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Highlights

e Global proteomic characterization of primary human macrophages in different states

e Mapping of main signaling events through in-depth data analysis

e PKCa and PAK2 kinases are important regulators of immunosuppressive macrophages

e Proteomic signatures enable accurate detection of pro-inflammatory macrophages in
patient tumors

Abstract

Macrophages represent a major immune cell type in tumor microenvironments, they exist
in multiple functional states and are of a strong interest for therapeutic reprogramming.
While signaling cascades defining pro-inflammatory macrophages are better characterized,
pathways that drive polarization in immunosuppressive macrophages are incompletely
mapped. Here, we performed an in-depth characterization of signaling events in primary
human macrophages in different functional states using mass spectrometry-based
proteomic and phosphoproteomic profiling. Analysis of direct and indirect footprints of
kinase activities has suggested PAK2 and PKCa kinases as important regulators of in vitro
immunosuppressive macrophages (IL-4/IL-13 or IL-10 stimulated). Network integration of
these data with the corresesponding transcriptome profiles has further highlighted FOS and
NCOR2 as central transcription regulators in immunosuppressive states. Furthermore, we
retrieved single cell sequencing datasets for tumors from cancer patients and found that the
unbiased signatures identified here through proteomic analysis were able to successfully
separate pro-inflammatory macrophage populations in a clinical setting and could thus be
used to expand state-specific markers. This study contributes to in-depth multi-omics
characterizations of macrophage phenotypic landscapes, which could be valuable for
assisting future interventions that therapeutically alter immune cell compartments.
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Introduction

In addition to tumor cell phenotypes, cancer progression and therapy response are strongly
determined by the tumor immune microenvironment (TIME)!. Tumor-associated
macrophages (TAMs) represent a major component of the TIMEs and mediators secreted by
these cells can promote tumor viability and growth, angiogenesis and cancer invasion’.
Macrophages are able to integrate inputs from diverse cell types in their environment and
they demonstrate a high plasticity of molecular phenotypes®, that in effect supports the
variety and flexibility of their functions. At the two ends of the broad phenotype spectrum,
macrophages can have pro-inflammatory and immunosuppressive roles. In vitro models of
these states are represented by classically activated M1 or alternatively activated M2
macrophages, respectively’. However, the biologically and clinically relevant macrophage
spectrum entails diverse forms of macrophage states beyond the basic dichotomous M1 and
M2 designations”. Importantly, the progression of different pathological conditions, such as
cancer, inflammatory or autoimmune diseases, or the development of chronic wounds,
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depends on the relative fraction of macrophages in different polarization states’.
Furthermore, due to their phenotypic plasticity, therapeutic reprogramming of
macrophages is increasingly gaining attention. The development of effective and specific
strategies to alter macrophage phenotypes is therefore of high interest both in basic and
translational studies®.

In parallel with clinical and in vivo mouse studies, extensive research on macrophage
phenotypes has been performed in vitro’°. While in vitro models represent a simplified
version of the dynamic and complex exposure to in vivo stimuli, they have proved useful for
improving our understanding of macrophage biology. For instance, in vitro assays have been
essential for determining macrophage polarization capacity of novel TIME signaling agents,
such as lactate'®, GABA'! or Interleukin (IL)-33’, or for understanding the individual signaling
pathways relevant for macrophage differentiation’’. Similarly, transcriptome data
generated for macrophages, activated with a range of stimuli in vitro®, have been used for
the characterization of clinically observed macrophage populations®®. In addition, markers
that relate to functionally well-characterized in vitro polarization states, such as CD206 after
exposure to IL-4 and/or IL-13, or CD163 after exposure to both IL-4 and IL-10 stimuli are
regularly used in immunohistochemistry (IHC) characterizations of clinical samples***°. The
ongoing studies that characterize patient TIMEs with single-cell RNA sequencing (scRNAseq)
have been powerful in capturing a variety of macrophage phenotypes in a clinical
setting’®'’, but these data provide limited insight into the signaling routes that underlie the
different macrophage phenotypes. In addition, mouse models have limitations as
macrophage responses to pro- and anti-inflammatory stimuli are differentially regulated in
humans and mice, and critical genes involved in the polarization of mouse macrophages,
such as iNOS, Argl and TGF-B1 show different behavior in human macrophages'®. In vitro
assays of human macrophages are largely performed either on the differentiated THP-1 cell
line or on primary blood-derived macrophages. THP-1 is a human leukemia monocytic cell
line, which does not accurately represent relevant immune processes or reflect inter-
individual variability in macrophage responses to stimuli*®.

While signaling cascades that define pro-inflammatory macrophages with anti-
tumorigenic roles are better characterized, regulatory pathways that drive polarization of
immunosuppressive macrophages are still incompletely mapped?®?!. Novel kinases that
regulate these processes are still being discovered and are of immense interest as possible
reprogramming targets, as illustrated by the recent studies of the RIP1?? and PI3Ky
kinases’®%*. Previous investigations of signaling pathways that are of relevance in TAMs
relied on catalogues generated by independent characterizations of in vitro polarized
macrophages where antibody assays against a small set of signaling phosphoproteins were
used’. Such targeted assays detect only a small fraction of events found with large-scale
unbiased mass spectrometry (MS)-based phosphoproteomics approaches’>?°. MS-based
proteomics and phosphoproteomics assays have so far been mostly performed on murine
macrophages or on macrophages generated from a THP-1 cell line’’*°. Even though
proteomes of primary human macrophages are also available, detailed analysis of relevant
signaling events has not yet been reported®*®. Primary macrophages have been
characterized by several transcriptomic studies®*“?. However, transcriptomics data cannot
pinpoint the exact components of cellular signaling cascades and directionality of signal
flow, whereas phosphoproteomics allows the simultaneous and unbiased assessment of
hundreds of kinases, either by direct measurement of their phosphorylation status or by the
footprints of their activities.
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Crucial signaling mediators for M1 in vitro (and M1-like in vivo) polarized pro-
inflammatory macrophages are well characterized and it has been consistently reported
that the main signaling routes after exposure to Interferon y (IFN-y) and Lipopolysaccharide
(LPS) stimuli lead to the activation of p38, JAK1 and JAK2 kinases and higher expression of
genes regulated by the STAT1, STATS, IRF3, IRF5, IRF8 and NF-kB transcription factors
(TFs)**. Immunosuppressive macrophage states polarized in vitro are described as M2a and
M2c phenotypes when they are generated after exposure to IL-4 and IL-13, or to IL-10,
respectively. M2b state requires stimuli with immune complexes and IL-1B, and is not
characterized as immunosuppressive**. M2a macrophages are characterized by high activity
of IRF4 and STAT6 TFs as well as with increased activity of retinoic acid pathway and
signaling from AKT and MAPK kinases’’**. The M2c state is less well studied than the M2a,
but is known to have increased activity of the STAT3 TF and AMPK kinase, as well as an
upregulation of SOCS3, CXCL13 and several metalloproteases®®. Immunosuppressive
macrophages have roles in tissue healing, activation of regulatory T-cells, matrix remodeling
and angiogenesis®**°.

Here, we performed a global characterization of signaling events in primary human
M1, M2a and M2c macrophages using MS-based proteomic and phosphoproteomic
profiling. We compared signaling activities in pro-inflammatory phenotypes stimulated with
LPS and IFN-y (known as M1) and immunosuppressive phenotypes stimulated either with IL-
4 and IL-13 (M2a) or with IL-10 (M2c). Analysis of direct and inferred footprints of kinase
activities indicated a high activity of RIPK2, SRC and JAK2/3 kinases in pro-inflammatory
phenotypes and it suggested PKCa, PAK2, LRRK2 and MAST kinases as likely regulators of
immunosuppressive macrophages. By integrating these data together with publicly available
transcriptomics datasets on macrophages exposed to the same stimuli and by using network
modularization on a comprehensive framework of known physical and genetic interactions
among these proteins, we extracted interaction neighborhoods specific to each phenotype
of interest. This showed that protein modules, which associate with the main signaling
routes of mMTOR and MAPK pathways, had the most significant changes across the studied
phenotypic states. Finally, we used proteome signatures identified here to classify
macrophages in tumor samples from cancer patients, which were characterized with
scRNAseq, and found that the proteomic markers were able to successfully distinguish pro-
inflammatory macrophage populations in a clinically relevant context. Overall, in-depth
multi-omics characterization of macrophage phenotypic landscapes could be valuable for
supporting the rational design of interventions that aim to therapeutically alter immune cell
compartments.

Results

Macrophages polarized to different states express specific protein markers

In order to systematically investigate signaling pathway differences between differentially
polarized human macrophages, we obtained buffy coats from four blood donors and
isolated the CD14* monocytes (Figure 1A, see Methods). Following, polarization to the M1
state was achieved using LPS and IFN-y as stimuli (after differentiation with GM-CSF), while
M2 states were generated either with IL-4 and IL-13 (corresponding to the in vitro M2a
annotation) or with IL-10 (corresponding to the in vitro M2c annotation, both after
differentiation with M-CSF, see Methods)®*’ (Figure S1A). In order to validate polarization to
M1 and M2 phenotypes, we used flow cytometry and assessed the expression of cell surface
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proteins which are commonly used as markers for the studied states***': CD86 for M1,
CD206 for M2a and CD163 for M2c. This showed that cell populations exposed to one of the
three stimuli conditions indeed had a higher expression of the markers for the
corresponding cell states (Figure 1B, Figure S1B). M1 cells had the highest fraction of CD86
positive cells (79 and 85% in the two tested donors), M2a cells had the highest fraction of
cells positive for the CD206 marker (56% in both tested donors) and M2c cells had the
highest fraction of cells positive for the CD163 marker (74 and 91% in the two tested
donors). This indicated that the achieved polarization states represented those previously
described in the literature.

We performed global proteomic and phoshoproteomic characterization of the
stimulated cells (see Methods). For the latter, phosphopeptides were enriched with Ti-IMAC
microparticles. Of note, protein phosphorylation can have either an activating or an
inhibitory effect on the protein. We used the MaxQuant software tool to match peptides to
proteins and estimate quantities of the measured analytes (see Methods)**>*. The label-free
proteome and phosphoproteome quantification resulted in the identification of a total of
5,342 proteins and 5,905 phosphopeptides, which mapped to 2,313 phosphoproteins. We
first compared protein levels in the M1 cells to those in the M2a and M2c cells. In total, we
found that 675 and 806 proteins had significantly different expression levels between M1
and M2a, and between M1 and M2c macrophages, respectively (two-tail moderated t-test,
false discovery rate (FDR) < 0.05 and Log2 FoldChange (FC) > 1, Figure 1C and Figure S1C,
Table S1). Of these, 282 and 299 proteins were expressed at significantly higher levels in
M2a and M2c, respectively, when compared to M1 macrophages.

