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 2 

ABSTRACT 16 

Pheochromocytomas (PC) and paragangliomas (PG) are rare neuroendocrine tumors 17 
of varied genetic makeup, associated with high cardiovascular morbidity and a 18 
variable risk of malignancy. The source of the transcriptional heterogeneity of the 19 
disease and the underlying biological processes determining the outcome in PCPG 20 
remains largely unclear. We focused on PCPG tumors with germline SDHB and RET 21 
mutations, representing distinct prognostic groups with worse or better prognoses, 22 
respectively. We applied single-nuclei RNA sequencing (snRNA-seq) on tissue 23 
samples from 11 patients and found high patient-to-patient transcriptome 24 
heterogeneity of the neuroendocrine tumor cells. The tumor microenvironment also 25 
showed heterogeneous profiles mainly contributed by macrophages of the immune 26 
cell clusters and Schwann cells of the stroma. Performing non-negative matrix 27 
factorization we identified common transcriptional programs active in RET and SDHB 28 
as well as distinct modules? including neuronal development, hormone synthesis and 29 
secretion, and DNA replication. Comparison of the SDHB and RET transcriptomes 30 
with that of developmental stages of adrenal gland formation suggests different 31 
developmental stages at which PC and PG tumors appear to be arrested. 32 
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 3 

INTRODUCTION 37 

Pheochromocytomas (PC) and sympathetic paragangliomas (PG) are rare 38 
neuroendocrine tumors, originating from chromaffin cell-related populations located 39 
inside or outside the adrenal glands, respectively. PCPG is associated with 40 
significant morbidity and mortality [1]. The current therapy of choice is surgical 41 
resection; however, the disease can be associated with a lifelong risk of tumor 42 
persistence or recurrence [2].  43 

A plethora of genes has been reported to be responsible for a diverse hereditary 44 
background in up to 40% of PCPG [3, 4]. Based on the bulk transcriptional and 45 
genomic profiles, PCPG has been divided into two major classes. Tumors in class 1 46 
are predominantly extra-adrenal and display germline mutations in the succinate 47 
dehydrogenase complex (SDHB, SDHC, SDHD collectively referred to as SDHx), the 48 
most common form of PCPG. SDHx tumors have the worst prognosis with a 30–70% 49 
risk of metastasis or recurrence [5]. Class 2 PCPG detected in 5% of hereditary 50 
PCPGs comprise amongst others germline and/or somatic mutations of the RET 51 
proto-oncogene and have a better prognosis.  52 

In this study, we exploited recent advances in single-nuclei RNA-seq to compare the 53 
gene expression landscapes of PCPG with SDHB and RET germline mutations and 54 
explore the transcriptional heterogeneity and to gain insight into the molecular basis 55 
of their different prognosis.  56 
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 4 

MATERIALS AND METHODS 57 

 58 

Preparation of Single-Nuclei Suspensions 59 

Previously selected tissue blocks were transferred for the RadboudUMC biobank and 60 
stored at -80°C. Nuclei were prepared from frozen tissue under RNAse-free 61 
conditions. Briefly, samples were cut to ~7 mm pieces, while kept on dry-ice. The 62 
pieces were minced in a pre-cooled douncer in 500uL ice-cold Nuclei EZ Lysis buffer 63 
5x with pestle-A and 10x with pestle-B. The suspension was passed through a 70 µm 64 
cell strainer and washed with 1.5 mL cold Nuclei EZ Lysis and incubated on ice for 5’. 65 
The lysate was washed in Nuclei wash/resuspension buffer (1xPBS completed with 66 
1% BSA and 0.2U/ul RNAsin Plus (Promega, #N2611) and passed through a 40 µm 67 
cell strainer. Nuclei were stained with DAPI. To exclude doublets and debris from the 68 
final mix and to precisely determine the number of loaded nuclei, we applied FACS. 69 
15000 nuclei were sorted into a pre-cooled tube containing the RT-mix (RT-reagent + 70 
TSO + Reducing agent B), right before loading the mix to one lane of the Chromium 71 
chip, 8.3 ul RT-enzyme was added to the mix, according to the standard protocol of 72 
the Chromium Single Cell 3’ kit (v2). All the following steps for the library preparation 73 
were performed according to the manufacturer’s protocol. Paired-end sequencing 74 
was used to sequence the prepared libraries using an Illumina NextSeq sequencer.  75 
 76 
Single-Cell RNA-seq Data Processing and Quality Control (QC) 77 

