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Abstract

Understanding how the spatial variation in species composition (beta-diversity) varies with biotic

and abiotic conditions is one of the ultimate goals in biology. Theory predicts that beta-diversity is a

consequence of two factors, species-level differences (defined as the variations among species in the

probabilities that species are present in the landscape) and spatial heterogeneity (defined as the difference,

between two sites, in the probabilitieswithwhich species are present). At present, however, the importance

of each factor is unclear. Here, we take a probabilistic and combinatorial approach to examine the effects

of species differences and spatial heterogeneity on the degree to which species assemblages in two spatial

locations differ in species compositions. We first derived analytical and approximation formulae of

the expectation and variance of the pairwise beta-diversity, based on the assumption that the presence

probabilities of species are independent of each other. Though it seems intuitive that greater species

differences leads to greater beta-diversity, our methods predict that the reverse is likely to occur under

some circumstances; strikingly, when space is homogeneous, beta-diversity decreases with increasing

species differences. This prediction suggests that policy making for increasing species traits-variation

would, without adequately managing environmental heterogeneity, induce biotic homogeneization,

resulting in undesired outcomes. Second, we illustrate our method using data from five woodpecker

species in Switzerland, showing that the woodpecker species’ joint distributions change considerably

with time, and also that such changes are basically explained by the changes in the incidences of some of

the species. The new framework can improve our understanding of how pairwise beta-diversity responds

to species differences and spatial heterogeneity.

1 Introduction1

Beta-diversity (the spatial variation in species compositions) links diversity across scales (Whittaker 1972;2

Anderson et al. 2010; Chase et al. 2019; Poggiato et al. 2021). Beta-diversity varies with fundamental3

processes such as dispersal, environmental filtering and species interactions (Vellend 2010; Anderson4

et al. 2010; Socolar et al. 2016; Maynard et al. 2017; Legendre 2019; Thompson et al. 2020). Understanding5

the patterns of beta-diversity is thus considered as one of the ultimate goals in ecology. Reductions in6

beta-diversity, known as biotic homogenization (Olden & Poff 2003; Olden & Rooney 2006; Olden et al.7

2018), have been caused by various types of global changes, such as urbanization (McKinney 2006), species8

invasion (Powell et al. 2013), climate change (Veech & Crist 2007), land-use change (Vellend et al. 2007),9

and interactions thereof (Karp et al. 2017). A consequence of biotic homogenization is the reduction of10

ecosystem functioning across the globe (Hautier et al. 2017; Mori et al. 2018; Albrecht et al. 2021; Wang et al.11

2021). Understanding how beta-diversity changes in response to variations in biotic and abiotic conditions12

should lead to better management, conservation, and urban planning in our modern society (Crowther13

et al. 2015).14

Beta-diversity is often measured by using pairwise indices based on empirical presence-absence (inci-15

dence) data (Koleff et al. 2003). Even for such simple, incidence-based beta-diversity, how biotic and abiotic16

variables influence the beta-diversity has not been conceptually established. That is, we know little about17

“beta-diversity patterns”, the dependence of beta-diversity on biotic and abiotic factors. Indeed, results from18

previous work on beta-diversity patterns have been mixed. For example, theory shows that dispersal, tends19

to homogenize local communities and thereby reduce beta-diversity (Loreau 2000; Mouquet & Loreau20

2003; Thompson et al. 2020), or to have rather opposing effects on beta-diversity (Lu et al. 2019; Lu 2021).21

Meanwhile, experimental work suggests that dispersal may promote beta-diversity (Vannette & Fukami22

2017). Disturbances like fire also can also have opposing effects on beta-diversity (Altermatt et al. 2011;23

Myers et al. 2015; Ojima & Jiang 2016). To better interpret complicated beta-diversity patterns, it is necessary24

to establish a general framework that can incorporate variable biotic and abiotic conditions.25

Among other factors, species differences and spatial heterogeneity both have profound effects on beta-26

diversity (Peres-Neto et al. 2001; Legendre & Cáceres 2013). A rich amount of work has showed that spatial27

heterogeneity is a significant determinant of beta-diversity (Veech & Crist 2007; Báldi 2008; Jankowski28

et al. 2009; Allouche et al. 2012; Bar-Massada & Wood 2013; Heino et al. 2013; Pomara et al. 2013; Astorga29
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et al. 2014; Heino et al. 2014; Bar-Massada 2015a,b; Royan et al. 2015; Bar-Massada & Belmaker 2017;30

Zorzal-Almeida et al. 2017; Ben-Hur & Kadmon 2020; Shinohara et al. 2022), but species difference can also31

have a strong impact on beta-diversity (Silva et al. 2018; Santos et al. 2021). For example, dispersal mode32

(passive vs. active) and body size (small vs. large) are both strong determinants of beta-diversity patterns as33

revealed by meta-analyses (Soininen et al. 2007; De Bie et al. 2012). Similarly, Cao et al. (2021) showed that34

beta-diversity may co-vary with niche-related characteristics. Recent studies have made use of functional35

traits that reflect species’ dispersal abilities and niche characteristics to explicitly explain metacommunity36

processes such as dispersal limitation and environmental filtering (Kattge et al. 2020; Schrader et al. 2022).37

It is, therefore, becoming increasingly important to explicitly consider the effects of both species differences38

and spatial heterogeneity on beta-diversity (Peres-Neto et al. 2001; Gotelli & Ulrich 2011); however, we39

know little about such effects on beta-diversity, and thus predicting the effects of global changes in species40

traits and spatial heterogeneity on beta-diversity remains challenging41

To discern beta-diversity patterns under variable conditions, it is of great use to regard both incidence-42

data and resulting beta-diversity as stochastically varying quantities (“stochastic variables”), because43

by doing so, we can assess how the probability distributions of beta-diversity varies with mechanistic44

factors that determine species presence probabilities (Baroni-Urbani 1980; Real & Vargas 1996; Gotelli &45

Ulrich 2011; Hui & McGeoch 2014; Chung et al. 2019). In this article, we explore the details of pairwise46

compositional dissimilarity between two species assemblages (Jaccard dissimilarty) under the influence of47

species differences and spatial heterogeneity. The logical starting point is akin to one of the most successful48

null models in ecology, the Theory of Island Biogeography (TIB; MacArthur & Wilson 1963; MacArthur &49

Wilson 1967), which is the pioneering work on the stochastic treatment of species richness and composition.50

Following recent work on TIB (Alonso et al. 2015; Ontiveros et al. 2021), our work assumes that species51

incidences (presence or absence) are stochastic variables that are independent from each other both52

within and between sites, which nullifies any correlation between them, the so-called species independence53

assumption. We thereby examine the effect of species differences and spatial heterogeneity on the expected54

value of pairwise dissimilarity of species composition (Jaccard 1908, 1912; Veech 2012; Arita 2017; Keil et al.55

2021). This allows for the consideration of various realistic factors that drive differences in local biotas,56

such as the distance to the mainland, and specific spatial niche partitioning.57

to analzye the effects of species differences on beta diveristy, we obtain the exact and approximated58

expression for the expectation and variance of Jaccard dissimilarity under the species independence59

assumption. Second, we examine how the expectation and variance in beta-diversity respond to species60

differences and spatial heterogeneity. Specifically,we numerically generate species presence probabilities for61

a pair of sites, and assess how varying species-differences and spatial heterogeneity influence beta-diversity62

patterns. We find that species differences can have opposing effects on beta-diversity. Counterintuitively,63

we find that species differences result in lower beta-diversity when site heterogeneity is scarce. While64

traditional analyses of beta-diversity focus on sites censused completely, many contemporary datasets are65

based on statistical models such as Species Distribution Models (SDMs; Elith & Leathwick 2009; Guisan et al.66

2017; Zurell et al. 2020). Indeed, recent work has attempted to improve the statistical power of local species67

richness estimation in SDMs under heterogeneity (Calabrese et al. 2013). We therefore examine how our68

approach can be applied to such statistical models. The temporal Jaccard dissimilarity (Legendre 2019;69

Magurran et al. 2019; Figure 1) is designed to project how the local species composition across regions is70

expected to change with time, particularly in response to global environmental changes. We combined our71

method with SDMs and assessed the expected changes in the compositions of woodpecker species across72

Switzerland. We believe that the approach be a starting point to provide further insights to the extent and73

intensity of future compositional change, and to help us allocate resources for tasks such as monitoring,74

conservation, or restoration.75
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Table 1: Summary of notation used in the main text.

Notation Definition Note
i Species label i = 1, 2, …, or S
S The total number of species in the mainland “species pool size”
j Site label, with j = 1 or 2 “sites” may be spatial or temporal
xi,j Incidence of species i in site j 0 (absence) or 1 (presence)

X(S,2) Incidence table of size S-by-2 Abbreviated to X
:= Defining a quantity
≡ Identity usually with respect to “all i”
Ω Set of incidences (absence 0 and presence 1) := { 0, 1 }
x◦,j Column vector of configuration in site j
|x◦,j | The number of species present in site j =

∑S
i=1 xi,j

xi,◦ Row vector of species i’s incidence in space
pi,j Probability of i present in j (i.e., Prob [xi,j = 1]) ai,j = 1 − pi,j for probability of absence
bi,◦ Probability of i present in both sites 1 and 2 Prob [xi,1 = xi,1 = 1]; b for “both”
di,◦ Probability of i absent from both sites 1 and 2 Prob [xi,1 = xi,1 = 0]; d for “double-absence”

PX Probability that a table X is observed =
∏S

i=1
∏2

j=1 p
xi,j
i,j a

1−xi,j
i,j

βJX Jaccard dissimilarity for an incidence table X
γX The total number of species present in the landscape for table X “Gamma-diversity”

E
[
βJ
]

Expectation of Jaccard dissimilarity E
[
βJ
∣∣ γ > 0

]
for conditional expectation

V
[
βJ
]

Variance of Jaccard dissimilarity Std
[
βJ
]
:=

√
V
[
βJ
]

βJheur Approximation of E
[
βJ
∣∣ γ > 0

]
“Heuristic approximation”

w Species difference 0 ≤ w < 2; Eqn (5)
h Spatial heterogeneity 0 ≤ h ≤ 1; Eqn (6)
μj Average presence probability in site j
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2 Methods and Results76

Model77

Jaccard dissimilarity is defined as the proportion of the number of ‘unique species’ (by which in this78

literature we mean the number of species that are present in only one of the sites) to that of species present79

in at least one of the sites (Jaccard 1908, 1912),whichmeasures a compositional difference between two sites80

(Box 1). Note that the two sites are either a pair of spatially segregated sites (at the same time-point) or pair of81

temporally segregated sites (the same local place), the latter approach known as the ‘temporal beta-diversity’82

(Legendre 2019; Magurran et al. 2019; Figure 1B). As such, we consider a landscape (metacommunity)83

consisting of either two spatially or temporally segregated sites (Figure 1B), but we simply say “two sites” in84

the present manuscript. We consider a matrix of binary elements, in which species are listed from top to85

bottom (labelled i = 1, 2, …, S), and sites are listed from left to right (from j = 1 to 2). That is, an incidence86

table of S species with 2 sites is written as X. Following Chase et al.’s (2011) definition, we define “species87

pool” as the collection of species that can possibly inhabit either site within a reasonable time period during88

which the incidence data census is performed, and therefore defined S as the maximum number of species89

that may be present in at least one of the sites (with a positive probability; we refer to S as “species pool90

size”). We do not consider a species that can never be present. The formal approach to derive Jaccard91

dissimilarity and their moments is encapsulated in Box 1.92

We write xi,j for (i, j)-th element of an incidence table X, with xi,j = 1 if species i is present in j, and93

xi,j = 0 otherwise absent. We write pi,j for the probability that species i is present in site j (and this94

probabilistic approach for spatial species-incidence is the part of TIB;MacArthur &Wilson 1963; MacArthur95

&Wilson 1967; Real et al. 2016; Carmona & Pärtel 2020). Statistically, the sum
∑S

i=1 xi,j , which represents96

the local species richness (alpha-diversity), follows the Poisson-Binomial distribution with parameters97 (
p1,j , p2,j , …, pS,j