Next, we used Gene Ontology together with KEGG and Reactome pathway
annotations in order to identify the major functional roles of the differentially regulated
proteins (see Methods and Table S2). Proteins that were significantly upregulated in the M1
phenotype were strongly enriched in the members of interferon and cytokine signaling
pathways (FDR < 6.40 x 10 for the Interferon Signaling and FDR < 1.62x10for the Cytokine
Signaling in Immune system Reactome pathways, Figure S1D), while proteins upregulated in
the M2 phenotypes were enriched in metabolic roles (FDR < 2.21x1073 for the Amino sugar
and nucleotide sugar metabolism KEGG pathway and FDR < 4.71x10°2 for the Metabolism of
carbohydrates Reactome pathway). Among the proteins that were highly upregulated in the
M1 macrophages compared to both M2a and M2c macrophages (Table S1) were CD86,
which is used as a surface marker for the M1 state (FDR < 1.09x103 and Log,FC > 3.38), as
well as a number of well-studied inflammatory proteins, such as GBP1, IDO1, ISG15, and
MX1°4°> (GBP1: FDR < 2.31x10% and LogoFC > 4.12; IDO1: FDR < 4.21x103 and
Log,FC > 6.54; 1SG15: FDR < 5.66x10* and Log,FC > 5.01; MX1: FDR < 7.18x10* and
Log,FC > 5.70). The respective proteins are marked in Figure 1C and Figure S1C. Analogously,
IL-4 and IL-13 treated macrophages had highly upregulated levels of several surface proteins
that were used in previous studies as markers for immunosuppressive M2a macrophages.
These included CD209, CD206/MRC1 and CD163 (CD209: FDR < 5.74x10 and Log,FC > 5.39;
MRC1: FDR < 1.27x103 and Log,FC > 1.90; CD163: FDR < 2.05x102 and Log,FC > 3.77)?%°6°/,
Similarly, M2c macrophages had a significantly upregulated expression of surface markers
CD209 and CD163 (CD209: FDR < 4.93x10* and Log,FC > 3.36; CD163: FDR < 2.63x107 and
Log,FC > 5.47). Overall, this showed that the in vitro polarized M1 and M2 macrophages
studied here could be clearly distinguished from each other through a differential
expression of proteins associated either with pro-inflammatory or with immunosuppressive
phenotypes.
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Several regulatory proteins, which are expressed in TAMs and known to
promote tumor growth, have elevated phosphorylation levels in M2
macrophages

Analogously to the protein level analysis, we assessed which phosphopeptides showed
significant differences in their quantitative levels between the M1 and M2 states (Figure 2A
and Figure 2B). In order to be able to interpret the observed changes as a result of the
higher activity of the upstream kinase(s), we considered only phosphoproteins for which
changes in quantitative levels of at least one of their phosphopeptides could not be
explained by the expression level changes of the corresponding protein (see Methods). In
this way, the comparison of M1 and M2a phenotypes highlighted 1,986 phosphopeptides
(out of 5,880 measured ones) with significantly different quantitative levels between the
two states (FDR < 0.05 and Log,FC > 1, two-tail moderated t-test). With the same FDR and
Log,FC thresholds, in total 2,780 phosphopeptides (out of 5,153 measured ones) were
found to be differentially regulated between the M1 and M2c phenotypes. We compared
proteins with significant phosphorylation changes to the background of all measured
phosphoproteins and assessed their functional enrichment in the components of the KEGG
and Reactome signaling pathways (see Methods and Figure S2A). This showed that proteins
with higher phosphorylation levels in M1 were, among others, significantly enriched in the
members of the Interferon gamma signaling pathway (FDR < 1.49x107?), whereas those with
higher levels in M2a were enriched in the components of the mTOR signaling pathway
(FDR < 1.12x103). Proteins with higher phosphorylation in M2c were enriched in Fcy
mediated phagocytosis (FDR < 4.62x102). M2c macrophages have been previously reported
to have a high phagocytic capacity’®°°, while the mTOR pathway, which has a crucial role in
the regulation of cellular metabolism and proliferation, is considered to be at the crossroad
between M1 and M2a polarization®.

Proteins with the most significant differences in phosphopeptide levels between M1
and M2 states (Figure 2A and Figure 2B, Table S1) included the tumor suppressor PML,
which had 12 phosphoresidues with higher phosphorylation levels in the M1 state
compared to both M2a and M2c macrophages (all 12 sites with an FDR < 4.85x10 and
Log,FC > 1.99). PML has multiple roles in the formation of PML-nuclear bodies and it is
linked to the IFN-y signaling pathway®’. In addition, tumor suppressor SP100, which
together with PML is a major constituent of the PML bodies, also had eight phosphosites
with higher levels in M1 macrophages (FDR < 3.81x102 and Log,FC > 1.67)°’. There were
191 phosphosites upregulated in both M2a and M2c macrophages when compared to M1
(Figure S2B). These included phosphoresidues of the CCR1 chemokine receptor, which was
previously shown to promote M2 macrophage polarization®® (FDR < 7.07x10°3 and Log,FC >
2.13). In addition, the NCOR2 TF, which is able to suppress inflammation, showed higher
phosphorylation in the M2 states®" > (S149 and S152: FDR < 4.78x1073 and Log,FC > 2.12). In
the M2a state, MAFB and HSF1 TFs, whose elevated expression in TAMs associates with
more aggressive tumor growth®®®’, had significantly upregulated phosphosites (MAFB S70:
FDR < 2.39x1073 and LogyFC > 2.71; HSF1 S292: FDR < 3.45x10°3 and Log,FC > 2.27).

A central element of cellular information flow is through phosphorylation of protein
kinases by other kinases. Therefore, we specifically investigated differences in kinase
phosphorylation levels across the studied states. In total, 71 protein kinases had significantly
different quantitative levels of one or more phosphosites in the comparison between M1
and M2 phosphoproteomes. We investigated if these kinases were enriched in specific
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KEGG pathways and found that 21 of the 71 significant kinases belonged to the MAPK
signaling pathway (this presented an enrichment when compared to all measured kinases;
FDR < 4.90x1072, modified Fisher’s test), 14 kinases belonged to the Chemokine signaling
pathway (FDR < 1.01x1072) and 13 to the mTOR signaling pathway (FDR < 9.20x103). Among
the kinases with significantly higher phosphosite levels in the M1 state compared to either
of the M2 states were JAK2 (S518: FDR < 4.97x103 and LogzFC > 2.70) and JAK3 kinases (S17
and S15: max FDR < 3.43x102% and Log,FC > 2.12), which are known to form the main axis of
the JAK-STAT pro-inflammatory pathways. Specifically, the phosphorylation of S518 in JAK2
was previously shown to play a role in the kinase activation®®. In addition, SRC and RAF1
kinases had phosphoresidues with a higher phosphorylation level in M1 (SRC S43:
FDR < 4.24x102 and Log,FC > 1.53; RAF1 S301: FDR < 1.87x102 and log,FC > 1.89). SRC has
been reported to play a role in the production of inflammatory cytokines and mediators in
macrophages® and RAF1 regulates the MAPK pathway, which is important in the M1
state’?’*. Kinases with higher phosphorylation levels in the M2a state included MAST2 and
MAST3 kinases, where MAST2 is known to be able to block the NF-kB activation’>’* (MAST2
S1364: FDR < 1.36x102 and Log,FC > 2.0; MAST3 had four upregulated residues, all with
FDR < 3.89x103 and Log,FC>2.56). In addition, several other kinases had significantly
higher phosphorylation levels in the M2a state: PAK2 kinase, which was previously reported
to regulate the development of myeloid-derived suppressor cells in mice’4, WNK1 kinase,
which is able to suppress inflammatory cytokine production’>, LRRK2 kinase, which
regulates different inflammatory responses in the body’®, and PDPK1 kinase, which is known
to regulate the mTOR pathway and promote M2-like polarization in mice’’ (PAK2 T169 and
S58: FDR < 5.0x10°% and Log,FC > 2.57; WNK1 S2027: FDR < 2.39x1023 and Log,FC > 2.42;
LRRK2 S973: FDR < 1.33x102 and Log,FC > 1.75; PDPK1 T513: FDR < 3.28x1073,
Log,FC > 2.67). In the M2c state, we observed a higher phosphorylation of the FES kinase
(T421: FDR <3.32x103 and Log,FC > 2.39), a widely expressed kinase, which is able to
downregulate the immune response during inflammation’®’°.

Phosphorylation within the kinase activation loop or an analogous regulatory
segment is often sufficient for the kinase to switch to its active state. Several of the
phosphosites with significant differences in their phosphorylation levels across the
macrophage states mapped within sequence segments annotated as regulatory regions
(Figure 2C and Figure S2C). For instance, the S176 phosphoresidue within the RIPK2 kinase
had a significantly higher phosphorylation level in the M1 state when compared to both M2
states (FDR < 4.72x103 and Log:FC > 2.51). The phosphosite maps within the RIPK2
activation segment, and the S176 residue itself is annotated as an auto-phosphorylation site
essential for the RIPK2 catalytic activity®>®’. RIPK2 plays an important role in the activation
of pro-inflammatory pathways, including NOD signaling and NF-kB pathways®.
Furthermore, the activation residue of the PKCa kinase (a.k.a PRKCA)®*?, T497, had higher
phosphorylation levels in both M2 states when compared to M1 (max FDR < 4.66x102 and
Log,FC > 1.28). The PKCa kinase is known to play a role in anti-inflammatory processes and
it may negatively regulate the NF-kB induced genes®. Finally, in the M2c state, the PKACa
(a.k.a PRKACA) T198 phosphosite was measured at a significantly higher level than in the M1
state (FDR < 3.86x103 and Log,FC > 2.72). The residue maps within the kinase activation
loop and its phosphorylation is associated with the increase in the kinase's catalytic
activity®>®°, PKACa was reported to be able to induce a pro-tumoral immunosuppressive
macrophage phenotype®’. Jointly, these results show that phosphoproteome
characterization of macrophage functional states is able to recognize known molecular
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mechanisms that underlie their different functional roles and highlight a number of novel
instances, which link to signaling pathways that can drive pro-inflammatory and
immunosuppressive cell phenotypes.

Analysis of kinase activity footprints implies possible regulatory roles for
LRRK2, PKCa and PAK2 kinases in immunosuppressive macrophage states

The main advantage of quantitative phosphoproteomics, compared to transcriptomics or
proteomics, is that it provides closer insights into the active states of proteins. However,
phosphoproteomics is still hampered by a high fraction of missing values and the absence of
a certain phosphoprotein does not necessarily mean that the protein is not present in the
phosphorylated form®, In order to infer the increased activity of upstream protein kinases,
we further studied sequence motifs surrounding all significantly upregulated phosphosites
and considered also upstream kinases that were themselves not measured. For this, we
made use of The Kinase Library, a recently published analytical tool based on a systematic
screen of synthetic peptide libraries®.

