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Abstract 23 

Axons are the slender, up to meter-long projections of neurons that form the biological cables wiring 24 

our bodies. Most of these delicate structures must survive for an organism's lifetime, meaning up to 25 

a century in humans. Axon maintenance requires life-sustaining motor protein-driven transport 26 

distributing materials and organelles from the distant cell body. It seems logic that impairing this 27 

transport causes systemic deprivation linking to axon degeneration. But the key steps underlying 28 

these pathological processes are little understood. To investigate mechanisms triggered by motor 29 

protein aberrations, we studied more than 40 loss- and gain-of-function conditions of motor proteins, 30 

cargo linkers or further genes involved in related processes of cellular physiology. We used one 31 

standardised Drosophila primary neuron system and focussed on the organisation of axonal 32 

microtubule bundles as an easy to assess readout reflecting axon integrity. We found that bundle 33 

disintegration into curled microtubules is caused by the losses of Dynein heavy chain and the Kif1 34 

and Kif5 homologues Unc-104 and Kinesin heavy chain (Khc). Using point mutations of Khc and 35 

functional loss of its linker proteins, we studied which of Khc's sub-functions might link to microtubule 36 

curling. One cause was emergence of harmful reactive oxygen species through loss of Milton/Miro-37 

mediated mitochondrial transport. In contrast, loss of the Kinesin light chain linker caused 38 

microtubule curling through an entirely different mechanism appearing to involve increased 39 

mechanical challenge to microtubule bundles through de-inhibition of Khc. The wider implications of 40 

our findings for the understanding of axon maintenance and pathology are discussed.       41 
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Introduction 42 

Axons are the long and slender processes of neurons which form the biological cables that wire the 43 

nervous system and are indispensable for its function. In humans, axons can be up to 2 metres long 44 

whilst displaying diameters of only 0.1-15µm (Prokop, 2020). Most of these delicate cellular 45 

processes must survive for an organism’s lifetime, meaning up to a century in humans. 46 

Unsurprisingly, mammals lose about 40% of their axon mass towards high age (Calkins, 2013; 47 

Coleman, 2005; Marner et al., 2003). This rate is drastically increased in hereditary forms of 48 

axonopathies (Prokop, 2021).  49 

Of particular interest to this article are mutations of microtubule-binding motor proteins that cause 50 

axonopathies, of which the OMIM® database (Online Mendelian Inheritance in Man®; Amberger et 51 

al., 2015) currently lists DYNACTIN 1 (ALS1, OMIM® reference #105400), DYNEIN HEAVY CHAIN 52 

1 (CMT2A1, #614228), KIF1B (CMT20, #118210), KIF5A (SPG10, #604187; ALS, #617921), KIF1A 53 

(SPG30, #610357; HSN2C, #614213), KIF1B (CMT2A1, #118210) and KIF1C (SPAX2, #611302); 54 

in the case of KIF1A, links to HSP and ataxias are likely to be added soon (Nicita et al., 2020). The 55 

listed motor proteins are actively involved in live-sustaining axonal transport of RNAs, proteins, lipids 56 

and organelles (Guedes-Dias and Holzbaur, 2019; Hirokawa et al., 2010). Genetic aberration of such 57 

transport is thought to lead to systemic collapse of axonal structure and physiology, hence 58 

axonopathy. However, we have little understanding of the concrete mechanisms leading to these 59 

pathologies.  60 

To bridge this important knowledge gap, we took a novel approach based on two strategic decisions: 61 

Firstly, we used axonal microtubules (MTs) as our main readout. These MTs are arranged into loose 62 

bundles that run all along axons to form the essential highways for axonal transport and to provide 63 

a source of MTs for axon growth and branching at any life stage (Prokop, 2020). Accordingly, 64 

aberrations of MT bundles (presenting as gaps or areas of bundle disorganisation in the form of MT 65 

curling) are sensitive indicators of axonal pathology (Prokop, 2021). Mechanisms that help to 66 

maintain these MT bundles are starting to emerge (Hahn et al., 2019). 67 

Our second strategic decision was the use of Drosophila primary neurons as a cost-effective and 68 

fast model system, where the complexity of mechanisms can be addressed with powerful genetics, 69 

in ways hard to achieve in vertebrate models (Prokop et al., 2013). For example, in this study alone, 70 

we used over 40 different mutations or transgenic constructs - some of them in genetic combinations 71 

to address functional redundancies or hierarchies (e.g. Beaven et al., 2015; Gonçalves-Pimentel et 72 

al., 2011; Koper et al., 2012). Loss-of-function analyses in Drosophila are facilitated by the fact that 73 

key factors, such as Kinesin heavy chain (Khc, kinesin-1), Kinesin light chain (Klc) or Milton, are 74 

each encoded by a single gene in Drosophila, as opposed to three, four or two in mammals, 75 

respectively. Furthermore, genetic and pharmacological tools are readily available to manipulate 76 

virtually any genes in question - and all these functional approaches can be combined with efficient 77 

and well-established readouts for axonal physiology and MTs (Hahn et al., 2016; Prokop et al., 2013; 78 

Prokop et al., 2012; Sánchez-Soriano et al., 2010).  79 

Here we demonstrate that the losses of three motor proteins cause MT curling: the Kif5A/B 80 

homologue Kinesin heavy chain (Khc), the Kif1A homologue Unc-104, and Dynein heavy chain 81 

(Dhc/DYNC1H1). We find that all three are required for axonal transport of mitochondria and synaptic 82 

proteins. Focussing on Khc and employing available means to dissect its various sub-functions, we 83 

identified two mechanisms linking to MT curling: Firstly, loss of Khc/Milton/Miro-mediated transport 84 

causes harmful reactive oxygen species (ROS) likely linking to mitochondrial transport. Secondly, 85 

loss of the Kinesin light chain linker appears to cause de-inhibition of Khc as a condition that we find 86 
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to cause MT curling. Both mechanisms align with the recently proposed 'dependency cycle of local 87 

axon homeostasis' as a conceptual model of axonopathy (Prokop, 2021).  88 

 89 

Results 90 

 91 

Loss of Khc, Unc-104 or Dhc cause axonal MT curling 92 

To assess whether loss of motor protein function impacts on axonal MT organisation, we tested 93 

mutant alleles for axonal transport-related motor proteins: (a) Dynein heavy chain (Dhc) is an 94 

obligatory component of the dynein/Dynactin complex and essential for most, if not all, MT-based 95 

retrograde transport (Reck-Peterson et al., 2018); (b) Klp64D is an obligatory subunit of 96 

heterodimeric kinesin-2 (KIF3 homologue) reported to mediate anterograde axonal transport of 97 

actylcholine-related synaptic enzymes or olfactory receptors (Baqri et al., 2006; Jana et al., 2021; 98 

Kulkarni et al., 2017; Ray et al., 1999); (c) the PX-domain-containing type 3 kinesin Klp98A (KIF16B 99 

homologue) was shown to mediate autophagosome-lysosome dynamics and endosomal Wingless 100 

transport in non-neuronal cells but is also strongly expressed in the nervous system (Mauvezin et 101 

al., 2016; Witte et al., 2020; flybase.org: FBgn0004387); (d) the PH-domain-containing type 3 kinesin 102 

Unc-104 (Kif1A homologue) is essential for synaptic transport in Drosophila axons (Pack-Chung et 103 

al., 2007; Voelzmann et al., 2016); (e) Kinesin heavy chain/Khc is the sole kinesin-1 in Drosophila 104 

(Kif5A-C homologue) involved in multiple transport functions in Drosophila neurons (see details 105 

below; e.g. Bowman et al., 2000; Gindhart et al., 2003; Glater et al., 2006; Loiseau et al., 2010; 106 

Rosa-Ferreira et al., 2018; Saxton et al., 1991). 107 

To assess potential roles of these motor proteins in MT regulation, we cultured primary neurons 108 

obtained from embryos lacking these gene functions (see Methods; Fig.1) and analysed them at 109 

5DIV (days in vitro). MT curling phenotypes (where bundles deteriorate into curled, intertwined, 110 

crisscrossing MTs; curved arrows and enlarged insets in Fig.1B,F,G) occurred as a moderate 111 

phenotype in Dhc-deficient neurons and were prominent in neurons lacking Khc or Unc-104 (Fig.1H).  112 

To assess whether MT curling phenotypes were accompanied by transport defects, we analysed 113 

additional sub-cellular markers in Khc8, unc-104170 and Dhc64C4-19 homozygous mutant neurons. 114 

First, using the pre-synaptic protein Synaptotagmin (Syt) as an indicator of vesicular transport 115 

(Voelzmann et al., 2016), we found reduced presynaptic spots within axons of neurons mutant for 116 

any one of these three motor proteins, suggesting they all contribute to axonal vesicular transport 117 

(Fig.2A-D,O). Second, the axonal number and distribution of mitochondria (visualised with 118 

mitoTracker; Klionsky et al., 2012), is significantly reduced in neurons lacking either Khc, Unc-104 119 

or Dhc64C function (Fig.2H-K,P). Third, in Khc8 mutant neurons, we also assessed the distribution 120 

of endoplasmic reticulum (ER) using the genomically tagged Rtnl1-GFP allele. In wild-type neurons, 121 

ER is distributed evenly along the entirety of the axon (Fig.S1A); loss of Khc does not affect this 122 

distribution, but about three quarters of neurons show an abnormal accumulation of Rtnl-1::GFP-123 

labelled ER material at their tips (Fig.S1B,C; details in legend).   124 

In conclusion, the three motor proteins that display MT curling are also required for normal axonal 125 

transport of synaptic vesicles and mitochondria in Drosophila primary neurons. In addition, at least 126 

