
A comprehensive investigation of intracortical and 1

corticothalamic models of alpha rhythms 2

Sorenza P. Bastiaens1,2, Davide Momi2, and John D. Griffiths1,2 3

1Institute of Medical Sciences, University of Toronto 4

2Krembil Centre for Neuroinformatics, Centre for Addiction and Mental 5

Health, Toronto 6

March 2024 7

Abstract 8

Alpha rhythms are a robust phenomenon prominently observed in posterior resting 9

state electroencephalogram (EEG) that has been shown to play a key role in a num- 10

ber of cognitive processes. However, the underlying mechanisms behind their generation 11

is poorly understood. Here, we showcase the most concrete, mathematically-expressed 12

theoretical foundations for understanding the neural mechanisms underlying the alpha 13

rhythmogenesis. The neural population models of interest are Jansen-Rit (JR), Moran- 14

David-Friston (MDF), Robinson-Rennie-Wright (RRW) and Liley-Wright (LW). Common 15

elements between all models are identified, such as the description of each neural popula- 16

tion in the form of a second-order differential equation with a potential-to-rate operator 17

represented as a sigmoid and a rate-to-potential operator usually expressed as an impulse 18

response. Even though these models have major differences, they can be meaningfully 19

compared by associating parameters of analogous biological significance, which we sum- 20

marize with a unified parameter table. With these correspondences, rate constants and 21

connectivity parameter space is explored to identify common patterns between similar 22

behaviors, such as the role of excitatory-inhibitory interactions in the generation of os- 23

cillations. Through stability analysis, two different alpha generation mechanisms were 24

identified: one noise-driven and one self-sustaining oscillation in the form of a limit cycle 25

emerging due to a Andronov-Hopf bifurcation. This work contributes to improving our 26

mechanistic and theoretical understanding on candidate theories of alpha rhythmogenesis. 27
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1 Background 60

1.1 Overview and aims 61

The classical alpha rhythm is an 8-12Hz oscillatory activity pattern that is highly prominent 62

in electroencephalogram (EEG), electrocorticogram (EcoG), and local field potential (LFP) 63

recordings from humans and other species, particularly during states of quiet wakefulness (Fig. 64

1, A1 and A2). Almost 100 years after its discovery (Berger, 1929), alpha frequency activity 65

remains one of the most robustly observed and broadly significant phenomena in all of neuro- 66

science, yet also one of the most enigmatic (Bollimunta et al., 2011). Alpha plays a fundamental 67

role in a wide range of cognitive processes, and abnormal alpha rhythms are frequently iden- 68

tified in psychiatric and neurological conditions as summarized in Fig. 1, A3 (Bucci et al., 69

2004; Clancy et al., 2017; Deiber et al., 2020; Jensen and Mazaheri, 2010). However, despite 70

the profound importance of alpha rhythms - both in terms of their undeniable prominence in 71

empirical EEG data, and their implication across a broad range of phenomena across clinical 72

and cognitive neuroscience, their mechanistic physiological basis and functional significance re- 73

mains unclear. Several theories of alpha rhythmogenesis have been proposed over the years, 74

often emphasizing different physiological substrates such as recurrent activity and excitatory- 75

inhibitory interactions in cortical column microcircuits, or delayed inhibitory feedback within 76

cortico-thalamocortical loops (Fig. 1, B2). There have however been relatively few attempts to 77

evaluate and compare in detail these alternative theories in conjunction, and thereby arrive at 78

a useful synthesis of the most compelling accounts. Developing such a synthesis is a principal 79

aim of the present study. 80

A central criterion around which we base this investigation is the requirement that the 81

models of interest should be expressed in concrete mathematical language, as well as being 82

implemented in numerical simulations and/or quantitative analytic computations. Specifically, 83

we consider a particular type of neurophysiological model - neural population models (NPMs) 84

(Fig. 1, C1) - that have been used extensively over the past half century as a tool to better 85

understand alpha activity (Lopes da Silva and Van Leeuwen, 1977; Grimbert and Faugeras, 86

2006b; Jansen and Rit, 1995; Liley et al., 2001; Bhattacharya et al., 2011; David and Friston, 87

2003; Hartoyo et al., 2019; Robinson et al., 2003). We focus on four extensively studied NPMs 88

that are commonly used to describe EEG alpha activity in the neuroimaging, neurophysiology, 89

and computational neuroscience literature. We refer to these as the Jansen-Rit (JR; Jansen 90

and Rit 1995), Moran-David-Friston (MDF; David and Friston 2003; Moran et al. 2007), Liley- 91

Wright (LW; Liley et al. 1999, 2001), and Robinson-Rennie-Wright (RRW; Robinson et al. 2002, 92

2003) models. These shorthand terms reference certain key individuals who contributed to the 93

conception and/or development of several prominent strands in the research literature. We do 94

note however that they are imperfect ones - both because all of the models studied here build 95

directly on the earlier work of other important theoreticians (e.g. Freeman, Zetterberg, Lopes 96

Da Silva, Cowan, Nunez), and also in some cases each other (e.g. MDF is an indirect extension 97

of JR). We begin over the next few sections with a description of general elements present in the 98
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JR, MDF, LW, and RRW models, and a summary of their individual characteristics. Direct 99

comparisons between each of them are then made, first in the context of the alpha regime, 100

and then extending into other oscillatory regimes at non-alpha frequencies. A central objective 101

in this work is to identify common patterns between the models, using numerical simulations 102

and linear analysis across a broad parameter space to identify the effects of rate constants, 103

inter-population connectivity structure, and other factors on oscillatory dynamics. These sim- 104

ilarities and differences across models constitute the points of agreement and divergence across 105

current theories of alpha rhythmogenesis, and it is the mapping of this theoretical landscape 106

that is our main aim in the present paper. The origin, biological significance, and validity of 107

their parameters, as well as the functional forms of their equations, are also considered when 108

discussing the respective limitations and advantages of each candidate model. 109
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Figure 1. Overview of steps leading to neural population models of alpha oscillations. A) Alpha

oscillations are most strongly observable in the occipital lobe of the cerebral cortex (A1), where they are

characterized by a peak in the power spectrum between 8-12Hz (A2). Panel A3 summarizes the role alpha plays

in cognitive processes, as well as abnormal alpha rhythm features observed in various diseases. B) Summary of

the different theories that have been proposed to explain the alpha rhythm. We focus on theories emphasizing

the importance of interactions between neural populations (B2). C) Alpha rhythm theories are clarified and

concretized by mathematical formulations, allowing numerical and analytical investigation of their predictive

and explanatory scope. The principal class of models used to date are neural population (neural mass and

neural field) models (C1 and C2), which are the focus of the present work.

1.2 The alpha rhythm: origins and theories 110

Neural oscillations are repetitive, quasiperiodic patterns of brain activity that are believed to 111

play a key role in various sensory-cognitive processes (Başar, 2013). In humans, oscillations 112

are most commonly studied with EEG, a non-invasive neuroimaging modality that uses scalp- 113

recording electrodes to capture large-scale neuroelectric activity with high temporal resolution. 114

EEGs measure differences in electrical potential between recording and reference electrodes on 115

the scalp that results from summed postsynaptic dipoles in the brain. In order to quantify oscil- 116

latory activity, the measured signal is typically decomposed into its power spectrum frequency 117

components via Fourier transform, and often aggregated into canonical frequency bands (delta: 118
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1-4Hz, theta: 4-8Hz, alpha: 8-12Hz, beta: 12-35Hz, gamma: above 35Hz) for further analysis 119

(Abhang et al., 2016). 120

Alpha waves, usually defined as the EEG frequency band between 8 and 12 Hz (Moini and 121

Piran, 2020), are associated with quiet wakefulness, meditation, relaxation and reflection (Hal- 122

gren et al., 2019). In the EEG recording, they are most prominent in the occipital lobe of the 123

cortex when the subject is awake with eyes closed during resting state (Klimesch, 1999). Their 124

role is believed to be fundamental for a number of top-down cognitive processes (Halgren et al., 125

2019) such as sensory perception (Samaha and Postle, 2015), attention (as an attentional sup- 126

pression mechanism Foxe and Snyder 2011), functional inhibition (Jensen and Mazaheri, 2010) 127

working memory (Wianda and Ross, 2019) and long-term memory (Klimesch, 2012). Abnor- 128

mal EEG rhythmic patterns, including aberrant alpha oscillations, are indicative of atypical 129

bioelectrical activity that may suggest the presence of cognitive and/or mental disorders. Thus, 130

robust resting state alpha activity is considered an indicator of healthy cognitive functioning. 131

Reduced alpha power or lowered alpha peak frequencies resulting from aging, head trauma, or 132

exposure to toxins may be correlated with a neurological disorder or brain impairment, such as 133

traumatic brain injury (TBI), or dementia (Scally et al., 2018; Buchanan et al., 2021). Both 134

the power and topography of the alpha rhythm is altered in epilepsy patients (Abela et al., 135

2019). Several psychiatric conditions are also associated with a decrease in activity in the alpha 136

rhythm, namely chronic anxiety (Fingelkurts et al., 2006; Roohi-Azizi et al., 2017), and ob- 137

sessive compulsive disorder (OCD), sometimes accompanied by concomitant changes at theta 138

and beta frequencies (Karadag et al., 2003). Asymmetry of the alpha rhythm and increased 139

activity of the right parietal lobe is observed in patients experiencing post-traumatic stress 140

disorder (PTSD) (Metzger et al., 2004; Roohi-Azizi et al., 2017). A comprehensive survey of 141

the vast research literature on alpha in cognitive and clinical neuroscience is beyond the scope 142

of the present work; for this we refer the reader to excellent recent treatments by Ippolito et al. 143

(2022); Başar and Güntekin (2012) 144

Although the alpha rhythm was the first rhythmic wave identified and named by Hans 145

Berger in 1929 (Berger, 1929; Tudor et al., 2005), and it is considered the predominant oscilla- 146

tion in the human brain (Klimesch, 2012) with significant implications in empirical EEG data 147

and various clinical and cognitive neuroscience studies, the physiological mechanism underlying 148

its generation and functional significance remain poorly understood. Unlike other character- 149

ized brain oscillations, such as beta and gamma waves, whose neural circuitry relies on local 150

connectivity (Lozano-Soldevilla, 2018), the generation of alpha rhythm is thought to involve 151

contributions from both cortical and thalamic regions, which can influence and interfere with 152

each other, suggesting an elaborate neural circuitry (Lozano-Soldevilla, 2018; Lopes da Silva, 153

1991). Several hypotheses have been proposed regarding the composition and mechanistic or- 154

ganization of these alpha circuits, which can be grouped under three categories: pacemaker, 155

local network, and global network theories. The pacemaker theory suggests that intrinsic al- 156

pha oscillations are generated either in the thalamus, driven by pulvinar or and/or the lateral 157

geniculate nucleus (Saalmann et al., 2012; Lőrincz et al., 2009; Hughes et al., 2011) or in the 158
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cortex, originating from the pyramidal cells located in layer V (Lopes da Silva, 1991; Connors 159

and Amitai, 1997; Bollimunta et al., 2008). However, pacemaker theories in general suffer from 160

several severe limitations (see Nunez et al. 2006 for an extensive discussion of this). For in- 161

stance, pacemaker cells such as putative thalamic nuclei, if they exist, would have to function 162

in a relatively autonomous fashion, having a highly restricted input from other oscillatory brain 163

regions - a notion that has been critically questioned on anatomical grounds (Lopes da Silva, 164

1998; Steriade, 2005). Additionally, there are certain global EEG phenomena that remain un- 165

explained, including the relative frequencies of major rhythms and sleep-wave variations. The 166

second category, ‘local network’ theories, propose that alpha rhythms are produced by interac- 167

tions between excitatory and inhibitory neural populations with dendritic response functions 168

and saturating nonlinearities (Valdés-Hernández et al., 2010). Finally, ‘global network’ theories 169

posit that alpha rhythms are generated by large-scale networks rather than local circuits within 170

a localized brain region. By disregarding complex dendritic response functions and finite intra- 171

cortical propagation, models with a primary emphasis on global dynamics rely heavily on the 172

propagation delays between distant anatomical structures to shape their dynamics (Nunez and 173

Cutillo, 1995; Nunez and Srinivasan, 2006; Valdés-Hernández et al., 2010). Of these three cat- 174

egories, local network theories are the most established and extensively studied, and will serve 175

as the major emphasis in the present work. Specifically, we examine in detail two prevailing 176

local network theories of alpha rhythmogenesis: 177

1. Alpha oscillations are generated by recurrent activity and excitatory-inhibitory interac- 178

tions within cortical column microcircuits. 179

2. Alpha oscillations are generated by delayed inhibitory feedback within corticothalamo- 180

cortical loops. 181

These two accounts describe the origin of alpha waves as a phenomenon relying on dynamics 182

of local networks of interconnected neural populations, and thus occurring at the mesoscopic 183

spatial scale. Computations underlying brain functions such as action, perception, learning, 184

language and higher cognition are hypothesized by some to operate from neural ensembles at 185

this scale (Deco et al., 2008). Current technologies allow us to measure the macroscale (EEG, 186

MEG, fMRI, ECoG) or the microscale (single cell recording, fluorescence calcium imaging, mul- 187

tielectrode arrays), but the mesoscopic scale is more challenging to directly observe, particularly 188

in humans in vivo. To bridge the gap between scales and explore the underlying mechanisms 189

of alpha rhythmogenesis, mathematical models of neural networks replicating EEG phenomena 190

observed empirically are particularly useful. The class of computational neural models that 191

simulate neural activity directly at the mesoscopic level are known as neural population models 192

(NPMs). 193
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Figure 2. Schematic depiction of two candidate theories of alpha rhythmogenesis. A) Cortico-

cortical columnar microcircuit model, representing the generation of alpha rhythm through interconnected

macrocolumns. B) Cortico-thalamic model, involving thalamic neural populations in the process of alpha

genesis.

1.3 Bridging scales: mathematical modelling of mesoscopic neural 194

population dynamics 195

Mathematical expressions of human brain activity have provided significant insights into the 196

hidden mechanisms of the underlying neural processes at multiple scales (Deco et al., 2008). 197

To construct models at the intended level of granularity, there are two main approaches: 1) a 198

‘bottom-up’ approach, beginning at the sub-cellular level with flows of ions and action potential 199

generation at small patches of neuronal membrane (typically using Hodgkin-Huxley or Rall 200

model equations), or at the whole-cell level (e.g. using Izhikevich or Leaky Integrate-and- 201

Fire model equations); or 2) a ‘top-down’ approach, which represents the collective activity 202

of neurons sharing some common characteristics, such as the type of synapses they connect 203

to (excitatory or inhibitory) instead of focusing on individual cells (Cook et al., 2021; Cooray 204

et al., 2023). While the former approach is a closer representation of biological neurons with 205

finer details, it is often inadequate for modelling empirical phenomena emerging from large- 206

scale brain activity, as the complexity rapidly increases with the number of neurons involved, 207

resulting in interpretability and computational issues (Cook et al., 2021). Since our investigation 208

focuses on the alpha rhythm, we prioritize models that take a ‘top-down’ approach in our study, 209

and provide a systems-level perspective which can give a more holistic understanding of alpha 210

rhythm and its functional significance. 211

The top-down perspective, based on the concept of neural ensemble dynamics (Breakspear, 212

2017), assumes that the activity of each individual neuron is negligible at large spatial scales. 213

Instead, the aggregate activity of a population of neurons with a common type of synaptic 214

connectivity (i.e. excitatory or inhibitory) is considered, and the states of neurons across the 215
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ensemble are assumed to be uncorrelated. This approach, which is followed by all NPMs, is 216

particularly useful for modelling oscillatory activity such as the alpha rhythm, since the spatial 217

scales of the variables are equivalent to the physical coverage of an individual EEG channel 218

(mm2 - cm2) and so can be understood as approximating local field potentials (Coombes et al., 219

2014; Evertz et al., 2022). 220

NPMs therefore represent a mesoscale formulation that aims to capture the emergent prop- 221

erties of collective activity within a patch of neural tissue. In the literature, the term NPM 222

is used with varying interpretations. In our context, NPMs encompass a range of large-scale 223

computational models namely neural mass models, mean-field models, and neural field models 224

(Deco et al., 2008; Bojak, 2014). Models following the ensemble approach can be further re- 225

duced by assuming a diffusion approximation (Coombes and Byrne, 2019; Deco et al., 2008). 226

In this formulation, the neural population activity is then defined as a standard normal proba- 227

bility distribution, and is completely characterized by the mean and variance of the firing rate 228

(Breakspear, 2017). Dynamics expressed as a linear, normally distributed ensemble can be de- 229

scribed using the Fokker-Planck equations. For a more detailed description of these equations 230

and models of large-scale brain dynamics, we refer the reader to Breakspear (2017). If strong 231

coherence is assumed between neurons, the activity of the ensemble is sufficiently close to the 232

mean that the variance becomes fixed, reducing the number of dimensions. NMMs can be 233

understood as a special case of the Fokker-Planck equations where the variance is fixed, and 234

the mean remains variable. They are then able to represent the coarse-grained activity of large 235

populations of neurons and synapses with a small number of equations (Jansen and Rit, 1995; 236

Lopes da Silva et al., 1974; Breakspear, 2017). NMMs are the simplest type of NPM capable 237

of describing the change in firing rate of neural populations without spatial information and 238

spatiotemporal time delays, providing a succinct yet biophysically meaningful description of 239

brain activity at the mesoscopic scale (Spiegler, 2012; Cook et al., 2021). The main advan- 240

tage of NMMs is that the simplification of the dynamics reduces the number of dimensions 241

or differential equations that need to be integrated, enabling us to hone in on the behavior of 242

a large number of ensembles and more clearly understand their dynamics (Deco et al., 2008). 243

Furthermore, complex systems may exhibit emergent behavior that cannot be explained solely 244

by the behavior of individual components, but rather arises from the collective interactions and 245

relationships among them (Breakspear, 2017). Thus, rules governing the behavior of a complex 246

system may differ from those at lower levels of organization, as the system as a whole can be 247

more than the sum of its individual parts (Moran et al., 2011). The aim is to propose a model 248

that is balanced between mathematical tractability and biological plausibility (Spiegler, 2012). 249

Since NMMs assume a point mass, they evolve in time but not in space, unlike neural 250

field models (NFMs) which include a spatial component by considering the cortex as smooth 251

sheet, supporting waves of propagating activity (Pinotsis et al., 2014; Breakspear, 2017) usually 252

expressed in the form of a damped wave equation allowing the description of the activity over 253

the entire cortex. When spatial uniformity is assumed in a NFM, the model can be likened 254

to a NMM. Simulation of whole-brain activity with NMMs can also be achieved by coupling 255
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neural masses according to a weighted connectivity matrix representing the strength of the 256

anatomical connections, known as the connectome, often estimated with diffusion-weighted 257

