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Abstract 
 
Genome-wide association studies (GWAS) have identified hundreds of common variants associated with alcohol 
consumption. In contrast, rare variants have only begun to be studied for their role in alcohol consumption. No 
studies have examined whether common and rare variants implicate the same genes and molecular networks. 
To address this knowledge gap, we used publicly available alcohol consumption GWAS summary statistics 
(GSCAN, N=666,978) and whole exome sequencing data (Genebass, N=393,099) to identify a set of common 
and rare variants for alcohol consumption. Gene-based analysis of each dataset have implicated 294 (common 
variants) and 35 (rare variants) genes, including ethanol metabolizing genes ADH1B and ADH1C, which were 
identified by both analyses, and ANKRD12, GIGYF1, KIF21B, and STK31, which were identified only by rare 
variant analysis, but have been associated with related psychiatric traits. We then used a network colocalization 
procedure to propagate the common and rare gene sets onto a shared molecular network, revealing significant 
overlap. The shared network identified gene families that function in alcohol metabolism, including ADH, ALDH, 
CYP, and UGT. 74 of the genes in the network were previously implicated in comorbid psychiatric or substance 
use disorders, but had not previously been identified for alcohol-related behaviors, including EXOC2, EPM2A, 
CACNB3, and CACNG4. Differential gene expression analysis showed enrichment in the liver and several brain 
regions supporting the role of network genes in alcohol consumption. Thus, genes implicated by common and 
rare variants identify shared functions relevant to alcohol consumption, which also underlie psychiatric traits and 
substance use disorders that are comorbid with alcohol use. 
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Introduction 
 
Alcohol use disorder (AUD) is a highly heritable 
(Verhulst, Neale and Kendler, 2015) disease with a 
heavy public health burden (MacKillop et al., 2022). 
AUD can be viewed as the endpoint of a series of 
transitions, which begin with the initiation of use, 
regular alcohol consumption that continues with the 
escalation to hazardous drinking, and culminates in 
compulsive harmful use that persists despite 
negative consequences (Sanchez-Roige, Palmer 
and Clarke, 2020). As such, alcohol consumption is 
frequently studied as a proxy for AUD, as it is a 
component of AUD, and is a quantitative trait that is 
widely measured, providing large sample sizes for 
genetic studies. In particular, genome-wide 
association studies (GWAS) have identified 
numerous common variants that contribute to 
alcohol consumption, AUD, and related traits (Clarke 
et al., 2017; Liu et al., 2019; Saunders et al., 2022).  

Recently, GWAS of other psychiatric disorders have 
extended their reach to rare variants. Variants with 
deleterious effects are under negative selection 
(Gibson, 2012), thus rare variants are predicted to 
have higher penetrance and higher effect sizes in 
disease than common variants (Kimura et al., 2021). 
Rare variants also tend to have developed more 
recently than common variants, leading to fewer 
variants being in linkage disequilibrium with rare 
variants. This makes the association of rare variants 
with genes less ambiguous, and increases the 
interpretability of rare variants, compared with 
common variants (Sazonovs and Barrett, 2018). 
Rare variant studies have revealed that these 
variants influence risk for multiple psychiatric 
disorders, including intellectual disability, autism 
spectrum disorder, and schizophrenia (Ganna et al., 
2018; Charney et al., 2019; Antaki et al., 2022; Singh 
et al., 2022; Fu et al., 2023; Weiner et al., 2023). 
Because they are uncommon, rare variants are best 
identified using sequencing in conjunction with large 
sample sizes (Manolio et al., 2009; Backman et al., 
2021; Wang et al., 2021; Karczewski et al., 2022). 
Although a few exome sequencing studies and rare 
variant studies for alcohol phenotypes have been 
undertaken (Vrieze et al., 2014; Marees et al., 2018; 
Curtis, 2022; Ahangari et al., 2023) the contribution 
of rare variation on alcohol behaviors remains poorly 
characterized, as does the relationship between 
common and rare variants.  

One way to address the relationship between 
common and rare variants is by using biological 

knowledge networks. These networks contain 
information about the molecular interactions among 
genes and their products, both broadly and in 
disease contexts (Jia and Zhao, 2014; Farris, Harris 
and Ponomarev, 2015; Fong et al., 2019; Rosenthal 
et al., 2023). While the interplay between rare and 
common variant-implicated genes has been studied 
in network space for other psychiatric traits (Gilman 
et al., 2011; Ben-David and Shifman, 2012; Chang 
et al., 2018), it has not been studied for alcohol-
related traits or other substance use disorders 
(SUD). Based on evidence from comparisons of 
common and rare variants for other psychiatric traits, 
we hypothesized that the same genes and molecular 
pathways would be identified by both approaches.  

To test this hypothesis, we assembled data from UK 
Biobank (UKB) pertaining to both common and rare 
variants that are associated with alcohol 
consumption. We then used a network approach to 
investigate the biological overlap between common 
and rare variants for alcohol consumption. This 
approach allowed us to compare their relative 
contributions at the variant, gene, and molecular 
pathway levels.  

