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ABSTRACT 
 
A longstanding engineering ambition has been to design anthropomorphic bionic limbs: devices that look 
like and are controlled in the same way as the biological body (biomimetic). The untested assumption is 
that biomimetic motor control enhances device embodiment, learning, generalization, and automaticity. 
To test this, we compared biomimetic and non-biomimetic control strategies for able-bodied participants 
when learning to operate a wearable myoelectric bionic hand. We compared motor learning across days 
and behavioural tasks for two training groups: Biomimetic (mimicking the desired bionic hand gesture with 
biological hand) and Arbitrary control (mapping an unrelated biological hand gesture with the desired 
bionic gesture). For both trained groups, training improved bionic limb control, reduced cognitive reliance, 
and increased embodiment over the bionic hand. Biomimetic users had more intuitive and faster control 
early in training. Arbitrary users matched biomimetic performance later in training. Further, arbitrary users 
showed increased generalization to a novel control strategy. Collectively, our findings suggest that 
biomimetic and arbitrary control strategies provide different benefits. The optimal strategy is likely not 
strictly biomimetic, but rather a flexible strategy within the biomimetic to arbitrary spectrum, depending on 
the user, available training opportunities and user requirements. 
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Introduction 
 
In an iconic scene in science-fiction cinema, Luke Skywalker is shown examining his new bionic prosthetic 
hand (1). The device appears to, nearly perfectly, mimic a biological hand in its visual appearance and 
function. The control of the hand appears intuitive, such that Luke can immediately manipulate the individual 
digits with high dexterity. While today’s technology is far from Skywalker’s, the design of artificial prosthetic 
hands has steadily innovated appearance and functionality to be increasingly like a biological hand: from 
16th century iron-clad hands with no manipulability, 20th century body-powered hook devices capable of 
simple grasping (2) to modern multi-gestural bionic hands that can be operated via EMG pattern-recognition 
control systems [Coapt LLC Complete Control system; Ottobock Myo Plus; for a review of available bionic 
prosthetic hands, see (3)]. Driving much of the previous research and development in prosthetics, as well 
as the future trajectory of this industry, is the long-standing engineering ambition to design anthropomorphic 
artificial limbs: devices that look like and are controlled in the same way as the biological body, i.e., 
biomimetic (4). Biomimetic design has also driven the development of more invasive human-machine 
interfaces such as artificial sensory feedback systems (5–11), as well as brain computer interfaces (12). 
Across these various approaches, biomimetic-inspired design in human-machine interfaces is predicated 
on the (largely untested) assumption that biomimetic devices potentially allow users to recruit pre-existing 
neural resources supporting the biological body to assist device control, thereby enhancing device learning, 
generalization, sense of embodiment, and automaticity. But are these assumptions that underlie biomimetic 
design valid?  
 
If these assumptions are valid, we would expect the brain to integrate neural representations of external 
devices with the biological body to support an efficient recruitment of neural body resources. However, one 
growing body of evidence has suggested that this may not be feasible. Recent neuroimaging studies have 
found that individuals with extensive experience using a device as a hand replacement (prosthetic hands 
or expert grasping tools) neurally represent their devices less like a biological hand (i.e., more distinct 
representations), as compared to novices (13, 14). So then, why should devices be designed to mimic the 
body if the brain doesn’t seem to process, even the most highly used, external devices in the same way as 
a biological body-part? Moreover, considering the stark differences between biological and modern bionic 
limbs (e.g., response time, dexterity, functionality, aesthetics, comfort/fit, weight, durability, sensory 
feedback), there are multiple ways in which biomimetic interfaces may actually introduce neurocognitive 
conflicts for users between pre-existing information/resources for the biological body and those for the 
artificial device (15). Lastly, considering that most surveys of prosthesis users report high rates of prosthesis 
dissatisfaction and complete device abandonment (16, 17), a critical re-evaluation of the research priorities 
driving development of these devices is warranted. In particular, it is vital to evaluate non-biomimetic control 
strategies that prioritize other design considerations (such as user requirements) over explicit biomimetics.  
 
Here, we compared biomimetic and non-biomimetic motor control strategies directly while participants 
learned to operate a bionic hand. As a striking alternative to biomimetic control, we incorporated an arbitrary 
(non-biomimetic) control strategy. Based on the neurocognitive assumptions underlying biomimetic design, 
this strategy should provide no direct benefits for the user. The primary rationale of the arbitrary strategy is 
to provide a complete contrast to biomimetic. To test bionic hand skill learning, we trained able-bodied 
participants (n=40) to use a wearable myoelectric bionic hand (Figure 1). We assessed motor learning on 
multiple bionic hand skills across 4 training days (2-3 hours per day) and 2 testing days for the training 
groups: Biomimetic (n=20; mimicking the desired bionic gesture with biological hand) and Arbitrary (n=20; 
mapping an unrelated hand gesture with the desired bionic gesture). After training, we assessed how well 
the learning for each control strategy would generalize to a novel control strategy. We also tested a control 
group (n=20) that received no bionic hand training (i.e., the Untrained group). Based on the assumptions 
underlying biomimetic-inspired design, one would predict that biomimetic control would provide an 
increased sense of embodiment, better performance, generalization, and more intuitive control. In contrast, 
due to potential neurocognitive conflict associated with biomimetic control, our (pre-registered) core 
prediction was that training using an arbitrary control strategy might show increased performance over 
training, as well as post-training generalization to a novel control mapping (for pre-registered predictions 
see https://osf.io/3m592/). In contrast, biomimetic control might provide specific advantages in short-term 
performance and automaticity (more intuitive control). Additionally, we predicted that, regardless of the 
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control type, bionic hand skill learning would be associated with increased sense of embodiment and motor 
control over the course of training. 
 

Figure 1. Experimental design of the study. (A) Bionic hand system attached to the participant’s left arm. 
The i-LIMB Quantum bionic hand is controlled by a Coapt pattern recognition controller (18) using signals 
from surface electromyography (EMG) electrodes (8 channels) positioned around the muscles of the 
forearm (for a detailed breakdown of device components, see Methods). The biological hand was bounded 
to minimize visual differences between the two control strategies. (B) Biomimetic and arbitrary users 
calibrated their EMG controller so that specific biological hand gestures would engage specific bionic hand 
gestures (for the biomimetic strategy, these were matched). (C) Experimental design for the trained groups. 
The left column depicts examples of the training tasks included in a daily training session (see Supp. Video 
1). The middle column depicts the timeline for each of the study visits. The right column depicts when the 
bionic hand gestures were introduced to participants in their training (on day 1 (D1): open and close; D2: 
pinch; D3: tripod). In the post-training generalization session, all participants (including the untrained 
participant group) learned to control the hand using a new set of hand gestures (i.e., new mapping). D=day. 
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Results 
 
To compare biomimetic and arbitrary control strategies, we tested 5 key features of bionic hand skill 
learning: (i) sense of embodiment, (ii) early training performance, (iii) late training performance, (iv) 
control automaticity and (v) post-training generalization to a new control mapping. To quantify motor 
performance, we focused on three myoelectric control skills: speed, dexterity and gesture switching.  
 
To ensure any differences in skill learning were not driven by intrinsic differences in motor ability, prior to 
training, we tested participants on a ballistic reaching task using either the bionic hand (not yet turned on) 
or their biological left hand. We observed that all three groups had similar pre-training motor ability when 
wearing the bionic hand (F(2,54)=0.009, p=0.991; BFincl=0.14), as well as with their biological hand 
(F(2,54)=1.012, p=0.370; BFincl=0.291; Supp. Figure 1). Next, to ensure that any differences in skill learning 
were not driven by differences between EMG classifier performance for the biomimetic and arbitrary 
control strategies, we tested classifier performance immediately following device calibration. We found 
that the classifier had high performance for all participants with no differences in accuracy between 
control strategies (biomimetic average classification accuracy: 93% ± 5%; arbitrary: 92% ± 7%; 
W=167.0, p=0.631; BF10=0.37; Supp. Figure 2).). Therefore, any group differences potentially observed in 
skill learning could not be attributed to intrinsic differences in motor ability or classifier performance 
between control strategies.  
 