MRI data (Breakspear, 2017; Schirner et al., 2018; Glomb et al., 2021). Each node corresponds 258

to a NMM depicting a brain region to collectively form an integrated brain network model. 259

Alpha oscillations have been successfully simulated with both NPM (NMM and NFM) and 260

have been studied to shed light on the complex dynamics of neural systems. In the following 261

paragraph, we discuss early pioneers of NMMs and NFMs who have greatly influenced current 262

models in terms of structure, parameter values, and implementation. 263

264

1.4 Tracing the roots of NPMs: early history 265

The notion of neural masses was introduced in various forms during the 1950s and 1960s 266

(Beurle, 1956; Griffith, 1963), and consolidated in the 1970s primarily through the highly in- 267

fluential work of Freeman, Wilson & Cowan, Amari, and Nunez. It was Freeman who origi- 268

nally used the term ‘neural mass action model’ (Freeman, 1972a,b, 1975), articulating many of 269

the neurobiological and mathematical fundamentals as they are understood today in a wide- 270

reaching monograph on the subject (Freeman, 1975). Here, Freeman also develops the theory 271

of ‘K-sets’ which are based on a hierarchy of interacting sets of neural populations or masses, 272

and used to model neural population dynamics with ordinary differential equations (ODEs) to 273

simulate mesoscopic local field potentials (Deschle et al., 2021). The levels are designated as K0, 274

KI, KII, and KIII, with the K0 set corresponding to a model characterized by non-interactive 275

collections of neurons with globally common inputs and outputs, KI to pairs of interacting K0 276

sets, and so on. Freeman’s research on the olfactory bulb and prepyriform cortex of cats and 277

rabbits (Freeman, 1979, 1975) provides valuable experimental data that has been used to define 278

mathematical formulations and parameter settings in many NMMs, which is further discussed 279

in section 3.2.4. Furthermore, Freeman’s contributions on the use of the sigmoidal operator for 280

mapping membrane potential to firing rate remains a critical component of many NMMs, the 281

validity of which will be elaborated on in section 4.2. Even though Freeman coined the term 282

neural masses and laid much of the groundwork, many of the core mathematical principles of 283

NMMs were first proposed in the work of Wilson & Cowan (WC; Wilson and Cowan, 1972), 284

which itself builds upon earlier work by Beurle (1956). WC’s implementation introduced and 285

solidified an approach to modelling neural dynamics and brain function. This approach con- 286

sists of analyzing the collective properties of a large number of neurons using methods from 287

statistical mechanics rooted in the mean-field framework (Destexhe and Sejnowski, 2009; Chow 288

and Karimipanah, 2020). By omitting potential spatial arrangement of synaptic connections, 289

their model offers a minimalistic NMM representation that has been leveraged to develop sev- 290

eral simple yet biophysically plausible models (eg Kilpatrick, 2013; Sanz-Leon et al., 2015). As 291

shown in Fig. 3, the canonical WC model consists of two neural masses with one excitatory and 292

one inhibitory population (Wilson and Cowan, 1972; Sanz-Leon et al., 2015). Two nonlinear 293

ODEs describe the dynamics of those two synaptically coupled populations in the neocortex 294
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(Nakagawa et al., 2014; Cowan et al., 2016). The WC system is thus a coarse-grained descrip- 295

tion of the overall activity and mesoscale neuronal network structure of a patch of (usually 296

cortical) tissue, as is typical of NPMs. By varying the connectivity strength and the input 297

strength to each population, it is possible to generate a diversity of dynamical behaviors that 298

are characteristic of observed activity in the brain, such as multistability, oscillations, traveling 299

waves, and spatial patterns (Kilpatrick, 2013). 300

Figure 3. Wilson-Cowan model topography and mathematical expression . The model aims to rep-

resent a cortical column within the brain, consisting of an excitatory and an inhibitory population. These two

connected populations each have a self-connection and external activity as input. Dynamics are expressed with

nonlinear ordinary differential equations which are shown on the right for each neural population. Nonlinearity

is introduced with the sigmoidal operator corresponding to the activation function.

A simplified version of the WC equations shown in Fig. 3 has been previously implemented 301

by Abeysuriya et al. (2018) in a network of neural masses to generate alpha oscillations. These 302

two populations are described as follows: 303

τe
dE(t)

dt
= −E(t) + S(weeE(t) + wieI(t) + P + ϵ(t)) (1)

τi
dI(t)

dt
= −I(t) + S(weiE(t) + ϵ(t)) (2)

where E and I represent the activity of the excitatory and inhibitory neural populations 304

in the form of mean firing rates, τe/i are the excitatory/inhibitory time constants, wab are the 305

local connection strengths from population a to population b, P is a constant external input 306

to the excitatory neural population, and ϵ is a noise signal added to the system. The studied 307

NMMs share similar parameters, with some variations such as the use of membrane potential 308

instead of firing rates as the state variable, and the concatenation of the external input and 309

noise term into a single variable. 310

Concurrently to WC and Freeman, Lopes da Silva and colleagues developed a point-process 311

model of EEG alpha rhythm generated with a corticothalamic loop (Lopes da Silva et al., 1974). 312
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Specifically, these authors proposed a negative feedback loop between excitatory thalamocor- 313

tical relay cells and inhibitory thalamic reticular neurons as the basis for generating certain 314

brain rhythms, in a manner similar to the interacting E and I populations in the WC model. 315

By applying linear systems analysis to investigate the influence of physiological parameters on 316

neural periodic patterns, they established a novel approach to studying oscillatory dynamics 317

in theoretical neuroscience that relied on analytical power spectra. The Lopes da Silva model 318

had a substantial impact on subsequent corticothalamic models and linear analysis tools (Cona 319

et al., 2014; Bhattacharya et al., 2011). 320

A few years later, Zetterberg et al. (1978) built an extension of the model by adding a second 321

cortical excitatory population in order to separately account for pyramidal cells and excitatory 322

interneurons. Their work was then reprised and further popularized by Jansen and Rit (1995). 323

In the JR model, each neural population is described in two steps: a transformation of the 324

incoming average pulse density of action potentials into an average postsynaptic membrane 325

potential, followed by a sigmoidal function to perform the inverse conversion. Over the years, 326

several extended versions of JR have been proposed (Wendling et al., 2000; David and Friston, 327

2003; Zavaglia et al., 2006; Sotero et al., 2007), - including Moran et al., where they focused 328

on steady-state spectral responses with a linearized approximation of the model (Moran et al., 329

2007). Contemporaneous with these early conceptualizations and formulations of NMMs in 330

the 1970s was the introduction of NFMs by Amari, Wilson & Cowan, Nunez, and others. The 331

‘brain wave equation’ model of (Nunez, 1974) is particularly important here as it was the first 332

to attempt to describe neural activity across the entire cerebral cortex with an evolution in both 333

time and space. This work was a major influence for several macroscale NFM formulations in 334

the 1990s (Jirsa and Haken, 1996; Wright and Liley, 1996; Robinson et al., 1997). The latter 335

of these which was then extended in 2001 to include the thalamus, and subsequently used to 336

investigate a wide range of brain states including sleep (Robinson et al., 2005; Abeysuriya et al., 337

2014), epileptic seizures (Zhao and Robinson, 2015; Breakspear et al., 2006), evoked responses 338

(Kerr et al., 2008), functional connectivity (Robinson, 2014), and alpha rhythms (Robinson 339

et al., 2002, 2005). 340

For a more detailed timeline and review on the development of NPMs and whole brain 341

modelling in general, we refer the reader to Griffiths et al. (2022) and Chow and Karimipanah 342

(2020). The early mathematical models reviewed there and above laid the groundwork for 343

most NPM formulations used in theoretical neuroscience today. In particular, they form the 344

basis for the four most widely studied models of the EEG alpha rhythm - Jansen-Rit (JR), 345

Moran-David-Friston (MDF), Liley-Wright (LW) and Robinson-Rennie-Wright (RRW). Before 346

presenting each of these models individually in detail, we conclude our background review in 347

the next section by examining the two common mathematical operators of NPMs. 348
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1.5 Classification of NPMs and mathematical characteristics of 349

convolution-based models 350

NPMs can be further divided based on different modelling approaches, including convolution 351

vs. conductance-based models and voltage vs. activity-based models. For conductance-based 352

models, very high coherence between neurons is assumed, to the extent that the dynamics of 353

neuron population resembles the dynamics of each single neuron. The mathematical equa- 354

tions then follow the same structure as single neuron conductance-based models (Marreiros 355

et al., 2010; Breakspear, 2017). Since distinct types of ionic currents are explicitly modelled, 356

a direct relationship between modelled synaptic processes and physiological mechanisms can 357

be determined (Moran et al., 2011). In contrast, convolution-based NPMs rely on empirical 358

observations of the collective response of a neural population to their inputs, to build a phe- 359

nomenological model that captures the system’s response. Although convolution-based models 360

lack the biological detail of conductance-based models, they provide a more straightforward and 361

interpretable framework for understanding the system-level dynamics of neural populations. 362

Since the four models reviewed in this paper are considered convolution-based models, 363

each with slightly different expressions or additional elements, we will present the common 364

mathematical foundations between all of them (which is composed of two operators) allowing 365

for relevant comparisons. Even though a conductance-based model is not explicitly investigated 366

here, we note that the LW model incorporates conductance-based components which enables 367

us to determine how these factors affect the dynamics of the model. 368

The mathematical expression of convolution-based NPMs is composed of two key operators: 369

a rate-to-potential operator describing the dynamics between synapses and dendritic trees, 370

and a potential-to-rate operator representing the output firing rate produced at the soma, 371

which were briefly introduced in the description of the WC equations (Figure 3). The rate-to- 372

potential operator describes a conversion from firing rate to membrane potential by excitatory 373

and inhibitory neurotransmitters, usually in the form of an impulse response. It has been 374

shown that the convolution of the incoming spike rate with an impulse response adequately 375

reproduces the postsynaptic potential in response to presynaptic firing (Bhattacharya, 2013). 376

This is expressed as a second-order differential equation, which makes the representation of 377

chemical synapses linear (Rall, 1962, 1964; Freeman, 1975; Spiegler, 2012). The nonlinearity 378

is introduced with the potential-to-rate operator (also known as a wave-to-pulse conversion 379

(Freeman, 1992; Cook et al., 2021)), generally in the form of a sigmoid, which transforms the 380

average membrane potential of the population into the average rate of action potentials fired 381

by the neurons. The sigmoid form is not derived from a biophysical model, but rather seen as 382

a physiologically consistent choice (Coombes and Byrne, 2019). Furthermore, the introduction 383

of nonlinearity allows for the representation of more complex behavior (such as chaos) within 384

the brain. It is worth noting that the sigmoidal shape of the function limits the effective 385

dynamic range (Spiegler, 2012) - the validity of which we discuss further in section 4.2. Thus 386

the central part of all neural populations in convolution-based NPMs is described by a second- 387

order nonlinear ordinary differential equation, which can either be deterministic or stochastic 388
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depending on the external input (usually noise) introduced to the model. NMMs can be further 389

categorized based on the nature of their state variable. In some models, such as WC, the state 390

variable represents the proportion of cells that are active in the population at a given time, 391

referred to as activity-based. On the other hand, in voltage-based models, the state variable 392

corresponds to the membrane potential of the neurons in the population. This means that 393

changes in the state parameters represent changes in the electrical potentials (Griffiths et al., 394

2022). Therefore, NMMs are classified based on the mathematical operators used and the 395

biological representation of the output state variable. 396

Almost all convolution-based NPMs in the literature are built upon the presented mathemat- 397

ical operators, which form the fundamental basis of these models. This allows for meaningful 398

comparisons between models, and the impact of varying model elements on the output can be 399

assessed. It is worth noting that these models can be linearized around their stable points, 400

yielding analytic versions of the model equations. Although many assumptions are made, sta- 401

bility analysis has been useful in understanding the dynamics of the systems in question and 402

their implications for brain organization. Even though they share the same backbone, there are 403

three key factors that distinguish the models: 1) the number of neural population modelled, 404

2) the degree of physiological complexity associated with each neural population, and 3) the 405

connectivity between them. 406

Figure 4. Foundational components of NMM to simulate local brain activity. Neural populations are

composed of A) A rate-to-potential operator describing the postsynaptic potential generated by the firing rates

of the presynaptic neurons; and B) a potential-to-rate operator, typically expressed as a nonlinear function,

to relate the membrane potential of the neurons to their spiking activity. These two operators are the basic

components of NMM and shape the dynamics and behavior of the system.
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2 Methods 407

2.1 Alpha rhythm models 408

With the basic conceptual and mathematical background established, the four selected NPMs 409

representing alternative theories for the genesis of alpha activity - JR, MDF, LW, and RRW 410

- will now be introduced in full detail. In the next few sections we present for each model i) 411

topological and circuit diagrams with the corresponding equations, ii) alpha rhythm simulations 412

using both numerical (differential equation) and analytical (linearized algebraic) expressions1, 413

and iii) a didactic commentary. By comparing and contrasting these models in the subsequent 414

sections, we aim to provide insights into their activity regimes and dynamical properties. All 415

model parameters are listed in Supplementary S.6 along with their definitions. Selected equa- 416

tions are included in figures, while the complete equations for all models can be also be found in 417

Supplementary S.6 for reference, and the Python code implementations in the GitHub reposi- 418

tory accompanying this paper (https://github.com/GriffithsLab/Bastiaens2024 AlphaModels). 419

2.1.1 Jansen-Rit model 420

Based on Lopes da Silva’s lumped parameter formulation (Lopes da Silva et al., 1974), the JR 421

model was one of the first of its kind to reproduce a broad range of EEG oscillation frequencies 422

(including alpha), as well as evoked response waveform, by describing the macroscopic elec- 423

trophysiological activity within a cortical column (Jansen et al., 1993; Jansen and Rit, 1995). 424

Analogously to Zetterberg et al. (1978), JR developed the model with three interconnected 425

neural populations: pyramidal projection neurons (y0), excitatory (y1) and inhibitory (y2) in- 426

terneurons forming two feedback loops - a (fast) excitatory feedback loop and a slow inhibitory 427

feedback loop (Fig. 5A) (Knösche, 2015). The output y1 − y2 represents the net PSP on the 428

pyramidal cell dendrites, which is defined as the difference between the EPSP from the exci- 429

tatory population and the IPSP from the inhibitory population. This quantity corresponds 430

to the membrane potential of pyramidal neurons which can also be understood as the out- 431

put of the columnar microcircuit that is transmitted to other adjacent and distal brain areas. 432

Since pyramidal neurons have their apical dendrites in the superficial layers of the cortex where 433

the postsynaptic potentials are summated, their activity is the primary contribution to the 434

measured EEG signal (Jansen and Rit, 1995; Grimbert and Faugeras, 2006a). 435

The mathematical expression of the sigmoid for JR is defined as 436

S(v) =
2e0

1 + er(V0−v)
(3)

with e0 representing the firing rate at threshold (and 2e0 the maximum firing rate), r denoting 437

1With regards to nomenclature: originally we aimed to find a generalized mathematical form that covered

all four models of interest, and allowed for a single nomenclature with clear correspondences across models

indicated by variable and parameter names. After further exploration we determined however that this is

not possible without an unhelpfully large amount of abstraction. We have therefore elected to write out the

equations following exactly the original and/or primary literature sources.
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the variance of firing thresholds, and V0 corresponding to the mean firing threshold. The 438

impulse response is expressed as follows 439

h(t) = αβte−βt for t > 0, (4)

and corresponds to an alpha function. The parameter α is defined as the maximum am- 440

plitude of the postsynaptic potential, and β represents a sum of the reciprocal of the time 441

constant of the passive membrane and all other spatially distributed delays present in the den- 442

dritic network, condensed into a single lumped term. For the excitatory populations α, β in 443

Eq. 4 correspond to the terms A, a in Fig. 5 respectively, and for the inhibitory population α, 444

β are B, b. 445

After transforming the above impulse response in the Laplace domain, we are able to fully 446

define the system with second-order differential equations (derivation provided in Supplemen- 447

tary S.1). The final set of differential equations are detailed in Fig. 5B with the numerically 448

integrated time series output, the associated power spectrum, as well as the power spectrum 449

obtained with the transfer function in Fig. 5C. It is important to note that the connectivity 450

parameters C1 and C3 are slightly different than C2 and C4 based on the mathematical ex- 451

pression. As noted by Cook et al. (2021), JR assumes that pyramidal cell population equally 452

synapses onto the other two populations. However, the synaptic coefficients at the dendrites 453

of the excitatory and inhibitory populations differ. The inverse is also observed with the pyra- 454

midal cells, as the synaptic coefficient at the dendrites of the pyramidal cells is fixed (1 and -1 455

for excitatory and inhibitory interneurons respectively), but the synaptic connectivity changes. 456

Therefore, C1 and C3 represent these former synaptic coefficients and C2 and C4 are the latter 457

connectivity constants, as seen in the detailed schematic. However, in practice, they all repre- 458

sent connectivity strength and can be likened and associated with each other. Further details 459

are provided in Supplementary S.6 in the details of the JR model equations. 460
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Figure 5. JR model topography, schematic, numerical and analytical mathematical expression,

and alpha simulation results. A) General structure of the model, along with a detailed schematic that

includes the operators and representations of the connectivities; B) Left: Numerical mathematical expression

for each neural population; Right: Transfer function of the model derived using control graph analysis; C)

Simulation outputs of the model with standard parameters (time series, power spectrum estimated from the

time series and analytical power spectrum)

2.1.2 Moran-David-Friston model 461

Many models inspired by JR emerged in the years following their introduction. One of the most 462

influential of these was proposed by David and Friston (2003), later extended by (Moran et al., 463

2007). The MDF model and the JR model (of which it is an indirect extension) thus share many 464
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similar features, and are interesting to compare in terms of the new elements included in David 465

and Friston (2003) and (Moran et al., 2007). One such element is the addition of recurrent 466

inhibitory connections, which were introduced by (Moran et al., 2007) in order to enable the 467

generation of a wider range of oscillatory frequencies. Another is that the contribution from 468

excitatory and inhibitory populations are separated in the equations, giving rise to independent 469

EPSP and IPSP terms. The quantity used in observation models such as EEG as a measured 470

response corresponds to the difference between these two postsynaptic potentials, resulting in 471

supplementary sets of differential equations. A third main modifications from JR in MDF is 472

the expression of the sigmoid, given by 473

S(v) =
1

1 + e−ρ1(v−ρ2)
− 1

1 + eρ1ρ2
. (5)

This differs from the other models surveyed in this paper (cf. Eqs 3, 8, 11) in providing a 474

greater flexibility in its gain behavior, parameterized by shape and position ρ1 and ρ2. 475