)
. The key assumption is that pi,j may take different values depending on species i and98

site j but are independent of each other (the species independence assumption). There are numerous99

mechanisms by which presence probabilities are site- or species-specific. For example, differences in100

colonization ability, tolerance to disturbance, ecological niches, and environmental filtering can jointly101

influence presence probabilities.102

The sum
∑S

i=1 xi,j , which represents the species richness (alpha-diversity), follows the Poisson-Binomial103

distribution with parameters
(
p1,j , p2,j , …, pS,j

)
. For brevity, we write: (i) ai,j := 1 − pi,j for the probability104

that species i is absent in j; (ii) bi,◦ := pi,1pi,2 for the probability that species i is present in both sites 1 and 2105

(probability of “double-presence”); (iii) di,◦ := ai,1ai,2 for the probability that species i is absent in both sites106

1 and 2 (probability of “double-absence”). As a result, 1 − bi,◦ − di,◦ represents the probability that species i107

is unique to either site 1 or 2. Note that we do not distinguish in which sites (1 or 2) the unique species108

are present. For example, colonization ability, stress-tolerance, distance from continents, environmental109

filtering, and disturbance frequency can in concert influence presence probabilities of species in each site.110

Therefore, we we generally assume that the presence probabilities of the species in each site are generally111

different.112

To analyze the probability distribution of beta-diversity, we present a novel derivation using tools113

from stochastic analyses and combinatorics. These tools allow us to exactly compute the expectation and114

variance of Jaccard dissimilarity based on the species-independence assumption. Numerical computation115

can take a long time, because of combinatorial calculations associated with species-specific and site-specific116

presence probabilities (p1,1, p1,2, p2,1, …, pS,1, pS,2). To make the formula accessible to as broad researchers as117

possible, we present a fast computable approximation (below).118

138
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Box 1: Derivation of the expectation of Jaccard dissimilarity119

We write X ∈ ΩS ⊗Ω2 (with⊗ for a direct product between sets) to indicate that the incidence table

X is a matrix with S rows and 2 columns, each of whose elements is either 0 for absence or 1 for

presence. We also write x◦,j =
(
x1,j , x2,j , …, xS,j

)>
for a column vector within the incidence matrix (X)

in a site j, with > for transpose. Therefore, x◦,j ∈ ΩS . We write
∣∣x◦,j

∣∣ := ∑S
i=1 xi,j for alpha-diversity

in a site j. In addition, we write 〈x◦,1,x◦,2〉 :=
∑S

i=1 xi,1xi,2 for the number of species present in both

sites 1 and 2. Note that the number of species present in the landscape (gamma-diversity) is given by∣∣x◦,1
∣∣ +∣∣x◦,2

∣∣ − 〈x◦,1,x◦,2〉.

120

121

122

123

124

125

126

Jaccard dissimilarity index (Jaccard 1908, 1912) for a given table X, denoted by βJX, is defined as:

βJX =
(# unique species)

(# species present in at least one of the sites)

=

(∣∣x◦,1
∣∣ − 〈x◦,1,x◦,2〉

)
+
(∣∣x◦,2

∣∣ − 〈x◦,1,x◦,2〉
)

∣∣x◦,1
∣∣ +∣∣x◦,2

∣∣ − 〈x◦,1,x◦,2〉
,

(1)

which represents the proportion of the number of unique species (present only one of the two sites)

to the number of present species (present at least one of the two sites). Eqn (1) is written as a function

of stochastic variables, xi,j .

127

128

129

130

131

132

133

Weaim to evaluate the first and secondmoments (expectation and variance) of Jaccard dissimilarity

and assess how the moments vary with parameters of species differences and spatial heterogeneity. If

the expectation of Jaccard dissimilarity varies in a certain way with a varying parameter, then the

Jaccard dissimilarity is expected to behave accordingly and thereby forms a “beta-diversity pattern.”

134

135

136

137139

Box 2: Expectations: exact140

We denote the expectation, conditioned on at least one species being present, of Jaccard dissimilarity

by E
[
βJ
∣∣ γ > 0

]
. We found that (Appendix A):

E
[
βJ
∣∣ γ > 0

]
=
∫ 1

0

S∑
i=1

1 − bi,◦ − di,◦
1 −
∏S

k=1 dk,◦

S∏
`=1,` 6=i

(
1 − z + zd`,◦

)
dz

=

∑S
i=1
∑

y∈ΩS
1
|y|

yi(1−bi,◦−di,◦)
SC|y|

∏S
`( 6=i) d

1−y`
`,◦

1 −
∏S

k=1 dk,◦

(2)

where y = (y1, y2, …, yS)
(
∈ ΩS

)
represents a binary sequence with length S and SC|y| represents the

binomial coefficient, which counts the number of ways, disregarding order, that |y| =
∑S

i=1 yi (=
0, 1, …, S) species can be chosen from S species (Van Lint & Wilson 2001). Eqn (2) is conditioned on

the premise that at least one of the species is present in the landscape (which occurs with probability

1 −
∏S

i=1 di,◦). Note that E
[
βJ
∣∣ γ > 0

]
has a symmetry in site 1 and 2, by which swapping (permutating)

pi,1 and pi,2 for any species i does not change the result (Baselga 2010).

141

142

143

144

145

146

147

148

149

150

151

As is detailed in Appendix A, Eqn (2) recovers the formula for species-equivalence cases (Chase

et al. 2011; Lu et al. 2019). As suggested in previous studies, the species pool size S, which represents

the maximum number of species present in the landscape, has no effects on the expected Jaccard

dissimilarity conditioned of at least one of the species being present. The invariance is because species

being equivalent implies that the incidence of any species occurs equally likely and independently,

regardless of how many species can potentially inhabit the landscape.

152

153

154

155

156

157
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Approximations for expectation and variance158

We here present a “heuristic” approximation for the expectation of Jaccard dissimilarity, which was used in159

the previous studies (Kalyuzhny et al. 2021; Ontiveros et al. 2021). We write βJheur for the expectation of the160

numerator divided by the expectation of the denominator; that is:161

E
[
βJ
∣∣ γ > 0

]
≈ βJheur =

E[# unique species]
E[# species present at least one of the sites]

=
∑S

i=1
(
1 − bi,◦ − di,◦

)∑S
i=1
(
1 − di,◦

) (3)

(the derivation and interpretation are provided in Appendix B; c.f., Lynch & Walsh 1998). Mathematically,162

the heuristic approximation obtains by exchanging the order of taking expectation and computing fraction163

while guaranteeing that there is at least one species present. In the example below, we will show that164

Eqn (3) provides a near-identical approximation for the conditional expectation E
[
βJ
∣∣ γ > 0

]
; the result of165

stochastic simulations to verify the accuracy of the heuristic approximation is given in Appendix B.166

We also derive exact and approximated formulae of the variance of Jaccard dissimilarity, but both167

involve much complication in general. Therefore, we show the results on variance for species-equivalence168

case and encapsulated the detailed analyses for general cases with species differences in the Appendix D.169

Application 1: Theoretical analysis170

Special case: identical species171

We demonstrate a special case where the species are identical in any sense but the landscape can be172

heterogeneous; that is: pi,j ≡ p◦,j for each j = 1, 2. We consequently write b◦,j ≡ b and d◦,j ≡ d for double-173

presence and double-absence (respectively; note that p◦,1 and p◦,2 may differ). Substituting those into the174

expected Jaccard dissimilarity index (Eqn (2)) yields:175

E
[
βJ
∣∣ γ > 0

]∣∣∣∣∣
species equivalence

=
1 − d − b
1 − d

= βJheur. (4)

That is, the heuristic approximation and the exact conditional expectation completely agree with each176

other. Eqn (4) also recovers the results of previous studies that assume species’ presence probabilities are177

identical (Chung et al. 2019; Lu et al. 2019; Lu 2021; Ontiveros et al. 2021). In other words, the sufficient178

condition for the exact and approximated formulae of the expectation to be equal is that species are equal179

in presence probabilities.180

We numerically investigate the dependence of the expected Jaccard dissimilarity on the presence181

probabilities in sites 1 and 2 (Figure 2A). We found that the expected Jaccard dissimilarity becomes larger182

as the presence probabilities decrease. More specifically, the expected Jaccard dissimilarity increases with183

increasing probability of double-presence (i.e., when the presence probabilities of both species become184

large).185

We also investigate the dependence of the variance of Jaccard dissimilarity on the pair of presence186

probabilities
(
p◦,1, p◦,2

)
(Figure 2B). We find that: (i) when p◦,1 and p◦,2 are small, the variance tends to take187

large values; (ii) when the presence probability in one site is large but the other is small, the variance of188

Jaccard dissimilarity is small but the change in the variance with increasing the difference between p◦,1189

and p◦,2 appears to be very small (< 0.05; Figure 2B); (iii) when both values are large, the variance tends to190

be small; and (iv) when both probabilities are at intermediate values, the dependence of the variance on191

presence probabilities appears to be small.192
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Effects of species difference and spatial heterogeneity193

We examine how species differences and spatial heterogeneity jointly influence the expectation of Jaccard194

dissimilarity, by means of generating series of synthetic presence probabilities. For incidence probabilities195 (
p1,j , …, pS,j

)
with j = 1, 2, we first define species difference w and spatial heterogeneity h by:196

w :=
1

μ1 + μ2

2∑
j=1

1
S

S∑
i=1

∣∣pi,j − μj

∣∣ (5)

h :=
1
S

S∑
i=1

∣∣pi,1 − pi,2
∣∣, (6)

where μj :=
∑S

i=1 pi,j ∕ S represents the average of presence probabilities in site j (for j = 1, 2). The first197

parameterw represents the degree towhich species presence probabilities (plotted against species labels) are198

not equal (uneven; see Appendix C for the intuitive interpretation). Also, h represents the degree to which199

two sites differ in the presence probabilities, averaged per species. Biologically, the spatial heterogeneity h200

can reflect various processes; for example, if a given species is favored by the environment in site 1 but is201

filtered out by site 2, then it is reasonable to say that spatial heterogeneity exists for that species 1. Similarly,202

if site 1 is accessible for some species but not for other species, Interspecific differences in dispersal ability203

can also generate variation in presence probabilities and thereby increase species difference w. Note that204

both quantities are functions of the presence probabilities. Importantly, these quantities can be empirically205

estimated by calculating the presence probabilities pi,j by averaging long time-series data (assuming that206

the community incidence is at equilibrium; MacArthur & Wilson 1963; MacArthur & Wilson 1967) and207

then inserting those values in to Eqns (5) and (6)208

We assess how varying species difference and spatial heterogeneity jointly alter E
[
βJ
]
. We first consider a209

case with pi,1 = pi,2 for all species, that is, the case where two sites are homogeneous. In this case, increasing210

the species difference w reduces beta diversity (Figure 3A-1). This is the case also in the presence of a slight211

difference between two sites (Figure 3A-2). Hence, when there is at most low spatial heterogeneity, species212

differences systematically reduce beta-diversity.213

As the degree of site heterogeneity h becomes larger, whether species differences result in larger or214

smaller beta-diversity becomes less consistent. We found both cases where species differences increase215

and decrease beta-diversity (Figure 3B-1, B-2). The difference between Figure 3B-1 and B-2 is that while216

Figure 3B-1 assumes that two sites are heterogeneous evenly among species (
∣∣pi,1 − pi,2

∣∣ all equal), Figure 3B-217

2 uses different values
∣∣pi,1 − pi,2

∣∣ (although both are on average equal). That is, the effects of species218

differences on beta-diversity depend on the patterns of species differences and spatial heterogeneity.219

