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Abstract 17 

Large language models trained on sequence information alone are capable of learning high level 18 

principles of protein design. However, beyond sequence, the three-dimensional structures of 19 

proteins determine their specific function, activity, and evolvability. Here we show that a general 20 

protein language model augmented with protein structure backbone coordinates and trained on 21 

the inverse folding problem can guide evolution for diverse proteins without needing to 22 

explicitly model individual functional tasks. We demonstrate inverse folding to be an effective 23 
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unsupervised, structure-based sequence optimization strategy that also generalizes to multimeric 24 

complexes by implicitly learning features of binding and amino acid epistasis. Using this 25 

approach, we screened ~30 variants of two therapeutic clinical antibodies used to treat SARS-26 

CoV-2 infection and achieved up to 26-fold improvement in neutralization and 37-fold 27 

improvement in affinity against antibody-escaped viral variants-of-concern BQ.1.1 and XBB.1.5, 28 

respectively. In addition to substantial overall improvements in protein function, we find inverse 29 

folding performs with leading experimental success rates among other reported machine 30 

learning-guided directed evolution methods, without requiring any task-specific training data.  31 
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Introduction 37 
Evolution generates diverse proteins at the level of biological sequences by exploring a 38 

vast search space of potential mutations and acquiring those that improve fitness. However, it is 39 

the three-dimensional structure encoded by these sequences that ultimately determines the 40 

function and activity of a protein. Consequently, as proteins accumulate mutations, they undergo 41 

corresponding structural changes, which in turn facilitate functional adaptations1.  42 

 In the laboratory, this tendency for greater sequence change to cause structural 43 

divergence poses a major challenge to engineering better proteins via a stepwise evolutionary 44 

process. Mutations added in sequential rounds of artificial evolution are increasingly likely to 45 

destabilize the structure and therefore diminish the protein’s evolvability2. Identifying beneficial 46 

mutations is further challenged by the fact that almost all mutations to a prototypical protein are 47 

deleterious, or at best neutral, and only a rare subset are beneficial on its fitness landscape3–8. In 48 

total, these phenomena can often reduce the evolutionarily accessible paths and make evolution 49 

more susceptible to local fitness optima9,10, further complicating attempts to increase fitness. 50 

 To address both the structural constraints of protein design and the high dimensionality of 51 

the mutational search space, we utilized a general protein language model augmented with 52 

structural information and trained across millions of non-redundant single sequence-structure 53 

pairs on the inverse folding objective11. Most simply, the inverse folding problem considers the 54 

task opposite of that performed by many of the recent powerful structure-prediction tools, 55 

including AlphaFold and ESMFold12,13: recovery of a protein’s native sequence, given its three-56 

dimensional backbone coordinates (Figure 1a). This is accomplished by predicting the identity 57 

of an amino acid given both the preceding amino acid sequence (referred to as autoregressive 58 

modeling) and the entire structure’s backbone coordinates (Methods). Thus, sequences assigned 59 
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high likelihood scores by the inverse folding language model are expected to fold into the 60 

backbone of the input structure with high confidence (Figure 1b).  61 

Our inverse folding framework for protein design does not model an explicit protein 62 

function or definition of protein fitness. Rather, using a structure-guided paradigm, we indirectly 63 

explore the underlying fitness landscape by focusing exploration to regions where the backbone 64 

fold of the protein is preserved. We hypothesize constraining evolution to regimes of high 65 

inverse folding likelihood can serve as an effective prior for high-fitness variants, and thereby 66 

improve the efficiency of evolution (Figure 1c). 67 

 We reasoned that this approach may be particularly valuable for the evolution of human 68 

antibodies, which are used clinically to treat a broad range of diseases14. Antibodies are used 69 

therapeutically to bind to a target antigen mediating pathogenesis, and modify or disrupt its 70 

function15 . A central concept of this study is to use the complete structure of the antibody-71 

antigen complex to guide evolution. By conditioning the inverse folding model on the entire 72 

antibody-antigen complex, we sought to enable the discovery of mutations that preserve or 73 

enhance the stability of the entire complex, and thus that improve antibody function.  74 

 Indeed, we show that as an unsupervised machine learning-guided evolution strategy, 75 

inverse folding is capable of identifying high fitness mutations across several protein families 76 

and tasks, performing better than sequence-only methods. We found that inverse folding 77 

generalizes to protein complexes with improved antibody variant prediction when antigen 78 

structural information is also included as input. To demonstrate the practical utility of this 79 

method, we improved the potency of mature, clinical SARS-CoV-2 monoclonal antibody 80 

therapies, in a low-throughput setting, against both their original viral target as well as viral 81 

escape variants that reduced their efficacy, namely variants-of-concern (VOC) BQ.1.1 and 82 
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XBB.1.5. We achieved up to 26-fold improvement in the neutralization potency of Ly-1404 83 

(Bebtelovimab) against BQ.1.1, and 11-fold for SA58, testing only a total of 31 and 25 antibody 84 

variants, respectively. We also achieved 27-fold improvement in affinity against BQ.1.1 and 37- 85 

fold improvement in affinity against XBB.1.5. Notably, all experimentally tested combinations 86 

of inverse folding-recommended mutations showed improved activity, with many designs 87 

comprising multiple synergistic mutations. With our approach, we report experimental success 88 

rates that surpass all previous machine learning-guided protein evolution methods8,16–28, including 89 

those based on supervision with task-specific training data. These findings highlight the 90 

advantage of an unsupervised, structure-based paradigm to identify efficient evolutionary 91 

trajectories.  92 

 93 

Results 94 

Inverse folding enriches sequence exploration for high function protein variants across diverse 95 

tasks 96 

We evaluated whether inverse folding can be used to guide protein evolution, without 97 

needing to explicitly model specific functional tasks, by assessing its ability to identify mutations 98 

resulting in high levels of protein activity for a desired functional property, or fitness measure. 99 

Accordingly, for 10 proteins from diverse families among four organisms, and with functions 100 

ranging from enzyme catalysis (TPMT) to oncogenesis (HRAS) to transcriptional regulation 101 

(GAL4), we used inverse folding likelihoods to score variants profiled in large datasets from 102 

deep mutational scanning experiments29–38against a target backbone of the wild-type protein39–48 103 

(Methods, Supplementary Table 1).  104 
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 From the thousands of tested variants for each of the 10 proteins, we identified numerous 105 

with experimentally determined protein activities ranking in the top percentiles of the entire 106 

screen within just the set of top ten inverse-folding predictions (Figure 1d). Our analysis also 107 

demonstrates that conditioning on structural information serves to improve predictive capabilities 108 

of protein language models as we successfully identified mutations in the top fifth percentile for 109 

9 out of the 10 proteins using inverse folding compared to just 2 proteins using a state-of-the-art 110 

general protein language model trained only on sequence information and specifically for variant 111 

prediction (ESM-1v)49 (Figure 1d). This improvement in prediction also holds with increasingly 112 

relaxed thresholds for classification as high-fitness variants.  113 

These results suggest that inverse folding offers a promising alternative to brute force 114 

experimental searches for beneficial mutations. Notably, some of the top mutations predicted by 115 

inverse folding are also the same ones recovered from exhaustive experimental exploration. For 116 

example, for restriction enzyme haeIIIM, variant Q18E is recommended within the top five 117 

inverse folding predictions and experimentally ranks as the second-best substitution (and > 5 118 

standard deviations above the mean) out of the nearly 2000 substitutions screened to the 119 

endonuclease38. Another key advantage of our task-independent framework, in addition to being 120 

broadly applicable across diverse proteins, is the ability to improve a single protein for multiple 121 

desired properties without needing to develop specialized high-throughput assays to screen each 122 

independently. From just the top 10 inverse folding predictions for MAPK1, we identify 123 

substitutions Q105M and Y64D, which are experimentally shown to confer resistance to two 124 

different oncogenic-targeting MAPK1 kinase inhibitors32.  125 

 126 

Inverse folding is a state-of-the-art zero-shot mutational effect predictor for antibodies 127 
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To analyze the effectiveness of augmenting a general protein language model with 128 

structural information, specifically for antibody variant prediction, we compared the inverse 129 

folding likelihoods of sequences across entire mutational landscapes against the corresponding 130 

experimental fitness values from three existing mutagenesis datasets. The first two of the datasets 131 

profile the scFv equilibrium dissociation constants (KD) of all possible evolutionary intermediates 132 

between the inferred germline and somatic sequence of naturally affinity-matured influenza 133 

broadly neutralizing antibodies (bnAbs) CR9114 and CR6261, which bind the conserved stem 134 

epitope of influenza surface protein hemagglutinin (HA)50. For both bnAbs, only mutations in the 135 

heavy chain, which is responsible for antigen binding, were characterized. The profiled 136 

mutational landscape of CR9114 includes all possible combinations of 16 substitutions while that 137 

of CR6261 includes all possible combinations of 11 substitutions, totaling 216 = 65,536 and 211 = 138 

