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Summary 24 

Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated 25 

loci identified through genome-wide association studies (GWAS), while eQTLs involved in gene-26 

by-environment (GxE) interactions have rarely been characterized in humans due to experimental 27 

challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and 28 

muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit 29 

genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, 30 

the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes 31 

associated with human metabolic traits, suggesting that context-responsive eQTLs with more 32 

complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with 33 

standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the 34 

potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of 35 

GWAS signals for human complex disease using nonhuman primate models.36 
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Introduction 1 

Genome-wide association studies (GWAS) have identified numerous non-coding loci that are 2 

associated with complex traits and diseases1. These loci are thought to modulate disease risk by 3 

regulating gene expression, yet only about 40-50% of non-coding GWAS hits are explained by 4 

expression quantitative trait loci (eQTLs)2–6. The majority of eQTLs have been discovered from 5 

healthy adult tissues in an unperturbed state, known as standard eQTLs7. However, eQTL effects 6 

can vary across different environmental contexts, such as tissue types7, cell states8, developmental 7 

stages9, and external perturbations10. Our ability to explain GWAS signals could be improved by 8 

expanding the scope of eQTL studies to account for gene-by-environment interactions (GxE).  9 

Metabolic traits are highly influenced by environmental factors, particularly diet. For 10 

example, high-fat diets have been associated with dysregulation of lipid metabolism, leading to 11 

increased adiposity and the development of metabolic disorders such as obesity and type 2 12 

diabetes11,12. Investigating the intricate interplay between genetics and diet is essential to advance 13 

our understanding of metabolic health and develop effective strategies for disease prevention and 14 

management. 15 

However, studying gene-by-diet interactions in humans is challenging due to the practical 16 

limitations of performing long-term diet interventions and the restricted availability of living tissue 17 

samples. Rodent models can be used to circumvent these challenges, but due to genetic and 18 

biological differences, it is often difficult to translate results from rodents to humans, especially 19 

when GxE interactions are involved. In contrast, non-human primates share a striking genetic and 20 

physiological resemblance to humans, and their larger size permits collection of multiple tissue 21 

samples throughout the lifespan, facilitating longitudinal studies. The complex social interactions 22 

and structure of baboon colonies and a growing suite of baboon genetic resources, have made 23 

baboons one of the preferred primate models for genetic studies of complex traits13–20. Baboons 24 

are particularly well-suited for studying metabolic disorders, as human lipid metabolism is more 25 

strongly correlated with that of baboons than with lipid metabolism in other Old World monkeys 26 

such as rhesus macaques, cynomolgus macaques, or vervet monkeys21. Indeed, plasma cholesterol 27 

concentrations in baboons respond to dietary cholesterol and fat intake in a similar manner as 28 

humans22. In this study, we explored gene-by-diet effects on gene regulation in vivo in a 29 

longitudinal study of baboons.  30 

 31 

Results 32 

 33 

Modelling gene-by-diet interactions in baboons 34 

We obtained adipose, liver, and muscle tissue samples from 99 sexually mature captive baboons 35 

(57M, 42F) on a standard low cholesterol, low fat (LCLF) diet (Figure 1A; Table S1). After a 36 

two-year period of feeding the baboons a high cholesterol, high fat (HCHF) diet (Table S1), we 37 

collected a second set of samples from the same donors and tissues (Figure 1A). We used RNA-38 

sequencing to obtain transcriptomic profiles for each tissue sample. We recorded extensive 39 

metadata at every stage of sample collection and processing (Table S2). To confirm the tissue 40 

source of each sample, we computationally inferred cell type composition in each sample based 41 

on gene expression signatures23 (Figure 1B). Following rigorous quality control and filtering, we 42 

retained data from a total of 570 samples and 20,224 genes for downstream analyses (Figures S1 43 

and S2).  44 
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We also evaluated possible biological and technical sources of variation in the filtered data, 1 

confirming that most of the variation in the gene expression data is explained by tissue type 2 

(Figures 1C and S1D). Finally, we obtained genotype data for each animal from either high-3 

coverage whole-genome sequencing (WGS) data16 or high-fidelity imputation24 from low-4 

coverage WGS data (Figure S3). These data allowed us to investigate how gene expression and 5 

genetic regulation change in response to the HCHF diet in a controlled environment.6 

7 
Figure 1. Overview of the study design and dataset.  8 
(A) Overview of diet intervention and sample collection. 99 baboons switched from a LCLF diet to a HCHF diet for 9 
two years. mRNA was collected from liver, muscle, and adipose tissue before and after the diet switch. Collection 10 
time points are indicated by vertical bars.  11 
(B) Representative cell type enrichment in each tissue.  12 
(C) Principal components (PC) analysis of mRNA samples after quality control (n=570), with diet condition indicated 13 
by color. 14 

 15 

Gene expression changes in response to HCHF diet 16 

As a first step of our analysis, we characterized gene expression changes in response to the HCHF 17 

diet in each tissue. Across the three tissue types, we classified 6,378 genes as diet-responsive (DR); 18 

namely, genes that are differentially expressed between LCLF and HCHF conditions in at least 19 

one tissue type (false discovery rate (FDR) < 0.01, Figure S4A; Table S3). By jointly analyzing 20 

the DR effects, we found that more than 60% of DR genes are specific to a single tissue (Figure 21 

S4B-C). To understand how DR genes function at a broad level, we performed gene set enrichment 22 

analysis (GSEA) in each tissue using 50 hallmark gene sets that represent well-defined biological 23 

states or processes25. Among the top-scoring results, we identified positive enrichment of DR 24 

genes involved in epithelial-mesenchymal transition (EMT), inflammatory responses, interferon 25 

responses, KRAS signaling, TNF-α signaling, and other immune-related processes in adipose and 26 

liver (Figures 2A, S5, and 6). Both chronic inflammatory microenvironment and EMT have been 27 

shown to promote pathological fibrosis and metabolic dysfunction in tissues such as adipose and 28 

liver26,27.  29 

In rodents, excess dietary fat and cholesterol have been shown to promote an increase in 30 

tissue-resident inflammatory immune cells28,29. To determine whether the HCHF diet induced a 31 

similar shift in the cell composition of baboon tissues, we compared the inferred cell type 32 

composition in each tissue before and after the change in diet (Figure S7). We found a variety of 33 

immune cell types, including dendritic cells, monocytes, and macrophages, to be significantly 34 

more enriched following the HCHF diet, specifically in adipose and liver (Figure 2B). Expansion 35 

of monocyte-differentiated macrophages has been shown to promote fibrosis in human liver27,30. 36 

Indeed, we observed an enrichment of fibroblasts in liver after the switch to the HCHF diet (Figure 37 

S7).  38 
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 1 

Sex differences in transcriptional responses to HCHF diet 2 

Many metabolic traits show sex-differential characteristics, which could be explained by sex biases 3 

in biological processes and genetic regulation. We thus explored whether male and female baboons 4 

differed in their transcriptional responses to the HCHF diet. While we found no evidence of sex 5 

bias among DR genes in liver or muscle, we classified 1,434 sex-biased DR genes (FDR < 0.05) 6 

in adipose tissue (Figures 2C, S8A and S8B; Table S4). GSEA revealed that male-biased DR 7 

genes are more enriched in immune-related functions, whereas female-biased DR genes are more 8 

enriched in metabolic processes (Figure 2D). To explore these patterns further, we performed an 9 

independent analysis of expression data from males and females separately. Our sex-stratified 10 

analysis indicates that immune responses are enhanced in both sexes, with a stronger enrichment 11 

in males after the HCHF diet (Figure S8C). This may be in part due to the anti-inflammatory 12 

effects of estrogens, the primary female sex hormones31,32. 13 

 14 

Figure 2. Transcriptional responses to the HCHF diet.  15 
(A) Diet-responsive differential expression analysis. DR genes are significantly enriched in inflammatory responses 16 
in adipose (P<2x10-10) and liver (P<6x10-16), but not in muscle (P=0.1). Inflammatory response genes are highlighted 17 
in purple. The dashed line indicates an FDR threshold of 0.05.  18 
(B) Cell type enrichment changes in response to the HCHF diet. Adipose and liver are significantly enriched for a 19 
variety of immune cells following the HCHF diet. Asterisks indicate statistical significance (ns: non-significance, 20 
*P<0.05, **P<0.01, ***P<0.001).  21 
(C) Differential expression analysis of sex-biased diet responses. Colored dots are significant sex-biased DR genes 22 
with an FDR threshold of 0.05.  23 
(D) Pathway enrichment of sex-biased DR genes. Top positive enrichments (FDR<0.05) are male-biased (blue) and 24 
associated with immune-related activities. Top negative enrichments (FDR<0.05) are female-biased (red), involved 25 
in metabolic processes. The enrichment items are ranked by the normalized enrichment score from top to bottom. 26 
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 1 