Biomimetic and arbitrary control show similar increases in bionic hand embodiment 
 
To compare the two control strategies, we first assessed changes in the perceived (phenomenological) 
sense of embodiment of the bionic hand. Before and after training, participants were asked to respond to 
statements related to key embodiment categories: body ownership (“it seems like the robotic hand is part 
of my body”), agency (“it seems like I am in control of the robotic hand”) and visual appearance (“it seems 
like I am looking directly at my own hand, rather than a robotic hand”; Figure 2A; for a list of all 
questionnaire statements see Supp. Table 1). Comparing pre- to post-training scores, all trained 
participants reported a significant increase of embodiment in body ownership (W=84.0, p<0.001), and 
agency (W=12.0, p<0.001), but not visual appearance (W=137.0, p=0.132; BF10=0.48; Figure 2B). As 
subjective reports are particularly malleable to task demands (19), we also compared the training group to 
the untrained group (responding to the statements one week apart). This allowed us to confirm increased 
embodiment (post- minus pre-training ratings) in the trained groups relative to the untrained group [body 
ownership: W=263.0, p=0.045; agency: W=81.0, p<0.001; visual appearance: W=169.50, p<0.001; Figure 
2C]. Importantly, we did not find differences between biomimetic and arbitrary users in the magnitude of 
this increase in embodiment reports, with the biomimetic/arbitrary group showing qualitatively (though not 
significantly) greater increase for ownership/agency, respectively [body ownership: W=266.50, p=0.143; 
BF10=0.53; agency: W=193.50, p=0.675; BF10=0.35; note that values are not corrected for multiple 
comparisons]. Overall, contrary to the common assumptions of biomimetic design, biomimetic control 
didn’t provide an increased sense of embodiment. Given no differences in perceived embodiment, this 
raised the interesting question whether we might observe differences between groups in skill learning. 
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Figure 2. Trained participants show increased sense of bionic hand embodiment, regardless of 
control strategy. (A) An example item from the questionnaire used, designed to probe subjective sense 
of embodiment (all statements listed in Supp. Table 1). Scores were averaged over items of the same 
category (e.g., all body ownership questions averaged into a single value). (B) After training, trained 
participants showed significant increases in their sense of bionic hand embodiment on statements 
reflecting body ownership and agency. (C) Trained participants showed significant increases in 
embodiment scores compared to untrained participants on all categories, regardless of the control 
strategy users trained with. There were no significant differences between biomimetic and arbitrary users. 
Circles depict individual subject means (across relevant items). Values indicate group means ± standard 
error. 
 
Biomimetic control provides some early training speed benefits 
 
We next focused on early training performance. To measure control speed, we quantified the ability to 
operate the hand using completion time on a modified version of the Southampton Hand Assessment 
Procedure (SHAP; Supp. Video 1). During the first training day, all participants were able to successfully 
complete the task, but biomimetic users were faster than arbitrary users (Figure 3A; D1 performance: 
W=85.0, p=0.001). Next, to quantify dexterity, we used the virtual eggs test which measures a users’ 
ability to gently grasp and transport fragile (magnet-fused) blocks (i.e., ‘eggs’) without dropping or 
breaking them (Supp. Video 1). During the first training day, the majority of participants (75%) could not 
successfully transfer one egg without breaking it within the allocated time and there were no group 
differences (Figure 3B; D1 performance: W=185.50, p=0.897; BF10=0.34). To quantify the ability to switch 
between bionic hand gestures (close and pinch), we used completion time on a block stacking task that 
required participants to successfully grasp and transfer objects using the bionic hand close and pinch 
gestures, switching back and forth (Supp. Video 1). This ability could only be first tested on D2 because 
participants were only then trained on the second grasping gesture (pinch), thus providing gesture 
switching functionality. During the first attempt of this task, we observed no group differences in 
performance (Figure 3C; D2 performance: W=223.0, p=0.537; BF10=0.37). Overall, these findings suggest 
that biomimetic control affords early training benefits in speed, but not for dexterity and gesture switching. 
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Figure 3. Bionic hand skill learning on speed, dexterity and gesture switching tasks. (A) Trained 
participants improved in control speed on all gestures. For the close gesture, biomimetic control was 
faster than arbitrary control across training sessions. (B-C) Trained participants improved in control 
dexterity (number of successful/unbroken egg transfers) and gesture switching across training sessions, 
regardless of control strategy. For gesture switching, because participants were trained on new grasping 
gestures each training day, we used two versions of this task. The 2 gestures version required 
successfully switching between close and pinch bionic gestures. The 3 gestures version required 
successfully switching between close, pinch and tripod bionic gestures. No significant differences were 
found between control strategies. See Supp. Video 1 for examples of all tasks. All other annotations are 
the same as described in Figure 2.  
 
 
 
 
 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.07.525548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.525548


Biomimetic advantage reduces with more training 
 
Next, we examined late training motor performance (i.e., across the subsequent training days). For 
speed, on the SHAP, biomimetic users continued to outperform arbitrary users. All trained participants 
continued to improve performance with training (Figure 3A; main effect of day: F(3,114)=39.526, p<0.001). 
While the group differences narrowed with training (significant interaction between day*group: 
F(3,114)=5.659, p=0.001), biomimetic users were still faster than arbitrary users even in the last day of 
training (D4) (W=96.0, p=0.004). We also tested users on a different version of the SHAP that tests speed 
when using the pinch and tripod gestures. For these tasks, we observed significant improvements for all 
trained participants (Figure 3A; main effect of day; pinch: F(2,78)=48.435, p<0.001; tripod: F(1,39)=6.517, 
p=0.015), but no group differences on either task [main effect of group; pinch: F(1,39)=1.5e-5, p=0.997; 
BFincl=0.67; tripod: F(1,39)=0.676, p=0.416; BFincl=0.38; for all reported comparisons see Supp. Table 2].  
 
For dexterity, we did not observe any group differences emerging with training. All trained participants 
improved in successful egg transfers across the training days (Figure 3B; main effect of day: 
F(3,111)=14.628, p<0.001) and there were no differences between groups (main effect of group: 
F(1,37)=0.233, p=0.632; BFincl=0.27; for all statistical comparisons see Supp. Table 2). On the last day of 
training (D4), both groups performed similarly (W=209.0, p=0.598; BF10=0.32).  
 
Similarly, for gesture switching (i.e., switching between 2 grasping gestures: close, pinch), all trained 
participants improved in gesture switching speed [Figure 3C; main effect of day: F(2,76)=13.766, p<0.001] 
and there were no significant differences on average performance between groups (main effect of group: 
F(1,38)=0.044, p=0.835; BFincl=0.63). Additionally, when all gestures (3 grasping gestures: close, pinch, 
tripod) were incorporated into the task, we found no differences between groups (Figure 3D; 
W=172.0, p=0.646; BF10=0.34).  
 
Overall, we observed a speed advantage for biomimetic users. However, this advantage was only 
observed for the close gesture (and its specific version of the SHAP) and the advantage was seen to 
reduce with training. Additionally, biomimetic control did not show any advantages, relative to the 
arbitrary, when learning dexterity and gesture switching. Instead, we found that training led to 
improvements, regardless of the control strategy. 
 
Biomimetic control provides more automatic control early in training 
 
Another key component for successful integration with a bionic limb is the ability to multitask, such that 
attentional resources (e.g. focused exclusively on online control and movement planning) can be diverted 
towards other tasks without interfering with device control (i.e., control automaticity). On the first and last 
days of training, we tested the impact increased cognitive load would have on performance. The task 
required participants to perform arithmetic operations while simultaneously using the bionic hand to stack 
blocks (Supp. Video 1). To quantify the impact of increased cognitive load, we compared the number of 
blocks stacked with the counting task versus without (baseline). For counting performance, we observed 
that both groups performed the task similarly (main effect of group: F(1,38)=0.025, p=0.874; BFincl=0.32). 
For motor performance, we observed significant differences between groups across days (interaction 
between day*group: F(1,38)=9.896, p=0.003; Figure 4A). Looking at the first and last days separately, we 
observed that, on the first day of training, arbitrary users were more cognitively impaired than biomimetic 
users (W=286.50, p=0.019). However, on the last day of training, both groups were similarly affected by 
the cognitive load (W=176.0, p=0.533; BF10=0.36), suggesting that biomimetic control is more automatic 
early in training compared to arbitrary control, but arbitrary control becomes just as intuitive with 
continued training.  
 
