24 hours. Highlighted
values for the best results with this dataset at species level. Results for all taxonomic levels are in
the Supplementary Material 1 - Figure 7 and Supplementary Material 2

thus signi�cantly improving the results on both sensitivity and precision. The same trend from367

the simulated data analysis is present, with ganon achieving best results up to species level and368

diamond improving classi�cations at higher levels but having poor resolution at lower ranks.369

In the rank-based analysis (Table 6, Supplementary Material 1 - Figure 8) ganon has 10% higher370

F1-Score compared to diamond with the RefSeq-ALL-top-3 as species level. Sensitivity has a peak371

of 10% and 25% at species+ and species levels, respectively, which are not far from the maximum372

possible using this reference set (12% and 32% respectively). Similar results can be seen in amber373

evaluation (Figure 5). Comparing results between RefSeq-CG-top-3 and RefSeq-ALL-top-3, genus374

level sensitivity went from 13% to 83% with a signi�cant improvement in precision, reinforcing the375

need for bigger and more diverse reference sets to analyze metagenomics data.376

Table 7 compares the assembly level classi�cation between centrifuge, ganon and krakenuniq.377

There is an overall decrease in precision and sensitivity from RefSeq-OLD to RefSeq-CG. Precision378

is greater using RefSeq-ALL but sensitivity is still greater with RefSeq-OLD. However, RefSeq-CG379

has more than 6 times the number of assemblies of RefSeq-OLD, while RefSeq-ALL has almost 50380

times more assemblies (Table 1). As reported before [11], higher diversity in the references does381
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Figure 4: Cumulative-based precision, sensitivity and F1-Score for the real reads. Colors
represent di�erent reference sets: blue = RefSeq-OLD, orange = RefSeq-CG-top-3, red = RefSeq-
ALL-top-3

Reference Method Sensitivity Precision F1-Score

RefSeq-OLD centrifuge 0.51% 2.24% 0.84%
clark 0.49% 3.21% 0.86%
diamond 0.00% 0.00% 0.00%
ganon 0.45% 6.68% 0.85%
kraken 0.50% 3.13% 0.86%

RefSeq-CG-top-3 centrifuge 2.41% 7.03% 3.59%
clark 2.34% 9.57% 3.76%
diamond 1.74% 11.23% 3.02%
ganon 1.89% 19.14% 3.44%
kraken 2.39% 9.61% 3.83%

RefSeq-ALL-top-3 diamond 12.38% 55.84% 20.27%
ganon 25.03% 38.97% 30.48%

Table 6: Rank-based precision, sensitivity and F1-Score values for the real reads at
species level. The use of a larger reference set with RefSeq-ALL-top-3 signi�cantly improves
results. Only ganon and diamond indexed the RefSeq-ALL-top-3 in less than 24 hours. Highlighted
values for the best results with this dataset at species level. Results for all taxonomic levels are in
the Supplementary Material 1 - Figure 8 and Supplementary Material 2

not always translate to an improved accuracy in the classi�cation. This was also noticed when382

using the complete NCBI-nt database to analyze the same dataset (Supplementary Material 1 -383

Figure 13).384

In the speci�c case of methods evaluated here, small di�erences between very similar assemblies385

are di�cult to be identi�ed due to the resolution of each method. This means that they, in general,386

can correctly classify sequences to target assemblies given a certain similarity threshold. However,387

they are unable to select the correct assembly, thus providing the lowest common ancestor at a lower388

resolution. This can be seen in Supplementary Material 1 - Figure 12, where the overall sensitivity389

and precision of all tools executing in assembly mode did not a�ect the taxonomic metrics and are390

comparable to the same tools running in taxonomic mode. Even though the assembly step does391

not provide accurate enough results, centrifuge and ganon are the only tools that can provide a392

list of all matches/candidates that can be further analyzed with high resolution methods [32].393

In most scenarios evaluated, ganon consistently provides greater precision classifying reads to394

their ground truth targets within the same reference set, while keeping sensitivity values high, with395

little variation to the other methods. High precision translates to fewer reads with a wrong clas-396
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Figure 5: AMBER completeness/sensitivity (green) and purity/precision (blue) values
for real reads. Results for diamond (left) and ganon (right) using RefSeq-ALL-top-3 set of
references. Strain level in AMBER plots are equivalent to species+ in our evaluations.