To examine the robustness of this prediction, we work on broader ranges of parameters (w and h) by220

generating various values of { pi,j } and plotting the expectation of Jaccard dissimilarity against species221

difference with varying spatial heterogeneity. We first generate a dataset consisting of various shapes of the222

presence-probability curves (Appendix C, Eqn C50) and corresponding species difference (w), spatial hetero-223

geneity (h), the expected Jaccard dissimilarity, and the average presence probability for all species among224

two sites (μ :=
(
μ1 + μ2

)
∕ 2; this notation is used only here). We then extract a subset of the dataset with225

varying ranges. From this sub-dataset, depending on the range of μ (with μ ∈ [0.1, 0.2], [0.3, 0.4], [0.5, 0.6],226

or [0.7, 0.8]; we choose mutually exclusive intervals to avoid excess numbers of points to be considered),227

we separately plot the dependence of the expected Jaccard dissimilarity on species difference.228

We find that the resulting patterns are consistent with those in Figure 3: in spatially homogeneous229

environments, increasing species difference tends to reduce beta-diversity, and this trend becomes reversed230

or obscured as the spatial heterogeneity increases (Figure 4). Notably, the average presence probability can231

constrain the range of the expected value of Jaccard dissimilarity (Figure 4), in accordance with Figure 2232
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(A) Varying presence probabilities (B) Compositional dissimilarity for …

pi,2 
pi,1

species (i) 
…

Species incidence gradient

• Species difference w (eqn 5) 
• Site heterogeneity h (eqn 6)

calculate

Site 1 Site 2

Time 1

Time 2

(1) two locations

(2) two timepoints

Figure 1: Schematic illustration of the framework. (A) The presence probabilities (p1,1, p1,2, p2,1, …, pS,2) take different
values. Of our interest are the effects of the differences (measured by w) and site heterogeneity (measured by h)
on compositional dissimilarity, both of which are computed from given p1,1, …, pS,1, p1,2, …, pS,2. (B) The compositional
dissimilarity (defined by the Jaccard dissimilarity) can be applied to spatial and temporal changes. When j represents
a spatial site, we compute the expected Jaccard dissimilarity from the compositions of the two site (for example 110
and 011). We can carry out the same calculation for time point labels j = 1, 2. Note the symbol > for transpose. The
woodpecker pictures are from http://phylopic.org/ (CC0).

(A) Conditional expectation of Jaccard dissimilarity increases with reducing presence probabilities
E[βJ | γ > 0], for S = 4
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E[βJ | γ > 0], for S = 16
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(B) Conditional standard deviation of Jaccard dissimilarity increases with reducing presence probabilities
Std[βJ | γ > 0], for S = 4
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Figure 2: The conditional expectation of Jaccard dissimilarity E
[
βJ
∣∣ γ > 0

]
(panel A) and the conditional standard

deviation of Jaccard dissimilarity Std
[
βJ
∣∣ γ > 0

]
:=

√
V
[
βJ
∣∣ γ > 0

]
(B), plotted on p◦,1 (horizontal axis), p◦,2 (vertical axis)

for varying species pool sizes, S. (A) The expected Jaccard dissimilarity is lower when the probability of double-presence
is larger (right top zones), and higher when the probability of being present in only one of the sites is higher (left top
and right bottom zones). The effect of S on the expectation is negligibly small, and thus increasing S (from left to right
panels) does not appear to change the overall trend. (B) The standard deviation of Jaccard dissimilarity is lower when
the presence probabilities take extreme values (four corners). As S increases, the standard deviation tends to be less
dependent on intermediate values of presence probabilities, as seen from the observation that over the wide region of
the rectangle, the standard deviation is relatively unchanged with presence probabilities.
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(A-1) Sites are homogeneous⇒ beta decreases with increasing species difference w

(A-2) Sites are weakly heterogeneous⇒ beta decreases with increasing w

(B-1) Sites are strongly heterogeneous⇒ betamay decrease with increasing w

(B-2) Sites are strongly heterogeneous⇒ betamay increase with increasing w

Figure 3: The beta-diversity patterns under species differences and spatial heterogeneity. Setup: blue dashed curves plot
pi,1 and orange pi,2 respectively (referred to as species incidence curves). In all panels, the average presence probability
per species per site is set one half:

(
μ1 + μ2

)
∕ 2 = 0.5. Species differences and site-heterogeneity are calculated from

the incidence curves, each indicated. (A-1) When sites are completely homogeneous (i.e., when pi,1 = pi,2 for all species
i = 1, …, S), increasing species difference results in lower beta-diversity. (A-2) When sites are weakly heterogeneous
h = 0.05, species difference reduces beta-diversity, as in (A). (B) When two sites are strongly heterogeneous with
h = 0.40 in this example, increasing species differences can either decrease (B-1) or increase (B-2) beta-diversity. The data
points (p1,1, p1,2, …, p8,2) and corresponding indices (the conditional expectation and approximation) are encapsulated in
Appendix C.
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(A) (B)

(C) (D)

Figure 4: Dependence of the conditional expectation on species difference with varying spatial heterogeneity h (four
panels) and varying mean presence probability (plotted in blue, purple, dark purple, and red), with μ =

(
μ1 + μ2

)
∕ 2.

When two sites are completely homogeneous, increasing species difference tends to decrease the expected Jaccard
dissimilarlity (panel A). When the degree of spatial heterogeneity is small, this trend is robust (panel B). As spatial
heterogeneity increases, the dependence of beta-diversity on species difference becomes obscured, or even reversed
(panels C and D).
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Figure 5: Outcomes of species distribution models, using a climatic variable. We quantified the expected, compositional
dissimilarity of five woodpecker species at two time points, current and future, over the region of Switzerland. That is,
we assessed the expectation and standard deviation of temporal Jaccard dissimilarity (Legendre 2019; Magurran et al.
2019). We used occupancy estimations for current and future climatic conditions over Switzerland. (A) Expectation.
Compositional changes are expected to be high in the upper limit of the current distribution and lowlands. (B) Standard
deviation (approximated). The standard deviation tends to be small, which is consistent with the analytical prediction in
Figure 2.
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Application 2: Temporal Jaccard dissimilarity with Species Distribution Models233

Weprovide a case application of ourmethod using the Species DistributionModels (SDMs; Elith & Leathwick234

2009; Guisan et al. 2017; Zurell et al. 2020, with the details described in Appendix E). Generally, SDMs seek235

to estimate the probability that each species is present at a given site given information on the environment236

found at that site. Our approach enables quantification of the changes in species distribution on a location-237

by-location basis, based on temporal Jaccard dissimilarity (the proportion of the number of species that are238

present only one of two time points relative to the number of species that are present in at least one of the239

two time points; Legendre 2019; Magurran et al. 2019, Figure 1). Note that the temporal data systematically240

comes with correlations between compositions at two time points (‘temporal autocorrelation’), but our241

analysis takes advantage of the site-permutation symmetry in Jaccard dissimilarity so that we can omit the242

correlations between two compositions.243

Based on Schmid et al. (1998, 2018) and Zurell et al. (2019b, 2020), we use data of five woodpecker244

species, Picus viridis, P. canus, Dendrocopos major, D. minor, and Dryocopus martius in Switzerland. These245

species have common evolutionary history but use different habitats (Benz et al. 2006; Pasinelli 2007;246

Pons et al. 2010). For example, P. canus and D. minor occur at lowlands, while P. viridis is more widely247

found across Switzerland (Appendix E). The variation in geographic habitat use arguably reflects species248

differences, making the system ideal for an application of temporal Jaccard dissimilarity. Note also that249

incidence-based SDMs assume that species-independence is uncorrelated, and therefore are reconciled250

with our species-independence assumption.251

We examine how dissimilar woodpeckers’ metacommunity will be under future climatic conditions252

(Representative Concentration Pathway 4.5) across Switzerland in 2050, comparedwith the sub-community253

under the current climate, at a scale of 1 × 1[km]. Our methods predict that the expectations of temporal254

Jaccard dissimilarity are unexpectedly high (Figure 5), indicating significant future changes in the distribu-255

tion of the woodpeckers. This result is primarily explained by species dynamics in lowland sites where256

some species thrived and others failed: P. canus, that will decrease its occupancy rate near the rivers and257

will increase in surrounding areas (SI Figure 4), and D. minor, whose occupancy is expected to increase in258

lowlands and valleys (SI Figure 4). Dissimilarity in hillsides is expected to be moderate due to a general259

increment in richness (SI Figure 4). These results are consistent with a general trend of Switzerland forest260

birds moving to higher grounds as a response to environmental change (Maggini et al. 2014). Our results261

demonstrate the dramatic effects of climate change on temporal beta-diversity of a bird metacommunity.262

3 Discussion263

We derived the formulae of the expectation and variance of Jaccard dissimilarity index as a measure of264

compositional dissimilarity between two sites for nonidentical species in heterogeneous landscapes. We265

showed that species differences may have nonmonotonic effects on Jaccard dissimilarity (Figure 3). When266

sites are relatively similar in their species presence probabilities, species difference reduces Jaccard dissimi-267

larity. When sites are different in their presence probabilities, species differences can cause varying effects268

on Jaccard dissimilarity, making robust prediction challenging. Our work allows us to implement empirical269

incidence data of presence probabilities and assess the long term estimations for Jaccard dissimilarity.270

In addition, our method enables quantitative comparison of predicted outcomes with observed species271

distributions. Hence, the present work offers a powerful framework to theoretically and quantitatively272

investigate spatial variations in species comopsition.273

Our results suggest that knowledge of the species pool will be important for some properties but not274

others. When all species are identical, we found that the conditional expectation of Jaccard dissimilarity275

(given that at least one species is likely present) is independent of species pool size, as was revealed in the276

literature (Lu et al. 2019; Kalyuzhny et al. 2021; Lu 2021). In contrast, we found that the variance more277

substantially depends on the species pool size even when the species presence probabilities are equal278

in each pair of sites (Figure 2B). Specifically, the variance becomes smaller when the species pool size279
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is larger, suggesting that large species pool sizes may reduce the uncertainty in statistical inferences for280

Jaccard dissimilarity. However, the uncertaintymay become larger when the baseline presence probabilities281

are smaller (Figure 2B), suggesting that the presence of opportunistic species (species with the presence282

probabilities are very low but not zero) may influence the robust inference of Jaccard dissimilarity, and also283

that rarely observed species can increase the uncertainty of estimations for Jaccard dissimilarity (Wolda284

1981; Colwell & Coddington 1994; Plotkin & Muller-Landau 2002; Chao et al. 2004). These predictions285

are consistent with the importance of species that are currently present but can be potentially present286

(dark diversity; Pärtel et al. 2011; Carmona & Pärtel 2020), and our work suggests that dealing with the287

uncertainty is the key to predict the dark diversity.288

Comparison with simulated data showed that the approximation of the Jaccard dissimilarity agrees289

well with the exact formula, with its accuracy higher with the increasing species pool size (Appendix290

B). Notably, the heuristic approximation is a closed form with respect to the species-wise average of the291

presence probabilities: both the numerator and denominator can be written as functions of the averages of292

double-presence and double-presence probabilities, the results suggest that within-site species difference is293

likely unimportant. Because the heuristic approximation is computationallymuch cheaper than calculating294

the exact expectation of Jaccard dissimilarity in a brute force approach, we suggest that, when the species295

pool size is relatively small, exact evaluation of the Jaccard dissimilarity is suitable and should be compared296

with the approximated value which can be computed faster. When the species pool size is large, we suggest297

using our approximations and exact values both, e.g., by applying Gauß’ fast Fourier Transforms (Cooley298

& Tukey 1965; Heideman et al. 1984). When the species pool size is unknown, the Eqn (3) is beneficial,299

because the interpretation is clear and the expectations in the numerator and denominator can be assessed300

separately.301

Using data on woodpecker distributions, we projected shifts in habitat use potentially helping practi-302

tioners to identify locations of interest for conservation and management (Nieto-Lugilde et al. 2017). This303

approach required only information on the expectation and variance. Likely mechanisms of the species304

differences and temporal heterogeneity in this system include colonization abilities, habitat selection, and305

species-specific tolerance to environmental challenges. By specifying possible mechanisms, we can obtain306

deeper insight into the processes by which biotic homogeneization occurs. For instance, partitioning beta-307

diversity into colonization and extinction components can be of great use to better understand dynamic308

processes of beta-diversity (Tatsumi et al. 2021). Our study can be used in conjunction with data such as309

