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Abstract
In recent decade, wearable digital devices have shown potentials for the discovery
of novel biomarkers of humans’ physiology and behavior. Heart rate (HR) and
respiration rate (RR) are most crucial bio-signals in humans’ digital phenotyping
research. HR is a continuous and non-invasive proxy to autonomic nervous system
and ample evidence pinpoints the critical role of respiratory modulation of car-
diac function. In the present study, we recorded longitudinal (up to 6 days, 4.63 ±
1.52) HR and RR of 89 freely-behaving human subjects (Female: 39, age 57.28 ±
5.67, Male: 50, age 58.48 ± 6.32) and analyzed their HR and RR dynamics using
linear models and information theoretic measures. While the predictability by
linear autoregressive (AR) showed correlation with subjects’ age, an information
theoretic measure of predictability, active information storage (AIS), captured
these correlations more clearly. Furthermore, analysis of the information flow
between HR and RR by transfer entropy (i.e., HR → RR and RR → HR)
revealed that RR → HR is correlated with alcohol consumption and exercise
habits. Thus we propose the AIS of HR and the transfer entropy RR → HR as
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two-dimensional biomarkers of cardiorespiratory physiology for digital phenotyp-
ing. The present findings provided evidence for the critical role of the respiratory
modulation of HR, which was previously only studied in non-human animals.

Keywords: Heart Rate (HR), Respiration Rate (RR), Autoregression (AR),
State-Space Analysis, Active Information Storage (AIS), Transfer Entropy (TE),
Physiological Rhythms, Cardiorespiratory Phenotype, Wearable Health-Monitoring
Devices, Circadian Dynamics

1 Introduction
Humans’ phenotype refers to observable characteristics and traits [1]. They range
from individuals’ developmental processes [2, 3] to their behavior [4] and (elec-
tro)physiology [5, 6]. Recent decades have witnessed a substantial growth in human
phenotyping [1]. This is due to its invaluable utility for diagnostics [7–10], gene-
disease discovery [11, 12], and cohort analytics [13, 14]. It is apparent that these
lines of research play a critical role in realization and advancement of the precision
medicine [1, 6]. The advent and ubiquity of mobile technologies have substantially
expedited the quest for the discovery of humans’ phenotypes [15, 16]. This paper
explores human health phenotyping through longitudinal physiological monitoring by
a wearable device and data analysis by dynamical systems and information theoretic
approaches.

A rich body of research highlights the utility of wearable devices for digital health
phenotyping [17–23]. For instance, Smets et al. [24] derived digital phenotypes from
individuals’ five-day physiological and contextual measurements. They showed that
their digital markers were able to predict their subjects’ depression, anxiety, and stress
scores. Similarly, Jacobson and colleagues [25] found that actigraphy data was a reli-
able marker of changes in symptoms in patients with major depressive disorder and
bipolar disorder across a two-week period. Straus and colleagues [20] utilized data
from wrist-wearable devices. They identified the reduced variance in 24-hour activity
as a marker of pain severity in traumatic stress patients. Using arm acceleration data,
Katori et al. [21] found sleep phenotypes that associated with social jet lag, individuals’
chronotype, and insomnia. The use of mobile technologies for humans’ phenotyping
becomes more relevant, given the common rhythms in their multi-day traits of use by
individuals [22].

Heart rate (HR) and its variability (HRV) form another active frontier of research
in humans’ phenotyping [23, 26–29]. Although not under the rubric of digital
phenotyping, the search for biomarkers 1 of cardiac function has a long-lasting his-
tory [32–34, 34]. This is partly due to HR’s continuous and non-invasive proxy to
autonomic nervous system whose central role in maintaining physiological homeostasis
is well-established [33, 35]. It is also due to the fact that HR alone is an independent
risk factor for cardiovascular-related mortality [36, 37].

1A biomarker is a characteristic that can be objectively measured and evaluated as an indicator of typical
biological processes, pathogenic processes or pharmacological responses to a therapeutic intervention [30,
31].
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A longitudinal study by Natarajan et al. [23] using wrist-worn tracking devices
found that HRV decreased by aging [38, 39]. They further observed that increased
physical activity may benefit cardiac function via improving HRV. Using wearable
health-monitoring devices, Golbus and colleagues [29] found that older individuals (>
65 of age) had lower HRV. They also observed that HR varied by sex, age, race, and
ethnicity and that it was higher in males than females. The relevance of HR and HRV
for humans’ phenotyping is evident in their age- and gender-dependent manifestation
of cardiac function [38, 40, 41]. They are important indicators of various age-related
diseases and syndromes [42–47].

Taken together, these previous findings provide a wealth of evidence for the util-
ity of wearable devices in digital phenotyping of humans’ cardiac function. They also
underline the pivotal diagnostics/prognostics role that such biomarkers can play in
monitoring individuals’ cardiac health [23, 38]. On the other hand, they fall short in
providing adequate explanation for the extent of the relation among desperate mark-
ers of cardiac function [34]. Several studies attempted to address this issue through
modeling strategies [35, 48–50]. However, their results were limited to parametric
methodologies. As a result, they did not allow for a thorough investigation of the
underlying nonlinear time-variant dynamics of cardiac function [43, 51, 52]. Addition-
ally, these studies suffered from other shortcomings that included the imposition of
broad assumptions and the lack of careful statistical analysis [35]. More importantly,
ample findings pinpoint the critical role of cardiorespiratory mechanism in health [53–
60] and disease [61–63]. However, there is a paucity of research on digital phenotyping
of the humans’ cardiorespiratory physiology.

In this study, we continuously monitor HR, RR and other physiological an behav-
ioral signals by a wearable device for up to 6 days and seek useful biomarkers using
state space reconstruction, linear prediction, and information theoretic frameworks.

2 Materials and Methods

2.1 Subjects
From an initial 130 healthy adults who participated in this experiment (Females =
60, Age: Mean (M) = 58.37, Standard Deviation (SD) = 5.93, Median (Mdn) = 58.50,
Males = 70, Age: M = 58.89, SD = 6.33, Mdn = 58.50), 89 of them (Female: 39, Mean
(M) = 57.28, Standard Deviation (SD) = 5.67, Male: 50, M = 58.48, SD = 6.32) who
had at least 1 day (out of 6 consecutive days of experiment) of their Vital Patch RTM
(https://vitalconnect.com) recordings (sampling rate: 0.25Hz, i.e., 1 data point every
4 seconds) available were included in the present study.

2.2 Recorded Physiology and Posture
Participants’ recorded data included their HR, RR, and posture (5 discrete categories
based on accelerometer: laying down, leaning back, standing, walking, and running).
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2.3 Daily Activities and Habits Questionnaire
Participants also filled in a “daily activities and habits” questionnaire that included
their sleep/wake hours (Table 1), smoking (Table 2), alcohol consumption (Table 3),
and exercise (Table 4) habits.