Reference Method Sensitivity Precision F1-Score

RefSeq-OLD centrifuge 22.78% 64.54% 33.68%
ganon 22.32% 77.95% 34.70%
krakenuniq 22.68% 69.66% 34.22%

RefSeq-CG centrifuge 11.82% 30.77% 17.08%
ganon 11.52% 37.25% 17.60%
krakenuniq 11.67% 32.45% 17.17%

RefSeq-ALL ganon 21.56% 87.89% 34.62%

Table 7: Rank-based precision, sensitivity and F1-Score values for the simulated reads
at assembly level. Only ganon indexed the RefSeq-ALL in less than 24 hours. Highlighted values
for the best results with this dataset at assembly level. Results for all taxonomic levels are in the
Supplementary Material 2.

si�cation. Sensitivity is strongly improved in more diverse reference sets, especially with RefSeq-397

ALL-top-3. Looking at rank-by-rank performance, ganon improved F1-Score in every taxonomic398

rank (Supplementary Material 1 - Figures 7 and 8), with F1-Score up to 46% higher than diamond399

with the same reference at species level (Table 5).400

Table 8 compares the performance of the analyzed tools in terms of how many base pairs they401

can classify per minute (Mbp/m), wall/elapsed time and memory usage. Kraken is the tool with402

the fastest runtime on classi�cation step and diamond with the slowest. Although comparisons403

with diamond were made, it is important to notice that the tool works in a very di�erent way using404

protein data and performing alignments, thus explaining the huge di�erence in execution times.405

Ganon can be con�gured to run in offset mode, thus skipping a certain number of k-mers and406

speeding up classi�cation. offset = 1 means that all k-mers are being evaluated while offset = 2407

means that every 2nd k-mer is being skipped. The trade-o� between o�set and precision/sensitivity408

for ganon results can be seen in Supplementary Material 1 - Figure 11. Speed variation between409

simulated and real reads is partly explained due to their classi�cation rate: on average 70% of the410

simulated reads are classi�ed while only 20% of the real reads are classi�ed. Memory consumption411

is mainly based on the index size of each tool (Table 3), with little variation besides that.412

4 Discussion413

We presented ganon, a novel method to index big sets of genomic sequences and classify short414

reads against them in a taxonomic oriented scheme. Ganon's strengths are an ultra-fast indexing415

method for large sets of reference sequences that incorporates a novel application of Interleaved416
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Simulated Real

Reference Method Mbp/m Wall time Memory Mbp/m Wall time Memory

RefSeq-CG-top-3 centrifuge 298 00:24:59 (± 51s) 14 802 00:09:19 (± 4s) 14
clark 1104 00:06:44 (± 5s) 108 1208 00:06:11 (± 4s) 107
diamond 36 03:27:00 (± 259s) 15 33 03:40:55 (± 170s) 16
ganon 406 00:44:05 (± 54s) 65 573 00:14:19 (± 6s) 65
kraken 2113 00:03:46 (± 1s) 190 2734 00:02:57 (± 3s) 190

RefSeq-ALL-top-3 diamond 6 18:23:09 (± 729) 23 5 21:23:00 (± 181s) 23
ganon 115 04:42:32 (± 216s) 261 163 00:49:11 (± 12s) 261

Table 8: Classi�cation performance. Memory in GiB. Full set of simulated and real reads
classi�ed with 48 threads. Centrifuge, clark and diamond performance in Mbp/m calculated from
wall time. Values are the average of 4 out 5 consecutive runs (excluding the slowest run), with
standard deviation for the run time in parentheses. Computer speci�cations and parameters used
are in the Supplementary Material 1 - Section 1.1 and 1.4

Bloom Filters and a precise classi�cation with k-mer counting and �ltering. Unlike DREAM-417

Yara, an alignment-based read mapper that uses the IBF as a pre-�lter for the distributed Yara418

mapper, ganon uses the IBF as the main index structure to provide an alignment-free assignment419

of sequences. This is only possible by creating taxonomic constrained clusters with TaxSBP in420

any desired taxonomic level. Ganon additionally applies an LCA algorithm as a �nal step to have421

one classi�cation per sequence. In addition it also provides updatability of indices, multi-hierarchy422

support for classi�cation, assembly level support and taxonomic reports.423

By indexing large sets of reference sequences and turn them into searchable indices, ganon allows424

scientists to make most of their data. Short turnaround times for index building and updating425

are crucial for many bioinformatics applications (e.g. outbreak investigation). In our evaluations,426

building the complete RefSeq and classifying 49 million reads against it performed under 2 hours427

with ganon, from raw reference sequences and reads to taxonomic reports, while diamond required428

more than 22 hours to classify the same set. Other methods required at least 24 hours to build the429

indices. Without a dedicated infrastructure for constant reconstruction of indices and databases,430

tools evaluated in this work are unable to keep up with the fast growing rate of reference sequence431

repositories. That results in either long time to start analysis or use of outdated reference sets.432