The impulse response in MDF is identical to the JR model, and the parameters have the 476

same definition (Supplementary S.6) with some small variable name changes (α,β = He,κe for 477

the excitatory populations, and α,β = Hi,κi for the inhibitory population). 478

The paper by Moran et al. (2007) includes a linearized version of the MDF model that is 479

used to investigate the steady-state responses. For consistency with our analyses of the JR 480

model, here, we have determined an alternative expression for the transfer function (Fig. 6B) 481

using graphical stability analysis. 482
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Figure 6. MDF model topography, schematic, numerical and analytical mathematical expression

and alpha simulation results A) Composed of three neural populations with similar wiring structure to JR

with the addition of an inhibitory self-connection; B) Left: Numerical mathematical expression for each neural

population; Right: Transfer function of the model derived using control graph analysis; C) Simulation outputs

of the model with modified parameters to generate alpha oscillations (time series, power spectrum estimated

from the time series and analytical power spectrum)

2.1.3 Liley-Wright model 483

Liley, Wright, and colleagues (Liley et al., 2001) developed a physiologically parametrizable, 484

two population firing-rate based model of EEG/ECoG dynamics, which differs from JR and 485

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.03.01.583035doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.583035
http://creativecommons.org/licenses/by-nc-nd/4.0/


MDF in several respects. Most notably, this includes i) inclusion of high-order excitatory and 486

inhibitory neurotransmitter kinetics, ii) presence of synaptic reversal potentials, and iii) the 487

separation of each neural population into both a dendritic and a somatic compartment, yield- 488

ing two membrane potential state variables per population instead of one. The LW model can 489

be thought of as a convolution-based model with conductance-based synaptic dynamics (where 490

a neuron is regarded as an electrical circuit and the membrane response follows the inflow and 491

outflow of current through ionic channels). These additional features make it more physiologi- 492

cally realistic than e.g. JR, MDF, and WC, albeit at the expense of greater levels of complexity 493

and nonlinearity (Cook et al., 2021). As with the RRW model discussed below, the LW model 494

was initially formulated as a macroscopic neural field model, with both spatial and temporal 495

variation in the excitatory and inhibitory neural population equations. The version presented 496

here is simplified, however, by neglecting spatial components (setting partial derivatives in the 497

spatial terms of the original equations), and only considering the temporal dynamics - which 498

nevertheless preserves the essential qualitative behavior (alpha-frequency fluctuations) that is 499

our focus in the present paper. These expressions are based on the presentations by Song 500

et al. (2019) and Hartoyo et al. (2019), in which the LW model was used to explore periodic 501

discharges in acute hepatic encephalopathy and eyes-open/closed alpha-blocking, respectively. 502

The sigmoidal firing rate function in the LW model is defined as 503

S(t) =
Smax(e,i)

1 + e−(
√
2V (t)−µe,i)/σe,i

(6)

where Smax(e,i) corresponds to the maximal attainable firing rate, µe,i is the spike threshold, 504

and σe,i is the standard deviation for spike threshold. The soma membrane potential is given 505

by 506

τ V̇ (t) = V r − V (t) +
∑

ψ(V (t))I(t) (7)

where ψ(V (t)) = [V eq−V (t)]
|V eq−V r| , with Vr as the mean resting membrane potential, and Veq the 507

mean equilibrium potential. Similarly to MDF and JR, the impulse response in LW is expressed 508

with an alpha function, 509

h(t) = Γγte1−γt for t > 0 (8)

with a postsynaptic potential peak amplitude Γe,i and rate constant γe,i. 510
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Figure 7. LW model topography, schematic, numerical and analytical mathematical expression,

and alpha simulation results. A) The general structure of the model is two neural populations each with

a self-connection. In the detailed schematic, compared to the other models, a third block is introduced to

transform PSP into soma membrane potential. B) Left: Numerical mathematical expression for each neural

population; Right: Transfer function of the model derived using control graph analysis; C) Simulation outputs of

the model with standard parameters (time series, power spectrum estimated from the time series and analytical

power spectrum)

2.1.4 Robinson-Rennie-Wright model 511

Unlike the three models discussed thus far, the RRW model does not attempt to offer a minimal 512

circuit representation of a single cortical macrocolumn. Instead, this model includes thalamic 513
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neural populations in addition to cortical ones, and thus is primarily concerned with describing 514

cortico-thalamic interactions. RRW permits the exploration of the second class of alpha theory 515

outlined in Fig. 2B, which hypothesize that the corticothalamic loop is central for resting state 516

alpha. The model consists of four neural populations, two cortical (excitatory and inhibitory, 517

similar to previous schematics) and two thalamic (thalamic reticular nucleus and thalamic relay 518

nuclei) (Robinson et al., 2002). In this case, the two cortical populations are lumped together 519

by assuming that intracortical connections are random, making their number proportional to 520

the number of available synapses, and implying that cortical excitatory and inhibitory voltages 521

are equal (Roberts and Robinson, 2012). As noted above, like LW the original formulation of 522

RRW is as a neural field model, making use of a damped wave equation operator for including 523

a spatial representation. However, here we again assume spatial uniformity, removing any 524

spatial variations, as indeed is commonly done in analyses of this model. Propagation delay 525

and long axonal ranges are still preserved solely for the cortical excitatory population, this 526

being the only population large enough with distant connections for wave propagation to have 527

a significant effect (Zhao et al., 2015). Furthermore, a corticothalamic loop delay parameter 528

(t0) is introduced in the model to take into account the conduction delay of the signal when it 529

passes through thalamic nuclei and the projections. The differential equations comprising the 530

RRW model version we use here are explicitly detailed by Zhao and Robinson (2015), who also 531

modified them to study epileptic seizures and bursting dynamics. The firing rate is defined as 532

Qa =
Qmax
a

1 + e
−Va−θa

σ′
a

(9)

with Qmax representing the maximum firing rate, θa the mean firing threshold, and σ′
aπ

√
3 533

the standard deviation of the threshold distribution. The damped wave equation governing 534

long-range axonal activity propagation is expressed as 535

Daϕa = Qa (10)

with ϕa corresponding to the mean density of outgoing spikes produced by population a 536

and Da =
1
γ2a

∂2

∂t2
+ 2

γa
∂
∂t
+ 1− r2a∇2

537

538

In the spatially uniform case where ∇2 = 0, owing to the short range of cortical inhibitory 539

axons and the relative smallness of the thalamus, γa is so large that the approximation ϕa = Qa 540

can be made for a = i, r, s. This is called the local interaction approximation and is not 541

assumed for ϕe as the propagation effects are significant only when considering the axons of 542

the excitatory cortical neurons, as they are the only ones with sufficient length as mentioned 543

previously (Robinson et al., 2001, 2002; Sanz-Leon and Robinson, 2017). 544

The impulse response in RRW includes both synaptic rise time β−1 and synaptic decay time 545

α−1 parameters, and is defined as 546
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w(u) =
αβ

β − α
(e−αu − e−βu) for β ̸= α

w(u) = α2ue−αu for α = β

(11)

which implies that the dendritic response is 547

Dαβ =
1

αβ

d2

dt2
+

(
1

α
+

1

β

)
d

dt
+ 1 (12)

which is identical to the JR impulse response function when α = β. In the spatially uniform 548

case, the impulse response appears as 549

DαβVe(t) = veeϕe(t) + veiϕi(t) + vesϕs(t− t0/2) (13)

DαβVr(t) = vreϕe(t− t0/2) + vrsϕs(t) (14)

DαβVs(t) = vseϕe(t− t0/2) + vsrϕr(t) + vsnϕn(t) (15)
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Figure 8. RRW model topography, schematic, numerical and analytical mathematical expression,

and alpha simulation results. A) Three main populations are broadly described: the cortex (composed of

excitatory and inhibitory neurons) and two thalamic populations (reticular nucleus and relay nuclei). Delays

are included to take into account long range connections from the cortex to the thalamus; B) Left: Numerical

mathematical expression for each neural population; Right: Transfer function of the model derived using control

graph analysis; C) Simulation outputs of the model with standard parameters (time series, power spectrum

estimated from the time series and analytical power spectrum)
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2.2 Simulation, power spectrum, and stability analysis methods 550

For all four of the selected models, we simulate alpha activity numerically (by integrating the 551

models’ differential equations given in Figs. 5-8 and Supplementary S.6) and analytically, by 552

algebraically calculating the power spectrum from the models’ transfer function. Python is 553

utilized as the programming language for implementing all numerical and analytical equations, 554

as well as statistical analyses and visualization. To ensure consistency, simulations are executed 555

for a duration of 100 seconds, generating a time series that represents neural activity within the 556

principal excitatory cortical population. The power spectrum of this simulated activity is then 557

computed using Welch’s method, as implemented in the scipy library (Virtanen et al., 2020). 558

The ability and accuracy of the models to replicate an empirical alpha rhythm is explored 559

by running numerical simulations with parameter values that are commonly used in previous 560

studies to elicit alpha activity, which we refer to as ‘standard alpha parameters’. The resulting 561

power spectra are compared against characteristic empirical resting state EEG features. These 562

nominal parameter values are taken from Jansen and Rit (1995) for JR, Moran et al. (2007) 563

for MDF (using David and Friston (2003) to tune to a dominant frequency of alpha [8-12Hz] 564

instead of beta [12-20Hz]), Liley et al. (2001) for LW, and Zhao and Robinson (2015) for 565

RRW, which stem from Robinson et al. (2002); Rowe et al. (2004). Defining precise reference 566

features of empirical alpha rhythms presents a challenge, due to the observed heterogeneity in 567

resting state alpha oscillations both within individuals and between individuals across different 568

moments (Niedermeyer et al., 2005). However, certain prominent elements of the resting state 569

power spectral density are well-established. On average, a healthy adult human exhibits a main 570

oscillation frequency near 10Hz, accompanied by the presence of harmonics (Van Albada et al., 571

2010). These features are considered somewhat volatile, as they significantly vary between 572

individuals and across different sessions. More stable or broader resting state EEG features 573

include: the frequency scaling of 1/fβ (β ≈ 1 − 2) (Muthukumaraswamy and Liley, 2018), 574

and the phenomenon of alpha blocking - attenuation of the alpha frequency peak during the 575

transition from eyes-closed (EC) to eyes-open (EO) state. Each model’s estimation of these 576

features is compared against reference values derived from empirical data for evaluation, more 577

specifically from Muthukumaraswamy and Liley (2018) where they used Irregularly Resampled 578

Auto Spectral Analysis to quantify the 1/f components of MEG/EEG/ECoG data. The high 579

and low frequency β values were obtained from 5min 64 channel EEG eyes-closed recordings of 580

seventeen healthy male participants (mean age = 23), and results were confirmed with other 581

datasets (Muthukumaraswamy and Liley, 2018). 582

The β frequency scaling can be quantified in several ways. One approach involves considering 583

the entire spectrum, which empirically tends to fall within the range of 1 to 2. Another approach 584

involves evaluating two distinct values of β, one for lower frequencies (pre-peak) and another for 585

higher frequency values (post-peak). In our simulated results, we estimated β with two different 586

methods: 1) Evaluating pre- and post-peak β separately by fitting a line with linear regression in 587

the logarithmic scale, and 2) Using the power spectrum fit of the FOOOF library (https://fooof- 588

tools.github.io/fooof/; Donoghue et al., 2020), which parametrizes neural power spectra into a 589
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mixture of the 1/fβ background and a Gaussian for each frequency peak. These FOOOF fits 590

are also used to calculate the dominant oscillation frequencies of the power spectra, which are 591

discussed in detail in parameter space figures of Section 3.1.2. We compare the β values approx- 592

imated for each of our models against those estimated from EO and EC resting state EEG data 593

reported in Muthukumaraswamy and Liley (2018). All signal processing analysis and modelling 594

results are fully available at https://github.com/GriffithsLab/Bastiaens2024 AlphaModels and 595

implemented in Python 3.8. 596

To gain further insights into the dynamics generated by JR and LW, we determined the 597

stability of the fixed points of the system as a function of E-I connection strengths. 598

For JR, similar to Grimbert and Faugeras (2006b), the fixed points are determined by setting 599

the derivatives to 0. With some manipulations, the equilibrium points in the (C, y1 − y2) plane 600

with y = y1 − y2 are equal to: 601

y =
A

a
p+

A

a
C2S(

A

a
C1S(y)−

B

b
C4S(

A

a
C3S(y)) (16)

The stability of the fixed points is then defined using the Jacobian matrix 602

Yi,j =



∂y0
∂y0

∂y0
∂y1

∂y0
∂y2

∂y0
∂y3

∂y0
∂y4

∂y0
∂y5

∂y1
∂y0

∂y1
∂y1

∂y1
∂y2

∂y1
∂y3

∂y1
∂y4

∂y1
∂y5

∂y2
∂y0

∂y2
∂y1

∂y2
∂y2

∂y2
∂y3

∂y2
∂y4

∂y2
∂y5

∂y3
∂y0

∂y3
∂y1

∂y3
∂y2

∂y3
∂y3

∂y3
∂y4

∂y3
∂y5

∂y4
∂y0

∂y4
∂y1

∂y4
∂y2

∂y4
∂y3

∂y4
∂y4

∂y4
∂y5

∂y5
∂y0

∂y5
∂y1

∂y5
∂y2

∂y5
∂y3

∂y5
∂y4

∂y5
∂y5


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−a2 AaS ′(y) −AaS ′(y) −2a 0 0

AaC2C1S
′(C1y0(y)) −a2 0 0 −2a 0

BbC4C3S
′(C3y0(y)) 0 −b2 0 0 −2b


with y corresponding to the fixed point of interest and y0(y) =

A
a
S(y). Stability is then defined 603

by calculating the eigenvalues of the matrix Y for each fixed point, and looking at the sign of 604

the real part of the eigenvalues. The system is stable if all the eigenvalues have a negative real 605

part. If at least one of the eigenvalues has a positive real part, it is considered as an unstable 606

fixed point. 607

Using a similar method (estimation of the fixed point, following an assessment of the stability 608

of the fixed points by looking at the real part of the eigenvalues of the Jacobian matrix), the 609

LW equilibrium points’ stability was also determined. The full calculation and equations are 610

detailed in the appendix of Hartoyo et al. (2019) and also in Supplementary S.6. Briefly: 611

The equilibrium point equations can be reduced to: 612

0 = −Ve + Ver + ψee(Ve)Iee + ψie(Ve)Iie (17)

0 = −Vi + Vir + ψei(Vi)Iei + ψii(Vi)Iii (18)
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with 613

Iee =
Γee

γe
Nβ
eeS(Ve) +

Γee

γe
pee (19)

Iei =
Γee

γe
Nβ
eiS(Ve) +

Γee

γe
pei (20)

Iie =
Γie

γi
Nβ
ieS(Vi) +

Γie

γi
(21)

Iii =
Γie

γi
Nβ
iiS(Vi) +

Γie

γi
(22)

The fixed points for Ve and Vi are then estimated by finding the values for which values 614

these two equations intersect. 615

The Jacobian matrix is: 616

Fi,j =



∂Ve
∂Ve

∂Ve
∂Vi

∂Ve
∂Iee

∂Ve
∂Iei

∂Ve
∂Iie

∂Ve
∂Iii

∂Ve
∂Uee

∂Ve
∂Uei

∂Ve
∂Uie

∂Ve
∂Uii

∂Vi
∂Ve

∂Vi
∂Vi

∂Vi
∂Iee

∂Vi
∂Iei

∂Vi
∂Iie

∂Vi
∂Iii

∂Vi
∂Uee

∂Vi
∂Uei

∂Vi
∂Uie

∂Vi
∂Uii

∂Iee
∂Ve

∂Iee
∂Vi

∂Iee
∂Iee

∂Iee
∂Iei

∂Iee
∂Iie

∂Iee
∂Iii

∂Iee
∂Uee

∂Iee
∂Uei

∂Iee
∂Uie

∂Iee
∂Uii

∂Iei
∂Ve

∂Iei
∂Vi

∂Iei
∂Iee

∂Iei
∂Iei

∂Iei
∂Iie

∂Iei
∂Iii

∂Iei
∂Uee

∂Iei
∂Uei

∂Iei
∂Uie

∂Iei
∂Uii

∂Iie
∂Ve

∂Iie
∂Vi

∂Iie
∂Iee

∂Iie
∂Iei

∂Iie
∂Iie

∂Iie
∂Iii

∂Iie
∂Uee

∂Iie
∂Uei

∂Iie
∂Uie

∂Iie
∂Uii

∂Iii
∂Ve

∂Iii
∂Vi

∂Iii
∂Iee

∂Iii
∂Iei

∂Iii
∂Iie

∂Iii
∂Iii

∂Iii
∂Uee

∂Iii
∂Uei

∂Iii
∂Uie

∂Iii
∂Uii

∂Uee

∂Ve
∂Uee

∂Vi

∂Uee

∂Iee
∂Uee

∂Iei

∂Uee

∂Iie

∂Uee

∂Iii

∂Uee

∂Uee

∂Uee

∂Uei

∂Uee

∂Uie

∂Uee

∂Uii

∂Uei

∂Ve

∂Uei

∂Vi

∂Uei

∂Iee

∂Uei

∂Iei

∂Uei

∂Iie

∂Uei

∂Iii

∂Uei

∂Uee

∂Uei

∂Uei

∂Uei

∂Uie

∂Uei

∂Uii

∂Uie

∂Ve

∂Uie

∂Vi

∂Uie

∂Iee

∂Uie

∂Iei

∂Uie

∂Iie

∂Uie

∂Iii

∂Uie

∂Uee

∂Uie

∂Uei

∂Uie

∂Uie

∂Uie

∂Uii

∂Uii

∂Ve

∂Uii

∂Vi

∂Uii

∂Iee

∂Uii

∂Iei

∂Uii

∂Iie

∂Uii

∂Iii

∂Uii

∂Uee

∂Uii

∂Uei

∂Uii

∂Uie

∂Uii

∂Uii


which evaluates to 617

Fi,j =



G(Ve) 0 ψee(Ve)
τe

0 ψie(Ve)
τe

0 0 0 0 0

G(Vi) 0 ψei(Vi)
τi

0 ψii(Vi)
τi

0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

ΓeγeeN
β
eeS

′(Ve) 0 −γ2e 0 0 0 −2γe 0 0 0

ΓeγeeN
β
eiS

′(Ve) 0 0 −γ2e 0 0 0 −2γe 0 0

0 ΓiγieN
β
ieS

′(Vi) 0 0 −γ2i 0 0 0 −2γi 0

0 ΓiγieN
β
iiS

′(Vi) 0 0 0 −γ2i 0 0 0 −2γi


with 618
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G(Ve) =
1

τe
(−1− Iee

|V e
e q − Ver|

− Iie
|V e
i q − Vir|

) (23)

G(Vi) =
1

τi
(−1− Iei

|V e
e q − Vir|

− Iii
|V e
i q − Vir|

) (24)

We then replace Ve and Vi with the equilibrium points computed previously, and the real 619

parts of the eigenvalues of this Jacobian matrix are then examined to assess their stability. 620