Khc is also required for the normal axonal distribution of ER.  127 

 128 

  129 
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Khc displays strong maternal effects 130 

Of these three motor proteins, we performed more detailed analyses on Khc because many genetic 131 

tools are available for the systematic dissection of its various functions (Fig.3B). First, to validate its 132 

MT-related phenotypes, we tested additional mutant alleles (Khc27 and Khc8 in homozygosis or over 133 

deficiency) as well as RNAi mediated knockdown of Khc (via pan-neuronal elav-Gal4). In all cases 134 

we found that the MT curling phenotypes were equally present at 5DIV (Fig.S2A,B,D). 135 

However, the MT phenotypes were not evident at earlier stages in Khc8/Df mutant neurons, either at 136 

6 hours in vitro (HIV) or at 3DIV (Fig.S2B,D), suggesting that phenotypes either accumulate gradually 137 

(as observed upon loss of Efa6; Qu et al., 2019) or are masked by perdurance of maternal product 138 

(meaning wild-type Khc gene product deposited in the egg by the heterozygous mothers; Prokop, 139 

2013).  140 

To distinguish between these two possibilities, we used a pre-culture technique where neurons are 141 

kept in centrifuge tubes for 5 days to deplete maternal gene product before plated in culture (Prokop 142 

et al., 2012; Sánchez-Soriano et al., 2010). Such pre-cultured neurons displayed prominent MT 143 

curling already at 1DIV (Fig.S2C,E), arguing that Khc has a prominent maternal contribution that 144 

persists for more than 3 days. Similar observations were made with the Khc1ts mutant allele (details 145 

in Fig.S2C). 146 

 147 

MT sliding functions of Khc do not link to MT curling 148 

A C-terminal MT-binding site enables Khc to cross-link MTs and move them against each other 149 

(Fig.3Bi; Andrews et al., 1993; Jolly et al., 2010; Lu et al., 2013; Lu et al., 2015; Winding et al., 2016). 150 

We hypothesised that Khc might contribute to MT bundle maintenance by using its MT sliding 151 

function, for example by shifting MTs to achieve even distribution along axons. The Khc sliding 152 

function is selectively inhibited by the genomically engineered, lethal KhcmutA allele that abolishes C-153 

terminal MT binding without interfering with other linkers or autoinhibition of Khc (Fig.3A; Winding et 154 

al., 2016).  155 

To test whether Khc-mediated sliding contributes to MT bundle regulation, we cultured KhcmutA 156 

mutant neurons in different ways: embryo-derived neurons were cultured for 1DIV after 5d pre-157 

culture or for 5DIV without pre-culture, and neurons from larval brains were cultured for 2DIV. In all 158 

cases, these neurons failed to show enhanced MT curling (Fig.3Ci), suggesting that the Khc mutant 159 

phenotype is not caused by the loss of its MT sliding function.  160 

 161 

Loss of Milton and Miro causes MT curling phenotypes 162 

Next, we focussed on the transport functions of Khc. For example, Pat1 (Protein interacting with APP 163 

tail-1) had been shown to link Khc to non-vesicular transport in Drosophila oocytes (Fig.3Bii; Loiseau 164 

et al., 2010). It is also strongly expressed in the Drosophila nervous system (flybase.org: 165 

FBgn0029878) but potential neuronal cargoes are unknown. Pat1 function can be eliminated by the 166 

gene-specific small deficiencies Pat1robin and Pat1grive which represent viable null alleles (Loiseau et 167 

al., 2010). When analysing cultures of larval neurons homozygous for either allele, we did not find 168 

any obvious enhancement of MT curling (Fig.3Cii). 169 

The linker protein Milton and its binding partner Miro (a small GTPase) link the C-terminus of Khc to 170 

organelles including mitochondria (Fig.3A,Biii; Harbauer, 2017; Misgeld and Schwarz, 2017; Sheng, 171 
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2017; Smith and Gallo, 2018) and potentially peroxisomes (Castro et al., 2018; Covill-Cooke et al., 172 

2017; Okumoto et al., 2018; Tang, 2018).  173 

Using the loss-of-function mutant alleles milt92, MiroSd32 or MiroB682, we first confirmed the functional 174 

contributions of Milt and Miro in primary fly neurons. For this, we stained homozygous mutant 175 

neurons with mitoTracker and anti-Syt. We found the axonal localisation of Syt to be unaffected 176 

whereas mitochondria were strongly reduced in number, thus confirming the expected cargo 177 

specificity (Fig.2E-G,L-P). The mitochondrial phenotype was milder for loss of Miro than Milt, as is 178 

consistent also with previous findings in fly neurons in vivo as well as mouse neurons (Glater et al., 179 

2006; Guo et al., 2005; López-Doménech et al., 2018; Russo et al., 2009; Vagnoni et al., 2016). In 180 

milt92 mutant neurons, mitochondria were virtually absent from axons, restricted mostly to cell bodies 181 

and proximal axon segments (Fig.2L). This absence of mitochondria as the major ATP source does 182 

not affect synaptic transport because it is self-sufficient through local glycolysis on transported 183 

vesicles (Fig.S3A,B; Hinckelmann et al., 2016; Zala et al., 2013). 184 

Having confirmed that the milt92, MiroSd32 or MiroB682 alleles selectively inhibit mitochondrial transport, 185 

we then assessed potential impacts on MT organisation. We found that all three mutant alleles 186 

caused significant increases in MT curling (Fig.3Ciii). This finding suggests that loss of Khc-mediated 187 

organelle transport triggers MT curling (Fig.3Biii). 188 

 189 

Excessive ROS triggers MT disorganisation  190 

Reduced numbers of axonal mitochondria can be expected to impair local homeostasis of calcium, 191 

ATP, reactive oxygen species (ROS), and AAA+ protease-mediated protein quality control systems 192 

(Glynn, 2017; Misgeld and Schwarz, 2017; Paupe and Prudent, 2018). We started by manipulating 193 

the ROS homeostasis through the application of DEM (diethyl maleate). DEM is an effective inhibitor 194 

of the anti-oxidant compound glutathione, hence causing the elevation of ROS levels (Fig.4A; Albano 195 

et al., 2015; Dasgupta et al., 2012; Pompella et al., 2003). We found that 12 hr-long application of 196 

100 µM DEM before fixation (from 4.5 to 5DIV) induced robust MT curling (Fig.4F). To validate this 197 

finding, we then used genetic tools to generate loss- or gain-of-function conditions for ROS-198 

regulating enzymes (yellow highlighted in Fig.4A): 199 

Firstly, we used a null allele of Catalase (Catn1), an enzyme removing hydrogen-peroxide (H2O2 ; 200 

Walker et al., 2018), and null alleles of two members of the Superoxide dismutase family, Sod1 201 

(Sod1n1 or Sod1n64) and Sod2 (Sod1n283), which convert superoxide anions (O₂-) into H2O2 (Palma et 202 

al., 2020). Of these, Catalase is enriched in peroxisomes, copper-zink-dependent Sod1 (linked to 203 

amyotrophic lateral sclerosis/ALS1; #105400; Saccon et al., 2013) is primarily cytoplasmic, and the 204 

manganese-dependent Sod2 enzyme is predominantly mitochondrial (Fig.4A). When assessed in 205 

primary Drosophila neurons, the functional deficiencies of either Sod1, Sod2 or Cat caused MT 206 

curling (Fig.4F). 207 

Secondly, we used targeted expression (a) of Nox (NADPH oxidase) to enhance O₂- levels, (b) of 208 

Sod1 to reduce O₂- levels and enhance H2O2, and (c) of Duox (Dual oxidase) to increase H2O2 levels 209 

(Anh et al., 2011; Bedard and Krause, 2007; Zelko et al., 2002). All these manipulations caused 210 

increased MT curling (Fig.4F).  211 

Taken together these results clearly indicate that insults to ROS homeostasis have a strong tendency 212 

to trigger MT curling. Upregulation of either O₂- or H2O2 seems to cause this effect, although O₂- may 213 

elicit its effects through conversion into H2O2 (Bedard and Krause, 2007).  214 

 215 
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Harmful ROS appears to relate to mitochondria and links loss of Khc or Milt to MT curling 216 

To assess whether harmful ROS might be responsible for linking loss of Khc/Milton/Miro to MT 217 

curling, we treated mutant neurons with Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 218 

acid), an α-tocopherol/vitamin E analogue that displays beneficial antioxidant effects in many cell 219 

systems by inhibiting fatty acid peroxidation and quenching singlet oxygen and superoxide (Giordano 220 

et al., 2020). Neurons mutant for Khc8 or milt92 were either pre-cultured for a day in the presence of 221 

100µM Trolox, or they were cultured directly for 5 days with Trolox. Under both conditions, 222 

application of Trolox strongly suppressed or even abolished the MT curling phenotype of Khc8 and 223 

milt92 mutant neurons (Fig.5); this indicated harmful ROS to be the main reason for MT bundle 224 

disintegration. It might explain why rat neurons depleted of the Khc homologue KIF5C were reported 225 

to be more vulnerable to H2O2 application (Iworima et al., 2016).  226 

To understand how loss of Khc and Milt might trigger harmful levels of ROS, we first set out to identify 227 

the potential source. For example, loss of Catalase causes MT curling (Fig.4A,F), potentially 228 

suggesting that peroxisomes are required to keep H2O2 levels down. To test this possibility, we 229 

blocked peroxisome biogenesis using the Pex32 mutation (Faust et al., 2014). Abolishing 230 

peroxisomes in this way did not induce any obvious MT curling phenotypes, but the Pex32 mutant 231 

neurons had shorter axons (Fig.S4) potentially due to lack of peroxisomal lipidogenesis (Wanders et 232 

al., 2020). The absence of obvious MT phenotypes seems to contradict MT curling observed upon 233 