SDMs for better understanding and management of the spatio-temporal dynamics of biodiversity. In previ-310

ous studies using SDMs, mapping of dissimilarity has been carried out in a spatial (Godsoe 2013; Godsoe &311

Case 2014) or temporal (Ferrier et al. 2007; Fitzpatrick et al. 2013). In this vein, we provide an analytical312

approach that avoids relying on simulations, consequently speeding up the estimation of dissimilarity313

and its standard deviation, applicable to any method under the species independence assumption, e.g., in314

dynamical metapopulation models. Therefore, we improve accessibility to dissimilarity analyses.315

Our key finding is that beta-diversity will only decrease with species differences depending when316

space is completely or weakly homogeneous (Figure 3A-1 and A-2, and Figure 4A and B). When space is317

very heterogeneous, To facilitate biological interpretations for the prediction, we first list species in the318

descending order of presence probability in site 1 (i.e., p1,1 ≥ p2,1 ≥ · · · ≥ pS,1). We then plotted the curve of319

pi,j against i = 1, 2, …, S and termed this curve as a “species-incidence curve” for site j; we here interpret that320

a higher presence probability of a species reflects a suitability for that species. Given these settings, under321

no spatial heterogeneity (i.e., pi,1 = pi,2 for all species i = 1, …, S, and thus when h = 0), the two species-322

incidence curves synchronize perfectly. In this case, increasing species differences increases the probability323

of some species being either (i) double-absent or (ii) present in both sites. In these cases, an increase in324

species differences reduces beta-diversity. This is because an increase in species difference indirectly makes325

the two incidence curves flat to gradually uneven (from left to right; Figure 3A-1) and thereby both sites326

become either more suitable or unsuitable for all species; note, however, that this result assumes that327

the average presence probability in each site remains constant. Biologically, spatial homogeneity tends328

to constrain the variation in species-incidence curves in a way that species differences make both sites329
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more suitable or less suitable for all species. In other words, species differences under homogeneity are330

unlikely to foster uniquely present species. This prediction is robust against small increases in spatial331

heterogeneity (Figure 3A-2, Figure 4B). From the perspective of estimating beta-diversity, the results suggest332

that using common, averaged presence probabilities for all species may result in systematic overestimation333

of beta-diversity. In a weakly heterogeneous metacommunity, beta-diversity is predicted to decrease with334

species differences due to the synchronization of species incidence curves between two sites.335

With increasing spatial heterogeneity, however, the effect of species difference on beta-diversity becomes336

obscured (Figure 3B-1, B-2, Figure 4C and D). This is because in the presence of spatial heterogeneity, species337

incidence curves are allowed to become asynchronous. As the degree of spatial heterogeneity becomes large,338

two species incidence curves are necessarily asynchronized (or form a “nestedness” or “turnover pattern”,339

sensu Harrison et al. 1992, by which species incidences tend to be spatially segregated). Let us compare340

Figure 3B-1, in which beta-diversity decreases with species difference, versus B-2 in which beta-diversity341

otherwise increases. We can see that in panel B-1, the effect of increasing species difference on beta-diversity342

is similar to that in panel A-1 and A-2 with the two incidence curves synchronizing. This is because, in343

Figure 3B-1, as species difference increases, both sites become more suitable for species 1, 2, and 3 but less344

suitable for species 4, 5, and 6. Therefore this pattern can be understood in the similar way as those in345

panels A-1 and A-2. In contrast, panel B-2 exhibits the asynchronization pattern with increasing species346

difference. In this case, increasing the species difference canmake the nestedness patternmore pronounced;347

for example, as species difference increases, site 1 becomes more suitable but site 2 less suitable for species348

1. Critically, as species difference increases, site 1 (and site 2) becomes more (and less) suitable for species349

1, 2, and 3 but less (and more, respectively) suitable for species 4, 5, and 6, leading to increased turnover of350

species. As these interpretations are not explicitly clear from Figure 4, we suggest careful assessments of the351

mechanisms of species incidence across space to better predict the dependence of beta-diversity on species352

difference in heterogeneous environments. Hence, heterogeneous environments make the prediction and353

management of beta-diversity even more challenging.354

Our study has critical implications for conservation. Generally, beta-diversity is a key factor for ecosys-355

tem functioning from local to global scales (Socolar et al. 2016;Mori et al. 2018). Local ecosystem functioning356

may be driven by species’ functional dissimilarity like niches; Godoy et al. 2020). For example, Loiseau357

et al. (2016) pointed out that conservation policy designed to protect taxonomic diversity cannot be fully358

reconciled with functional diversity management. Indeed our finding predicts that with the environmental359

homogeneity, increasing local species differences lead to lower beta-diversity (Figure 3A-1 and A-2, and360

Figure 4A and B). Given that the species difference is associated with functional diversity (or transformed361

quantity thereof; Palacio et al. 2022), the present prediction suggests that a conservation policy aiming to362

maintain high beta-diversity be traded-off against the local, functional diversity. This trade-off becomes363

more complicated when the spatial heterogeneity is strong, by which beta-diversity may or may not364

decrease with species-differences, thereby making the prediction of beta-diversity rather difficult. One365

promising approach is thus to identify species traits and environmental factors for maintaining a balance366

(evenness) in the likeliness of species presence and absence, which may produce new interesting questions.367

Moving forward, open questions include: how does incidence-based beta-diversity respond to changes in368

functional diversity in colonization ability and extinction tolerance? How does functional diversity, in turn,369

respond against the reduction in compositional dissimilarity (biotic homogeneization)?370

To conclude, we have derived the analytic formula of the expectation and variance of Jaccard dissim-371

ilarity index incorporating different species in a pair of heterogeneous sites, and revealed the opposing372

effects of species differences on beta-diversity. Assuming that species incidences are uncorrelated with373

each other, we found that species differences in presence probabilities may lead to a complex pattern374

(Figure 3). This work will help researchers better understand the probabilistic, or stochastic, nature of375

Jaccard dissimilarity (Real & Vargas 1996). Future studies may explore the effects of species associations376

on the probabilistic properties of Jaccard dissimilarity, and also carry out occupancy dynamics analyses,377

beyond pairwise dissimilarity analyses (MacKenzie et al. 2018). One of the most promising approaches is a378

process-based approach (Pilowsky et al. 2022), by which we can incorporate further complications that379
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influence beta-diversity. Our method can incorporate additional realities to track and manage the changes380

in species distributions under global changes.381
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Notation724

◦ Ω := { 0, 1 }725

◦ S, the species pool size, defined as the number of elements { i } such that {maxj=1,2 pi,j > 0 }726

◦ xi,j ∈ Ω: incidence727

◦ xi,j ∈ Ω: logical negation, i.e., xi,j = 1 − xi,j728

◦ pi,j : probability that xi,j = 1729

◦ ai,j : probability that xi,j = 0730

◦ X ∈ ΩS ⊗Ω2: Incidence table of size S rows and N columns731

◦ x◦,j :=
(
x1,j , …, xS,j

)> (∈ ΩS
)
, referred to as “local compositional profile”732

◦ xi,◦ :=
(
xi,1, …, xi,N

) (
∈ ΩN

)
, referred to as “species occurrence profile”733

◦ PX: Probability that the incidence table X realizes734

◦ 〈x◦,1,x◦,2〉 :=
∑S

i=1 xi,1xi,2, or the inner product between local compositional profiles to count the number735

of common species736

◦
∣∣x◦,j

∣∣ := 〈x◦,j ,x◦,j〉: the total number of species present in a site j737

◦ X =
(
x◦,1,x◦,2

)
as we consider only two sites.738

Appendix A Expectation of Jaccard dissimilarity739

Definition of Jaccard dissimilarity740

We write βJX for the Jaccard dissimilarity measure for a table X, defined by:741

βJX :=
∣∣x◦,1

∣∣ +∣∣x◦,2
∣∣ − 2 〈x◦,1,x◦,2〉∣∣x◦,1

∣∣ +∣∣x◦,2
∣∣ − 〈x◦,1,x◦,2〉

. (A7)

For X = O (zero-matrix), we define βJO := 0, which follows from two facts: (i) two all-zero vectors are (or742

axiomatically should be) completely similar, and (ii) the nullification of the denominator (which is always743

larger or equal to the numerator) should imply the nullification of the numerator (which is smaller or744

at most equal) as well. To avoid confusion, we suppose that numerator being zero implies the Jaccard745

dissimilarity be zero (otherwise resulting in erroneous calculations). It makes sense to exclude the zero-746

matrix, because zero-matrix indicates that there is no species in the landscape. Therefore we will focus on747

the conditional expectation.748

Linking Jaccard dissimilarity to Whittaker’s (1972) beta-diversity749

Whittaker (1972) defined beta-diversity as the ratio between region-wide diversity (gamma) to average750

local richness (alpha). Because the region-wide diversity is γX :=
∣∣x◦,1

∣∣ +∣∣x◦,2
∣∣ − 〈x◦,1,x◦,2〉 and average751

local richness is αX :=
(∣∣x◦,1

∣∣ +∣∣x◦,2
∣∣) ∕ 2, we have:752

∣∣x◦,1
∣∣ +∣∣x◦,2

∣∣ = 2αX, (A8)

〈x◦,1,x◦,2〉 = 2αX − γX. (A9)

Using the beta-diversity sensu Whittaker (1972), which is given by:753

βWhittaker
X :=

γX

αX
, (A10)

Jaccard dissimilarity can be rewritten as:754

βJX =
2γX − 2αX

γX
= 2 −

2

βWhittaker
X

, (A11)
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giving:755

βWhittaker
X =

2
2 − βJX

, (A12)

which is a monotonically increasing function of βJX. Geometrically, βWhittaker
X is a slope between two points756

(2, 2) and
(
βJX, 0

)
, which becomes steeper as βJX increases. Because Whittaker’s (1972) beta-diversity is a757

monotonic transform of Jaccard dissimilarity,we can use Jaccard dissimilarity as ameasure of beta-diversity.758

Step 1: express the Jaccard dissimilarity as an integral759

We note that any fraction of ν1 to ν2 (≥ 0) has a form of integration:760

ν1
ν2

≡
∫ +∞

0

∂
∂ξ

exp(ν1ξ − ν2θ) dθ

∣∣∣∣∣
ξ=0

, (A13)

which yields:761

βJX ≡
∫ ∞

0

∂
∂ξ

exp

ξ
S∑

i=1

(
xi,1 + xi,2 − 2xi,1xi,2

) exp

−θ S∑
i=1

(
xi,1 + xi,2 − xi,1xi,2

) dθ

∣∣∣∣∣
ξ=0

, (A14)

where we assign that we do not interchange the integral with the derivative unless otherwise stated, in762

order to remind that the integral should be defined as zero whenever the numerator is zero. We compute763

the expectation of βJX (which is a stochastic variable) over the distribution PX.764

Step 2: Independence yields product765

Assuming the species independence, the probability that a given incidence table X is observed is given by:766

PX =
S∏

i=1

2∏
j=1

pxi,ji,j a
xi,j
i,j , (A15)

as the incidence probabilities are independent across species. We can then see the following facts:767

∑
X

PX

S∏
i=1

(•) ≡
S∏

i=1

∑
xi,◦∈Ω2

pxi,1i,1 p
xi,2
i,2 a

1−xi,1
i,1 a1−xi,2i,2 (•)

exp

 S∑
i=1

(•)

 ≡
S∏

i=1

exp(•)

(A16)

Then we get the (unconditional) expectation as:768

E
[
βJ
]
:=
∑
X

PXβJX

=
∫ ∞

0

∂
∂ξ

S∏
i=1

∑
xi,◦∈Ω2

pxi,1i,1 p
xi,2
i,2 a

1−xi,1
i,1 a1−xi,2i,2 exp

(
ξ
(
xi,1 + xi,2 − 2xi,1xi,2

)
− θ
(
xi,1 + xi,2 − xi,1xi,2

))
dθ

∣∣∣∣∣
ξ=0

.