Another means of measuring automaticity is simply asking participants to rate their subjective sense of 
control difficulty at the end of every training day (see Methods). In these reports, all trained participants 
reported a significant decrease in control difficulty across days (Figure 4B; main effect of day: 
F(3,114)=21.298, p<0.001), but there were no average group differences in ratings across days (main effect 
of group: F(1,38)=0.041, p=0.840; BFincl=0.56).  
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Overall, we observed that biomimetic control provided increased control automaticity early in training 
compared to arbitrary. However, this advantage diminished when assessed later in training. Additionally, 
we did not find a significant impact of the control strategy on the subjective experience of control difficulty. 
 

 
Figure 4. Arbitrary control is less automatic early in training but similar to biomimetic later. (A) 
Control automaticity was computed by dividing motor performance (number of blocks stacked) when 
simultaneously performing a counting task by motor performance alone. By this measure, higher values 
indicate less cognitive encumbrance, or more automatic control. Biomimetic control showed superior 
performance earlier in training, compared to arbitrary control. However, by the end of training, arbitrary 
control produced similar performance to that observed in the biomimetic group. (B) All trained participants 
reported control got easier across the training sessions, regardless of the control strategy. All other 
annotations are the same as described in Figure 2.  
 
Arbitrary strategy increases generalization to new control mappings 
 
The ability to perform under a different set of conditions is a crucial aspect of prosthesis control. To test 
how well the learning for each control strategy generalizes to a new control mapping, we included a final 
post-training testing session where we re-calibrated the controller for all participants with a new set of 
gestures (see Methods and Figure 1C). All participants used the same set of gestures for this session. 
With this new control mapping, we tested users’ speed, dexterity and control difficulty. We, also, trained 
the untrained users to operate the hand with these gestures, providing a baseline for first-time use.  
 
First, when testing speed on the SHAP in the generalization session, we found the biomimetic group 
matched performance of the untrained users (Figure 5A; W=202.0, p=0.534; BF10=0.38). Alternatively, the 
arbitrary group was significantly faster than untrained users (W=239.0, p=0.039). For trained participants, 
we also compared generalization speed performance to their first (D1) and last (D4) training day 
performance, when using their original control mappings. We observed a trend for significant group 
differences across days [D4 vs. generalization; interaction between day*group: F(1,38)=3.80, p=0.059]. 
Specifically, we found that biomimetic users speed dropped significantly between the two days (D4 vs. 
generalization: W=10.0, p<0.001), arbitrary users’ speed did not change (D4 vs. generalization: 
W=106.0, p=0.985; BF10=0.24).  
 
Second, when testing dexterity in the generalization session, we, similarly, observed that biomimetic user 
performance matched the untrained group (Figure 5B; W=170.0, p=0.761; BF10=0.33), even returning to 
their pre-training (D1) performance level (W=17.50, p=0.328; BF10=0.35). Alternatively, the arbitrary group 
performed significantly better than both the biomimetic (W=104.50, p=0.013) and untrained groups 
(W=88.50, p=0.010). When comparing performance across days directly (D4 vs. generalization), we 
observed significant group differences in dexterity across days [interaction between day*group: 
F(1,37)=6.603, p=0.014]. Specifically, we found that biomimetic users’ dexterity dropped significantly 
between the two days (W=116.0, p=0.002). Alternatively, arbitrary users’ dexterity was the same as their 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.07.525548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.525548


previous training day (W=39.50, p=0.70; BF10=0.24), qualitatively even performing slightly better (D4 
average eggs: 4.4; generalization average eggs: 4.6). In other words, while the biomimetic group showed 
no indication of generalization from the original to the new control mapping, the arbitrary strategy led to a 
full generalization of learning. 
 
Finally, we observed that user’s subjective sense of control difficulty in the generalization session also 
supported these findings. We found that biomimetic users rated control difficulty in the generalization 
session similarly to the untrained group learning to operate the device for the very first time (Figure 5C; 
W=194.0, p=0.688; BF10=0.33), and even as difficult as biomimetic users’ first training day (D1 vs. 
generalization: W=72.50, p=0.867; BF10=0.25). Alternatively, arbitrary users reported control to be 
significantly easier than both the biomimetic (W=310.0, p=0.003) and untrained groups (W=287.50, 
p=0.002). Further, arbitrary users reported the difficulty to be as easy as their previous training day with 
their original control mapping (W=104.0, p=0.427; BF10=0.29) and qualitatively even slightly easier (D4 
mean: 3.58 out of 10; generalization mean: 3.07 out of 10). When comparing responses across days 
directly (D4 vs. generalization), we observed significant differences in ratings between biomimetic and 
arbitrary groups [significant interaction between day*group: F(1,38)=6.857, p=0.013]. Specifically, we found 
that biomimetic user ratings were significantly more difficult in the generalization session compared to D4 
(W=15.50, p=0.012). Alternatively, arbitrary user ratings were equally as difficult as their previous training 
day (W=104.0, p=0.427; BF10=0.27), qualitatively even slightly easier (D4 rating: 3.5; generalization 
rating: 3.1). Collectively, this demonstrates that arbitrary training provides increased control generalization 
to a novel control mapping. 
 

 
Figure 5. Arbitrary users show increased generalization. Performance on (A) speed, (B) dexterity and 
(C) control difficulty assessments for the generalization session. As a reference for previous performance, 
the dashed line denotes group mean performance on the last (D4) training session with their original 
control mappings. Biomimetic users showed significant impairments in comparison to performance during 
D4. Further, performance in the generalization tasks was similar between the biomimetic group and 
untrained participants using the bionic hand for the first time. Arbitrary users showed increased 
generalization such that performance with the new control strategy in the generalization session was 
similar to performance with the trained strategy on D4. All other annotations are the same as described in 
Figure 2. 
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Discussion 
 
It is a widely held assumption that control strategies designed to mimic the biological body might provide 
unique benefits to the user in terms of device learning, generalization, sense of embodiment, and 
automaticity (5, 8, 11, 20–27). Contrary to this view, across a multitude of tasks, we observed few 
advantages for biomimetic control. We confirmed our predictions that biomimetic control was more 
intuitive for users, particularly in the early stages of learning (based on the cognitive load and speed 
tasks). However, when task difficulty was increased (more complex gestures, dexterous grasping and 
gesture switching), these advantages were mostly absent when compared to arbitrary users. Further, we 
observed that arbitrary users showed increased generalization to a new control mapping, while 
biomimetic users showed less capacity to generalize, performing similar to untrained participants. In 
addition, users subjective experience of perceived embodiment and control difficulty was not impacted by 
control strategy. Collectively, our findings provide a more balanced perspective of the neurocognitive 
challenges and opportunities of biomimetic and non-biomimetic control strategies. By challenging some of 
the core assumptions underlying biomimetic inspired design, our findings open up the potential for non-
biomimetic control solutions for users. 
 
Our findings are consistent with anecdotal evidence suggesting that arbitrary control approaches can be 
viable and even advantageous for artificial limb control. For example, the previous prosthetic hand 
winners at the Cybathalon – the Olympics for bionic technology – used devices that were explicitly 
designed to maximize functionality over biomimicry [2016 winner: Bob Radoc (pilot), DIPO Power Team 
(designers), Grip 5 Prehensor hand (device) and 2020 winner: Krunoslav Mihic (pilot), Andrj Đukić 
(designer), Maker Hand (device) (28, 29)]. Additionally, on virtual tasks, research in amputees has shown 
that arbitrary myoelectric control in amputees can be learned, with one study showing amputees can 
learn to control an 8-target arbitrary myoelectric interface (30, 31). Other studies have highlighted the 
emergence of arbitrary muscle synergies for EMG control (32, 33). Most recently, new evidence 
supporting the versatility of non-biomimetic control has come from the field of motor augmentation. For 
example, people are able to rapidly learn to use a new body part (an extra robotic thumb) using 2 degrees 
of freedom operated via the users’ toes (34, 35). Finally, efforts to prioritize functionality over biomimicry 
has led to the development of multiple creative and compelling control schemes for prosthetics (e.g., the 
use of footswitches, body powered devices, harnessing linear potentiometers, inertial measurement units 
to measure arbitrary gestures, RFID tags, proximity switches, co-contraction switches, etc.). Collectively, 
this evidence highlights the immense promise of non-biomimetic control solutions for assistive bionics.  
 