Results 
 
Common and Rare Variant Associations 
We obtained GWAS summary statistics from 
GSCAN, which recently performed a meta-analysis 
of alcohol consumption in Europeans (Saunders et 
al., 2022) (n=666,978, Figure 1A). 501 independent 
(r2) common (MAF>0.05) variants were significantly 
associated with alcohol consumption (p<5x10-8) 
(Saunders et al., 2022). Genome-wide significant 
rare variants were obtained from Genebass’s recent 
analysis of 393,099 individuals from the UKB 
(Karczewski et al., 2022) (Figure 1B). Three rare 
variants were significantly associated with alcohol 
consumption (p<8x10-9): one potential loss of 
function (pLoF) variant in ADH1C, a missense 
variant in ADH1B, and a synonymous mutation in 
C4orf54 (Table S1). The mutations in ADH1C and 
C4orf54 were both protective. ADH1C and ADH1B 
both have known roles in ethanol metabolism 
(Tolstrup et al., 2008; Le Daré, Lagente and Gicquel, 
2019), but despite C4orf54 being associated with 
substance use disorders in prior GWAS (Sollis et al., 
2023), its function is poorly understood. 
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Common and Rare Gene-Level Associations 
Common loci were assigned to genes based on 
proximity using MAGMA (de Leeuw et al., 2015), 
identifying 294 genes (Figure 1C; Table S2, 
p<2.6x10-6). Rare variants were previously 
aggregated (Karczewski et al., 2022) into gene level 
associations using SKAT, SKAT-O, and a variant 
burden test (Karczewski et al., 2022). These tests 
identified four genes that were significantly 
correlated with alcohol consumption via both SKAT-
O and burden tests (pSKAT-O<2.5x10-7; pburden<6.7x10-

7): ADH1C, PMM2, GIGYF1, and ANKRD12. Only 
ADH1C was significantly associated by SKAT 
(pSKAT<2.5x10-7), and was the only gene previously 
associated with alcohol-related traits by common 
gene analysis.  
 
We also considered a more lenient cutoff for genes 
from rare variants (FDR<0.25, Figure 1D, Figure 
S1A, Table S3), which identified 35 genes across all 
tests. 20 genes were identified by both SKAT-O and 
the burden test (Figure S1B), however, only ADH1C 
and PMM2 were significant in all tests. 51% of genes 
were functionally annotated as loss of function, 
followed by missense and low confidence loss of 
function (40%), and the remaining 9% as 
synonymous (Figure S1C). 12 of these genes had 
previously been identified by common variants as 

mediating alcohol consumption and alcohol use 
traits in the GWAS catalog (Sollis et al., 2023) (Table 
S3; p=8.24x10-33, hypergeometric test). This 
includes alcohol dehydrogenase genes ADH1A, 
ADH1B, and ADH1C, and signaling genes FOXP1, 
AKAP6, AKAP9, and GRM5, highlighting the 
overlapping regulation of SUDs and psychiatric 
traits. 
 
ADH1B and ADH1C were identified by both the rare 
and common gene-based analyses (Figure 2A, 
p=0.01, hypergeometric test). 
 
Generation of the Alcohol Consumption Network 
Next, we examined the molecular pathways wherein 
these alcohol consumption genes function (Figure 
2A). We used the Parsimonious Composite Network 
(PCNet), a resource of 2.7 million pairwise 
associations among genes (Huang et al., 2018). 
PCNet is a consensus of 21 physical and functional 

Figure 1. Common and rare variants mediate alcohol consumption. Manhattan plot of (A) common variants and (B) rare variants associated with 
alcohol consumption. Significance cutoff indicated in red (common: p<5x10-8; rare: p<8x10-9). p-value for peaks outside of range labeled. Rare variant 
MAC>2. (C) Manhattan plot of alcohol consumption common variant-implicated genes. Significance cutoff (p<2.6x10-6) indicated in red. Significant genes 
that overlap with rare-variant implicated genes are labeled. (D) Porcupine plot of genes calculated by burden test, SKAT-O, and SKAT algorithms from 
rare variants. Significantly associated genes (FDR<0.25) for each test are labeled and colored in yellow, blue, and pink, for  burden, SKAT-O, and SKAT, 
respectively. See Figure S1a for individual manhattan plots for each test. 
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interaction databases and integrates multiple lines of 
evidence, including protein-protein interactions, 
mRNA, protein co-expression across tissues, and 
literature curation. 
 