Table 1: Participants’ Sleep/Wake
Hours

M(Hour) SD(Hour) Mdn(Hour)

Sleep 22:21 2.80 23:00
Wake 6:36 1.00 6:00

Table 2: Participants’ Smoking Habit

Smoking Total (Female) M(Age) SD(Age) Mdn(Age)

No 62(36) 56.74 5.52 56.00
Quit 21(2) 60.48 6.76 62.00
Yes 6(1) 61.67 4.60 64.00

Table 3: Participants’ Alcohol Consumption Habit

Alcohol Consumption Total (Female) M(Age) SD(Age) Mdn(Age)

No 38(20) 57.32 6.40 55.50
Yes 51(19) 58.43 5.78 58.00

Table 4: Participants’ Exercise Habit

Alcohol Consumption Total (Female) M(Age) SD(Age) Mdn(Age)

No 39(22) 56.59 5.66 54.00
Yes 50(17) 59.02 6.17 59.00

2.4 Experiment Procedure
Participants were carefully selected and thoroughly briefed about the study’s proce-
dure. They were given sufficient time to understand the experiment and freely consent
to their involvement.
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After obtaining written informed consent from the participants, their background
data was collected. It included gender, age, height, weight, medical history, medi-
cation and/or health supplements, allergy status, and skin condition susceptibility.
In addition, we also collected the information about their smoking, exercise, and
drinking habits. This information-gathering step carried out online with participants
self-reporting all the required information.

We used VitalPatch RTM (https://vitalconnect.com) to record participants’ HR,
RR, and posture at real-time (sampling rate: 0.25Hz, i.e., 1 data point every 4 seconds).
We instructed the participants to wear the device throughout the experiment (i.e., 6
consecutive days). During this period, the participants carried on with their normal
daily lives, routines, and activities.

2.5 Modeling of the Cardiorespiratory Dynamics
First, we applied a 1-minute non-overlapping moving average on the participants’ HR
and RR time series, per participant, per day, per time series. This resulted in time
series with length 60 × 24 × D = 1440× D, per participant, per HR and RR. Here,
60 is the number of data points per hour and D ∈ [1, 2, 3, 4, 5, 6] denotes the number
of days of experiment that were available from every individual. For instance, two
individuals with whose number of days D = 1 and D = 3 would have HR and RR time
series of length 1440× 1 = 1440 and 1440× 3 = 4320, respectively.

2.5.1 State space reconstruction

We reconstructed the individuals’ HR state-space, one per individual, using their HR
time series of length 1440 × D. We achieved this by fixing all individuals’ HR state-
space embedding dimension to 3 and estimating their respective best delay embedding
τ using Rosenstein et al. algorithm [64]. We then determined the µτ by bootstrap-
ping (10,000 repetitions) the individuals’ τ values at 95% confidence interval (CI)
(Figure ??). Last, we set every individuals’ τ = µτ and reconstructed their respective
final HR state-space. This resulted in HR state-space 2-dimensional matrices, one per
individual, of size 1440×D

2×µτ
× 3 where 3 is the HR state-space embedding dimension. As

an example, if µτ = 128 (i.e., the estimated µτ in the present study, Section 3.4 and
Supplementary Materials 1 (SM1)), then an individual with whose D = 1 would have
an HR state-space matrix of size 1184× 3.

2.5.2 Linear modeling

We quantified the HR state-space dynamics using both model-based and model-free
approaches. In the case of model-based, we fitted an autoregressive (AR) model to the
individuals’ mean-centered HR state-space (one AR per participant):

xt = w0 + w1xt−τ + w2xt−2τ + w3xt−3τ (1)

where t is the current time step (in minutes), τ is the HR state-space delay embedding
(set to µτ for all participants), and wi, i = 1, . . . 3 are the AR parameters. Given that
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the participants’ HR state-space were mean-centered, w0 ≈ 0 (≈ is exact i.e., w0 = 0,
in the case of perfect fit). Therefore we excluded w0 from further analyses.

2.5.3 Information theoretic measures

We quantified the participants’ HR state-space variability via computing its entropy
H (multivariate, given its dimension = 3) [65, 66]. In this context, H signifies the
degree of dispersion in individuals’ HR state-space (i.e., its instability): H is the sum
of all positive Lyapunov exponents whose magnitude reflects the rate of information
loss (and instability) over time [67].

Furthermore, we computed active information storage (AIS) of the participants’
HR state-space. AIS quantifies the information in HR state-space’s past that actively
contributed to computing its current state [68]:

AIS(X) = MI([xt−k, . . . , xt−1];xt) (2)
where MI(X;Y ) = H(X) + H(Y ) − H(X,Y ) is the mutual information (MI)

between X and Y (here, the present and the past of HR state-space) and t denotes
time (in minutes). In essence, AIS signifies the component of the HR state-space that
is directly in use in the computation of its next state.

Additionally, we determined the presence of long-range correlation in the par-
ticipants’ HR state-space (and therefore the deviation from the independence
among its components) by computing HR state-space integration (I, a.k.a multi-
information) [69]:

I(X) =

N
2∑

k=1

< Xk
j ;X \Xk

j > (3)

where j is the number of bipartitions of X composed of k components. Since
individuals’ HR state-space were reconstructed in 3 dimensions, there were 6 such
bipartitions: the univariate cases xt, xt−τ , xt−2τ , and the bivariate cases [xt, xt−τ ],
[xt, xt−2τ ], and [xt−τ , xt−2τ ].

2.5.4 Transfer entropy

We captured the statistical precedence between HR and RR to quantify the functional
effect of each process on the other. For this purpose, we used HR and RR original
univariate time series (both mean-centered as in the case of HR state-space H, AIS,
and I) to compute their transfer entropy (TE) [70]:

TEκ
X→Y = MI(Yt;Xt−κ|Yt−κ) (4)

where κ is the time lag, MI(X;Y |Z) = H(X|Z) −H(X|Y,Z) is the MI between X
and Y conditioned on Z, and H(X|Z) computes the entropy (H) of X conditioned
on Z. Throughout the manuscript, we used HR → RR and RR → HR to refer to
TEκ

HR→RR and TEκ
RR→HR, respectively.

Similar to the case of HR state-space delay embedding τ , we first computed κ, per
individual, such that it maximized HR → RR (SM1). This was achieved through a
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brute-force strategy [71] in which κ was incremented (in a 1-minute increment steps,
i.e., 1-data-point at a time) within a given interval. We used the same interval as in the
case of HR state-space τ (SM1) . We retained the value of κ that resulted in largest
TE, per individual. We then bootstrapped (10,000 repetitions) these individuals’ κ
values, thereby estimating the µκHR→RR

(SM1). We set every individuals’ κHR→RR =
µκHR→RR

and recomputed their final HR → RR. We repeated this procedure for the
case of κRR→HR (SM1) to recompute their final RR → HR.

We used JIDT [72] (version v1.5 for Python) implementation of H and AIS that are
based on Kraskov-Stoegbauer-Grassberger (KSG) algorithm [73], its implementation
of I that is based on Tononi-Sporns-Edelman (TSE) algorithm [69], and its KSG-based
implementation of Schreiber [70] TE computation. We carried out all the computations
and analyses in Python 3.10.4.

2.5.5 AR, HR, and HR – RR Interplay

First, we examined the extent at which HR state-space dynamics was captured within
the model-based and the model-free planes (model-based (AR) planes: w1 – w2, w1

– w3, w2 – w3, and model-free plane: RR → HR – HR → RR). Specifically, we
investigated (1) the degree at which the respective axes of each of these planes (e.g.,
RR → HR and HR → RR) correlated and (2) the extent by which such correlations
corresponded to AR’s coefficient of determination (i.e., its accuracy R2), on the one
hand, and HR state-space information dynamics, AIS and I, on the other hand (See
accompanying supplementary materials SM3 for these observations based on HR’s
moments (i.e., mean, variance 2, skewness, kurtosis), Poincaré SD1 and SD2 [74],
and power (low frequency, high frequency, and total) that are frequently used in the
literature [34]). We corrected the correlation (Spearman) results using Bonferroni-
correction (corrected p = 0.05/89 ≈ 6.0e−04, given 89 individuals in the present study).
Consequently, we considered an observed correlation significant if and only if its corre-
sponding p < 6.0e−04. For clarity and ease of comparison, we reported the uncorrected
p-values throughout the manuscript. We reported the AR-related results in SM1.