Why did arbitrary control provide comparable degree of skill, and even outperform biomimetic control on 
generalization? Paradoxically, this could be a result of the cognitively challenging task demands related to 
adopting atypical gestures for grasp control. Our ability to skillfully use our hands is developed over a 
lifetime of experience, in which information on motor synergies, object knowledge and action semantics is 
meticulously weaved to construct efficient motor command pipelines (36). Arbitrary users have to learn to 
associate hand motor commands with entirely unrelated action goals (previously associated with different 
motor commands). This introduces high amounts of contextual novelty into arbitrary user’s skill learning. 
While early in training, this might be disadvantageous (as demonstrated by arbitrary control’s increased 
cognitive demands relative to the biomimetic group), there is ample evidence to suggest that this could 
actually improve overall learning. For example, learning with a more varied input that increases task 
difficulty is initially slower, but typically yields better generalization [for a review see (37)]. Accordingly, 
research has demonstrated that more complex associations end up being learned more robustly and are 
better retained, than easy-to-learn associations (38). One potential explanation for this is that easy-to-
learn associations (in our study, biomimetic control) rely more heavily on working memory which allows 
for very fast learning of information that is not durably retained, while learning complex associations relies 
on reinforcement learning which allows for slow, integrative learning of associations that is robustly 
stored. In summary, the contextual differences between the strategies and the recruitment of 
reinforcement learning for arbitrary learning may potentially explain why arbitrary control outperformed 
biomimetic when generalizing to a novel control mapping.   
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The considerations above suggest why arbitrary strategies can be beneficial, but we must also consider 
the alternative perspective – that is – could biomimetic control be disadvantageous? There are several 
potential explanations why biomimicry could have disadvantages, primarily due to its’ ambition to stay so 
close to the body. While modern bionic limbs are increasingly biomimetic in design and control, they are 
not at all the same as biological limbs. Modern prosthetics have speed delays, limited dexterity, and 
functionality, making their operation a lot clumsier than a biological hand. Devices are generally heavy, 
not particularly durable and their sensory feedback is impoverished. These discrepancies between 
biological and bionic limb control may be promoting an ‘Uncanny Valley’-type phenomenon for users (39). 
The Uncanny Valley proposes that an individual’s response to a humanoid robot shifts from empathy to 
repulsion as the humanoid approaches, but fails to achieve, humanlike appearance [e.g., Tom Hanks in 
the Polar Express (40); the humanoid horror doll in M3gan (41)]. While this phenomenon is often used in 
relation to how we see artificial bodies, the framework also seems relevant to how we control artificial 
bodies. As device control become more and more biomimetic, but not capable of reaching true 
biomimicry, it may be creating a more active neurocognitive competition between the priors, sensory 
predictions, and motor commands for how amputees controlled their pre-existing limb and how they 
represent and control their prosthetic limb. Therefore, non-biomimetic control solutions may be more 
beneficial because the motor control plan can be developed from scratch (i.e., independent of pre-existing 
biological limb control) and therefore can avoid any potential conflict.  
 
It is important to note that our experimental design may have potential limitations. First, due to the limited 
state of modern prosthetic technology, the biomimetic strategy we implemented was not truly pure 
biomimetic (i.e., the same as biological hand control). However, if we consider biomimicry as a spectrum 
of strategies closer and further away from the biological body, the biomimetic control we tested falls closer 
to biological control than the arbitrary control. Second, our training was restricted to only 4 daily lab-based 
sessions, and it is possible that with additional training more differences would have emerged between 
the groups. While this might seem like limited training, a recent survey reported that about half (43%) of 
amputees that were trained to use a prosthesis received between just 1 to 3 training visits with their 
device (16). Furthermore, the arbitrary gestures we have tested involved simple finger extensions, and it 
is likely that more careful curation of control mapping could have produced much greater benefits for the 
arbitrary control. For these potential limitations, in our view, the fact that arbitrary users matched 
biomimetic performance after such minimal training is promising. A further limitation is that we tested 
able-bodied participants instead of limbless participants, the clinical population this research will impact. 
However, considering the primary aim of the study was to mimic bionic limb control to the biological body, 
we thought it was necessary for us to have direct access to participant’s biological limb to ensure true 
biomimicry. Moreover, research is now mounting to indicate that amputation might not induce far reaching 
changes to the motor representation of the missing limb (42–44), even with regards to motor learning 
(45). Regardless, future studies should continue to evaluate personalized control solutions for acquired 
and congenital limbless individuals. 
 
In summary, due to the current limitations in modern prosthetic technologies not yet matching those 
available to Luke Skywalker, researchers and engineers should continue exploring both biomimetic and 
non-biomimetic control solutions. While biomimetic design is an understandable starting point when 
designing human-machine interfaces, it should not necessarily be the ultimate, end-all goal. From a 
cognitive neuroscience perspective, there are multiple considerations for and against biomimetic control. 
So, practically speaking, how biomimetic should we go? Based on our findings, this depends entirely on 
the purpose of the prosthesis. If the device is intended for short-term use, simple functionality, or where 
training opportunities are limited, then biomimetic-inspired control options make a lot of sense. However, 
if the purpose is to design versatile devices with multiple functions for long-term use, at least with modern 
EMG pattern recognition technology, non-biomimetic control solutions may provide a useful means to 
enhance certain aspects of bionic hand motor learning. Further, abandoning the unrealistic ambition of 
true biomimicry opens up endless possibilities for users and engineers to develop a variety of different 
control solutions. We suggest that engineers and prosthetists involved in the commercial and clinical 
delivery of this technology should prioritize flexibility – educating users on the spectrum of biomimetic-to-
arbitrary control strategies available to them such that personalized, user-specific control strategies can 
be selected based on individual user requirements. In our experience, when users are educated with the 
knowledge and confidence that multiple control approaches are possible, there is a higher likelihood that 
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devices will meet user expectations and requirements. Personalized control strategies will help to propel 
the industry closer to the actual goal: more satisfied prosthesis users.  
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Supplementary Figures and Tables 
 

 
Supplementary Figure 1. Similar motor abilities between groups when using biological and bionic 
hands. (A) A participant performing ballistic reaches (with no corrective movements) to virtual targets 
using a digitizing tablet and stylus. The task was performed with either participant’s left biological hand or 
the bionic hand locked around the stylus (see Methods for a description). Not shown in the figure image, 
during the task, all participants wore a barber cape over the apparatus to remove any potential visual 
feedback of their arm/hand. Participants performed 60 reaches with each hand (biological and bionic) to 3 
different virtual targets (example of a participant reaches shown in panel A). The primary measure of 
motor ability we quantified is the average absolute error between reach end points and the virtual target 
location. (B) Before training, all groups made similar reaching errors when reaching with their biological 
hand or the bionic hand. (C) After-training, trained participants (biomimetic and arbitrary combined) made 
smaller reaching errors, on average, than untrained participants when using the bionic hand (W=498.0, 
p=0.020), but similar errors before training (W=397.0, p=0.551; BF10=0.29). (D) When using their 
biological hand, trained and untrained participants showed similar reaching errors both before (W=444.0, 
p=0.164; BF10=0.45) and after training (W=409.0, p=0.418; BF10=0.44). Circles depict individual subject 
means (across relevant items). Values indicate group means ± standard error. 
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Supplementary Figure 2. Similar EMG classification accuracy for biomimetic and arbitrary control 
strategies. (A) EMG-signals were acquired from the bionic hand system and classified by the Coapt 
EMG controller. (B) To measure classification accuracy, we asked participants to engage and hold each 
of the calibrated hand gestures for 20 seconds each (see Methods). During this assessment, the Coapt 
controller outputted a real-time classification decision (updated every 50ms) for which gesture was being 
performed. Comparing this output to the gesture participants were instructed to perform by the 
experimenter, we computed the classification accuracy for each gesture. The time-window of interest was 
approximately the first 2.5 seconds of each 20 second gesture trial (shown in panel B as a red window). 
The rationale for this time-window was to roughly capture the control experience during functional use. 
The data plotted depicts an example subject’s EMG activity and controller classification during the task. 
(C). Group average classification accuracy matrices for 3-gesture classes (rest, open close) groups 
assessed on D1, immediately following controller calibration. (D) Both trained groups showed a significant 
increase in average classification accuracy (main effect of day: F(1,31)=5.647, p=0.024) between the first 
(D1) and last day of training (D4). No significant differences were found between the two training 
strategies before training (W=167.0, p=0.631; BF10=0.37) or after training (W=121.50, p=0.437; 
BF10=0.37). (E) Group average classification accuracy matrices for 5-gesture classes (rest, open close, 
pinch, tripod), assessed on D4, at the end of training. (F) No differences between trained groups in 
average classification accuracy (average of the 5-motion-class diagonal; W=117.50, p=0.517; BF10=0.42). 
Circles depict individual subject means (across relevant items). Values indicate group means ± standard 
error.  
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Supplementary Figure 3. Similar classification accuracy for all groups during generalization 
session. Average classification accuracy for the generalization control mappings was calculated in the 
same way as Supp. Figure 2.   
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Supplementary Video 1. Video examples of the tasks. 
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Body Ownership 