In summary: we have given a description of each of the selected neural population mod- 621

els of alpha activity (JR, MDF, LW, RRW), highlighting those aspects of the biological and 622

mathematical formulation that are of particular note, and/or that vary in readily describable 623

ways between two or more of the four. Figs. 5-8 show in a colour-coded fashion key parts of 624

the numerical and analytical mathematical expression for each model (full details given Sup- 625

plementary S.6), with the corresponding simulated time series and power spectra output shown 626

for standard alpha oscillation parameter conditions. The aim of our numerical explorations of 627

these models in the following was to determine 1) to what extent do these models accurately 628

capture empirical EEG alpha rhythms, 2) how do rate constant and connectivity parameters 629

influence the alpha regime and the dynamics of the model, and 3) what do the differences 630

between the models imply for EEG alpha rhythmogenesis, and what are their limitations. 631

3 Results 632

Having presented and contrasted the four candidate alpha models (JR, MDF, LW, RRW) in 633

terms of their motivation and formulation, we now turn to an assessment of their simulated 634

activity dynamics. First, we present numerical and analytic spectra, discussing general charac- 635

teristics and comparing them quantitatively against empirical EEG features from (Muthuku- 636

maraswamy and Liley, 2018). Second, an exploration of the boundaries of the alpha regime 637

is conducted through parameter searches, with a specific focus on discerning the impact of 638

rate constant and connectivity on the dominant oscillation frequency. Last, a comprehensive 639

comparison of the models is provided, encompassing various facets including their topology, 640

mathematical equations, and the biological significance attributed to the parameters. 641

3.1 Analysis of neural model dynamics 642

3.1.1 Characteristics of model-generated alpha activity 643

Frequency peak and harmonics 644

Each of the models displays a dominant oscillatory frequency within the alpha range for the 645

originally-reported default parameters, with values of 10.8Hz, 8.8Hz, 11.6Hz, and 9.5Hz ob- 646

served for JR, MDF, LW, and RRW, respectively (Fig. 9A). With these parameter settings, JR 647

closely approximates the 10Hz frequency, while LW demonstrates a slightly higher value, and 648

RRW a lower value. Importantly, all of these frequencies fall well within the alpha oscillatory 649
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range of 8-12Hz, indicating that the models adequately simulate the alpha frequency peak. It 650

should also be noted that there is considerable heterogeneity across subjects in terms of both 651

the central frequency and magnitude of the alpha rhythm (Haegens et al., 2014), and slight 652

modifications in the model parameters have the potential to shift the peak frequency up or 653

down, providing flexibility in matching specific experimental recordings. Differences between 654

individuals in model parameters can be potentially also related to their cognitive profile as, 655

alpha peak is considered as a biomarker for healthy cognitive functioning. 656

In addition to the main frequency, harmonics in the beta range are also present in each 657

model, albeit with varying degrees of accentuation. Of these, LW exhibits the least pronounced 658

harmonics, suggesting a closer approximation to a pure sinusoidal waveform. In contrast, RRW 659

shows more prominent harmonics, which is evidenced in particular by the fact that (unlike the 660

other three models) these still appear in its linearized approximation. This variable presence 661

of harmonics across the four models, and their subtle dependence on parameter values and 662

nonlinearities, underscores the complex nature of alpha oscillations in the brain and their 663

spectral characteristics. 664

1/f scaling 665

Empirical studies have shown that aperiodic activity (also known as 1/f noise) observed in EEG 666

power spectra following a power-law function could play a functional role in healthy brains and 667

explain disease symptoms. For example, cognitive decline in ageing has been associated with 668

increased 1/f noise (slope) in the power spectrum (Voytek et al., 2015), as well as aperiodic 669

varitions in stroke patients (Johnston et al., 2023). The 1/f noise is therefore an important 670

feature of resting state EEG. Visually, the shape of the 1/f curve from the RRW model closely 671

resembles the empirical 1/f curve (see e.g. Freeman et al. (2003); Dehghani et al. (2010)). In 672

contrast, this feature is poorly represented by JR, which may be due to the fact that the system 673

generate almost a perfect sinusoid, whereas RRW for instance seems to have more aperiodic 674

fluctuations in the EEG time series. 675

Table 1 presents the computed data feature values across all four models. Comparison with 676

the mean empirical EEG result (0.76) shows that 1/f pre-peak values are considerably lower 677

for JR and LW (0.36 and 0.48 respectively), but much higher for RRW (1.64). Empirically, 678

lower frequencies (pre-peak) exhibit steeper slopes in frontal areas, but these quantities for 679

the JR and LW models are notably low. At higher frequencies (1/f post-peak), JR has the 680

steepest slope (4.03), followed by RRW (3.78) then LW (2.46). All three models yield post- 681

peak values above the empirical mean (1.21). Inversely to lower frequencies, empirically these 682

higher frequencies in the 1/f post-peak range tend to have steeper slopes in posterior areas. 683

However, the simulated post-peak values observed are significantly higher than the empirical 684

values provided in Muthukumaraswamy and Liley (2018). 685

To summarize, the models demonstrate an underrepresentation of lower frequencies in JR 686

and LW, and an overrepresentation in RRW. They all exhibit considerably steeper slopes for 687

higher frequencies than the empirical average, due to their representing only the posterior area 688
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of the brain, instead of an average value across the cortex. Visually, RRW appears to be the 689

most similar to empirical resting state EEG, especially for the representation of 1/f in lower 690

frequencies, which is not accounted for in the other models. Finally, consistent with empirical 691

findings, all models have lower pre-peak 1/f values than post-peak 1/f values during EC, with 692

higher frequencies displaying steeper slopes in posterior areas within the cortex. 693

Eyes open vs. Eyes closed 694

A defining characteristic of the resting state alpha rhythm in visual areas is that its amplitude 695

is attenuated in EC compared to EO conditions, a phenomenon known as alpha blocking (Barry 696

and De Blasio, 2017; Adrian and Matthews, 1934; Chapman et al., 1962). We examined the 697

ability of our surveyed models to reproduce this effect by modifying relevant parameters based 698

on previous research findings. In the LW model, increasing the external input to the inhibitory 699

cortical population resulted in a reduction of alpha activity, consistent with the intuitive idea 700

that an increase in the amount of incoming visual information is what characterizes the tran- 701

sition from EC to EO (Hartoyo et al., 2020). Similar effects were also observed in the JR and 702

MDF models, where an increase in external input led to the alpha blocking. In these cases 703

however, input is (and can only be) delivered to the excitatory rather than the inhibitory neu- 704

ral population. For RRW, we selected a specific parameter set that simulates the EO state 705

based on detailed studies conducted by (Rowe et al., 2004). According to these authors, the 706

transition from the EC to EO state is associated with a decrease in cortico-thalamocortical and 707

intrathalamic gains, accompanied by increased cortical gains and dendritic rate parameters, 708

which together lead to an alpha blocking behavior in the RRW model. Interestingly, these 709

observations regarding RRW are broadly consistent with the behavior of the three intracortical 710

models: In JR, MDF, and LW, the attenuation of the alpha rhythm is caused by an increase in 711

input representing incoming visual stimuli. In the case of RRW, it is mediated not by a direct 712

input per se, but by a decrease in corticothalamic interactions and an increase in cortical gains. 713

This increase in cortical activity causing alpha blocking in RRW could be considered analogous 714

to the increase in cortical activity caused by greater driving input in JR, MDF, and LW. 715

In summary, all four models capture key features of empirically observed alpha rhythms, in 716

terms of frequency peaks, harmonics, alpha blocking, and 1/f scaling. Of the four, RRW is in 717

general notably closer to empirical EEG data in both its 1/f behavior and its harmonics. It is 718

important to acknowledge however that this analysis is based on a specific set of parameters, 719

which can be restrictive given the wide range of parameter combinations that can give rise to 720

the alpha regime. Therefore, further exploration of the parameter space boundaries is crucial 721

to gain a more comprehensive understanding of the emerging behavior and dynamics of the 722

alpha rhythm. 723
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Figure 9. Simulation results with standard parameter settings to generate characteristic resting

state alpha oscillations features A) Power spectra with characteristic occipital alpha rhythm from empirical

EEG time series (left), from numerical simulation results (middle), and from analytical simulations (right). The

red zone in the simulated results corresponds to the alpha range. All models generate an alpha oscillation with

variations in specific features (peak frequency, presence of harmonics, 1/f shape). B) Simulation results for EC

and EO in JR, LW and RRW. The difference from EC to EO is an attenuation in the amplitude of the alpha

rhythm.

Model Main fr. 1/f pre-peak 1/f post-peak Harmonics

JR 10.8 0.39 4.04 Y

MDF 8.8 0.10 5.50 Y

LW 11.6 0.48 2.46 Y

RRW 9.5 1.64 3.78 Y

Empirical ≈ 10 0.76 1.21 Y

Table 1. Evaluating Model Performance against Empirical EEG Features To assess the performance

of each neural mass model, we estimated its characteristic features, such as the main frequency, slope, and

presence of harmonics, and compared them against the corresponding empirical measures obtained from resting

state EEG recordings. These features are known to be informative of the underlying neural dynamics that give

rise to the EEG signal. By evaluating the agreement between the model-based estimates and the empirical

approximations, we can determine the extent to which the model captures the essential aspects of brain activity

during rest.
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3.1.2 Structure of parameter space 724

Alpha oscillations are generated by non-unique parameter sets, and while there may be quan- 725

titative differences in parameter values between models, their qualitative behavior may be 726

similar. In the next section, we explore alpha regime boundaries and the necessary conditions 727

for producing a dominant frequency in the alpha range, as a function of rate constant and 728

connectivity parameters. We also identify any other dynamical regimes that the model may 729

present. Parameters with similar biological interpretations between the models are compared 730

in order to provide a meaningful comparison. To ensure consistency, all other parameters are 731

maintained in their standard resting state setting (Tables in Supplementary S.6). 732

Rate constant parameter space dynamics 733

The JR, MDF and LW models exhibit distinct excitatory and inhibitory impulse responses 734

that are modulated by rate constants (τe and τi). These rate constants reflect collective pas- 735

sive dendritic cable delays and neurotransmitter kinetics associated with fast synaptic activity 736

involving glutamatergic AMPA receptors and GABA receptors (Spiegler, 2012). This synaptic 737

filtering is assumed to take a different shape in excitatory than in inhibitory neural populations 738

in most of the four models, with the exception of RRW - where the same rate constant is used 739

for AMPA as for GABA receptors. Previous studies have demonstrated that the manipulation 740

of these rate constants can significantly impact the dominant frequency of oscillations (David 741

and Friston, 2003; Gast et al., 2019). In our investigation, we aim to determine whether similar 742

patterns of frequency changes can be observed across the parameter space for all three models. 743

744
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Figure 10. Effect of rate constants on dominant frequency of oscillation for the JR, MDF, and

LW models. A) Example time series and power spectra of a set of specific rate constant values to show

the slowing in frequency as the values of the excitatory and inhibitory rate constant increase. B) Heatmap

presenting the dominant frequency of oscillation as a function of the rate constants of the JR model. C)

Three heatmaps for the JR, MDF and LW with the dominant frequency of osicllation as a function of the rate

constants. For JR and MDF τe and τi are varied from 2ms to 60ms. For LW, τe changes from 1.72ms to 5ms,

and τi from 10 to 50ms to generate oscillatory behavior.

Across all models, a consistent trend is observed where the predominant rhythmic frequency 745

decreases with an increase in both rate constants, aligning with previous analyses (David and 746

Friston, 2003). For the LW model, the range of values for τe and τi differs due to the system’s 747

tendency to diverge if τe becomes excessively high compared to τi. Due to this, in Fig. 10 we 748

constrain the possible range of values to 1-10 ms for τe and 10-60 ms for τi. With a uniform 749

external input, the JR model has a peak oscillatory frequency of 12.4 Hz, falling within the 750

high alpha / low beta range. MDF can elicit higher beta oscillations with a normal noise 751

input when rate constant are both small. This suggests that the inclusion of self-inhibitory 752

connections in MDF contributes to generating higher frequency oscillations. Notably, both JR 753

and MDF exhibit a phenomenon known as a ‘hypersignal’ (David and Friston, 2003) when τi is 754

considerably higher than τe, which is typically associated with lower frequency oscillations. In 755

such cases, the time series does not produce an exact sinusoidal oscillation (Fig. 10). Conversely, 756

if τe becomes too high compared to τi, neither model shows oscillatory patterns. This means 757
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that a balance needs to be kept in order to maintain a periodic behavior, which can be achieved 758

by keeping the product of He,i and τe,i constant by appropriately adjusting He and Hi as τe 759

and τi is modified (David and Friston, 2003). 760

In the LW model, equivalent hypersignal behavior is observed when τe is excessively high 761

compared to τi, while in the opposite case of τi higher than τe no oscillatory activity is seen. 762

Furthermore, as shown in Fig. 10, this hypersignal activity occurs above the alpha regime in 763

τe vs τi space for JR and MDF, and below the alpha regime for LW (Fig. 10). What these 764

observations suggest is that the central alpha oscillatory regime in JR and MDF operates in a 765

manner that is intrinsically different to the alpha regime in LW - a question we revisit through 766

the lens of linear stability analyses below. 767

As expected, modifying the shape of the synaptic filtering through the rate constants has an 768

influence on the rhythmic behavior of the system. Increasing both rate constants simultaneously 769

leads to a decrease in the frequency of oscillation since longer delays are then introduced. For 770

example, if a disease affects the propagation of action potentials, it could lead to a decrease 771

in the dominant frequency of oscillation. In the RRW model, τe and τi are assumed to be 772

equal, considering that the difference in rise time between AMPA and GABA-A is negligible 773

and, therefore, the synaptic filtering is the same between excitatory and inhibitory neurons. 774

This assumption can be questioned as changes in rate constants in the other models have been 775

shown to affect the central frequency. 776

Connection Strength 777

The strength of connections between neural populations plays a role in facilitating communi- 778

cation, and thus when the strength of these connections is appropriately balanced, it enables 779

coordinated neural activity, leading to the generation of brain rhythms. Even though on the 780

face of it the neural populations included in the four models differ quite considerably, they all 781

exhibit at least one common element - a principal excitatory-inhibitory (E− I) loop. The ratio 782

of synaptic weights within that loop relates closely to the concept of ‘E/I balance’, a widely 783

studied physiological phenomenon that has garnered significant attention in neuroscience in 784

recent years (Meisel et al., 2017; Zhou and Yu, 2018; Sohal and Rubenstein, 2019; Murray 785

et al., 2014). We explored the impact of connectivity parameters on the dominant frequency 786

of oscillation. To maintain conciseness, we exclude the connectivity parameter spaces of MDF 787

in this section, since the patterns observed are very similar between JR and MDF, with the 788

distinction that MDF tends to generate higher frequencies of oscillation for the same set of 789

parameter values. A comprehensive summary of the comparison between JR and MDF can be 790

found in Supplementary S.2. 791
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Figure 11. Frequency of oscillation parameter spaces as a function of E-I connectivities A)

Schematic of the models with their principal E-I loop highlighted. These are the parameters that are going

to be varied. B1 and B2) Time series and corresponding power spectra for specific combinations of E-I,

showing different dynamics. C) Heatmaps presenting the dominant frequency of oscillation as a function of

E-I connectivity. The dark region presents non-oscillatory or non-physiological time series. JR and LW have a

clearly defined regime of lower frequency of oscillations being generated (purple and red region), whereas RRW

quickly tends to produce signals of lower amplitude, or higher frequency of oscillations. In RRW, the dark blue

regime indicates that the system is still oscillating but at a higher amplitude and higher frequency as the system

is starting to explode. In the light blue regime, the dominant frequency of oscillation is in the beta regime. In

the three models, white or orange areas correspond to alpha or higher oscillations.

JR’s E-I interaction is represented by the connectivity strength between pyramidal cells 792

and inhibitory interneurons. Since the LW model is only composed of one excitatory and one 793

inhibitory neural population, the parameters of interest are the two synaptic weights connecting 794

the two populations. Finally, for RRW, the reticular nucleus inhibits the relay nuclei and is 795

considered the inhibitory population of the model. In this context, we consider the relay nuclei 796

as having a central role and can be compared to the pyramidal cells in the JR model, as they 797

are connected to all other populations. The excitatory-inhibitory interaction explored is then 798

within the thalamus between the relay nuclei and the reticular nucleus. It should be noted that 799

this interaction is not an isolated loop, because it is embedded within the larger cortex-reticular 800

nucleus-relay nuclei loop, and so is also affected by the activity from the cortex. However, for 801

simplicity, our focus is on the E-I interaction between the two thalamic populations. 802

After exploring various parameter ranges, we identified specific values that produced distinct 803

behaviors for each model, and focused on these dynamic regimes. Results of these analyses are 804
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shown in Fig. 11. As can be seen in the heatmaps, we observe an inverse diagonal relationship 805

between E-I connectivity and the parameter regime giving rise to alpha frequency oscillations 806

in all three models. This illustrates the fact that it is the total amount of E-I connectivity, or 807

the total E-I gain, that defines the presence of alpha rhythm in these models. 808

A second common feature across all three models is that if the excitatory or the inhibitory 809

connectivity is too low, non-physiological results are obtained. These include time series with 810

either very low amplitude or very high frequency (dark region in Fig. 11 panel D), highlighting 811

the importance of the interaction between these two populations for the generation of rich 812

neural dynamics. 813

The relationship between C3 (P → I) and C4 (I → P ) in JR in order to generate al- 814

pha oscillations correspond to an exponentially decaying function. A similar correspondence 815

is observed in the LW model, although with a narrower range of possibilities due to model 816

constraints. Furthermore, LW presents a steeper slope, indicating a stronger effect on the dy- 817

namical regime of the input from GABA interneurons (Nie) on the frequency than the input to 818

GABA interneurons (Nei). Both the JR and LW models generate lower frequency oscillations, 819

corresponding to the hypersignal regime, as observed in the analysis of rate constant parameter 820

space (purple color in the JR and LW heatmaps in Fig. 11 C, rows 1 and 2). In the LW 821

model, if the connectivities are increased beyond this regime, predominantly alpha-frequency 822

activity is generated (triangular white zone above the purple region), which corresponds to the 823

dynamics observed with standard connectivity parameter values. To better understand this 824

difference, a local stability analysis was performed to define the fixed points of the JR and LW 825

models, and expand on their dynamical characteristics (Fig. 12). In the case of JR, the colored 826

alpha regime presents unstable fixed points that continue into the hypersignal regime. These 827

oscillations are due to an Andronov-Hopf bifurcation, wherein the system enters a limit cycle 828

that changes shape over time (Fig. 12, 1a and 1b). In LW, an Andronov-Hopf bifurcation 829

also occurs, explaining the hypersignal and some higher frequencies on the left hand side of 830

the lower frequency region (Fig. 12, 3a and 3b), including alpha. However, the alpha regime 831

in LW generated with standard parameter values lies within the space of stable fixed points 832