2,048 variant antibody sequences respectively. Each of these libraries were screened for binding 139 

against two distinct influenza HA subtypes (H1 and H3 for CR9114 and H1 and H9 for 140 

CR6261). The third dataset assesses the effects of all possible single amino acid substitutions 141 

with a deep mutational scan profiling 4,275 mutations in the variable regions for both heavy 142 

chain (VH) and light chain (VL) of antibody G6.31 to binding with its ligand, vascular 143 

endothelial growth factor A (VEGF-A)51.  144 

 For each dataset, we computed the Spearman correlation between the log likelihood 145 

estimated by the inverse folding model and the experimentally determined binding measure for a 146 

given antigen, across all sequences in the mutational library. We scored the inverse folding 147 

likelihood of each candidate sequence in the library using the backbone coordinates of a structure 148 

with the mature antibody bound to its target antigen52–54.  149 
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 Across all five experimental binding datasets, we found that inverse folding performs 150 

better than both a sequence-only language model, ESM-1v49, and a site-independent model of 151 

mutational frequency curated with extensive antibody sequence alignments, abYsis55. In nearly 152 

all experimental scenarios, supplementing sequence information with the backbone coordinates 153 

of the antibody alone, without providing antigen information, as input to inverse folding is 154 

sufficient to outperform other sequence-only methods. A notable feature of the autoregressive 155 

architecture is that it computes the joint likelihood over all positions in a sequence, making it 156 

well-suited to score combinatorial sequence changes. We find that inverse folding can capture 157 

complex epistatic interactions, or potential interdependence among individual amino acids, as it 158 

performs well on the CR9114 and CR6261 libraries composed of sequences with multiple 159 

mutations (Figure 2a,b).  160 

 We achieved the greatest improvement in performance on all five experimental screens 161 

by incorporating the structure of both the antibody and antigen (Figure 2a), indicating that the 162 

inverse folding model can implicitly learn features of binding (Figure 2c). This result is 163 

particularly significant, given that the inverse folding model is only trained on single-chain 164 

protein structures, while the antibody-antigen complexes we use as inputs are composed of either 165 

three (G6.31) or four (CR9114, CR6261) protein chains. The most substantial contribution of 166 

antigen information is observed in the case of CR9114-H1, for which the correlation increases 167 

from 0.17 with only antibody information to 0.65 with sequence and backbone coordinates of the 168 

entire complex.  169 

 Remarkably, we could still predict effects of mutations on binding for a cross-reactive 170 

antibody while using a different antigen as input to the model. (Figure 2a,b). Despite using a 171 

complex with HA from H5N1 influenza as input to score CR9114 variants, we obtain 172 
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correlations of 0.65 and 0.50 with experimental binding data for H1 and H3, respectively. This is 173 

particularly striking since, for example, H5 and H1 only share 63% sequence identify across both 174 

HA subunits (Supplementary Figure 3). This same cross-reactive predictive capability is 175 

observed for CR6261, which is tested experimentally against H1 and H9 while we use an input 176 

structure with HA from 1918 H1N1 influenza (Figure 2a). Although inverse folding cannot learn 177 

explicit chemical rules of binding (e.g., hydrogen bonding or disulfide bridge formation) since it 178 

does not have access to amino acid side chain atomic coordinates, these results suggest that 179 

structural principles like interface packing or potential steric interference are not only implicitly 180 

accessible from residue identities, but are also informative for binding prediction. 181 

 Our model’s top recommended mutations are made independently of a specific definition 182 

of fitness; they simply represent a set of variants with a high likelihood of folding into the input 183 

backbone structure. Therefore, our model’s recommendations may also help identify mutations 184 

that improve other useful biochemical properties beyond affinity. Impressively, for example, the 185 

top inverse folding-recommended mutation to the VL of G6.31 is F83A, which was identified in 186 

the original screening study51 to be particularly interesting as it confers a three-fold increase in 187 

VEGF-A binding affinity and a 5°C improvement in melting temperature, despite being 25Å 188 

from the antigen and in the antibody framework region. It was determined that the VL F83A 189 

substitution induces more compact packing and the site serves as a conformational switch that 190 

affects biological activity at the antibody-antigen interface by modulating both interdomain and 191 

elbow angle dynamics51. 192 

 193 

Engineering therapeutic antibodies for increased potency and resilience 194 
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Finally, we aimed to assess if the structure-augmented language model’s predictive 195 

capabilities could not only resolve trends on large sets of experimental data, but also enable 196 

efficient and successful directed evolution campaigns while testing only a small number (on the 197 

order of tens) of variants. To do so, we considered the task of improving the potency and 198 

resilience (effectiveness against a virus as it mutates over time) of two mature, clinical 199 

monoclonal antibody therapies. 200 

 201 

• Ly-1404 (Bebtelovimab) was isolated from a COVID-19 convalescent donor and binds to 202 

the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein56. It was approved 203 

by the U.S. F.D.A. on February 11, 2022 given its activity against both the original 204 

Wuhan and Omicron SARS-CoV-2 variants and was the last remaining approved 205 

monoclonal antibody therapy withstanding against viral evolution57 until its 206 

discontinuation on November 30, 2023 due to antibody evasion by VOC BQ.1.1.58  207 

• SA58 (BD55-5840) was isolated from a vaccinated individual and is one of two RBD-208 

targeting neutralizing antibodies (NAb) in a rationally developed antibody cocktail. SA58 209 

alone retained efficacy against all Omicron subvariants, including in vivo protection 210 

against BA.559,60 and was shown to be effective as a post-exposure prophylaxis in a 211 

clinical study61. 212 

 213 

For both antibody engineering campaigns, we used the inverse folding language model to 214 

compute likelihoods of all ~4,300 possible single-residue substitutions in the VH or VL regions 215 

of the antibody. In the first round of evolution, we selected only the top ten predictions at unique 216 

residues in each chain for experimental validation. An important practical benefit of our method 217 
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is the ability to optimize against measures of fitness most relevant to the protein’s downstream 218 

function, rather than being limited to indirect and less accurate surrogate measures that are more 219 

amenable to high-throughput screening4,16. We leverage this advantage to directly evolve these 220 

antibodies for their ability to more potently neutralize SARS-CoV-2 pseudotyped lentivirus.  221 

 Variants recommended by the inverse folding language model were assessed by 222 

comparing the half-maximal inhibitory concentration (IC50) relative to the wild-type antibody. 223 