Catalase deficiency (Fig.4F), but it might be explained by observations that Catalase can localise 234 

outside peroxisomes in the cytoplasm (Zhou and Kang, 2000). 235 

We concluded that MT curling observed upon loss of Khc, Milt or Miro is more likely to link to their 236 

roles in axonal transport of mitochondria; disturbing mitochondrial dynamics could either generate 237 

harmful ROS (via the ETC; Fig.4A) or affect their ability to quench local ROS (via Sod2; Fig.4A). 238 

 239 

ROS-absorbing properties rather than disrupted fission/fusion of mitochondria might provide links to 240 

MT curling 241 

Loss of Khc/Milt/Miro might cause harmful ROS by affecting fission/fusion processes required to 242 

maintain a healthy mitochondrial population (Cagalinec et al., 2013; Liu et al., 2009; Wang et al., 243 

2015). In support of this notion fission/fusion factors are linked to axonopathies; this is the case for 244 

the fission factor DNM1L/DYNAMIN-LIKE PROTEIN 1 (Optic atrophy 5; OMIM® #610708), as well 245 

as the fusion factors OPA1/OPA1 MITOCHONDRIAL DYNAMIN-LIKE GTPase (Optic atrophy 1; 246 

#165500) and MFN/MITOFUSIN (CMT2A2A, CMT2A2B, HMSN6A; #609260, 617087, 601152).  247 

To test whether loss of fission/fusion is a condition that affects MT bundling, we used mutant alleles 248 

abolishing the functions of the fly homologues of mammalian DNM1L (Drp1T26; Dynamin related 249 

protein 1), of mammalian OPA1 (Opa1s3475; Optic atrophy 1) and of mammalian MFN (MarfB; 250 

Mitochondrial assembly regulatory factor). In axons of wild-type neurons, mitochondria mostly 251 

displayed dash-like shapes (Fig.S5A) and occasionally appeared dot-like or formed longer lines (not 252 

shown). In contrast, within axons of neurons with impaired fusion (Opa1s3475 or MarfB) mitochondrial 253 

shapes were primarily short and dot-like (Fig.S5C,D), whereas loss of fission (Drp1T26) caused string-254 

of-pearl arrangements where a continuous thread of mitochondria ran all along the main axon but 255 

was excluded from side branches (Fig.S5B). These findings are consistent with reports for 256 

mammalian neurons (Smirnova et al., 2001; Uo et al., 2009; Yu et al., 2011).  257 

When analysed for MT organisation, none of the three fission/fusion-deficient conditions caused 258 

curling in axons, neither at 5 DIV nor upon pre-culture (Fig.S5E,F). This might suggest that MT 259 

curling upon loss of Khc/Milt/Miro is unlikely to be caused by mitochondrial fission/fusion defects; the 260 
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absence of fission/fusion events seems not to affect mitochondria in ways that cause harmful ROS 261 

leakage, as is also consistent with views of other authors (Misgeld and Schwarz, 2017). Accordingly, 262 

also MFN2-deficient mouse neurons seem not to experience oxidative stress (Baloh et al., 2007). A 263 

further argument against the involvement of fission/fusion is based on the observation that 264 

mitochondria in Milt-deficient neurons tend to stay in the cell body: it is unlikely that harmful ROS 265 

generated in the soma were to reach the distal axon via long-range diffusion, especially when 266 

considering the abundance of ROS-buffering systems (Fundu et al., 2019; Kükürt et al., 2021; 267 

Oswald et al., 2018).  268 

We prefer therefore the explanation that MT curling in Khc/Milt/Miro-deficient neurons (Fig.2P) might 269 

be caused by the absence of mitochondria from critical positions in the axon, thus depleting these 270 

areas from Sod2 activity (for details see Discussion). 271 

 272 

Klc also causes MT curling but through a mechanism distinct from Milt 273 

Given the comparable strength of MT phenotypes upon loss of Khc, Milt or Miro (Fig.3Ciii) and their 274 

shared links to harmful ROS production (Fig.5), mitochondrial transport defects seemed to offer the 275 

perfect explanation for why loss of Khc induces MT curling. We expected therefore that loss of the 276 

vesicular transport linker Klc would not cause these MT phenotypes.  277 

Surprisingly, we found that also loss of Klc (Klc8ex94 or Klc8ex94/Df mutant neurons at 5 DIV) caused 278 

MT curling, and that this phenotype was at least as strong as observed with Khc or Milt deficiency 279 

(Fig.3Ciii,iv). We obtained the same results when performing 5d pre-cultures with Khc8, Klc8ex94 and 280 

milt92 mutant neurons (to deplete their maternal products; Figs.6A-E), confirming that the three 281 

factors generate comparably strong MT curling phenotypes.  282 

To establish whether Klc might work synergistically with Khc and Milt, we applied Trolox to Klc8ex94 283 

mutant neurons. However, in contrast to Khc8 and milt92 mutant neurons, the MT curling in Klc-284 

deficient neurons was not suppressed by Trolox, neither in pre-cultured neurons nor in 5DIV cultures 285 

(Fig.5). This clearly demonstrated that Klc works through an independent mechanism. 286 

 287 

Klc's links to MT curling do not depend on vesicular cargo transport 288 

We first tested whether Klc's impact on MT regulation might link to vesicular cargo transport, 289 

capitalising on reports that Khc-mediated vesicular cargo transport requires a protein complex of a 290 

number of factors including Klc and Sunday driver (Syd, the JIP3 homologue; Fig.3Biv; Gindhart et 291 

al., 2003; Horiuchi et al., 2005; Koushika, 2008). Accordingly, functional loss of either Klc or Syd was 292 

shown to abolish Khc-mediated vesicular transport, with motoraxons in peripheral larval nerves 293 

displaying synaptic protein accumulation that were similarly strong upon Klc or Syd deficiency as 294 

observed upon loss of Khc (Bowman et al., 2000; Füger et al., 2012; Gauger and Goldstein, 1993; 295 

Gindhart et al., 1998; Hurd and Saxton, 1996; Pilling et al., 2006). Equally in primary culture, we 296 

found that the number of Synaptotagmin-positive dots in axons was reduced in Klc8ex94 and sydz4 null 297 

mutant neurons, and the phenotypes were similarly strong as observed in Khc-deficient neurons 298 

(Fig.2B,G,O). These effects seem specific to vesicular cargo transport since mitochondrial numbers 299 

in axons of Klc8ex94 mutant neurons appeared normal (Fig.2N,P).  300 

Our data confirm therefore that Klc, Syd and Khc closely co-operate during vesicular cargo transport 301 

in primary Drosophila neurons. However, in contrast to severe MT curling in Klc- and Khc-deficient 302 

neurons, sydz4 or sydz4/Df mutant neurons at 5DIV failed to show similar phenotypes (Fig.3Civ). This 303 
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observation was further supported by experiments where we knocked down GAPDH 304 

(glyceraldehyde-3-phosphate dehydrogenase), an enzyme required for glycolysis that is known to 305 

fuel the axonal transport of vesicles but not of mitochondria (details in Fig.S3A,B; Zala et al., 2013). 306 

When GAPDH was knocked down in primary Drosophila neurons, axons displayed a reduction in 307 

synaptic dots but not in mitochondrial numbers (Fig.S3C), as is consistent with analyses in larval 308 

nerves (Zala et al., 2013). However, GAPDH knock-down did not cause obvious MT curling 309 

phenotypes (Fig.S3C), thus mirroring results obtained with Syd deficiency. 310 

We concluded that blocking vesicular axonal transport appears not to be a cause for MT curling, and 311 

that loss of Klc is likely to trigger its MT phenotypes through a different mechanism. This view was 312 

also supported by genetic interaction studies using trans-heterozygous pairings of Khc8, milt92 and 313 

Klc8ex94 (i.e. combining heterozygosity for two genes at a time in the same neurons). Of the three 314 

constellations, only Khc8/+ milt92/+ trans-heterozygote mutant neurons generated a MT curling 315 

phenotype that was significantly enhanced over single heterozygous conditions (Fig.6G), supporting 316 

functional links between Khc and Milt but not with Klc.  317 

Taken together, MT curling upon loss of Khc appears to relate to Milt/Miro-mediated mitochondrial 318 

transport as explained before, but not to Klc-mediated vesicular transport. Milt, Miro and Khc seem 319 

to have comparably strong mutant phenotypes because their loss leads to the same transport defect, 320 

whereas phenotypes observed upon loss of Klc (which has binding sites on Khc that overlap with 321 

those of Milt; details in Fig.3A) seem not to relate to its function as a transport linker but work through 322 

an entirely different mechanism. 323 

 324 

Excessive pools of active Khc might explain the Klc-deficient MT phenotype 325 

We hypothesised that MT curling upon loss of Klc may relate to its roles in regulating the activation 326 

state of Khc. Thus, Khc pools that are not linked to cargo tend to be auto-inhibited and detached 327 

from MTs. This inactivation requires intramolecular loop formation via binding of the N- to the C-328 

terminus, and this also involves the association with Klc (co-regulated through its own auto-329 

inhibition/activation mechanism; Figs.3A,Biv; Bowman et al., 2000; Koushika, 2008; Verhey and 330 

Hammond, 2009; Verhey et al., 1998; Wong and Rice, 2010; Yip et al., 2016). In non-neuronal cells, 331 

overriding auto-inhibition of the Khc-Klc complex causes MT curling (Paul et al., 2020; Randall et al., 332 