(Fig. 12, star in 3b), which corresponds to the triangular white regime in the LW heatmap 833

(Fig. 11, C LW). This implies a separate emergent mechanism of alpha rhythm in LW that 834

is distinct from the emergence of a limit cycle that is seen in JR. The generated alpha in this 835

setting is noise-driven, since without noise the system becomes a damped oscillator (due to 836

its having complex eigenvalues with negative real part), and eventually reaches the fixed point 837

(Fig. 12, 4a and 4b). The noise fluctuations repeatedly push the system away from its fixed 838

point at the frequency of alpha, but it tends to stay around that stable point instead of reach- 839

ing a self-sustaining limit cycle oscillation. The stability analysis presented here corroborates 840

the idea that the standard alpha rhythms generated by the LW and JR models constitute two 841

mechanisms that are both physiologically and mathematically distinct. This is consistent with 842

the rate constant and connectivity parameter space results as in the rate constant result, we 843

could identify the hypersignal regime above the alpha regime for JR but below for LW, which 844
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is also seen in the connectivity parameter space result. 845

We also conducted an investigation into the effect of low noise in the JR model (Fig. 12, 846

2a and 2b). This analysis revealed that while the shape of the fixed points curve changed, an 847

Andronov-Hopf bifurcation still occurred, and limit cycle trajectories are still present as can be 848

seen in Fig. 12, 2b (star example). We note that, similarly to the rate constants analysis, C3 849

(P → I) and C4 (I → P ) in JR have ranges of equal values, whereas in LW Nei is significantly 850

larger than Nie. This discrepancy can be attributed to the fact that in JR there is a higher 851

level of excitatory interactivity, due to the additional connections between pyramidal cells and 852

excitatory interneurons (C1 (P → E) and C2 (I → P )), which also have higher values than 853

pyramidal-inhibitory interneurons. 854

As can be seen in Fig. 11, the connectivity values of the the RRW model are of a much 855

smaller range compared to JR and LW, because they represent the connection strength (mean 856

number of synapses times the strength of the response to a unit signal) in mV s rather than the 857

number of synapses between neural populations. Extensive explorations of parameter spaces 858

for this model have been conducted by several authors previously, often using a mathematically 859

simpler reduced version that summarizes connection strengths across aggregated corticocortical, 860

corticothalamic, and intrathalamic loops (Roberts and Robinson, 2012; Abeysuriya et al., 2015). 861

A notable feature of these analyses using the reduced RRW model is the finding that the 862

parameters most strongly influencing the transition from an alpha-frequency regime to lower 863

frequency dynamics are predominantly associated with the corticothalamic loop. The values of 864

these corticothalamic loop parameters in turn determine the effect of variation in intrathalamic 865

loop parameters on the dynamics. In our study, employing parameter sets corresponding to 866

EC conditions, we observed that increasing the intrathalamic connectivities simultaneously led 867

to a decrease in the amplitude of the alpha peak, accompanied by a slight shift in the central 868

frequency. When the change in νsr and νrs are sufficiently high, then the alpha peak disappears 869

which corresponds to the dark colored upper right corner of Fig. 11, C row 3. Interestingly, 870

similarly to the JR and LW models within the analogous parameter range, we observed in 871

RRW an inverse relationship between νsr and νrs. However as νrs becomes more negative and 872

νrs smaller the alpha regime reduces. Frequency increases as well as the oscillatory regime 873

as νrs becomes more positive. When −νrs is smaller than 0.6, we still have alpha oscillations 874

but there is a dominant peak in the beta range (around 20Hz) seen in B1 row 3 for RRW 875

(light blue region). Finally, if νrs is below 0.09 approximately the system starts to explode, 876

resulting in either higher amplitude and frequency oscillations (B2 row 3, dark blue region) 877

or in a continuous very high amplitude value that are not physiologically accurate (B1 row 878

3, dark region). It seems that νsr has an effect on the frequency of the alpha peak which 879

correlates with previous analysis that suggested the importance of corticothalamic interactions 880

as νsr is part of the cortico-reticular-relay nuclei circuit. Adjusting νrs is key in order to have 881

an oscillatory behavior in the system emphasizing the E-I balance reflected in the other two 882

models. However, due to the numerous connections within the model, the thalamus is probably 883

not the sole connectivity parameter capable of having an effect on the frequency of alpha. 884
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In summary, through our exploration of E-I connectivity parameter spaces in the preceding 885

pages and in Figs. 10-12, we have demonstrated that the emergence of alpha oscillations in 886

numerical simulations with the JR, MDF, LW, and RRW models requires the neural circuit 887

in question to reach and maintain a sufficient level of E-I gain, whilst also not exceeding a 888

certain threshold amount. This finding emphasizes the importance of achieving a balance 889

between excitatory and inhibitory activity and connectivity, as alterations in this balance can 890

lead to pathological and/or non-physiological oscillatory patterns. The connectivity parameter 891

space results we have shown indicate in a mathematically explicit fashion how dysregulation 892

of synaptic connectivity may contribute to abnormal brain activity. Furthermore, in LW, we 893

observed that the dynamics of the model are more strongly influenced by inhibitory connectivity 894

(Nie) than by excitatory connectivity (Nei). This suggests that an imbalance in the E-I ratio is 895

more likely to be affected by the number or strength of synapses originating from GABAergic 896

interneurons than glutamatergic ones, highlighting the significance of inhibitory interneurons 897

and their synaptic connections in shaping the overall dynamics of the LW model. Our stability 898

analyses showed that there are distinct mechanisms underlying alpha oscillations in JR and 899

LW. In our analyses of the RRW model, the intrathalamic loop was seen to primarily modulate 900

the amplitude of the alpha peak, with little influence on the dominant frequency of oscillation. 901

Thus, in the RRW model, the dominant frequency of oscillation and the overall dynamics 902

are predominantly modulated by the corticothalamic loop, underscoring the significance of 903

interactions between cortex and thalamus in driving alpha rhythms according to this theory. 904

The narrow range of parameter values leading to alpha oscillations in the RRW model suggests 905

strong interdependencies among the parameters, which need to be carefully adjusted collectively 906

to maintain oscillatory behavior and clearly detectable spectral peaks in model simulations. 907
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Figure 12. Fixed points and corresponding phase planes of JR and LW at specific connectivity

values with high and low noise By performing stability analysis, the stability of the fixed points of JR and

LW is determined for connectivity values intersecting across the parameter space (yellow arrow). For the JR

model, 1a and 2a correspond to the fixed points of JR with noise and low noise, respectively, as well as their

phase planes for specific values of connectivity in 1b and 2b. Similarly to JR, in 3a and 4a the fixed points

of LW with noise and no noise are presented with the corresponding phase planes in 3b and 4b. Unstable

fixed points are red, whereas stable fixed points are blue. The light orange area corresponds to the optimal

connectivity parameter setting to generate alpha oscillations in each model.
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These findings enhance our understanding of the relationship between E-I connectivity, 908

alpha oscillations, and the specific mechanisms at play in the LW and JR models. They 909

emphasize the importance of striking a balance in synaptic connectivity and shed light on the 910

key role of cortico-thalamic interactions in generating and modulating alpha rhythms. 911

3.2 Comparative evaluation of models 912

Initially, our investigation involved comparing the models within the alpha regime and conduct- 913

ing parameter space searches to explore the different dynamical regimes. However, we have not 914

yet explicitly compared the various components that constitute the models, including their 915

topology, equation formulation, and parameter values. The subsequent section of our study 916

aims to address these aspects and critically evaluate the validity of the choices made by each 917

model. A detailed analysis of these factors is also of central importance in understanding and 918

assessing the suitability of the respective models as theories of alpha rhythm generation. 919

3.2.1 Topology 920

Patches of neural tissue, such as the cortical columns (also known as a macrocolumns) typi- 921

cally of interest in NPMs, comprise large numbers of both excitatory and inhibitory neurons 922

that give rise to EPSPs and IPSPs, respectively. Therefore, NPMs commonly have at least 923

a two population structure. Across the models surveyed in the present work, the most min- 924

imal topologically speaking is the LW model, which includes a single excitatory and a single 925

inhibitory population only. Despite this simplicity, the LW is able to capture the balance be- 926

tween excitatory and inhibitory activity, while also including finer biological details such as 927

synaptic reversal potentials and transmitter kinetics (e.g., ‘fast’ AMPA and ‘fast’ GABA). The 928

LW model consists of four connections overall, including a self-connection for each population. 929

While the LW model, characterized by a simple structure with only a single excitatory 930

and inhibitory population, effectively captures the balance between excitatory and inhibitory 931

activity, there is also an interest in incorporating more neural populations to account for specific 932

dynamics, such as adding an excitatory population. The majority of the electrical activity 933

recorded with EEG is generated by groups of pyramidal cells (Louis et al., 2016), as they are 934

the primary excitatory neuron in the brain, making up approximately 70 to 90% of all neurons in 935

the cortex (Elston, 2007). They are predominantly found in layers three and five of the cerebral 936

cortex (Louis et al., 2016). In the JR model, pyramidal cells are separately represented from 937

other excitatory interneurons (commonly referred to as spiny stellate cells, mostly found in layer 938

4; David et al., 2006), yielding a model composed of three neural populations - one greater than 939

the LW model. This additional excitatory population, and thus excitatory feedback loop stems 940

from Katznelson’s approach to explore the importance of (long-range) excitatory connections 941

(Jansen et al., 1993; Katznelson, 1981). Pyramidal cells interact with both excitatory and 942

inhibitory interneurons, resulting in a total of four connections in the model. Thus, despite 943

the difference in the number of neural populations between JR (three) and LW (two), they do 944
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have the same number of connections. This is due to the absence of self-connections in JR. In 945

contrast, the MDF model, which shares a similar topology to JR, introduces a self connection to 946

its inhibitory population. This extension is motivated by experimental and theoretical evidence 947

suggesting the necessity of such connections for high-frequency oscillations in the gamma band 948

(Moran et al., 2007). The corticothalamic RRW model is composed of four neural populations: 949

excitatory and inhibitory neurons in the cortex, and the (excitatory) relay and (inhibitory) 950

reticular nuclei of the thalamus. Regarding cortical connectivities, is is assumed that the 951

number of projections from each source neuron to each target population is proportional to 952

the size of the target population. This leads to νee = νie, νei = νii, and νes = νis implying 953

that Vi = Ve and the inhibitory quantities are re-expressed in terms of excitatory quantities 954

(Zhao and Robinson, 2015). Consequently, the intracortical connections correspond to νee 955

and νei, representing the self-connection and the inhibitory input to the excitatory population 956

respectively. The RRW model circuit has seven connections in total, with a single cortical 957

output that extends to the thalamus. The reticular nucleus receives these inputs from the 958

cortex, as well as a reciprocal connection from the thalamic relay nuclei. The four-node RRW 959

topology can thus be summarized in terms of three primary loops: 1) an intrathalamic loop 960

connecting the reticular nucleus and relay nuclei, 2) a direct corticothalamic loop linking the 961

cortex and relay nuclei, and 3) an indirect corticothalamic loop involving the cortex, reticular 962

nucleus, relay nuclei, and completing the circuit back to the cortex. 963

3.2.2 Equations 964

As noted previously, all of the models studied here characterize neural subpopulation activity 965

within their respective circuits using at least one second-order (equivalently, two first-order) 966

differential equation(s), combined with a nonlinear operator that describes the synapses and 967

postsynaptic dendritic processes (Aburn et al., 2012). 968

Three sets of two first-order differential equations are defined to describe each neural pop- 969

ulation in JR. The model assumes that excitatory and inhibitory interneurons have identical 970

states up to a scaling constant (Aburn et al., 2012), and pyramidal neurons synapse equally 971

onto the excitatory and inhibitory populations (Cook et al., 2021). Mathematically, this implies 972

that the contributions from EPSPs and IPSPs are not separately simulated for the pyramidal 973

population, unlike the MDF model. In the MDF model, the contributions from excitatory and 974

inhibitory populations are separately calculated to give rise to EPSPs and IPSPs. The differ- 975

ence between the two results in a mixture of potentials induced by excitatory and inhibitory 976

currents, which equates to the measured local field potential (Moran et al., 2007). Additionally, 977

the MDF model incorporates recurrent connections in the inhibitory population. This means 978

that, compared to the JR model, the MDF model includes two additional differential equations, 979

and the measured response corresponds to the difference between EPSPs and IPSPs. 980

Furthermore, MDF is distinguished from the other models by its richer and more flexible sig- 981

moid function definition, in terms of two parameters (ρ1 and ρ2) that determine its shape 982

(voltage sensitivity) and position respectively. The MDF model also has the possibility to 983
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include adaptation currents, through a parameter a which is set to 0 in our analyses. 984

Mathematically, the LW model is slightly more complex than the other three models studied 985

here, mainly due to its inclusion of an additional block for each subpopulation that converts 986

post-synaptic potentials into the soma membrane potential, allowing for the inclusion of synap- 987

tic reversal potential terms in the equations. The model consists of three distinct blocks that 988

perform specific transformations. The first block transforms the soma membrane potential into 989

firing rate with a nonlinear operator in the form of a sigmoid, as described in the methods 990

section. In the second block, the firing rate is converted into postsynaptic potential on the 991

target population (i.e. on I for the E → I and I → I connections, and on E for the I → E 992

and E → E connections), representing the integrated effect of synaptic inputs. Finally, the 993

postsynaptic potential is further translated into the soma membrane potential, modelled in 994

this case according to conductance-based rules (Song et al., 2019). Unlike the other models, 995

LW thus has two state variables for each population: the postsynaptic potential and the soma 996

membrane potential. LW also includes fast excitatory and inhibitory neurotransmitter kinetics 997

not found in JR, MDF, or RRW. 998

In the RRW model, activity dynamics are nominally specified in four neural populations: 999

cortical excitatory, cortical inhibitory, thalamic reticular, and thalamic relay neurons (Robinson 1000

et al., 2002). However, as noted above, with the assumptions made in this case, the two cortical 1001

populations are not clearly separated into specific subgroups within the equations. As a result, 1002

there are no local inhibitory connections within the cortex, and only one cortical output extends 1003

to the thalamic populations - reducing the number of equations as compared for example to 1004

LW, which is a fully connected graph. The equations that govern the RRW model first describe 1005

the firing behavior of individual cells within each population. These firing cells serve as sources 1006

of pulse fields, which are treated as average spike rates in their respective populations. The 1007

propagation expressed as a damped wave equation in the RRW model, which is only taken into 1008

consideration for the cortical excitatory population since it is the only one with a finite γe, is 1009

what differentiates it from the other models. Therefore, mathematically, we observe that there 1010

is an additional ϕe term corresponding to the average pulse density, nonexistent in the other 1011

neural populations or models. 1012

3.2.3 Unified parameter table 1013

One of the aims when developing and studying mathematical models, such as the four consid- 1014

ered in the present work, is to relate various model parameters to specific biological features 1015

or processes of the brain, and in so doing to more fully understand the mechanisms underlying 1016

neural activity, as well as how changes in these factors may impact brain function and behavior. 1017

This can include features such as the properties of individual neurons or synapses, the architec- 1018

ture of neural circuits, or the dynamics of different neural populations. Unfortunately however, 1019

this task can sometimes be a challenging one for NPMs, since many of the models in common 1020

use today (including all four reviewed in this paper) were formulated phenomenologically - i.e. 1021

via a top-down strategy focused on replicating activity dynamics in neural recordings, rather 1022
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than the fine-grained details of neuronal circuit microstructure. 1023

It is therefore, necessary to understand the role of the different elements and the rationale 1024

behind the choice in their values, to make them as biophysically meaningful and interpretable 1025

as possible. To aid with this, Supplementary S.6 includes a set of tables with a brief description 1026

of each model’s parameters and their biological meaning. Although the models do often have 1027

slightly different values for corresponding parameters, they do nevertheless often share similar 1028

functional roles. To facilitate further comparison, an additional table is given below that aims 1029

to relate variables of equivalent biological meaning (Table 2). 1030

Among the JR, RRW, and LW models, which use very similar expressions for their sigmoidal 1031

transfer functions, there are three key common parameters that emerge: i) mean firing thresh- 1032

old, ii) firing threshold variability, and iii) maximum attainable firing rate. JR, MDF, and LW, 1033

which include both a separate excitatory and inhibitory impulse response function, have the 1034

following shared components: maximum amplitude of EPSPs, and of IPSPs, and an excitatory 1035

and inhibitory rate constants. Finally, every model has features representing the connections 1036

between neural populations. The MDF model introduces additional parameters to define the 1037

shape of the sigmoid function used in its formulation, providing easier modulation of the shape 1038

of the sigmoid compared to the other models. In RRW, the impulse response differs, which 1039

includes a decay and rise time of the impulse response, affecting the dynamics of the model’s 1040

dendritic filtering process. Furthermore, factors associated with corticothalamic interactions 1041

are introduced in the RRW model to account for long-range interactions between cortical and 1042

thalamic regions. The LW model distinguishes itself by incorporating attributes related to 1043

synaptic reversal potentials, such as the resting membrane potential and passive membrane 1044

decay time constant. These parameters are essential for transforming the postsynaptic poten- 1045

tial into the soma membrane potential and incorporating synaptic reversal potentials into the 1046

model’s dynamics. 1047

1048

3.2.4 Deciphering the biological basis and rationale of parameter values 1049

The systems under consideration have parameters with corresponding biological interpretations; 1050

however, the nominal values assigned to these parameters vary considerably across the models. 1051

The variation in parameter values across the models can be attributed to several factors, in- 1052

cluding differences in the experimental data used to inform the models, distinct mathematical 1053

formulations, and specific assumptions. Each model is designed to capture different aspects of 1054

neural activity and may prioritize certain features or phenomena over others. In the following 1055

section, we first examine the rationale behind the expression and parameters of the firing rate 1056

function, then the impulse response, and finally the connectivity values. 1057

Firing rate 1058

Fig. 13 shows the firing rate curves of the four models. It can be seen here that there is some 1059

variability in maximum neural firing rate parameters used, as well as the point of inflection 1060
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Common Parameters

Model JR MDF LW RRW

Firing threshold (mean) V0 – µe,i Θ

Firing threshold variability 1/r – σe,i σ′

Maximum firing rate 2e0 – Smaxe,i Qmax

Maximum EPSP amplitude A He Γe –

Maximum IPSP amplitude B Hi Γi –

Rate constants a and b κe and κi γe,i –

νee, νei, νes, νse
Connectivity C1, C2, C3, C4 γ1, γ2, γ3, γ4 Nβ

ee, N
β
ei, N

β
ie, N

β
ii νsr, νrs, νre, νsn

Additional Parameters

Sigmoid shape ρ1, ρ2

Decay and rise time 1
α
, 1
β

Corticothalamic loop delay t0

Cortical damping rate γe

Passive membrane decay

time constant
γe,i

Mean resting

membrane potential
hreste,i

Mean equilibrium potential heqe,i

Table 2. Common parameters across models based on their biological interpretation. Certain

parameters have a similar role and a biological interpretation associated with it that is comparable between the

models. The additional parameters reflect the novelty and differences proposed by each models.

of the curves. As mentioned in the previous section, MDF implements a different expression 1061

of the sigmoid that does not include parameters equivalent to a maximum firing rate, mean 1062

firing threshold, or standard deviation of the threshold distribution in the neural population, 1063

but instead has two parameters defining shape and position. The maximum amplitude with 1064

the current setting reaches 0.9, but can be tuned by modifying the parameters ρ2. Even though 1065

the other three models have parameters with a similar biological interpretation, the values are 1066

considerably different. First, the maximal firing rate is equal to 500s−1, 340s−1 and 5s−1 for 1067

LW, RRW and JR respectively. The difference in the order of magnitude between JR and the 1068

other two models (LW and RRW) can in part be explained by the fact that the value chosen 1069

by Jansen and Rit in their original paper is taken from Freeman (1987), and is actually a 1070

dimensionless normalized parameter. This quantity is expressed without units (for details on 1071

the calculation of the maximal wave amplitude Qm see Freeman, 1979), whereas both RRW and 1072

LW rely on experimentally derived average values. However, in the case of RRW, the assumed 1073

Qmax value was made without a clear citation mentioning it is an assumption and within units 1074

of the measured maximum value possible (Robinson et al., 1997; Rennie et al., 1999). The 1075

standard values from Freeman for converting membrane potential to firing rates are applied in 1076
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the JR firing rate function, but the expression itself stems from Lopes da Silva et al. (1976), 1077

and the current JR model uses a simplified version of that function. In the case of RRW, the 1078

firing rate function initially corresponded to the error function introduced by Wright and Liley 1079

(1995). Since 1999, the nonlinear function in the RRW model has been a modified version of 1080

that initial error function and closely approximates it (Rennie et al., 1999). The differing source 1081

of the firing rate conversion equation between the two models explains the slight differences 1082

observed in their mathematical expressions. 1083

The spiking threshold parameter (voltage at point of inflection in the sigmoid curve) in LW 1084

has a negative potential, due to the fact that the model includes synaptic reversal potentials. 1085

JR and RRW, in contrast, have a positive point of inflection for this parameter (6mV and 1086

12.92mV respectively). The values for the standard deviation of the threshold distribution 1087

in the neural population, which affects the steepness of the firing ate slope, are (1/0.56)mV 1088

(≈ 1.79mV ), 5.5mV , and 5.9mV for JR, LW, and RRW respectively. 1089

Figure 13. Sigmoid curve of each model with firing rate against voltage with different firing

threshold. The sigmoids differ in terms of the maximum value and the voltage at which the inflection point

occurs which is modulated by the firing threshold.