Remarkably, although we chose to only test 20 single-site substitutions for each of the two 224 

clinical monoclonal antibody therapies, approximately one-third of them improved neutralizing 225 

potency. Notably, several of these variants improve neutralization IC50 by approximately 2-fold 226 

with just a single amino acid change (Figure 3a, Supplementary Data 1).  227 

 Prompted by recent evidence showing that conservation of the overall RBD structure is 228 

robust to SARS-CoV-2 evolution62, we next sought to determine whether we could also evolve 229 

the previously mature antibodies against SARS-CoV-2 BQ.1.1, the variant responsible for 230 

diminished therapeutic efficacy. Although the antibodies were previously effective, a change in 231 

antigen conceptually represents a fundamental shift in the underlying fitness landscape (Figure 232 

3b). From the same set of 20 single amino acid substitutions to Ly-1404, we found that nearly 233 

half improve neutralization of variant BQ.1.1. In addition to a high success rate, we also found 234 

multiple of these mutations provided a large magnitude of improvement. Several single amino 235 

acid substitutions to Ly-1404 individually result in over a 3-fold improvement while the most 236 

beneficial mutation to SA58 results in a nearly 7-fold improvement (Figure 3c). 237 

 Taken together, approximately two-third and one-third of tested single amino acid 238 

substitutions to Ly-1404 and SA58, respectively, were beneficial for neutralization of either the 239 

original strain or BQ.1.1. These results reinforce that, despite all being predicted to have the 240 
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same backbone fold, inverse folding variants feature functional diversity and can be used for 241 

distinct notions of protein fitness. Interestingly, for both antibodies, the most beneficial mutation, 242 

is not shared by the each of the strains tested (Supplementary Figure 4). 243 

 A common challenge in directed evolution is contending with the combinatorial 244 

explosion of possible sequences which emerges from trying to combine a set of individually 245 

beneficial mutations. In the second round of evolution, we simply use the inverse folding model 246 

again to acquire up to five top-scoring unique combinations of mutations to each antibody chain 247 

(Methods). Notably, across both evolutionary trajectories, all 15 antibody designs with multiple 248 

mutations have IC50 values better than wild-type, with many designs showing synergistic effects 249 

upon combination. For example, just a single amino acid mutation in each of the two chains of 250 

SA58 leads to over an 11-fold improvement (Figure 3c,d). Similarly, the most potent evolved 251 

design of Ly-1404 is a combination of seven of the eight beneficial single amino acid 252 

substitution to the VH and improves neutralization 26-fold (Figure 3d). Critically, these 253 

improvements to neutralizing potency against BQ.1.1 do not sacrifice potency against the 254 

original strains. We found that the top SA58 design against BQ.1.1 after the second round of 255 

evolution also improves BA.1 neutralization nearly 3-fold  (Supplementary Data 1). 256 

 257 

Additional characterization of evolved antibodies 258 

To further characterize the basis for enhanced neutralization of SARS-CoV-2 VOC 259 

BQ.1.1, we tested the binding affinity of all variant antibodies to RBD as bivalent IgG using 260 

biolayer interferometry (BLI) to obtain the apparent dissociation constant (KD,app). For Ly-1404, 261 

all 23 variants with improved neutralization also have improved binding affinity up to ~27-fold. 262 

Interestingly, we found four additional inverse folding-recommended mutations, which were 263 
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neutral or deleterious to neutralization, also improved binding affinity. Across all variants there 264 

is a Spearman correlation of 0.47 between fold-change in IC50 and fold-change in KD,app (Figure 265 

4a).  266 

 We similarly screened the SA58 variants for binding to the RBD of BQ.1.1. However, 267 

since the KD of the wildtype antibody as IgG was already sub-picomolar, further improvements to 268 

binding were below the limit of quantitation and indistinguishable using this measure. Given this 269 

strong binding affinity of wildtype SA58 to BQ.1.1 RBD, we also screened this same set of 270 

variants against emerging VOC XBB.1.5 and observe improvements in KD,app up to 37-fold 271 

(Figure 4c). 272 

 By testing several top affinity-matured designs in a polyspecificity assay, we also 273 

confirmed that improvements in binding are not mediated by generalized enhancements of non-274 

specific interactions (Supplementary Figure 5a). In this assay, we observed no substantial 275 

changes in off-target binding of the evolved antibodies to membrane soluble proteins, 276 

particularly within a therapeutically viable range (as defined by controls of clinically approved 277 

antibodies with recorded high and low polyspecificity). Furthermore, we found no correlation 278 

between fold-change in polyspecificity and affinity fold-change (Supplementary Figure 5b). 279 

 280 

Analysis of evolutionary exploration 281 

Confronted by the large number of possible mutations, traditional experimental-based 282 

methods for antibody affinity maturation often restrict the mutational search space to only a few 283 

regions of the antibody. Specifically, binding optimization efforts are typically focused within 284 

the complementarity determining regions (CDR), which are hotspots for natural somatic 285 

hypermutation. However, using our unbiased approach to consider all regions of the variable 286 
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domain allows for many discoveries that may be less intuitive to a rational designer. For 287 

example, the most beneficial substitutions to Ly-1404, VH F24Y and VH V90S, are located 288 

within framework regions and positioned distally from the binding interface (Supplementary 289 

Figure 6, Supplementary Table 2). Interestingly, they both improve neutralization of BQ.1.1 290 

by over 3-fold and are not deleterious to Wuhan neutralization. In other cases, inverse folding 291 

also successfully predicts beneficial substitutions using residues rarely observed among human 292 

antibody sequences. Substitution VL N95V in SA58, which improves neutralization 293 

approximately 7-fold against BQ.1.1, is mediated by the incorporation of a valine observed in 294 

only 0.7% of human antibody sequences at that position and enhances antibody-antigen contact. 295 

While inverse folding is capable of successfully making novel predictions, in some instances it 296 

also does suggest reverting residues to ones frequently selected for in natural somatic 297 

hypermutation. Mutation VL F51Y in Ly-1404 changes a phenylalanine observed in just 5% of 298 

sequences to a tyrosine observed in 86% of sequences. However, this variant results in no change 299 

to Wuhan neutralization. Overall, these results highlight the novelty and value in augmenting a 300 

language model with structural information to evolve antibodies and proteins complexes.   301 

 302 

Discussion 303 

The discovery of mutations that improve protein function is inherently challenging due to 304 

the large sequence search space and complex rules that govern the relationship between sequence 305 

and function, such as stability or environmental selection pressures. We show that a general 306 

inverse folding protein language model informed with the sequence and backbone structural 307 

coordinates of a protein can considerably improve directed evolution efforts by serving as an 308 

improved prior compared to sequence-only deep learning methods. Importantly, we highlight 309 
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that inverse folding can interrogate protein fitness landscapes indirectly, without needing to 310 

explicitly model individual functional tasks or properties, making it broadly applicable to 311 

proteins across diverse settings ranging from enzyme catalysis to antibiotic and chemotherapy 312 

resistance (Figure 1d). We also demonstrate inverse folding generalizes to multimeric proteins, 313 

despite being trained only on single-chain proteins, through its ability to implicitly learn features 314 

of binding. This result is particularly remarkable considering inverse folding has no access to 315 

amino acid side chain atoms, coordinates, or bond information.  316 

Equipped with these capabilities, we use inverse folding to evolve clinical therapeutic 317 

antibodies and identify several mutations which act synergistically to improve antibody potency 318 

and resilience against emerging variants of concern. In the context of pandemics and emergency-319 

use situations, where monoclonal antibody therapies are limited in supply and vulnerable to 320 

resistance from viral evolution, the ability to rapidly make improvements in potency with a 321 

general method could have major clinical and economic implications.  322 

 In comparison to fourteen other promising machine learning-guided protein design 323 

methods8,16–28, we find that inverse folding has the strongest performance to date, even without 324 

requiring any assay-labeled fitness data to use as training data for task-specific model supervision 325 

(Figure 5, Supplementary Data 5). By eliminating the reliance on any initial data collection, 326 

inverse folding has the potential to accelerate entire evolutionary campaigns. 327 