1. “It seems like the robotic hand belongs to me” 

2. “It seems like the robotic hand is my hand” 

3. “It seems like the robotic hand is part of my body” 

4. “It feels like my robotic hand is a foreign body” 

5. “It feels like my robotic hand is fused with my body” 

6. “It seems like I have three hands” 

Agency 

1. “It seems like I can move the robotic hand fingers if I want” 

2. “It seems like I am in control of the robotic hand” 

Body image 

1. “It seems like I am looking directly at my own hand, rather than a robotic hand” 

Supplementary Table 1. Embodiment questionnaire statements divided into three categories.  
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Days Condition - Measure Statistical Test Result 
Speed – Southampton Hand Assessment Procedure 
D1,D2,D3,D4 Object1 – Completion Time RmANOVA:  

Days: 4 
Groups: 2 
 
 
 
 
Mann Whitney 
 
 
 
 
Bayes Mann-
Whitney 

Day x Group: 
F(3,114)=6.892, p<0.001 
Day: 
F(3,114)=67.970, p<0.001 
Group: 
F(1,38)=14.031, p<0.001 
 
D1: W=85.0, p=0.001 
D2: W=67.0, p<0.001  
D3: W=93.50, p=0.004 
D4: W=96.0, p=0.004 
 
D1: BF10=15.961 
D2: BF10=20.952 
D3: BF10=8.145 
D4: BF10=4.938 

Generalization Object1 – Completion Time ANOVA: 
Groups: 3 
 
Mann Whitney 
 
 
 
Bayes Mann- 
Whitney  

F(2,54) = 1.212, p = = .306 
 
 
Ctrl to Bio: W=202.0, p=0.534 
Ctrl to Arb: W=239.0, p=0.039 
Bio to Arb: W=250.0, p=0.095 
 
Ctrl to Bio: BF10 = .383 
Ctrl to Arb: BF10 = 1.505 
Bio to Arb: BF10 = .873 

D2,D3,D4 Object2 – Completion Time RmANOVA:  
Days: 3 
Groups: 2  
 
 
 
 
Mann Whitney 
 
 
 
Bayes Mann- 
Whitney 

Day x Group: 
F(2,76) = 3.491, p=0.035 
Day: 
F(2,76) = 47.583, p < .001 
Group: 
F(1,38) = 1.087, p = .304 
 
D2: W=263.0, p=0.088 
D3: W=232.0, p=0.390 
D4: W=175.0, p=0.524 
 
D2: BF10=0.722 
D3: BF10=0.384 
D4: BF10=0.453 

D3,D4 Object3 – Completion Time RmANOVA: 
Days: 2 
Groups: 2  
 
 
 
 
Mann Whitney 
 
 
Bayes Mann- 
Whitney 

Day x Group: 
F(1,38)=0.375, p=0.544 
Day: 
F(1,38)=5.196, p=0.028 
Group: 
F(1,38)=0.185, p=0.670 
 
D3: W=177.0, p=0.555 
D4: W=158.0, p=0.270 
 
D3: BF10=0.362 
D4: BF10=0.472 

Dexterity - Virtual eggs test 
D1, D2,D3,D4 Number of successful (unbroken) eggs 

transferred 
RmANOVA:  
Days: 4 
Groups:2 
 
 
 
 
Mann Whitney 
 
 
 
 
Bayes Mann- 
Whitney 

Day X Group: 
F(3,111) = 0.921, p = .433 
Day: 
F(3,111) = 14.628, p < .001 
Group: 
F(1,37) = .233, p = .632 
 
D1: W=185.50, p=0.897 
D2: W=239.50, p=0.154 
D3: W=216.0, p=0.468 
D4: W=209.0, p=0.598 
 
D1: BF10=0.349 
D2: BF10=0.648 
D3: BF10=0.389 
D4: BF10=0.328 

Generalization Number of successful (unbroken) eggs 
transferred 

ANOVA: 
Groups: 3 
 
Bayesian ANOVA 
 
 
Mann Whitney 
 
 
 
Bayes Mann 
Whitney 
 

F(2,54) = 7.787, p =0.001 
 
 
BF10=32.417 
 
 
Ctrl to Arb: W=88.50, p=0.010 
Ctrl to Bio: W=170.0, p=0.716 
Bio to Arb: W=104.50, p=0.013 
 
Ctrl to Bio: BF10=0.351 
Ctrl to Arb: BF10=2.530 
Bio to Arb: BF10=2.521 
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Gesture Switching – Block stacking 
D2,D3,D4 2 gesture version – completion time RmANOVA:  

Days: 3 
Groups: 2  
 
 
 
 
Mann Whitney  
 
 
 
Bayes Mann 
Whitney 
 

Day X Group: 
F(2,76)=3.602, p=0.032 
Day: 
F(2,76) =13.766, p<0.001 
Group: 
F(1,38)=0.044, p=0.835 
 
D2: W=223.0, p=0.537 
D3: W=194.0, p=0.689 
D4: W=154.0, p=0.149 
 
D2: BF10=0.379 
D3: BF10=0.319 
D4: BF10=0.844 

D3 3 gesture version – completion time Mann Whitney  
Bayes Mann-
Whitney 

W=172.0, p=0.646 
BF10=0.349 

Control Automaticity - Cognitive Load 
D1,D4 Control Automaticity (blocks stacked with 

load divided by blocks stacked without 
load) 

RmANOVA:  
Days: 2 
Groups: 2 
 
 
 
 
Mann Whitney  
 
 
Bayes Mann-
Whitney  

Day X Group: 
F(1,38)=9.896, p=0.003 
Day: 
F(1,38)=5.475, p=0.022 
Group: 
F(1,38)=1.753, p=0.193 
 
D1: W=286.50, p=0.019 
D4: W=176.0, p=0.533 
 
D1: BF10=286.50 
D4: BF10=0.365 

Control Automaticity - Subjective Control Difficulty 
D1, D2, D3, D4 Raw scores RmANOVA:  

Days: 4 
Groups: 2  
 
 
 
 
Mann Whitney  
 
 
 
 
Bayes Mann-
Whitney 

Day X Group: 
F(3,114)=2.924, p=0.037 
Day:  
F(3,114)=21.298, p<0.001 
Group: 
F(1,38)=0.041, p=0.840 
 
D1: W=156.0, p=0.159 
D2: W=242.50, p=0.397 
D3: W=197.50, p=0.956 
D4: W=232.0, p=0.566 
 
D1: BF10=0.824 
D2: BF10=0.382 
D3: BF10=0.312 
D4: BF10=0.377 

D4, Generalization Raw scores RmANOVA:  
Days: 2 
Groups: 2 
 
 
 
 
Mann Whitney  
 
 
Bayes Mann-
Whitney  
 
Wilcoxon signed-
rank 
 
Bayes Wilcoxon 

Day X Group: 
F(1,38)=6.857, p=0.013 
Day: 
F(1,38)=2.469, p=0.124 
Group: 
F(1,38)=7.626, p=0.009 
 
D4: W=232.0, p=0.566 
Generalization: W=310.0, p=0.003 
 
D4: BF10=0.377 
Generalization: BF10=30.395 
 
Bio: D4 vs. Gen: W=15.50, p=0.012 
Arb: D4 vs. Gen: W=104.0, p=0.427 
 
Bio: D4 vs. Gen: BF10=9.539 
Arb: D4 vs. Gen: BF10=0.279 

Generalization Raw scores ANOVA: 
Groups: 3 
 
Mann Whitney  
 
 
 
Bayes Mann-
Whitney  
 

F(2,55) = 9.178, p = < .001 
 
 
Ctrl to Arb: W=287.50, p=0.002 
Ctrl to Bio: W=194.0, p=0.688 
Bio to Arb: W=310.0, p=0.003 
 
Ctrl to Bio: BF10=0.331 
Ctrl to Arb: BF10=28.721 
Bio to Arb: BF10=30.395 

Sense of Embodiment  
Pre, Post Raw scores RmANOVA: 

Days: 2 
Groups: 2 (trained 
vs. untrained) 
 