Impulse response 1090

With respect to the impulse response, the parameter values in JR can be traced back to van 1091

Rotterdam’s paper in 1982 (van Rotterdam et al., 1982). The impulse response used in JR 1092

corresponds to a simplified version of expression given in Lopes Da Silva (Lopes da Silva et al., 1093

1974, 1976). These authors determined the parameters A, B, a and b by respecting certain basic 1094

properties of real postsynaptic potentials, and ensuring the system produces alpha frequency 1095

oscillations (Grimbert and Faugeras, 2006a). This choice of JR to use the alpha function (un- 1096

related to alpha rhythms) as an impulse response was originally proposed by Rall (Rall, 1967). 1097

MDF has an identical impulse response function, but some of the standard parameter values 1098

differ because in Moran et al. (2007), the authors deliberately selected ‘standard’ parameters 1099

that prioritize an EEG with significant power in the higher beta frequency range, aiming to 1100

showcase the impact of nonlinearities in their computational framework. The standard MDF 1101

parameters are thus adjusted in the present study to place the central frequency in the alpha 1102
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band by using comparable values to David and Friston (2003). With our adjustments to obtain 1103

alpha oscillations, the values of the impulse response in MDF vary slightly from those in Moran 1104

et al. (2007), such as the rate constants (250s−1 instead of 100s−1 for κe; 62.5s
−1 instead of 1105

50s−1), but are still in the same order of magnitude. These differences are explained by the fact 1106

that the additional self-inhibitory connection changes the behavior of the system for similar 1107

parameter values. Thus, to simulate an equivalent alpha these need to be modified. There is 1108

some variability across the models in the values used for EPSP and IPSP amplitudes. This has 1109

been justified physiologically by the fact that certain neuropeptides can modulate the ampli- 1110

tude of PSPs, meaning that some degree of freedom in choice of these values is needed (Jansen 1111

and Rit, 1995). For the dendritic response, the original RRW model paper (Robinson et al., 1112

1997) mentions using ‘physiologically reasonable parameters’ for the decay and rise rate (α and 1113

β), and cites sources such as Freeman (1991); Lopes da Silva et al. (1974); van Rotterdam et al. 1114

(1982) with no further details provided. It is surprising that the peak of the dendritic response 1115

is around 60mV, which is considerably higher than the other models. LW, on the other hand, 1116

has a lower potential peak amplitude, which can may be due the fact that other models repre- 1117

sent the voltage at the soma, whereas LW expresses it at the site of synaptic activation (Liley 1118

et al., 2001). One of the status intentions of the LW model relative to its predecessors was to 1119

be more physiologically realistic, and thus allow greater biological validity and interpretability 1120

of its parameters (Liley et al., 2001); however it is notable that very little detail is given about 1121

the sources for chosen parameter values. Overall, an anatomical assumption made is that the 1122

amplitude of the inhibitory impulse response is larger than the excitatory impulse response, 1123

due to the fact that the former have axon terminals closer to the cell body, thereby leading to 1124

larger perturbation upon synaptic transmission (Kandel et al., 2000; Cook et al., 2021). LW 1125

makes the (reasonable) assumption that excitatory impulses occur on a faster timescale than 1126

inhibitory impulses, which is shared with JR and MDF, but notably not with RRW. In Fig. 1127

14, the shape of each model’s excitatory and inhibitory impulse responses are shown, with their 1128

nominal varying rate constant values. As the rate constant increases, the curve widens and the 1129

decay time increases. In the case of RRW but not JR, MDF, or LW, variation of the decay 1130

time also leads to changes both slope and the magnitude of the impulse response curve. 1131
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Figure 14. Impulse response of excitatory and inhibitory population with varying rate constant

Top: EPSP; Bottom: IPSP; except for RRW which uses the same dendritic response curve for EPSP and IPSP.

The general shape of EPSP and IPSP between the models is consistent and mainly differ in terms of amplitude.

Rate constant is varied for the first three models and for RRW, the different curves correspond to varying decay

times.

Connectivity 1132

Connectivity parameters across the four models differ in their units and physiological inter- 1133

pretation, making direct comparisons of specific values challenging. In JR and MDF, the 1134

connectivity parameter values are dimensionless, and proportional to the average number of 1135

synapses between populations, thus account for the total number of synapses (Jansen and 1136

Rit, 1995). Based on several neuroanatomical studies (Braitenberg and Schüz, 2013; Larkman, 1137

1991; Liu et al., 1991; Elhanany and White, 1990) that estimated these quantities by counting 1138

synapses. With these studies, Jansen and Rit condensed the four connections into fractions of 1139

a single parameter C (Grimbert and Faugeras, 2006b). Since Jansen and Rit estimated that 1140

the global parameter C would most likely change primarily due to its role in capturing synap- 1141

tic phenomena like neurotransmitter depletion, this reduction has been useful in determining 1142

the overall effect of variations in connectivity while keeping their proportions to each other 1143

identical. LW has parameters representing the total number of connections between the two 1144

populations, which take higher values for excitatory neurons as 80% of cortical neurons are 1145

excitatory, vs 20% that are inhibitory neurons (Cook et al., 2021). Furthermore, anatomical 1146

estimates for each connection were derived using an equation that considers the diameter of 1147

the mean dendrite and intracortical axon, the mean total length of all dendritic and intracorti- 1148

cal axonal arborizations, the mean length of the pyramidal cell’s basal dendritic arborizations, 1149

and the neuronal density (as described in Liley et al., 2001 and outlined in Liley and Wright, 1150

1994). RRW has connectivity variables denoted as νab, which correspond to the mean number 1151

of synapses (anatomical or structural in nature) multiplied by the strength of the response to 1152

a unit signal expressed in units as mV s (related to physiology or functionality) (Rennie et al., 1153

1999; Robinson et al., 1997; Rall, 1967). 1154

This section aims to compile the origin of the mathematical expressions as well as parameter 1155
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values by retracing the literature, and discerning the biological associations. Our comparative 1156

evaluation has found that even though the formulation of the firing rate curves is similar 1157

between JR, LW and RRW, their mathematical origin differs, with Lopes da Silva et al. (1976) 1158

as a reference for JR, and the error function introduced by Wright and Liley (1995) for LW and 1159

RRW. This explains the variations in the parameter values. Finally, our goal is to provide a 1160

comprehensive comparison across all levels for the four models. With regards to the parameters 1161

of the impulse response, some degrees of freedom are accepted, and the parameter values are 1162

mentioned to be within reasonable physiological ranges. Finally, connectivity parameters can 1163

represent a proportion of the average number of synapses (JR and MDF), a total number of 1164

synapses (LW), or synaptic strengths (RRW). Although the specific parameter values may vary 1165

for the firing rate and the impulse response, modifying them uniformly yields a consistent effect 1166

across the two curves (Figs. 13 and 14). Similarly, as shown in Fig. 11, correspondences can 1167

be made in the effects of altering connectivities. 1168

4 Discussion 1169

4.1 Summary of main findings 1170

In this paper we have undertaken a systematic investigation into the major mathematically- 1171

expressed physiological theories of EEG alpha rhythmogenesis. This has centred around an 1172

in-depth comparison of four primary models (JR, MDF, LW, RRW) that predominate in the 1173

literature, which also cover the two main alpha theory types (intracortical and corticothalamic 1174

Nunez et al., 2006). By clarifying at a technical and a conceptual level the relationships between 1175

the four models, our aim has been to prepare the ground for future experimental and theoretical 1176

work aimed at directly testing between alternative alpha theories, and other related research 1177

questions. 1178

We first examined the mathematical expression of each model, highlighting common el- 1179

ements and important differences. We then explored the parameter space of each model to 1180

identify the necessary conditions to produce alpha rhythms, with a focus on the rate constant 1181

and E-I connectivity strength parameters. In the process of this didactic and comparative treat- 1182

ment of the assumptions and component features across these four models, we have reported a 1183

number of confirmatory simulation results, as well as several novel findings. 1184

One major conclusion from our analyses is that, although the four models considered differ 1185

in their basic elements such as nominal cell types, microcircuit topologies, and connectivity 1186

assumptions (to name just a few), they are ultimately more similar to one another than they 1187

are different. Specifically, all the models can reproduce the characteristic features of resting 1188

state alpha observed in empirical EEG data, albeit with varying degrees of accuracy (Fig. 9). 1189

RRW appears to better capture the 1/f scaling compared to the other three models (Fig. 9, 1190

A), while the alpha blocking (EC to EO) is more attenuated in JR and LW (Fig. 9, B). This 1191

phenomenon has been previously studied directly with the RRW (Robinson et al., 2004) and LW 1192
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(Hartoyo et al., 2020) models, and so we based our analyses around the parameter sets described 1193

in this prior literature. For JR, we found limited prior work on alpha blocking directly and 1194

opted to model this effect by increasing the external input p(t), analogously to recent studies 1195

using LW, where the external input to the inhibitory population is increased to obtain an alpha 1196

attenuation. Interestingly, even though p(t) (representing increased visual input) was applied 1197

to the excitatory population in these simulations, we still observed attenuation of population 1198

firing rates and EEG alpha power. 1199

We studied the effect of changing the rate constant on the dominant frequency of oscillation 1200

across all four models (Fig. 10). Although this has been previously studied for the JR model 1201

David and Friston (2003); David et al. (2006); Gast et al. (2019), the concurrent comparison 1202

of JR with MDF and LW models has not been reported in prior work. These comparative 1203

simulation analyses clearly show the larger range of oscillatory behavior demonstrated by the 1204

MDF model, as well as the differing position of the hypersignal regime between JR, MDF, 1205

and LW. The observation of broadly similar trends across all of the models shows how the 1206

rate constants fundamentally influence the dynamical behavior of these systems. These results 1207

potentially raise questions about the somewhat restrictive assumption in RRW, which does not 1208

specify distinct rate constants for excitatory and inhibitory synaptic responses. In addition to 1209

exploring the rate constant parameters, we also studied the E-I connection strengths of the 1210

models (Fig. 11). Through this investigation, we found that changes in the gain of the E-I loop 1211

have a significant impact on the dynamics observed in all models. In JR, the total connectivity 1212

strength of the inhibitory loop determines the oscillatory regime of the model. For RRW, as the 1213

intrathalamic inhibitory connection increases, the value of the excitatory connection becomes 1214

more determinant of whether an alpha rhythm with significant amplitude is generated. Finally, 1215

we observed that changes in the number and strength of GABA interneuron synapses in the LW 1216

model tend to have a more prominent effect on the dynamics compared to the corresponding 1217

GABA-related parameters of the other models. 1218

When exploring the stability of the JR and LW models, we discovered that the standard 1219

alpha oscillation generated for nominal default alpha parameters by each of them stems from 1220

different mechanisms, mathematically speaking: a self-sustained limit-cycle for JR or noise- 1221

driven fluctuations around a fixed point for LW. In the RRW model, we observed that the 1222

intrathalamic E-I loop also plays a crucial role in modulating the general dynamics of the alpha 1223

oscillation. Decreases in inhibition lead to a dominant peak in the beta regime and a slight 1224

shift in the alpha central frequency. However, the primary function of the RRW intrathalamic 1225

loop (within the parameter regimes studied) is to modulate the magnitude of the alpha peak. 1226

The final part of our comparative evaluation of the four alpha models highlighted their 1227

topological and mathematical differences. Tracing through cited sources and other available 1228

information in the literature, we were able to distill and clarify the various rationales behind 1229

the selection of reported parameter values. Despite variations in these values across models, 1230

their impact on the shape of both the sigmoid and impulse response remains consistent and 1231

qualitatively similar (Figs. 13-14). 1232
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From our investigation, where we have observed largely similar capacities to generate spec- 1233

tral EEG features such as alpha, alpha blocking, 1/f background, etc., it remains unclear 1234

whether the intracortical or corticothalamic theory type is best supported by the evidence and 1235

other theoretical considerations surveyed in this study. Ultimately, from a pragmatic point 1236

of view, the selection of a model in a research context depends on the goal of the study, its 1237

capacity to represent certain features of neural activity, and its inclusion of relevant biological 1238

details. While our analyses suggest that mesoscopic scale empirical data such as human scalp 1239

EEG signals may be insufficient to advance one alpha theory over another one, our investiga- 1240

tion helps to clarify the role of the E-I loop in each model, how the synaptic gains influence 1241

the represented dynamics, and the implications of these in various alpha mechanisms. These 1242

factors are valuable in studies of how an imbalance in E-I can lead to altered dynamics, such 1243

as different oscillatory patterns or reduced alpha magnitude, which are associated with various 1244

neural pathologies and disorders (Eichler and Meier, 2008; Li et al., 2022). 1245

4.2 Model limitations and critique 1246

NPMs offer a valuable framework for studying the dynamical behavior of the brain at the 1247

mesoscopic scale, particularly when investigating phenomena observed at the level of neural 1248

populations, as is the case for data modalities such as EEG, MEG, LFPs, ECoG, fMRI, PET, 1249

fNIRS, and wide-field calcium imaging. However, the (relative) simplicity of this methodol- 1250

ogy compared with more spatially fine-grained modelling approaches comes with a trade-off, 1251

as the coarse-grained nature of NPMs necessarily sacrifices many important neurobiological 1252

details. One major limitation that often results from the simplifications, approximations, and 1253

assumptions inherent in all NPMs is the lack of a clear correspondence between model vari- 1254

ables/parameters and measurable quantities in real neuronal tissue. This poses challenges for 1255

both model parameterization and validation. In some cases, certain values, such as connec- 1256

tivity parameters between neural populations in the cortex, may be arbitrarily chosen due to 1257

the lack of verifiable estimates in terms of magnitudes (Cook et al., 2021). Moreover, the 1258

primary experimental measurements used for validation in much of the modelling literature 1259

reviewed here are human EEG data, which are conventionally assumed to be driven by cortical 1260

excitatory (pyramidal) neurons. Many state variables in the models (cortical inhibitory popu- 1261

lations, thalamic populations) are thus not directly captured in the measurement models based 1262

on scalp EEG alone, and it may well be the case that EEG contains insufficient information 1263

to effectively distinguish between different models. In the case of RRW, complementary data 1264

such as LFPs from surgically implanted electrodes in the thalamic reticular and relay nuclei, 1265

may help considerably. Given current trends in neuroscience recording technologies, combined 1266

electrophysiological and optical imaging in rodents seems the most promising source of neu- 1267

ral recording data that addresses the shortfalls with human EEG, although species differences 1268

between rodents and humans are also a non-trivial consideration. 1269

Even though NPMs can serve as a bridge between the microscopic states of individual spiking 1270

neurons and macroscopic global brain states at the mesoscopic scale (Goldman et al., 2019), 1271
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this link is alas rarely a straightforward one (Huang and Lin, 2021), with various assumptions 1272

and abstractions such as microcircuit cell types, inclusion/exclusion of glial cells, and nominal 1273

physical units breaking down beyond a certain point. This challenge often leads to a disconnect 1274

between our understanding of brain activities observed at different spatial scales (Cook et al., 1275

2021). 1276

Since our models can be categorized as NMMs, it is important to acknowledge that the 1277

nature of NMMs introduces certain limitations due to the underlying assumptions they rely 1278

on. Firstly, the states of the neurons across the modelled ensemble are assumed to be un- 1279

correlated (Breakspear, 2017). As a result, NMMs neglect potential fluctuations in the level 1280

of within-population synchrony in neuronal firing rates (Glomb et al., 2021). This omission 1281

thus disregards any potential effects that within-population synchrony may have on observed 1282