2017). 333 

To test whether Klc-deficient MT curling in neurons might involve excessive pools of active Khc, we 334 

first targeted the expression of GFP-tagged constructs of Khc to neurons. We found that full-length 335 

Khc::GFP was homogeneously distributed along axons and failed to increase MT curling when 336 

analysed at 5DIV (Fig.7), consistent with the idea that extra pools of Khc tend to be inactive and 337 

detached from MTs. 338 

We then expressed two non-inactivating Khc derivatives (Khc1-811::GFP and Khc82-711::GFP; top of 339 

Fig.3A) which both lack the C-terminal domain needed for auto-inhibition but also for their roles in 340 

cargo transport and MT sliding (dark grey and green in Fig.3A). When analysed in neurons at 5DIV, 341 

both constructs accumulated at axon tips, as is typical of non-inactivating kinesins (Niwa et al., 2013). 342 

Of these, Khc1-850::GFP caused a very mild MT phenotype, suggesting that extra pools of free-343 

running Khc per se cause little harm (Fig.7B,D). In contrast, Khc82-711::GFP caused severe MT curling 344 

(Fig.7C,D), potentially because this truncated form also has a small N-terminal deletion – and short 345 

deletions of the N-terminus have been shown to display damaging effects on MTs (Budaitis et al., 346 

2021; details in Fig.3A). In principle, our findings with this dys-regulated construct supported our 347 
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previously published hypothesis that the activity of kinesins is harmful to axonal MT bundles and can 348 

explain MT curling (Hahn et al., 2019; Prokop, 2021). 349 

However, since all essential C-terminal binding sites were removed in Khc1-850::GFP and Khc82-350 
711::GFP (Fig.3A), our experiments so far only assessed free-running Khc that could not engage in 351 

movement of any cargo (Fig.3A,B). We hypothesised that active transport would be expected to 352 

generate higher forces than free-running Khc and, hence, be more challenging to MT bundles. We 353 

therefore tested the genomically engineered KhcE177K and KhcE177R, R947E mutant alleles (Fig.3A), 354 

which have point mutations in the E177 and R947 residues that are known to form a required salt 355 

bridge with each other during auto-inactivation (Kaan et al., 2011; Kelliher et al., 2018); these mutant 356 

alleles cause lethality and distal accumulations of Khc (Brendza et al., 1999; Kelliher et al., 2018). 357 

When analysing KhcE177K and KhcE177R, R947E homozygous mutant neurons at 3DIV, we found that 358 

they display robust MT curling (Fig.7D). This clearly indicated that extra pools of actively engaging 359 

Khc harm MT bundles, which might therefore explain the Klc mutant phenotype (see Discussion). 360 

 361 

Discussion 362 

 363 

Using MT bundles of Drosophila neurons as a powerful approach to dissect motor-related patho-364 

mechanisms   365 

Motor proteins involved in axonal transport clearly are key drivers of neuronal survival, yet their links 366 

to axonopathies remain poorly understood and speculative (Coleman, 2005; Guo et al., 2020; 367 

Kawaguchi, 2013; Sleigh et al., 2019). Here, we aimed to unravel concrete mechanisms through 368 

which motor protein loss can affect axons.  369 

Our approach was unprecedented in that we performed a systematic genetic study in one 370 

standardised neuron system and used MT bundles as key readout. We studied the organisation of 371 

axonal MT bundles because they are good indicators of axon integrity (Prokop, 2020) that are easy 372 

to quantify and have an intricate interdependent relationship with motor proteins (Prokop et al., 373 

2013). The key phenotype we observed upon motor manipulation is MT curling which appears 374 

conserved across species, since depleting Dynein or the kinesin-1 linker JIP3 causes the same kind 375 

of curling in axons of mammalian neurons (Ahmad et al., 2006; Rafiq et al., 2020).  376 

The easily accessible and quantifiable MT curling readout allowed us to determine roles of motor 377 

proteins and their interactors, or of proteins regulating potential downstream processes - and many 378 

of these factors have known links to neurodegeneration or axonopathies. Our approach was 379 

facilitated by using a standardised neuronal culture system in which findings could be integrated and 380 

were highly accessible to powerful Drosophila genetics. The additional advantage of this system is 381 

low genetic redundancy of factors involved in axonal transport, with one Drosophila gene having on 382 

average almost 3 mammalian orthologues (Khc/Kif5: 1 paralogue in fly vs. 3 paralogues in mammals; 383 

Miro/RHOT: 1 vs. 2; Milt/TRAK: 1 vs. 2; Klc: 1 vs. 4; Marf/MFN: 1 vs. 2; Unc-104/Kif1: 1 vs. 3). This 384 

low redundancy in fly enormously facilitates loss-of-function analyses and combinatorial genetics.  385 

Capitalising on these advantages, our unprecedented strategy enabled us to generate new 386 

understanding and conceptual explanations. So far, we found that deficiencies of three motor 387 

proteins (Khc, Unc-104, Dhc) cause MT curling. Notably, the homologues of all three factors have 388 

OMIM®-listed links to human axonopathies (see Introduction) potentially reflecting evolutionarily 389 

conserved mechanisms of axon pathology that might even be shared between these motor protein 390 

classes.  391 
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For example, we found that phenotypes upon loss of Khc and Unc-104 are very similar with respect 392 

to enhanced MT curling and the reduction in axonal numbers of mitochondria and synaptic dots 393 

(Figs.1, 2), and both seem involved in mRNA transport (L.M.P.C., unpublished results; Lyons et al., 394 

2009). This functional overlap is in agreement with reports that kinesin-1 and -3 collaborate during 395 

transport (Arpağ et al., 2019; Zahavi et al., 2021). Consequently, these two motors might therefore 396 

link to axonopathy through comparable mechanisms.  397 

 398 

An intricate relationship: kinesins simultaneously harm and care for MT bundles 399 

The challenges of studying axonal transport are ample due to (1) the parallel involvement of different 400 

motor protein classes (which might act redundantly; Hirokawa et al., 2010; see previous section), (2) 401 

the enormous wealth of their cargoes, (3) the involvement of many different linkers (that might 402 

interact promiscuously with different motors; Brady and Morfini, 2017; Drerup et al., 2016; Gindhart, 403 

2006; Hirokawa et al., 2010; Maday et al., 2014), (4) additional roles in slow transport (transient 404 

'hitchhiking' of proteins on transported vesicles; Roy, 2020; Tang et al., 2013), and (5) complications 405 

caused by the interdependence of kinesins and dynein/Dynactin (Hancock, 2014; Moughamian et 406 

al., 2013; Twelvetrees et al., 2016; potentially explaining the rather counter-intuitive observation that 407 

loss of anterograde Khc transport causes distal ER accumulations; details in legend of Fig.S1).  408 

For kinesin-1 alone (Fig.3B), we tested roles of Khc in MT sliding (KhcmutA), roles of Khc/Milt/Miro in 409 

mitochondrial/peroxisomal transport, of Khc/Klc/Syd/GAPDH in vesicular transport, of Khc/Pat1 in 410 

potential non-vesicular transport, and potential roles of Klc and certain Khc domains/residues in Khc 411 

auto-inhibition. These extensive studies still left out further known linkers, such as SKIP/SNW1/SKIIP 412 

and Arl8 (lysosome transport; Keren-Kaplan and Bonifacino, 2021; Rosa-Ferreira and Munro, 2011; 413 

Rosa-Ferreira et al., 2018) or Tropomyosin (mRNA transport; Fig.3A; Dimitrova-Paternoga et al., 414 

2021; Veeranan-Karmegam et al., 2016). Nevertheless, the analyses we performed suggested two 415 

distinct mechanisms:  416 

Firstly, Khc/Milt/Miro-mediated transport is required to uphold ROS homeostasis, with harmful ROS 417 

being a strong inducer of MT curling (demonstrated by our studies with DEM, Trolox and ROS-418 

regulating enzymes; Figs.4, 5). Secondly, we found that the movement and active transport of Khc 419 

along MTs damages axonal bundles, as demonstrated by the expression of Khc deletion constructs 420 

and analyses of non-inactivating Khc mutant alleles (Fig.7). These latter findings align with published 421 

in vitro experiments demonstrating kinesin-1-induced MT damage (Andreu-Carbó et al., 2021; 422 

Budaitis et al., 2021; Dumont et al., 2015; Triclin et al., 2021; VanDelinder et al., 2016), MT curling 423 

observed in kinesin-1-based gliding assays in vitro (Hahn et al., 2019; Lam et al., 2016), and the 424 

curling observed upon kinesin-1 activation in non-neuronal cells (Paul et al., 2020; Randall et al., 425 

2017). Notably, MT curling is not specifically linked to motor proteins, but is similarly observed upon 426 

loss of various MT-binding and -regulating proteins (Hahn et al., 2019) and in a model of 427 

chemotherapy-induced peripheral neuropathy (Rozario et al., 2021). 428 

All these causes of MT curling, including the two mechanisms described in this work, can be 429 

explained with the previously proposed "local axon homeostasis" model (Hahn et al., 2019) and the 430 

subsequently derived "dependency cycle of axon homeostasis" (Prokop, 2021; details in Fig.8). 431 