(A17)

Step 3: Boolean thinking769

Let us evaluate the Boolean variable in the argument of exponential:770

ξ
(
xi,1 + xi,2 − 2xi,1xi,2

)
− θ
(
xi,1 + xi,2 − xi,1xi,2

)
=


0, if xi,1 = xi,2 = 0 (double-absence)

−θ, if xi,1 = xi,2 = 1 (double-presence)

ξ − θ, otherwise (uniqueness)

(A18)
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Using this can allow us to expand the summation
∑

xi,◦∈Ω2 ; that is:771

∑
xi,◦∈Ω2

pxi,1i,1 p
xi,2
i,2 a

1−xi,1
i,1 a1−xi,2i,2 exp

(
ξ
(
xi,1 + xi,2 − 2xi,1xi,2

)
− θ
(
xi,1 + xi,2 − xi,1xi,2

))
= di,◦ + e−θbi,◦ + eξ−θ

(
1 − bi,◦ − di,◦

) (A19)

for all i ∈ { 1, …, S }. Therefore, substituting this into Eqn (A17) results in:772

E
[
βJ
]
=
∫ ∞

0

∂
∂ξ

S∏
i=1

(
di,◦ + e−θbi,◦ + eξ−θ

(
1 − bi,◦ − di,◦

))
dθ

∣∣∣∣∣
ξ=0

. (A20)

Step 4: apply Leibniz rule773

By using Leibniz rule of the derivative of a product, we can get:774

E
[
βJ
]
=
∫ ∞

0
e−θ

S∑
i=1

(
1 − bi,◦ − di,◦

) S∏
`=1,` 6=i

(
d`,◦ + e−θ

(
1 − d`,◦

))
dθ. (A21)

By transforming the variable z = 1 − e−θ with dθ = (1 − z) dz, we can rewrite Eqn (A21) as:775

E
[
βJ
]
=
∫ 1

0

S∑
i=1

(
1 − bi,◦ − di,◦

) S∏
`=1,` 6=i

(
1 − z + zd`,◦

)
dz. (A22)

Eqn (A22) represents the general expression for the expectation of Jaccard dissimilarity provided that776

species incidences are uncorrelated.777

Break to check: experiments778

Experiment 1 | When S = 1,we immediately get E
[
βJ
]∣∣∣∣∣

S=1

= 1−b1,◦−d1,◦. Thus the conditional expectation779

is
(
1 − b1,◦ − d1,◦

)
∕
(
1 − d1,◦

)
.780

Experiment 2 | When S = 2,781

E
[
βJ
]∣∣∣∣∣

S=2

=
∫ 1

0

(
1 − b1,◦ − d1,◦

) (
1 − z + zd2,◦

)
+
(
1 − b2,◦ − d2,◦

) (
1 − z + zd1,◦

)
dz, (A23)

which is
(
1 − b1,◦ − d1,◦

) (
1 − 1 ∕ 2 + d2,◦ ∕ 2

)
+
(
1 − b2,◦ − d2,◦

) (
1 − 1 ∕ 2 + d1,◦ ∕ 2

)
. Thus782

the conditional expectation is783

E
[
βJ
∣∣ γ > 0

]∣∣∣∣∣
S=2

=
1

2
(
1 − d1,◦d2,◦

) ((1 − b1,◦ − d1,◦
) (

1 + d2,◦
)
+
(
1 − b2,◦ − d2,◦

) (
1 + d1,◦

))
(A24)

Experiment 3 | When all species are equal, that is when
(
pi,1, pi,2

)
≡
(
p◦,1, p◦,2

)
with pi,1pi,2 = b and784

ai,1ai,2 = d,785

E
[
βJ
]
=
∫ 1

0
S (1 − b − d) (1 − z + zd)S−1 dz =

1 − b − d
1 − d

∙
(
1 − dS

)
, (A25)

thus recovering Lu et al.’s (2019) results by dividing the RHS by 1 − dS the probability that786

some species is present (γ > 0).787

Rationale788

First, notice that 1−bi,◦ −di,◦ represents the probability that species i is unique to one of the sites. Given that789

species i is unique, we aim to identify which species are present, regardless of being unique or common. For790
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instance, given that species i = 1 is unique, the other species i = 2, 3, …, S, each of which is either unique,791

common or double-absent, we can count the number of present species and put it in the denominator by792

calculating an integral of the product:793

M1 :=
∫ 1

0

S∏
`≥2

(
1 − z + zd`,◦

)
dz. (A26)

Indeed, when S = 2, the integral results in M1 =
(
1 + d2,◦

)
∕ 2, because with probability d2,◦, species 2794

is absent from both sites, in which the contribution of species 1 to Jaccard dissimilarity is 1, while with795

probability 1 − d2,◦, species 2 is present, in which case the contribution of species 1 to Jaccard dissimilarity796

is 1/2 (with species 2’s contribution not counted here), thus giving the expectation of
(
1 + d2,◦

)
∕ 2. When797

S = 3, given that species i is unique, writing 00 for double-absence of species 2 and 3 and 00 for non798

double-absence of species 2 and 3,799

sp 2 sp 3 probability # present sp (incl 1) species 1’s contribution to Jaccard

00 00 d2,◦d3,◦ 1 1

00 00 d2,◦
(
1 − d3,◦

)
2 1 ∕ 2

00 00
(
1 − d2,◦

)
d3,◦ 2 1 ∕ 2

00 00
(
1 − d2,◦

) (
1 − d3,◦

)
3 1 ∕ 3

(A27)

The expected contribution of species 1 to Jaccard dissimilarity, conditioned on species 1 being unique, is800

thus given by801

d2,◦d3,◦ ∙ 1 + d2,◦
(
1 − d3,◦

)
∙
1
2
+
(
1 − d2,◦

)
d3,◦ ∙

1
2
+
(
1 − d2,◦

) (
1 − d3,◦

)
∙
1
3
=

2 + d2,◦ + d3,◦ + 2d2,◦d3,◦
6

= M1

(A28)

where the second line results from calclation of M1 for S = 3. From this reasoning, we can interpret802

Eqn (A22) as the sum of the conditional expectations of species’ contribution to Jaccard dissimilarity.803

Step 5: reach Beta function804

Expanding the product in Eqn (A22) in terms of 1 − z and z, we get:805

E
[
βJ
]
=

S∑
i=1

(
1 − bi,◦ − di,◦

) ∫ 1

0

 S∏
`=1;(` 6=i)

(
1 − z + zd`,◦

) dz

=
S∑

i=1

(
1 − bi,◦ − di,◦

) ∫ 1

0

S∑
k=1

∑
y∈ΩS ,|y|=k,yi=1

(1 − z)k−1 zS−k
S∏

`=1,` 6=i

d1−y`i,◦ dz

(A29)

Using the Beta function Β(k, S − k + 1) :=
∫ 1
0 (1 − z)k−1 zS−k dz = (k − 1)!(S − k)! ∕ S!, we can rewrite E

[
βJ
]
as:806

E
[
βJ
]
=

S∑
i=1

(
1 − bi,◦ − di,◦

) ∫ 1

0

S∑
k=1

∑
y∈ΩS ,|y|=k,yi=1

(1 − z)k−1 zS−k
S∏

`=1,` 6=i

d1−y`i,◦ dz

=
S∑

i=1

(
1 − bi,◦ − di,◦

) S∑
k=1

∑
y∈ΩS ,|y|=k,yi=1

(k − 1)! (S − k)!
S!

S∏
`=1,` 6=i

d1−y`i,◦

=
1
S

S∑
i=1

(
1 − bi,◦ − di,◦

) S∑
k=1

∑
y∈ΩS ,|y|=k,yi=1

1

S−1Ck−1

S∏
`=1,` 6=i

d1−y`i,◦

(A30)

where S−1Ck−1 (with k = |y|) represents the binomial coefficient, which counts the number of ways, disre-807

garding order, that k−1 species can be chosen from among S−1 species (Van Lint &Wilson 2001). This is the808
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exact expression of the expectation of Jaccard dissimilarity. When we consider the conditional expectation,809

we divide the unconditional expectation by 1 −
∏S

i=1 di,◦. An alternative expression (displayed in the main810

text) is given by:811

E
[
βJ
∣∣ γ > 0

]
=

∑S
i=1
∑

y∈ΩS
1
|y|

yi(1−bi,◦−di,◦)
SC|y|

∏S
`( 6=i) d

1−y`
`,◦

1 −
∏S

k=1 dk,◦
(A31)

which follows by rearranging the binomial coefficients.812

Shortcut method using the generating function813

Bynoticing that integration is the key, one can take a shortcut approach. Let τ(zb, zu, zd) :=
∏S

i=1
(
ui,◦zu + bi,◦zb + di,◦zd

)
814

be the joint generating function of the ternary distributions for each species to be common, unique, or815

double-absent (i = 1, 2, …, S). By expanding the polynomial we get the identity:816

τ(zb, zu, zd) ≡
∑

{ iu+ib+id=S }

τ(iu ,ib ,id)z
iu
u z

ib
b z

id
d , (A32)

where the coefficient τ(iu ,ib ,id) represents the probability that (i) iu species are unique, (ii) ib species are817

common, and (iii) id = S − iu − ib species are double-absent.1 A vector i := (iu, ib, id) (with iu + ib + id = S)818

therefore represents the state, or species-implicit incidence-table, of the community, with each species819

categorized as either unique, common, or double-absent. What we ought to compute is then:820

E
[
βJ
]
=
∑
i

iu
iu + ib

τi, (A33)

which equals:821 ∑
i

iu
iu + ib

τiziuu z
ib
b z

id
d

∣∣∣∣∣
zu=zb=zd=1

. (A34)

We wish to algebraically extract iu (the numerator of Jaccard dissimilarity) and the reciprocal of (ib + iu)822

(the denominator of Jaccard dissimilarity). With the inspiration of integration, we can come up with:823

E
[
βJ
]
=
∫ 1

0

∂
∂zu

∑
i

τ(iu ,ib ,id)z
iu
u z

ib
b 1

id

∣∣∣∣∣
zu=zb

dzb ≡
∫ 1

0

∂
∂zu

τ(zu, zb, 1)

∣∣∣∣∣
zu=zb

dzb. (A35)

Using the original definition of the generating function, its derivative is given by:824

∂
∂zu

τ(zb, zu, zd)

∣∣∣∣∣
zu=zb

=
∂
∂zu

S∏
i=1

(
ui,◦zu + bi,◦zb + di,◦zd

)∣∣∣∣∣
zu=zb ,zd=1

=
S∑

i=1

ui,◦
∏
`( 6=i)

(u`zb + b`zb + d`)

=
S∑

i=1

ui,◦
∏
`( 6=i)

((
1 − d`,◦

)
zb + d`,◦

)
,

(A36)

which thus returns us back to Eqn (A22) by integrating the last line.825

Appendix B Approximations826

Upper bound827

Although the exact calculation of the expectation is correct, the computational speed may be too slow to828

be practical, especially when S is large. Therefore we consider approximating it. We will make use of the829

1zd really is unneeded but is incorporated for symmetry.
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property of the bivariate function:830

J(b, d) :=
1 − b − d
1 − d

, (B37)

which is “almost” linear, on the feasible domain { (b, d) ∈ [0, 1]2 |
√
b +

√
d ≤ 1 }.831

We rewrite Eqn (A22) as:832

∫ 1

0

S∑
i=1

(
1 − bi,◦ − di,◦

)
exp

 S∑
`=1,` 6=i

log
(
1 − z + zd`,◦

) dz. (B38)

Using Jensen’s inequality,833

S∑
`=1,` 6=i

log
(
1 − z + zd`,◦

)
≤ (S − 1) log

1 − z + z
1

S − 1

S∑
`=1,` 6=i

d`,◦

 , (B39)

where the equality achieves when d`,◦s are all identical across species i = 1, 2, …, S. Now put:834

h\i :=
1

S − 1

S∑
`=1,` 6=i

d`,◦. (B40)