EEG responses. This strong coherence assumption among the neurons means that the vari- 1283

ance of neuronal states is fixed for NMMs. Thus, this neuronal variability is not taken into 1284

account, even though it might play an important role in observed EEG responses (Marreiros 1285

et al., 2008). Additionally, the common use of a sigmoidal function in NMMs to transform the 1286

membrane potential into a firing rate is not derived from a biophysically detailed description 1287

of spiking neurons (Huang and Lin, 2021; Byrne et al., 2020) but rather is a phenomenological 1288

approximation. Individual neuron firing thresholds, which vary considerably from cell to cell 1289

within an ensemble, are thus not considered in these models. 1290

Despite these caveats, NPMs remain the most suitable approach for representing brain 1291

dynamics observed at the meso/macro scale in modalities such as scalp EEG. These models 1292

offer simplicity and computational efficiency due to their low dimensionality, making them well- 1293

suited for numerical simulations as well as parameter estimation (David et al., 2006; Abeysuriya 1294

et al., 2014; Momi et al., 2023). NPMs also allow for the establishment of linearized or analytical 1295

correspondences, enabling researchers to gain further mathematical insights into a given model’s 1296

putative physiological mechanisms. 1297

In addition to limitations inherent to all NPMs, each of the four models also has its own 1298

advantages and limitations. JR, for example, is constrained in its oscillatory range, with lim- 1299

ited ability to generate high frequencies. In contrast, the MDF model attempts to address this 1300

limitation by including a self-inhibitory connection. Furthermore, an external drive is neces- 1301

sary in JR to generate stable (alpha) oscillations, which somewhat contradicts the empirical 1302

observation that prominent alpha rhythm is seen when subjects have their eyes-closed, and 1303

thus in the relative absence of a strong sensory-driven stimulation to the occipital cortex. Since 1304

an external drive is necessary in order to generate oscillations, it can be considered that the 1305

model does not reflect self-consistent intrinsic oscillations (Kiani et al., 2021). Nevertheless, 1306

it’s worth noting that the external drive might also be attributed to input from the thalamus, 1307

aligning with the concept of corticothalamic connections contributing to intrinsic alpha oscil- 1308

lations. However, this stance presents a nuanced perspective, slightly diverging from our alpha 1309

blocking analysis. While a certain level of external input (p(t)) is essential for alpha rhythm 1310

generation, our findings indicate that beyond a specific threshold, an increase in p(t) results in 1311
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a decrease in alpha rhythm amplitude. This introduces a degree of ambiguity concerning the 1312

biological role of the thalamus, particularly when considering that increased corticothalamic 1313

activity in the RRW is associated with higher alpha peaks. 1314

The MDF model shares many of these advantages with JR, additionally incorporating recur- 1315

rent intrinsic inhibitory connections to generate oscillations in higher frequency ranges (gamma 1316

band). The MDF model, as introduced in Moran et al. (2007), also includes spike-rate adap- 1317

tation terms, although we have have omitted these extra equations here for simplicity. It is 1318

however worth noting that although the choice of the sigmoid function used by the MDF model 1319

allows for better flexibility in parameterization of the wave-to-pulse operator, the additional 1320

parameters used for this have no or little relationship to biological elements. 1321

The LW model, by including several conductance-based elements in its formulation such 1322

as synaptic reversal potentials, is most faithful to neurobiology of the four models, at the 1323

cost of additional nonlinearities and other complexities. In practice, LW is less flexible and 1324

more constrained than the other NMMs considered here, as it is highly prone to numerical 1325

instability and divergence. Due to its richer parameterization, the LW model can nevertheless 1326

display several qualitatively different dynamical regimes - namely alpha-frequency limit cycle 1327

oscillations, noise-driven activity, or chaos. This diverse repertoire can also make interpretation 1328

and identification of continuous dynamics challenging (Liley et al., 2001). 1329

Finally, a chief limitation of the RRW model as compared to the other three is its charac- 1330

terization of EPSPs and IPSPs with the same impulse response equation. This approximation 1331

has been a subject of debate, since, for example, our findings in the present work indicate 1332

that excitatory and inhibitory rate constants significantly influence the dominant frequency 1333

of oscillation. Previous studies have extensively analyzed the RRW model mathematically, 1334

particularly its linearized form, which offers a highly flexible and accurate estimation of EEG 1335

power spectrum feature, and these investigations have demonstrated the model’s capability to 1336

generate oscillations at different frequencies, across various brain states and neuropathologies 1337

(Roberts and Robinson, 2008; Zhao and Robinson, 2015; Müller et al., 2017). However, the 1338

various assumptions made to obtain this tractable version of the model can be discussed (local 1339

activity approximation, cortical connectivity approximation, and similar synaptic filtering for 1340

AMPA and GABA) . 1341

Table 5 offers a global comparative analysis of the four models, outlining their strengths and 1342

weaknesses in various aspects, which can be summarized as follows: the JR model distinguishes 1343

between EPSPs and IPSPs, along with a separation of pyramidal cells from other excitatory 1344

interneurons. The strength of this model lies in its ability to showcase robust global dynamics. 1345

However, it has limitations concerning the biological significance of its parameters, the range 1346

of oscillatory behavior, and the general shape of the power spectrum. The MDF model shares 1347

similar strengths with JR, with the exception that it can achieve simulations with a higher 1348

frequency of oscillation, offering a broader range of possibilities. Nevertheless, it also shares 1349

similar limitations with the JR model in terms of parameter significance and power spectrum 1350

shape. On the other hand, LW and RRW exhibit strengths in terms of the biological association 1351
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Feature JR MDF LW RRW

Biological significance of Parameters - - + +

Differentiation between EPSP and IPSP + + + -

Oscillatory range - + + +

General shape of PS - - - +

Robust Demonstration of Global Dynamics + + - -

Separation of Pyramidal Cells + + - -

Table 3. Global evaluation of the models. Different features of the models are assessed, highlighting

strengths and limitations. In terms of robustness and tractability, the JR and MDF models prove more suitable.

The LW model incorporates more physiological elements, and the RRW model shows a stronger capability in

reproducing empirical features of alpha activity.

of parameters based on experimental studies, and they propose a considerable range of oscil- 1352

latory frequencies. However, due to their complexity demonstrating robust global dynamics is 1353

more challenging. Furthermore, the RRW model emerges as a promising model for reproducing 1354

important empirical features, such as the 1/f curve. 1355

4.3 Alternative models of alpha rhythm beyond NPMs 1356

In this paper we have elaborated on a select few NPMs that specifically address alpha oscil- 1357

lations, following the corticocortical or corticothalamic alpha theory candidates summarized 1358

in Fig. 2. It is also important to note however that alpha rhythms have been studied by 1359

researchers at a variety of scales using models ranging from microscopic to macroscopic per- 1360

spectives. Many of these extend beyond the scope of the present work due to being either not 1361

(mesoscale) NPMs, or not corresponding to the corticocortical/corticothalamic theory types. 1362

In this final section we review briefly a selection of this broader body of work developing alter- 1363

native alpha rhythm and related computational models. 1364

1365

4.3.1 Two levels down: multicompartmental microcircuit models 1366

Multicompartmental models are the most established ‘low-level’ description of single-neuron 1367

structure and dynamics, aiming to replicate as faithfully as possible their morphological char- 1368

acteristics, membrane biophysics, and synaptic kinetics within the mathematical framework of 1369

equivalent electrical circuits. In multicompartmental models, the activity of the neurons are 1370

described with the Hodgkin-Huxley equations. This approach can capture the complex electri- 1371

cal signaling that occurs within neurons and can provide a more accurate representation of how 1372

neurons interact with one another in neural circuits. Mesoscale dynamical phenomena such 1373

as oscillations are usually studied with this approach as emergent properties of networks con- 1374

taining hundreds or thousands of multicompartmental neurons, designed according to known 1375

architectural features of specific brain structures such as cortex (Hay et al., 2011), thalamus 1376

53

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.03.01.583035doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.583035
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Iavarone et al., 2023), or hippocampus (Chatzikalymniou et al., 2021). Interestingly, despite 1377

the prominence of this general modelling paradigm in computational neuroscience, there are 1378

(to our knowledge) no established and/or consistently explored models of multicompartmental 1379

circuit models of EEG alpha. 1380

An influential line of work in this area was first introduced by Jones et al. (2009), and 1381

continued more recently (Neymotin et al., 2020; Studenova et al., 2022). These authors used 1382

a multicompartmental circuit model to simulate the µ rhythm, the somatosensory analogue of 1383

occipital alpha. The extent to which this model constitutes a ‘true’ alpha rhythm model is 1384

unclear, however, since a major component of the circuit described in Jones et al. (2009) is a 1385

pacemaker-like 10Hz thalamic drive. More recently, Hay and colleagues developed a detailed 1386

columnar microcircuit model (L2/3), based closely on newly-characterized morphological and 1387

electrophysiological properties of human cortical tissue, which has been shown to generate 1388

resting state EEG features such as the alpha rhythm (Yao et al., 2022; Mazza et al., 2022). 1389

Specifically, the model was used to investigate the effects of reduced cortical inhibition by 1390

somatostatin-expressing (SST) interneurons, a key element in the altered inhibition observed in 1391

treatment-resistant major depressive disorder. Comparing simulated healthy resting state EEG 1392

with depressed EEG (characterized by reduced SST) revealed significant changes in EEG. This 1393

discovery provides biomarkers that establish a connection between interneuron inhibition levels 1394

and quantifiable EEG patterns, thereby facilitating the identification of depression subtypes 1395

and the noninvasive monitoring of cortical inhibition modulation. 1396

4.3.2 One level down: spiking neuron network models 1397

Whilst the individual elements in morphologically detailed circuit models such as those reviewed 1398

above are able to capture most of the known physiological properties of single neurons, they 1399

are potentially a suboptimal level of description for modelling oscillatory neuron behaviour 1400

that occurs due to (micro-scale) network organization. Spiking neuron models, which aim 1401

to capture accurately the membrane potential and firing dynamics of individual cells, but 1402

not their extended spatial structure, are the most commonly employed level of description in 1403

computational neuroscience for purely network-based activity patterns. 1404

One notable example of this was described in the seminal paper of Izhikevich (2003), where 1405

the influential phenomenological single-neuron model was introduced, that is able to accurately 1406

reproduces neuronal spiking dynamics without the full complement of Hodgkin-Huxley ionic 1407

currents (Izhikevich, 2003). By simulating a network of 1000 randomly spiking neurons of 1408

this kind, alpha and gamma rhythms could also be generated. Subsequently, this model was 1409

used as the basic component of a large-scale representation of the mammalian thalamocortical 1410

system, which featured 22 neuronal cell types, six-layered cortical microcircuits, multiple tha- 1411

lamic nuclei, and white matter connectivity informed by diffusion-weighted MRI tractography 1412

(Izhikevich and Edelman, 2008). From their simulations with this model, the authors suggest 1413

that variations in rhythmic frequencies across different brain regions may arise from differences 1414

in white matter connectivity between and among cortical areas. 1415
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1416

4.3.3 One level up: whole-brain NPMs 1417

The large-scale spiking neuron model of (Izhikevich and Edelman, 2008) is an interesting early 1418

example of whole-brain modelling Griffiths et al. (2022), a sub-field of computational neuro- 1419

science that emerged in the mid 2000s, drawing strongly on developments in neuroimaging 1420

connectomics. 1421

Whilst spiking network models have been employed with varying levels of anatomical pre- 1422

cision in whole-brain modelling studies (Deco et al., 2013; Pronold et al., 2023), they have 1423

not been used extensively to study alpha rhythms specifically. Rather, whole-brain models 1424

of EEG alpha activity have for the most part used NPMs, of the kind discussed extensively 1425

in the present work (Stefanovski et al., 2019; Griffiths et al., 2020; Abeysuriya et al., 2018). 1426

The essential level of description in this case, notwithstanding some properties that result from 1427

large-scale network interactions and delays, for the most part the key level of analysis for un- 1428

derstanding whole-brain networks of coupled NPMs is in fact individual NPM units themselves. 1429

From this point of view, the survey presented in the present work is of fundamental relevance 1430

to whole-brain alpha NPM models. Even though we have not explored here the question of how 1431

NPMs behave when coupled together into networks. The interesting case where this heuristic 1432

does not apply is when the alpha-generating mechanism in a whole-brain model occurs at the 1433

network level, and not at the level of individual nodes or NPM units. 1434

The motivating argument here, which applies equally to whole-brain vs. single-node NPMs 1435

and to microcircuit network vs. single-cell models, is that the emergent properties of intercon- 1436

nected neuronal ensembles may be unrelated to the activity of individual neurons (Raj et al., 1437

2020). The extensive complexity introduced by numerous equations and parameters in more 1438

complex models can in this case become a ‘black box’, limiting the ability to draw conclusions 1439

on the core network-level rhythmogenic mechanisms (Taher, 2021; Türker and Powers, 2005). 1440

An important new line of research motivated by these considerations is the spectral graph 1441

theory framework proposed by Raj et al. (2020). These authors introduced a hierarchical, linear, 1442

analytic spectral graph model capable of replicating empirical MEG spectra and the spatial 1443

distribution of alpha and beta frequency bands (Raj et al., 2020). Compared to BNMs and 1444

NFMs, the advantage of this type of modelling lies in providing steady-state frequency responses 1445

obtained from the eigendecomposition of a graph Laplacian, offering a closed-form solution of 1446

brain oscillations (Verma et al., 2022). This makes them computationally efficient and less 1447

time-consuming. However, a major limitation is the lack of clear biological interpretability in 1448

the local parameters and gain terms of simpler spectral graph models. A more recent modified 1449

spectral graph model by Verma et al. revisited Raj et al.’s work using a bottom-up approach 1450

to make it more biophysically relatable at the local scale while still capable of representing the 1451

same spatial patterns as the original model (Verma et al., 2022). Despite this improvement, 1452

spectral graph models may not be ultimately suitable for capturing the full range of dynamical 1453

solutions, which could be effectively addressed by nonlinear BNMs (Verma et al., 2022). 1454
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4.4 Conclusion and future work 1455

In conclusion, our comparative analysis of the JR, MDF, LW, and RRW models elucidate 1456

the relationship between their mathematical formulations and parameters, and providing a 1457

range of biological insights. Our novel simulations with these models showed differing levels of 1458

precision in replicating EEG alpha characteristics, demonstrating how their dynamical behavior 1459

is impacted by rate constants and connectivity parameters. 1460

Future computational studies of alpha rhythmogenesis in human EEG should include in- 1461

vestigations of intracortical and corticothalamic models at the scale of the whole brain. This 1462

is particularly important since, as we have discussed, mesoscale empirical data at the level of 1463

single neural populations alone, which has been our focus in this paper, may be insufficient to 1464

distinguish between these two theories. A key objective of these investigations should be to de- 1465

termine conclusively whether the contribution of the thalamus is essential for the generation of 1466

resting state alpha oscillations. We hypothesize that topographic variation in oscillatory brain 1467

activity, as well as network-level connectivity and dynamics, will provide important additional 1468

information for this objective. Furthermore, at the whole-brain level, each node is part of a 1469

larger network, and so the dynamics of the neural populations studied in the present work may 1470

be modified substantially when interconnected via the connectome. Finally, improving valida- 1471

tion methods against empirical data, for example by extending the number and type of EEG 1472

features used for model comparison and fitting, would allow for better differentiation between 1473

models and determination of which ones are more accurate representations of observed brain 1474

dynamics. 1475
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Supplementary Information 1913

In the following, we provide additional information on various technical details and additional 1914

analyses from our study, which were not included in the main text primarily due to space 1915

reasons. These pages cover the derivation of the JR model differential equations (Section 1916

S1), the comparison of connectivity parameter spaces between JR and MDF (Section S2), the 1917

phase plane analysis of JR (Section S3), the reduced 3D parameter space of MDF (Section 1918

S4), the 4D JR connectivity analyses (Section S5), and finally, the full model equations with 1919

a description of their parameters and standard alpha values (Section S6). Note that complete 1920

code for the generating figures in the following and in the main text is openly available at 1921

github.com/griffithslab/Bastiaens2024_AlpaModels. 1922
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S.1 Derivation of the JR Model Equations 1923

The Jansen-Rit and related models are often discussed in terms of a convolution integral for 1924

the synaptic impulse response function, as well as the corresponding equivalent second-order 1925

differential equation, which is typically what is actually used in numerical simulations. The 1926

mathematical relationship between these is however rarely given in literature sources, and so 1927

we provide that here, with a full derivation of the JR differential equation from its impulse 1928

response, using the Laplace transform as it simplifies convolution operations by turning them 1929

into algebraic manipulations in the Laplace domain. 1930

The synaptic impulse response is defined as an alpha function, which is described by the 1931

following equations: 1932

h(t) =

αβte−βt, t ≥ 0

0 otherwise
(25)

with α as the maximum amplitude of the PSP and β the rate constant parameter. The first 1933

step consists of finding the Laplace transform of h(t), denoted as H(s), which is defined as 1934

follows: 1935

H(s) = L{h(t)} =

∫ ∞

0

h(t)e−st dt (26)

=

∫ ∞

0

αβte−βte−st dt (27)

=

∫ ∞

0

αβte(−β−s)t dt (28)

= lim
b→∞

[∫ b

0

αβte(−β−s)t dt

]
(29)

= lim
b→∞

([
αβt

1

−β − s
e(−β−s)t

]b
0

−
∫ b

0

αβ

−β − s
e(−β−s)t dt

)
(30)

=
αβ

−β − s
lim
b→∞

(
be(−β−s)b −

∫ b

0

e(−β−s)t dt

)
(31)

=
αβ

β + s
lim
b→∞

∫ b

0

e(−β−s)t dt (32)

=
αβ

β + s
lim
b→∞

[
1

−β − s
e(−β−s)t

]b
0

(33)

=
αβ

(β + s)2
lim
b→∞

[
1− e(−β−s)b

]
(34)

=
αβ

(β + s)2
(35)

Now, with an expression for H(s) in the Laplace domain, and given that y(t) is equal to 1936
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the convolution of h(t) and x(t), we can represent this relationship in the Laplace domain as: 1937

Y (s) = X(s)H(s) (36)

Y (s) = X(s)
αβ

(β + s)2
(37)

(β + s)2Y (s) = X(s)αβ (38)

s2Y (s) + β2Y (s) + 2βsY (s) = αβX(s) (39)

s2Y (s) = αβX(s)− 2βsY (s)− β2Y (s) (40)

Since s2Y (s) corresponds to the second derivative in the time domain, translating equation (40) 1938

back into the time domain, we obtain: 1939

ÿ(t) = αβx(t)− 2βẏ(t)− β2y(t) (41)

This corresponds to the commonly used Jansen and Rit second-order differential equation, 1940

which can be rewritten in the form of two first-order ODE’s: 1941

ẏ(t) = z(t) (42)

ż(t) = αβx(t)− 2βz(t)− β2y(t) (43)

with y(t) representing the average postsynaptic membrane potential (output of the PSP block). 1942
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S.2 Comparison of MDF and JR connectivity parameter spaces 1943

By setting the parameters to be the same between JR and MDF, we compare the connectivity 1944

parameter space of the two models (Fig. 15). 1945

Figure S1. Connection strength parameter spaces for JR and MDF with similar parameter

settings. In the top, for MDF γ5 = 16, and at the bottom γ5 = 0. The general shape of the dynamics is

very similar between the two, suggesting that the effects of connectivity are the same. However, MDF tends to

generate oscillations of higher frequencies for identical connectivity parameter sets, even when the γ5 connection

is removed.