Diet-responsive genetic effects on gene expression 2 

Although we observed global transcriptional responses to HCHF diet in baboons, the dietary 3 

effects on gene expression can vary across genetic backgrounds. Captive non-human primates, 4 

even with a relatively small sample size, have exhibited their power in eQTL studies due to the  5 

homogenous environment and uniform tissue collection process33. Leveraging the unique 6 

advantages of the baboon model, we investigated gene-by-diet interactions and characterized diet-7 

responsive genetic effects on gene expression. First, we mapped cis genetic variants (MAF > 5%) 8 

that are associated with gene expression levels (eQTLs) of their cognate genes in each tissue 9 

independently, separated by diet condition. To do this, we fit a linear model accounting for 10 

relatedness, known sample covariates, and cryptic sources of gene expression variability. Across 11 

all six combinations of tissue and diet, we discovered 7,471 genes with at least one significant cis-12 

eQTL (FDR < 0.05; Table S5), ranging from 2,112 to 3,509 per tissue and diet combination 13 

(Figure S9A). To increase power, we also performed a joint analysis of the effects of all top 14 

variant–gene pairs (n=14,814) across all tissue and diet combinations using mashr34. With this 15 

more powerful approach, which leverages the information across all samples in our study, we 16 

found a total of 12,402 eQTLs (local false sign rate (LFSR) < 0.05; Figure S9B).  17 

We further explored this set of eQTL-gene pairs to identify diet-responsive eQTLs (DR 18 

eQTLs) in each tissue. DR eQTLs may differ in the presence, magnitude, or direction of their 19 

effects between the different diet conditions. We identified 2,714 DR eQTL–gene pairs with diet-20 

specific effect in at least one tissue (LFSR < 0.05, magnitude > 1.5; Figure 3A; Table S6). 21 

Depending on the tissue, between 49% to 58% DR eQTLs have stronger effects in the HCHF diet. 22 

We observed that the DR eQTLs are highly tissue specific. Only 6% of DR eQTLs are shared in 23 

at least two tissues, while pairwise sharing of steady-state eQTLs across tissues is 29-38% (Figure 24 

S10). For example, a DR eQTL (chr1:131619858:G_T; P=3.5x10-5) for APOA2 emerged in 25 

response to the HCHF diet and is present only in liver (Figure 3B). APOA2 is involved in lipid 26 

metabolism and transport35, and multiple variants that are linked to APOA2 have been found to be 27 

associated with cholesterol levels in humans36. An interaction between an APOA2 single 28 

nucleotide polymorphism (SNP) and saturated fat intake has also been reported to influence body 29 

mass index (BMI) and obesity37–39. This non-coding SNP of APOA2 (rs5082) shows a significant 30 

positive association with BMI in three independent cohorts of European and Hispanic individuals 31 

with high saturated fat intake (>22g/d) (Figure 3C). Non-coding trait-associated loci in humans 32 

are predominantly located in open chromatin regions in relevant cell types and are enriched in gene 33 

regulatory elements, suggesting that they are mediated by altering gene regulation of nearby genes. 34 

However, no eQTLs have been found to be linked to APOA2 in adipose, liver, or muscle from 35 

standard eQTL mapping studies such as GTEx, indicating that some eQTLs may be revealed only 36 

in specific contexts as suggested by other studies. 37 

 38 

Colocalization of diet-responsive eQTLs with lipid biomarkers 39 

Next, we sought to assess whether DR eQTLs can explain the molecular basis of relevant 40 

physiological traits. We performed physiological QTL mapping for 10 lipid biomarkers collected 41 

from the same cohort of baboons before and after the HCHF diet intervention40 (Table S7, Figure 42 

S11). Using a multi-trait colocalization method41, we identified seven regions where an eQTL 43 

colocalized with at least one lipid biomarker (posterior probability of sharing the same causal 44 

variant (PP) > 0.5; Figure S12). All seven colocalizations are linked to genes that contain variants 45 

associated with metabolic-relevant traits in human GWAS. Within these seven regions, we found 46 
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two DR eQTL-lipid biomarker colocalizations. For example, DR eQTL (chr2:74238226:C_T) for 1 

MAGI1 colocalized with a variant associated with the size distribution of high-density lipoprotein 2 

(dHDL) in baboons (PP=0.54, PPcandidate_SNP=0.91, Figure S13A). MAGI1 is genetically associated 3 

with a variety of relevant human traits, including cholesteryl ester (17:0) levels42 and coronary 4 

artery calcification43. The two DR eQTL–lipid biomarker colocalizations we identified have 5 

similar effects on the corresponding lipid biomarkers in both diet conditions (Figure S13), 6 

suggesting that the mediated effects of eQTLs on phenotypes can be context-dependent. Despite 7 

the limited sample size, our results suggest that DR eQTLs, and more generally, dynamic eQTLs 8 

identified in disease-relevant contexts, are useful for characterizing GWAS loci in humans. 9 

 10 

Sex biases in diet-responsive genetic effects  11 

Given that we observed sex-biased transcriptional responses to the HCHF diet in adipose tissue, 12 

we sought to investigate sex effects on diet-responsive gene regulation. We mapped sex-biased 13 

eQTLs by incorporating a genotype-by-sex (G x Sex) interaction term into our models for each 14 

tissue and diet combination. Across all tissues, we found eight sexually dimorphic DR eQTLs 15 

(FDR < 0.25) (Figure S14), which are either present exclusively in one sex, present in both sexes 16 

with a concordant allelic effect but different effect sizes, or present in both sexes with a discordant 17 

allelic effect. More than half of sex-biased eQTLs are observed only in response to diet, indicating 18 

that sex effects can mask diet-responsive genetic effects (Figures S14A-E).  19 

For example, we found a DR eQTL for OLR1 (chr9:8884799:C_T) in muscle has opposite 20 

effects in males and females and was not discovered in our sex-combined analyses (PGxSex=1.5x10-21 
7; Figure 3D). OLR1 encodes lectin-like oxidized low-density lipoprotein receptor and has been 22 

shown to be associated with its protein level in GWAS44. It also harbors a missense variant 23 

(rs11053646; K167N) in humans that has been reported to have a sex-specific association with 24 

carotid atherosclerotic plaque in individuals of Dominican descent45. Sex-stratified analysis 25 

revealed that rs11053646 is significantly associated with plaque presence and all plaque sub-26 

phenotypes in women (OR, 2.44 to 5.86; P=3x10-4 to 8x10-3) but not in men (OR, 0.85 to 1.22; 27 

P=0.77 to 0.92; Figure 3E). 28 
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 1 

Figure 3. Diet-responsive genetic regulatory effects.  2 
(A) Discovery and overlap of DR eQTL-gene pairs across tissues.  3 
(B) A liver-specific DR eQTL (chr1:131619858:G_T) for APOA2. The eQTL effect emerged in response to the HCHF 4 
diet and was present only in liver (LFSRLCLF=0.49, βLCLF=0.11, LFSRHCHF=0.04, βHCHF=0.31). Opaque colors are 5 
HCHF; light colors are LCLF. Opaque colors are HCHF; light colors are LCLF. 6 
(C) Genetic association between a SNP of APOA2 (rs5082) and BMI from three independent human populations 7 
stratified by saturated fat intake (<22 g/d [low] and >22 g/d [high]). The populations are from the Boston–Puerto 8 
Rican Centers on Population Health and Health Disparities (Boston–Puerto Rican) Study, the Framingham Offspring 9 
Study (FOS), and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. Error bars represent 10 
standard deviation of effect size. Error bars represent standard deviations.  11 
(D) A sex-biased eQTL (chr9:8884799:C_T) for OLR1. The regulatory effect of this SNP was present in both males 12 
(blue) and females (red) with a discordant allelic effect, but it was not detected in sex-combined analysis (purple). 13 
Opaque colors are HCHF; light colors are LCLF. Opaque colors are HCHF; light colors are LCLF. 14 
(E) Sex-specific association between the variant in OLR1 (rs11053646) and carotid plaque from 287 Dominican 15 
Hispanic individuals in the Genetic Determinants of Subclinical Carotid Disease Study. The phenotypes include 16 
plaque presence and sub-phenotypes (multiple, thick, irregular, and calcified plaque), determined by high resolution 17 
B-mode carotid ultrasound. Asterisks indicate statistical significance (ns: non-significance, *P<0.05, **P<0.01, 18 
***P<0.001, ****P<0.0001). Error bars represent 95% confidence interval of odds ratio. Error bars correspond to 19 
95% confidence intervals. 20 