2.5.6 HR Information Dynamics, HR – RR Interplay, and
Individuals’ Biological Phenotypes and Habits

We conducted the permutation tests based on the participants’ (biological) phenotypic
information (i.e., age and gender). We also repeated these tests on their responses to
“daily activities and habits” questionnaire (i.e., their alcohol consumption, exercise,
and smoking habits). While examining the case of “smoking habit,” we divided the
individuals into two groups that corresponded to “non-smokers” and “smokers or those
who quit smoking.” This choice was due to the limited number of smokers in our sample
(6 smokers in total, Table 2). We reported these smoking-related results in SM1.

To better examine the potential effects of individuals’ daily habits on their HR
state-space information dynamics and HR – RR interplay, we further applied our
permutation tests on the following four scenarios.

2In SM3, we reported standard deviation (SD) instead.
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1. individuals who consumed alcohol (N = 17, females: 10, Age = 56.06 ± 5.05) versus
those who did not (N = 12, Females = 10, Age = 53.75 ± 3.29) but otherwise none
of them smoked (or quit smoking) or exercised.

2. individuals who exercised (N = 17, females = 9, Age = 57.94 ± 6.30) versus those
who did not (N = 12, females = 10 Age = 53.75 ± 3.29) but otherwise none of
them consumed alcohol or smoked (or quit smoking).

3. individuals who exercised but differed on their habit of alcohol consumption: those
who did not consume alcohol (i.e., same as the case “2” above) versus those who
did (N = 16, Females = 7, Age = 58.44 ± 5.37) but otherwise none of them smoked
(or quit smoking).

4. individuals who consumed alcohol but differed in their exercise habit: those who
did not exercise (i.e., same as the case “1” above) versus those who exercised (N =
16, Females = 7, Age = 58.44 ± 5.37) but otherwise none of them smoked (or quit
smoking).

Considering the smoking habit, number of participants did not allow us to include
it in this further analysis steps: there were only 4 participants who smoked (or quit
smoking) but did not consume alcohol or exercised (females = 1, Age = 58.50 ± 7.53),
2 participants who quit smoking but did not consume alcohol or exercise (females = 1,
Age = 58.00 ± 8.00), and 5 participants who smoked and exercised but did not drink
(all males, Age = 62.8 ± 6.43).

We reported the effect of age and gender on AIS and I and the effect of weekly
alcohol consumption on RR → HR and H in the main manuscript. We included the
results on the correlation between HR and RR (overall, sleep, and wake) along with the
age-related differences in the participants’ exercise habit, the gender-related differences
in their body-mass-index (BMI) and HR, the effect of weekly alcohol consumption on
participants’ BMI and their HR (afternoon period, 12:00 – 18:00 PM), and the effect
of smoking on individuals’ BMI and their early morning HR (6:00 – 7:00 AM) in SM2.

2.5.7 Alcohol Consumption, Exercise, and RR → HR: Group-Level
Analyses

We further verified the effects of the combination of the alcohol – exercise on the
participants’ RR → HR as follows. First, we divided the participants to four groups,
namely, (1) those who exercised but did not consume alcohol (2) those who neither
exercised nor consumed alcohol (3) those who did not exercise but consumed alcohol
(4) those who exercised as well as consumed alcohol. We then carried out two additional
analyses: a two-way ANOVA and a non-parametric Kruskal-Wallis test of significant
differences at group levels.

In the case of two-way ANOVA, we followed up its results by applying posthoc
pairwise two-sample Welch test (equivalent of two-sample t-test for unequal variances)
between these four groups. We corrected the results of both ANOVA and posthoc
Welch test using false discovery rate (FDR).

In the case of Kruskall-Wallis test, we used pairwise non-parametric Wilcoxon rank-
sum as follow-up posthoc tests. Similar to the case of parametric tests (i.e., ANOVA
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and Welch tests), we corrected both Kruskal-Wallis and posthoc Wilcoxon rank-sum
tests using FDR.

2.5.8 Reported Effect Sizes

To quantify the strength of the observed significant differences in the permutation
tests as well as parametric two-sample Welch test, we reported the Hedges “g” effect
size [75]:

g =
µG1

− µG2

Sp
(5)

where µG1 and µG2 are the two groups’ (i.e., G1 and G2 in equation (5)) mean and
Sp represents their pooled standard deviation:

Sp =

√
(∥G1∥ − 1)× σ2

G1
+ (∥G2∥ − 1)× σ2

G2

(∥G1∥ − 1) + (∥G2∥ − 1)
(6)

with ∥G1∥ and ∥G2∥ representing the G1’s and G2’s sample size and σ2
G1

and σ2
G2

are their respective variance. Hedges effect size “g” is interpreted as small, medium,
or large for g = 0.2, 0.5, or 0.8, respectively [76, 77]. Here G1 and G2 stand for two
arbitrary groups being compared.

For the parametric ANOVA and non-parametric Kruskal-Wallis, we reported η2

effect-size. This effect is considered small, medium, or large for η2 = 0.02, 0.13, and
0.26, respectively [78, 79].

For non-parametric two-sample Wilcoxon rank-sum test, we reported the effect-
size r = W√

N
[80] where W and N refer to Wilcoxon rank-sum test’s statistics and

total sample size, respectively. r is considered small, medium, or large if r ≤ 0.3,
0.3 < r < 0.5, and r ≥ 0.5 [81].

We reported the two-way ANOVA and its associated posthoc pairwise two-sample
Welch tests in the main manuscript. We presented the results associated with non-
parametric Kruskal-Wallis and posthoc pairwise two-sample Wilcoxon rank-sum tests
in SM1.

3 Results

3.1 Overview of HR and RR Data
Figure 1 shows the overall distribution of subjects’ HR and RR within the mean (µ)
– SD (σ) plane.

In Figure 2, we show sample HR and RR time series for the participants whose
respective average HR corresponded to the overall HR percentiles i.e., 25.00% (in red)
50.00% (in green) and 75.00% (in blue). In each subplot, the grand averages are shown
in black (HR – Females: M = 67.2652, SD = 5.947, Males: M = 63.6022, SD = 8.2032;
RR – M = 16.2507 SD = 2.2947, Males: M = 14.1811 SD = 0.5047). See SM1 for
all participants’ HR and RR time series. SM1 also includes sample cardiorespiratory
trajectories (i.e., HR – RR plane) of four randomly selected female and male indi-
viduals with 1 through 6 days of experiment (not necessarily the same participants).
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Section 2.1 summarizes the HR and RR descriptive statistics for females, males, and
the overall sample (i.e., all 89 individuals combined).

Figure 3 depicts the grand averages (in 24-hour time span) of the participants’
HR (Figure 3a, all participants’ M = 76.54, SD = 15.67, Minimum (Min) = 32.33,
Maximum (Max) = 197.33; Females: M = 74.84, SD = 15.62, Mdn = 73.33, CI95% =
[49.33, 109.47], Min = 34.93, Max = 164.00; Males: M = 77.82, SD = 15.58, Mdn =
76.13, CI95% = [53.33, 112.73], Min = 32.33, Max = 197.33) and RR (Figure 3b, all
participants’ M = 17.52, SD = 3.86, Min = 4.07, Max = 42.0; Females: M = 17.64,
SD = 3.89, Mdn = 17.27, CI95% = [11.20, 26.47], Min = 4.07, Max = 42.00; Males: M
= 17.42, SD = 3.83, Mdn = 17.07, CI95% = [11.07, 25.87], Min = 4.13, Max = 41.93).