This analysis indicated pro-inflammatory JNK1, JNK2 and JNK3 kinases
(FDR < 2.38x1072), together with p38 mitogen-activated kinases (FDR < 9.72x1072), as major
regulators of phosphoproteome changes in the M1 macrophages (Figure 3A and Table S3).
Thus, the Kinase Library analysis, even though based solely on phosphopeptide sequences,
correctly predicted known major signal transduction routes in the M1 state®. Analysis of
phosphoresidues upregulated in the M2a state suggested a high activity of IRAK1
(FDR < 1.07x10%) and IRAK4 (FDR < 2.42x10?) kinases (Figure 3B and Table S3). Together
with the TRAF6 protein, these kinases can form a complex, that activates pro-inflammatory
JNK kinases and the NF-kB TF°'. However, when the IRAK1/4 complex binds other partners,
such as IRAK-M, it can act as a negative regulator of inflammation and phosphorylate a
different set of downstream substrates®*°?, which could explain its increased activity in the
M2a state. This analysis also suggested a higher activity of the LRRK2 (FDR < 2.27x1072) and
GAK (FDR < 1.63x107?) kinases in M2a macrophages (Figure 3B). LRRK2 has been linked to
pathways that regulate inflammation’® and the less well-studied GAK kinase is one of its few
confident interaction partners®. In M2c macrophages, the Kinase Library analysis suggested
upregulation of the GAK (FDR < 6.75x102) and CAMKK2 (FDR < 4.75x103) kinases
(Figure 3C). High expression levels of CAMKK2 were previously reported in TAMs and
activation of this kinase was shown to support tumor growth*,

In addition, we conducted further analyses for complementary predictions of
upregulated kinases: (i) we applied the NetPhorest tool®®, which also investigates
phosphosite sequence motifs and (ii) we used the Kinase Enrichment Analysis version 3
(KEA3) method for the analysis of phosphoproteome datasets, which further considers
known protein interactions and co-expression trends®®. Analysis of known kinase-substrate
relationships from the curated annotations collected in the PhosphoSitePlus and other
databases’’ did not vyield clear trends (Table S3). Nevertheless, the curated annotations,
alongside the predicted ones, facilitated the construction of kinase-kinase signaling
networks that describe the signaling flow within the studied phenotypes as was measured in
this study (Figure 3D and Figure S3A-C). The NetPhorest analysis recapitulated a high activity
of kinases from the p38 family in the M1 state (FDR < 3.39x107?, Figure S3D). Furthermore, it
highlighted the upregulation of kinases from the PKC group in the two M2 states
(FDR < 5.25x103, Figure S3E and Figure S3F). The PKC group contains the above discussed
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PKCa kinase, which we observed to have the activation loop phosphorylated in the M2
states. Finally, the KEA3 predictions (Table S3) included JAK and MAPK kinases as top hits for
the M1 phenotype, as well as PKACa and PAK2 kinases as hits for both the M2a and M2c
phenotypes. As discussed above, the PAK2 kinase itself had two phosphosites significantly
upregulated in the M2a macrophages, while PKACa was found to be phosphorylated in the
activation loop. Jointly, analysis of kinase signal propagation in primary macrophages in vitro
has further highlighted known routes relevant for the establishment of polarized states and
suggested several novel kinases that could play a decisive role in the different
immunosuppressive macrophage phenotypes.

Network integration of macrophage omics data points towards central pro-
inflammatory and immunomodulatory protein modules

Several previous studies have performed transcriptomic analysis of primary human
macrophages polarized with the same stimuli as here®**2%°¢, We retrieved the published
datasets from the six studies and re-analyzed the data in order to systematically assess cell
state-specific differences in molecular activity. All of the studies included M1 and M2a
phenotypic states with two of them additionally including M2c macrophages. For the M1
and M2a comparison, we included in the final list of significantly differentially expressed
genes those that were found as such in at least three studies. In this way, we identified
1,252 high-confidence polarization state-specific genes (FDR < 0.05, abundance ratio > 4,
see Methods and Table S4). Differentially expressed genes between M1 and M2c states
were were selected with the same threshold criteria, but were defined as a less stringent
union of the two available studies (2,911 genes in total). We performed functional
enrichment analysis and found that genes with higher expression levels in the M1
phenotype were enriched in the KEGG and Reactome pathways associated with Interferon,
TNF and NF-kB signaling (with FDR < 1.51x102%, FDR < 6.62x10%° and FDR < 8.75x10%,
respectively). Genes with a higher expression in the M2a and M2c macrophages were
enriched in the PPAR signaling pathway (FDR < 1.71x1072), which was previously linked to
the M2 phenotypes™ %,

Next, we searched for the likely upstream regulators of the high confidence
differentially expressed genes by using annotations on known targets of human TFs
available in the TRRUST database'®'°?, Genes upregulated in the M1 state indicated that
the major TFs with M1-increased activity were RELA, NFKB1 and STAT1, all well-known
regulators of this state (FDR < 8.49x10°°, Hypergeometric test, Table S4). Upstream TFs in
the M2a state were detected with a lower significance (FDR < 0.15), reflecting both less
strong gene upregulation and fewer annotations on these genes. However, the top hits for
M2a were STAT6, KLF2 and ETS1 TFs. STAT6 is a known marker of M2a macrophages, while
KLF2 is a negative regulator of pro-inflammatory genes'®. In addition, we used the same
datasets to identify genes with differential transcript usage between the M1 and M2a states
and found 697 genes with differential alternative splicing (Table 5S4, see Methods). When
compared to all other genes with measured transcripts, these genes had more often
significant changes in phosphopeptide levels (FDR < 8.8x10%, Fisher's exact test).

Following, we used the obtained catalogue of differentially expressed genes,
proteins and phosphoproteins as well as genes with differential transcript usage in order to
assess polarization state-specific cellular networks. To build the networks, we integrated
confident interactions collected from the STRING, BioGRID and IntACT databases (see
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Methods). We retained only interaction pairs where both of the proteins were detected as
differentially expressed in the same state with at least one type of analysis. Networks built
this way allowed us to i) identify central network elements for each state and ii) identify
network modules of highly connected proteins that likely share similar functional roles. For
the former, we used the current flow betweenness centrality metric, which assesses the
shortest paths that connect network elements through each respective protein, and
additionally includes contributions from all possible paths by accounting for the information
flow through random walks'®*. When considering networks with hits upregulated in
individual states, 10% of the proteins with the highest centrality measure contained 87, 48
and 67 proteins in M1, M2a and M2c states, respectively (Table S5). Central proteins in the
M1 state, which were found consistently upregulated in different omics analyses, included a
number of signaling regulators that are known to play a crucial role in M1 polarization, such
as STAT1, STAT3, RELA, JUN, NFKB2 and NCOR1 TFs as well as SRC, JAK2, JAK3, RIPK2 and
MAPK11 kinases and the above-mentioned PML protein. Network hubs in the M2a state
included transcription regulators FOS and PPARy. In addition, the transcription regulator
NCOR2 was among the top 25% of the M2a most significant hubs. FOS was reported to be
able to suppress inflammation'’® and the PPAR pathway is one of the hallmarks of M2a
macrophages’’. FOS TF was also identified as a hub in M2c macrophages. Furthermore, in
both M2a and M2c states, the CSF1R receptor was identified as one of the central
regulators. CSF1R is able to direct monocyte migration to tumors and promote M2-like
polarization in vivo'’®. Several antibodies and inhibitors that block its activation are
considered in clinical trials that aim to revert tumor immunosuppression'’’. In addition, this
analysis highlighted mTOR, PKCa, PAK2 and LRRK2 kinases as central regulators in M2a
macrophages. Of note, the PKCa kinase was a protein with the highest centrality score in
the M2a network. Jointly, these results suggest that integrated network analysis is able to
identify candidates that warrant further investigation for their regulatory roles in distinct
macrophage states.

In order to perform network decomposition, we applied a modularity optimization
algorithm within the MONET toolbox'“¢, which is able to identify network communities at
different resolutions. We used the same networks as above with hits identified as significant
either through previous transcriptomic studies or though proteomic and phosphoproteomic
datasets generated here. For the M1, M2a and M2c states, we were able to distinguish 14,
17 and 3 confident modules, respectively, each with 10 or more members (Table S5).
Modules for the better studied M1 macrophages distinguished protein communities with
dominant roles in IFN-y (first module), and in NF-kB, toll-like receptor and JAK-STAT
signaling (second and third modules). The largest module detected in the M2a state (first
module) contained mTOR and MAPK pathway components and included PAK2, MEK2 and
PDPK1 kinases (Table S5). As expected, there was a high interconnectivity among the
module components. This is illustrated in Figure 4, which shows links between transcription
factors with a high centrality in the M1 and M2a states together with their interaction
partners that had the highest current flow betweenness centrality scores. Overall, cellular
maps constructed with significant proteins from multi-omics analyses were able to
effectively summarize our knowledge of proteins with central roles in macrophage
polarization, add new members to the better studied functional modules, and highlight
protein communities that could have additional roles in promoting distinct macrophage
states.
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Proteomic markers successfully distinguish pro-inflammatory macrophages in
a clinical context

In vivo, macrophages are simultaneously exposed to a range of stimuli and have a broad
spectrum of functional states, which cannot be divided in simplified M1 and M2 categories,
directly corresponding to in vitro states. However, even a coarse distinction of in vivo
macrophages into those with pro-inflammatory and immunosuppressive roles can be of a
high clinical value. Hence, we investigated if protein signatures of in vitro differentiated M1
and M2 macrophages can be used to study pro- and anti-inflammatory cell populations in
patients for which scRNAseq data is available. For this, we obtained publicly available
datasets generated for cancer patients within two recent studies that included 15 brain
metastases (BrM) samples originating from different primary tumors'® and 14 primary
hepatocellular carcinoma (HCC) samples'’. We followed original procedures to separate
major cell populations and excluded cells characterized by high expression of tumor markers
(EPCAM, KRT19 and MLANA, or AFP, GPC3 and VIL1) from the further analyses (see
Methods, as well as Figure 5A and 5B and Figure S4A and S4B). Subsequently, we used the
SingleR software tool with Blueprint/ENCODE reference RNAseq profiles from pure cell
populations'® % to annotate stromal and immune cells in the tumor microenvironment
(TME) (Figure 5A and Figure S4A). Macrophage cells identified this way expressed myeloid
markers AIF1, CD14 and LYZ (Figure S4C)'*'7111 To further separate macrophages, we
composed lists of significantly upregulated proteins in the M1 and M2 in vitro states
analyzed here. We compared M1 to M2 states and used the top 100 M1 and 100 M2
proteins (Table S6), characterized by high Log,FC values and low FDR. The M2 list included
proteins significant in both M2a and M2c macrophages. We used the Seurat function
ModuleScores for cell annotations (see Methods). Furthermore, we compared these lists to
other classification strategies previously applied in the studies of patient macrophages:
literature-curated sets of core''” and extended'** M1- and M2-specific proteins (with 47 and
71 signature entries, respectively, Table S6) and to the CD163 protein alone (at different
expression threshold levels). CD163 was used for macrophage classification in recent mass
cytometry studies' %,