 21 

Genetic architecture of diet-responsive gene expression 22 

It is recognized that eQTLs tend to exhibit a strong enrichment near transcription start sites 23 

(TSS)46–48. The eQTLs identified in this study follow the same enrichment pattern when considered 24 

together (Figure 4A). However, when we examine non-DR eQTLs (i.e. eQTLs with similar effects 25 

between the diets in a given tissue) and DR eQTLs separately, a distinct localization pattern 26 
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emerges, with DR eQTLs showing only a modest enrichment near TSS (Figure 4A). The genomic 1 

location of an eQTL generally reflects the underlying regulatory landscape and functional activity 2 

of the target gene49–51. To investigate the genetic architecture of diet-responsive gene expression 3 

and determine how it differs from that of standard non-responsive gene expression, we analyzed 4 

the target genes that are associated with DR eQTLs (DR eGenes), steady-state non-DR eQTLs 5 

(non-DR eGenes), and any eQTLs (all eGenes) in each tissue. We assessed regulatory complexity 6 

and evidence of selective constraint for each group of eGenes. 7 

A gene can initiate transcription from multiple TSS48. The regulation of TSS selection 8 

plays a crucial role in gene expression diversity and complexity, enabling context-specific 9 

transcriptional programs52. To explore the potential association between diet responsiveness and 10 

TSS usage, we computed the number of TSSs that are used for a given gene across a diverse set 11 

of cell types using publicly available summary statistics from the FANTOM project50. Across all 12 

genes, the average number of TSS is 5.3. However, DR eGenes have a higher average TSS count 13 

of 5.7, compared to an average of 4.8 TSSs in non-DR eGenes (P=6.4x10-4; Figure 4B).  14 

Enhancers facilitate precise spatiotemporal control of gene expression by integrating 15 

signals from various cellular and environmental cues53–55. To assess eGene enhancer activity, we 16 

calculated the accumulative enhancer length for a given eGene across 131 tissue or cell types using 17 

enhancer-gene predictions from an activity-by-contact model56. Our analysis revealed that DR 18 

eGenes have a longer accumulative enhancer length per active tissue/cell type compared to the 19 

average gene (Figure 4C). In contrast, non-DR eGenes had a significantly shorter accumulative 20 

enhancer length than DR eGenes (P=2x10-4; Figure 4C), suggesting the diet-responsive gene 21 

regulation may be in part modulated through enhancer activity.  22 

Previous evidence suggests that natural selection plays a significant role in shaping the 23 

genetic architecture of complex traits57,58. It has been observed that selectively constrained genes 24 

are depleted in eQTL genes59. Consistent with previous findings, we found that genes depleted of 25 

loss-of-function (LoF) variants, as measured by the pLI score, are underrepresented in all eGenes 26 

and non-DR eGenes (Figure 4D). However, DR eGenes display an enrichment in LoF-intolerant 27 

genes, showing a significantly higher proportion of high-pLI genes compared to non-DR eGenes 28 

(P=5x10-3; Figure 4D). We also observed that DR eGenes have overall higher minor allele 29 

frequencies (MAF) than non-DR eGenes, despite the fact that stronger selective pressure is often 30 

associated with lower MAF (Figure S15). This might be explained by that higher MAF gives more 31 

power to detect eQTLs with variable effects across multiple contexts as they frequently have 32 

smaller effect sizes than standard eQTLs that are shared across conditions60.33 

 34 

Figure 4. Genetic architecture of diet-responsive gene expression.   35 
(A) Distance of DR eQTLs (red), nonDR eQTLs (blue), and all eQTLs (green) to the TSS of the target gene. The 36 
overlaid histograms show distance-to-TSS distribution in each group of eQTLs in 5Kb bins. The curves show the 37 
kernel density estimate for each group of eQTLs.  38 
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(B-D) Genic features of DR eGenes (red), nonDR eGenes (blue), and all eGenes (green), respectively. Horizontal 1 
dashed lines depict the average number of the corresponding feature across all genes that were tested in eQTL 2 
mapping. (B)Average number of TSS. (C) Average accumulative enhancer length per tissue/cell type. (D) Fraction of 3 
selectively constrained genes (pLI > 0.9). Error bars represent standard deviations. 4 
 5 

Functional features of diet-responsive eGenes 6 

The distinct regulatory architectures and natural selection signatures we observed for DR and non-7 

DR eGenes could reflect functional differences. To investigate the functional features of DR 8 

eGenes, we performed gene enrichment for a list of broadly defined Gene Ontology (GO) 9 

biological process terms. Many functional categories show clear depletion of eQTLs, with the 10 

depletion being more pronounced in non-DR eGenes (Figure S16A). The depletion is more 11 

prominent for categories with a higher average pLI such as processes related to transcriptional 12 

regulation (“positive regulation of transcription by RNA polymerase II” and “negative regulation 13 

of transcription, DNA-templated”). This pattern suggests that selection purges eQTLs for genes 14 

with evolutionarily important functions. In contrast, a variety of GO categories are enriched among 15 

DR eGenes. This pervasive enrichment has also been observed for GWAS genes6, suggesting a 16 

functional similarity between DR eGenes and genes that are associated with complex traits.  17 

Many biological functions are modulated by transcription factors (TFs), which play a 18 

crucial role in regulating gene expression, cell fate, development, and responses to environmental 19 

stimuli61. TFs have consistently been observed to be underrepresented among eGenes. To examine 20 

whether DR eGenes differ in TF representation, we calculated the proportion of TFs in each 21 

category of eGenes. We found a significant depletion of TFs in non-DR eGenes but a slight 22 

enrichment in DR eGenes (Figure S16B). This observation suggests that TFs may play a more 23 

prominent role in mediating diet-responsive gene expression, potentially contributing to their 24 

functional significance in the context of dietary influences. 25 

 26 

Enrichment of baboon diet-responsive eGenes in human GWAS 27 

We have identified several features that distinguish DR eQTLs from standard eQTLs, including a 28 

suggestive functional resemblance between DR eGenes and GWAS genes. To explore whether 29 

diet-responsive genetic effects in baboons can provide functional insight into human non-coding 30 

GWAS variants, we integrated our results with results from human GWAS. Although SNPs are 31 

typically not conserved across species62, the human orthologs of eQTL genes identified in other 32 

primates tend to be associated with eQTLs in humans33,63. Consistently, we observed significant 33 

enrichment of baboon eGenes with a known human ortholog among human eGenes from GTEx, 34 

particularly in matched tissue types (Figure S17). Therefore, we focused on comparing baboon 35 

DR eGenes identified in our study and human GWAS genes from public datasets. 36 

We tested for enrichment of baboon DR eGenes in human GWAS genes for 22 HCHF-37 

related traits using publicly available summary statistics from UK Biobank64. We found that the 38 

human orthologs of DR eGenes identified in baboons are enriched among GWAS genes for most 39 

of the HCHF-related traits (Figure 5A). Notable enrichments include BMI, cholesterol traits, 40 

obesity, peripheral atherosclerosis, and liver cirrhosis, which are relevant to dietary fat or 41 

cholesterol intake, and are manifested in the tissue types collected in this study. However, non-DR 42 

eGenes show consistent depletion in all HCHF-related traits except for coronary atherosclerosis 43 