 
 
 

Body Ownership 
Day X Group: 
F(1,58)=7.621, p=0.008 
Day:  
F(1,58)=9.158, p=0.004 
Group: 
F(1,58)=1.359, p=0.248 
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Mann-Whitney  
 
 
Bayes Mann-
Whitney 
 
Run for each 
category 
separately 
 
 
 
 
 
 

Pre: W=412.50, p=0.720; BF10=0.291 
Post: W=262.50, p=0.044; BF10=1.861 
 
Agency 
Day X Group: 
F(1,58)=39.323, p<0.001 
Day: 
F(1,58)=18.082, p<0.001 
Group: 
F(1,58)=8.530, p=0.005 
 
Pre: W=461.50, p=0.252; BF10=0.581 
Post: W=76.50, p<0.001; BF10=124.245 
 
Visual Appearance 
Day X Group: 
F(1,58)=15.998, p<0.001 
Day: 
F(1,58)=5.359, p=0.024 
Group: 
F(1,58)=0.217, p=0.643 
 
Pre: W=501.50, p=0.070; BF10=0.978 
Post: W=184.50, p<0.001; BF10=34.825 

Pre and Post Post-Pre difference score Mann Whitney 
Groups: 2 (trained 
vs. untrained) 
 
Mann-Whitney  
Groups: 2 (bio vs. 
arb) 
 
Bayes Mann-
Whitney  
Groups: 2 (bio vs. 
arb) 

Body ownership: W=263.0, p=0.045 
Agency: W=81.0, p<0.001 
Visual appearance: W=169.50, p<0.001 
 
Body ownership: W=266.50, p=0.143 
Agency: W=193.50, p=0.675 
Visual appearance: W=228.50, p=0.632 
 
Body Ownership: BF10=0.532 
Agency: BF10=0.385 
 

Classification Accuracy 
D1 3-motion-class (avg. of rest, open, close) Mann Whitney 

 
Bayes Mann-
Whitney 

W=167.0, p=0.631 
BF10=0.375 
 

D1, D4 3-motion-class (avg. of rest, open, close) RmANOVA: 
Days: 2 
Groups: 2 (bio vs. 
arb) 
 
 
 
 
Mann-Whitney 
 
Bayes Mann-
Whitney 

Day X Group: 
F(1,31)=2.622, p=0.116 
Day: 
F(1,31)=5.647, p=0.024 
Group: 
F(1,31)=0.001, p=0.970 
 
Pre: W=167.0, p=0.631 
Post: W=121.50, p=0.437 
 
Pre: BF10=0.375 
Post: BF10=0.371 

D4 5-motion-class (avg. of rest, open, close, 
pinch, tripod) 

Mann-Whitney 
 
Bayes Mann-
Whitney 

W=117.50, p=0.517 
 
BF10=0.422 
 

Generalization 3-motion-class (avg. of rest, open, close) ANOVA:  
Groups: 3 

F(2,44)=0.874, p=0.424 

Motor control 
Pre Bionic hand - Absolute error ANOVA: 

Groups: 3 
 
Bayesian ANOVA: 
Groups: 3 

F(2,54)=0.009, p=0.991 
 
 
BF10=0.14 

Pre Biological hand - Absolute error ANOVA: 
Groups: 3 
 
Bayesian ANOVA: 
Groups: 3 

F(2,54)=1.012, p=0.370 
 
 
BF10=0.291 

Pre and Post Bionic hand – Absolute error RmANOVA: 
Days: 2 
Groups: 2 (trained 
vs. untrained)  
 
 
 
Mann Whitney  

Day X Group: 
F(1,50)=4.010, p=0.051 
Day: 
F(1,50)=2.522, p=0.118 
Group: 
F(1,50) =1.725, p=0.195 
 
Pre: W=397.0, p=0.551 
Post: W=498.0, p=0.020 

Supplementary Table 2. All statistical analyses. 
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Methods 
 
The study and its experimental procedures were approved by the NIH Institutional Review 
Board (NCT00001360, 93M-0170). The study reported here was conducted as part of a larger 
experiment (see https://osf.io/3m592/ for pre-registration of the full experimental protocol). 
Below we only report the methodology relevant for the results detailed in the manuscript.  
 
Participants 
Sixty-one healthy volunteers [40 females; mean age = 24.8 ± 0.66; all right handed) were recruited 
from the National Institute of Health community and the Washington DC metro area and were 
randomly assigned to one of the following study groups: biomimetic (n = 21; 14 females; mean 
age 23.9 ± 0.57), arbitrary (n = 21; 12 females; mean age 25.9 ± 1.28) or untrained (n = 19; 14 
females; mean age 24.6 ± 1.41). All participants were unaware of the other participant groups to 
minimize any potential biases on participant performance. All participants had no known motor 
disorders. Criteria for participant inclusion were determined prior to data collection according to 
the study population guidelines approved by the NIH Institutional Review Board as a part of the 
study protocol (93-M-0170, NCT00001360). All participants gave their written informed consent 
before participating in the study and were compensated monetarily for their time.  
 
Two additional participants were recruited, but not included in the present study due to incomplete 
datasets. 
 
Experimental design 
To quantify bionic hand skill learning, we implemented a longitudinal experimental design (Figure 
1C), involving 6 experimental sessions conducted across 6 days (1 session per day, within a 1-
week period), as summarized in Figure 1. All trained participants (biomimetic and arbitrary groups) 
underwent (i) a familiarization session (2 hours), introducing the equipment and completing some 
pre-training motor control assessments; (ii) four training sessions (2-3 hours) conducted over four 
consecutive days (one session per day) and (iii) a final generalization behavioral session (2 
hours).  
 
Untrained participants underwent a modified schedule: (i) the familiarization session (2 hours) 
and (ii) the generalization behavioral session (1-week later; 2 hours). The generalization session 
was the first-time untrained participants were able to have active control over the device.  
 
Biomimetic, arbitrary and generalization control mappings 
Biomimetic and arbitrary control mappings differed in the biological hand gestures that were 
required to engage the bionic hand classifier (Figure 1B). The biomimetic control mappings 
included: open hand (biological) = open hand (bionic), close hand (biological) = close hand 
(bionic), pinch (biological) = pinch (bionic), and tripod (biological) = tripod (bionic). The arbitrary 
control mappings included: 1 finger (biological) = open hand (bionic), 2 fingers (biological) = close 
hand (bionic), 3 fingers (biological) = pinch (bionic), and 4 fingers (biological) = tripod (bionic). 
Finally, during the generalization session, all participants (untrained participants included) learned 
a novel control strategy. The generalization control mappings included: thumbs-up (biological) = 
open hand (bionic) and thumb-pinky pinch (biological) = close hand (bionic). The generalization 
gestures were intended to be gestures that were a hybrid of the gestures in the biomimetic and 
arbitrary gestures. Additionally, our reasoning for having all groups use the same gestures in this 
session was that it would allow us to directly match performance across groups.  
 
Bionic hand setup and calibration 
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Bionic hand system and setup 
A custom-made left-hand bionic system was created for this study (Figure 6). A custom laminated 
fiber glass socket was fitted around participant’s forearm. The socket includes a lamination ring 
and a coaxial plug (Ossur) which interfaces with an i-LIMB Quantum Hand QWD [OSSUR; (46)]. 
An i-limb skin Active glove (Ossur) was worn on the hand. A custom thermoplastic component 
housed a Coapt COMPLETE CONTROL Gen2 pattern recognition system [Coapt, LLC; firmware 
v1.27; software v.1.1.9 (18)] and rechargeable Lithium Polymer batteries (Ossur, model: 704374; 
battery rating: 7.4V, 2000mAh; capacity: 14.8Wh). The COMPLETE CONTROL system is a 
clinically available EMG pattern recognition system. The thermoplastic component was attached 
to the carbon fiber socket using Velcro. The socket was tightly positioned around participant’s 
forearm using Velcro straps. A custom EMG cable attached to the Coapt EMG controller and 
connected to electrodes on the upper-forearm. 
 