Raw sequencing data were converted to FASTQ files with bcl2fastq. Reads were 78 
aligned to the human genome reference sequence (GRCH38) and counted with 79 
STAR. The CellRanger (10X Genomics) analysis pipeline was used to sample 80 
demultiplexing and single cell gene counting to generate the gene-cell expression 81 
matrix for each library. The gene expression matrix was then processed and 82 
analyzed by Seurat package in R. To filter out low-quality cells, we first removed cells 83 
(nuclei) for which less than 300 or more than 4000 genes were detected. The cell 84 
count and gene count information for single cell datasets of the PCPG samples are 85 
listed in Table1. 86 
 87 
Dimensionality Reduction, Clustering and Visualization 88 

Data were normalized by sequencing depth, scaled to 10000 counts, log-89 
transformed, and regressed against the UMI-counts and percentage using the 90 
ScaleData function of the Seurat package. Principal components analysis was 91 
performed on the scaled data with the 4000 most variable genes. Using 15 first 92 
principal components, we calculated a UMAP representation of the data for 93 
visualization and calculated clusters using the FindNeighbors and FindClusters 94 
functions with the resolution parameter set to 0.3. Marker genes differentiating 95 
between the clusters were identified with the FindAllMarkers function. Before running 96 
a second round of clustering after sub-setting the original dataset to a cell type of 97 
interest, we applied the DietSeurat function to collect the unmodified expression 98 
matrix of the subset of cells, without any transformations. 99 
To identity cell types, we used sets of well-established marker and annotated each 100 
cell type based on their average expression. Cluster (or clusters) marker genes were 101 
determined with the FindAllMarkers function and required to be expressed in at least 102 
25% of the cells in a cluster with a minimal log expression difference of 0.25 between 103 
clusters.   104 
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Inferred CNV Analysis from snRNA-seq 105 

Large-scale copy number variations (CNVs)  were inferred from single-nuclei gene 106 
expression profiles using the inferCNV package [6] using the i3 HMM parameter, a 107 
window size of 101 genes and the “cluster_by_groups” parameter is true. To identify 108 
the distinct chromosomal gene expression pattern of neuroendocrine cells, all other 109 
cell were set as the “reference” cells. CNVs in the reference cells would still be 110 
detectable.    111 
 112 
Expression Programs of Intra-tumoral Heterogeneity 113 

We applied non-negative matrix factorization (NMF) via the RunNMF function of the 114 
swne [7] package to extract transcriptional programs of malignant cells of each 115 
sample. We set the number of factors to 28 for each sample. For each of the 116 
resulting factors, we considered the top 50 genes with the highest NMF scores as 117 
characteristics of that given factor. We used the AddModuleScore function in the 118 
Seurat package to evaluate the degree to which individual cells express a certain 119 
pre-defined expression program, and thus determine the scores. All tumor cells were 120 
then scored according to the 280 NMF programs. Hierarchical clustering of the 121 
scores for each program using Pearson correlation coefficients as the distance metric 122 
and Ward’s linkage revealed 10 correlated sets of metaprograms. The gene list of 10 123 
meta-programs can be found in TableS5.  124 
 125 
Logistic Regression for Similarity Calculation 126 

To measure the similarity of a target single-cell transcriptome to a reference single-127 
cell dataset, we used the logistic regression method described in [8]. Briefly, we 128 
trained a logistic regression model with elastic net regularization (α = 0.6) on the 129 
reference training set. We then used this trained model to infer a similarity score for 130 
each cell in the query dataset for each cell type in the reference data. Predicted logits 131 
were averaged within each cluster or sample group in the query dataset. 132 
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RESULTS 133 

We performed single-nuclei transcriptomic profiling (snRNA-seq) on resected tumor 134 
tissues from 11 treatment-naïve patients to generate a comprehensive PCPG atlas. 135 
Molecular diagnoses revealed germline RET and SDHB mutations in 5 and 6 136 
patients, respectively (Table S1). All RET-PCPG samples were retrieved from the 137 
adrenal gland, while the SDHB-PCPG tumors are from various locations, including 138 
the bladder, the adrenal gland, the retroperitoneal- and the mediastinal area.  139 
 140 
Cell Type Composition of PCPG Tissue  141 