(Figure 5A).  44 

To assess the specificity of the representation of DR eGenes in GWAS, we expanded our 45 

analysis to more traits and diseases using publicly available summary statistics from the NHGRI-46 

EBI GWAS Catalog65, which encompasses all published GWAS. We assessed the relevance of 47 
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diet to a broad range of traits, including 98 metabolic traits and 213 non-metabolic traits. We 1 

performed enrichment tests for DR eGenes in GWAS genes for each trait. Our results revealed that 2 

DR eGenes are systematically enriched in genes associated with metabolic-relevant traits 3 

(Pcombined=3.8x10-5; Table S8), with prominent signals in traits relevant to a HCHF diet, such as 4 

carotid intima-media thickness, total cholesterol, LDL cholesterol, BMI, and triglyceride levels 5 

(Figure 5B). When we performed the same analysis for non-DR eGenes with similar expression 6 

levels or genes that are differentially expressed in response to the diet, we observed no enrichment, 7 

suggesting that this enrichment was not confounded by differences in gene expression levels or 8 

differential transcriptional response to diet (Figures S18A and S18B). In contrast, we observed 9 

no enrichment of DR eGenes in non-metabolic traits (Pcombined=0.12; Figure 5B; Table S9). In 10 

fact, we observed a depletion of non-DR eGenes in both groups of traits (Figure S18C), which is 11 

consistent with our previous observation that steady-state eGenes are pervasively depleted in 12 

GWAS for the 22 HCHF-related traits. Together, our results suggest that DR effects identified in 13 

baboons are translationally relevant to human health and can be leveraged to characterize the 14 

function of disease-associated genes. 15 

 16 

Figure 5. Enrichment of baboon DR eGenes in human GWAS.   17 
(A) Enrichment of human GWAS genes for 22 HCHF-related traits among DR eGenes, non-DR eGenes, and all 18 
eGenes. The color map represents enrichment (red) or depletion (blue) by enrichment Z scores.  19 
(B) Q-Q plot for enrichment of baboon DR eGenes in human trait- or disease-associated genes from GWAS. Orange 20 
dots correspond to p-values of enrichment tests for metabolic-relevant traits relative to uniformly distributed p-values 21 
(dashed line). Gray dots correspond to p-values of enrichment tests for non-metabolic traits.  22 

 23 

Discussion 24 

In our two-year dietary intervention study, we observed considerable effects of a sustained HCHF 25 

diet on global gene expression levels in baboons and identified genetic loci that are associated with 26 

inter-individual transcriptional differences in response to diet. We found evidence for both sex- 27 

and tissue-specific transcriptional changes, reflecting the complex landscape of dynamic gene-by-28 

diet interactions. We characterized hundreds of eQTLs in response to diet and found that diet-29 

responsive eGenes in baboons can be valuable to interpret genetic associations with disease in 30 
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humans. Our results further emphasize the intricate complexity of genetic regulatory effects and 1 

the value of considering GxE interactions in genetic studies of complex disease. 2 

Our study underscores the strength of the baboon model in studying GxE interactions that 3 

present formidable challenges in human studies. The physiological similarity between baboons 4 

and humans, combined with the controlled environmental conditions of our study, enables us to 5 

suggest additional candidate genes associated with diseases that previously evaded identification 6 

in human studies of gene regulation.  7 

For example, APOA2 has a diet-specific genetic association with BMI and obesity in 8 

human populations37–39. Yet, despite having much larger sample sizes, no standard eQTLs for 9 

APOA2 have been discovered in adipose, liver, or muscle tissues from GTEx7. Here, we identified 10 

an eQTL for the baboon APOA2 ortholog in liver, which emerged solely in response to the HCHF 11 

diet. This example demonstrates the potential of contextually functional regulatory variants, even 12 

those found in non-human primates, in extending our understanding of disease loci. With the 13 

specific enrichment of DR eGenes among GWAS signals for human metabolic traits, the 14 

translational relevance of the baboon model to human health becomes undeniably clear. 15 

By considering the genetic architecture of diet-responsive gene expression, we discovered 16 

that DR eQTLs exhibit a localization pattern that is distinct from non-DR eQTLs, featuring a more 17 

evenly distributed distance to the TSS. Disease-associated loci found in human GWAS also 18 

typically reside at greater distances from the nearest TSS compared to standard eQTLs1. 19 

Additionally, disease-associated loci in humans appear to evolve under stronger stabilizing 20 

selection57,58 and are associated with more complex regulatory landscapes than genes not 21 

associated with disease6,66. Similarly, compared to standard eQTLs, DR eQTLs are enriched 22 

among genes with complex regulatory landscapes, enduring stronger selective constraints, and 23 

participating in diverse biological functions. Together, our observations support the notion that 24 

context-specific eQTLs with more complex regulatory effects hold the key to a more profound 25 

understanding of GWAS signals. 26 

It was previously shown that standard eQTLs generally evolve neutrally or under weak 27 

selection67, and that they are broadly shared across tissues34. Furthermore, genes that are highly 28 

conserved across species63, transcription factors, and genes in the center of regulatory networks51 29 

are all notably depleted for standard eQTLs. It is therefore not surprising that our findings reveal 30 

systematic differences between context-responsive eQTLs and standard eQTLs. Not only do 31 

context-responsive eQTLs have more complex regulatory effects, but they are more likely to be 32 

functionally important and subject to natural selection, making them more likely to underlie inter-33 

individual differences in disease risk.  34 

We anticipate that expanding resources in non-human primates, even with relatively small 35 

available sample sizes, will enable further characterization of complex, multi-tissue disease-36 

relevant GxE effects and enhance the interpretation of GWAS signals for a wide range of complex 37 

traits in humans. This, in turn, will provide additional support for the notion that eQTLs with 38 

disease-relevant GxE interactions are crucial for a better understanding of non-coding GWAS 39 

variants.  40 
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STAR★METHODS 1 

KEY RESOURCES TABLE 2 

 3 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological samples 

Baboon adipose, liver, and muscle tissue samples Wake Forest University, 
NC; Southwest National 
Primate Research 
Center, TX 

N/A 

Critical commercial assays 

BeadBug 6 Microtube Homogenizer Benchmark Scientific Cat#D1036 

1.5mm Zirconium beads Benchmark Scientific Cat#D1032-15 

QIAzol Lysis Reagent QIAGEN Cat#79306 
 

RNeasy Universal Kit QIAGEN Cat#73404 

RNA 6000 Nano Kit Agilent Cat#5067-1511 

RNA 6000 Pico Kit Agilent Cat#5067-1513 

TruSeq RNA Library Preparation Kit v2 Illumina Cat#RS-122-
2001&RS-122-2002 

TruSeq stranded mRNA Library Preparation Kit Illumina Cat#20020595 

Deposited data 

WGS data BioProject PRJNA433868 

RNA-seq data This paper GSE227346 

Molecular signature database (MSigDB v7.5.1) Liberzon et al., 201580 https://www.gsea-
msigdb.org/gsea/msigd
b 

TSS usage summary statistics FANTOM550 https://fantom.gsc.rike
n.jp/5/datafiles/latest/e
xtra/CAGE_peaks/ 

Enhancer activity prediction Nasser et al., 202156 https://www.engreitzla
b.org/resources 

pLoF metrics genomAD https://gnomad.broadin
stitute.org/downloads 

TF gene list Lambert et al., 201861 http://humantfs.ccbr.ut
oronto.ca 

Broadly unrealted GO terms Mostafavi et al., 20226 https://doi.org/10.1101
/2022.05.07.491045 

UK Biobank GWAS summary statistics UK Biobank http://www.nealel
ab.is/uk-biobank 

GWAS Catalog summary statistics NHGRI-EBI GWAS 
Catalog 

https://www.ebi.ac.uk/
gwas/ 

GTEx data GTEx https://gtexportal.org/h
ome/datasets 
 

DE analysis summary statistics This paper https://doi.org/10.5281
/zenodo.10158085 

eQTLs summary statistics from MatrixEQTL This paper https://doi.org/10.5281
/zenodo.10158085 

DR eQTLs summary statistics This paper https://doi.org/10.5281
/zenodo.10158085 
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Software and algorithms 