We assigned network proximity scores (NPS) to 
each gene in PCNet using a random-walk algorithm, 
which computes the number of steps through the 
network to reach that gene from a set of seed genes. 
Seed genes from common and rare gene-set 
analyses were filtered for presence in PCNet, 
resulting in 264 common seed genes and 32 rare 
seed genes. NPScommon was calculated from 
common seed genes and NPSrare was calculated 
from rare seed genes (Figure S2A). We then 
calculated the product of the two proximity scores to 
compute NPScommon-rare = NPScommon x NPSrare, and 
selected for high NPScommon, NPSrare, and NPScommon-

rare scores (Figure 2B). In this way, genes with the 
highest NPScommon-rare were close in the molecular 
network to both common and rare seed genes, even 

if they were not identified by the individual studies 
(Table S4). 
 
We found that the alcohol consumption network 
contained significantly more genes (Figure 2C, 
p=3.09 x 10-8), and that the mean of NPScommon-rare 
was significantly higher than expected (Figure S2C, 
p=5.51 x 10-6). As a negative control, we produced 
networks using both the alcohol rare and common 
seed genes in conjunction with arbitrary traits; these 
negative controls did not produce networks that 
were larger than the permuted control (Figure 2D, 
Table S5). Additionally, when we considered a more 
stringent threshold for rare seed genes (pSKAT-

O<2.5x10-7, n=4) we had similar results (Figure 
S2C). However, network colocalization was 
contingent upon ADH1C. 

Figure 2. Convergence of rare and common variants on the network level. (A) Left, venn diagram showing overlap of common seed genes (purple) 
and rare seed genes (green). Overlapping genes are indicated in dark blue and labeled. Significance of overlap calculated via hypergeometric test. Right, 
Venn diagram of genes passing network proximity score (NPS) thresholds after network colocalization. Significance of intersection indicated calculated in 
C. (B) NPScommon and NPSrare for all genes in PCNet, with genes passing all thresholds for the alcohol consumption network (NPScommon-rare > 3, NPScommon 
> 1.5, and NPSrare > 1.5) shown in dark blue. Dotted lines indicate NPS thresholds. (C) Observed (dark blue arrow) versus expected (gray distribution) size 
of the Alcohol Consumption Network following 10,000 permutations of NPS labels. p-value calculated via Z-test. (D) The observed-to-expected ratio of 
colocalized network size for networks calculated from common and rare seed genes from alcohol consumption and from control trait FEV1 (forced 
expiratory volume per second). Vertical bars indicate 95% confidence intervals. Significance calculated by Z-test, Bonferroni corrected. * indicates 
p=3.09x10-8. See also Figure S2C and Table S5 for additional controls. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2024. ; https://doi.org/10.1101/2024.02.26.582195doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582195
http://creativecommons.org/licenses/by/4.0/


 

5 

As shown in Figure 3, the alcohol consumption 
network contained 208 nodes, connected by 1,226 
edges. 27 of 264 seed genes were maintained from 
the common seed genes. 5 of the 34 seed genes 
derived from rare variants were maintained into the 
network. ADH1B and ADH1C, which were seed 
genes for both common and rare, were both 
maintained into the network (Table S4). 
 
The Structure of the Alcohol Consumption 
Network 
One of the goals of generating the network shown in 
Figure 3 is to identify the underlying biology 
identified by common and rare seed genes. Several 
gene families previously known to play a role in 
ethanol metabolism were present in the network 
(Figure S3). For example, 8 genes from the alcohol 
dehydrogenase (ADH) family (Le Daré, Lagente and 
Gicquel, 2019) and 7 aldehyde dehydrogenase 

(ALDH) family genes (Edenberg, 2007) are in the 
network. 6 cytochrome P450 (CYP) genes, which 
mediate about 10% of alcohol metabolism via the 
microsomal pathway (Hamitouche et al., 2006; 
Corella, 2012), were also in the network. In addition, 
genes from the non-oxidative ethanol metabolism 
pathways, which primarily function in phase II drug 
metabolism (Le Daré, Lagente and Gicquel, 2019), 
were also present. This includes 2 sulfotransferase 
(SULT) family genes, which metabolize ethanol into 
ethyl sulfate, and 18 genes in the UDP-
Glycosyltransferase (UGT) superfamily, whose 
encoded proteins glucuronidate ethanol into ethyl 
glucuronide, a minor non-oxidative metabolite of 
ethanol (Walsham and Sherwood, 2014). Thus, the 
network recapitulates previously known biologies 
relevant to ethanol metabolism. 
 

Figure 3. The Alcohol Consumption Network. Subnetwork of PCNet including all genes proximal to both rare and common alcohol consumption seed 
genes. Purple nodes indicate common seed genes, green nodes indicate rare seed genes, dark blue nodes indicate seeds in both sources, and white 
nodes are network-implicated genes. Edges maintained from PCNet. Red outlined nodes have previously been annotated in the GWAS catalog for alcohol 
use traits. 
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Another benefit of the network is the ability to identify 
relevant tissues. We found 25 tissues that were 
significantly enriched for differential gene expression 
(Figure 4A, Table S3), with high overlap of genes 
across tissues. Consistent with the presence of 
genes involved in ethanol metabolism in the 
network, the highest enrichment was in the liver and 
consisted of 115 genes, including 28 from the ADH, 
ALDH, UGT, CYP, and SULT families. In addition to 
the liver, numerous gastrointestinal tissues were 
also enriched: the gastrointestinal tract mediates 
absorption and gastric metabolism of alcohol, and 
chronic alcohol consumption may lead to 
inflammation and increased risk of gastrointestinal 
and esophageal cancers (Bode and Bode, 1997; 
Edenberg, 2007). As expected, all brain tissues 
were significantly enriched.  
 