Stringent quality filtering yielded 50,868 nuclei with an average of 1,800 genes 142 
detected per nuclei (Methods, Table S1). The merged expression profiles were 143 
compressed into a 2D-coordinate system using Uniform Manifold Approximation and 144 
Projection for Dimension Reduction (UMAP). The cells were grouped into 20 clusters 145 
and were annotated by their location, mutation group as well as patient ID (Fig1A, 146 
Table S2).  147 
Based on canonical marker genes, we identified three major groups of cell types: 148 
neuroendocrine (NEs (markers TH, DBH, CHGB)), immune (PTPRC, CD163, 149 
CD247), and stromal (COL4A1, COL1A2) cells (Fig1B). The analysis of cluster 7 150 
revealed that it originated almost exclusively from one donor (P370) and was 151 
hallmarked by elevated expression of typical adrenocortical rather than 152 
adrenomedullar marker genes, such as CYP11A1 and CYP11B1 (Fig. 1B-C, Fig. 153 
S1B-C). Hence, cells from donor P370 were considered non-representative and 154 
excluded from downstream analysis. Neuroendocrine cells (NEs) represented the 155 
largest cell fraction (63%, Clusters 0, 1, 2, 3, 4, 6, 10, 11, 16, 19), followed by the 156 
stromal (16%, Clusters 9, 12, 13, 15, 17, 18) and the immune cells (16%, Clusters 5, 157 
8, 14, 16) (Fig. 1C). Most NE clusters consisted largely of cells from single patients 158 
(Fig. S1A-C). Cells of the tumor microenvironment (TME), however, occupied shared 159 
UMAP territories (Fig. 1D). Based on these observations we decided not to apply 160 
batch correction in subsequent analyses to maintain the biological heterogeneity. 161 
To obtain a more detailed insight into the cellular complexity of the TME, the immune 162 
and stromal cells were sub-selected separately for deeper analyses. Annotation of 163 
the immune cells (Fig. S2A) resulted in the assignment of macrophages being the 164 
major component of the immune TME [9] (expressing CD163, CDSF1R, TGFBI), 165 
followed by T-cells (CD247, IL7R, TCF7) and B-cells (MS4A1, BLK, BANK1) (Fig. 166 
S2B). The macrophages were the most heterogenous immune cells which could be 167 
related to tissue-specific transcriptional programs as macrophages are widely known 168 
to exert context specific functions [10, 11] (Fig. S2A, arrows). However, the adrenal 169 
macrophages (colored green) that are derived from the same location but from 170 
different tumor samples are very different. (Fig. S2A, blue and red arrows). This 171 
suggests that the macrophage transcriptome not only has a strong locational but also 172 
a tumor type-specific component. The T- and B-cells originating from different 173 
locations and mutation groups appear rather similar as they clustered together. 174 
Finally, annotation of the stromal group (Fig. S2C-D) revealed Schwann cells 175 
(expressing SOX6, CDH19, NRXN1), endothelial cells (FLT1, PECAM1, PTPRB) and 176 
fibroblasts (TAGLN, ACTA2, COL1A1).  177 
The numbers of individual immune and stromal cell populations were deemed too 178 
small for in-depth analysis and were not further investigated.   179 
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 7 

RET and SDHB Tumor Cells Display Chromosomal Aberrations 180 

We explored inferred Copy Number Variation (iCNV) to determine large-scale 181 
somatic chromosomal changes (Fig. 2A). Immune- and stromal cells served as 182 
‘reference’ in the assumption that large CNVs do not occur in the non-malignant. In 183 
agreement with published whole-genome sequencing profiles of PCPG tissue [12-184 
15], segmental loss in the p-arm of chromosome 1 (1p) was present in all examined 185 
tumors regardless of the mutation type. Loss of 1p was not found in the TME cells 186 
confirming the assignment of the neuroendocrine cells as PCPG tumor cells. In 187 
addition, we observed widespread loss in other chromosomes for example the 3q 188 
and 6p arms as well as patient-specific aberrations such as loss in chr21 and gain in 189 
1q, 3q, 13q and 14q (Fig. 2A). Apart from a few exceptions (RET-PCPG P66) we 190 
found different iCNV patterns in chr13 and chr15 in a subset of the tumor cells; in 191 
P227 (SDHB-PCPG) we identified small variations in chr3 and chr17 but observed 192 
few intra-individual heterogeneities.  193 
In contrast to the extensive inter-individual and tumor-specific genomic aberrations, 194 
the inferred genomic profiles of tumor cells within each tumor population were largely 195 
homogeneous, suggesting that the genome remained largely stable following an 196 
initial catastrophic event, the genome remained largely stable.  197 
 198 
Transcription Programs Separate RET- and SDHB PCPG Tumor Cells  199 