3.2 HR – RR Correlation
Figure 4 shows the HR – RR scatter plots for the same female and male participants
in Figure 2. In these subplots, data points are color-coded as per their respective
time-of-day (in an hourly basis i.e., Figure 4c).

Within this sub-sample (i.e., Figure 2), the average HR – RR correlation showed a
stronger HR – RR correlation among females (Spearman’s rank correlation coefficient
r = 0.7639, SD = 0.0583, Mdn = 0.7766, CI95% = [0.6915, 0.8255], Min = 0.6870,
Max = 0.8281) than males (Spearman’s rank correlation coefficient r = 0.6257, SD
= 0.0546, Mdn = 0.6272, CI95% = [0.5616, 0.6886], Min = 0.5581, Max = 0.6918).
However, this difference disappeared after taking all female and male participants into
account (Spearman’s rank correlation coefficient, females: M = 0.5713, SD = 0.1755,
Mdn = 0.6052, CI95% = [0.2228, 0.8078], Min = 0.0927, Max = 0.8281, males: M =

(a) (b)

Fig. 1: Mean (µ) – standard deviation (σ) scatter plots for (a) HR (b) RR. In these
subplots, females’ and males’ data are colored in orange and pink, respectively. Markers
in red, green, and blue highlight female (slightly larger circles) and male (square)
participants in Figure 2.
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(a)

(b)

(c)

(d)

Fig. 2: Three representative samples of female (a) HR (b) RR and male (c) HR (d)
RR time series whose respective mean HR corresponded to percentile HR i.e., 25.00%
(in red), 50.00% (in green), and 75.00% (in blue). In these subplots, HR and RR
time series, per participant, are averaged in a 1-hour non-overlapping interval. Dotted
black line represents grand average of time series within a subplot. See SM1 for all
participants’ HR and RR time series.
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0.5573, SD = 0.1312, Mdn = 0.5522, CI95% = [0.2676, 0.7503], Min = 0.2344, Max =
0.7694). See SM1 for all participants’ HR – RR scatter plots.

3.3 HR – RR Cross-Correlation
The combined females and males cross correlations for their days-averaged and within
their ±30 minutes interval are shown in Figures 5a (M = -1.65e−18, SD = 8.06e−18,
Mdn = 0.0, CI95% = [-1.88e−17, 9.87e−18]) and 5b (M = 0.8805, SD = 0.0865, Mdn
= 0.9015, CI95% = [0.5836, 0.9653], Min = 0.5366, Max = 0.9790). These subplots
indicate a rather long delay lag (i.e., ≈ 1000 minutes i.e., ≡ 16.67 hours) between HR
and RR.

3.4 HR State-Space Delay Embedding
We derived optimal delay time τ for state space embedding by the principle of
reconstruction expansion using Rosenstein et al. algorithm [64]. Figure 6 shows the
distribution of the participants’ optimal HR state-space embedding delay time τ (M
= 128.1236, SD = 40.5806, Mdn = 135.00, CI95% = [35.9636, 45.9617], Min = 28.00,
Max = 179.00).

In SM1, we show the result of the bootstrap (10,000 repetitions) estimate of µτ at
95% CI (M = 128.1602, Mdn = 128.2472, CI95% = [119.6739, 136.2921]). We used this
µτ = 128 (i.e., 2 hours and 8 minutes) as fixed τ value to reconstruct all participants’
final HR state-space (i.e., τ = µτ , for all participants).

The µτ = 128 indicated that, on average, HR state-space corresponded to the
aggregate of heart rate values that exhibited long-range dependencies (i.e., > 2 hours).
This is due to the fact (1) that every HR state is defined by three HR values that

(a) (b)

Fig. 3: Grand averages (24-hour time span) of (a) HR (b) RR daily trajectories for
female (in orange) and male (in pink) participants. In these subplots, black dash-line
marks noon (i.e., 12:00 pm).

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.21.576502doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.21.576502
http://creativecommons.org/licenses/by-nc-nd/4.0/


constituted its coordinates at that state within its overall state-space (2) that these
values must, in principle, uniquely and smoothly determine HR states over time [82]
and (3) that τ plays a crucial role in satisfying these uniqueness and smoothness
requirements by quantifying the proper expansion of HR time series from the identity
line of its embedding space [64]. Figures 7a and 7b depict the state-space for the same
female and male participants whose HR and RR time series are depicted in Figure 2
using this µτ = 128. See SM1 for all participants’ state-space plots.

(a)

(b)

(c)

Fig. 4: HR – RR scatter plots for the same example of female and male participants in
Figure 2. (a) Females (b) Males participants. Data points correspond to 1-minute non-
overlapping moving average on HR and RR time series. They are color-coded as per
time-of-day (in an hourly basis) according to (c). See SM1 for plots of all participants.
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(a) (b)

Fig. 5: HR – RR days averaged cross-correlation of combined females and males for
their (a) days-averaged (b) within ±30 minutes window. In these subplots, HR and
RR are mean-centered at individual level. Black tick line depicts the grand average of
their corresponding cross-correlation plots in each subplot.

Fig. 6: Distribution of individuals’ HR state-space delay embedding τ . While cal-
culating individuals’ optimal τ , we performed a brute-force search over the range
τ ∈ [1, . . . , 240] (i.e., 1 through 240 minutes) using Rosenstein et al. algorithm [64].
Bootstrapping participants’ respective τ (Figure ??) yielded µτ = 128 (i.e., 2 hours
and 8 minutes). We set every participants’ τ = µτ to reconstruct their final HR state-
space.
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3.5 HR AR Accuracy R2

We found no correlation between µHR and AR accuracy R2 (Figure 8a, r = 0.1387, p
= 1.95e−01). Considering the AR accuracy R2 within µHR – σHR plane (Figure 8b),
we observed no correspondence between R2 and the HR’s first and second moments.

3.5.1 TE Time Lags κHR→RR and κRR→HR

Figure 9 plots the κ values for the range κ ∈ [1, . . . , 15] minutes (SM1, i.e., up to the
bootstrapped µκRR→HR

). Whereas κHR→RR exhibited (Figure 9a) a marked maximum
at µκ = 6 minutes, the evolution of κRR→HR was gradual (Figure 9b), attaining
its maximum at µκ = 15 minutes. This difference in time lag between HR → RR

(a)

(b)

(c)

Fig. 7: HR state-space for same sample of (a) female and (b) male participants in
Figure 2, using delay embedding µτ = 128 i.e., 2 hours 8 minutes. Data points are
color-coded as per time-of-day (in an hourly basis) according to (c). See SM1 for plots
of all participants’ state-space plots.
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and RR → HR resonated with their respective sympathetic and parasympathetic
regulatory axes.

In these subplots, “Individuals” in the x-axis refers to the participant-specific
κHR→RR and κRR→HR. Although we observed a weak correlation between κHR→RR

and κRR→HR, this correlation did not pass the Bonferroni-correction (Figure 9c, r =
0.2537, p = 1.64e−02).