Then we get:835

E
[
βJ
]
≤
∫ 1

0

S∑
i=1

(
1 − b`,◦ − d`,◦

) (
1 − z + zh\i

)S−1
dz =

1
S

S∑
i=1

1 − bi,◦ − di,◦
1 − h\i

(
1 − hS

\i

)
= βJ+. (B41)

RHS gives a very good approximation, because J(b, d) is almost linear and only very moderately concave.836

We divide both sides by 1 −
∏S

i=1 di,◦ to get the approximation of the conditional expectation of Jaccard837

dissimilarity.838

Lower bound839

The lower-bound approximation of the expected Jaccard dissimilarity is given by:840

E
[
βJ
]
=

S∑
i=1

(
1 − bi,◦ − di,◦

) ∫ 1

0

 S∏
`=1;` 6=i

(
1 − z + zd`,◦

) dz

≥
S∑

i=1

(
1 − bi,◦ − di,◦

) ∫ 1

0

1 − z + z
S∏

`=1;` 6=i

d
1

S−1
`,◦

S−1

dz

=
1
S

S∑
i=1

(
1 − bi,◦ − di,◦

) 1 −∏S
`=1;` 6=i d

S
S−1
`,◦

1 −
∏S

`=1;` 6=i d
1

S−1
`,◦

= βJ−,

(B42)

where the second line follows by applying the induction, and the equality holds when di,◦s are all identical.841

2 Dividing both sides by 1 −
∏S

i=1 di,◦ yields the approximation for the conditional expectation.842

Heuristic approximation843

The other approximation for the conditional expectation can be obtained heuristically (Ontiveros et al.844

2021):845

βJheur =
∑S

i=1
(
1 − bi,◦ − di,◦

)∑S
i=1
(
1 − di,◦

) = J

1
S

S∑
i=1

bi,◦,
1
S

S∑
i=1

di,◦

 (B43)

2First, when S = 2, some convexity arguments of arithmetic and geometric means work. Second, hypothesizing that the inequality
is valid for a certain S = 2`, it is easy to prove that the inequality holds for S = 2`+1. Finally, hypothesizing that the inequality is
valid for a certain S, we prove the inequality is the case for S − 1, by using the binomial expansion of the product and applying the
arithmetic-geometric means relation repeatedly. The equality achieves when all di,◦ are equal. This completes the proof.
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which represents the expected number of unique species divided by the expected number of present species.846

Deriving this formula requires quite a bit of calculations, but if we notice:847

1 −
S∏

i=1

di,◦ = −
∫ 1

0

d
dz

S∏
i=1

(
1 − z + zdi,◦

)
dz =

∫ 1

0

S∑
i=1

(
1 − di,◦

) S∏
`=1;` 6=i

(
1 − z + zd`,◦

)
dz, (B44)

then we get:848

E
[
βJ
∣∣ γ > 0

]
=

E
[
βJ
]

1 −
∏S

i=1 di,◦

=

∫ 1
0

∑S
i=1
(
1 − di,◦ − bi,◦

)∏S
`=1;` 6=i

(
1 − z + zd`,◦

)
dz∫ 1

0

∑S
i=1
(
1 − di,◦

)∏S
`=1;` 6=i

(
1 − z + zd`,◦

)
dz

=
∑S

i=1
(
1 − di,◦ − bi,◦

)
Mi∑S

i=1
(
1 − di,◦

)
Mi

,

(B45)

where we have put:849

Mi :=
∫ 1

0

S∏
`=1;` 6=i

(
1 − z + zdi,◦

)
dz (B46)

for i = 1, 2, …, S. If we replace the integralMi , which shows up in both the denominator and numerator (but850

is multiplied by different coefficients), with (say) its average over i = 1, 2, …, S, written asM* :=
∑S

i=1 Mi ∕ S,851

then:852

E
[
βJ
∣∣ γ > 0

]
≈
∑S

i=1
(
1 − di,◦ − bi,◦

)
M*∑S

i=1
(
1 − di,◦

)
M*

=
∑S

i=1
(
1 − di,◦ − bi,◦

)∑S
i=1
(
1 − di,◦

) = βJheur, (B47)

which thus gives the heuristic approximation. The approximation is exact whenM1 = · · · = MS (which853

is not a necessary condition). This explains why the heuristic approximation works for the conditional854

expectation, while not for the unconditional, and also explains why the heuristic approximation may855

be larger or smaller than the exact expectation depending on the variance inMis. We may observe that856

Mi becomes increasingly small with S larger (M* = O
((∑S

i=1 di,◦
)−1)

), and thus, as S increases, the857

contribution of the replacement (Mi with M*) to the difference between the exact and approximated858

expectation becomes smaller.859

The heuristic approximation may, however, be either larger or smaller than the exact conditional860

expectation, and thus the upper and lower bounds, (βJ+ and βJ−), both may be also recommended.861

Altogether, we obtained the three approximations:862

◦ Approximation from below: βJ−863

◦ Approximation from above: βJ+864

◦ Heuristic approximation: βJheur865

Performances866

We numerically compared the accuracy and precision of the approximations, in the following procedure.867

(1) Generate two vectors (with S = 100):868

p◦,1 =


p1,1
p2,1
...

pS,1

 ,p◦,2 =


p1,2
p2,2
...

pS,2

 , (B48)

in which each value of pi,1 is drawn from the Beta distribution with parameters 1.2 and 1.5, and pi,2869

drawn from the Beta distribution with parameters 1.6 and 0.8. We chose the Beta distribution to870

generate the presence probabilities because it is the conjugate distribution of the well-known binomial871

distribution, thus an appropriate distribution to generate probabilities of ‘success (presence).’872
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(2) Calculate double-presence and double-absence vectors:873

b◦,◦ =


b1,◦
b2,◦
...

bS,◦

 =


p1,1p1,2
p2,1p2,2

...

pS,1pS,2

 ,d◦,◦ =


d1,◦
d2,◦
...

dS,◦

 =


a1,1a1,2
a2,1a2,2

...

aS,1aS,2

 , (B49)

which can be numerically implemented with Hadamard product.874

(3) Compute the followings:875

∙ E
[
βJ
∣∣ γ > 0

]
using Eqn (A22);876

∙ βJ− in a brute-force approach;877

∙ βJ+ in a brute-force approach;878

∙ βJheur in a brute-force approach.879

(4) Repeat the procedure 1000 times and generated the probability distributions of those four quantities880

(but note that they are stochastic variables because we used the Beta distribution to generate { pi,j }).881

(5) We plot the distribution of the expectations of Jaccard dissimilarity measures (approximations and882

exact value).883

Data to generate Figure 3884

The following p◦,j are used to generate Figure 3 of the main text.885

(
p1
p2

) (
w, h

) (
E
[
βJ
∣∣ γ > 0

]
, βJheur

)
(

{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}
{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

) (
0, 0

) (
0.666667, 0.666667

)
(

{0.432205, 0.43587, 0.450907, 0.481017, 0.518983, 0.549093, 0.56413, 0.567795}
{0.432205, 0.43587, 0.450907, 0.481017, 0.518983, 0.549093, 0.56413, 0.567795}

) (
0, 0.1

) (
0.661062, 0.661545

)
(

{0.364411, 0.37174, 0.401815, 0.462035, 0.537965, 0.598185, 0.62826, 0.635589}
{0.364411, 0.37174, 0.401815, 0.462035, 0.537965, 0.598185, 0.62826, 0.635589}

) (
0, 0.2

) (
0.644037, 0.645942

)
(

{0.296616, 0.30761, 0.352722, 0.443052, 0.556948, 0.647278, 0.69239, 0.703384}
{0.296616, 0.30761, 0.352722, 0.443052, 0.556948, 0.647278, 0.69239, 0.703384}

) (
0, 0.3

) (
0.614943, 0.619112

)
(B50)



(
{0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55}
{0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45}

) (
0.1, 0.

) (
0.671096, 0.671096

)
(

{0.453604, 0.453752, 0.458416, 0.499943, 0.600057, 0.641584, 0.646248, 0.646396}
{0.332182, 0.332364, 0.338064, 0.388819, 0.511181, 0.561936, 0.567636, 0.567818}

) (
0.1, 0.1

) (
0.653477, 0.655013

)
(

{0.357207, 0.357505, 0.366832, 0.449885, 0.650115, 0.733168, 0.742495, 0.742793}
{0.214364, 0.214728, 0.226128, 0.327637, 0.572363, 0.673872, 0.685272, 0.685636}

) (
0.1, 0.2

) (
0.59844, 0.604339

)


(B51)



(
{0.675, 0.675, 0.675, 0.675, 0.675, 0.675, 0.675, 0.675}
{0.325, 0.325, 0.325, 0.325, 0.325, 0.325, 0.325, 0.325}

) (
0.35, 0.

) (
0.718975, 0.718975

)
(

{0.74462, 0.744512, 0.741144, 0.711153, 0.638847, 0.608856, 0.605488, 0.60538}
{0.469595, 0.469372, 0.462376, 0.400086, 0.249914, 0.187624, 0.180628, 0.180405}

) (
0.35, 0.1

) (
0.704116, 0.705752

)
(

{0.814239, 0.814025, 0.807288, 0.747305, 0.602695, 0.542712, 0.535975, 0.535761}
{0.614189, 0.613743, 0.599752, 0.475172, 0.174828, 0.0502477, 0.0362568, 0.0358108}

) (
0.35, 0.2

) (
0.657895, 0.66439

)


(B52)
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(
{0.675, 0.675, 0.675, 0.675, 0.675, 0.675, 0.675, 0.675}
{0.325, 0.325, 0.325, 0.325, 0.325, 0.325, 0.325, 0.325}

) (
0.35, 0.

) (
0.718975, 0.718975

)
(

{0.719067, 0.716685, 0.70691, 0.687339, 0.662661, 0.64309, 0.633315, 0.630933}
{0.233477, 0.238424, 0.258725, 0.299374, 0.350626, 0.391275, 0.411576, 0.416523}

) (
0.35, 0.1

) (
0.723095, 0.723094

)
(

{0.763133, 0.758369, 0.738821, 0.699677, 0.650323, 0.611179, 0.591631, 0.586867}
{0.141954, 0.151849, 0.19245, 0.273747, 0.376253, 0.45755, 0.498151, 0.508046}

) (
0.35, 0.2

) (
0.735304, 0.735295

)
(

{0.8072, 0.800054, 0.770731, 0.712016, 0.637984, 0.579269, 0.549946, 0.5428}
{0.0504315, 0.0652731, 0.126175, 0.248121, 0.401879, 0.523825, 0.584727, 0.599568}

) (
0.372887, 0.3

) (
0.755166, 0.755118

)


(B53)

886

E[βJ | γ > 0]
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SI Figure 1: We assessed the probability distributions of the exact and approximated Jaccard expectations.

Appendix C Well-definedness887

Here we clarify some concepts that have been left unspecified in the main text.888

Species pool889

We first suppose that species i is presentable in the focal metacommunity if strictly di,◦ < 1. The collection890

of all presentable species is called as species pool. Its cardinality (i.e., the number of members of the species891

pool) is referred to as species pool size and denoted as S. By defining these, we exclude never presentable892

species from the species pool, pi,1 = pi,2 = 0.893
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Computation of E[Jaccard | γ > 0]
We formulate a Mathematica code for: 
(i) the conditional expectation of Jaccard dissimilarity, denoted jaccard[{p1, p2}] with 
argument  a pair of species presence probabilities p1 := (p11, p21, p31, ..., pS1) and p2 := 
(p12, p22, p32, ..., pS2), and 
(ii) the heuristic approximation, denoted heur[{p1, p2}]. 
The species pool size (which is written shu) is arbitrary and can be determined by directly 
defining the length of p’s.