To determine whether the genes had been 
previously implicated by common variants in alcohol 
use, other SUDs, and related psychiatric disorders, 
we examined annotations from the GWAS catalog 
(Sollis et al., 2023). Specifically, we considered 
annotations for alcohol use, smoking and nicotine 
use, and other SUDs, including opioid, cannabis, 
and polysubstance use, and related psychiatric 
disorders (Figure 4B). 201 of the 208 genes in the 
network are annotated in the GWAS catalog. Of 
these, 40 have been previously associated in 
alcohol use (p=1.56 x 10-3, hypergeometric test) and 
52 network genes in smoking traits (p=0.046, 
hypergeometric test) (Karlsson Linnér et al., 2021). 
8 were identified for SUDs and 88 for psychiatric 
traits, though the enrichment was not significant for 
either. Of the genes associated with these traits, 
many had annotations in multiple categories, such 
as EPM2A, EXOC2, NFAT5, and SNTB1. These 
findings highlight the neuropsychiatric function of the 
network and point to a shared underlying 
mechanism across alcohol and polysubstance use. 
 
Finally, to determine whether these genes had been 
previously implicated by rare variants in alcohol use, 
we examined gene-level annotations from 
GeneBass of genes in the network (Karczewski et 
al., 2022). 6 of the 208 network genes (ADH1C, 
AKAP7, ATG101, DTNA, NKX6-2, and SYNJ2) were 
associated with secondary alcohol use traits by rare 
variants, including use status and frequency of use, 
negative societal impacts from use, and alcoholic 
liver disease. Only ADH1C was also associated with 
alcohol use traits by common variants. Notably, 
these genes, excluding ATG101, were all associated 

with other SUDs and psychiatric traits through 
common variants. 
 
Discussion 
 
The contribution of common variants in mediating 
alcohol consumption has been well documented, 
while rare variants represent a new frontier that has 
recently become feasible due to the availability of 
large scale sequencing data. Prior rare variant 
analysis identified 4 genes at a stringent (pSKAT-

O<2.5x10-7) and 35 genes at a lenient threshold 
(FDR<0.25), demonstrating the importance of rare 
variants for alcohol-related behaviors (Figure 1). We 
combined the findings from common and rare 
variants to determine whether they identify 
convergent biological networks (Figure 2). We 
identified a highly significant network (Figure 3). The 
network emphasized the role of ethanol metabolism, 
which was further supported by the tissue specific 
enrichment in both brain and liver (Figure 4), 
consistent with decades of research on the genetics 
of alcohol consumption. 
 
The role of common variants in ethanol metabolizing 
enzymes is well established for alcohol consumption 
and related traits (Sanchez-Roige, Palmer and 
Clarke, 2020; MacKillop et al., 2022). Similarly, rare 
variant analysis of alcohol consumption identified 
ADH1A, ADH1B, and ADH1C, which have well 
documented roles in ethanol metabolism (Edenberg, 
2007). The network identified by the joint analysis of 
common and rare variants also identified genes for 
both oxidative and non-oxidative ethanol 
metabolism, including ADH, ALDH, UGT, CYP, and 
SULT family genes. Ethanol is primarily metabolized 
in the liver, but is also metabolized by the stomach 
and the brain (Zakhari, 2006), which was reflected in 
the high enrichment of network genes in the liver, 
gastrointestinal tissues, and the brain. Disulfiram, by 
inhibiting ALDH1A1 - which was a gene in the 
alcohol consumption network - is an effective 
treatment for alcohol use disorder (Lanz et al., 
2023), suggesting that other genes identified by our 
network could also be viable pharmacological 
targets.  
 
In addition to ethanol metabolism, genes found by 
our analyses have also been associated with 
neuropsychiatric conditions that are correlated 
(Walters et al., 2018) and highly comorbid with 
alcohol use disorder, such as depression (Ribadier 
and Varescon, 2019), schizophrenia (Johnson et al., 
2023), bipolar disorder (Grunze et al., 2021), 
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neuroticism (Ribadier and Varescon, 2019), and 
cognitive dysfunction (Nunes et al., 2019). For 
example, the rare variant analysis identified KIF21B 
(Asselin et al., 2020), which has been associated 
with smoking initiation (Saunders et al., 2022), 
ADHD (Cross-Disorder Group of the Psychiatric 
Genomics Consortium, 2013), and schizophrenia 
(Trubetskoy et al., 2022). GIGYF1 has been 
associated with Alzheimer’s disease (Burdett et al., 
no date) and schizophrenia (Ding et al., 2023). 
Finally, SCN7A has been associated with unipolar 
depression and educational attainment (Almomani 
et al., 2023). Similarly, the alcohol consumption 