3.6 HR AR Accuracy and State-Space Information Dynamics
AR accuracy R2 showed strong correlations with HR state-space AIS (Figure 10b,
r = 0.8396, p = 8.81e−25) and I (Figure 10c, r = 0.6884, p = 8.96e−14). On the
other hand, R2’s substantially weaker correlation with H (Figure 10a, r = 0.2955, p
= 4.93e−03) did not survive the Bonferroni-correction.

Interestingly, R2 followed AIS – I covariation (Figure 10d, r = 0.4352, p =
2.03e−05) where the higher AR accuracy R2 corresponded to the larger HR state-space
AIS and I values.

3.7 HR – RR Transfer Entropy and HR Dynamics
We observed a significant correlation between RR → HR and HR → RR (Figure 11,
r = 0.5534, p = 1.86e−08). We further observed that within RR → HR – HR → RR
plane, distribution of the AR accuracy R2 markedly resembled those of HR state-space
AIS and I.

RR → HR was negatively correlated with AR accuracy R2 (Figures 12a and 12b,
r = -0.6186, p = 1.05e−10), AIS (Figure 12c, r = -0.5856, p = 1.66e−09), and I
(Figure 12d, r = -0.4914, p = 1.01e−06). Figure 12 also verifies that the higher AR

(a) (b)

Fig. 8: (a) Average HR versus AR accuracy R2. (b) AR accuracy R2 within µHR –
σHR plane. We observed no discernible correspondence between R2 and HR’s first and
second moments.
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(a) (b)

(c)

Fig. 9: κ values for range κ ∈ [1, . . . , 15] minutes (i.e., up to bootstrapped µκRR→HR
).

(a) HR → RR (b) RR → HR. Whereas κHR→RR exhibited a marked maximum at
κ = 6, evolution of its value in case of κRR→HR was gradual, attaining its maximum at
κ = 15. In these subplots, “Individuals” in x-axis refers to participant-specific κHR→RR

and κRR→HR. (c) κHR→RR – κRR→HR scatter plot. Similar to Figure 1, females’
and males’ data are colored in orange and pink, respectively. Markers in red, green,
and blue highlight female (slightly larger circles) and male (square) participants in
Figure 2. Weak correlation between κHR→RR and κRR→HR did not pass Bonferroni-
correction (r = 0.2537, p = 1.64e−02). See SM1 for results of individuals’ κHR→RR

and κRR→HR and their bootstrapping.
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accuracy R2 that corresponded to larger AIS and I (Figure 10d), pertained to the
smaller RR → HR. It further indicates that the correspondence between AR accuracy
R2 and RR → HR followed those of AIS and I in relation to RR → HR. However,
such correspondences were absent in the case of HR → RR (SM1) as well as other
HR measures (SM3).

(a) (b)

(c) (d)

Fig. 10: Correlations between (a) R2 and entropy (H) (b) R2 and AIS (c) R2 and I
(d) R2 within AIS – I plane. These subplots verify that whereas AR accuracy R2 is
a linear function of HR state-space AIS and I, it does not directly relate to the HR
state-space entropy (i.e., variation).
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3.8 HR Dynamics and Age
We observed no correlations between the participants’ age, on the one hand, and
their AR accuracy R2 (Figure 13a, r = 0.109, p = 3.09e−01) or their HR state-space
information dynamics AIS (Figure 13b, r=0.1948 p = 6.73e−02), on the other hand.
The participants’ age also did not correlate with I (Figure 13c, r=-0.0672 p = 5.32e−01)
or H (Figure 13d, r=-0.0283 p = 7.92e−01).

Table 5 summarizes the Spearman’s rank correlation coefficients of our candi-
date biomarkers and the participants’ gender, age, smoking, alcohol consumption, and
exercise habits.

(a) (b)

(c)

Fig. 11: RR → HR – HR → RR plane with respect to (a) R2 (b) AIS (c) I.
Distribution of AR accuracy R2 markedly resembled those of HR state-space AIS and
I.
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3.8.1 Gender

We observed that the female participants had a significantly higher I than the male
participants (Figure 14, test-statistics = 0.1199, p = 2.44e−02, g = 0.4190, Females: M
= 0.6574, Mdn = 0.6272, SD = 0.2684, CI95% = [0.4448, 1.0006], Males: M = 0.5432,
Mdn = 0.5073, SD = 0.2756, CI95% = [0.3796, 1.0596]). SM1 summarizes the gender’s
non-significant differences with respect to other measures.

(a) (b)

(c) (d)

Fig. 12: (a) AIS within RR → HR – R2 plane (b) I within RR → HR – R2 plane
(c) R2 within RR → HR – AIS plane (d) R2 within RR → HR – I plane. These
subplots indicate that higher R2 that corresponded to larger AIS and I, pertained to
lower RR → HR. Such correspondences were absent in case of HR → RR (SM1).
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3.8.2 Age

We observed that AIS of the participants with whose age ≥ 60 was significantly higher
than those whose age was < 60 (Figure 15, test-statistics = -0.3463, p = 6.80e−03, g =
-0.4976, Age ≥ 60: M = 3.1959, Mdn = 3.1221, SD = 0.3512, CI95% = [2.8931, 3.6161],
Age < 60: M = 3.3792, Mdn = 3.4684, SD = 0.3914, CI95% = [3.0687, 3.8925]). SM1
summarizes the age’s non-significant differences with respect to other measures.

(a) (b)

(c) (d)

Fig. 13: Correlation between participants’ age and (a) AR accuracy R2 (b) AIS (c)
I (d) H. Participants’ age did not correlate with AR accuracy and/or HR state-space
information dynamics.
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3.9 HR Information Dynamics and Habits

3.9.1 Alcohol Consumption

Alcohol consumption had significant effects on RR → HR and HR state-space
H. Compared to “Non-Drinkers,” “Drinkers” had significantly higher RR → HR
(Figure 16a, test-statistics = -0.0070, p = 2.66e−02, g = -0.6309, Non-Drinkers: M=
0.0168, Mdn = 0.0164, SD = 0.0098, CI95% = [0.0087, 0.0286], Drinkers: M = 0.0250,
Mdn = 0.0234, SD = 0.0150, CI95% = [0.0119, 0.0425]). This significant difference was
also present in Wake period RR → HR (SM1).

On the other hand, “Drinkers” had a significantly lower HR state-space H than
“Non-Drinkers” (Figure 16b, test-statistics = 0.4762, p = 1.92e−02, g = 0.4569, Non-
Drinkers: M = 16.1944, Mdn = 16.3556, SD = 0.8767, CI95% = [15.4978, 17.3789],
Drinkers: M = 15.8332, Mdn = 15.8795, SD = 0.7203, CI95% = [15.217, 16.7261]). SM1
summarizes the alcohol’s non-significant differences with respect to other measures.

Table 5: Spearman’s rank correlation coefficients associated with the HR
AR accuracy R2, HR information dynamics H, AIS, I, transfer entropy
HR → RR and RR → HR, and participants’ gender, age, smoking, alcohol
consumption, and exercise habits (⋆ p = 3.63e−02, ⋆ ⋆ p = 2.06e−02. These
correlations did not pass Bonferroni correction).