These models propose that kinesins that trail along MT bundles during axonal transport ('2'  in Fig.8) 432 

pose a mechanical challenge that leads to MT curling ('3'); active machinery of MT-regulating 433 

proteins and support through the cortical actin-spectrin sleeve is therefore required to prevent 434 

disintegration and maintain these bundles long-term ('4'). However, the machinery that maintains MT 435 

bundles is itself dependent on materials and physiology provided by axonal transport ('5'), thus 436 
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establishing a cycle of mutual dependency where interruption at any point will have a knock-on effect 437 

on all other aspects of axon physiology and function (Prokop, 2021). The mechanisms we described 438 

here act in either direction of this cycle (thick read arrows in Fig.8).  439 

 440 

Mitochondria regulate ROS homeostasis required for MT bundle maintenance  441 

Our finding that harmful ROS is a key trigger of MT curling aligns with reports that actin as well as 442 

MTs are modified or even damaged by ROS (Goldblum et al., 2021; Wilson et al., 2016; Wioland et 443 

al., 2021) and that oxidative stress induces axon swellings in models of Parkinson's disease, multiple 444 

sclerosis or ALS (Czaniecki et al., 2019; Nikić et al., 2011; Song et al., 2013). Unfortunately, a more 445 

generalised statement cannot be made because axonal MTs have rarely been analysed in oxidative 446 

stress experiments (De Vos et al., 2007; Debattisti et al., 2017; Fischer et al., 2012; Saccon et al., 447 

2013; Song et al., 2013). 448 

Pinpointing the precise source of harmful ROS upon Khc/Milt/Miro loss is a tedious task when 449 

considering (1) the intricate network of ROS regulation (Fig.4A) where manipulations of very different 450 

regulators caused comparable phenotypes (Fig.4F), and (2) the spectrum of organelles involved in 451 

ROS homeostasis regulation: these involve the finely tuned mitochondria-peroxisome system 452 

(Fransen et al., 2017; Pascual-Ahuir et al., 2017), but also the ER which contains oxidases required 453 

for protein folding (Hudson et al., 2015). Unfortunately, removing or affecting the ER to assess its 454 

involvement is not trivial (O'Sullivan et al., 2012; Yalcin et al., 2017); but our studies of Pex3 mutant 455 

conditions suggested that peroxisomes are unlikely to link to MT curling (Fig.S4). This said, 456 

peroxisomes certainly play important further roles in maintaining healthy axons (Wali et al., 2016).   457 

In our view, the most likely organelles involved in MT curling are the mitochondria. We were surprised 458 

to find that not the presence of damaged mitochondria leaking harmful ROS seems to trigger MT 459 

curling (Fig.S5), but rather the absence of mitochondria. This is best illustrated by milt mutant 460 

neurons where mitochondria are mostly restricted to cell bodies (Fig.2L,P), yet strong ROS-induced 461 

MT curling occurs in axons (Figs.3Ciii, 5, 6E).  462 

As already mentioned in the Results part, we believe that the best model combining all observations 463 

is the absence of mitochondria and Sod2 as their ROS scavenger from critical locations in axons. 464 

For example, we know from live imaging experiments that MT curling starts at growth cones or 465 

branch points (A.V., unpublished data), and both are typical sites where mitochondria localise 466 

(Bunge, 1973; Mandal and Drerup, 2019). Failure to quench harmful ROS in these critical locations 467 

could therefore promote the initiation of MT curling; this would also explain why drastic mitochondrial 468 

depletion upon Milt deficiency triggers similarly strong MT curling as moderate depletion upon loss 469 

of Khc or Miro (Figs.2P, 3C): not the number of mitochondria is essential but their adequate 470 

localisation, and this aspect is regulated through a Khc/Milt/Miro-dependent mechanism (Misgeld 471 

and Schwarz, 2017).   472 

The drastic depletion of axonal mitochondria upon Milt deficiency as compared to the moderate 473 

number reductions upon loss of Khc, Unc-104 or Dhc (Fig.2P) might suggest Milt as a 'master linker' 474 

for mitochondrial transport in fly neurons. Indeed, Milt is known to link to Khc and Dynein in both flies 475 

and mammals (Russo et al., 2009; van Spronsen et al., 2013), whereas there are currently no such 476 

reports for Unc-104; its mammalian homologue Kif1 was reported so far to perform mitochondrial 477 

transport through KBP (Kif1 binding protein; Campbell et al., 2014; Nangaku et al., 1994; Tanaka et 478 

al., 2011; Wozniak et al., 2005).         479 

 480 
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Khc activation as a further factor leading to MT curling 481 

As discussed above, our data with non-inactivating constructs and mutant alleles of Khc strongly 482 

suggested that excess engagement of this motor can trigger MT curling (Fig.7). Since Klc is involved 483 

in Khc auto-inhibition, the MT curling phenotype we observe in axons of Klc-deficient neurons might 484 

therefore link to this mechanism as a potential cause for axonopathy.  485 

Also Kif1A/Unc-104 undergoes inactivation involving intramolecular loop formation and the KBP 486 

linker (Cong et al., 2021; Kevenaar et al., 2016). KBP mutations impair axon growth, are disruptive 487 

to axonal MT bundles (Lyons et al., 2008) and cause the devastating neurological disorder Goldberg-488 

Shprintzen syndrome in humans (Chang et al., 2019; Hirst et al., 2017). Similarly, non-inactivating 489 

mutations of Kif1A cause spastic paraplegia (Chiba et al., 2019; Gabrych et al., 2019). Also KLC2 490 

has been linked to neuropathy (SPOAN; #609541) and KLC4 mutations have recently been reported 491 

to cause excessive axon branching (Haynes et al., 2021). Axonopathy-linked human mutations of 492 

Kif5A were mapped exclusively to the motor domain or the very C-terminal end so far, but none were 493 

reported in the auto-inactivation domains or the KLC binding site (Nicolas et al., 2018). However, 494 

this does not mean that such mutations are not detrimental: mutations affecting auto-inhibition might 495 

rather confer lethality (as is the case in Drosophila; Brendza et al., 1999; Kelliher et al., 2018) and 496 

therefore escape the spectrum of diagnosed diseases. 497 

The modest curling observed upon overexpression of Khc1-850::GFP, versus the strong phenotype 498 

with genomically engineered KhcE177K and KhcE177R, R947E mutant alleles (Fig.3A), suggests that free-499 

running Khc is insufficient to cause a strong phenotype; instead it seems that the C-terminus of Khc 500 

has to interact with cargo to generate forces strong enough to affect MT bundles. But what cargoes 501 

might be involved? 502 

Some insights might come from milt92/92 Klc8ex94/8ex94 double-mutant neurons which show an intriguing 503 

pattern: loss of Klc and Milt trigger MT curling through completely different mechanisms (Fig.8), and 504 

their phenotypes should therefore be additive. However, double-mutant neurons show the same 505 

amount of curling as the single mutants (Figs.5B, 6F). Even more, MT curling in double-mutant 506 

neurons is partly cured by Trolox, although Klc-deficiency alone does not respond to Trolox (Fig.5B). 507 

The easiest explanation for these findings is that surplus pools of activated Khc triggered by loss of 508 

Klc engage in force-generation that depends on mitochondria-derived ATP (unlike vesicular 509 

transport; Fig.S3A). Since mitochondria and their ATP are absent from axons of milt Klc double-510 

mutant neurons, the extra pool of Khc lacks the necessary fuel to contribute to the joint MT curling 511 

phenotype. So far, our attempts to pinpoint such force-generating activities of surplus Khc pools 512 

have not been successful: they seem not to involve microtubule sliding and Pat1-mediated transport 513 

(Fig.3Bi,ii) as suggested by failed suppression of MT curling in KhcmutA/mutA Klc8ex94/8ex94 or Pat1robin/robin 514 

Klc8ex94/8ex94 double-mutant neurons (details in Fig.S6). 515 

 516 

Conclusion 517 

Using our unconventional strategy (MT curling as key readout for systematic genetic analyses in a 518 

standardised Drosophila primary neuron system) we were able to develop new concepts for how 519 

molecular motor mutations might trigger axonopathies. Given the breadth of genetics versus lack of 520 

mechanistic detail of our studies, our results are certainly more suggestive than definite. But they 521 

are astonishingly consistent with many reports in the field (as mentioned throughout this work) and 522 

align well with the 'dependency cycle of local axon homeostasis' as a model describing the 523 

fundamental principle of axon maintenance and pathology (Prokop, 2021). We hope therefore that 524 

our findings and ideas will stimulate further studies in which the model and proposed mechanisms 525 
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are put to the test, incorporating also other aspects of axon physiology, such as ATP and calcium 526 

regulation. Whatever the outcome, such studies will be highly informative and contribute to the battle 527 

against a class of diseases that are of enormous socioeconomic burden and personal hardship. 528 
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 540 

Methods 541 

Fly stocks  542 

All human homology statements are based on information listed on flybase.org (Marygold et al., 543 

2016; Millburn et al., 2016), all statements about genetic links to human diseases on information 544 

provided by www.omim.org (Online Mendelian Inheritance in Man®; Amberger et al., 2015). The 545 

following stocks were used in this study (reference and source provided in brackets; BL indicates 546 

Bloomington Drosophila Stock Collection): null mutant alleles (unless indicated differently) we used 547 

were  548 

• unc-104170 (Pack-Chung et al., 2007; Tom Schwarz) 549 

• Klp64Dk1 (Ray et al., 1999; hypomorphic allele; BL #5578) 550 

• Klp64Dn123 (Perez and Steller, 1996; BL #5674) 551 

• Klp98AΔ47 (Derivery et al., 2015; Marcos Gonzalez-Gaitan) 552 

• Dhc64C4-19 (Gepner et al., 1996; BL #5274) 553 

• Khc8 (Saxton et al., 1991; BL #1607) 554 

• Khc27 (Saxton et al., 1991; Isabel Palacios) 555 

• Klc1ts (Saxton et al., 1991; BL #31994; a temperature-sensitive allele which is homozygous 556 

viable at 18⁰C but usually kept over balancer)  557 

• KhcmutA (Winding et al., 2016; Vladimir Gelfand; confirmed by lethality of hetero-allelic 558 