STAR Dobin et al., 201369 https://github.com/alex
dobin/STAR 

featureCounts Liao et al., 201470 https://subread.sourcef
orge.net/ 

verifyBamID Zhang et al., 202071 https://github.com/Grif
fan/VerifyBamID 

AKT Arthur et al., 201974 https://github.com/Illu
mina/akt 

SHAPEIT4 Delaneau et al., 201973 https://odelaneau.githu
b.io/shapeit4/ 

GLIMPSE  Rubinacci et al., 202175 https://odelaneau.githu
b.io/GLIMPSE/glimps
e1/ 

xCell Aran et al., 201776 https://github.com/dvir
aran/xCell 

dream Hoffman, 202077 https://www.biocondu
ctor.org/packages/deve
l/bioc/vignettes/varian
cePartition/inst/doc/dre
am.html 

fgsea Korotkevich et al., 
202179 

https://github.com/ctla
b/fgsea 

MatrixEQTL Shabalin et al., 201281 https://www.bios.unc.e
du/research/genomic_s
oftware/Matrix_eQTL/ 

GEMMA Zhou and Stephens, 
201282 

https://github.com/gen
etics-
statistics/GEMMA 

PCAforQTL Zhou et al., 202283 https://github.com/heat
herjzhou/PCAForQTL 

eigenMT Davis et al., 201684 https://github.com/joed
3/eigenMT 

udr Stephens lab https://github.com/step
henslab/udr 

mashr Urbut et al., 201934 https://github.com/step
henslab/mashr 

HyPrColoc Foley et al., 202186 https://github.com/jrs9
5/hyprcoloc 

Analysis code generated for this study This paper https://doi.org/10.5281
/zenodo.10158085 

 1 

RESROURCE AVAILABLITY 2 

Lead contact 3 

Further information and requests for resources and reagents should be directed to and will be 4 

fulfilled by the lead contact, Yoav Gilad (gilad@uchicago.edu). 5 

Material availability 6 

This study did not generate new unique reagents. 7 

Data and code availability  8 
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The WGS data are available at BioProject. The RNA-seq data have been deposited at GEO. 1 

Accession numbers are listed in the key resources table. All original code, data, and summary 2 

statistics presented in this paper have been deposited at Zenodo. DOIs are listed in the key 3 

resources table. Any additional information required to reanalyze the data reported in this paper 4 

is available from the lead contact upon request. 5 

 6 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 7 

The subjects of the diet challenge were olive baboons (Papio hamadryas anubis), yellow 8 

baboons (Papio hamadryas cynocephalus), and their hybrid descendants, all of which were 9 

members of a large pedigreed breeding colony developed and maintained at the SNPRC. The 99 10 

baboons included 42 females and 57 males with ages ranging from 6 years to 14.7 years. The 11 

mean age for the females was 10.4 years (range = 6.4 to 14.7 years) and that of the males was 9.2 12 

years (range = 6 to 12.5 years). The female animals in this study were not pregnant or lactating 13 

during the two-year diet intervention. They did not receive any form of birth control and were 14 

living with infertile males in their normal social groups. The male baboons in this study were 15 

housed in social groups separate from the females and were not castrated. All animal procedures 16 

were reviewed and approved by the Texas Biomedical Research Institute’s (TBRI) Institutional 17 

Animal Care and Use Committee (IACUC). Southwest National Primate Research Center 18 

(SNPRC) facilities at TBRI and the animal use programs are accredited by Association for 19 

Assessment and Accreditation of Laboratory Animal Care International (AAALAC), operate 20 

according to all National Institutes of Health (NIH) and U.S. Department of Agriculture (USDA) 21 

guidelines, and directed by veterinarians (DVM). The SNPRC veterinarians made all animal care 22 

decisions. All animals were housed in group cages allowing them to live in their normal social 23 

groups with ad libitum access to food and water. Enrichment was provided on a daily basis by 24 

the SNPRC veterinary staff and behavioral staff in accordance with AAALAC, NIH, and USDA 25 

guidelines. 26 

 27 

METHOD DETAILS 28 

 29 

Diet intervention  30 

The baboons were maintained on a chow diet, low in cholesterol and fat (LCLF) from birth until 31 

they began a two-year dietary challenge with a diet high in cholesterol and saturated fat (HCHF). 32 

Table S1 shows the composition of the chow LCLF diet (Monkey Diet 15%/5LEO, LabDiet), the 33 

chow diet was used to prepare to atherogenic HCHF diet (Monkey Diet 25/50456, LabDiet), and 34 

the complete HCHF diet. To make the HCHF diet, we add a mix of lard, cholesterol, sodium 35 

chloride, vitamins [ascorbic acid and vitamin A (a retinyl acetate)], and water to the chow diet. 36 

Metabolizable energy is approximately 3.8 kcal/g, with 40% of calories from fat, 40% of calories 37 

from carbohydrates, and 20% of calories from protein. We measured the composition of total 38 

fatty acids by gas-liquid chromatography of the fatty acid methyl esters [on DB-225 column (15 39 

m), J&W Scientific]. Saturated fatty acids include myristic (1.7%), palmitic (24.9%), and stearic 40 

(17.9%); monounsaturated fatty acids include palmitoleic (2%) and oleic (38.7%); and 41 

polyunsaturated acids include linoleic (13.9%) and linolenic (0.9%). All baboons in the study 42 

were fed daily and allowed to eat ad libitum. We were not able to monitor and measure the 43 

amount of food consumed by each individual animal as they were maintained in social group 44 

housing, consistent with best practices for this species. The approximate mean daily intake per 45 

animal of the LCLF diet was 500 g (~1500 kcal) and that for the HCHF diet was 400 g (~1200 46 
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kcal). The mean amount of cholesterol consumed daily by animals on each of these diets was 1 

approximately 30 mg and 2230 mg, respectively. 2 
 3 

Tissue sample collection 4 

Baboon tissue samples were collected just prior to beginning the two-year HCHF diet challenge 5 

(while on the LCLF diet) and again at the end of the two-year HCHF diet challenge. The 6 

baboons were sedated with ketamine (10 mg/kg), given atropine (0.025 mg/kg), and intubated. 7 

Body weight was measured on a calibrated electronic balance and body length was measured 8 

between head and feet, with the animals lying on their back. Omental adipose biopsy samples 9 

were collected through the abdominal wall; liver biopsy samples were collected from the left 10 

lobe of the liver; and skeletal muscle biopsy samples were collected from the quadriceps. During 11 

post-biopsy recovery, analgesia was provided in the form of Stadol, 0.15 mg/kg, twice a day, for 12 

3 days and ampicillin, 25 mg/day for 10 days. 13 
 14 

Lipid biomarker measurement  15 

We obtained data on circulating cardiovascular disease (CVD) risk factors, including lipids and 16 

lipoproteins, lipoprotein-related enzymes, and biomarkers of inflammation and oxidative stress 17 

from blood samples collected before and after the two-year HCHF diet intervention. We 18 

quantified the concentrations of the following serum lipids and lipoproteins. Total serum 19 

cholesterol (TSC) and triglyceride (TRIG) concentrations were determined enzymatically using 20 

commercial reagents in a clinical chemistry analyzer. High density lipoprotein cholesterol 21 

(HDLC) was measured in the supernatant after heparin Mn+2 precipitation, and non-HDLC 22 

(LDLC) was calculated as the difference between total and HDLC. Concentrations of 23 

apolipoproteins AI (APOAI), B (APOB), and E (APOE) were determined using an 24 

immunoturbidometric approach with commercial reagents in a clinical chemistry analyzer. We 25 

measured plasma oxidized LDL (oxLDL) concentrations (U/L) immunologically using a 26 

sandwich-style enzyme-linked immunoabsorbent assay (Mercodia Oxidized LDL ELISA; 27 

ALPCO Diagnostics). Lipoprotein size distributions were estimated as absorbance in large size 28 

particles minus absorbance in small size particles. ΔHDL (dHDL) was calculated as [(fractional 29 

absorbance, 8.6 to 10.5 nm)(fractional absorbance, 12 to 19 nm)]x1000; and ΔLDL (dLDL) was 30 

calculated as [(fractional absorbance, 27.2 to 28.4 nm)(fractional absorbance, 24.4 to 26 31 

nm)]x100068. Most samples were run at least twice, and the mean was used as the final 32 

measurement value.  33 

 34 

RNA sample processing and sequencing 35 

Approximately 10 mg of each frozen tissue sample was homogenized in 1ml QIAzol Lysis 36 