network identified genes that have also been 
associated with neuropsychiatric conditions, such as 
genes from the FOXP family (i.e., FOXP1, FOXP2, 
FOXP4 (Sollis et al., 2023)). Another example is 
CACNB3 and CACNG4, calcium channel genes that 
have been associated with bipolar disorder and 
major depression((Sklar et al., 2012; Marshe et al., 
2021). Finally, the gene ADGRG6, which was 
identified by the alcohol consumption network, has 
been associated with depression and smoking 
initiation (Sollis et al., 2023). Integrative analyses 
may help clarify the shared mechanisms of these 

Figure 4. Validation of alcohol consumption network. (A) Enrichment of gene sets from the alcohol consumption network with bi-directional differential 
expression for 54 tissues from GTEX v8. Differentially expressed gene sets were defined by a two-sided t-tests per label, versus all remaining tissue 
types. Genes with p < 9.26x10-4 (Bonferroni corrected) and absolute log fold change ≥ 0.58 are selected as differentially expressed. Significance was 
calculated as the probability of the hypergeometric test. Tissues are colored by type, non-significant (NS) associations are indicated in gray. (B) Upset 
plot showing the overlap of genes in the alcohol consumption network that have previously been annotated in the GWAS catalog for alcohol use traits, 
nicotine use and smoking traits, other substance use disorders (SUD), and psychiatric traits. 
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conditions, but together this emphasizes shared 
genetic susceptibility across these traits.  
  
While this study found that common and rare 
variants that were associated with alcohol 
consumption identified a shared network, there are 
several limitations to consider. We found that 
ADH1C is needed for network colocalization, 
showing that it is a hub gene for this network; this 
highlights the need for increased power of rare 
variants. We only studied alcohol consumption, 
however future study should also consider other 
AUD-relevant phenotypes. Similarly, methods for 
mapping common SNP to genes are imperfect; we 
used MAGMA but other more or less stringent 
methods might produce different results. 
Additionally, we used a lenient significance 
threshold to select rare variants (FDR>0.25), which 
likely introduced some false positives into the 
network analysis. However, we repeated this 
analysis with a more stringent cutoff for rare variants 
(pSKAT-O<2.5x10-7) and found little change in 
significance of network overlap. Additionally, 
NetColoc is robust to false positives, but functions 
best with a moderate number of input genes 
(Rosenthal et al., 2023).  
 
While future improvements to our methodology and 
the underlying data will improve our ability to 
understand rare and common variant interaction, 
this work identified the first gene network from 
common and rare variants of alcohol consumption. 
 
Materials and Methods 
 
Lead Contact 
Further information and requests for resources 
should be directed to aapalmer@ucsd.edu and 
sanchezroige@health.ucsd.edu. 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and code availability 
All code used for analysis and data visualization is 
freely available in public repositories. All original 
code is publicly available at 
https://github.com/BSLeger/rare_common_alcohol_
comparison. 
 
Any additional information required to reanalyze the 
data reported in this paper is available from the lead 
contact upon request. 
 

Data acquisition 
Common variant experimental and control data 
acquisition 
The common variant summary statistics for alcohol 
consumption were obtained from the GWAS & 
Sequencing Consortium of Alcohol and Nicotine 
use. Summary statistics were computed via a meta-
analysis of GWAS results representing 666,978 
individuals of European ancestry (Saunders et al., 
2022). Summary statistics for common variant 
negative control traits were obtained from the Neale 
Lab Round 2 GWAS (Abbott et al., 2022) 
(http://www.nealelab.is/uk-biobank). Phenotype 
codes are FEV1: Forced Expiratory Volume per 
Second (20153_irnt) and Heel Quantitative 
Ultrasound Index (QUI) (4104_irnt). These negative 
control traits were selected as they have similar 
numbers of implicated genes to alcohol consumption 
(250<N<350), similar SNP heritability to alcohol 
consumption (h2 >0.30), and minimal genetic 
correlation with a comparable alcohol consumption 
trait (Amount of Alcohol Drunk on a Typical Drinking 
Day (20403)) (|rg| < 0.38). These estimates were 
obtained from the UKB Heritability browser 
(https://nealelab.github.io/UKBB_ldsc/h2_browser.h
tml) and UKB Genetic Correlation browser 
(https://ukbb-rg.hail.is/), both generated by the 
Neale Lab (Abbott et al., 2022).  
Rare variant and gene experimental and control 
data acquisition and filtering 
Rare variant data was downloaded from Genebass’s 
Hail library (gs://ukbb-exome-
public/500k/results/variant_results.mt), and queried 
for alcohol consumption by phenotype code 
(alcohol_intake_custom) using Hail. To increase the 
confidence in rare variants, we selected for alcohol 
consumption rare variants that have MAC in the top 
50% (MAC>2). Rare variant gene-level associations 
was downloaded from Genebass browser 
(https://app.genebass.org/). Due to limited 
comparisons between rare variant datasets, rare 
variant controls were filtered based on heritability 
and genetic correlations listed above, which were 
calculated based on common variants. Rare variant 
controls were chosen if they had heritability greater 
than 0 (h2 >0.01), minimal genetic correlation with a 
comparable alcohol consumption trait (Amount of 
Alcohol Drunk on a Typical Drinking Day (20403)) 
(0.0< |rg| < 0.2), and had the minimum number of 
rare seed genes recommended for network 
propagation using NetColoc (n>5), using 
comparable significance cutoffs as used for alcohol 
consumption rare seed genes (false discovery rate 
corrected burden or SKAT-O or SKAT<0.25, 
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calculated for each individual dataset). Phenotype 
codes are as follows: Alcohol Consumption 
(alcohol_intake_custom), FEV1: forced expiratory 
volume per second (20153), Pulse Rate (4194), 
Heel bone mineral density (BMD) T-score, 
automated (78), Other malignant neoplasms of skin 
(C44), Malignant neoplasm of breast (C50). The 
stringent alcohol consumption rare seed genes were 
selected if the genes were significant by any test 
(p<0.05) after bonferroni correction (pSKAT-O<2.5x10-