KhcmutA/8 animals) 559 

• KhcE177K and KhcE177K,R947E (Kelliher et al., 2018; Jill Wildonger) 560 

• Df(Khc) (Df(2R)BSC309; Cook et al., 2012; BL #23692) 561 

• milt92 (Cox and Spradling, 2006; Stowers et al., 2002; Tom Schwarz) 562 

• Df(milt) (Df(2L)ED440, P{w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED440; Ryder et al., 2004; 563 

Kyoto #150498) 564 

• MiroSd32 (Guo et al., 2005)  565 

• MiroB682 (Guo et al., 2005; BL #52003) 566 

• Df(Miro) (Df(3R)Exel6197; Parks et al., 2004; BL #7676) 567 

• Klc8ex94 (Gindhart et al., 1998; BL #31997) 568 
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• sydz4 (Bowman et al., 2000; BL #32016) 569 

• Df(3L)sydA2 (Bowman et al., 2000; deleting C-terminus; BL #32017) 570 

• Pat1grive and Pat1robin (Loiseau et al., 2010; Isabel Palacios) 571 

• Sod1n1 (Phillips et al., 1989; BL #24492) 572 

• Sod1n64 (Phillips et al., 1995; BL #7451) 573 

• Rtnl1-YFP (PBac{681.P.FSVS-1}Rtnl1CPTI001291; Cahir O’Kane; O'Sullivan et al., 2012) 574 

• Drp1T26  (Verstreken et al., 2005; BL #3662) 575 

• MarfB  (Sandoval et al., 2014; Hugo Bellen) 576 

• P{lacW}Opa1s3475 (Spradling et al., 1999; BL #12188) 577 

• Catn1 (Mackay and Bewley, 1989; Matthias Landgraf) 578 

• Sod2n283 (Duttaroy et al., 2003; BL#34060) 579 

• Pex32 (Faust et al., 2014; BL#64251) 580 

Gal4 driver lines used were the  581 

• elav-Gal4 (Luo et al., 1994) 582 

• tubP-Gal4 (Lee and Luo, 1999; Liqun Luo) 583 

UAS lines 584 

• UAS-KhcFL::GFP (3rd, unpublished; Isabel Palacios) 585 

• UAS-Khc82-711-GFP (2nd, BL #9648; constitutively active Khc consisting of base pairs 248-586 

2134 / aa 82-711; fused with EGFP sequence; flybase.org: FBrf0198610) 587 

• UAS-Khc1-850-GFP (Loiseau et al., 2010; Isabel Palacios) 588 

• UAS-Khc-RNAi (Lu et al., 2013; Vagnoni et al., 2016; BL #35770) 589 

• UAS-Sod1 (J. Hu and J.P. Phillips, unpublished) 590 

• UAS-Duox (Ha et al., 2005; Matthias Landgraf) 591 

• UAS-Gapdh-IR (Gapdh1GD7467; Vienna Drosophila Resource Centre) 592 

 593 

Cloning of UAS-Nox-YPet 594 

10xUAS-IVS-Nox::YPet was generated by using the pJFRC12-10XUAS-IVS-myr-GFP 595 

vector (Addgene 26222; Pfeiffer et al., 2010) as a backbone which was modified by substituting GFP 596 

with YPet (Nguyen and Daugherty, 2005) plus an N-terminal flexible linker, amplified from 597 

dFlex_YPet_phase0 (Gärtig et al., 2019) using primer ML1 and ML2, and inserted by the Klenow 598 

Assembly Method (tinyurl.com/4r99uv8m) into the XbaI/BamHI sites producing Vector 1: pJFRC12-599 

10xUAS-IVS-myr-linker-YPet. Nox cDNA was amplified from a DGRC (Drosophila Genomics 600 

Resource Center) cDNA library clone using primers ML5 and ML6, located in a pOTB7 vector 601 

backbone, and inserted into BamHI/XhoI sites of Vector 1. Constructs were sent to FlyORF 602 

for transgenesis, and targeted via PhiC31-mediated site-specific insertion to the PBac{y+-attP-603 

3B}VK00040  landing site (Bloomington line #9755) on the third chromosome (3R, 87B10). 604 

 605 

ML1 
gacatcatcagaccacgcggatccggctccgccggctccgccgccggctccggcgagttcgtgtcca

agggcgag 

ML2 gttccttcacaaagatcctctagattacttgtacagctcgttcatgccc 

ML5 ggagccggcggagccggatccgaagcactccttacgaaaggcaaatccgt                                   

ML6 cttcaggcggccgcggctcgagaatcaaaatgaacgcggaccaggagtc                                  

 606 
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Drosophila primary cell culture 607 

Drosophila primary neuron cultures were performed as published previously (Prokop et al., 2012; 608 

Qu et al., 2017). In brief, stage 11 embryos were treated for 1 min with bleach to remove the chorion, 609 

sterilized for ~30 s in 70% ethanol, washed in sterile Schneider’s/FCS, and eventually homogenized 610 

with micro-pestles in 1.5 centrifuge tubes containing 21 embryos per 100μl dispersion medium and 611 

left to incubate for 5 min at 37°C. Cells were washed with Schneider’s medium (Gibco), spun down 612 

for 4 mins at 650g, supernatant was removed and cells re-suspended in 90µl of Schneider’s medium 613 

containing 20% fetal calf serum (Gibco). 30μl drops were placed on cover slips. Cells were allowed 614 

to adhere for ~2hrs either directly on glass or on cover slips coated with a 5 µg/ml solution of 615 

concanavalin A, and then grown as a hanging drop culture for hours or days at 26°C as indicated in 616 

each experiment. 617 

To abolish maternal rescue of mutants, i.e. masking of the mutant phenotype caused by deposition 618 

of normal gene product from the healthy gene copy of the heterozygous mothers in the oocyte 619 

(Prokop, 2013), we used a pre-culture strategy (Prokop et al., 2012; Sánchez-Soriano et al., 2010) 620 

where cells were kept for 5 days in a tube before they were plated on a coverslip. 621 

Cells were treated with 100 µM Trolox (Sigma; stepwise diluted from a 100mM stock solution in 622 

ethanol) or 100 µM DEM prepared in 100% ethanol. For controls (vehicle treatment), equivalent 623 

concentrations of vehicle (sterile H2O or 100% ethanol) were diluted in cell culture medium. All 624 

reagents were purchased from Sigma-Aldrich, unless otherwise stated. 625 

For visualisation of mitochondria, cell cultures were incubated with 400nM MitoTracker Red CMXRos 626 

(Invitrogen; Klionsky et al., 2012) for 30min at room temperature (RT); stock solutions were prepared 627 

in DMSO and diluted in cell culture medium to the final concentration. Following incubation, cultures 628 

were then fixed and stained following the procedures below. 629 

 630 

Immunohistochemistry 631 

Primary fly neurons were fixed in 4% paraformaldehyde (PFA) in 0.05M phosphate buffer (PB; pH 632 

7–7.2) for 30min at room temperature (RT). Antibody staining and washes were performed with PBT. 633 

Staining reagents: anti-tubulin (clone DM1A, mouse, 1:1000, Sigma; alternatively, clone YL1/2, rat, 634 

1:500, Millipore Bioscience Research Reagents); anti-Syt (1:1000; rabbit; Sean Sweeney); anti-GFP 635 

(1:500, rabbit, ab290, Abcam); Cy3-conjugated anti-HRP (goat, 1:100, Jackson ImmunoResearch); 636 

FITC-, Cy3- or Cy5-conjugated secondary antibodies (1:200; donkey, purified, Jackson Immuno 637 

Research); F-actin was stained with Phalloidin conjugated with TRITC/Alexa647, FITC or Atto647N 638 

(1:200; Invitrogen and Sigma). Specimens were embedded in ProLong Gold Antifade mounting 639 

medium. 640 

 641 

Microscopy and data analysis 642 

Standard documentation was performed with AxioCam monochrome digital cameras (Carl Zeiss 643 

Ltd.) mounted on BX50WI or BX51 Olympus compound fluorescent microscopes. To determine the 644 

degree of MT disorganisation in axons we used the "MT disorganisation index" (MDI) (Qu et al., 645 

2017): the area of disorganisation was measured using the freehand selection tool in Fiji/ImageJ; 646 

this value was then divided by axon length (see above) multiplied by 0.5 μm (typical axon diameter, 647 

thus approximating the expected area of the axon if it were not disorganised). To quantify the number 648 

of synaptic densities in mature neurons in culture, we used ImageJ, first thresholding to select 649 

synaptic densities from axons of single isolated cells, followed by particle analysis. For statistical 650 
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analyses, Kruskal–Wallis one-way ANOVA with post hoc Dunn’s test or Mann–Whitney Rank Sum 651 

Tests were used to compare groups. The data used for our analyses will be made available on 652 

request from the authors. 653 

 654 

Ethical statement 655 

An ethical statement is not required. 656 

 657 
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Figures 1315 

 1316 

Fig.1 Deficiencies of three motor proteins cause MT curling. A-G) Examples of neurons of different 1317 

genotype (indicated top right) and stained for tubulin at 5DIV; asterisks indicate cell bodies, arrow 1318 

heads axon tips, curved arrows areas of MT curling, white rectangles shown as twofold magnified, 1319 

yellow emboxed insets; scale bar in A represents 20µm in all images. H) Quantification of MT curling 1320 

phenotypes measured as MT disorganisation index (MDI) and normalised to wild-type controls (red 1321 

stippled line); mean ± SEM is indicated in blue, numbers of analysed neurons in orange, results of 1322 