Computational methods like the one we propose have the opportunity to democratize 328 

protein engineering efforts. Not only is our approach more efficient than conventional resource-329 

intensive techniques that experimentally test the effects of all single-residue changes on 330 

biochemical functions like binding affinity, but consequently it enables directed evolution based 331 

on properties that are not easily measured at scale or that are incompatible with high-throughput 332 
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screening. Overcoming these limitations, we anticipate our structure-based paradigm will be 333 

useful for evolving proteins across many domains. 334 

  335 
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 336 
Figure 1: Guiding evolution of diverse proteins via inverse folding 337 

(A) The inverse folding problem refers to the prediction of a protein's native amino acid 338 

sequence, given its three-dimensional backbone structure, which is conceptually analogous to the 339 

opposite problem solved by structure prediction tools like AlphaFold12. (B) A hybrid 340 

autoregressive model11 integrates amino acid values and backbone structural information to 341 

evaluate the joint likelihood over all positions in a sequence. Amino acids from the protein 342 

sequence are tokenized (red), combined with geometric features extracted from a structural 343 

encoder (green), and modeled with an encoder-decoder transformer (purple). Sequences assigned 344 

high likelihoods by the model represent high confidence in folding into the input backbone 345 

structure. (C) Our structure-guided framework for protein design indirectly explores the 346 

underlying fitness landscape, without modeling a specific definition of fitness or requiring any 347 
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task-specific training data, by constraining the search space to regions where the backbone fold 348 

preserved. (D) High fitness sensitivity analysis reveals that multimodal input improves language 349 

model performance compared to sequence-only input across 10 proteins from diverse protein 350 

families (left). 'Fraction High fitness' is the fraction of the top ten single amino acid substitutions 351 

recommended by each model that are ranked in the top indicated percentile of all experimentally 352 

screened variants. A representative plot (right) demonstrates this metric for assessing enrichment 353 

of high-fitness MAPK1 mutations, with successfully predicted mutations highlighted (blue) on 354 

the empirical cumulative density function (ECDF) of the experimental data (black). The three 355 

different thresholds, as defined by percentiles, are also shown as dashed lines. Inverse folding 356 

predictions are more enriched, on average, for high fitness variants across various tested 357 

thresholds for high fitness classification. bla, Beta-lactamase TEM; CALM1, Calmodulin-1; 358 

haeIIIM, Type II methyltransferase M.HaeIII; HRAS, GTPase HRas; MAPK1, Mitogen-359 

activated protein kinase; TMPT, Thiopurine S-methyltransferase; TPK1, Thiamin 360 

pyrophosphokinase 1; UBI4, Polyubiquitin; UBE2I, SUMO-conjugating enzyme UBC9 361 

  362 
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 363 

Figure 2: Inverse folding of antibody-antigen complexes resolves mutational landscapes by 364 

implicitly learning features of binding and protein epistasis 365 

(A) Spearman correlation using inverse folding as well as sequence-based modeling approaches 366 

ESM-v49 and abYsis55 reported for three antibodies screened with corresponding influenza A HA 367 

subtypes H1, H3, and H9. Bars are colored by the type of model used: IF, Inverse Folding 368 

(green); LM, Language Model (orange); and MSA, Multiple Sequence Alignment (purple). 369 

Inverse folding was evaluated in three different settings: i) providing the entire antibody variable 370 

region and antigen complex (Ab-Ag) ii) providing only the antibody variable region (Ab only), 371 

and iii) providing only the single antibody variable region of the chain responsible for binding or 372 

being mutated (Ab VH only or Ab VH/VL only). Inverse folding implicitly learns features of 373 

binding and protein epistasis. For example, when scoring combinatorial mutations to CR9114 374 
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against H1, we find that the model has much higher performance (Spearman r = 0.65 for H1, 0.5 375 

for H3) than a masked language model ESM-1v (Spearman r = 0.08 for H1, 0.09 for H3) and a 376 

site-independent, alignment-based model abYsis (Spearman r = 0.08 for H1, 0.1 for H3). This 377 

performance improvement is also consistent across the other combinatorial landscapes tested. (B) 378 

Scatter plots showing inverse folding predictions against experimentally determined dissociation 379 

constants of CR6261 against HA-H1(left) and HA-H9 (right). The germline and mature 380 

sequences are highlighted on all plots as indicated in the legend. For visualization, all scatter 381 

plots omit points on the lower limit of quantitation. Further analysis of assay limit on predictive 382 

performance is shown in Supplementary Figure 2. (C) Conceptual schematic representation of 383 

protein language performance improvements with improved priors. Providing sequence and 384 

structural information of both the antibody and antigen enables inverse folding to most 385 

efficiently identify complex destabilizing mutations and enrich for high fitness antibody variants.  386 

  387 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.572475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.19.572475
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 21 

Figure 3. Inverse folding-guided evolution of antibodies improves neutralization potency 388 

and resilience 389 

(A) Each point represents the fold-change in IC50 of pseudovirus neutralization for antibody 390 

variants with single amino acid mutations. Antibodies are tested against the viral strain 391 

represented in the input structure (Ly1404- Wuhan, SA58-BA.1 Omicron). A dashed line is 392 

shown at fold-change of 1 corresponding to no change. 35% of Ly-1404 variants and 30% of 393 

SA58 variants improved antibody potency (defined as 1.1-fold or higher improvement in IC50 394 
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compared to wild-type). Among this subset of beneficial mutations, we identify single amino 395 

acid mutations that provide a 1.6-fold improvement in Ly-1404 IC50 and a 2.6-fold 396 

improvement in SA58 IC50. (B) Conceptual representation of viral evolution. Selection for 397 

immune evasion drives antibody escape, which fundamentally represents a dynamic change in 398 

the underlying fitness landscape for the antibody. This antigenic drift displaces a potent antibody 399 

from a peak on the previous fitness landscape (left) to a new starting point at lower activity 400 

(right). (C) Strip plots visualizing antibody evolution across two rounds. Each point shows the 401 

corresponding fold-change in IC50 of pseudovirus neutralization for a designed variant and is 402 

colored according to the number of mutations it has (1-8). Consistent with preserving backbone 403 

fold, all 55 designed variants across both antibody evolutionary campaigns could be expressed. 404 

All round 1 variants are only composed of only single amino acid changes while beneficial 405 

mutations are combined in round 2. All round 2 variants have improved neutralization activity 406 

compared to their respective wild-type antibody (dotted line). (D) Pseudovirus neutralization 407 

curves are shown for the most potent evolved antibody variant, consisting of mutations annotated 408 

to the left.  The top Ly-1404 variant, bearing seven amino acid substitutions in VH, achieves a 409 

26-fold improvement in neutralization against BQ.1.1 (top). The top SA58 variant, bearing single 410 

amino acid mutations in both VH and VL, achieves an 11-fold improvement in neutralization 411 

against BQ.1.1 (bottom). (E) Residues at which mutations improve neutralization against either 412 

the structure-encoded strain, BQ.1.1, or both viral strains are highlighted with spheres for 413 

antibodies Ly-1404 (PDB 7MMO) and SA58 (PDB 7Y0W). Notably, beneficial mutations are 414 

identified both within the binding interface as well distal to the antigen. Neutralization enhancing 415 

mutations are labeled in Supplementary Figure 6. 416 

  417 
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 418 

Figure 4: Antibodies evolved for high potency also exhibit improved affinity 419 

(A) Ly-1404 antibody variants show a Spearman correlation of 0.47 between apparent affinity 420 

fold-change and potency fold-change. Improved affinity is observed to be necessary but not 421 

sufficient for improved neutralization activity. Four variants exhibit improved affinity but do not 422 

enhance neutralization. All variants with improved neutralization also display improved affinity. 423 

The top inverse folding Ly-1404 design with a 27-fold improvement in neutralization has a 9.5-424 

fold improvement in affinity to BQ.1.1 RBD, as measured using BLI. (C) SA58 antibodies 425 

evolved for improved potency against BQ.1.1 also exhibit improved affinity against VOC 426 