In[3]:= Clear["Global`*"];
SetDirectory[NotebookDirectory[]];

In[5]:= jaccard[{p1_List, p2_List}] := With{},

shu = Length@p1;
blist = p1 * p2;
dlist = (1 - p1) * (1 - p2);
ulist = 1 - blist - dlist;

j = Total@Tableulist〚i〛 * (*N*)Integrate

1

1 - z + z * dlist〚i〛
* Product[1 - z + z * dlist〚k〛, {k, 1, shu, 1}], {z, 0, 1},

{i, 1, shu, 1}  (1 - Product[dlist〚i〛, {i, 1, shu, 1}]);

heur[{p1_List, p2_List}] :=
Mean[(p1) * (1 - p2) + (1 - p1) * (p2)]

Mean[1 - (1 - p1) * (1 - p2)]
;

For example, when p1 = (p, p, p, p) and p2 = (q, q, q, q):

In[24]:= even1 = Table[p, {dummy, 1, 4, 1}]; even2 = Table[q, {dummy, 1, 4, 1}];
jaccard[{even1, even2}] // Simplify
% ⩵ heur[{even1, even2}] // Simplify

Out[25]=

p + q - 2 p q

p + q - p q

Out[26]=

True

For another example, Fig 3B-2 bottom right panel can be recovered:
In[230]:=

p1b = {0.763133, 0.758369, 0.738821,
0.699677, 0.650323, 0.611179, 0.591631, 0.586867};

p2b =

{0.141954, 0.151849, 0.19245, 0.273747, 0.376253, 0.45755, 0.498151, 0.508046};
{jaccard@({p1b, p2b}), heur@({p1b, p2b})}

Out[232]=

{0.735304, 0.735295}

SI Figure 2: Mathematica code to compute the exact and approximated Jaccard dissimilarity expectation conditioned on
γ > 0.
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Intuitive interpretation of species difference894

We now explain the intuition behind the species difference. To do so, we start by considering the species895

difference for a single-site case, which is also known as the Hoover index (Hoover 1936):896

(Species difference in site 1) := ω1

:=
1

Sμ1

S∑
i=1

∣∣pi,1 − μ1∣∣
=

S∑
i=1

∣∣∣∣∣ pi,1Sμ1
−
1
S

∣∣∣∣∣ .
(C54)

Noticing that pi,1 ∕
(
Sμ1
)
is normalized and thus sums to unity, as well as that 1 ∕ S represents the discrete897

uniform distribution, we can see that the Hoover index represents the distance from the uniform distribu-898

tion, meaning that the species difference in site 1 measure how far the distribution of relative presence899

probabilities deviates from the uniform distribution (i.e., from the situation where no species difference900

exists). We can compute a similar quantity for site 2.901

For a two-sites case,902

w =
μ1

μ1 + μ2
ω1 +

μ2
μ1 + μ2

ω2, (C55)

which is the weighted average of within-site species difference; here, the weight is given by the relative903

value of average presence probabilities, thus giving more weight to a site that has a higher average presence904

probability. Therefore, the species difference overall represents the deviation from the case where all905

species have the same presence probability in each site, weighted by the relative value of average presence906

probabilities.907

Bounds of w and h908

species difference909

The species difference index is Schur-convex (Arnold 2012; McVinish & Lester 2020), thus taking the910

minimum zero when all species are equally likely to be present in each site; that is whenever:911

p1,j = · · · = pS,j > 0 (C56)

for j = 1, 2.912

To determine an upper bound (if any), we conventionally assume that for all species i, there is a913

minimum value of the presence probabilities pi,j ≥ ε. Then by the property of Schur-convexity of Hoover914

index, the largest difference (inequality) occurs when:915

p1,1 = 1, pi,1 ≡ ε > 0, ∀i ≥ 2,
p1,2 = 1, pi,2 ≡ ε > 0, ∀i ≥ 2,

(C57)

with species-wise permutation permitted for each j. Substituting this into w gives the maximum value,916

which reads:917

max {w } = 2 (1 − ε) (S − 1)
S
(
ε (S − 1) + 1

) < 2. (C58)

Spatial heterogeneity918

If and only if pi,1 ≡ pi,2 for each i, spatial heterogeneity h achieves the minimum of zero. If and only if919 ∣∣pi,1 − pi,2
∣∣ = 1 − ε, spatial heterogeneity h achieves the maximum of 1 − ε.920
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Axioms921

Species difference w has to satisfy a number of axioms in order to be a “difference” measure among species,922

as does h in order to measure heterogeneity between two sites. We adopt Routledge’s (1983), Jost’s (2006,923

2007), Chao & Ricotta’s (2019), and Leinster’s (2021) approach to develop appropriate indices. Note that the924

presence probabilities do not represent abundances.925

requirement 1 The first requirement for w is that, if, and only if, pi,1s are all equal and pi,2 are all equal,926

then w = 0.927

requirement 2 Second,w is Schur-convex (or Schur-increasing; Marshall et al. 1979, Chapter 1).928

requirement 3 The requirement for heterogeneity h is that it is a distance function between p◦,1 and p◦,2.929

Feasible ranges of spatial heterogeneity and species difference930

We finally examine the possible regions for (w, h) to understand the degree to which the two parameters931

co-vary, and thereby determine the region for which they are ‘unrelated’ sensu Chao & Ricotta (2019) and932

Leinster (2021). To describe various species-incidence curves, we use the lower- and upper-bounded Hill933

equation, which in a generic form reads:934

pi,j = ρj +
(
1 − ρj

)
ϕj

χj
(
λj (i − 1)

)m + (1 − χj
) (

1 − λj
)m

(S − i)m(
λj (i − 1)

)m + (1 − λj)m (S − i)m
(C59)

where χj , ρj ,ϕj , λj ∈ [0, 1] are all constants: χj represents the increase versus a decrease of presence proba-935

bility with species labels (with χ = 0.50 yielding flat curves); ρj represents the minimum value of presence936

probability; ϕj represents the importance of the Hill function (the fraction);m represents the steepness937

of the Hill function; λj represents the position at abscissa beyond which We then tuned these parameters938

simultaneously and plotted the resulting (w, h). We found that species difference and spatial heterogeneity939

are related with each other, i.e., a value of the former restricts the range of the latter.940

Ecological meaning of the parameters941

Finally, we clarify the ecological meaning of the spatial heterogeneity and species difference parameters. In942

the classic colonization-extinction model of island biogeography, the presence probability is determined943

by species-specific, site-specific parameters of colonization and extinction rates. Mathematically, the944

presence probability is a continuous function of colonization (increasing) and extinction rates (decreasing).945

Therefore, the smaller the species difference is, the closer the colonization rates of species are (and/or946

extinction rates). More generally, we assume that the presence probability is a continuous function of947

species traits and environmental variables. This assumption does not necessarily mean that all variables948

should be quantitative; qualitative (categorical) variables are also allowed so long as we can define a metric949

(distance) in the corresponding trait space. For example, dispersal capacity measured with the presence or950

absence of wings has a binary metric.951

Appendix D Variance of Jaccard dissimilarity952

Same method as the mean953

To compute the variance, we use the identity for a pair of positive quantities ν1, ν2 > 0:954

(
ν1
ν2

)2

≡ −
∫ +∞

0

∂ 3

∂ξ∂η2
exp
(
ν1η − (ν2θ + ξθ)

)
dθ

∣∣∣∣∣
ξ=η=0

. (D60)

One may preferably differentiate the quantity before integration (otherwise, erroneous calculation is955

possible).956
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SI Figure 3: Incidence-curve generators using Eqn (C59). (A) The scaled Hill functionwith χ = 0.45, λ = 0.5, ρ = 0.1,ϕ = 0.8,
and m = 1, 5, 9 in Eqn (C59). (B) A series of generated incidence curves using Eqn (C59). The same scheme is used for
both sites and all possible pairs of curves are considered. Fixed parameter values: ϕ = 0.95,m = 2; varied parameter
ranges: λ ∈ { 0.01, 0.255, 0.500, 0.745, 0.990 } , ρ ∈ { 0.05, 0.275, 0.500, 0.725, 0.950 } , σ ∈ { 0.00, 0.25, 0.50, 0.75, 1.0 };
colors are tuned by RGB color scheme

[
1 − λ, ρ, 1 − σ

]
with half opacity.

For Jaccard dissimilarity, we choose ν1 =
∑S

i=1
(
xi,1 + xi,2 − 2xi,1xi,2

)
, which represents the number of957

unique species, and ν2 =
∑S

i=1
(
xi,1 + xi,2 − xi,1xi,2

)
, which represents the number of present species (gamma958

diversity). That is:959

βJX
2 = −

∫ +∞

0

∂ 3

∂ξ∂η2
exp

η
S∑

i=1

(
xi,1 + xi,2 − 2xi,1xi,2

) exp

−θ S∑
i=1

(
xi,1 + xi,2 − xi,1xi,2

) dθ

∣∣∣∣∣
ξ=η=0

.

(D61)

The expectation of βJX
2 is given by:960

E
[
βJ

2
]
= −

∫ +∞

0

∂ 3

∂ξ∂η2
e−ξθ

S∏
i=1

∑
xi,◦

PX exp
(
η
(
xi,1 + xi,2 − 2xi,1xi,2

)
− θ
(
xi,1 + xi,2 − xi,1xi,2

))
dθ

∣∣∣∣∣
ξ=η=0

(D62)

By evaluating the Boolean variable,961

η
(
xi,1 + xi,2 − 2xi,1xi,2

)
− θ
(
xi,1 + xi,2 − xi,1xi,2

)
=



0, xi,◦ = (0, 0);

η − θ, xi,◦ = (0, 1);

η − θ, xi,◦ = (1, 0);

−θ, xi,◦ = (1, 1);

(D63)

the resulting expression reads:962

E
[
βJ

2
]
= −

∫ +∞

0

∂ 3

∂ξ∂η2
e−ξθ

S∏
i=1

(
di,◦ + bi,◦e

−θ +
(
1 − di,◦ − bi,◦

)
eη−θ

)
dθ

∣∣∣∣∣
ξ=η=0

. (D64)

This is the most general expression for the second moment of the Jccard dissimilarity. For brevity we write963

ui,◦ := 1−bi,◦ −di,◦ for the probability that species i is unique (neither double-absent nor common); also, we964

write τ`(θ) := d`+(1 − d`) e−θ for themoment generating function of the probability that species ` is present965

in at least one of the sites, 1 − d`,◦; write ψi
(
θ, η
)
:= di,◦ + bi,◦e−θ + ui,◦eη−θ, thus with ψi(θ, 0) ≡ τi(θ).966

Leibniz rule for the second η-derivatives is given by:967

∂ 2

∂η2

S∏
i=1

ψi
(
θ, η
)∣∣∣∣∣

η=0

=

 S∑
i=1

ui,◦e
−θ

S∏
`( 6=i)

τ`(θ)

 +
S∑

i=1

ui,◦e
−θ

S∑
k=1;
k 6=i

uke
−θ

S∏
`=1;
` 6=i,k

τ`(θ) , (D65)
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using which we get:968

E
[
βJ

2
]
= −

∂
∂ξ

∫ +∞

0
e−ξθ

 S∑
i=1

ui,◦e
−θ

S∏
`( 6=i)

τ`(θ) +
S∑

i=1

ui,◦e
−θ

S∑
k=1;
k 6=i

uke
−θ

S∏
`=1;
` 6=i,k

τ`(θ)

 dθ. (D66)

We can evaluate this integral as did we before. However, the resulting equation is heavily complicated969

(involving, e.g., the harmonic numbers) and computationally expensive.970

Approximating variance using Hubbard-Stratonovich transformation971

Here, we take a different approach to evaluate the variance. We use the identity:972