Reagent (79306, QIAGEN) using BeadBug 6 Microtube Homogenizer (D1036, Benchmark 37 

Scientific) with 1.5mm Zirconium beads (D1032-15, Benchmark Scientific). RNA was 38 

immediately extracted from the homogenate using QIAGEN RNeasy Universal Kit (73404, 39 

QIAGEN). RNA concentration and quality was measured using Agilent RNA 6000 Nano Kit and 40 

RNA 6000 Pico Kit (5067-1511 & 5067-1513, Agilent) on Agilent 2100 Bioanalyzer (Figure 41 

S1A). 96 libraries from 16 animals in batch 1 were performed using TruSeq RNA Library 42 

Preparation Kit v2 (RS-122-2001, RS-122-2002, Illumina) and were sequenced 50 base pairs, 43 

single-end using the Illumina HiSeq4000 according to manufacturer instructions with the goal of 44 

achieving at least 15 million reads per sample (Figure S1B). Each sequencing lane contained 24 45 

multiplexed samples from different RNA extraction batches. 498 libraries from 83 animals in 46 

batch 2 were performed using TruSeq stranded mRNA Library Preparation Kit (20020595, 47 

Illumina) and were sequenced 50 base pairs, paired-end using the Illumina NovaSeq6000 48 
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according to manufacturer instructions with the goal of achieving at least 30 million reads per 1 

sample (Figure S1B). Each sequencing lane contained 84 multiplexed samples from different 2 

RNA extraction batches. Samples from the same animal were always included in the same RNA 3 

extraction, library preparation, and sequencing batches. Samples from different animals were 4 

randomized in every processing step to avoid potential batch effects.   5 
 6 

RNA-seq data 7 

RNA-seq data were aligned to the baboon reference genome Panubis1.0 with STAR v2.7.7a69. 8 

FASTQC was used to confirm that the reads were of high quality. Gene-level expression 9 

quantification was performed using featureCounts70. Quality controls were performed on two 10 

levels using a similar pipeline for GTEx7. On the sample level, we first identified and removed 11 

five sample swaps and contaminations where a sample was not matched to its genotype or 12 

contained a mixture of two or more samples using verifyBamID71. We removed 18 outlier 13 

samples based on expression profile using PCA. We checked sex correctness by examining gene 14 

expression for genes on the Y chromosome for each sample (Figure S2). On the gene level, gene 15 

expression values for all samples from a given tissue were normalized using the following 16 

procedure: 1) read counts were normalized between samples using trimmed mean of M-values 17 

(TMM); 2) genes were selected based on expression thresholds of ≥0.1 TPM in ≥10% of 18 

samples, and > 3 reads (unnormalized) in ≥10% of samples for both diet conditions; 3) 19 

expression values for each gene were inverse normal transformed across samples. After the 20 

quality controls, we obtained 570 high-quality RNA samples and 20,224 genes for downstream 21 

analyses.  22 

 23 

Genotype and imputation 24 

WGS data was collected and provided by the Wall lab, with most of the animals having a low 25 

coverage genome (Figures 2A)72. We generated a reference panel using SHAPEIT4 from 202 26 

high-coverage (>10X) baboons from the same colony. SHAPEIT4 is a fast and accurate method 27 

for estimation of haplotypes (i.e. phasing) for SNP array and high coverage sequencing data73. 28 

To increase the accuracy of phasing, we incorporated pedigree information by including sets of 29 

pre-phased genotypes (i.e. haplotype scaffold) derived from pedigree data using akt74. We next 30 

imputed the animals with low-coverage WGS data (<10X) using GLIMPSE. GLIMPSE is a 31 

powerful tool to impute genotypes from low-coverage sequencing data75. We validated the 32 

accuracy of imputation by imputing a pseudo-low-coverage genome. Using 30X WGS data from 33 

a baboon that was not included in the reference panel, we downsampled the reads to 4X 34 

coverage. We imputed this downsampled data and computed the squared Pearson correlation 35 

between imputed dosages (in MAF bins) and highly-confident genotype calls from the original 36 

high-coverage data (Figure S3B). For SNPs with MAF>5%, the correlation is larger than 0.9. 37 

Due to the lack of genetic maps for X and Y chromosomes, we were not able to phase or impute 38 

genotypes for the sex chromosomes, thereby including only autosomes. After excluding low 39 

allele-frequency (MAF < 5%) and monomorphic SNPs, we obtained 16,671,556 autosomal SNPs 40 

across 99 animals for downstream analyses.  41 
 42 

Cell type enrichment 43 

Cell type enrichment scores for each sample were computed by running xCell on the full TPM 44 

gene expression matrix of the 570 post-QC samples. The xCell method uses single-sample gene-45 

set enrichment analysis (ssGSEA) to score each sample and estimate the enrichment of 64 46 

reference cell types, spanning multiple adaptive and innate immunity cells, hematopoietic 47 

progenitors, epithelial cells, and extracellular matrix cells. The reference cell types are defined 48 
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by gene signatures learned from thousands of pure cell types from various sources76. The raw 1 

enrichment score per cell type is defined as the average ssGSEA score from all the cell types’ 2 

corresponding signatures. Then, the raw scores are transformed to a linear scale that resembles 3 

percentages. The cell type enrichment scores shown in the results are transformed scores. For 4 

sanity check, we examined the enrichment of representative cell types for each tissue including 5 

adipocytes, hepatocytes, and myocytes (Figure 1B). For each tissue, we fit a linear regression to 6 

test for differences in the cell type enrichment between diets while adjusting for sex, age, RIN, 7 

and batch effects.  8 

Enrichment score ~ diet + sex + age + RIN + batch + ε 9 

We corrected for multiple testing using the Benjamini-Hochberg procedure and determined 10 

significance as FDR ≤ 0.05. We visualized sample clustering using heatmaps for the 15 highly 11 

enriched cell types with both mean and median enrichment scores > 0.05 in at least one tissue 12 

(Figure S7A). We calculated correlations between the enrichment and age, sex, and diet in each 13 

tissue using Spearman’s correlation test (Figure S7B).  14 
 15 

Differential expression 16 

We performed differential expression (DE) analysis using dream. Dream uses a linear mixed 17 

model to increase power and decrease false positives for RNA-seq datasets with repeated 18 

measurements77. In each tissue type, we set diet, sex, age, and RIN as fixed effects and 19 

individual and batch as random effects in a linear mixed model. We first used sva78 to identify 20 

surrogate variables for unknown sources of variation. Using the function num.sv, we identified 21 

zero latent factors that need to be estimated and accounted for. Using dream, we estimated 22 

precision weights, fit the model on each gene using the Satterthwaite approximation for the 23 

hypothesis test by default, and applied empirical Bayes shrinkage on the linear mixed model.  24 

exp ~ diet + sex + age + RIN + batch + ID + ε 25 

The response variable `exp` is a vector of TMM-normalized expression level of all samples for a 26 

given gene. ε is normally distributed error modeled with precision weights via an iterative 27 

optimization algorithm. Hypothesis testing is performed by specifying a contrast matrix that is a 28 

linear combination of the estimated coefficients and evaluating the null model. Genes with an 29 

FDR-adjusted p value < 0.01 were considered DE genes. We applied mash to estimate sharing of 30 

DE across tissues. mash is a powerful statistical method to estimate and test for effects across 31 

conditions while accounting for the sharing information34. For all tested genes, we provided the 32 

effect size and corresponding standard error matrices estimated from dream to mash to jointly 33 

model differential expression. We filled missing values with an effect size of 0 and a standard 34 

error of 10 for genes excluded for low expression in a particular tissue. We estimated paired-wise 35 

sharing by LFSR < 0.01 in at least one condition and the magnitude of effect sizes > 1.5 between 36 

conditions from mash (Figure S4B).  37 
 38 

Sex-biased differential expression 39 

We performed sex-biased differential expression analysis using the same procedures. We defined 40 

sex-biased diet-responsive (DR) effect on gene expression as difference in diet effect on gene 41 

expression between males and females. Specifically, when the expression level of a gene is 42 

altered in response to diet, and when this altered response differs between males and females, we 43 

call this a sex-biased diet-responsive effect on gene expression. We fit a linear mixed model 44 

using dream while accounting for age, RIN, batch and individual effects.  45 

exp ~ diet_sex + age + RIN + batch + ID + ε 46 

In each tissue type, we set diet_sex (combination of diet and sex), age, RIN, and batch as fixed 47 

effects and individual as a random effect in a linear mixed model. dream allows us to perform a 48 
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hypothesis test of a linear combination of coefficients by using a contrast matrix from the 1 