Depending on the used annotations, we found that up to 89% of the clinical
macrophages were classified as M1-like, pro-inflammatory cells (Figure S4D). Furthermore,
this analysis showed that the signature proteins defined here through the proteome
characterization of in vitro macrophages were able to clearly distinguish pro-inflammatory
macrophages in both analyzed clinical single cell datasets: Highly expressed genes in the
M1-like macrophages, which were classified as such through proteomic signatures, had a
strong enrichment in inflammatory functions in both scRNAseq datasets (FDR < 1.49x102
for the MSigDB hallmark pathway Interferon gamma response and TNFA signaling via NFKB
and FDR < 2.55x102 for the Inflammatory response pathway, Figure 5C, Table S7). Highly
expressed genes (with Bonferroni adjusted p-values < 0.05, see Methods) were identified
through a comparison between the single cells classified as either M1- or M2-like. The
inflammatory signal was also strong when we excluded genes used for the classification
from the differential expression analysis (Table S7). In addition, macrophages in the
scRNAseqg-characterized TIME of BrM, which were classified as M2-like through a
proteomics-defined signature set, were enriched in the MSigDB hallmark pathway mTORC1
signaling (FDR < 3.54x102). In a comparison, CD163 alone as a marker was not able to
classify pro-inflammatory and immunosuppressive macrophages, also when different gene
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expression thresholds were assessed, but the two knowledge-based lists clearly defined pro-
inflammatory clinical macrophage subsets (Figure 5C). This highlights a previous notion that
effective macrophage classifications benefit from including multiple markers'*?. Overall, the
unbiased list of differentially expressed proteins obtained here had a comparable power in
macrophage classification as the literature lists, which were based on evidence from
multiple independent studies of macrophage functions (Figure 5C). It was suggested
previously that there is a significant scope to expand and refine biomarkers for clinically
relevant macrophage populations through multi-omics analyses''?. Overall, our results
suggest that proteomic studies of different in vitro states can be one of the instrumental
approaches for this.

Furthermore, we investigated if the presence of pro-inflammatory macrophages
correlated with the overall TIME composition and the presence of any other cell types. In
the BrM tumors that originated from melanoma, which are often more immunogenic but
with an exhausted immune signature, we observed a higher fraction of pro-inflammatory
macrophages than in samples originating from breast, colorectal and lung tumors (>33% vs
<20% of all macrophages in the TIME, Figure 5D). The sample size used in the study was too
small to statistically evaluate this observation. Furthermore, in the set of BrM samples, we
found a strong correlation between the fraction of pro-inflammatory macrophages and B
cells (Spearman p = 0.91, p < 2.1x10°%, Figure 5E). In HCC samples, the fraction of annotated
B cells was overall very low (median of 1.5% across patient samples). B cells have been
reported to be important for sustaining melanoma associated inflammation and were
proposed as a predictor for survival and response to immune checkpoint blockade
therapy''®. Overall, these analyses underline the value of distinguishing different
macrophage subpopulations in clinical TIME analyses in comparison to treating
macrophages as a homogenous cell type.

Discussion

The fine balance between macrophage polarization states is relevant for different metabolic
and physiological human processes and its disruption associates with several pathologies®.
In vivo macrophage states are highly complex as these cells not only integrate simultaneous
and dynamic exposure to dozens of secreted stimuli, but also signals from cell-cell
interactions and mechanical signal transduction. Nonetheless, through simplified in vitro
models it is possible to map major signaling routes associated with individual clinically
relevant stimuli and characterize cells with assays that cannot be used in vivo. In vitro
models have been highly useful for the understanding of macrophage biology in infection,
wound healing'/, autoimmune diseases’® and cancer’. Even though in vitro M2
macrophages are not the same as immunosuppressive TAMs, they do have higher
expression of markers often used for pro-tumor TAMs, such as CD163 and CD206. Here we
found that they also exhibit higher phosphorylation levels of several kinases and TFs, which
were previously associated with macrophages that promote tumor growth, such as MAFB,
HSF1, PKACa and PDPK1°%¢7.77.119 Proteomics and phosphoproteomics are becoming widely
used for characterizing patient samples and for studying cell signaling pathways*?°'??, Here,
we exploited their potential for defining signaling proteins that underlie phenotype changes
in primary human macrophages.

Signaling pathways in pro-inflammatory macrophages have been intensely studied
and here we could recapitulate well-known regulatory roles of p38, JNK and JAK kinases in
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the M1 state (Figure 2 and Figure 3A). One of the upstream regulators of these kinases is
the RIPK2 kinase'?*, which we observe here to be phosphorylated in its active loop. p38 and
JNK kinases promote signaling towards the activation of the NF-kB pathway, while JAK
kinases activate STAT TFs'?°. Here, we found that STAT1 TF had a higher phosphorylation
level in the M1 state (Figure 2A and 2B, Table S1). In addition, together with RELA and
NFKB1, the same TF was predicted as most significant regulator for the genes we found
upregulated in the M1 state (Table S4) in the public transcriptome analysis. These kinases
and TFs were also predicted as central regulatory nodes of the M1 state in the integrative
network analysis (Figure 4A, Table S5)°%,

Signaling routes in immunosuppressive macrophages are less well described, but of a
strong interest because of their clinical relevance’®. In this vein, recently discovered
regulation of immune suppression promoted by RIP1 and PI3Ky kinases in TAMs has
attracted attention for possible therapeutic interventions’>?®, Here, we found that proteins
that play a role in the propagation of the in vitro M2 states included PDPK1, PKCa, PKACa,
PAK2 and LRRK2 kinases. PDPK1 and PAK2 are known substrates of PKCa, while PKACa and
LRRK2 can be phosphorylated by the PDPK1 and PAK2 kinases, respectively (Figure 3D and
Figure S3). Some of these kinases were also shown to be able to suppress inflammatory
pathways in vivo®*?’, and all of them warrant further exploration of their activity status in a
clinical context. For instance, the LRRK2 kinase has been associated with the development
of both Parkinson and inflammatory bowel diseases’®. However, the exact role of this kinase
in the disease development is still not clear’’®. Even though highlighted by individual
studies, neither PKCo, PKACo, PAK2 nor LRRK2 have been so far defined as central
regulators of immunosuppressive macrophage states. In addition, by integrating multi-omics
datasets, we identified here FOS, NCOR2 and PPARy TFs as central regulatory nodes in the
M2a interaction network. Literature-based interactomes have a bias for prioritizing better
studied proteins which can also affect our observations. Nonetheless, a number of
macrophage studies®*®>99100.105 haye pointed towards the major roles of these TFs in
immunosuppressive macrophages.

Because of their fundamental role in cancer and other diseases, there is a strong
interest in finding clinically relevant macrophage populations'?’*?° and identifying markers
and regulators of the specific cell states’'*‘. Clinical trials that aim to modulate
immunosuppressive macrophages include targeting of the CSF1R receptor, delivery of IRF5
and IRF8 TFs that upregulate pro-inflammatory genes, or activation of toll-like
receptors>* %3, On the example of pro-inflammatory macrophages, we show here that
unbiased proteomic signatures can be a powerful means for the categorization of
macrophages found in the TIME. Of note, macrophages that promote tumor growth often
have phenotypes that do not directly resemble in vitro generated M2 macrophages**% 3%,

Design of strategies for rational rewiring of cellular pathways benefits from the
mechanistic understanding of signal flow. Here, we focused our analysis on the comparison
of signaling activities in pro-inflammatory and immunosuppressive macrophages, as
reprogramming between the two states is seen as a highly attractive clinical strategy****.
Multi-omics characterization of primary macrophages in different states together with
systematic mapping of signaling cascades in these cells provides a global context of cellular
activity, which is of a broad interest in the design of new therapeutics.
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Figure 1. Generation and validation of in vitro polarized M1, M2a and M2c phenotypic
states for primary human macrophages

(A) Macrophage polarization and (phospho-)proteomics analysis workflow for comparative analysis
of primary human M1, M2a and M2c macrophages.

(B) Flow cytometry profiles for the polarization markers CD86, CD206 and CD163 of in vitro polarized
macrophage phenotypes are shown in red and negative or isotype controls are shown in grey.
Percentage of positive cells and the median fluorescence intensities are indicated on each plot. The
latter is shown in brackets. Y-axes are truncated.

(C) Volcano plot illustrating protein expression in terms of Log,FC values on the X axis against
-Logio(FDR) values on the Y axis in a comparison of the M1 and M2a phenotypic states. Differentially
expressed proteins are colored blue and green, depending on the directionality of the expression
change.
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Figure 2. Phosphoproteomics analysis highlights phenotype-state specific upregulation of
specific kinases and other signaling proteins

(A) Volcano plot comparing peptides with different phosphorylation levels between in vitro polarized
M1 and M2a macrophage phenotypes. A Log,FC of 1 and an FDR value of 5% in a moderated t-test
were used as thresholds for significant hits.

(B) Volcano plot comparing peptides with different phosphorylation levels between in vitro polarized
M1 and M2c macrophage phenotypes.

(C) 3D protein structure of example kinases phosphorylated in their activation loops. RIPK2 was
found to have increased phosphorylation level in the M1 inflammatory macrophages and PKCa in
M2a immunosuppressive macrophages. In both proteins, phosphosite maps within the active loop,
while PKACa is a highlight for M2c. The phosphoresidues measured and found upregulated in the
studied phenotypes are marked in yellow while different protein functional regions are indicated
according to the legend. Structures were rendered in PyMOL version 2.5.2.
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Figure 3. Inferred upstream kinases responsible for the phosphorylation of upregulated
phosphopeptides highlight both known and novel kinases and signaling routes

(A-C) Kinases with the most significant predictions for the different activity levels between the M1
and M2 phenotypes are shown. The Kinase Library tool was used for this. There, p-values are
calculated with the one sided Fisher's exact test and corrected for multiple testing with the
Benjamini-Hochberg method.
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(A) Kinases inferred as significantly upregulated in the M1 state when compared to M2a. All
measured phosphosites were considered, together with their Log,FC between the states and FDR
values calculated with the moderated t-test and corrected for multiple testing.

(B) Kinases inferred as significantly upregulated in the M2a state when compared to M1.

(C) Kinases inferred as significantly upregulated in the M2c state when compared to M1.