An Ossur-certified researcher fitted the bionic hand to each participant’s left biological arm. To 
reduce visual differences between groups, the biological hand was bound in an elastic, sewn 
fabric (Compressogrip). Participants then were fitted with a custom Boclite foam sheet (to reduce 
skin irritation). To ensure no interference with EMG signal, prior to study participation, all 
participants shaved the hair on the left forearm. Prior to electrode placement, the skin of the 
forearm was cleaned with water and a mildly abrasive paste. Once cleaned, eight EMG electrode 
pairs (bio-medical, disposable pre-gelled silver chloride electrodes; GS-26) were placed around 
participant’s left forearm. When electrodes were poorly gelled, additional electrode conductant 
gel was applied. The first electrode pair was placed on the axis of the left extensor digitorum 
muscle; the remaining electrode pairs were placed around the forearm, roughly equidistant from 
each other with a preference for sites with optimal muscle contact. Additionally, a single reference 
electrode was placed on the elbow, above the olecranon bone. To hold the electrodes in place 
throughout the training, a sweatband was placed around the electrodes. Markings on the skin 
were used to ensure stable electrode positioning across sessions. 
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Figure 6. Bionic hand device components. An image breakdown of all of the individual components 
incorporated in the bionic hand system.  
 
Calibration protocol 
Bionic hand gestures were introduced to participants serially over the training sessions. On D1, 
participants calibrated the EMG controller on the bionic open and close gestures. On D2, 
participants added bionic pinch to their controller. On D3, participants added bionic tripod to their 
controller.  
 
At the beginning of training day 1 (D1), participants practiced making natural muscle contractions 
for the first two hand gestures in each respective control strategy (biomimetic: open and close; 
arbitrary: 1 finger and 2 fingers). During calibration, participants were instructed to execute hand 
gestures at 20% of their maximum voluntary contraction (e.g. “Would you be able to continue to 
use this level of force 1000 times in the session?”). Using the Coapt COMPLETE CONTROL 
system [Gen2; (18)], participants calibrated their EMG controller by serially performing each 
gesture, guided by the experimenter. This auto-calibration process recorded EMG data during the 
muscle contractions for each gesture and auto-segmented and auto-labelled the EMG data for 
each bionic hand gesture class. To maximize the generalizability of the calibration data to the 
training tasks, we utilized Coapt’s Adaptive Advance feature (47, 48) which implements a layering-
like algorithm to combine multiple sets (layers) of training data for each gesture. Therefore, we 
added 7 layers of training data for each gesture: 3 layers with the arm positioned in front of the 
subject at a 90 degree angle, 1 layer with the arm positioned to the left, 1 layer with arm positioned 
to the right, 1 layer with the arm positioned upright and 1 layer with the arm positioned back at 
baseline. The Coapt system used established classification parameters including: 200 ms 
analysis windows with a 25 ms update increment, time domain and auto regressive features 
extracted from each window. Subsequent data were then classified by a linear discriminant 
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analysis classifier (49, 50). Bionic hand speed control was proportional to the EMG activity (51). 
However, the intention to move is constrained by the motors of the bionic hand, creating a delay.  
 
Training protocol 
Between D1-D4, participants completed a series of tasks designed to quantify different aspects 
of bionic hand skill: speed, dexterity and gesture switching. For all tasks, participant’s training 
performance was filmed for an experimenter to perform an offline analysis of all relevant 
measures. 
 
Speed (Southampton Hand Assessment Procedure) 
At the beginning of every training session, participants completed a modified version of the SHAP 
(52). Participants were instructed to transfer an object as quickly as possible from one position to 
another. After each transfer, the experimenter would return the object to the starting position. On 
D1, participants performed 20 speed transfers of lightweight and heavyweight cylinder objects 
over 6cm using the open and close bionic hand gestures. On D2, participants repeated the same 
trials as in D1, and 20 transfers of lightweight and heavyweight ‘tip’ objects over 5cm using the 
open and pinch bionic hand gestures. On D3, participants repeated the same trials as D2, and 
then 20 transfers of the lightweight and heavyweight ‘tripod’ objects over 5cm using the bionic 
hand open and tripod gestures. On D4, participants repeated the same trials as in D3, and then 
20 transfers of the lightweight ‘tripod’ objects using the bionic hand open and tripod gestures. On 
the generalization session, participants performed 20 speed transfers of the lightweight cylinder 
object using the bionic hand open and close gestures 
 
One participant’s speed data was excluded, due to a technical issue with their Coapt EMG 
controller. This resulted in their control speed being over 3 standard deviations slower than the 
group average.  
 
Dexterity (Virtual Eggs Test) 
The Virtual Eggs Test is a modified version of the box and blocks test (53). It involves fragile 
blocks [i.e, “eggs”; (54, 55)]. The virtual eggs (40x40x40mm, ~80g) exploit a magnetic fuse 
mechanism which collapses (i.e., breaks) when grasped with a grip force larger than a specific 
threshold. The break point was calibrated at a force value that was roughly 6N. 
 
During the task, participants were instructed to transfer eggs over a 20cm tall wooden wall as fast 
as possible without breaking them. The task was only performed using the open and close bionic 
hand gestures. Participants were encouraged to prioritize grasping the eggs successfully over 
speed. Participants were told that if the egg broke on initial grasp, they were required to still 
complete the transfer. Performance was measured as the number of unbroken (successful) eggs 
transferred within a 2-minute time-period. Prior to starting the task, participants were allowed to 
practice transferring one egg. Additionally, using a customized glove for the bionic hand, 
flexiForce sensors [B201-M-8; Tekscan (56)] measured force applied on the thumb and index 
finger pads throughout the task. The sensor has a 0.375-inch sensing area diameter. Pressure 
data was recorded using the ELF System (Tekscan). 
 
Gesture switching (block stacking) 
Participants had to learn how to engage the gesture switching functionality of the bionic hand. To 
switch into a new gesture, participants would first need to engage an open hand signal. This would 
automatically trigger the bionic hand to move into a baseline hand open position, ready to switch. 
Participants could then perform a muscle contraction associated with the desired bionic gesture 
(close, pinch, tripod) they wanted to switch into. If a short sequence of the correct signal was sent, 
exceeding a gesture selection confidence threshold, the bionic hand would automatically switch 
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into the open version of the desired bionic gesture and lock into that gesture until switched again. 
Any maintained signal of the grasping gesture would close the bionic hand proportionally into that 
closed version of that locked gesture. 
 
To quantify the ability for users to successfully perform gesture switching, we designed a block 
stacking task that required participants to grab blocks using pre-defined bionic hand gestures. 
There were two variations of the task. The 2 gesture version required participants to switch 
between close and pinch. The 3 gesture version required participants to switch between close, 
pinch and tripod. Participants performed the 2 gesture version on D2, D3 and D4 and the 3-
gesture version only on D3. Prior to starting the task, participants were instructed to grab, transfer 
and stack blocks (large blocks: 2x2x2in; small blocks: 1x1x1in) into towers of 3, as quickly as 
possible. There were 4-blocks for each of the gestures being tested (i.e., 8 total blocks for the 2-
gesture version; 12 total blocks for the 3-gesture version). The blocks were arranged such that 
participants would have to grab a block with the first gesture (close) and the next block with the 
next gesture (pinch), and so on. If a participant was in an incorrect gesture, participants were 
instructed to try again until correct. The task finished when participants had successfully 
transferred all blocks.  
 
Pre-post testing protocol 
We also used a set of pre-post comparison testing measures assessed before and after training: 
control automaticity, motor control, classification accuracy, and sense of embodiment.  
 
Automaticity of bionic hand control 
Cognitive load task 
To assess the cognitive load imposed by bionic hand use, a concurrent numerical cognition task 
was performed during the first (D1) and last (D4) training sessions. The task was adapted from 
previous studies (34). Participants were asked to perform two variations of a block stacking task. 
The single condition task required participants to quickly grab, transfer, and stack as many blocks 
(2x2x2in) as possible into towers of three using the bionic hand. The dual condition task required 
participants to perform the same block stacking task, while simultaneously verbally performing a 
counting task. The counting task required participants to follow along to a set of low, medium, and 
high pitch auditory tones played from a laptop. The tones were presented every 2 to 4 s in a 
randomized order, for a total duration of 1 min. Participants started the task with the initial count 
of “50”. Participants were then instructed to: (i) add 3 to the current number if they heard a high 
pitch tone, (ii) hold the current count if they heard a medium pitch tone, or (iii) subtract 3 to the 
current count if they heard a low pitch tone. For each sound, participants were instructed to 
verbally respond. To ensure participants were equally motivated for their motor and counting 
performance, participants were told that their performance would be scored equally on the number 
of blocks transferred and their counting performance. The primary measures we analyzed were 
the number of blocks participants transferred in the single and dual condition tasks (separately), 
and their counting accuracy (i.e., how many trial counts were correct).  
 