To assess the inter-tumoral heterogeneity between RET and SDHB PCPG tumor 200 
cells, we selected and re-clustered the tumor cells. With this finer grained resolution, 201 
we identified UMAP-clusters that consisted of cells mostly from one patient. This 202 
impinged on both the UMAP-plots annotated by patient IDs (Fig. 3A) and the 203 
heatmap annotation of the hierarchical clustering of top20 cluster markers (Fig. 3B, 204 
Table S3), reinforcing the strong inter-individual heterogeneity observed in the iCNV 205 
analysis. Selecting the tumor cells gave us the opportunity to determine the genes 206 
that are differentially expressed between the mutation groups (Fig. 3C, Table S4). 207 
The newly identified markers were associated with either overlapping KEGG 208 
pathways (‘nervous system development’) or with gene ontology terms related to the 209 
secretory function of chromaffin cells (‘ion channel activities’, data not shown)[16].  210 
We wished to determine the transcriptional programs that are active across the tumor 211 
cells and then identify the programs that are differentially enriched between RET and 212 
SDHB tumors. We applied non-negative matrix factorization (NMF)[7] over the sub-213 
selected tumor cells to determine the full transcriptional spectrum behind the 214 
intratumoral heterogeneity and to extract the most representative biological 215 
processes in the tumor cells. Firstly, we identified 28 active transcriptional programs 216 
in PCPG tumor cells of each sample, based on their transcriptional profiles at the 217 
single cell level. The signature enrichment of these 280 programs was calculated in 218 
every individual tumor cell of the whole dataset. Next, based on the enrichment 219 
scores, we hierarchically clustered the programs and identified 10 metaprograms 220 
(Fig. 4A). Genes were ranked according to their frequency of being present within 221 
one metaprogram. The metaprograms spanned a narrow range of functions (Table 222 
S5) including neuronal development (M1: BMPR1B, ROBO1; M2: NRG1, NTNG1; 223 
M3: FGF14, ROBO1; M8: SYT1, CTNNA2; M10: HDAC9, RORA), ion channel 224 
activity (M4: RYR2, PDE4B; M5: CACNA2D3, CHRM3), hormone synthesis (M9: TH, 225 
GCH1) and proliferation (M6: BRIP1, HELLS). Metaprogram seven (M7) could not be 226 
associated with a significant ontology term.  227 
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The hierarchical clustering of the metaprogram-scored cells unveiled two major 228 
clusters separating RET from SDHB tumor cells (Fig. 4B). The subclusters within the 229 
RET-branch segregated along the patient samples. In the SDHB-branch, however, 230 
solely sample P313 formed a discrete subcluster, while the tumor cells of other 231 
SDHB patients formed mixed subclusters. Surprisingly, the SDHB tumor cells 232 
(originating from various anatomical locations) are less heterogenous than their RET 233 
counterparts (originating from the adrenal gland).   234 
The most pronounced differences in the average enrichment scores between the 235 
RET (cluster 1) and the SDHB (cluster 2) cluster were evident at metaprograms M2, 236 
M3, M4 and M5 (Fig. 4C). The ‘ion channel activity’ of the M4-M5 metaprograms is 237 
highly enriched among the RET tumor cells indicating a high secretory activity of the 238 
adrenal RET-pheochromocytoma tumor cells. The M9 ‘hormone synthesis’ program 239 
was more enriched among the SDHB tumor cells, but mainly due to patient P313. A 240 
very small fraction of cells scored high for the ‘proliferation’ (M6) metaprogram, 241 
revealing a low but appreciable proliferative capacity of the PCPG tumor cells. 242 
Several metaprograms were associated with ‘neuronal development’ ontology terms 243 
and were shared in both branches of the tumor group separations.  244 
In sum, the NMF analysis revealed two main transcriptional programs in PCPG that 245 
separated RET from SDHB tumor cells. Genes associated with ion channel activities 246 
(secretion) were more enriched in RET tumors.  We also observed that ‘neuronal 247 
development’ was a highly represented transcriptional program in both PCPG tumor 248 
cells. 249 
 250 
PCPG Tumor Cells Display Early Adrenal Developmental Signatures 251 