Mann Whitney rank sum tests are shown in grey/black. 1323 

 1324 

Fig.2 Impacts of motor protein and linker mutations on numbers of axonal mitochondria and synaptic 1325 

spots. A-N) Examples of neurons of different genotype (indicated top right) and stained at 5DIV for 1326 

tubulin (tub, magenta) and either Synaptotagmin (Syt, green in A-G) or with mitoTracker (green in 1327 

H-N); scale bar in A represents 20µm in all images. O,P) Quantification of axonal numbers of Syt-1328 

positive spots (O) or mitochondria (P), all normalised to wild-type controls (red stippled line); medians 1329 

are indicated in blue, numbers of analysed neurons in orange, results of Mann Whitney rank sum 1330 

tests are shown in grey/black. 1331 

    1332 

Fig.S1 Endoplasmatic reticulum accumulates at axon tips upon loss of Khc. A,B) Primary neurons 1333 

at 5 DIV carrying the genomically tagged Rtln1-YFP allele labelling endoplasmic reticulum (ER; del 1334 

Castillo et al., 2019; O'Sullivan et al., 2012), either in wild-type (wt; A) or Khc8 mutant background 1335 

(B); inset with blue outline in A displays the green channel of the neuron (reduced to 50% in size) to 1336 

illustrate the continuous nature of Rtnl1::GFP-labelled ER throughout its neurites; the yellow 1337 

emboxed area in B is shown as twofold increased inset of the green channel to illustrate the netlike 1338 

organisation of ER visible in axonal swellings. Asterisks indicate cell bodies and arrow heads axon 1339 

tips (note that there are two neurons in B), white/orange chevrons point at strong/weak axonal tip 1340 

accumulations of ER. Accumulations might indicate an imbalance of antero- and retrograde 1341 

organelle movement potentially caused by loss of Khc-dependent Dynein transport to axon tips 1342 

(Moughamian et al., 2013; Twelvetrees et al., 2016) expected to reduce the retrograde drift of ER. 1343 

The scale bar in A represents 20 µm in A and B. C) Quantification of axonal tip accumulation of ER: 1344 

numbers of neurons analysed are shown in orange, numbers in bars the rounded percentages of 1345 

neurons with no/weak/strong accumulations, the number above bars show the P value of the Х2 test.  1346 

 1347 

Fig.3 Assessing contributions of Khc subfunctions to MT regulation. A) Schematic representation of 1348 

Drosophila Khc drawn to scale. Domains are colour-coded and start/end residues are indicated by 1349 

numbers: motor domain (red; according to Sablin et al., 1996), coiled-coil domains required for 1350 

homo- and/or heterodimerisation (green; as predicted by Ncoils in ensembl.org), the C-terminal ATP-1351 

independent MT-binding motif (blue; according to Winding et al., 2016), and the C-terminal auto-1352 

inactivation domain (dark grey; according to Kaan et al., 2011); grey lines above the protein scheme 1353 

indicate the three expression constructs used in this study; below the protein scheme further details 1354 

are shown: the sequence of the C-terminal MT-binding domain (mutA mutations indicated in orange; 1355 

Winding et al., 2016), the sequence of the auto-inactivation domain (indicating the IAK motif and 1356 

R947E mutation; Kelliher et al., 2018), the binding areas (darker green coiled-coils) of Klc (according 1357 

to Veeranan-Karmegam et al., 2016), Mlt (known to overlap with Klc; Glater et al., 2006; Verhey et 1358 

al., 1998) and Tropomyosin 1 (Dimitrova-Paternoga et al., 2021), and the two-fold enlarged motor 1359 
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domain. The secondary structure of the motor domain is indicated below (α helices in black, β sheets 1360 

in blue, loops/L in red); this map was generated by matching the resolved structure of Khc (UniProt 1361 

code: P17210, PDB id 2y65) with descriptions of the kinesin consensus (Sablin et al., 1996); 1362 

regions/motifs that bind ADP/ATP (nt, orange; according to Cao et al., 2017; Gigant et al., 2013; 1363 

Sablin et al., 1996) and/or MTs (dark red; according to Hunter and Allingham, 2020) are also 1364 

indicated below; N1-4 in the motor domain indicate highly conserved motifs (according to Sablin et 1365 

al., 1996); abbreviations above the motor domain indicate the locations of the cover strand (CS; 1366 

according to Budaitis et al., 2021), P-loops (PL) and switch domains I and II (SI, SII; according to 1367 

Cao et al., 2017; Gigant et al., 2013; Sablin et al., 1996). The N-terminal deletion of the above 1368 

Khc(82-711) construct is shown in pink: it does not affect MT-binding sites, but it removes the cover 1369 

strand (known to affect kinesin's MT affinity and processivity; Budaitis et al., 2021) and the first P-1370 

loop (with potential impact on the ATP/ADP cycle); it might also affect the behaviour of the second 1371 

P-loop which was shown to accelerate Khc movement when harbouring the T94S mutation (Cao et 1372 

al., 2017; Higuchi et al., 2004). B) Schematic representation of some sub-functions of Khc (details 1373 

and abbreviations in main text; red and stippled black lines indicate processive transport; for further 1374 

sub-functions see Discussion): via a C-terminal MT-binding domain Khc can slide MTs (i), 1375 

associating with Pat1 (and potentially Klc) it is expected to transport non-vesicular cargoes including 1376 

mRNA (ii), with Milt and Miro organelle transport (iii), and with a protein complex containing Klc and 1377 

Syd vesicular transport (iv); in the absence of such associations Khc is auto-inhibited and detaches 1378 

from MTs assisted by Klc (v); to interfere with these subfunctions in this study, different genes were 1379 

genetically removed (orange crosses) or specific Khc mutant alleles used (italic orange text). C) 1380 

Quantified effects on MT curling caused by specific mutations affecting Khc sub-functions (numbers 1381 

in grey circles indicate which function in A is affected): MT curling is quantified as MT disorganisation 1382 

index (MDI) normalised to wild-type controls (red stippled line); bars at bottom indicate type of culture 1383 

('5 DIV', embryonic neurons 5 days in vitro; 'L3 1/2 DIV', late larval neurons 1/2 days in vitro; '5d pre 1384 

1 DIV', embryonic neurons pre-cultured for 5 days and cultured for 1 day); mean ± SEM is indicated 1385 

in blue, numbers of analysed neurons in orange, results of Mann Whitney rank sum tests are shown 1386 

in grey/black.   1387 

 1388 

Fig.S2 Validation of Khc's MT phenotype and demonstration of maternal contribution. A-C) 1389 

Quantification of MT curling phenotypes measured as MT disorganisation index (MDI) and 1390 

normalised to wild-type controls (red stippled line); mean ± SEM is indicated in blue, numbers of 1391 

analysed neurons in orange, results of Mann Whitney rank sum tests are shown in grey/black;  A) 1392 

shows data for Khc27 in homozygosis (27/27) or over deficiency (27/Df), for Khc knock-down 1393 

(elav>Khc-IR) and wild-type (wt) and driver line (elav) controls; B) shows data for Khc8 over 1394 

deficiency (8/Df) and wild-type controls at different culture times (HIV, hours in vitro; DIV, days in 1395 

vitro); C) shows data for Klc8/Df and Klc1ts at 1DIV following 5d pre-culture; note that Klc1ts is a 1396 

temperature-sensitive allele (see methods) and was pre-cultured at 26⁰C and cultured at 29⁰C. D,E) 1397 

Examples of neurons at different times in culture (D; relating to data in B) and after pre-culture (E; 1398 

relating to C); asterisks indicate cell bodies, arrow heads axon tips, curved arrows areas of MT 1399 

curling; scale bar in D represents 20µm in D and E.    1400 

 1401 

Fig.4 ROS enhancing manipulations cause MT curling phenotypes. A) Scheme illustrating the 1402 

complexity of ROS-regulating systems in Drosophila; ROS-generating factors (bold green): two 1403 

cytoplasmic NADPH oxidases (Nox/NADPH Oxidase, Duox/Dual oxidase with its essential 1404 

maturation factor Mol/Moladietz; Khan et al., 2017); enzymes of the mitochondrial EMT/electron 1405 

transport chain (Wong et al., 2017; Zorov et al., 2014); peroxisomal ACOX1/acyl-CoA oxidase 1 1406 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473961doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473961
http://creativecommons.org/licenses/by-nc-nd/4.0/


Liew et al. – Kinesin-linked axonopathy 32 

 
(Walker et al., 2018); Xanthine/aldehyde oxidases (Rosy, AOX1, AOX2, AOX3, AOX4; all jointly 1407 

silenced by loss of Mal/Maroon-like sulfurtransferase; Marelja et al., 2014); ROS removal 1408 

mechanisms (red):  superoxide dismutases turn superoxide (O2
●¯) into H2O2 (cytoplasmic CuZn-1409 

dependent Sod1, mitochondrial Mn-dependent Sod2, extracellular Sod3);  H2O2 is scavenged by 1410 

peroxisomal Cat/Catalase and neuronal peroxiredoxins (Jafrac1, Prx5; Cao and Lindsay, 2017; Orr 1411 

et al., 2013; Smith et al., 2019; Stapper and Jahn, 2018) and the GSH transferase Gfzf (GST-1412 

containing FLYWCH zinc-finger protein; Smith et al., 2019; Stapper and Jahn, 2018); the latter three 1413 

depend on the redox cycle of the Glu-Cys-Gly tripeptide GSH/Glutathione, synthesised by 1414 

glutathione synthetases (Gss1, Gss2) and Gclc/Glutamate-cysteine ligase (Smith et al., 2019; 1415 