In the top row of Fig. 15, we compare JR against MDF with the self-inhibitory connection. 1946

We observe a similar triangular boundary shape within which the system oscillates. However, 1947

MDF tends oscillate at higher frequency that exceed the alpha range (Fig. 15, MDF top row, 1948

colors are brighter than JR). When the self-inhibitory connection is removed in MDF (Fig. 1949

15, MDF bottom row), the system now oscillates at the alpha frequency. It does not present 1950

lower frequencies, such as those in the JR model where we have slower oscillations. Thus, 1951

MDF seems to oscillate at higher frequencies than JR. Nonetheless, we observe that the two 1952

models share this similar triangular shape with non-oscillatory behavior when C3 and C4 are 1953

too low, suggesting similar global dynamics. The main conclusion drawn from this analysis is 1954

that the self-inhibitory connection introduced in MDF grants the model the ability to generate 1955

oscillations at a higher frequency than alpha, a more challenging capability compared to JR. 1956
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S.3 Phase plane of JR in 3D 1957

For the stability analyses in Fig. 12, we have only presented the phase plane with the pyramidal 1958

and inhibitory population output voltages. Considering the trajectory of the third excitatory 1959

neural population activity alongside these can provide a better understanding of the full picture 1960

however, as can be seen in Fig. 16. 1961

Figure S2. Phase plane of JR for different E-I connectivity parameters. The trajectory of the three

neural populations (with y0, y1, and y2 corresponding to the output of the PSP block for the pyramidal cells,

excitatory interneurons, and inhibitory interneurons, respectively) can be inferred by examining the stability

of their respective fixed point (red). When C3,4 = 27, the fixed point is stable and no oscillations occur. For

C3,4 = 33.5, the system enters a limit cycle with the oscillation frequency of alpha. Finally, when C3,4 = 40.5,

the limit cycle widens and the frequency of oscillation is reduced.

As seen in our previous phase plane analysis, for specific connectivity parameters, the system 1962

either reaches a fixed point or enters a limit cycle defining the frequency of oscillation. The 1963

results closely resemble those in Fig. 12, 1b, implying that the dynamics primarily involve 1964

interactions between the pyramidal and inhibitory populations, with minimal contribution from 1965

the third population in this case.. 1966
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S.4 3D parameter space with MDF 1967

We simplified the 5-dimensional connection parameter space into a 3-dimensional representation 1968

for the MDF model, using its linearized version. Stability is assessed by looking at the system’s 1969

poles within the transfer function of the system. The aim was to establish a parallel with the 1970

3D ‘xyz’ corticocortical/corticothalamic/intrathalamic lumped gains reduced parameter space 1971

discussed in a number of studies using the RRW model (although for reasons of space we have 1972

not focused on that aspect of RRW in the present paper Robinson et al., 2002, 2005; Roberts 1973

and Robinson, 2012; Breakspear et al., 2006; Abeysuriya et al., 2015), and determine the effects 1974

of the loops on the dynamics of the MDF model. 1975

Figure S3. Visualization of dynamical regimes of the MDF model in a 3D setting using the

linearized expression. The x-axis corresponds to effect of the excitatory loop (γ1 ∗ γ2); the y-axis represents

the effect of the inhibitory loop (γ3 ∗γ4); and the z-axis is the effect of the self-inhibitory loop (γ5). As γ5 values

increase, the system tends to oscillate at a higher frequency.

The aim here is to easily visualize the regions of stability and dynamics as a function of 1976

the ‘loops’, rather than a single connectivity parameter. As expected, with the increase in the 1977

self-inhibitory connection (z-axis), the dominant frequency of oscillation gradually shifts from 1978

theta to alpha and then to the beta range. 1979
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S.5 4D JR connectivity analysis 1980

In the JR model, our focus was specifically on C3 (P → I) and C4 (I → P ) as the E-I loop, but 1981

there is also the interaction between excitatory interneurons and pyramidal cells (C1 (P → E) 1982

and C2 (E → P )) to consider. Typically, the ratio between these values is varied. By simulat- 1983

ing time series for different values of C with the standard ratio values (C1 = C, C2 = 0.8 ∗ C, 1984

C3 = 0.25 ∗ C and C4 = 0.25 ∗ C), we can infer that increasing values of C lead to a decrease 1985

in the frequency of oscillation up to a certain point (Fig. 18), which concurs with results from 1986

Jansen and Rit (1995). 1987

1988

Figure S4. Simulated time series of JR for different connectivity C values. From top to bottom:

C = 68, C = 128, C = 135, C = 270, C = 675, C = 1350. As connectivity values increase, the frequency of

oscillations decreases up to C = 675.

Changes in the frequency of oscillation as a function of connectivity ratios are presented in 1989

the form of 4D heatmaps in a 2D space (Figure 19). The general trend observed is that higher 1990

connectivity values result in slower oscillations, as expected. 1991

Figure S5. Variation in the frequency of oscillation as a function of connection strength for

JR for different C values. From left to right: C = 68, C = 128, C = 135 and C = 270. The outer axes

C1 − C2 represent the excitatory loop, while the inner axes C3 − C4 represent the inhibitory loop. The results

correlate with what is observed in the time series. The parameter space is obtained by changing the ratio of

each connection (i.e: C1 = 0.8 corresponds to C1 = 0.8 ∗ C)

To observe the different trends that emerge, we focused on the case where C equals 135 1992

and investigated the different possible combinations of parameters on the outer and inner axes 1993

(Figure 20). 1994
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Figure S6. Connection strength parameter spaces for Jansen-Rit in different combinations with

C=135. Each combination reveals a distinct pattern, aiding in visualizing the relationships among all the

connectivity parameters. From left to tight: 1) Outer axes C1 −C2 Inner axes C3 −C4; 2) Outer axes C1 −C3;

Inner axes C2 − C4; 3) Outer axes C2 − C3; Inner axes C1 − C3; 4) Outer axes C3 − C4; Inner axes C1 − C2

Clear patterns emerge in two different cases. When C3 (P → I) and C4 (I → P ) are 1995

on the outer axes, a continuous change in the frequency of oscillation is observed. Similarly, 1996

when comparing C1 (P → E) against C3 (P → I), a concrete pattern is evident, with more 1997

pronounced changes in the frequency of oscillation when C3 is altered. These results reinforce 1998

the idea that the main loop influencing the frequency of oscillation is the interaction between 1999

the pyramidal and inhibitory populations, raising the question of whether adding an additional 2000

excitatory population is truly necessary, even though it would be more biologically realistic. 2001

Figure S7. Connection strength parameter space for C2 (E → P) and C4 (I → P) in JR. Higher

values of C4 lead to a decrease in rhythmic oscillations. The highest frequency of oscillation occurs when C4 is

at a ratio of 0.25, and C2 is around 1.0. If C4 is too low, a very noisy signal is generated.
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S.6 Full Model Equations 2002

Partial and diagrammatic presentations of the differential equations for each of the four models 2003

are given in Figs. 5-8. In this final Supplementary section, we provide the complete differential 2004

equations for each model, as well as tables describing the model parameters and state variables. 2005

Jansen-Rit model equations 2006

The differential equations for the JR model are 2007

ẏ0(t) = y3(t) (44)

ẏ3(t) = AaS[y1(t)− y2(t)]− 2ay3(t)− a2y0(t) (45)

ẏ1(t) = y4(t) (46)

ẏ4(t) = Aa(p(t) + C2S[C1y0(t)])− 2ay4(t)− a2y1(t) (47)

ẏ2(t) = y5(t) (48)

ẏ5(t) = BbC4S[C3y0]− 2by5(t)− b2y2(t) (49)

Here and in the rest of this paper we have maintained the same notation as in Jansen and 2008

Rit (1995) where y0, y1, and y2 correspond to the outputs of the pyramidal, excitatory, and 2009

inhibitory PSP block, respectively. p(t) represents the external input applied to the system, 2010

usually noise. A and B define the maximum amplitude of excitatory and inhibitory PSP, 2011

respectively. a and b represent the collective effect of the inverse of the time constant of the 2012

passive membrane and the entirety of the spatially dispersed delays within the dendritic network 2013

for the excitatory and inhibitory populations, respectively. C1 to C4 are the connectivity 2014

constants. 2015

For the connectivity parameters, we wanted to mention that C1 and C3 slightly differ from C2 2016

and C4 in the mathematical expression. The JR model assumes equal synaptic input from the 2017

pyramidal cell population to the other two populations, setting these constants to 1. In contrast, 2018

the synaptic coefficients at the excitatory and inhibitory dendrites are varied (corresponding to 2019

C1 (P → E) and C3 (P → I)). Conversely, for pyramidal cells, the synaptic coefficients at their 2020

dendrites remain fixed (1 and -1 for excitatory and inhibitory interneurons, respectively), and 2021

excitatory and inhibitory neurons synapse onto pyramidal cells differently (represented by C2 2022

(E → P ) and C4 (I → P ). Therefore, C1 and C3 function as synaptic coefficients, while C2 and 2023

C4 serve as connectivity constants, as illustrated in the detailed schematic. Mathematically, 2024

this means that C1 and C3 are applied within the nonlinear function, while C2 and C4 are 2025

applied outside. However, in practical terms, all these parameters are described as connectivity 2026

parameters and can be considered analogous and interrelated. Furthermore, all the values are 2027

scaled by a global connectivity parameter. See Cook et al. (2021) for a further explanation of 2028

this nuanced aspect of the JR model system. 2029
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Original Symbol Description Value

e0 Firing rate at threshold 2.5 s(−1)

V0 Firing threshold 6 mV

r Slope reflecting the variance of firing thresholds within

the population

0.56

mV(−1)

A Maximum amplitude of excitatory PSP (EPSP) 3.25 mV

B Maximum amplitude of inhibitory PSP (IPSP) 22 mV

a and b Lumped representation of the sum of the reciprocal of

the time constant of passive membrane and all other

spatially distributed delays in the dendritic network

a = 100

s(−1)

b = 50

s(−1)

C1 Connectivity constant: Represents the number of

synapses made by the feed forward neurons to the den-

drites of the excitatory feedback loop

C = C1

135

C2 Connectivity constant: Proportional to the number of

synapses made by the excitatory feedback loop to the

dendrites of the feedforward neurons

C2 = 0.8C

C3 Connectivity constant: number of synapses made by the

feedforward neurons to the dendrites of the inhibitory

feedback loop

C3 =

0.25C

C4 Connectivity constant: Proportional to the number of

synapses made by the inhibitory feedback loop to the

dendrites of the feedforward neurons

C4 =

0.25C

P(t) External pulse density consisting of activity originating

from adjacent and more distant cortical columns and

from subcortical structures (e.g. thalamus)

For stan-

dard used

uniform

noise but

can be

normal or

constant

Table 4. JR parameters with biological descriptions and corresponding values to generate alpha

rhythm

Moran-David-Friston model equations 2030

The form of the differential equations for the MDF model are 2031
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ν̇1 = i1 (50)

i̇1 = κeHe(γ1S(ν6 − a) + u)− 2κei1 − κ2eν1 (51)

ν̇2 = i2 (52)

i̇2 = κeHeγ2S(ν1)− 2κei2 − κ2eν2 (53)

ν̇3 = i3 (54)

i̇3 = κiHiγ4S(ν7)− 2κii3 − κ2i ν3 (55)

ν̇6 = i2 − i3 (56)

ν̇4 = i4 (57)

i̇4 = κeHeγ3S(ν6)− 2κei4 − κ2eν4 (58)

ν̇5 = i5 (59)

i̇5 = κiHiγ5S(ν7)− 2κii5 − κ2i ν5 (60)

ν̇7 = i4 − i5 (61)

The vi values represent the membrane potential of the subpopulations and ii denoting 2032

their current. Specifically, v1 and i1 describe the excitatory interneurons, v2,3,6 and i2,3 the 2033

pyramidal cells, and finally v4,5,7 and i4,5 the inhibitory interneurons. The γi values are the 2034

connection strengths between the populations. He and κe are the maximum amplitude and 2035

the rate constant associated with EPSP, respectively. Similarly, Hi and κi represent the same 2036

parameters for the IPSP. 2037
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Original Symbol Description Value

ρ1 For shape of sigmoid: Can straighten more or less the

slope

2

ρ2 For position of sigmoid: Can shift the curve right or left 1

He Maximum amplitude of excitatory PSP (EPSP) 10 mV

Hi Maximum amplitude of inhibitory PSP (IPSP) 22 mV

κe and κi Lumped representation of the sum of the rate constants

of passive membrane and other spatially distributed de-

lays in the dendritic tree

κe = 250 s(−1)

κi = 62.5

s(−1)

γ1 Coupling strength: Between pyramidal cells and macro-

column u (in excitatory spiny cells in granular layer)

128

γ2 Coupling strength: Between excitatory spiny cells in

granular layer and pyramidal cells

128

γ3 Coupling strength: Between pyramidal cells(excitatory)

and inhibitory interneurons

64

γ4 Coupling strength: Between inhibitory interneurons and

pyramidal cells

64

γ5 Coupling strength: Inhibitory-Inhibitory coupling (re-

current connection)

1

Table 5. MDF parameters with biological descriptions and corresponding values to generate alpha

rhythm

Liley-Wright model equations 2038

For the LW model, the differential equations are 2039

τeV̇e(t) = V rest
e − Ve(t) + ψee(Ve(t))Iee(t) + ψie(Ve(t))Iie(t) (62)

τiV̇i(t) = V rest
i − Vi(t) + ψei(Vi(t))Iei(t) + ψii(Vi(t))Iii(t) (63)

İee = Uee (64)

U̇ee = −2γeUee(t)− γ2eIee(t) + Γeγee(N
β
eeS(Ve(t)) + pee(t)) (65)

İei = Uei (66)

U̇ei = −2γeUei(t)− γ2eIei(t) + Γeγee(N
β
eiS(Ve(t)) + pei(t)) (67)

İie = Uie (68)

U̇ie = −2γiUie(t)− γ2i Iie(t) + Γiγie(N
β
ieS(Vi(t))) (69)

İii = Uii (70)

U̇ii = −2γiUii(t)− γ2i Iii(t) + Γiγie(N
β
iiS(Vi(t))) (71)

Nxx are the inter- and intra-connectivities between the two populations. pei and pee are 2040

the external inputs. Ixx are the postsynaptic potentials, and Vxx are the soma membrane 2041
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potentials. Γe,i and γe,i are the peak amplitude and rate constant PSPs for excitatory and 2042

inhibitory population, respectively. The model also includes passive membrane time constants 2043

represented by τe,i, mean resting membrane potentials V r
e,i, and mean equilibrium potentials 2044

V eq
e,i . 2045

Original Symbol Description Value

Smax(e,i) Excitatory/Inhibitory population mean maximal firing

rates

500, 500 s(−1)

µ(e,i) Excitatory/Inhibitory population thresholds (spike

threshold)

-50, -50 mV

σ(e,i) Standard deviation for spike-threshold in excita-

tory/inhibitory population

5, 5 mV

Γe Excitatory postsynaptic potential peak amplitude (at

the site of synaptic activation)

0.71 mV

Γi Inhibitory postsynaptic potential peak amplitude (at

the siyte of synaptic activation)

0.71 mV

γ(e,i) Excitatory/Inhibitory postsynaptic potential rate con-

stant

300, 65 s(−1)

τ(e,i) Passive membrane decay time constant 0.094, 0.042 s

V r
(e,i) Mean resting membrane potential -70, -70 mV

V eq
(e,i) Mean equilibrium potential associated with excitation

or inhibition

45, -90 mV

Nβ
(ee,ei) Total number of connections that a cell of type e, i

receives from excitatory cells via intra-cortical fibres

(Weight connections)

3000, 3000

Nβ
(ie,ii) Total number of connections that a cell of type e,i re-

ceives from inhibitory cells via intra-cortical connections

(Weight connections)

500, 500

p(ee,ei) Excitatory input to excitatory, inhibitory cells (extra-

cortical input)

3.460, 5.070

s(−1)

p(ie,ii) Inhibitory input to excitatory, inhibitory cells (extra-

cortical input)

0, 0 s(−1)

Table 7. LW parameters with biological descriptions and corresponding values to generate alpha

rhythm

Robinson-Rennie-Wright model equations 2046

Finally, the differential equations of the RRW are as follows 2047
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dVe
dt

= V̇e (72)

dV̇e
dt

= αβ[νeeϕe + νeiS(Ve) + νesS(Vs(t− t0/2))− (
1

α
+

1

β
)V̇e − Ve] (73)

dVs
dt

= V̇s (74)

dV̇s
dt

= αβ[νseϕe(t− t0/2) + νsrSr(Vr) + νsnϕn − (
1

α
+

1

β
)V̇s − Vs] (75)

dVr
dt

= V̇r (76)

dV̇r
dt

= αβ[νreϕe(t− t0/2) + νrsS(Vs)− (
1

α
+

1

β
)V̇e − Vr] (77)

dϕe
dt

= ϕ̇e (78)

dϕ̇e
dt

= γ2e [S(Ve)−
2

γe
ϕ̇e − ϕe] (79)

with Ve, Vr, and Vs representing the potential of the cortical population, of the reticular 2048

nucleus and of the relay nuclei, respectively. νxx denote the connection strengths parameters. 2049

α and β refer to the decay and rise time of the impulse response, representing the dendritic 2050

rate. t0 is the conduction delay between thalamic and cortical projections. Finally, γe stands 2051

for the cortical damping rate, which is exclusively applied to the cortical population. This final 2052

differential equation for determining ϕe is related to the PDE damped wave equation, which 2053

was used to consider spatial variations (Robinson et al., 1997). However, in the case of spatial 2054

uniformity, the wave equation simplifies to an ODE (Zhao and Robinson, 2015). 2055

83

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.03.01.583035doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.01.583035
http://creativecommons.org/licenses/by-nc-nd/4.0/


Original Symbol Description Value

Qmax Maximum attainable firing rate of individual neurons 340 s(−1)

σ′π
√
3 Standard deviation of the threshold distribution in the

neural population

3.8∗π
√
3 ≈

5.9 mV

θ Mean firing threshold 12.92 mV

γe Cortical damping rate (Axonal velocity/Range) 116 s(−1)

1/α Decay time (of impulse response, dendritic rate) 83.33 s−1

1/β Rise time (of impulse response, dendritic rate) 769.23 s−1

t0 Corticothalamic loop delay (Loop distance/Axonal ve-

locity) which means conduction delay through thalamic

nuclei and projections

80 ms

vee Neesee: Mean number of synapses X strength of the re-

sponse to a unit signal

3.03 mVs

−vei −Neisei 6.00 mVs

ves Nesses 2.06 mVs

vse Nsesse 2.18 mVs

−vsr −Nsrssr 0.83 mVs

vre Nresre 0.33 mVs

vrs Nrssrs 0.03 mVs

vsn Nsnssn 0.98 mVs

Table 6. RRW parameters with biological descriptions and corresponding values to generate alpha

rhythm
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