XBB.1.5, up to 37-fold. (B, D) Representative traces of BLI binding assays for Ly-1404 and 427 

SA58 variants with improved affinity. 428 

 429 

  430 

 431 

  432 
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Figure 5: Comparison to other machine learning-guided directed evolution methods  433 

'Fraction improved' refers to the hit rate of variants tested which are improved relative to a 434 

wildtype protein used as a starting point for directed evolution or a reference protein used as a 435 

design template. Higher hit rates indicate more efficient experimental exploration. Inverse 436 

folding achieves the highest hit rate with the lowest number of assay-labeled training data points 437 

to-date8,16–28.   438 
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Methods 439 

Inverse folding model description and scoring of sequences 440 

As input to the inverse folding model, we provide a protein structure ! ∈ ℝ!×#×#, where 441 

$ is the number of amino acids, and each amino acid is featurized by the three-dimensional 442 

physical coordinates of all three atoms in the protein backbone: the α-carbon, β-carbon, and 443 

nitrogen atoms in the protein backbone (hence the dimensionality $ × 3 × 3). The inverse 444 

folding model learns the probability distribution ' of a protein sequence ( = (+$, … , +!) ∈ /! 445 

(where / is the alphabet of amino acids) given a structure  ! via the chain rule of probability 446 

'((|!) = '(+$|!)'(+%|+$, !)…'(+!|+$, … , +!&$, !). 447 

The probability distribution at each position is defined over /, such that it is a 20-448 

dimensional vector with all constituent entries summing to 1. 449 

Thus, for a given sequence (2 = (+2$, … , +2!) and its corresponding given structure !3, we 450 

can score the probability of (2 folding into ! under the inverse folding model by computing the 451 

value of '(( = (2|!), which we can do autoregressively as 452 

'4( = (25!36 = '4+$ = +2$5!36…'4+! = +2!5+2$, … , +2!&$, !36. 453 

This is evaluated output is a likelihood between 0 and 1, inclusive. The computed score 454 

'4( = (25!36 is used as prediction for “fitness” (e.g., binding affinity or enzymatic activity). 455 

Importantly, the inverse folding model does not have any explicit access to “fitness” during 456 

either training or evaluation, which we refer to as “zero shot” fitness prediction. 457 

We use the inverse folding model checkpoint of ESM-IF1 GVP-Transformer as of April 458 

10, 202211. 459 

 460 

Diverse proteins benchmarking experiment with scanning mutagenesis data 461 
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We analyzed the effectiveness of using the inverse folding language model, ESM-IF1 462 

model to identify high fitness variants from protein mutational scans as a proxy for the ability to 463 

guide evolution without explicitly modeling a protein’s function. We also compared its 464 

performance to ESM-1v, a sequence-only general protein language model. To do so, we used all 465 

deep mutational scanning (DMS) datasets from the benchmarking study by Livesey and Marsh29 466 

profiling over 100 variants and reported to have 90% or higher coverage of DMS results across 467 

the corresponding curated PDB structure (Supplementary Table 1). From this set of 12 468 

proteins, Cas9 was excluded because its sequence length was larger than the maximum allowable 469 

length of 1024 amino acids by ESM-1v and ccdB was excluded because the experimental values 470 

were discretized within a small range. For each of the 10 mutagenesis datasets, all the sequence 471 

likelihood of all variants with coverage in the structure were determined using inverse folding. 472 

For ESM-1v, the average masked marginals likelihood score across all five models in the ESM-473 

1v group was used. The experimental data distribution was binarized for high-fitness 474 

classification using a percentile-based threshold. The enrichment of high fitness variants was 475 

then determined by using the metric of fraction high fitness as defined by the fraction of the top 476 

10 model-predicted variants with experimental values above the high fitness threshold. The 477 

analysis was performed at three different percentile thresholds, top 5th percentile (95th percentile), 478 

top 10th percentile (90th percentile), and top 20th percentile (80th percentile), to determine 479 

sensitivity of the result based on the stringency of the selected cutoff parameter. 480 

 481 

Benchmarking of antibody mutagenesis  482 

We use three antibody mutagenesis datasets50,51 to benchmark the performance of 483 

modeling variant effects on antibody binding using inverse folding against two sequence-only 484 
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methods, ESM-1v49 and abYsis55. Variant sequences were scored using the inverse folding model 485 

with three different forms of structure input: i) variable region of mutated antibody chain only ii) 486 

variable regions of both antibody chains iii) variable regions of both antibody chains in complex 487 

with antigen. The autoregressive scoring of sequences with inverse folding enables evaluation of 488 

sequences with multiple mutations. The Spearman correlation was determined between the log 489 

likelihood scores across all sequences and corresponding reported experimental binding 490 

measurements: -log(KD) for CR9114 and CR6261; log(binding enrichment) g6.31. The following 491 

structures were used for input backbone coordinates of the VH, VL, and antigen: PDB 4FQI52, 492 

CR9114-H5; PDB 3GBN53, CR6261-H1; PDB 2FJG, g6.31-VEGF. 493 

ESM-1v and abYsis were scored using the variant sequence of the antibody variable 494 

region. For variants with multiple mutations, the average effect of all mutant amino acids in the 495 

sequence was considered, namely 496 

'(() = 1
|ℳ|	: [log		'((' = ('()'∈+

) 	− 	log	'((' = (',))]	 497 

where ℳ is defined as the set of all mutations in the input sequence (. For abYsis, individual 498 

mutation likelihoods were determined using the frequency of amino acids at each position based 499 

on multiple sequence alignment provided by the webtool version 3.4.1 500 

(http://www.abysis.org/abysis/index.html). We aligned VH and VL protein sequences using the 501 

default settings provided in the ‘Annotate’ tool, with the database of ‘Homo sapiens’ sequences 502 

as of April 1, 2023. 503 

 504 

Acquisition of antibody amino acid substitutions using inverse folding 505 

We select amino acid substitutions recommended by the inverse folding model to test in 506 

our directed evolution campaigns for Ly-1404 and SA58. For a given wild-type antibody 507 
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variable region sequence, ( = (+$, … , +!) ∈ /! , where / is the set of amino acids and $ is the 508 

sequence length, we score all possible single amino acid substitutions against a corresponding 509 

structure of the variable regions of both antibody chains in complex with the RBD of SARS-510 

CoV-2 Spike protein, !3 by computing '4( = (25!36. Protein structures used are reported in 511 

Supplementary Table 1. We then select the set of top ten predicted single amino acid 512 

substitutions at unique residues in each antibody variable region to test in the first round of 513 

evolution. 514 

After testing individual amino acid mutations in a pseudovirus neutralization screen, in 515 

Round 2, beneficial mutations (defined as IC50 fold-change > 1.1) were combined to assess the 516 

combinatorial effects and potential for further neutralization improvement. We tested up to four 517 

combinations of single amino acid mutations on each chain (two total mutations to the antibody). 518 

We also used the inverse folding model to score a library of all possible combinations of the 519 

beneficial mutations to an antibody chain (For example, VH Ly-1404 has 8 beneficial mutations 520 

resulting in 255 total candidate sequences), and selected the top five scoring designs (or less if 521 

there were a fewer number of total possible combinations). Lastly, we tested a maximum of two 522 

variants consisting of the best single-chain designs together. In total, 31 variants were tested for 523 

Ly-1404 and 25 variants were tested for SA58.  524 

 525 

Antibody cloning 526 

We cloned the antibody sequences into the CMV/R plasmid backbone for expression 527 

under a CMV promoter. The heavy chain or light chain sequence was cloned between the CMV 528 

promoter and the bGH poly(A) signal sequence of the CMV/R plasmid to facilitate improved 529 

protein expression. Variable regions were cloned into the human IgG1 backbone; Ly-1404 530 
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variants were cloned with a lambda light chain, whereas variants of SA58 were cloned with a 531 

kappa light chain. The vector for both heavy and light chain sequences also contained the 532 