(D) Kinases with increased phosphorylation levels in the activation loop (light blue) in the M2a
macrophages are shown together with their first-degree kinase neighbors (dark blue). In addition,
first-degree kinase neighbors of the PAK2 kinase are included due to NetPhorest predictions for its
increased activity in M2 macrophages. All kinases shown here have at least one upregulated
phosphopeptide in the M2a state (with respect to the M1 phenotype). All interactions indicate
kinase-substrate relationships. Solid lines show those obtained from the curated knowledge
databases (such as PhosphositePlus) and dotted lines show those from the NetPhorest prediction
tool.
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Figure 4. Central elements in the integrative network built from the genes and proteins
found upregulated in the proteomics, phosphoproteomics and transcriptomics analysis
point to state-specific signaling pathways

(A) Circular diagram illustrates TFs and their interaction partners which were defined as most central
nodes based on the current-flow betweenness centrality score. On the lower side of the plot are the
TFs with their interaction partners shown above. For readability, 7 most central TFs and maximum
25 of their partners with the highest centrality scores are shown. Diagram coloring is based on the
module these proteins were assigned to after the network decomposition. In this plot, only entries
found upregulated in the M1 state (when compared to M2a) in either of the omics analysis are
shown.

(B) Pathway enrichments of proteins assigned to different modules after network decomposition
analysis for the M1 phenotype. All shown terms were found significant with an FDR < 0.05
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(hypergeometric test with Benjamini-Hochberg correction for multiple testing, when compared to all
proteins in the network). A fraction of proteins in the module with the respective annotation is
shown.

(C) Analogous as in (A). Here, only entries with a high centrality score that were found upregulated
in the M2a state (when compared to M1) in either of the omics analysis are shown. Again, 7 most
central TFs and maximum 25 of their partners with the highest centrality scores are shown.

(D) Pathway enrichments of proteins assigned to different modules after network decomposition
analysis for the M2a phenotype. Data is presented analogous as in (B).
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Figure 5. Separation of M1- and M2-like macrophages from clinical scRNAseq data

(A) Two-dimensional visualization of malignant (encircled) and non-malignant single cells in the BrM
tumor samples, which were classified based on marker gene expression. Cells from different tumor
samples are shown in different colors. A cluster of myeloid cells (see also Figure S4C) is enlarged and
macrophages and monocytes, which were assigned according to SingleR annotations, are indicated
with different colors.

(B) Feature plots of selected malignancy markers, which were used to define tumor cells, are shown.

17


https://doi.org/10.1101/2024.01.12.574349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.12.574349; this version posted January 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

(C) Macrophages were annotated as M1- or M2-like by using different marker signatures
(‘Proteomics’ is an unbiased set of markers identified here and the other sets were retrieved from
the literatures). For this, scRNAseq data from two studies was retrieved (shown right, Sharma et al.
corresponds to HCC, Gonzales et al. to BrM). MSigDB hallmark terms, which were functionally
enriched among the genes upregulated either in M1- or M2-like macrophages, are shown.
Significant terms are shown as -Logio(FDR) barplots.

(D) Percentages of macrophages annotated either as M1-like (blue) or M2-like (green) in each of the
BrM sample are shown as a barplot.

(E) A fraction of M1-like macrophages (M®) (among all annotated macrophages) and a fraction of B
cells (among all immune cells) are compared across BrM samples. There is a high correlation of the
two values (Spearman p = 0.91, p < 2.1x10°®).
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Figure S1. Morphological and molecular properties of primary in vitro polarized M1, M2a
and M2c phenotypic states

(A) M1, M2a and M2c macrophages were differentiated and polarized from blood-derived
monocytes isolated from buffy coats. Shown are images taken after 6 days of differentiation (M1:
GM-CSF, M2a/M2c: M-CSF) and 2 days of polarization (M1: LPS/IFN-y, M2a: IL-4/I1L-13, M2c: IL-10).
The images were taken from two donors with a Primovert microscope (Carl Zeiss).
(B) Flow cytometry profiles for the polarization markers CD86, CD206 and CD163 of in vitro polarized
macrophages phenotypes in the second of the two tested donors with antigens of interest shown in
red and negative or isotype controls shown in grey. Percentages of positive cells, together with the
median fluorescence intensity in brackets, are indicated on each individual plot. Y-axes are
truncated.
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(C) Volcano plot illustrating protein marker expressions in terms of Log,FC values on the X axis
against -Logio(FDR) values on the Y axis in a comparison of the M1 and M2c phenotypic states.
Differentially expressed proteins are colored blue and green, depending on the directionality of the
expression change.

(D) Significant (FDR < 0.05) over-representation of differentially expressed proteins (Log,FC 2 1,
FDR < 0.05) between M1 compared to M2a (top) and M2c (bottom) macrophages within KEGG and
Reactome pathways. Blue represents significant pathways related to the M1 phenotypic state, while
M2a and M2c are represented in green.
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Figure S2. Analysis of phosphoproteins with differential expression levels in the studied
conditions

(A) Significant (FDR < 0.05) over-representation of differentially expressed phosphoproteins
(LogoFC =1, FDR < 0.05) between M1 compared to M2 macrophages within KEGG and Reactome
pathways. Blue represents significant pathways related to the M1 phenotypic state, while M2a and
M2c are represented in green.

(B) Venn diagram summarizing the differentially expressed phosphoproteins between M2
macrophage phenotypes compared to M1 and between them.

(C) 3D protein structure of additional example kinases found important in the current study for
immunosuppressive macrophages. The phosphoresidues measured and found upregulated in M2a
macrophages are marked in yellow, while different protein functional regions are indicated
according to the legend.
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Figure S3. Kinase-Kinase signaling networks and top upstream kinases of each measured
macrophage phenotype
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(A,B,C) Directional kinase-kinase signaling networks centered around the main upregulated kinases
of the M1 compared to M2a (A), M2a compared to M1 (B), and M2c compared to M1 (C) phenotypic
state. Within the network, there are modeled kinases with at least one upregulated phosphopeptide
(spherical objects) and TFs with upregulated phosphopeptides (rhombic objects). To overcome the
challenge of missing values, we allowed the inclusion of known upstream regulatory kinases, which
could connect two upregulated kinases or transcription factors in the network, even if they were not
measured (V-shaped object) or they were measured but did not have significantly different levels
between the states (square objects). Curated kinase-substrate knowledge from PhosphoSitePlus and
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four other databases was used to connect the kinases (solid lines) as well as the NetPhorest
prediction tool to complement the missing knowledge (dotted lines). A connection edge between
two upregulated kinases refers to a connection between a kinase that has upregulated
phosphorylated residues and a specific peptide that was found to be upregulated as well. This is also
valid for the edges with TFs. If an upregulated kinase is linked to a measured but not upregulated
kinase, this means that the residues of the latter were not found to be differentially expressed. The
presented kinase-kinase signaling maps highlight the signaling transduction routes as were
measured in our study.

(D,E,F) Upstream kinase activity assessment highlighting the top predicted upstream kinases
responsible for the phosphorylation of the upregulated phosphopeptides of M1 compared to M2a
(D), M2a compared to M1 (E), and M2c compared to M1 (F) phenotypic state. The analysis was
based either on curated phosphorylation databases knowledge or NetPhorest predictions, each
analysis relying on a two-sided Fisher's exact t-test where the background was represented by all
phosphopeptides measured in the respective phenotypes (see Methods).
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Figure S4. Macrophage annotation using proteomic signatures

(A) Two dimensional visualization of 35'408 malignant (encircled) and non-malignant single cells
based on marker gene expression. Colors represent the sample identities. A myeloid cluster (see also
Figure SAC) is highlighted with colors representing SingleR annotations.

(B) Feature plots of selected malignancy markers.

(C) Feature plots of selected myeloid markers of the BrM (top) and HCC (bottom) myeloid cluster.

(D) Barplots showing the percentages of annotated macrophages using different marker signatures
among the BrM and HCC data sets.
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Methods

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Human CD86-FITC
Human CD206-FITC
Human CD163-FITC

FITC isotype control
Fc blocking reagent

Miltenyi Biotec,
REAfinity™

BD Biosciences
Miltenyi Biotec,
REAfinity™
abcam
BioLegend

Cat# 130116-262; 5220205628
Cat# 551135; 1278204
Cat# 130-112-290; 5220303599

Cat# ab91356
Cat# 422301, B270787

Biological samples

Human buffy coat

Zurich Blood Bank

Cat# D9993V00

Critical commercial kits

H CD14 . .

M‘::r‘s;ea " Miltenyi Biotec Cat# 130-050-201; 5210610232

Deposited data

Raw data This paper PXD043978
RNA i

>¢ seq brain Gonzalez et al.*® GSE186344

metastases

Z;F:::;fnqa D o GSE156337

RNAseq M1, M2a, M2c Lurier et al. ** PRINA339309

RNAseq M1, M2a, M2c Liu et al. *° PRJNA449980

RNAseq M1, M2a Linetal. * PRINA239897

RNAseq M1, M2a Gurvich et al. ¥/ PRINA552427

RNAseq M1, M2a Gerrick et al. ** PRINA480894

RNAseq M1, M2a Gutbier et al. * PRINA628531

Software and algorithms

FlowlJo version: 10.8.1

Fiji version: 1.53

R version: 4.1.3 and 4.2.1
Matlab version: R2020b

MaxQuant version:
2.0.1.0

Python version: 3.8.11

Pandas version: 1.3.3

PaDuA version: 0.1.16

MNE version: 0.23.4
SciPy version: 1.7.1
DAVID version: 6.8
CPDB

Seurat version: 4.1.0

SingleR version: 1.8.1

BD Life Sciences
National Institutes of
Health

R Core Team ***
MathWorks

Cox and Mann,
Tyanova ei al. °>
Kluyver et al. **°
Reback et al. **7
Ressa et al.
Gramfort et al. ***
Virtanen et al. *°
Huang et al. ***
Herwig et al. 12
Hao et al. *

Aran et al. '
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https://mne.tools/
https://scipy.org/
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https://cpdb.molgen.mpg.de/
https://satijalab.org/seurat/
https://bioconductor.org/package
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celldex version: 1.4.0

clusterProfiler version:
4.2.2

msigdbr version: 7.5.1
RNAdetector version:
0.04

SRA ToolKit

Cytoscape 3.9.1

DreamAl

ReactomePA version:
1.38.0

AnnotationDbi version:
1.56.2

DRIMseq version: 1.22.0
DEXseq version: 1.40.0
DESeq2 version: 1.34.0

Limma version: 3.50.3

Monet

Aran et al. '*3

Yu et al. **
Dolgalev et al. *°
La Ferlita et al. **°

NCBI
Shannon et al. '’