7; pburden<6.7x10-7, pSKAT<2.5x10-7). Genes were 
considered leniently significant if any of the gene 
tests identified the genes as significant (p<0.25) 
after false discovery rate correction (pSKAT-O<1.5x10-

4; pburden<1.1x10-4, pSKAT<2.7x10-5).  
Molecular Interaction Networks 
The Parsimonious Composite Network (Huang et 
al., 2018) (PCNet v1.4) was obtained from the 
network data exchange (NDEx, ndexbio.org), UUID: 
c3554b4e-8c81-11ed-a157-005056ae23aa. PCNet 
is a molecular interaction resource formed from 
integrating 21 interaction databases that contain 
various evidence types, including physical protein-
protein, genetic, co-expression, and co-citation 
evidence. Each interaction in PCNet is supported by 
at least two of the component databases, a threshold 
chosen to maximize the ability of PCNet to perform 
gene set recovery tasks via network propagation. All 
seed genes were mapped to the nodes of PCNet via 
gene symbols.  

Common variant gene mapping  
We generated gene-level significance values from 
the SNP-level summary statistics using the MAGMA 
algorithm (de Leeuw et al., 2015) using default 
parameters. Annotation windows were 10 kb, and 
the 1000 Genomes European reference panel was 
used for genome , and Hg38 Gene locations, 
downloaded from MAGMA’s launch page 
(https://ctg.cncr.nl/software/magma). MAGMA 
projects the SNP matrix onto principal components, 
and uses the principal components to predict for the 
phenotype using linear regression. Association of 
the gene to the phenotype using the principal 
component SNP matrix is used to calculate an F 
statistic, which is used to calculate the p-value for 
the individual genes. Genes were considered 
significant if they were p<2.6x10-6.  
 
Generation of the alcohol consumption network 
Network propagation and co-localization 
We used the Python package NetColoc (Rosenthal 
et al., 2023) (https://pypi.org/project/netcoloc/) for 
network propagation and co-localization. The sets of 

significant trait-associated genes from GWAS were 
used as “seed” genes for network propagation using 
a Random Walk with Restart (Vanunu et al., 2010) 
algorithm. Following network propagation with 𝛼 = 
0.5, we calculated a network proximity score (NPS) 
for each gene in the network by comparing the 
observed results to a null distribution. The null 
distribution was formed by propagating 1,000 
randomly selected seed gene sets. Each set was 
sampled to preserve the size and degree distribution 
of the original input set. As previously implemented 
(Rosenthal et al., 2021, 2023; Wright et al., 2023), 
we binned all genes in the network by degree with a 
minimum of 10 nodes per bin. For each gene, the 
NPS was calculated as a z-score comparing the 
observed heat at that gene after network 
propagation of the gene set, to the mean of the null 
distribution heats at that gene.  All heat values are 
log-transformed to ensure the distributions are 
approximately normal. 

NetColoc recommends fewer than 500 input seed 
genes given the sample space of PCNet (~18,000 
genes). Therefore, we employed a weighted 
sampling procedure for any trait having more than 
500 significantly associated genes. We sampled 500 
genes from the set of all significant genes (weighted 
by –log10p from GWAS) and ran the propagation 
analysis from this subset. After 100 repetitions, the 
75% percentile NPS score was selected to 
approximate a consensus score for each gene. 