HVM06_Mouse (UniProt: P01750) Ig heavy chain V region 102 signal peptide 533 

(MGWSCIILFLVATATGVHS) to allow for protein secretion and purification from the 534 

supernatant. VH and VL segments were ordered as gene blocks from Integrated DNA 535 

Technologies and were cloned into linearized CMV/R backbones with 5× In-Fusion HD Enzyme 536 

Premix (Takara Bio).  537 

 538 

Antigen cloning 539 

RBD sequences were cloned into a pADD2 vector between the rBeta-globin intron and β-540 

globin poly(A). All RBD constructs contain an AviTag and 6×His tag. RBD sequences were 541 

based off wild-type Wuhan-Hu-1 (GenBank: BCN86353.1), Omicron BA.1 542 

(GenBank: UFO69279.1), BQ.1.1 (GenBank: OP412163.1 ), XBB.1.5 (GenBank: OP790748.1 ). 543 

 544 

DNA preparation 545 

Plasmids were transformed into Stellar competent cells (Takara Bio), and transformed 546 

cells were plated and grown at 37 °C overnight. Colonies were mini-prepped per the 547 

manufacturer’s recommendations (GeneJET, K0502, Thermo Fisher Scientific) and sequence 548 

confirmed (Sequetech) and then maxi-prepped per the manufacturer’s protocols (ZymoPure II 549 

Plasmid Maxiprep Kit, Zymo Research). Plasmids were sterile filtered using a 0.22-μm syringe 550 

filter and stored at 4 °C. 551 

 552 

Protein expression 553 
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All proteins were expressed in Expi293F cells (Thermo Fisher Scientific, A14527). 554 

Proteins containing a biotinylation tag (AviTag) were also expressed in the presence of a BirA 555 

enzyme, resulting in spontaneous biotinylation during protein expression. Expi293F cells were 556 

cultured in media containing 66% FreeStyle/33% Expi media (Thermo Fisher Scientific) and 557 

grown in TriForest polycarbonate shaking flasks at 37 °C in 8% carbon dioxide. The day before 558 

transfection, cells were pelleted by centrifugation and resuspended to a density of 3 × 106 cells 559 

per milliliter in fresh media. The next day, cells were diluted and transfected at a density of 560 

approximately 3–4 × 106 cells per milliliter. Transfection mixtures were made by adding the 561 

following components: maxi-prepped DNA, culture media and FectoPRO (Polyplus) would be 562 

added to cells to a ratio of 0.5 μg: 100 μl: 1.3 μl: 900 μl. For example, for a 100-ml transfection, 563 

50 μg of DNA would be added to 10 ml of culture media, followed by the addition of 130 μl of 564 

FectoPRO. For antibodies, we divided the transfection DNA equally among heavy and light 565 

chains; in the previous example, 25 μg of heavy chain DNA and 25 μg of light chain DNA would 566 

be added to 10 ml of culture media. After mixing and a 10-min incubation, the example 567 

transfection cocktail would be added to 90 ml of cells. The cells were harvested 3–5 days after 568 

transfection by spinning the cultures at 10,000g for 10 min. Supernatants were filtered using a 569 

0.45-μm filter. 570 

 571 

Antibody purification 572 

We purified antibodies using a 5-ml MabSelect Sure PRISM column on the ÄKTA pure 573 

fast protein liquid chromatography (FPLC) instrument (Cytiva). The ÄKTA system was 574 

equilibrated with line A1 in 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 575 

(HEPES) pH 7.4, 150 mM sodium chloride (NaCl), line A2 in 100 mM glycine pH 2.8, line B1 576 
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in 0.5 M sodium hydroxide, Buffer line in 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 577 

acid (HEPES) pH 7.4, 150 mM sodium chloride (NaCl) and Sample lines in water. The protocol 578 

washes the column with A1, followed by loading of the sample in the Sample line until air is 579 

detected in the air sensor of the sample pumps, followed by five column volume washes with A1, 580 

elution of the sample by flowing of 20 ml of A2 directly into a 50-ml conical containing 2 ml of 581 

1 M tris(hydroxymethyl)aminomethane (Tris) pH 8.0, followed by five column volumes of A1, 582 

B1 and A1 and then a wash step of the fraction collector with A1. We concentrated the eluted 583 

samples using 50-kDa cutoff centrifugal concentrators, followed by buffer exchange using a PD-584 

10 column (Sephadex) that had been pre-equilibrated into 20 mM 4-(2-hydroxyethyl)-1-585 

piperazineethanesulfonic acid (HEPES) pH 7.4, 150 mM sodium chloride (NaCl). Purified 586 

antibodies were used directly in experiments or flash-frozen and stored at −20 °C. 587 

 588 

Antigen purification 589 

All RBD antigens were His-tagged and purified using HisPur Ni-NTA resin (Thermo 590 

Fisher Scientific, 88222). Cell supernatants were diluted with 1/3 volume of wash buffer (20 mM 591 

imidazole, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4, 592 

150 mM sodium chloride (NaCl), and the Ni-NTA resin was added to diluted cell supernatants. 593 

For all antigens, the samples were then incubated at 4 °C while stirring overnight. 594 

Resin/supernatant mixtures were added to chromatography columns for gravity flow purification. 595 

The resin in the column was washed with wash buffer (20 mM imidazole, 20 mM HEPES pH 596 

7.4, 150 mM NaCl), and the proteins were eluted with 250 mM imidazole, 20 mM HEPES pH 597 

7.4, 150 mM NaCl. Column elutions were concentrated using centrifugal concentrators at 10-598 

kDa cutoff, followed by size-exclusion chromatography on an ÄKTA pure system (Cytiva). 599 
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ÄKTA pure FPLC with a Superdex 200 Increase (S200) gel filtration column was used for 600 

purification. Then, 1 ml of sample was injected using a 2-ml loop and run over the S200, which 601 

had been pre-equilibrated in degassed 20 mM HEPES, 150 mM NaCl before use and flash-frozen 602 

before storage at −20 °C. 603 

 604 

BLI binding experiments 605 

All reactions were run on an Octet RED96 at 30 °C, and samples were run in 1× PBS 606 

with 0.1% BSA and 0.05% Tween 20 (Octet buffer). IgGs were assessed for binding to 607 

biotinylated antigens using streptavidin biosensors (Sartorius/ForteBio). Antigen was loaded at a 608 

concentration of 200nM. Tips were then washed and baselined in wells containing only Octet 609 

buffer. Samples were then associated in wells containing IgG at 100 nM concentration. A control 610 

well with loaded antigen but that was associated in a well containing only 200 μl of Octet buffer 611 

was used as a baseline subtraction for data analysis. Association and dissociation binding curves 612 

were fit in Octet System Data Analysis Software version 9.0.0.15 using a 1:2 bivalent model for 613 

IgGs to determine apparent Kd. Fold-change in apparent Kd were determined by computing the 614 

ratio of wildtype Kd to variant Kd. Averages of Kd fold-change values from at least two 615 

independent experiments are reported to two significant figures in Supplementary Data 2. To 616 

estimate measurement error, we computed the standard deviation for each 617 

antibody−antigen Kd pair. 618 

 619 

Polyspecificity Particle assay 620 

Polyspecificity reagent (PSR) was obtained as described by Xu et al63. Soluble membrane 621 

proteins were isolated from homogenized and sonicated Expi 293F cells followed by 622 
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biotinylation with Sulfo-NHC-SS-Biotin (Thermo Fisher Scientific, 21331) and stored in PBS at 623 