Ma et al. ¢
Yu and He et al. #°

Pages et al. **°

Nowicka and Robinson et
al' 151

Anders et al. 2
Love et al. >3

Ritchie et al. ***

Tomasoni et al. ¢

https://bioconductor.org/package
s/celldex/
https://bioconductor.org/package
s/clusterProfiler/
https://igordot.github.io/msigdbr/
https://github.com/alessandrolafe
rlita/RNAdetector
https://github.com/ncbi/sra-tools
https://cytoscape.org/
https://github.com/WangLab-
MSSM/DreamAl
https://github.com/YulLab-
SMU/ReactomePA
https://github.com/Bioconductor/
AnnotationDbi
https://github.com/gosianow/DRI
MSeq
https://bioconductor.org/package
s/release/bioc/html/DEXSeq.html
https://github.com/mikelove/DES
eq2
https://bioconductor.org/package
s/release/bioc/html/limma.html

https://github.com/BergmannlLab/

MONET

Experimental workflow

Macrophage differentiation and polarization

Buffy coats from four healthy human donors were received after ethics clearance (BASEC
Nr. Req_2021 -00687) and project approval from the Zurich Blood Bank. Following
peripheral blood mononuclear cells (PBMCs) isolation using a density gradient
centrifugation with Ficoll (Sigma-Aldrich), monocytes were positively selected with a
commercial CD14 kit (Miltenyi Biotec). Following selection, the monocytes were
differentiated and polarized into the M1, M2a or M2c macrophage states. For M1
macrophages, the cells were first incubated for 6 days at 37 °C with RPMI-1640 (Sigma-
Aldrich) containing 10% fetal calf serum (FCS), 1% penicillin-streptomycin (PS), and
15 ngxmL™* of GM-CSF (Sigma-Aldrich). On day 6, the cell culture media was replaced with
fresh media containing 100 ngxmL™ of LPS (Sigma-Aldrich) and 20 ngxmL™ of IFN-y (Sigma-
Aldrich) instead of GM-CSF, and the cells were further incubated for 2 days®“’. In the case of
M2 macrophages, the monocytes were initially treated for 6 days with 30 ngxmL™ of M-CSF
(Gibco), then for 2 days with IL-4 (20 ngxmL?) and IL-13 (20 ngxmL™?) (Miltenyi Biotec) for
the M2a or 40 ngxmL? IL-10 (ImmunoTools) for M2c macrophages. Cells were plated in
6-well plates (TPP) at a cell density of 2.5x10° cells/well. After polarization, the cells were
washed with DPBS and detached through incubation with a cold harvesting solution (10 mM
EDTA (Sigma Aldrich) in DPBS), followed by a mechanical step with a cell scraper (VWR). For
each polarization state, four biological replicates were prepared, snap frozen and sent on
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dry ice to the Functional Genomics Centre Zurich (FGCZ) for proteomic and
phosphoproteomic measurements.

Validation of polarization states

For the validation of phenotypic states, we used the remaining cells from two of the four
donors (donor Il and donor IV in raw proteome files). Aliquots of circa 5x10° frozen
monocytes were thawed, differentiated and polarized as described above. Morphological
inspection was conducted by acquiring brightfield images using an inverted light microscope
(Zeiss Primovert with Axiocam 105 color) equipped with a 20x objective and Ph1 filter. After
harvesting, cells were incubated in a 4% (v/v) paraformaldehyde (PFA) solution for fixation.
The PFA solution was discarded after which cells were re-suspended and incubated in DPBS
containing 10% FCS. As a second blocking step, 5% Fc blocking reagent (BioLegend) per
sample were added. Subsequently, fluorescently labeled antibodies were added. Briefly,
CD86 (FITC, Miltenyi Biotec), CD206 (FITC, BD Biosciences) and CD163 (FITC, Miltenyi Biotec)
were used. Samples were incubated and afterwards 1.2 mL FACS buffer (0.5 % (w/v) bovine
serum albumin (BSA) in DPBS) per 100 pL sample was added. Cell-suspensions were
centrifuged, the supernatant was discarded, and cells were re-suspensed in FACS buffer.
Measurements were conducted on different flow cytometers. For donor Ill the CytoFLEX S
(Beckman Coulter with CytExpert 2.4, Sheath fluid) was used with default setting without
discriminator and neutral density filter. Donor IV was measured on a Gallios flow cytometer
(Beckman Coulter with IsoFloq Sheath Fluid) with the following settings; Discriminator FS:
20, Particle size: small, Use of neutral density filter, Read 10,000 cells/sample, FS 100 Gain 1,
SS 100 Gain 1, FL1 290 Gain 1, FL6 500 Gain 1, Flow rate: medium, Stop conditions: 10'000
and/or 5 min. Data analysis was performed in Flowlo version 10.8.1, whereby
measurements were either compared to isotype controls or negative controls (for
REAfinity® antibodies), after gating for live single cells.

Protein extraction and digestion

Peptide extractions and following measurements for four replicates of macrophages in the
M1, M2a and M2c states were conducted at the FGCZ. Cells were lysed adding 100 pL FASP
lysis buffer (4% SDS, 100 mM Tris / HCL pH 8.2, 0.1 M DTT) and incubated for 10 min at
95 °C. Next, sonication was performed for 1 min at highest amplitude using high intensity
focused ultrasound (HIFU). Sonicated liquids were centrifuged and the protein
concentrations were determined using commercial protein assay kits (Thermo Fisher). For
each replicate, 600 pg of protein was taken and on-filter digested according to an adapted
filter aided sample preparation (FASP) protocol*°. For this purpose, 200 pL UT buffer (8 M
urea in 100 mM Tris/HCL pH 8.2) were added, before the samples were loaded onto ultra-
filtration units (Merck, MWCO 30 kDa) and centrifuged at 14'000xg. In a further
centrifugation step, the SDS containing buffer was exchanged with 200 uL UT buffer.
Reduced thiol groups of cysteine amino acids were alkylated by adding 100 pL
iodoacetamide solution (0.05 M in UT buffer) and allowing for 5 min incubation time.
Subsequently, the samples were washed five times in total (3x100 pL UT buffer, 2x100 pL
TEAB buffer at pH 8). Using 120 pL TEAB buffer containing trypsin (Promega) in a 1:50 (w/w)
ratio, proteins were on-filter digested overnight in a wet chamber at room temperature
(RT). Afterwards, obtained peptides were eluted by applying centrifugation at 14'000xg for
20 min. For analysis of the proteome, 100 pg of peptides was separated and stored
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separately, while the remaining volume was almost completely dried (~5 uL) for enrichment
of the phosphopeptides.

Phosphopeptide enrichment

MagReSyn Ti-IMAC beads (ReSyn Biosciences) were used together with a KingFisher Flex
System (Thermo Fisher Scientific) to enrich phosphopeptides'*®. Following the
manufacturer’s instructions beads were first conditioned with following washing steps:
2x200 pL of 70% ethanol, 1x100 puL 1 M NH4OH and 3xloading buffer (0.1 M glycolic acid in
80% ACN, 5% trilfuoroacetic acid (TFA)). After sample dilution with 200 pL loading buffer,
beads, wash solutions and samples were loaded into 96 deep well plates and transferred to
the KingFisher system. For phosphopeptide enrichment following steps were carried out:
5 min washing of the beads in loading buffer, 20 min phosphopeptide binding to the beads,
2 min washing in loading buffer, 2 min washing in 80% ACN and 1% TFA, 2 min washing in
80% ACN and 1% TFA, 2 min washing in 10% ACN and 0.2% TFA, followed by 10 min elution
of the phosphopeptides from the magnetic beads in 1 M NH4OH. Phosphopeptides were
dried to completeness and re-solubilized with 10 pL of 3% ACN and 0.1% formic acid for MS
analysis.

Liquid chromatography-mass spectrometry analysis

Analysis was conducted for each sample individually in randomized order. In the
experimental setup, the samples were subjected to an Orbitrap Fusion Lumos (Thermo
Scientific) equipped with a Digital PicoView source (New Objective). There, the samples
were first loaded on a trap column (Waters ACQUITY UPLC M-Class Symmetry C18 Trap
Column; 100 A, 5 pm, 180 um x 20 mm) which was followed by a second column (Waters
ACQUITY UPLC M-Class HSS T3 Column; 100 A, 1.8 um, 75 pm x 250 mm). The column
temperatures were set to 50 °C. During chromatography, peptides were eluted with a
constant flow rate at 300 nLxmint. The following elution scheme, where solvent A was
composed of 0.1% formic acid and solvent B of 99.9% acetonitrile in 0.1% formic acid, was
applied: The initial gradient of 5% solvent B, which was held for 3 min, was increased within
83 min to a total of 22% solvent B. In the next 10 min solvent B was further increased to
32%. This was followed by a 10 min washing step with increasing solvent B content of up to
95%, which was held for another 10 min. Finally, a re-equilibration step was conducted.
After accumulation to an automated gain control (AGC) target value (500'000 proteomics,
400'000 phosphoproteomics), full scan MS spectra (from 300 m/z to 1'500 m/z proteomics,
from 375 m/z to 1'500 m/z phosphoproteomics) were acquired in the Orbitrap system,
where the resolution was set to 120'000 at 200 m/z and the injection time to a
measurement-specific time (40 ms proteomics, 50 ms phosphoproteomics). If a precursor
exceeded the intensity of 5'000, it was selected for MS/MS. There, the ions were isolated
with a quadrupole mass filter (0.8 m/z isolation window proteomics, 1.2 m/z isolation
window phosphoproteomics) and further fragmented by application of higher energy
collisional dissociation (HCD) using a normalized collision energy (NCE) of 35. By using an
adapted universal method (scan rate; rapid, automatic gain control; 10'000 ions, maximum
injection time; 50 ms or 120 ms, charge state screening; enabled, singly unassigned charge
states; excluded, charge states higher than seven; excluded, precursor masses previously
selected for MS/MS measurements; excluded from selection for 20 s, exclusion window:
10 ppm) fragments were detected in the linear ion trap. Samples were acquired using
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internal lock mass calibration on m/z 371.1010 Th and 445.1200 Th. Results were collected
using the local laboratory information system (LIMS) at FGCZ'*’.

Proteomics and phosphoproteomics

Protein and phosphopeptide identification and label free quantification

The MaxQuant software tool*>°* version 2.0.1.0 was used with the enzyme settings set to
trypsin and protein identification was performed with the integrated Andromeda search
engine”. The MS data was searched against a database compiled from Homo sapiens
proteome sequences. For this, a UniProt'°® reference was used (taxonomy 9606, canonical
version from 2019-07-09). In the settings, carbamidomethylation of cysteine amino acids
was set as a fixed modification, while methionine oxidation and N-terminal protein
acetylation were set as variable. Further settings specified the minimal peptide length of
7 amino acids, a maximum of two missed-cleavages and the enzyme specificity of trypsin/P.
A maximum FDR threshold was set at 0.01 for peptides and 0.05 for proteins. Label free
guantification (LFQ) was enabled, and a 2 min window for match between runs was applied.