Stapper and Jahn, 2018) and regenerated via Thioredoxins (primarily Trx-2 in neurons; Orr et al., 1416 

2013; Tsuda et al., 2010) and Thioredoxin reductases (primarily TrxR-1 in neurons; Orr et al., 2013; 1417 

Smith et al., 2019);  pharmacological agents (black italics): DEM/diethyl maleate blocks the GSH 1418 

system (Pompella et al., 2003); agents/factors used in our study are highlighted in yellow. B-E) 1419 

Examples of neurons, either wild-type (wt) expressing Sod1 or Duox (driven by elav-Gal4) or 1420 

homozygous for Catn1, all cultured for 1DIV and stained for actin (act, magenta) and tubulin (tub; 1421 

green); asterisks indicate cell bodies, arrow heads axon tips, curved arrows areas of MT curling; 1422 

yellow emboxed areas are shown as 1.5-fold enlarged insets (green channel only); scale bar in B 1423 

represents 20µm in B-E. F) Quantification of MT curling phenotypes measured as MT disorganisation 1424 

index (MDI) and normalised to wild-type controls (red stippled line); bars at bottom indicate type of 1425 

culture ('1/3/5 DIV/HIV', embryonic neurons 1/3/5 days/hours in vitro); mean ± SEM is indicated in 1426 

blue, numbers of analysed neurons in orange, results of Mann Whitney rank sum tests are shown in 1427 

grey/black.  1428 

 1429 

Fig.S4 MT bundle and axon length phenotypes of pex32 mutant neurons. Quantification of 1430 

phenotypes of wild-type (wt) and Pex3 homozygous mutant neurons: A) MT curling phenotypes 1431 

measured as MT disorganisation index (MDI); B) axon length; both measured are normalised to wild-1432 

type controls (red stippled line); mean ± SEM is indicated in blue, numbers of analysed neurons in 1433 

orange, results of Mann Whitney rank sum tests are shown in grey/black. 1434 

 1435 

Fig.5 Ameliorating effects of Trolox on mutant MT curling phenotypes. Quantification of MT curling 1436 

phenotypes measured as MT disorganisation index (MDI) and normalised to wild-type controls (red 1437 

stippled line); neurons of different genotype (indicated below) were cultured for 1day after preculture 1438 

(A) of for 5 days (B) in the presence of vehicle (blue) or 100µm Trolox (green; molecule depicted in 1439 

A); mean ± SEM is indicated in blue/green, numbers of analysed neurons in orange, results of Mann 1440 

Whitney rank sum tests are shown in grey/black.  1441 

 1442 

Fig.S5 Impaired fission/fusion of mitochondria does not affect MT bundles. A-D) Neurons at 5 days 1443 

in vitro (DIV) and stained with anti-tubulin (tub, magenta) and mitoTracker (green); they are wild-type 1444 

(wt) or homozygous mutant for the mitochondrial fission factor Drp or the mitochondrial fusion factors 1445 

Marf or Opa, as indicated; asterisks indicate cell bodies, arrow heads axon tips, yellow emboxed 1446 

areas are shown as 2-fold enlarged insets (green channel only), and the scale bar in A represents 1447 

20µm in A-D; note that mitochondria tend to appear as dashed lines in controls (A), as a continuous 1448 

string of pearls excluded from side branches upon loss of fission (B), and as sparse dots upon loss 1449 

of fusion (C,D). E) Quantification of MT curling phenotypes from experiments shown in A-D, 1450 

measured as MT disorganisation index (MDI) and normalised to wild-type controls (red stippled line). 1451 

F) Similar experiments with the same mutations using 5 day pre-culture and culture for 1 day. In E 1452 
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and F, mean ± SEM is indicated in blue, numbers of analysed neurons in orange, results of Mann 1453 

Whitney rank sum tests are shown in grey/black. 1454 

 1455 

Fig.6 Genetic studies of functional links between Khc, Milt and Klc. A-D) Examples of neurons, either 1456 

wild-type (wt) or homozygous for Khc, milt or Klc null mutant alleles, cultured for 1DIV following 5d 1457 

pre-culture (to deplete maternal product) and stained against tubulin (tub); asterisks indicate cell 1458 

bodies, arrow heads axon tips, curved arrows areas of MT curling; scale bar in D represents 20µm 1459 

in A-D. E-G) Quantification of MT curling phenotypes measured as MT disorganisation index (MDI) 1460 

and normalised to wild-type controls (red stippled line) shown for precultured neurons (E; as in A-D), 1461 

single/double-homozygous mutant neurons (F) and upon genetic interaction (G; single heterozygous 1462 

and trans-heterozygous); mean ± SEM is indicated in blue, numbers of analysed neurons in orange, 1463 

results of Mann Whitney rank sum tests are shown in grey/black. 1464 

 1465 

Fig.S3 Phenotypes upon Gapdh1 knock-down in primary neurons at 5 DIV. A) Illustration of the 1466 

NADH- and ATP-generating steps of glycolysis; names of proteins are shown in bold, other 1467 

molecules in italics: GAPDH (glyceraldehyde-3-phosphate dehydrogenase), PGK 1468 

(phosphoglycerate kinase), GAP (glyceraldehyde-3-phosphate), 1,3 BPG (1,3-biphosphoglycerate), 1469 

3-PGA (3-phosphoglycerate). B) GAPDH and PGK are present on transported vesicles together with 1470 

other factors relevant for glycolysis (Hinckelmann et al., 2016; Zala et al., 2013) providing ATP to 1471 

drive kinesin-mediated processive transport (red and stippled black lines). C) In the absence of 1472 

Gapdh1, the transport of synaptic vesicles but not mitochondria is impaired (assessed via anti-Syt 1473 

and mitoTracker staining; see Fig.2), as is consistent with in vivo observations in Drosophila (larval 1474 

motor nerves; Zala et al., 2013). D) Absence of GAPDH does not cause MT curling. Quantification 1475 

of MT curling phenotypes in C and D is measured as MT disorganisation index (MDI) and normalised 1476 

to wild-type controls (red stippled line); median in C and mean ± SEM in D are indicated in blue, 1477 

numbers of analysed neurons in orange, results of Mann Whitney rank sum tests are shown in 1478 

grey/black. 1479 

     1480 

Fig.7 Impacts of activated Khc on MT curling. A-C) Examples of neurons at 5DIV expressing different 1481 

Khc constructs (indicated bottom left; compare Fig.3A) and stained for tubulin (tub, magenta) and 1482 

GFP (green), also shown as greyscale single channel images on the right; asterisks indicate cell 1483 

bodies, arrow heads axon tips, curved arrows areas of MT curling; scale bar in A represents 20µm 1484 

in all images. D) Quantification of MT curling phenotypes measured as MT disorganisation index 1485 

(MDI) and normalised to wild-type controls (red stippled line); genotypes are shown below, also 1486 

indicating the culture period (5DIV, 3DIV); mean ± SEM is indicated in blue, numbers of analysed 1487 

neurons in orange, results of Mann Whitney rank sum tests are shown in grey/black. 1488 

 1489 

Fig.8 Mapping findings on the dependency cycle of local axon homeostasis. The numbered green 1490 

arrows and red T-bar make up the previously published 'dependency cycle of local axon 1491 

homeostasis' (Prokop, 2021): 1) axonal transport provides materials, components and organelles 1492 

required for axon function; 2) this transport requires MT bundles as the essential highways; 3) 1493 

however, this live-sustaining transport damages MT bundles; 4) the axonal cortex and MT binding 1494 

proteins (MTBPs) support and maintain MT bundles (emboxed names in orange and grey at bottom 1495 

left list factors that were shown in the Drosophila neuron culture system to be involved in bundle-1496 

maintaining cortical and MT regulation;Alves-Silva et al., 2012; Hahn et al., 2021; Qu et al., 2019; 1497 
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Qu et al., 2017); 5) bundle maintenance requires transport-dependent components and physiology, 1498 

thus closing the circle. The original model of 'local axon homeostasis' comprised arrows 1-4 (Hahn 1499 

et al., 2019). Khc contributes to the MT bundle damage, and this is enhanced by non-inactivating 1500 

mutations (vibrating red arrow and Khc alleles top left). Loss of function of Khc, Milt, Miro, Unc-104 1501 

and Dhc contribute to mitochondrial transport (large green arrow, top right). Mitochondria harbour 1502 

Sod2 that can quench harmful ROS (green T-bar); 8 independent pharmacological and genetic 1503 

manipulation of ROS regulation (bottom right) demonstrated that dysregulation of ROS causes MT 1504 

curling (dashed red arrow). Examples of mammalian factors that can be mapped onto this cycle are 1505 

explained in the Discussion and previous reviews (Hahn et al., 2019; Prokop, 2021). 1506 

 1507 

Fig.S6 Pat1 and KhcmutA mutations fail to suppress the Klc-deficient MT curling phenotype. 1508 

Quantification of MT curling phenotypes measured as MT disorganisation index (MDI) and 1509 

normalised to wild-type controls (red stippled line); genotypes are shown below, also indicating the 1510 

culture period (2DIV, 5DIV); mean ± SEM is indicated in blue, numbers of analysed neurons in 1511 

orange, results of Mann Whitney rank sum tests are shown in grey/black. The fact that KhcmutA and 1512 

Pat1robin fail to suppress Klc8ex94-induced MT curling suggests that potential surplus pools of non-1513 

inactivated Khc do not engage in MT sliding or Pat1-mediated transport to cause MT curling. 1514 
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