−80 °C. The PolySpecificity Particle (PSP) assay was performed as described in Makowski et 624 

al.64. Protein A magnetic beads (Invitrogen, 10001D) were washed three times in PBSB (PBS 625 

with 1 mg ml−1 BSA) and diluted to 54 μg ml−1 in PBSB. Then, 30 μl of the solution containing 626 

the beads was incubated with 85 μl of antibodies at 15 µg ml−1 overnight at 4 °C with rocking. 627 

The coated beads were then washed twice with PBSB using a magnetic plate stand (Invitrogen, 628 

12027) and resuspended in PBSB. We then incubated 50 μl of 0.1 mg ml−1 PSR with the washed 629 

beads at 4 °C with rocking for 20 min. Beads were then washed with PBSB and incubated with 630 

0.001× streptavidin-APC (BioLegend, 405207) and 0.001× goat anti-human Fab fragment FITC 631 

(Jackson ImmunoResearch, 109-097-003) at 4 °C with rocking for 15 min. Beads were then 632 

washed and resuspended with PBSB. Beads were profiled via flow cytometry using a Sony 633 

SH800 cell sorter. Data analysis was performed with FlowJo software version 10.9.0 to obtain 634 

median fluorescence intensity (MFI) values, which are reported for each antibody across three or 635 

more replicate wells. Elotuzumab (Fisher Scientific) and ixekizumab (Fisher Scientific) are also 636 

included in each assay as controls. 637 

 638 

Lentivirus production 639 

We produced SARS-CoV-2 Spike (Wuhan-Hu-1, BA.1, and BQ.1.1 variants) 640 

pseudotyped lentiviral particles. Viral transfections were done in HEK293T cells (American 641 

Type Culture Collection, CRL-3216) using BioT (BioLand) transfection reagent. Six million 642 

cells were seeded in D10 media (DMEM + additives: 10% FBS, L-glutamate, penicillin, 643 

streptomycin and 10 mM HEPES) in 10-cm plates one day before transfection. A five-plasmid 644 

system was used for viral production, as described in Crawford et al65. The Spike vector 645 
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contained the 21-amino-acid truncated form of the SARS-CoV-2 Spike sequence from the 646 

Wuhan-Hu-1 strain of SARS-CoV-2 (GenBank: BCN86353.1), BA.1 variant of concern 647 

(GenBank: OL672836.1), or BQ.1.1 variant of concern (GenBank: OP412163.1. The other viral 648 

plasmids, used as previously described65, are pHAGE-Luc2-IRS-ZsGreen (NR-52516), HDM-649 

Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519) and HDM-tat1b (NR-52518). These 650 

plasmids were added to D10 medium in the following ratios: 10 μg pHAGE-Luc2-IRS-ZsGreen, 651 

3.4 μg FL Spike, 2.2 μg HDM-Hgpm2, 2.2 μg HDM-Tat1b and 2.2 μg pRC-CMV-Rev1b in a 652 

final volume of 1,000 μl. 653 

After adding plasmids to medium, we added 30 μl of BioT to form transfection 654 

complexes. Transfection reactions were incubated for 10 min at room temperature, and then 9 ml 655 

of medium was added slowly. The resultant 10 ml was added to plated HEK cells from which the 656 

medium had been removed. Culture medium was removed 24 h after transfection and replaced 657 

with fresh D10 medium. Viral supernatants were harvested 72 h after transfection by spinning at 658 

300g for 5 min, followed by filtering through a 0.45-μm filter. Viral stocks were aliquoted and 659 

stored at −80 °C. 660 

 661 

Pseudovirus neutralization 662 

The target cells used for infection in SARS-CoV-2 pseudovirus neutralization assays are 663 

from a HeLa cell line stably overexpressing human angiotensin-converting enzyme 2 (ACE2) as 664 

well as the protease known to process SARS-CoV-2: transmembrane serine protease 2 665 

(TMPRSS2). Production of this cell line is described in detail by Rogers et al66. with the addition 666 

of stable TMPRSS2 incorporation. ACE2/TMPRSS2/HeLa cells were plated 1 day before 667 
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infection at 8,000 cells per well. Ninety-six-well, white-walled, white-bottom plates were used 668 

for neutralization assays (Thermo Fisher Scientific). 669 

On the day of the assay, purified IgGs in 1× PBS were made into D10 medium (DMEM + 670 

additives: 10% FBS, L-glutamate, penicillin, streptomycin and 10 mM HEPES). A virus mixture 671 

was made containing the virus of interest (for example, SARS-CoV-2) and D10 media. Virus 672 

dilutions into media were selected such that a suitable signal would be obtained in the virus-only 673 

wells. A suitable signal was selected such that the virus-only wells would achieve a 674 

luminescence of at least >1,000,000 relative light units (RLU). Then, 60 μl of this virus mixture 675 

was added to each of the antibody dilutions to make a final volume of 120 μl in each well. Virus-676 

only wells were made, which contained 60 μl of D10 and 60 μl of virus mixture. Cells-only wells 677 

were made, which contained 120 μl of D10 media. 678 

The antibody/virus mixture was left to incubate for 1 h at 37 °C. After incubation, the 679 

medium was removed from the cells on the plates made one day prior. This was replaced with 680 

100 μl of antibody/virus dilutions and incubated at 37 °C for approximately 48 h. Infectivity 681 

readout was performed by measuring luciferase levels. Medium was removed from all wells, and 682 

cells were lysed by the addition of 100 μl of BriteLite assay readout solution (PerkinElmer) into 683 

each well. Luminescence values were measured using an Infinite 200 PRO Microplate Reader 684 

(Tecan) using i-control version 2.0 software (Tecan) after shaking for 30 sec. Each plate was 685 

normalized by averaging the cells-only (0% infection) and virus-only (100% infection) 686 

wells. Neutralization titer was defined as the sample dilution at which the RLU was decreased by 687 

50% as compared with the RLU of virus-only control wells after subtraction of background 688 

RLUs in wells containing cells only. Normalized values were fitted with a three-parameter 689 

nonlinear regression inhibitor curve in GraphPad Prism 9.1.0 to determine the half-maximal 690 
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inhibitory concentration (IC50) and are reported in Supplementary Data 1. Neutralization assays 691 

were performed in biological duplicates with technical duplicates. 692 

Computing frequency of changes to antibody protein sequences 693 

We computed the frequency of residues involved in affinity-enhancing substitutions using 694 

the abYsis webtool, which also computes the frequency of amino acids at each position based on 695 

a multiple sequence alignment. We aligned VH and VL protein sequences using the default 696 

settings provided in the ‘Annotate’ tool, using the database of ‘All’ sequences as of April 1, 697 

2023. We also used the Kabat region definition provided by abYsis webtool version 3.4.1 to 698 

annotate the framework regions and CDRs within the VH and VL sequences which are reported 699 

in Supplementary Table 2. 700 

 701 

Comparing efficiency of machine learning-guided directed evolution methods 702 

To compare inverse folding against other machine learning methods for protein 703 

evolution, we compared the fraction of variants tested in the protein engineering campaign to the 704 

number of assay-labeled training data points used to inform the predictions. Data was sourced 705 

from Biswas et al.17 and made contemporaneous by the addition of recently published studies as 706 

indicated in Supplementary Data 5. The fraction improved, or hit rate, refers to experimentally 707 

tested predictions which have improved functional activity relative to either a wildtype protein 708 

that is used as a starting point for directed evolution or the protein used as a reference template 709 

for design. 710 

  711 
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  901 

Supplementary Figure 1: Inverse folding identifies high fitness variants across proteins 902 

with diverse functions  903 

In addition to higher hit rates of high fitness variants, inverse folding generally identifies variants 904 

with greater magnitude of improvements in fitness. The top ten predicted variants with 905 

experimental fitness values ranking in the 20th percentile of all variants profiled in the deep 906 

mutational screen are shown. The grey curve shows the empirical cumulative distribution 907 

function (ECDF) of all experimental fitness values determined in the screen. The dotted lines 908 

correspond to the three percentile-based thresholds used in the sensitivity analysis (Figure 1d) to 909 

classify high fitness variants. bla, Beta-lactamase TEM; CALM1, Calmodulin-1; haeIIIM, Type 910 