ν21
ν22

≡ −
∂
∂ξ

∫ ∞

0
e
−
(
ν2+ν21ξ

)
θ
dθ

∣∣∣∣∣
ξ=0

(D67)

for 0 ≤ ν1 ≤ ν2, as well as the Hubbard-Stratonovich transformation (Hubbard 1959):973

e−ξθλ
2

≡
1√
4πξθ

∫ ∞

−∞
e−

ζ2

4ξθ −ıλζ dζ (D68)

where ı represents the imaginary unit. Combining the identities gives:974

(
βJ
)2 = (∑S

i=1 xi,1 + xi,2 − 2xi,1xi,2∑S
i=1 xi,1 + xi,2 − xi,1xi,2

)2

Eqn (D67)= −
∫ ∞

0
exp

−
 S∑

i=1

(
xi,1 + xi,2 − xi,1xi,2

)
+ ξ

 S∑
i=1

xi,1 + xi,2 − 2xi,1xi,2

2
θ

 dθ

= −
∫ ∞

0
dθ
∫ ∞

−∞
dζ exp

−θ
 S∑

i=1

(
xi,1 + xi,2 − xi,1xi,2

)
 1√

4πξθ
exp

− ζ2

4ξθ
− ıζ

S∑
i=1

(
xi,1 + xi,2 − 2xi,1xi,2

)
(D69)

Let us evaluate the Boolean variable:975

− θ
(
xi,1 + xi,2 − xi,1xi,2

)
− ıζ

(
xi,1 + xi,2 − 2xi,1xi,2

)
=


0 xi,1 = xi,2 = 0;

−θ − ıζ xi,1 + xi,2 = 1;

−θ xi,1 = xi,2 = 1;

(D70)

then we get:976

E
[(
βJ
)2] = − ∂

∂ξ

∫ ∞

0
dθ
∫ ∞

−∞
dζe−

ζ2

4ξθ
1√
4πξθ

S∏
i=1

(
di,◦ +

(
1 − di,◦ − bi,◦

)
e−θ−ıζ + bi,◦e

−θ
)
. (D71)

If we approximate the product as:977

S∏
i=1

(
di,◦ +

(
1 − di,◦ − bi,◦

)
e−θ−ıζ + bi,◦e

−θ
)
≈
(
d*,◦ + u*,◦e

−θ−ıζ + b*,◦e
−θ
)S
, (D72)

where the *-subscripted quantities are the arithmetic means, over i ∈ { 1, …, S }, of the corresponding978

quantities, i.e, d*,◦ := 1
S

∑S
i=1 di,◦, b*,◦ := 1

S

∑S
i=1 bi,◦, and u*,◦ := 1 − d*,◦ − b*,◦, then the expected value is979
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approximated by980

E
[(
βJ
)2] ≈ − ∂

∂ξ

∫ ∞

0
dθ
∫ ∞

−∞
dζe−

ζ2

4ξθ
1√
4πξθ

(
d*,◦ + u*,◦e

−θ−ıζ + b*,◦e
−θ
)S

(D73)

evaluated at ξ = 0.981

Interchanging the order of the derivative and the double integral, we get982

E
[(
βJ
)2] ≈ − ∫ ∞

0
dθ
∫ ∞

−∞
dζ

∂
∂ξ

(
1√
4πξθ

e−
ζ2

4ξθ

)
e
S log

(
d*,◦+u*,◦e−θ−ıζ+b*,◦e−θ

)
. (D74)

In the limit ξ → 0, the function
∂
∂ξ

(
1√
4πξθ

e−
ζ2

4ξθ

)
= ζ2−2ξθ

8
√
π(ξθ)5∕2 e

− ζ2

4ξθ is very peaked about ζ = 0. Therefore,983

we expect the integrand to be nicely approximated if we substitute the logarithm by its series expansion984

about ζ = 0,985

log
(
κ1 + κ2e−iζ

)
≈ log(κ1 + κ2) − ı

bζ
κ1 + κ2

−
κ1κ2ζ2

2(κ1 + κ2)2
+O(ζ3), (D75)

with κ1 := d*,◦ + b*,◦e−θ and κ2 := u*,◦e−θ. Inserting this second approximation into Eqn (D74) we get986

E
[(
βJ
)2] ≈ − ∫ ∞

0
dθ
(
d*,◦ + (1 − d*,◦)e

−θ
)S ∂

∂ξ
1√
4πξθ

∫ ∞

−∞
dζe

− ζ2

4ξθ −ı
Sκ2ζ
κ1+κ2

− Sκ1κ2ζ
2

2(κ1+κ2)2 , (D76)

which, again, has to be evaluated at ξ = 0. The integral over ζ can be evaluated as987

1√
4πξθ

∫ ∞

−∞
dζe

− ζ2

4ξθ −ı
Sκ2ζ
κ1+κ2

− Sκ1κ2ζ
2

2(κ1+κ2)2 =
κ1 + κ2√

(κ1 + κ2)2 + 2Sκ1κ2ξθ
e
− ξθ(κ2S)

2

(κ1+κ2)2+2Sκ1κ2ξθ . (D77)

Now, we can take the derivative with respect to ξ and evaluate it at ξ = 0 to get988

∂
∂ξ

1√
4πξθ

∫ ∞

−∞
dζe

− ζ2

4ξθ −ı
Sκ2ζ
κ1+κ2

− Sκ1κ2ζ
2

2(κ1+κ2)2

∣∣∣∣∣
ξ=0

= −
Sκ2θ(κ1 + κ2S)

(κ1 + κ2)2
. (D78)

Therefore, inserting this expression into Eqn (D76) and replacing κ1 and κ2 by their expressions in terms989

of d*,◦, b*,◦, u*,◦, and θ, we obtain990

E
[(
βJ
)2] ≈ Su*,◦

∫ ∞

0
dθe−θ

(
d*,◦ + b*,◦e

−θ + Su*,◦e
−θ
)(

d*,◦ + (1 − d*,◦)e
−θ
)S−2

θ. (D79)

Changing to the variable z = e−θ yields991

E
[(
βJ
)2] ≈ Su*,◦

∫ 1

0
dz(− log z)

(
d*,◦ + b*,◦z + Su*,◦z

) (
d*,◦ + (1 − d*,◦)z

)S−2 . (D80)

We now use the binomial expansion
(
d*,◦ + (1 − d*,◦)z

)S−2 = dS−2
*,◦
∑S−2

k=0
(S−2

k

) ( (1−d*,◦)
d*,◦

z
)k

to get992

E
[(
βJ
)2] ≈ Su*,◦d

S−2
*,◦

S−2∑
k=0

(
S − 2
k

)(
1 − d*,◦
d*,◦

)k ∫ 1

0
dz(− log z)

(
d*,◦ + b*,◦z + Su*,◦z

)
zk , (D81)

which, upon evaluation of the integral, yields993

E
[(
βJ
)2] ≈ Su*,◦d

S−2
*,◦

S−2∑
k=0

(
S − 2
k

)(
1 − d*,◦
d*,◦

)k ( d*,◦
(k + 1)2

+
b*,◦ + Su*,◦
(k + 2)2

)
. (D82)
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The sum above can be expressed in terms of generalized hypergeometric functions pFq
(
{A}, {B}; Z

)
as994

E
[(
βJ
)2] ≈ u*,◦

(
b*,◦ + Su*,◦

) (
1 − dS

*,◦
)

(S − 1)
(
1 − d*,◦

)2 −
Su*,◦dS−1

*,◦
(
b*,◦ + Su*,◦

)
(S − 1)

(
1 − d*,◦

) 3F2

(
{1, 1, 1 − S}, {2, 2}; 1 − 1

d*,◦

)
+ Su*,◦d

S−1
*,◦ 3F2

(
{1, 1, 2 − S}, {2, 2}; 1 − 1

d*,◦

)
.

(D83)

As a consequence, we find the following approximation for the variance,995

V
[
βJ
]
≈

u*,◦
(
b*,◦ + Su*,◦

) (
1 − dS

*,◦
)

(S − 1)
(
1 − d*,◦

)2 −
Su*,◦dS−1

*,◦
(
b*,◦ + Su*,◦

)
(S − 1)

(
1 − d*,◦

) 3F2

(
{1, 1, 1 − S}, {2, 2}; 1 − 1

d*,◦

)

+ Su*,◦d
S−1
*,◦ 3F2

(
{1, 1, 2 − S}, {2, 2}; 1 − 1

d*,◦

)
−
(

u*,◦
1 − d*,◦

)2

,

(D84)

where we have approximated the expectation E
[
βJ
]2

with the square of our heuristic approximation,996

E
[
βJ
]2 ≈ (βJheur)2 =

(∑S
i=1
(
1 − bi,◦ − di,◦

)∑S
i=1
(
1 − di,◦

) )2

=
(

u*,◦
1 − d*,◦

)2

. (D85)

The analytical approximation obtained in Eqn (D84) yields always averaged standard deviation relative997

errors less than 10%. Inmost of the cases relative errors for the standard deviation, averaged over realizations998

of incidence vectors, are only about 2%.999

Leading term in the limit of large S1000

In order to get more insight about the dependence with S in the limit S → ∞, we have computed an1001

asymptotic expansion of the variance to get the leading term in the series expansion on S. First let us write1002

Eqn (D79) as1003

E
[(
βJ
)2] ≈ Su*,◦

∫ ∞

0
dθe−θθ

(
d*,◦ + b*,◦e

−θ + Su*,◦e
−θ
)
e
(S−2) log

(
d*,◦+(1−d*,◦)e−θ

)
. (D86)

In the limit of large S, the exponential function will be very peaked at the maximum of the function1004

log
(
d*,◦ + (1 − d*,◦)e−θ

)
. So we expect to have a good approximation in the limit S → ∞ if we replace the1005

logarithm by its series expansion,1006

log
(
d*,◦ + (1 − d*,◦)e

−θ
)
≈ −(1 − d*,◦)θ +O(θ2), (D87)

about the point at which the maximum is reached, i.e, θ = 0. Then, for large S, Eqn (D79) will be nicely1007

approximated by1008

E
[(
βJ
)2] ≈ Su*,◦

∫ ∞

0
dθe−θθ

(
d*,◦ + b*,◦e

−θ + Su*,◦e
−θ
)
e−(S−2)(1−d)θ. (D88)

This integral can be actually evaluated to give1009

E
[(
βJ
)2] ≈ Su*,◦

 d*,◦(
1 + (S − 2)(1 − d*,◦)

)2 + b*,◦ + Su*,◦(
2 + (S − 2)(1 − d*,◦)

)2
 (D89)

plus subleading terms in S. Here we observe that our approximation for E
[(
βJ
)2]

converges to the squared1010

heuristic Jaccard measure approximation,1011

lim
S→∞

E
[(
βJ
)2] ≈ ( u*,◦

1 − d*,◦

)2

, (D90)
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so, in the limit of large S we find the following leading term for the variance approximation:1012

V
[
βJ
]
≈

u*,◦
(
(1 − d*,◦)(b*,◦ + d*,◦) − 4d*,◦u*,◦

)
(1 − d*,◦)3S

. (D91)

The variance decreases as S−1 in the case of large number of species. This explains why our heuristic1013

approximation works very well in that limit.1014

Appendix E SDM1015

Data was collected over a four-year period (1993-1996) in usually three visits per year (2 above the treeline)1016

using a simplified territory mapping approach, and integrated in the Swiss breeding bird atlas at 1-by-1 km1017

resolution (Schmid et al. 1998, 2018). The data source we used included environmental predictor variables1018

corresponding to climate, topography and vegetation structure at the same spatial scale, but geographic1019

coordinates were removed. Data can be found at Zurell et al. 2019b,a. We used the whole dataset to infer1020

SDMs using only the climatic variables, as current and future values of these variables for Switzerland are1021

available in worldclim (www.worldclim.org; Hijmans et al. 2005). We downloaded current climatic data1022

using function getData from the R package raster using argument name = ‘worldclim’, and future climate1023

with the same function call with arguments name = ‘CMIP5’, rcp = 45, year = 50, and model = ‘NO’ For each1024

species, we used an ensemble approach of, initially, four different algorithms: generalized linear models1025

(GLMs), generalized additive models (GAMs), random forests (RFs) and boosted regression trees (BRTs).1026

However, GLMs and GAMs produced unreliable projections and were subsequently excluded from our1027

analyses. We then projected current and future incidences for each species in our ensemble approach.1028

With those incidences, we calculated the expected dissimilarity provided by Eqn (2) at each location of1029

Switzerland for the subcommunity of woodpeckers.1030
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SI Figure 4: The presence probabilities: pi,current, pi,future, and pi,future − pi,current.
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