The NMF analysis revealed several metaprograms that were associated with 252 
neuronal development but showed different enrichments scores among the mutation 253 
groups. This implies the developmental signature as an important element of the 254 
tumor cells’ transcriptome, but the differences between the mutation groups were not 255 
reflected in the ontology terms. To shed light on the developmental aspects of the 256 
SDHB and RET-PCPG tumors, we compared the transcriptome of the cell types 257 
identified in the developing human adrenal gland (8-21 weeks [17] with the PCPG 258 
tumors. We applied logistic regression and calculated probability scores for cell type 259 
matches (Fig. 5A). The analysis revealed that tumor cells were most similar to the 260 
cells at the junction to sympathoblast and chromaffin cells, called the ‘bridge cells’ 261 
[18]. The cell types of the PCPG microenvironment showed high similarity with their 262 
normal cell counterparts in the developmental adrenal gland dataset.  263 
The difference between the SDHB and RET-PCPG became even more evident when 264 
the tumor cells of each patient were compared to the chromaffin developmental cell 265 
types (Fig. 5B). The logistic regression confirmed that the RET-PCPGs were more 266 
similar to the reference chromaffin cells, while the SDHB-PCPGs scored highest with 267 
both the chromaffin and the bridge cell types, suggesting an earlier developmental 268 
state.  269 
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 9 

DISCUSSION 270 

We performed snRNA-seq and mapped the transcriptional landscape of PCPG to 271 
investigate the tumor heterogeneity and to identify the transcriptomic programs that 272 
are associated with the mutation group of the tumor. We explored the transcriptional 273 
heterogeneity by the analysis of the transcriptomic profiles of 50,868 single nuclei 274 
from 11 patients (counting all cell types from 5 RET- and 6 SDHB PCPG tissue 275 
samples). This is the first study unveiling the PCPG heterogeneity and the 276 
consequences of germline mutations at the single-cell level. 277 

Neuroendocrine cells, the largest population in the dataset, were identified as tumor 278 
cells on the basis of marker genes and in particular by inferring copy number 279 
variations from gene expression levels [19]. The iCNV profiles revealed two important 280 
features: firstly, the lack of tumor cell sub-clusters within patients suggests a single 281 
initial catastrophic event that led to the birth of the tumor cells. Secondly, apart from 282 
very few recurring aberrations, we identified rather patient-specific iCNV patterns, 283 
marking the level of inter- and intratumoral heterogeneity in PCPG cellulome that 284 
provided a challenge for tumor classification.  285 

To identify the patterns of the single-nuclei transcriptomic profiles based on the tumor 286 
cells, we applied NMF, an unsupervised learning approach that is employed to 287 
approximate high-dimensional datasets in a reduced number of meaningful 288 
components [7, 20, 21]. The analysis of single nuclei transcriptomes of >30,000 289 
tumor cells resulted in 10 metaprograms across the entire tumor set. The 290 
transcription programs related to ion channel activity (transmembrane transport) 291 
separated SDHB and RET tumor cells. Based on biochemical analysis of plasma, 292 
urinary and tissue samples, we previously [22] found that RET tumors produce (and 293 
contain) higher concentrations of catecholamines but secrete them at a lower rate 294 
than SDHB tumors. Our cohort was not split by the hormone synthesis metaprogram, 295 
moreover (due to a single patient) it showed a higher mean enrichment in the SDHB 296 
subset. However, it was split along the ion channel (transmembrane transport) 297 
programs that we associated with secretion [23]. Metaprograms linked to neuronal 298 
development were found to be active throughout the tumor cells irrespective of their 299 
mutational groups.  300 

To explore the developmental status of the tumor, we utilized published datasets of 301 
the developing adrenal gland as reference. Applying logistic regression revealed that 302 
the RET-PCPG tumor cells are transcriptionally more similar to developed adrenal 303 
chromaffins, while SDHB-PCPG tumor cells appear to be in an earlier phase of 304 
adrenal development. Our results suggest that PCPG tumor cells had a primarily 305 
chromaffin-like phenotype suggesting that the chromaffin cell development state 306 
maybe related to the mutation-associated prognosis. 307 

In summary, we revealed extensive levels of heterogeneity among PCPG tumor cells 308 
and identified transcriptional programs related to neuronal development as key 309 
processes active in these tumor cells. We speculate that in RET-PCPG, the mutation 310 
caused a development block during late chromaffin development as compared to the 311 
‘more immature’ SDHB-PCPG tumors. To differentiate this developmental block from 312 
alternative transformative events that could also lead to the modified transcriptomes 313 
of the tumor cells, investigation of larger cohorts is needed. Understanding the origin 314 
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of the tumor and the sources of its heterogeneity may help the development of 315 
targeted therapies.  316 
DATA AND MATERIAL’S AVAILABILITY 317 