Gender Age Smoking Alcohol Consumption Exercise

R2 r = -0.02 r = 0.11 r = 0.20 r = -0.06 r = -0.04
H r = 0.06 r = -0.03 r = -0.08 r = -0.13 r = -0.06
AIS r = -0.02 r = 0.20 r = 0.22⋆ r = 0.03 r = -0.08
I r = -0.25⋆⋆ r = -0.06 r = 0.02 r = -0.13 r = -0.21
HR → RR r = 0.02 r = -0.01 r = 0.08 r = 0.02 r = 0.07
RR → HR r = 0.09 r = -0.03 r = -0.07 r = 0.20 r = 0.17

Fig. 14: Gender differences with respect to I based on non-parametric bootstrap
(10,000 repetitions) permutation test of difference in two groups’ Mdn.
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3.9.2 Exercise

Exercise did not show any overall significant effects (SM1). However, when smoking
and alcohol consumption habits were absent, it did show an effect on RR → HR.

Specifically, we observed that those who exercised showed a significantly higher
overall RR → HR (test-statistics = 0.0078, p = 5.80−03, g = 1.0884, Exercise: M
= 0.02, Mdn = 0.02, SD = 0.01, CI95% = [0.0142, 0.0346], No Exercise: M = 0.01,

Fig. 15: Individuals’ differences with respect to AIS and age group (i.e., age ≥ 60 vs.
age < 60) based on non-parametric bootstrap (10,000 repetitions) permutation test
of difference in two groups’ Mdn.

(a) (b)

Fig. 16: Effect of weekly alcohol consumption on (a) overall RR → HR (b) HR state-
space H, based on non-parametric bootstrap (10,000 repetitions) permutation test of
difference in two groups’ Mdn. Compared to “Non-Drinkers,” “Drinkers” had higher
RR → HR and HR state-space H.

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.21.576502doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.21.576502
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mdn = 0.01, SD = 0.01, CI95% = [0.006, 0.0232]). This significant difference was also
present in the Wake period (SM1).

3.9.3 Alcohol, Exercise and RR – HR

Interestingly, we observed no significant differences between those who exercised and
did not consume alcohol versus those who exercised and consumed alcohol (SM1).

This trend of reduced RR → HR was preserved among the individuals who con-
sumed alcohol and exercised versus those who consumed alcohol but did not exercise
(SM1): the latter showed higher RR → HR. However, the difference between these
two subgroups was non-significant (SM1).

Figure 17 depicts the grand-averages of the the participants’ HR state-space in each
of the four groups (Section 2.5.7) i.e., (a) those who neither exercised nor consumed
alcohol (Figure 17a) (b) those who did not exercise but consumed alcohol (Figure 17b)
(c) those who exercised but did not consume alcohol (Figure 17c) (d) those who
exercised as well as consumed alcohol (Figure 17d).

Two-factor ANOVA showed significant effects of alcohol (F = 6.4119, FDR-
corrected p = 2.11e−02, η2 = 0.1106) and alcohol × exercise interaction (F = 9.6124,
FDR-corrected p = 8.94e−03, η2 = 0.1657) on RR → HR. On the other hand,
it revealed that exercise had no significant effect on RR → HR (F = 0.2261,
FDR-corrected p = 0.6362, η2 = 0.0039).

Follow-up posthoc two-sample Welch test indicated significant differences in RR →
HR between (Figure 18) (1) those who exercised but did not consume alcohol versus
those who neither exercised nor consumed alcohol (t = 2.7885, FDR-corrected p =
2.88e−02, g = 1.0884) and (2) those who did not exercise but consumed alcohol versus
those who neither exercised nor consumed alcohol (t = 3.5393, FDR-corrected p =
8.86e−03, g = 1.3778). These results were also significant in the case of the Wake
period RR → HR (SM1).

On the other hand, we found no significant differences between those who exercised
and consumed alcohol versus (1) those who exercised but did not consume alcohol (F
= -0.2796, FDR-corrected p = 7.82e−01, g = -0.1005), (2) those who did not exercise
but consumed alcohol (F = -2.0421, FDR-corrected p = 6.74e−02, g = -0.7337), or
(3) those who neither exercised nor consumed alcohol (F = 1.9989, FDR-corrected
p = 6.74e−02, g = 0.7904). Last, we did not find any significant difference between
those who exercised but did not consume alcohol and those who did not exercise but
consumed alcohol (F = -2.0315, FDR-corrected p = 6.74e−02, g = -0.7182).

These results held true while using non-parametric Kruskal-Wallis with posthoc
Wilcoxon rank-sum tests of significant differences among these four groups (SM1).

3.10 HR AIS – RR → HR Plane, Age and Habits
Individuals who consumed alcohol more frequently (Figure 19a, i.e., ≥ 4 days a week)
were mostly associated with the “high AIS and low RR → HR” subspace (i.e., upper-
left corner of the AIS – RR → HR plane).

Interestingly, this trend was also present among individuals with an active smoking
habit (Figure 19b). Additionally, those who quit smoking formed two distinct clusters.
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However, the lack of information on their date of quit, unfortunately, did not allow
any further investigation of these two sub-clusters.

On the other hand, those individuals who exercised more frequently (Figure 19c,
i.e., ≥ 4 days a week) were mostly distributed in the middle of AIS – RR → HR plane.

(a) (b)

(c) (d)

(e)

Fig. 17: Grand-average of participants’ HR state-space (a) who neither exercised nor
consumed alcohol (b) who did not exercise but consumed alcohol (c) who exercised but
did not consume alcohol (d) who exercised as well as consumed alcohol. Data points
are color-coded as per time-of-day (in an hourly basis) according to (e). See SM1 for
plots of all participants. Clouds of black dots represent all participants’ HR data. A
clear effect of alcohol on individuals’ HR circadian space is evident in this figure.
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Considering the age group, the older individuals (Figure 19d, i.e., Age ≥ 60) were
predominantly associated with the upper half of the AIS axis in the AIS – RR → HR
plane.

Figure 20 shows the distribution of individuals within HR AIS – RR → HR plane
and with respect to their exercise × alcohol consumption habits’ interplay. Whereas
those who neither exercised nor consumed alcohol (in blue) were dominantly associated
with high HR AIS and low RR → HR, those who did not exercise but consumed
alcohol (in purple) were mostly in the lower quarter of AIS – RR → HR plane (i.e.,
low HR AIS and high RR → HR).

On the other hand, individuals who exercised but did not consume alcohol (in
green) were mostly in the middle of AIS – RR → HR plane. Those who exercised as
well as consumed alcohol (in red) were distributed along the HR AIS – RR → HR
plane’s off-diagonal.

SM1 presents HR AIS – RR → HR plane with respect to average daily hours that
each participant spent on sleeping, sitting/leaning, and standing/walking.

Fig. 18: ANOVA analysis of alcohol – exercise interplay. Whereas alcohol consump-
tion and its interaction with exercise were associated with significant effects, effect of
exercise was non-significant. Additionally, there were significant differences between
(1) those who exercised but did not consume alcohol versus those who neither exer-
cised nor consumed alcohol and (2) those who did not exercise but consumed alcohol
versus those who neither exercised nor consumed alcohol (*: p < 0.05, **: p < 0.01).
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4 Discussion
In this study, we used freely-behaving human subjects’ longitudinal HR and RR
recordings to investigate their utility for humans’ cardiorespiratory digital phenotyp-
ing [8, 83–86]. While doing so, we placed emphasis on interpretability of our analyses.
We achieved this by quantifying the relation between various aspects of HR dynamics,
on the one hand, and the HR – RR interplay, on the other hand.