From input seed genes from common and rare 
variants, we independently calculated NPScommon 
and NPSrare for each trait. We then defined a gene 
as colocalized between both if it had high proximity 
to both input sets. Therefore, we defined the 
combined network proximity NPScommon-rare as the 
product of the independent dataset vectors: 

𝑁𝑃𝑆𝑐𝑜𝑚𝑚𝑜𝑛−𝑟𝑎𝑟𝑒 = 𝑁𝑃𝑆𝑐𝑜𝑚𝑚𝑜𝑛 ∗  𝑁𝑃𝑆𝑟𝑎𝑟𝑒 

Definition of the alcohol consumption network 
From NPScommon-rare, we selected genes with high 
proximity scores from both common and rare 
sources to define the network using the following 
thresholds: NPScommon-rare > 3, NPScommon > 1.5, and 
NPSrare > 1.5. To calculate the significance of the 
network co-localization, we compared the conserved 
network size and the mean NPScommon-rare to a 
permuted null distribution. We permuted the labels 
of NPSrare and NPScommon 10,000 times, and each 
time calculated the mean NPScommon-rare across all 
genes and the number of genes passing the above 
thresholds. For genes present in both input sets, 
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labels were permuted separately to maintain the 
higher expected distribution for these genes. The 
significance of the conserved network size and 
mean NPScommon-rare was calculated by Z-test.  

Validation and functional annotation 
Gene family annotation 
Gene families were manually assigned based on 
gene families identified from the Uniprot ID mapping 
function (https://www.uniprot.org/id-mapping) on 28 
November 2023. Families were assigned broadly to 
make functional groups more evident, with a 
minimum of 2 genes per family required to be 
labeled.  
GWAS catalog 
To identify previously annotated genes, we used 
GWAS findings aggregated by the GWAS catalog 
(https://www.ebi.ac.uk/gwas/). The GWAS catalog’s 
gene level associations v.1.0.2 were downloaded on 
2 August 2023. We identified genes that had 
previously been associated with various traits by 
querying the Mapped Trait and the Disease/Trait for 
various keywords (see github for specific 
parameters). Traits were grouped into alcohol use 
traits, smoking and nicotine use traits, non-alcohol 
or smoking substance use disorders (for example, 
opioid use disorder), and non-SUD neurological and 
psychiatric traits (including cognitive traits, mental 
health and psychiatric traits, and neuro-
degenerative traits). All groups are mutually 
exclusive. Within each group, traits are listed as 
Mapped Trait: Disease/Trait for clarity, and listed 
only once per gene for readability. Enrichment for 
each group was calculated using a hypergeometric 
test. Genes mentioned in text were reconfirmed 
using the GWAS catalog browser. 
Rare Variant PheWAS 
To assess the association of network genes with 
other phenotypes through rare variants, gene level 
PheWAS results were downloaded from Genebass’s 
Hail database (gs://ukbb-exome-
public/500k/results/results.mt). Phenotypes were 
mapped to network genes by gene symbol. 
Phenotypes were determined as significant using 
the same p-value cutoffs as used for lenient seed 

genes from alcohol consumption (pSKAT-O<1.5x10-4; 
pburden<1.1x10-4, pSKAT<2.7x10-5). 
Tissue Enrichment 
To assess the tissue-specific expression of network 
genes, we used the Functional Mapping and 
Annotation of Genome-Wide Association Studies 
(FUMA) suite’s gene to function tool (Watanabe et 
al., 2017). We used FUMA to calculate the 
enrichment of gene sets for 54 tissue types from 
human GTEx v8 (GTEx Consortium, 2020). As 
described previously, this method takes normalized 
gene expressions (reads per kilobase per million, 
RPKM) from each GTEx tissue, and maps these 
genes to entrez ID (Watanabe et al., 2017). Pre-
calculated differentially expressed genes (DEG) sets 
were defined using a two-sided t-test per label 
versus all remaining tissue types. Genes with a 
Bonferroni corrected p-value<0.05 and absolute log 
fold change≥0.58 were selected as DEG. For the 
signed DEG, the direction of expression was taken 
into account. The -log 10(p-values) in the graph were 
calculated by hypergeometric test (Watanabe et al., 
2017). 
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Figure 1. Common and rare variants mediate alcohol consumption. Manhattan plot of (A) common variants and (B) rare 

variants associated with alcohol consumption. Significance cutoff indicated in red (common: p<5x10-8; rare: p<8x10-9). p-value for 
peaks outside of range labeled. Rare variant MAC>2. (C) Manhattan plot of alcohol consumption common variant-implicated genes. 
Significance cutoff (p<2.6x10-6) indicated in red. Significant genes that overlap with rare-variant implicated genes are labeled. (D) 