Lead Contact 318 

Further information and requests for resources and reagents should be directed to 319 
and will be fulfilled by the Corresponding author. 320 
 321 
Materials Availability 322 

This study did not generate new unique reagents. 323 
 324 
Data and Code Availability 325 

The high-throughput datasets have been deposited in the European Genome-326 
phenome Archive. The accession number for the single cell expression data of 327 
PCPG tumor samples reported in this study is EGAS00001006230. This study did 328 
not generate any unique code. All software tools used in this study are freely or 329 
commercially available. 330 
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FIGURES 444 

Figure1. 445 

A. UMAP visualization of all the 50,868 cells grouped according to their cluster 446 
annotation and colored by their clusters, location of origin, mutation group or 447 
patient ID 448 

B. Violin plots displaying the expression levels of canonical markers of 449 
representative cell types  450 

C. Distribution of cell types across the merged dataset and per sample 451 
D. UMAP visualization of all the 50,868 cells highlighting the cells annotated to 452 

the main cell types. The UMAP clusters of NEs are also marked by their most 453 
representative patient IDs 454 

 455 
FigureS1. 456 

A. UMAP visualization of the merged dataset separately annotated by patient 457 
(blue: ‘SDHB group’, red: ‘RET-group’) 458 

B. Fraction of cells per sample populating the UMAP-clusters 459 
C. Fraction of cells per UMAP-clusters found per sample 460 

 461 
FigureS2. 462 

A. UMAP visualization of the PCPG immune cells subcluster after re-clustering 463 
(no batch-correction). The arrows point at the cells annotated as 464 
macrophages, found in tumors from similar anatomical locations. (blue: from 465 
an SDHB-tumor, red: from a RET-tumor) 466 

B. UMAP visualization and the relative expression levels of canonical cell type 467 
markers across the PCPG immune cells subcluster 468 

C. UMAP visualization of the PCPG stromal cells subcluster after re-clustering 469 
(no batch-correction) 470 

D. UMAP visualization and the relative expression levels of canonical cell type 471 
markers across the PCPG stromal cells subcluster 472 

 473 
Figure2. 474 

A. Heatmap of inferred CNVs of NE cells (immune clusters and stromal clusters 475 
were applied as reference). The patient IDs are colored by the mutation 476 
groups. 477 
 478 

Figure3. 479 

A. UMAP visualization of the PCPG tumor cells subcluster after re-clustering (no 480 
batch-correction), annotated by patient ID, tumor location, mutation group and 481 
cluster 482 

B. Hierarchical clustering of the differentially expressed genes for UMAP-clusters 483 
across the PCPG tumor cell subclusters 484 

C. Hierarchical clustering of the differentially expressed genes for RET and 485 
SDHB mutation groups (sn-markers) across the PCPG tumor cells 486 

 487 
Figure4. 488 

A. Heatmap showing the correlation and hierarchical clustering of the 280 factors 489 
calculated in our NMF-analysis of the tumor cells individual samples, across all 490 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.489848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.489848


 14

mutation groups. Metaprograms are numbered M1-M10 and annotated by 491 
their representative ontology terms. 492 

B. Heatmap showing scores of PCPG tumor cells for the 10 metaprograms 493 
identified from the NMF analysis of individual samples. 494 

C. Violin-plots showing scores of PCPG tumor cells for the 10 metaprograms 495 
identified from the NMF analysis grouped per mutation group (black dots mark 496 
mean, Wilcoxon p<2.2e-16 within each Metaprogram). 497 

 498 
Figure5. 499 

A. Heatmap showing similarity scores (logistic regression and logit scale) of the 500 
signatures of developing cell types from [17]  (fetal adrenal dataset) (x axis) to 501 
PCPG cells (y axis) 502 

B. Heatmap showing similarity scores (logistic regression and logit scale) of the 503 
signatures of developing adrenal cell types from [17]  (fetal adrenal dataset) (x 504 
axis) to PCPG tumor cells, by patient (y axis) 505 
 506 

Additional Data 507 

Table S1. Clinical information and snRNAseq quality parameters of 508 
processed/analyzed samples 509 
Table S2. Top50 differentially expressed markers of the 20 clusters in the complete 510 
merged dataset  511 
Table S3. Top50 differentially expressed markers of the tumor cell sub-clusters 512 
Table S4. Differentially expressed markers of the of mutation groups based on the 513 
tumor cells  514 
Table S5. Gene lists of the 10 metaprograms identified in the tumor cells. The cells 515 
with unique markers (across the metaprograms) are colored blue.  516 
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