(a)

(b)

(c)
(d)

Fig. 19: AIS – RR → HR plane with respect to participants’ (a) weekly alcohol
consumption (b) weekly exercise (c) smoking habit (d) age ≥ 60.
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Cohen and Taylor [35] observed that the imposition of broad assumptions (e.g.,
sole reliance on parametric approaches, over-generalization, etc.) and the lack of care-
ful statistical analysis (e.g., uncorrected p-values, missing effect sizes, etc.) formed
common characteristics of current research. According to Lombardi [52], only an inte-
grative approach that incorporates both, linear and nonlinear properties of the cardiac
function can provide proper means for quantification of its function and dynamics.

To this end, our study contributed to addressing these shortcomings by (1) account-
ing for linear and nonlinear HR dynamics through an integrative model-based and
model-free analysis pipeline (2) adapting a non-parametric approach while applying
these models (3) imposing stringent non-parametric statistics (4) taking into account
the HR – RR interplay. Previous research considered the model-based and model-free
methodologies [35, 48] and their combination [49, 50]. However, their results were lim-
ited in that they opted for parametric formalisms whose uncorrected statistics lacked
effect sizes.

In the case of HR dynamics, we considered the reconstructed HR state-space than
its univariate time series. Rhythmicity is a hallmark of many biological and physiolog-
ical processes [87, 88]. Given the periodic nature of cardiac function, the study of HR
dynamics within its reconstructed state-space was a self-evident natural choice [89].

Fig. 20: AIS – RR → HR plane with respect to participants’ Exercise × Alcohol
Consumption habits. The color-coding in this plot corresponds to those who neither
exercised nor consumed alcohol, those who exercised but did not consume alcohol,
those who did not exercise but consumed alcohol, and those who exercised as well as
consumed alcohol.
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This adaptation also enabled us to address another important shortcoming of the
AR-based (i.e., model-based) approaches [35]: AR’s requirement of potentially large
number of parameters. This requirement is imposed by the history length or lag (e.g.,
µτ = 128 in the present study) [90, 91].

The inherent periodicity of physiological processes allows for robust reconstruction
of their (quasi)periodic sequences in terms of low-dimensional processes [87, 89, 92, 93].
In this respect, we reconstructed the participants’ HR state-space in 3 dimensions 3.
This reduced the number of AR parameters to 4. Out of these, 3 parameters only
were required for further analyses (i.e., discarding the bias term, given the mean-
centered HR time series, Section 2.5). The use of state-space for the study of HR
dynamics is not a novel approach. However, the previous research primarily adapted
its parametric formulation (e.g., Gaussian assumption that allowed for closed-form
analytic solution) [49, 50]. This, in turn, limited its utility for a thorough quantification
of underlying nonlinear time-variant dynamics [33, 51, 92, 94, 95] of HR.

In the same vein, natural rhythms rarely exhibit absolute periodicity [87, p. 172]
(e.g., they form non-uniform oscillations [93, Ch. 4], limit cycles [93, Ch. 7], etc.) [89].
Therefore, our quantification of HR state-space dynamics in terms of its nonlinear
non-parametric informational properties allowed for accommodation of this aspect of
HR in our analyses.

In this respect, it was interesting to note that our reconstructed state-space of
participants’ HR (Figure 17) recovered the underlying circadian cycle of their HR
dynamics. This verified the advantage of studying such nonlinear processes as HR
within their reconstructed state-space than their univariate recordings [96, p. 242].
More importantly, the signature of individuals’ habits was evidently preserved within
this reconstructed HR state-space. Precisely, we observed that the habit of alcohol
consumption was associated with the reduced volume of the HR state-space.

4.1 HR AR and Information Dynamics

We observed that AR accuracy R2 correlated with HR state-space information-
storage AIS and its long-range behavior I. We also observed that its variation within
AR’s w1 – w2 and w1 – w3 planes closely resembled those of AIS and I within these
planes. Moreover, we found that the increase in AR accuracy R2 was a direct function
of the (positively) co-varing AIS and I. Interestingly, these results were absent in the
case of other HR measures (see accompanying SM3).

These observations indicated that AR’s accuracy R2 was dependent on HR
state-space information dynamics. This finding was in accord with Amari [97,
Theorem 10.2, p. 224] who demonstrated that AR models follow the principle of
maximum entropy [98, 99].

Precisely, AR accuracy intimately relates 4 to realization of the solution space
(i.e., typical set [65, p. 59]). Crucially, the solution space’s volume and surface area

3The state of a (forced) harmonic oscillator is indeed three dimensional [93, p. 7].
4This relation is through the Fisher Information. The Fisher information quantifies the accuracy of an

unbiased estimator [65, p. 393–394]. It is a measure of amount of “information” about the model’s parameters
(in the present scenario AR’s w1, w2, and w3) that is present in the data, thereby providing a lower bound
on the error in estimating these parameters from the data [65, p. 397].
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are quantified by the entropy and the Fisher information, respectively [65, p. 247].
As a result, the dependence of the AR on HR information dynamics is explained by
observing (1) that the Fisher information sets a lower bound on the mutual information
(MI) 5 [100] (2) that MI operationalizes the AIS and I (i.e., equations (2) and (3)) (3)
that AIS quantifies a process’s predictability [68]. i.e., the deviation of its components
(in the present case, HR state-space dimensions) from independence and (4) that this
(lack of) deviation from independence is analogous to the (presence of) long-range
correlation [33, 101, 102] I) 6.

4.2 HR Information Dynamics and RR → HR

We also observed that HR state-space information dynamics was strongly RR →
HR dependent. This resonated with the highly evolutionarily conserved respiratory
entrainment of cardiovascular activity [53, 54] 7. It also aligned with the parasym-
pathetic cardioinhibitory modulation of HR [105] by PreBötzinger complex neurons
(preBötC) [106]. PreBötC plays a critical role in breathing [107] via regulating the
respiration. Menuet et al. [108] demonstrated that preBötC’s inhibition resulted in
suppression of the respiratory sinus arrhythmia (RSA). RSA modulates the HR and
its synchrony with RR [55, 56]. It also reduces cardiac energetic cost [57, 58]. As a
result, RSA is considered a measure of cardiac age [59] and control [60].

From a broader perspective, this dependence provided further evidence for the
critical role of the inhibition in generation of (cardiorespiratory) rhythms [109].
In this respect, the absence of any significant contribution from HR → RR
in our results echoed its association with cardiorespiratory pathology (i.e., sleep
apnea [110]) [70] [111, p. 178].

Our results on the pivotal role of RR → HR in HR dynamics addressed the lack of
focus on humans’ cardiorespiratory phenotyping and its critical role in health [53–60]
and disease [61–63].

4.3 HR State-Space I and Gender-Differences
Gender differences in cardiac function is well-documented [38, 40, 41, 63]. Research has
found that HRV was significantly lower in females than in males, that for individuals
under the age of 50, HR was faster in females than in males, that whereas females
exhibited a higher parasympathetic activity, males had higher sympathetic activity,
and that these differences were disappeared after the age of 50 [41, 112–115].

Considering the participants’ age in the present study (Section 2.1), we also
observed this diminishing gender differences by age in HR (Section 2.1). Our analyses
also extended this observation to the case of RR (Section 2.1), HR – RR correlation
(Section 3.2), and HR – RR cross-correlation (Section 3.3).

5MI magnitude is ultimately determined by the entropy of the variables involved (i.e., MI(X;Y ) =
H(X) + H(Y ) − H(X,Y ).

6It is worth noting that the solution space (i.e., typical set [65, p. 59]) is associated with the target
densities that exhibit strong correlations [103, p. 393].