`makeContrastsDream` function in R package variancePartition. Here, we tested the difference 2 

of diet effect between males and females (i.e. sex-biased diet effects), asking which genes 3 

respond differently to the HCHF diet in males compared to females. The difference of 4 

differences is the interaction term in the model. Due to the smaller effective sample size in sex-5 

biased DE analysis, we used FDR < 0.05 to identify sex-biased DE genes.  6 

 7 

We replicated the results by using another approach where we searched for sex-specific DE 8 

genes in each tissue (Figure S8). We performed DE analysis for males and females separately in 9 

each tissue using the same model as described in the “differential expression” section above. We 10 

performed joint analysis by feeding the statistics from the sex-stratified DE analysis to mashr 11 

where we treated each sex and tissue combination as conditions. We identified sex-specific DE 12 

genes in each tissue by local false sign rate (LFSR) < 0.05 in at least one condition and the 13 

magnitude of effect sizes > 2.5 between diets.  14 
 15 

Gene set enrichment analysis 16 

We performed gene set enrichment analysis (GSEA) using the R package fgsea. fgsea is a 17 

powerful method that quickly estimates arbitrarily low GSEA p-values accurately based on an 18 

adaptive multi-level split Monte-Carlo scheme79. We excluded unannotated genes with a symbol 19 

beginning with “LOC” whose human orthologs have not been determined in the baboon 20 

reference genome (Panubis1.0). We used pre-ranked t-statistics for all tested annotated genes in 21 

each tissue from DE analysis as input and 50 hallmark gene sets from the Molecular Signature 22 

Database (MSigDB v7.5.1) as reference gene sets80. The hallmark gene sets summarize and 23 

represent specific well-defined biological states or processes and display coherent expression. 24 

These gene sets were generated by a computational methodology based on identifying overlaps 25 

between gene sets in other MSigDB collections and retaining genes whose gene expression 26 

levels are coordinate. Multiple testing was corrected using the Benjamini-Hochberg procedure 27 

and an FDR ≤ 0.05 and absolute NES > 1 was considered as significant enrichment. NES is a 28 

normalized enrichment score used to account for the size of a gene set and correlation between a 29 

gene set and genes in the ranked list. 30 
 31 

eQTL mapping 32 

cis-eQTL mapping was performed using a relatedness-accounted modified linear regression 33 

model implemented by MatrixEQTL81. In a regular linear regression model, the error term ε is 34 

assumed to be independent and identically distributed (i.i.d) across samples (i.e. uncorrelated 35 

homoscedastic errors). 36 

 y= α + βg + ε; ε ~ i.i.d N(0, σ2) 37 

To account for the relatedness of the samples, we used correlated errors by feeding a relatedness 38 

matrix (K) as the error variance-covariance matrix to the parameter errorCovariance in 39 

MatrixEQTL.  40 

y= α + βg + μ 41 

μ ~ N(0, Kσ2) 42 

To maintain the assumption of a linear regression model, MatrixEQTL makes an internal 43 

transformation on the input variables, which makes the errors independent and identically 44 

distributed.  45 

�� = ���/�y,     �� = ���/�g,     �� = ���/�1�  46 
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⇒ �� = α�� + β�� + δ; δ ~ i.i.d N(0, σ�)  1 
 2 

The genetic relatedness matrix was estimated from all 99 animals’ genotypes using GEMMA82 3 

and it reflects the genetic relatedness relationship between each pair of individuals. We validated 4 

the relatedness estimation by comparing with pedigree information. The matrix was subset by the 5 

animals included in each condition and if necessary, the matrix was transformed to positive 6 

definite using the make.positive.definite function from the R package corpcor for the eQTL 7 

mapping.  8 
 9 

We filtered SNPs in each tissue and diet combination by allele frequency and genotype 10 

frequency. We removed outlier SNPs with MAF < 0.05. We also filtered out loci with < 2 11 

homozygotes across samples in each tissue and diet combination. 12 
 13 

We included the known variables sex, age, RIN, and batch as covariates. To capture hidden 14 

technical or biological factors of expression variability, we infer principal components (PCs) 15 

from the gene expression matrix for each tissue x diet condition using PCAforQTL83. The 16 

number of PCs was selected and included in the model as covariates based on the elbow method 17 

and the Buja and Eyuboglu (BE) algorithm, which also approximately maximized cis-eGene 18 

discovery. We computed the correlation of the selected PCs and the known variables and 19 

removed those that were highly correlated with any of the selected PCs (R2 > 0.9).  20 
 21 

The mapping window was defined as 100kb up- and down-stream of the transcription start site. 22 

We output all results by setting the pvOutputThreshold=1. To identify genes with at least one 23 

significant eQTL (cis-eGenes), the top nominal p-value for each gene was selected and corrected 24 

for multiple testing at the gene level using eigenMT84. eigenMT is an efficient multiple 25 

hypothesis testing correction method that estimates the effective number of tests using a 26 

genotype correlation matrix and then applying Bonferroni correction. Genome-wide significance 27 

was then determined by computing Benjamini-Hochberg FDR on the top eigenMT-corrected p-28 

value for each gene.  29 
 30 

Diet-responsive eQTLs 31 

To combat the issue of incomplete power, we used mash to estimate sharing between conditions, 32 

and to identify diet-specific dynamic effects in each tissue. By jointly analyzing genetic effects 33 

across multiple conditions, mash increases power and improves effect-size estimates, thereby 34 

allowing for greater confidence in effect sharing and estimates of condition-specificity. We ran 35 

mashr using the output of eQTL mapping from MatrixEQTL of all six conditions. To avoid 36 

potential bias of including tissue-specific genes in the joint analysis for discovering tissue-37 

specific effects, we included commonly shared genes across all conditions. No effect size is post 38 

hoc set to 0 for mashr. To better learn the heterogenous patterns of sharing from data and 39 

improve the accuracy of estimates, we implemented an optimized algorithm, ultimate 40 

deconvolution85. For each gene, the top SNP with the largest univariate |Z|-statistic across all 41 

conditions was selected. The top SNPs with LFSR < 0.05 were designated as significant eQTLs. 42 

To investigate sharing of the top eQTLs between diets, we assessed sharing of effects by 43 

magnitude (effects have similar magnitude within a factor of 1.5) for the top SNPs that are 44 

significant eQTLs in at least one diet within each tissue separately. DR eQTLs are SNPs that are 45 

significant eQTLs in at least one diet for a given tissue and the fold change of effects between 46 

diets is more than a factor of 1.5. A DR eGene is a gene with at least one DR eQTL. Non-DR 47 

eQTLs are SNPs that are significant eQTLs in at least one diet for a given tissue and the fold 48 
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change of effects between diets is less than a factor of 1.5. A non-DR eGene is a gene with at 1 

least one eQTL but no DR eQTLs. 2 
 3 

Physiological QTL mapping 4 

We removed outliers by dropping any sample that had a biomarker level greater than 20-fold the 5 

interquartile range or greater than 10-fold below the median across all samples. The 6 

measurement values for each biomarker were inverse normal transformed across samples. We 7 

mapped physiological quantitative trait loci using the same genotype data and model as eQTL 8 

mapping pipeline described above, this time testing the entire genome rather than just the cis 9 

eQTL region.  10 

measurement = α + ∑k βk⋅covariatek + γ⋅genotype+ ε 11 

 12 

Colocalization 13 

We used HyPrColoc to determine whether eQTL and trait associations are explained by the same 14 

causal variant explains. HyPrColoc is an efficient deterministic Bayesian divisive clustering 15 

algorithm that uses GWAS summary statistics to detect colocalization across vast numbers of 16 

traits simultaneously86. We used the default setting of prior probability = 1x10-4 and a 17 

conditional colocalization prior = 0.025. We defined a significant colocalization as having a 18 

posterior probability larger than 0.5.   19 

 20 

Sex-biased eQTLs 21 

We define sex-biased eQTLs as those cis-eQTLs with a significantly different genetic effect 22 

between males and females. We modified the relatedness-accounted linear regression model 23 

described in the eQTL mapping section by adding a genotype-by-sex (G x Sex) interaction term 24 

and tested for significance of G x Sex interaction. This was implemented in MatrixEQTL by 25 

setting useModel = modelLINEAR_CROSS. We filtered SNPs in each tissue and diet 26 

combination by removing outlier SNPs with MAF < 0.05 and loci with < 2 homozygotes across 27 

samples in each sex group. We used the same covariates, mapping window, and multiple testing 28 

correction approach as described above.  29 
 30 

expression = α + ∑k βk⋅covariatek + γ⋅genotype+ δ⋅genotype⋅sex + ε 31 
 32 

Comparison of genic features 33 

We compared genic features of DR eGenes, nonDR eGenes, and all eGenes in each tissue. We 34 

calculated the TSS count of a given gene by the number of promoter peaks measured by the 35 