To obtain a baseline for counting performance irrespective of motor performance, participants first 
performed the counting task without any block stacking. Next, participants performed the dual 
condition task. Finally, to obtain a baseline for motor performance without cognitive load, 
participants performed the single condition (block stacking only) task. In this latter condition, the 
counting sounds were still played throughout the task however, participants were told to ignore 
them. 
 
For each participant, we first calculated the total number of blocks transferred in the single and 
dual condition tasks (separately). To quantify how cognitively demanding the numerical cognition 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.07.525548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.525548


task was on bionic hand motor performance, a Control Automaticity ratio was computed by 
dividing the number of blocks transferred in the dual condition task by the number of blocks 
transferred in the single condition task. Counting performance was computed by taking the 
percentage of total correct mathematical operations.  
 
Control difficulty questionnaire 
At the end of every session, participants were asked to respond to the following question: “How 
difficult was it to control the prosthesis? Please rate between 0 (I found it as easy to perform the 
movement as using my own hand) to 10 (the most difficult thing imaginable).” 
 
Motor control  
To quantify participants’ motor control for both their left biological hand and the bionic hand, 
participants performed a ballistic reaching task during the familiarization session and the last (D4) 
training session (see Supp. Figure 1). Untrained participants completed this task during the 
familiarization session and the beginning of the generalization session. 
 
Participants were seated at a custom-made wooden tabletop placed above a digitizing tablet (42.6 
by 28.4 cm, Intuos Pro Large; Wacom, Vancouver, WA) and facing an LCD monitor (15.6in, 1920 
x 1080 pixel dimension; Dell Precision 3560). The participants performed reaching movements 
by sliding a digitizing stylus (Wacom Pro Pen 3D; Wacom, Vancouver, WA) across the tablet. The 
position of the stylus was recorded by the tablet at 60Hz. The experimental software was custom 
written in python for PsychoPy (v2021.1.1). Direct vision of the arms (elbows and shoulders 
included) was occluded using a black barber cape. Additionally, the lights were extinguished in 
the room to minimize peripheral vision of the hand.  
 
Participants performed center-out planar reaching movements to visual targets. Due to the time 
constraints with fitting and removing the bionic hand system, all participants performed the task 
first with their biological hand and then with the bionic hand. Prior to starting the task, the 
experimenter locked the bionic hand around the digitizing stylus so that it was immoveable (could 
not open) for the task. Participants were shown their hand position, the home location and, at 
during trials, the reach target. The hand position was constantly shown to participants (60Hz), 
indicated by a green crosshair (0.36cm x 0.36 cm). The home location was constantly shown to 
participants as a square (0.36cm x 0.36cm) at the bottom, center of the screen (1.8cm above the 
bottom of the screen). The home location was colored grey between trials and red during trials. 
The reach target was a white circle (0.18cm radius) that would appear at 3 separate locations 
(left, center, right). The left and right targets were 67 degrees from vertical center. All targets were 
12.8cm away from the home location. We also displayed the trial number in the top right corner 
of the monitor.  
 
Participants completed 10 practice trials, prior to starting the task. Participants completed 60 
experimental trials. A trial was initiated once participants hovered the cursor over the home 
location. The home location would then turn red to denote that a reach targe would soon appear 
in either one of three target locations. After 3 seconds, a reach target would appear in one of the 
3 locations. Participants were instructed to perform a fast, ballistic reaching movement (within 2 
seconds) towards the center of each target and to avoid corrective movements, such that they 
should maintain the end position of their reach until the target disappeared. In total, each trial 
lasted 5 seconds. Participants were then required to return to the home location to begin the next 
trial. The three reach targets were each presented 20 times. The order of the targets was 
pseudorandomized, such that each target was randomly sampled in batches of 3. All participants 
were presented with the same trials order.  
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Due to technical issues, we excluded the first experimental trial for all participants (i.e., 59 total 
experimental trials). Additionally, trials were excluded where the reach end point was above or 
below 2 standard deviations of the subject’s reach error (range of excluded trials across subjects 
was 1-6% of total trials).  
 
Classification accuracy 
To quantify participants’ classification accuracy, we used the real-time signal classification output 
from the Coapt EMG controller [Gen2; (18)]. Participants were seated at a table, facing an LCD 
monitor (15.6in, 1920 x 1080 pixel dimension; Dell Precision 3560). Active control of the bionic 
hand was turned off. While the bionic hand could not move, the EMG controller was still turned 
on. On the monitor, participants were shown their real-time signal classification (frame rate: 
50ms), listed as words: “Open”, “Close”, “Pinch”, “Tripod” or no output, indicating “Rest”. 
 
Participants were instructed to perform and maintain 6 different hand gestures each for 20 
seconds. On the monitor, participants were given a visual indication of the start and end of each 
gesture trial, as well a virtual expanding circle proportional to their level of contraction (Coapt 
virtual game: In the Zone). Participants were instructed to perform and maintain each gesture 
such that they could maintain correct classification, on the monitor, for each of the desired 
gestures for the duration of the trial. When assessing classification accuracy for 3 gesture classes, 
the trial order was rest, open, close, rest, open close. When assessing classification accuracy for 
5 gesture classes, the trial order was rest, open, close, rest, pinch, tripod. Note that when running 
this task, open bionic gesture trials would terminate after 2.5 seconds if correct classification and 
a specified force level was maintained (due to unrelated purposes for a separate study). 
 
The task output file included (i) the real-time classification decision, (ii) the trial number the 
participants were on and (iii) the EMG activity for each of the 8 channels (all updated every 50ms). 
Previous research has taken a variety of approaches to define a relevant time window for offline 
analysis of classification accuracy (57). Because “Open” trials would sometimes terminate early 
(as noted in the previous paragraph), we employed an analysis approach that could control for 
differences in overall trial duration between gestures. We opted to use the first correct 
classification point, for each gesture trial, as timepoint 0. Therefore, the average classification 
accuracy was computed from timepoint 0 to 49 (approximately the first 2.5 seconds of each 20 
second gesture). This analysis approach was performed for each gesture separately for each 
participant. On the 3-gesture version of the task, where participants were asked to perform each 
gesture once (i.e., 2 trials per gesture), classification accuracy was calculated separately for each 
trial of the same gesture and then those values were averaged. To construct the group-level 
confusion matrices in Supp. Figure 2, values were then averaged across participants for each 
group. To compute a single value of average classification (shown in Supp. Figure 2D,F), we took 
the average correct classification across gestures (i.e. diagonal of confusion matrix).  
 
Due to technical issues at the beginning of the study, we were not able to acquire these data from 
the first 4 study participants (3 arbitrary, 1 biomimetic).  
 
Sense of embodiment questionnaire 
To assess changes in the sense of embodiment over the bionic hand, participants were asked to 
complete an embodiment questionnaire before the first and after the last training session (Supp. 
Table 1). Untrained participants filled the post-questionnaire out after completing the post-motor 
control assessments, prior to being able to experience active control of the bionic hand. The 
questionnaire was focused on the explicit (phenomenological) aspect of embodiment, whether 
the bionic hand feels like a part of one’s body. Participants were asked to rate their agreement 
with 10-statements (34, 58) on a seven-point Likert-type scale ranging from -3 (strongly disagree) 
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to +3 (strongly agree). Statements were clustered into three main categories, probing different 
aspects of embodiment: body ownership, agency, and body image. For each participant, 
questionnaire scores were averaged within each embodiment category. To compute a difference 
score, pre-scores for each embodiment category were subtracted from the post-scores.  
 
Statistical analysis 
All statistical analyses were performed using JASP (v0.14). Tests for normality were conducted 
using a Shapiro-Wilks test. When assumptions of normality were met, we used parametric 
statistics, and when they were not met (p<0.05 for the Shapiro-Wilks tests), equivalent non-
parametric tests were used. Between-group comparisons were conducted using repeated 
measure ANOVAs with group (biomimetic, arbitrary or untrained) as a fixed effect and 
independent samples t-tests (parametric) or Mann-Whitney tests (non-parametric). Within-group 
comparisons were conducted using paired t-tests (parametric) or Wilcoxon tests (non-parametric). 
All non-significant results were further examined using corresponding Bayesian tests under 
continuous prior distribution (Cauchy prior width r = 0.707). We interpreted the test based on the 
well accepted criterion of Bayes factor smaller than 1/3 (59) as supporting the null hypothesis.  
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