7On a time scale between 1 – 30 seconds, parasympathetic and sympathetic activities in humans at rest
is mainly modulated by respiratory activity [104, p. 193]
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On the other hand, we found that females had higher HR state-space I than males.
This posited I as a digital marker of cardiac function that was not affected by aging.
The previous research also found that females had higher parasympathetic cardiac
autonomic activity than males [115]. Therefore, the observed higher I in females than
males may suggest that I was more sensitive to parasympathetic than sympathetic
activity. This suggestion found support in females’ significantly lower sleep-time HR
than males (SM1) potentially due to their parasympathetic dominance during the
sleep [37, p. 159].

4.4 HR State-Space AIS: a Digital Phenotype of the Aging
Heart

We observed that aging was associated with an increase in HR state-space AIS. This
resonated with characterization of the biological aging with a progressive impairment
of the physiological control mechanisms [43, 116]. These control mechanisms and their
dynamics are necessary for maintaining the systems-level homeostatsis [33, 45, 51, 116].
Ample evidence demonstrates the occurrence of such an impairment in cardiovascu-
lar [42–46] and respiratory [47, 63] mechanisms.

In this respect, AIS complements these observations by attributing an increased
cardiac regularity to the process of aging. This suggestion aligns with the proposal
that associated the process of aging and disease with the replacement of rhythmic
processes by relatively constant dynamics [87, p. 173].

4.5 RR → HR: a Cardiorespiratory Digital Phenotype
We found that the habit of alcohol consumption was identifiable by a significant
increase in RR → HR. This observation echoed the strong association between the
alcohol and hypertension [117–120].

Interestingly, the effect of increased RR → HR was also present in the recon-
structed HR state-space of those who reported the alcohol consumption as their
primary habit. Specifically, the reconstructed HR state-space of this sub-sample
showed a visible reduction in its area and increased perturbation that was more
dominant during the waking period (Figure 17b).

The World Health Organization (WHO) considered the alcohol consumption to be
responsible for 3 million deaths in 2016 globally and 5.1% of the burden of disease
and injury [121]. Furthermore, recent findings associated this habit with 740,000 new
cancer cases each year [122, 123]. A third of such cases were attributable to light to
moderate drinking [124].

In view of these findings, RR → HR can be construed as a digital biomarker of the
alcohol’s detrimental effect on cardiorespiratory mechanism. This suggestion becomes
more plausible, considering that RR → HR was agnostic to the amount of alcohol
consumed by the individuals. Concretely, the increase in RR → HR was primarily
due to the presence or absence of this habit in the participants’ lifestyle and activity.

RR → HR was also sensitive to the effect of exercise. In the absence of drinking
and smoking habits, those who exercised showed significantly higher RR → HR than
those who did not exercise. Interestingly, this increase in RR → HR did not differ
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between those who exercised and consumed alcohol, on the one hand, and those who
did not consume alcohol but did exercise, on the other hand. This implied that exercise
may benefit those who consume alcohol by (down-) regulating their alcohol-induced
increase in respiratory modulation of their cardiac function [117–120].

Taken together, our results posited RR → HR as a digital marker of cardiores-
piratory (mal)function [61, 125–127]. For instance, it can prove useful in monitoring
those who suffer from hypertension [61, 128]. In the case of the alcohol consump-
tion [117–120], this measure may present a prognostic marker of recovery during
rehabilitation.

RR → HR can also serve as a prognostic digital marker of recovery from cardiores-
piratory complication(s) through exercise. This suggestion becomes plausible, given
the association between decreased respiratory modulation of the cardiac function and
the cardiorespiratory pathology [129, 130]. Considering the benefit of exercise-therapy
to COVID-19 recovery [131], RR → HR can help monitor the patients’ progress and
their recovery by quantifying the degree of increase in their respiratory modulation of
their cardiac function.

5 Concluding Remarks
In this study, we showed the potentials that the HR state-space information dynamics
can offer to the solution concept of humans’ cardiorespiratory digital phenotyping. We
identified AIS as an age-related digital biomarker that associated the process of aging
with the increased regularity in HR dynamics [111] [87, p. 173].

More importantly, we proposed RR → HR as a digital biomarker of respiratory
modulation of cardiac function. We presented its potential for quantifying the impact
of alcohol on this mechanism. Our results also suggested its capacity for measuring
the effect of physical activity to potentially compensate for the alcohol’s impact on the
cardiorespiratory mechanism [117–120]. These results posited RR → HR as a digital
diagnosis/prognosis marker of cardiorespiratory pathology [61, 62, 117–120, 125–128,
132, 133].

We also realized I as a digital biomarker (1) that quantified the gender differences
in HR long-range behavior (2) that was invariant to the effect of aging [38, 41] and (3)
that potentially pertained to the gender-specific parasympathetic activity [115] [37,
p. 159].

These measures quantified different factors that affected distinct aspects of
cardirespiratory mechanism. They included aging, gender, and habits. This indi-
cated that these measures were functionally reduced with whose quantification of
cardiorespiratory function nonredundant. To this end, they were validated as (digi-
tal) biomarkers [30, 31]. As a result, they contributed to the objective of phentopying
research. That is, the discovery of the set of organism’s traits and characteristics that
can be objectively measured and evaluated as indicators of its biological processes and
pathology [1].

Torous et al. [15] formalized the ultimate goal of humans’ digital phenotyping as
“moment-by-moment quantification of the individual-level human phenotype in situ
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using data from personal digital devices.” This goal still remains illusive. It goes with-
out saying that a number of studies have utilized the digital technologies to successfully
identify several behavioral signatures of physiological phenotypes. These included the
pain severity [20], sleep patterns [21], behavioral traits in smartphone use [22], and the
potential correlate of HRV and physical activity [23]. However, the extension of these
results to continuous monitoring of humans’ physiology is nontrivial. Our results are
of no exception. For instance, it remains unclear how RR → HR diagnosis / prog-
nosis potentials can be extended to round-the-clock monitoring of cardiorespiratory
malfunction in individuals at risk or during rehabilitation. This becomes even more
difficult in the case of freely behaving daily life routines and activities.

One important limitation of the present study is the absence of data on individu-
als’ comorbidities. Such a knowledge can prove invaluable for real-time monitoring of
cardiorespiratory function at the individual-level. In particular, it can allow for better
estimate and adjustment of the biomarkers and phenotypic measures. This, in turn,
reduces the possibility of inflated outcomes that could be attributable to other issues
than cardiorespiratory function at any specific moment in time. Along the same direc-
tion, it is also critical to incorporate any possible family history of cardiovascular and
cardiorespiratory pathology in such analyses. This necessity is apparent, given the role
of genetic factors and heritability in HR [134] and its variability [135–138].

In the same vein, our study relied on the individuals’ self-report (Section 2.4). As a
reult, it lacked proper information about individuals’ personality and behavioral traits.
This information can be effectively collected through standardized questionnaires [139–
143]. Their use can prove invaluable for reducing the confounding effects of people
tendency to overestimate their health and abilities [144–146].

Additionally, our sample did not include younger adults (i.e., age < 50). A sample
with a better age heterogeneity can allow for refining the extent of observed changes
and variation in measured biomarkers. This, in turn, can lead to more informed
conclusion on underlying factors that can affect the cardiorespiratory function.

The sampling rate of VitalPatch (i.e., 0.25 Hz) was in accord with one of two
cardiovascular preferential frequencies [147, p. 17]. However, it remains open to future
investigation to further verify whether and how an increase in sampling rate may allow
for improving the present results and observations.
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