Ganon facilitates database maintenance, allowing short increments on a daily basis being the only433

realistic option to keep-up with the fast pace of data generation. In addition, ganon indices are434

�exible and can be built for di�erent taxonomic levels (e.g. genus), requiring less space and memory,435

consequently improving classi�cation speed. A trade-o� between �lter size, clustering and false436

positive rate is also possible, simply by sacri�cing precision over performance or disk usage over437

classi�cation speed.438

Classi�cation results presented here are on par with state-of-the-art methods with regards439

to sensitivity, while improving precision rates in almost every scenario of our cumulative-based440

evaluations. Results are consistent across all three evaluation methods (cumulative- and rank-441

based and amber) indicating the robustness of �ndings. We attribute this improvement to an442

application of the k-mer counting lemma together with a progressive �ltering step, which can443

better separate false from true positives. The unique �ltering step also allows for better selection444

of false positives when taxonomic groups are underrepresented in the reference set. In addition,445

instead of only reporting reads at a �xed LCA level, ganon provides every output for a read at a446

taxonomic or assembly level. This is crucial for strain level analysis, where candidate organisms447

are more insightful for further investigations than a conservative identi�cation.448

Even with ganon achieving improved results in classi�cation, in general terms, the methods449

tested here perform similarly when based on the same underlying set of reference sequences. The450

di�erence in sensitivity when using a high quality set (RefSeq-ALL) compared to only complete451

genomes (RefSeq-CG) or an outdated set (RefSeq-OLD) is very signi�cant and tends to get bigger452

with more sequences added to this repository. Thus the choice of the database is crucial and should453

not be overlooked when analyzing metagenomics data. Even though centrifuge, clark, kraken and454

krakenuniq could potentially perform well with more reference sequences, their indexing times are455

highly prohibitive.456

When using highly diverse reference sets or when aiming at high resolution classi�cation (e.g.457

assembly level), the evaluated methods shown decreased performance. However, in a scenario of458
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data exploration of an unknown environmental sample, the ability to classify reads against huge459

sets of very diverse reference sequences (e.g. NCBI-nt) can be helpful. Therefore, in those scenarios460

we recommend to perform analysis hierarchically, �rst classifying reads against high quality ref-461

erences and only using high diverse reference sets for unclassi�ed sequences, adjusting error rates462

accordingly. This approach can be easily done with ganon's implementation of multi-�lter and463

multi-hierarchy classi�cation. This functionality tied to fast indexing of reference sets make ganon464

a powerful tool for exploratory data analysis, enabling multiple combinations of indices and error465

rates in an iterative manner. An example of this functionality can be found in Supplementary466

Material 1 - Section 2.4, where we analyzed real data from TARA oceans [10], building several467

indices and classifying reads against them in an exploratory-fashion.468

Ganon's fast indexing performance is mainly due to the fact that k-mers are not being counted.469

Instead, all of them are inserted into a space-e�cient data structure (IBF) that also provides470

quick look-up times. However, data generation is constantly increasing and in the long term this471

approach will reach a limit. For that reason, a k-mer aware clustering combined with a minimizer472

implementation could improve performance in the data structure as well as memory consumption.473

These features are planned for future releases. Even though we based our analysis on large and474

realistic datasets, time e�ciency purely based on data can be misleading. Thus, the scalability of475

the methods can only be deduced. As a future work we propose a comparison of time and space476

complexities of each methodology and how they would perform in the long term, considering a477

continuous and exponential data growth.478

Ganon manages to index large sets of reference sequences while keeping them updated in very479

short time. In addition, classi�cation results for ganon are as good as or better than the evaluated480

tools and it runs in competitive time. To the best of our knowledge, ganon is the only tool with481

update capabilities, which is performed in a fraction of the complete build time. This poses as an482

advantage to maintain up to date with the public repositories of genomic data and their frequent483

updates. To conclude, we believe that ganon can be a useful tool for metagenomics analysis in a484

time where reference sequence repositories are growing fast.485
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