Data cleaning

The proteomics analysis was based on the quantitative matrix of protein intensities
produced by the MaxQuant analysis (proteinGroups.txt), and the phosphoproteomics
analysis was conducted by using the individual peptide phosphorylation intensities in the
MaxQuant output (Phospho_STY_Sites.txt), while only considering the first protein in the
protein group to which the phoshopeptide was mapped. In both proteomic and
phosphoproteomic analysis, commonly occurring contaminants, such as keratins, trypsin
and bovine albumin, as well as the peptides matching the reversed sequences in the decoy
database were excluded. In proteome analysis, only proteins that were identified based on
two or more measured peptides were kept. In the statistical analyses, only peptides and
phosphopeptides with at least two measurements in at least one of the studied states were
kept for further analysis. Phosphopeptides of class Il which had a localization probability
below 0.75 were not considered for the kinase enrichment and related analyses as it was
not possible to precisely define the phosphorylated residue.

Data transformation, centering and imputation

LFQ intensity values in proteomics measurements and raw phosphopeptide intensities were
Log, transformed and mean-centered across all samples. Missing values were imputed
separately for each macrophage state following concepts of the PhosR method**°. There,
missing values that are consistently absent from all samples in a certain phenotypic state
and values missing only in a small fraction of samples in a certain condition are
distinguished. In order to impute the missing values, two different normal distributions,
both shifted left from the mean of the measured values, were constructed by using the
PaDuA library'*%. When >50% of the biological replicates in a condition were measured, a
distribution with a negative shift from 0.5 of the standard deviation (SD) of the original
mean was constructed. When <50% of the biological replicates in a condition were
measured, a distribution with a negative shift of 1.8 SD was constructed. In both cases, a
width of 0.3 SD was applied. Missing data entries were randomly sampled from either of
these distributions depending on the fraction of measured values in the condition. The same
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approach was implemented for both proteomics and phosphoproteomics data. For
phosphoproteomics, the intensities of single, double, triple or higher phosphorylated
peptides were analyzed separately. The number of statistical tests was taken into account in
the differential expression analysis by considering all performed comparisons in the multiple
testing correction. Entries that were differentially expressed in different directions
depending on the number of phosphorylated residues in the peptide were removed.

Differential expression analysis

In order to identify differentially expressed proteins and phosphopeptides, moderated
t-tests were used for a comparison between the states. The obtained p-values were
corrected for multiple testing with the Benjamini-Hochberg (BH) method*®°. Entries that had
an FDR value below 5% and an absolute Log,FC of at least 1 were defined as differentially
expressed. In the analysis of the phosphoproteome data, protein abundances of the
respective phosphopeptides were further taken into account. The aim was to identify
phosphopeptides for which the identified expression level changes between the phenotypes
were actually driven by differential protein expression. Following the MSstatsPTM
approach'®’, phosphopeptides whose change in abundance between specific conditions was
not statistically higher than the abundance change between their corresponding proteins
were not considered differently regulated and were removed from further analyses (FDR
threshold of 5%). A t-test was used in order to compare the abundance change of a specific
phosphopeptide (PTM) with the abundance change of its corresponding protein between
the same two conditions as in (1):

t = LongCAPTM B LogZFCAProtein

E (1)

where LongCAPTM is the binary logarithm of the FC of a specific phosphopeptide calculated
from the phosphoproteomics measurements, LOgZFCEpm:em is the binary logarithm of the

FC of the corresponding protein calculated from the proteomics measurements, and SE is
the standard error of the test statistic described by (2).

J 1 1
SE = SP (2)

+
dfﬁpratein dePTM

where SP is the pooled standard deviation of the test statistic in accordance to (3),
dePTMare the degrees of freedom of a t-test computed from the phosphoproteomics

measurement of the post-translational modification (PTM), while df;  are the degrees
14

rotein

of freedom of a t-test computed from the proteomics measurement of the corresponding
protein.

SEAzprotein (dfzprotein - 1) + SEAZPTM (dePTM - 1)

3)
dfaprotein + dePTM -2

SP? =

where SE3 . is the standard error of the t-test for the differential expression of the
respective phosphopeptide between the compared conditions, while SEﬁp is the

rotein
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standard error of the t-test for the differential expression of the corresponding protein for
the same conditions.

Finally, the t-test statistic was used to distinguish changes in the phosphopeptide
level that were not clearly underlined by the changes in protein level. If a protein had at
least one phosphopeptide with a change in abundance higher than the change at the
protein level, all differentially expressed phosphopeptides of the respective protein were
kept for further downstream analysis (i.e. all phosphopeptides found as differentially
expressed before comparison to the changes in protein levels).

Over-representation analysis

In proteins and phosphoproteins that were significantly differentially expressed between
macrophage states, over-representation of specific KEGG'®> and Reactome'®® signaling
pathways was assessed. This was done by using the CPDB'’> webserver which implements
hypergeometric testing for finding statistically significant instances. In addition, the
DAVID*** tool for functional annotation was used to assess the enrichment in Gene
Ontology biological processes. There, a modified Fisher's exact test is implemented for
finding statistically significant instances. In both cases, resulting p-values were FDR
corrected with the BH method*®’. Background datasets for the comparisons were composed
of all measured proteins (for proteome analyses) or included all measured proteins that
have annotated phosphorylation residues (for phosphoproteome analyses). For the latter,
we used annotations in the PhosphoSitePlus database”. Pathways and functional terms
identified as being enriched with the FDR threshold of 5% were considered significant. To
avoid redundancy, only CPDB significant pathways that had at least two proteins, which
were not already assigned to a pathway with a more significant p-value, were retained. In
order to avoid too specific or non-specific pathways in the phosphoproteome analysis, only
pathways that contained at least 5 upregulated phosphoproteins and pathways that did not
have more than 300 proteins were retained.

Phosphoprotein structural conformation

For visualizations shown in Figure 2C and Figure S2C, the full 3D protein structures were
extracted from AlphaFold predictions generated with the AlphaFold Monomer v2.0
pipeline'®*. PyMOL version 2.5.2'°° was used for rendering the protein structures (the script
comprising the used parameters is available on the Group’s GitHub page, see below). For
each of the presented structures, different structural regions were identified from literature
and colored accordingly.

Inference of kinase activity

Known kinase-substrate relationships with experimental evidence were obtained from
PhosphoSitePlus®’/, SIGNOR'°®, PhosphoELM*’, OmniPath'*® and PTMSigDB'*° databases.
For the statistical analyses, the number of phosphosites that were found upregulated in
each studied state and that could be linked to the upstream kinase were compared to all
other phosphosites that were measured in the given phenotype and that could be
recognized by the same upstream kinase. Kinases were considered as upregulated when a
p-value in the two-sided Fisher's exact test was lower than 0.05. In addition, kinases that
could recognize the upregulated phosphopeptides for each state were searched using The
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Kinase Library, a prediction tool build based on the results from a systematic screen of
synthetic peptides®. This analysis was performed using the version 0.0.10 of the Kinase
Library tool hosted by https://www.phosphosite.org/. We provided the differential
expression results for the comparisons between the states with FC and p-values calculated
as described above. Top ranking upstream kinases in this analysis were identified based on
the one-sided Fisher's exact test with a BH correction for multiple testing. Kinases identified
with an FDR < 0.05 were considered as significant. As an alternative method for identifying
the most active kinases based on phosphomotifs, we used the NetPhorest prediction tool®.
NetPhorest predicts kinase families that are able to recognize phosphosites in proteins. For
the phosphosites found upregulated here, only predictions with a posterior probability
higher than 0.035 as well as those for which the posterior probability was higher than the
prior were kept'’’. Only the top three predictions for upstream kinase families (i.e. families
with the highest posterior probability) were kept. In order to identify significantly over-
represented kinases, we used the same approach as described above and applied a two-
sided Fisher's exact test with multiple testing correction. We considered as significant the
kinase groups with 10 or more upregulated substrates and with an adjusted p-value below
0.05. Results of these analyses are shown in the Table S3. Finally, the KEA3°® algorithm was
applied through the online web-service, using as input the upregulated phosphoproteins for
each phenotypic comparison. The mean ranks of the KEA3 enrichment scores are listed in
the Table S3. All of the above analyses were conducted on the significantly upregulated
phosphosites that were identified as differentially regulated with an FDR value < 0.05, for
which the observed upregulation was not underlined with the abundance changes in the
corresponding proteins and for which the localization probability was higher than 75%. The
analyses were conducted in MATLAB R2020b'’* with the Bioinformatics Toolbox'’? and
Statistics and Machine Learning Toolbox'’>.

Kinase-Kinase signaling networks generation

A graphical network representation with kinase-kinase and kinase-TF connections was
generated using Cytoscape 3.9.1'%’, For this, the information from the curated kinase-kinase
interactions and NetPhorest predictions was used. Kinases that were not measured, but that
could bridge at least one upregulated kinase and another measured kinase were included in
the representation. Additionally, TFs with upregulated phosphosites, which were also
known or predicted substrates of the respective kinases were included in the network.
Interactions in the network are drawn only when the kinase can recognize the exact
phosphopeptides that were found upregulated here. For the larger networks, only
upregulated kinases and non-upregulated kinases, which could connect two or more
upregulated kinases, were included. The networks were constructed using MATLAB
R2020b"'’* together with the Bioinformatics Toolbox'’? and Statistics and Machine Learning
Toolbox'’=.

RNAseq
Data processing and analysis

National Center for Biotechnology Information (NCBI) data repository was searched in order
to find transcriptome datasets for primary human macrophages and six bulk RNAseq
datasets were downloaded. PRJNA339309°* and PRINA449980°° datasets contained
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transcriptome profiles of all three phenotypes studied here (M1, M2a and M2c, generated
with a similar protocol), while PRINA239897°°, PRINA552427°/, PRINA480894°*¢ and
PRINA628531°° datasets contained only measurements for M1 and M2a macrophage
phenotypic states. The datasets were pre-processed with the SRA-toolkit 2.11.2 from NCBI,
using the fasterg-dump bash commands. The raw FastQ files were then processed using
RNAdetector'*®, and aligned to the reference transcriptome of HG38 v33 using the Salmon
alignment algorithm'’%, The raw reads were trimmed using Trim Galore'’®, with a minimum
read length of 14. The default values were used for the rest of the parameters. Only
transcripts with 10 or more counts were considered as expressed and only the protein
coding isoforms, based on the annotation in the APPRIS database'’®, were retained.