Porcupine plot of genes calculated by burden test, SKAT-O, and SKAT algorithms from rare variants. Significantly associated genes 
(FDR<0.25) for each test are labeled and colored in yellow, blue, and pink, for burden, SKAT-O, and SKAT, respectively. See Figure S1a 
for individual manhattan plots for each test.
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Figure 2. Convergence of rare and common variants on the network level. (A) Left, venn diagram showing overlap of common 
seed genes (purple) and rare seed genes (green). Overlapping genes are indicated in dark blue and labeled. Significance of overlap 
calculated via hypergeometric test. Right, Venn diagram of genes passing network proximity score (NPS) thresholds after network 
colocalization. Significance of intersection indicated calculated in C. (B) NPScommon and NPSrare for all genes in PCNet, with genes 
passing all thresholds for the alcohol consumption network (NPScommon-rare > 3, NPScommon > 1.5, and NPSrare > 1.5) shown in 
dark blue. Dotted lines indicate NPS thresholds. (C) Observed (dark blue arrow) versus expected (gray distribution) size of the Alcohol 
Consumption Network following 10,000 permutations of NPS labels. p-value calculated via Z-test. (D) The observed-to-expected ratio of 
colocalized network size for networks calculated from common and rare seed genes from alcohol consumption and from control trait 
FEV1 (forced expiratory volume per second). Vertical bars indicate 95% confidence intervals. Significance calculated by Z-test, Bonfer-
roni corrected. * indicates p=3.09x10-8. See also Figure S2C and Table S5 for additional controls.
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Figure 3. The Alcohol Consumption Network. Subnetwork of PCNet including all genes proximal to both rare and common alcohol 
consumption seed genes. Purple nodes indicate common seed genes, green nodes indicate rare seed genes, dark blue nodes indicate 
seeds in both sources, and white nodes are network-implicated genes. Edges maintained from PCNet. Red outlined nodes have previ-
ously been annotated in the GWAS catalog for alcohol use traits.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2024. ; https://doi.org/10.1101/2024.02.26.582195doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582195
http://creativecommons.org/licenses/by/4.0/


(A)

(B)

-lo
g 10

(p
)

Figure 4. Validation of alcohol consumption network. (A) Enrichment of gene sets from the alcohol consumption network with 
bi-directional differential expression for 54 tissues from GTEX v8. Differentially expressed gene sets were defined by a two-sided t-tests 
per label, versus all remaining tissue types. Genes with p�����[������%RQIHUURQL�FRUUHFWHG��DQG�DEVROXWH�ORJ�IROG�FKDQJH�������DUH�
selected as differentially expressed. Significance was calculated as the probability of the hypergeometric test. Tissues are colored by 
type, non-significant (NS) associations are indicated in gray. (B) Upset plot showing the overlap of genes in the alcohol consumption 
network that have previously been annotated in the GWAS catalog for alcohol use traits, nicotine use and smoking traits, other 
substance use disorders (SUD), and psychiatric traits.
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Supplemental Figure 1. Rare variants-implicated genes mediating alcohol consumption. (A) Manhattan plot of association 
with alcohol consumption for rare-variant implicated genes calculated by burden test (top), SKAT-O (middle), and SKAT (bottom). Dotted 
lines indicate FDR<0.25 cutoff for each test. (B) Venn diagram of leniently significant (FDR<0.25) genes identified from rare variants 
for alcohol consumption, broken down by SNP to gene algorithm used (burden, SKAT, SKAT-O). (C) Stacked bar chart of rare seed gene 
mutation type, grouped by SNP to gene algorithm. FDR<0.25 genes are shown in light colors, and pSKAT-O<2.5x10-7 genes are shown in 
dark colors. No pSKAT-O<2.5x10-7 genes were annotated as synonymous.
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Supplemental Figure 2. Network colocalization of rare and common alcohol consumption seed genes. (A) Distribution of 

NPS
common

 and NPS
rare

 for all nodes in PCNet. (B) Observed (blue arrow) and expected mean NPS
comon-rare

 for colocalization of common and 

rare seed genes, with significance assessed by Z-test. (C) The observed-to-expected ratio of colocalized network size from the following 

sources: alcohol consumption common and rare seed genes (left blue bar), negative control FEV1 (forced expiratory volume per second) 

common seed genes and alcohol consumption rare seed genes (white), FEV1 rare seed genes with alcohol consumption common seed 

genes (light gray), FEV1 rare and common seed genes (dark gray), and alcohol consumption stringent (p
SKAT-O

<2.5x10-7) rare seed 

genes and common seed genes. Vertical bars indicate 95% confidence intervals. Significance calculated by Z-test, Bonferroni corrected. 

See Table S5 for additional controls.
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Supplemental Figure 3. Gene families in the alcohol consumption network. Subnetwork of PCNet including all genes proximal 
to both common and rare seed genes, as in Figure 3. Edges maintained from PCNet. Purple outlined nodes indicate common seed genes, 
green outlined nodes indicate rare seed genes, dark blue outlined nodes indicate seeds from both sources. Nodes with gene symbols in 
bold have previously been annotated in the GWAS catalog for alcohol related phenotypes. Gene families and functional groups were 
manually identified, and are indicated by color, as shown in legend. Only families with 2 or more genes present in the network were 
annotated.
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