FANTOM5 project using Cap Analysis of Gene Expression (CAGE). We estimated enhancer 36 

activity of a given gene by computing the accumulative enhancer length across 131 cell or tissue 37 

types predicted based on the activity-by-contact (ABC) model (ABC score > 0.05). We defined 38 

loss-of-function (LoF)-intolerant genes by pLI score > 0.9 using the statistic from 39 

gnomAD.v2.1.1. For Gene Ontology (GO) analysis, we focused on 41 broadly unrelated GO 40 

terms that are used in Mostafavi et al. For enrichment in transcription factors (TFs), we used the 41 

official list of human TFs (v1.01) from Lambert et al. which includes 1639 human TFs. For all 42 

the analyses, we only included the genes that are shared between the testing set for eQTL 43 

mapping in this study (n=14814) and the reference set of the interest. Enrichment tests were 44 

performed using Fisher’s exact test.  45 
 46 

Enrichment with human GWAS 47 
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We obtained GWAS summary statistics from UK Biobank provided by Ben Neale’s lab64 and 1 

The NHGRI-EBI Catalog of human GWAS (v1.0.2, 2022-10-08)65. For GWAS from UK 2 

Biobank, we selected 22 HCHF-related traits or disease and linked each GWAS hit to the closest 3 

TSS among 19393 protein-coding genes from GENCODE V43. For GWAS from GWAS 4 

Catalog, we obtained 507 traits using the “MAPPED_TRAIT” column after filtering for traits 5 

with at least 30 associated genes. We classified the traits into metabolic-relevant (n=98) and non-6 

metabolic relevant traits (n=213). Ambiguous traits for the classification such as immune- and 7 

blood-relevant traits were removed.  We obtained genes associated with each trait using the 8 

“MAPPED GENE(S)” column where if a SNP is located within a gene, that gene is listed; if a 9 

SNP is located within multiple genes, all genes are included; if a SNP is intergenic, the closest 10 

gene is included. We tested for enrichment of baboon DR eGenes in human GWAS genes for 11 

each trait using Fisher’s exact test. We used Fisher’s method to calculate the combined p-values 12 

for metabolic-relevant traits and non-metabolic relevant traits, respectively.   13 
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Figure 1. Overview of the study design and dataset. 
(A) Overview of diet intervention and sample collection. 99 baboons switched from a LCLF diet to a HCHF 
diet for two years. mRNA was collected from liver, muscle, and adipose tissue before and after the diet 
switch. Collection time points are indicated by vertical bars. 
(B) Representative cell type enrichment in each tissue. 
(C) Principal components (PC) analysis of mRNA samples after quality control (n=570), with diet condition 
indicated by color.
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Figure 2. Transcriptional responses to the HCHF diet. 
(A) Diet-responsive differential expression analysis. DR genes are significantly enriched in inflammatory respons-
es in adipose (P<2x10-10) and liver (P<6x10-16), but not in muscle (P=0.1). Inflammatory response genes are 
highlighted in purple. The dashed line indicates an FDR threshold of 0.05. 
(B) Cell type enrichment changes in response to the HCHF diet. Adipose and liver are significantly enriched for a 
variety of immune cells following the HCHF diet. Asterisks indicate statistical significance (ns: non-significance, 
*P<0.05, **P<0.01, ***P<0.001). 
(C) Differential expression analysis of sex-biased diet responses. Colored dots are significant sex-biased DR 
genes with an FDR threshold of 0.05. 
(D) Pathway enrichment of sex-biased DR genes. Top positive enrichments (FDR<0.05) are male-biased (blue) 
and associated with immune-related activities. Top negative enrichments (FDR<0.05) are female-biased (red), 
involved in metabolic processes. The enrichment items are ranked by the normalized enrichment score from top to 
bottom.
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Figure 3. Diet-responsive genetic regulatory effects. 
(A) Discovery and overlap of DR eQTL-gene pairs across tissues. 
(B) A liver-specific DR eQTL (chr1:131619858:G_T) for APOA2. The eQTL effect emerged in response to 
the HCHF diet and was present only in liver (LFSRLCLF=0.49, βLCLF=0.11, LFSRHCHF=0.04, β
HCHF=0.31). Opaque colors are HCHF; light colors are LCLF. Opaque colors are HCHF; light colors are 
LCLF.
(C) Genetic association between a SNP of APOA2 (rs5082) and BMI from three independent human 
populations stratified by saturated fat intake (<22 g/d [low] and >22 g/d [high]). The populations are from 
the Boston–Puerto Rican Centers on Population Health and Health Disparities (Boston–Puerto Rican) 
Study, the Framingham Offspring Study (FOS), and the Genetics of Lipid Lowering Drugs and Diet Network 
(GOLDN) Study. Error bars represent standard deviation of effect size. Error bars represent standard 
deviations. 
(D) A sex-biased eQTL (chr9:8884799:C_T) for OLR1. The regulatory effect of this SNP was present in 
both males (blue) and females (red) with a discordant allelic effect, but it was not detected in sex-combined 
analysis (purple). Opaque colors are HCHF; light colors are LCLF. Opaque colors are HCHF; light colors 
are LCLF.
(E) Sex-specific association between the variant in OLR1 (rs11053646) and carotid plaque from 287 
Dominican Hispanic individuals in the Genetic Determinants of Subclinical Carotid Disease Study. The 
phenotypes include plaque presence and sub-phenotypes (multiple, thick, irregular, and calcified plaque), 
determined by high resolution B-mode carotid ultrasound. Asterisks indicate statistical significance (ns: 
non-significance, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). Error bars represent 95% confidence 
interval of odds ratio. Error bars correspond to 95% confidence intervals.
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Figure 4. Genetic architecture of diet-responsive gene expression.  
(A) Distance of DR eQTLs (red), nonDR eQTLs (blue), and all eQTLs (green) to the TSS of the target 
gene. The overlaid histograms show distance-to-TSS distribution in each group of eQTLs in 5Kb bins. 
The curves show the kernel density estimate for each group of eQTLs. 
(B-D) Genic features of DR eGenes (red), nonDR eGenes (blue), and all eGenes (green), respectively. 
Horizontal dashed lines depict the average number of the corresponding feature across all genes that 
were tested in eQTL mapping. (B)Average number of TSS. (C) Average accumulative enhancer length 
per tissue/cell type. (D) Fraction of selectively constrained genes (pLI > 0.9). Error bars represent stan-
dard deviations.
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Figure 5. Enrichment of baboon DR eGenes in human GWAS.  
(A) Enrichment of human GWAS genes for 22 HCHF-related traits among DR eGenes, non-DR eGenes, and 
all eGenes. The color map represents enrichment (red) or depletion (blue) by enrichment Z scores. 
(B) Q-Q plot for enrichment of baboon DR eGenes in human trait- or disease-associated genes from GWAS. 
Orange dots correspond to p-values of enrichment tests for metabolic-relevant traits relative to uniformly 
distributed p-values (dashed line). Gray dots correspond to p-values of enrichment tests for non-metabolic 
traits. 
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