Differential gene expression analysis

For each of the obtained transcriptome dataset, differential gene expression analysis was
conducted by importing the raw protein coding transcripts' counts using tximport R
package'’’. For M1 and M2a macrophages, only genes whose expression level was in the
upper half (i.e. genes that were expressed above the median) in at least 3 different datasets
of individual phenotypes were considered. In order to identify significantly differentially
expressed genes, DESeq2 R package'® was implemented and M1 and M2a macrophages
were compared independently in datasets from each of the 6 studies. Entries identified as
differentially expressed with a BH adjusted p-value < 0.05 and an abundance ratio above
four were considered as significant. Following, differentially expressed genes in the
6 analyzed datasets were overlapped and only genes that were differentially expressed in 3
or more datasets were kept. For the M1 and M2c comparison, differentially expressed
genes were identified in two datasets using the approach above, and a union of the
significant hits in the two studies was used. Following, pathways associated with the
identified differentially expressed genes were assessed by using the REACTOME and KEGG
database annotations. The background of a specific phenotype was composed from all
genes measured in the respective phenotype and pathways identified as significantly over-
represented with an FDR threshold <0.05 were considered significant. To avoid redundancy,
only CPDB significant pathways that had at least two proteins, which were not already
assigned to a pathway with a more significant p-value, were retained. Similarly,
transcription factors whose downstream targets were over-represented in the sets of
differentially expressed genes were identified using TRRUST annotations'®* available from
the CPDB database webtool.

Differential transcript usage analysis

For differential transcript usage (DTU analysis), raw counts for each dataset were imported
with the tximport R package'’’ using the scaledTPM option. Only the transcripts with:
(i) higher than a median value in at least 3 datasets, (ii) a minimal proportion of 0.05, and
(iii) the corresponding gene expressed in all replicates in the original studies, were
considered. The DTU analysis was conducted with the DRIMseq R package'’ using the
add_uniform parameter. In order to extract genes that contained evidence of DTU between
the assessed macrophage phenotypes, a two-stage correction method in the StageR R
package with an FDR threshold of 0.05 was applied'’®. Following, genes that had the DTU
evidence were overlapped between all the analyzed datasets and only the ones that were
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found in at least half of the comparisons were retained. Next, the enriched pathways were
identified analogously to the differential gene expression analysis.

Protein-Protein interaction networks

We used publicly available interaction data in order to investigate connections among the
entries identified as significantly differentially expressed in the phosphoproteomics,
proteomics, transcriptomics and alternative splicing (i.e. DTU) analysis. For this, we obtained
high confidence human interactors from the STRING'’®, BioGRID*®° and IntACT*** databases.
For STRING, database version 11.5 containing the complete interactions data considering all
sources was used and filtered to include only entries with a combined score above 0.7. For
the BioGRID version 4.4.218, data file in the mitab format that contained a dataset of
interactors with physical interactions supported by independent validations was used. The
latter file was filtered to exclude entries without an associated confidence value. For the
IntACT database, the psimitab from 13/07/2022 was used and filtered to keep only
interactions with a confidence score above 0.7. Interaction pairs obtained from the different
databases were overlapped and merged in a joint dataset.

The obtained interaction data was used to construct a network. For this, only
interaction pairs in which both of the entries were found among significantly differentially
expressed hits in at least one of the analyses (transcriptomics, DTU, proteomics or
phosphoproteomics) were kept. Genes with significant DTU did not show as strong
enrichment in the expected M1/M2 processes as other hits, so networks composed
exclusively from the DTU hits (>75% entries) were discarded. The network with the highest
number of connected members was analyzed further.

In order to identify central nodes in the network, which are able to most effectively
connect other network elements, current flow betweenness centrality metric was used'%.
The networks were analyzed using the centiserve'®’, CINNA'®, igraph'®* and tidygraph'®®
R packages.

Network modules with more closely connected entries'“® were extracted from the
analyzed network using the MONET software'%. For this, the Modularity optimization
method with undirected edges was used, and the desired average nodes degree in the
identified modules was set to 10. The modules were sorted based on the number of nodes
they included. Next, Reactome and KEGG pathways over-represented in individual modules
were assessed. Background datasets for individual phenotypes were composed of all genes
and proteins that were used to construct the full-scale network of the respective
phenotypes. Pathways with at least five significant hits and an FDR < 0.05 were considered
significant. Less significant redundant pathways as well as non-specific pathways with more
than 300 members were omitted from the final report (following the approach described
above).

The clusterProfiler'®” R package was used for the pathway analysis. For the
visualization of results, circular charts were generated with the circlize R package'®®. For
this, only the top 30% most central nodes (based on the current-flow betweenness
centrality) were represented. For data handling and visualization, additional R packages

were used: RColorBrewer'®?, readr'®’, stringr'®*, gtools'??, gridBase'?®, ComplexHeatmap'?,
tidygraph'“>, biomaRt'“® and readx|*?’.
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scRNAseq

Data processing

TME scRNAseq datasets were downloaded from the previously published studies deposited
at the NCBI Gene Expression Omnibus (GEO). The datasets corresponded to TME of
14 primary HCC samples (accession number GSE156337)' and 15 BrM®. The latter
metastases originated from different primary tumors (accession number GSE186344). Data
was imported into R**> and handled using the Seurat package'*’. Outliers were excluded
from unfiltered datasets by removing cells with less than 500 or more than 9,000 expressed
genes and cells with more than 10% mitochondrial genes. Furthermore, genes expressed in
fewer than three cells were not used for the subsequent analyses. Feature counts (i.e.
counts per gene) were normalized through division by the total counts of the corresponding
cell and were then multiplied by a scale factor of 10,000. Following, the normalized counts
were natural-log transformed. The 2,000 most variable genes were identified by variance
stabilizing transformation. Next, percentage of mitochondrial genes and sequencing depth,
which can artificially drive cell clustering, were regressed out against each feature (i.e. gene)
using the function vars.to.regress. Subsequently, residuals were scaled and centered to a
mean expression of zero and a variance of one across cells.

Separation of stromal and immune cells

Based on the identified 2,000 most variable genes, principal component analyses (PCA)
were conducted for each dataset individually, where the dimensions were first reduced to
40 principal components (PC). In order to determine suitable numbers of PCs for further
dimensionality reductions, elbowplots were generated using the uniform manifold
approximation and projection (UMAP) algorithm. It was decided to proceed with 13 and
18 PCs for the HCC and BrM datasets, respectively. For clustering, shared nearest neighbor
(SNN) graphs were constructed based on the euclidean distances in the PCA space. Cells
were grouped together with the Louvain algorithm, with resolutions between 0.1 and 1.5,
whereas appropriate values were selected individually based on visual inspection. Feature
plots of the selected markers were used to separate and extract stromal and immune cells
from the remaining highly variable cancer cells. The markers originally used by Gonzalez et
al. were implemented here for the BrM dataset (T cells: CD3D, IL7R; B cells: JCHAIN, MZB1;
Endothelial cells: CLDN5, PECAM1; Astrocytes: GFAP, S100B; Dendritic cells: CD1C, CLEC10A;
Macrophage: AlIF2, LYZ; Mesenchymal cells: ISLR, CTHRC1; Mural cells: RGS5, ACAT2; Cancer
cells: MLANA, KRT19, EPCAM), whereas the markers used in the original study by
Sharma et al. were also implemented here for the analysis of the HCC dataset (T cells: CD3E,
IL7R; B cells: MZB1, CD79A; Endothelial cells: PECAM1, VWF; Fibroblasts: ACTA2, THY1;
Hepatocytes: ALB, KRT8; Myeloid cells: LYZ, CD14; NK cells: GNYL, NKG7; Cancer cells: AFP,
VIL1, GPC3).

Extraction of macrophages

Extracted stromal and immune cells were further annotated using the SingleR package'*.
The annotation was based on an altered version of the celldex'*® reference dataset
Blueprint/ENCODE' ' The aim was to retain only cell types expected in the specific tissue
and in this way reduce the noise. Cells, which were annotated as macrophages based on the
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reference bulk RNAseq data from pure cell populations, were extracted for the further
analysis.

Macrophage annotation

In the HCC and BrM datasets, each macrophage was individually assigned to either the
M1- or M2-like polarization status according to four different criteria. First, expression of
the CD163 receptor gene was used as a criteria to designate macrophages to the M2- or
M1-like category, depending if the gene was expressed or not, respectively. In addition to
this base analysis, different thresholds for the CD163 expression levels were used for the
M1- and M2-like categorization. Second, signature sets for the cell classification were
constructed based on the top 100 most highly upregulated proteins in the M1- and M2-like
polarization states. The proteins were identified from the comparison of the macrophage
proteomics profiles and were all significantly differentially expressed between the states
(FDR < 0.05) (Table S6). Third, a signature set of M1- and M2-like markers, which
represented a consensus in the community was retrieved from literature''’ (referred to as
core set). Fourth, a set of M1- and M2-like markers, which was collected from the literature
for the previous study'*® (referred to as extended set) was used. All signature sets are listed
in Table S6. Each single cell was classified according to a ModuleScore, which was calculated
for signature proteins. This was repeated independently for three different signature sets.
For each set, ModuleScores were calculated based on the comparison of gene expression
levels of the signature genes on one side and a control set of genes with a similar average
expression across all cells on the other side. To identify the latter set, genes in the single
cells classified as macrophages were binned according to their average expression levels
across all cells in 24 bins. For each gene in the signature list, 100 control genes were
randomly selected from the same expression bin. Next, on single cell level, from the
expression value of each gene, the average expression values of the corresponding
randomly selected control genes were subtracted. The average expression value of all genes
in the signature list was then calculated for each cell, which yielded the gene set activity
estimate for a single cell. For each reference set analysis, cells were assigned to the M1- or
M2-like polarization state when the gene set activity was higher in one of the states and
when it had a positive value. When both of the gene set activity scores were negative, cells
were categorized as an unknown (Na) macrophage group. Each macrophage was
independently annotated as either M1-, M2-like or Na according to four different criteria
listed here.

Differential expression analysis of scRNA datasets

In order to identify differentially expressed genes between the here-annotated M1- and
M2-like macrophage groups, a differential expression analysis was conducted. Differentially
expressed genes were identified based on student t-tests followed by a Bonferroni
correction for multiple testing. Differentially expressed genes with an adjusted p-value <
0.05 for a comparison between the states and an average Log,FC > 0.75 were considered
significant. For the latter analysis, only genes which were expressed in at least 10% of cells
in either of the states were assessed. Lists of differentially expressed genes (Table S6) were
then analyzed with the clusterProfiler'** and msigdbr'*> packages in order to identify over-
representation of functionally related gene sets annotated within the hallmark collection
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(Table S7). There, a BH corrected p-value <0.05 and a gene count above one were used to
define significant terms.

Data and code availability

Proteomics and Phosphoproteomics data are available within the PRIDE repository'?® under

the accession number: PXD043978 (Username: reviewer_pxd043978@ebi.ac.uk, Password:
Bg60IqYr). Code used in this study is available on the GitHub code repository
https://github.ch/MOFHM/MacrophageSignaling.
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