II methyltransferase M.HaeIII; HRAS, GTPase HRas; MAPK1, Mitogen-activated protein 911 
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kinase; TMPT, Thiopurine S-methyltransferase; TPK1, Thiamin pyrophosphokinase 1; UBI4, 912 

Polyubiquitin; UBE2I, SUMO-conjugating enzyme UBC9  913 
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Supplementary Figure 2: Impact of lower limit of quantitation of binding assay on 914 

predictive performance 915 

(A) Scatter plots showing CR6261 variant sequences scored with inverse folding compared to 916 

experimental binding data and inclusive of the assay’s lower limit of quantitation, which is 917 
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omitted for visualization in Figure 3b. (B) Comparative bar plots showing the impact of 918 

removing sequences with experimental measurements bounded artificially by the assay to 919 

dataset-wide correlation. While Spearman correlations shown in Figure 3a are computed without 920 

any modification to the data, trends in prediction and comparison among modeling methods are 921 

robust to filtering sequences affected by this assay artifact. 922 

  923 
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Supplementary Figure 3: Structural and sequence similarity of H5 and H1 924 

For cross-reactive antibodies, inclusion of the antigen structure is informative even for predicting 925 

binding to a different antigen. In Figure 3a, we report a correlation of 0.65 between inverse 926 

folding log likelihoods of CR9114 variants and experimental affinity measurements to H1 927 

despite using a structure solved with CR9114 in complex with H5. Inverse folding uses both the 928 

protein sequence and backbone structure coordinates as input. Across both HA subunits, H5 and 929 

H1 have considerable sequence differences and a 2.1 Å root mean square deviation (RMSD) 930 

across the entire protein backbone.  931 
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 933 
Supplementary Figure 4: Functional diversity of inverse folding-recommended mutations 934 

Among the 20 single amino acid substitutions tested for Ly-1404, 14 of 20 = 70% improve 935 

neutralization against at least one of the two strains tested. Similarly, 7 of 20 = 35% of the single 936 

amino acid substitutions tested for SA58 improve neutralization. While some variants improve 937 

function against both pseudovirus strains, others overwhelmingly only improve against one. This 938 

suggests that focusing sequence exploration to structurally compatible mutations does not 939 

compromise functional diversity. 940 
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Supplementary Figure 5: Polyspecificity of evolved antibodies 942 

(A) The median fluorescence intensity (MFI) signal obtained from flow cytometry is shown for 943 

several evolved antibodies with improved affinity and compared to two clinical monoclonal 944 
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antibodies with high and low polyspecificity used to define a clinically viable range. (B) Fold-945 

change in polyspecificity signal is plotted against fold-change in affinity as IgG against BQ.1.1 946 

for Ly-1404 and XBB.1.5 for SA58. There is no correlation between the improvements in on-947 

target improvements in affinity and off-target nonspecific changes in polyspecificity (Spearman r 948 

= 0.007). 949 

  950 
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 951 

Supplementary Figure 6: Mapping neutralization-enhancing substitutions  952 

Neutralization-enhancing mutations are labeled on the structure of the wild-type antibody in 953 

complex with the RBD of SARS-CoV-2 spike protein (Ly-1404: PDB 7mmo; SA58: PDB 954 

7y0w). Notably, several mutations are identified to have significant beneficial impacts on binding 955 

neutralization and affinity (Supplementary Data 1 & 2) despite located away from the binding 956 

interface.  957 

 958 
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Supplementary Table 1. Summary of the DMS datasets used in this analysis, including functional assay, method of mutagenesis, and structure used for 

inverse folding scoring. We also note the specific DMS assay from each study we use for calculating correlation with inverse folding log likelihoods. 

Protein(s) 
(Uniprot ID) Organism Functional Assay Mutagenesis 

Method Utilized assay PDB Structure 

Total 
coverage 
of DMS 

(%) 

Access 
date* Reference 

UBE2I (P63279) 
 

Human 
POPCode, a variant of 
multiple-site directed 

mutagenesis. 

Competitive growth 
assay in yeast. 

score 5F6E chain A 
 100 

12/10/2018 (Weile et al, 2017) TPK1 (Q9H3S3) 
 

score 
 

3S4Y chain A 
 92.46 

CALM1 
(P0DP23) score 5V03 chain R 

 100 

HRas (P01112) Human Systematic site-
directed mutagenesis. Two-hybrid assay. unregulated 2CE2 chain X 

 100 12/10/2018 (Bandaru et al, 2017) 

MAPK1 
(P28482) Human Systematic site-

directed mutagenesis. 
Competitive growth 

assay. VRT 4ZZN chain A 
 99.44 12/10/2018 (Brenan et al, 2016) 

TPMT (P51580) Human Systematic site-
directed mutagenesis. 

Fluorescence of a 
GFP fusion protein. 

score 
 

2BZG chain A 
 92.9 12/10/2018 (Matreyek et al, 

2018) 

UBI4(b) 
(P0CG63) Yeast 

Site directed 
mutagenesis by 
cassette ligation. 

Fluorescence 
activated cell sorting 

(FACS). 

Relative_E1-
activity_limiting 

4Q5E chain B 
 100 12/10/2018 (Roscoe & Bolon, 

2014) 

GAL4 (P04386) 
 Yeast Systematic site-

directed mutagenesis. Two-hybrid assay. Nonselection_24 3COQ chain B 
 90.64 12/10/2018 (Kitzman et al, 2015) 

bla(b) (P62593) E. coli Systematic site-
directed mutagenesis. Antibiotic resistance. Ampicillin_2500 1M40 chain A 

 100 12/10/2018 (Stiffler et al, 2015) 

haeIIIM 
(P20589) 

H. 
aegyptius Random mutagenesis. Competitive growth 

assay. DMS_G3 3UBT chain B 
 99.37 12/10/2018 (Rockah-Shmuel et 

al, 2015) 
 

*Access date is as reported in Livesey & Marsh, 2020 study from which these data were sourced and this table was adapted 
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Supplementary Table 2. Single amino acid substitutions with beneficial effects on 

neutralization are reported alongside the region of the variable domain they are located within, as 

well as the wild-type and mutant amino acid frequencies in observed human antibody sequences. 

Ly-1404 

Chain Mutated Design Region 
WT Amino 

Acid 
Frequency 

Mutant 
Amino Acid 
Frequency 

HC D88Q HFR3 0.03333 0.00382 
HC V90S HFR3 0.03316 0.05155 
HC S62N CDR-H2 0.13159 0.16299 
HC V81T HFR3 0.03432 0.00205 
HC F24Y HFR1 0.01738 0.00002 
HC I31T CDR-H1 0.00933 0.09048 
HC H99Y HFR3 0.01593 0.00138 
HC T70S HFR3 0.88405 0.06153 
HC I105L CDR-H3 0.02764 0.05760 
LC A98I CDR-L3 0.02297 0.03198 
LC Q39K LFR2 0.92316 0.00238 
LC T5Q LFR1 0.89340 0.00933 
LC K47E LFR2 0.52285 0.01490 
LC M49L LFR2 0.05585 0.77076 

 
SA58 

Chain Mutated Design Region 
WT Amino 

Acid 
Frequency 

Mutant 
Amino Acid 
Frequency 

HC T53L CDR-H2 0.03814 0.00963 
HC A61S CDR-H2 0.59797 0.13159 
HC E10Q HFR1 0.24182 0.01366 
LC N95V CDR-L3 0.13399 0.00685 
LC S85A LFR3 0.01109 0.00698 
LC S54T CDR-L2 0.65138 0.05372 
LC M4V LFR1 0.29424 0.03348 
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