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Abstract

The scientific knowledge about which genes are involved in which
diseases grows rapidly, which makes it difficult to keep up with new
publications and genetics datasets. The DISEASES database aims to
provide a comprehensive overview by systematically integrating and
assigning confidence scores to evidence for disease–gene associations
from curated databases, genome-wide association studies (GWAS), and
automatic text mining of the biomedical literature. Here, we present
a major update to this resource, which greatly increases the number
of associations from all these sources. This is especially true for the
text-mined associations, which have increased by at least 9-fold at all
confidence cutoffs. We show that this dramatic increase is primarily
due to adding full-text articles to the text corpus, secondarily due
to improvements to both the disease and gene dictionaries used for
named entity recognition, and only to a very small extent due to the
growth in number of PubMed abstracts. DISEASES now also makes
use of a new GWAS database, TIGA, which considerably increased the
number of GWAS-derived disease–gene associations. DISEASES itself
is also integrated into several other databases and resources, including
GeneCards/MalaCards, Pharos/TCRD, and the Cytoscape stringApp.
All data in DISEASES is updated on a weekly basis and is available via
a web interface at https://diseases.jensenlab.org, from where it
can also be downloaded under open licenses.
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1 Introduction

To understand human diseases at the molecular level, we need a compre-
hensive overview of which genes are linked to each disease. Since these links
can come from many types of data, each of which is growing at a fast rate,
there is a need for frequently updated databases that integrate the hetero-5

geneous evidence for disease–gene associations. To this end, we provide the
freely available DISEASES database resource [1], which has been continu-
ously updated on a weekly basis since 2014. This resource automatically
extracts disease–gene associations from the biomedical literature by identi-
fying mentions of disease and gene names and counting how often they are10

co-mentioned. These are combined with manually curated associations and
experimental evidence from genome-wide association studies (GWAS).

The first version of DISEASES included text mining of 24 million ab-
stracts available from the PubMed database, which has since grown by an-
other 8 million new abstracts. Moreover, text mining of full-text articles can15

yield approximately 50% more disease–gene associations (at the same false
positive rate) than text mining of the corresponding abstracts [2]. Com-
bined with the rapid growth of open-access publishing [3], which allows for
text mining and redistribution, this shows a clear opportunity for improving
resources like DISEASES to go beyond text mining of abstracts only.20

Text mining has been applied to many tasks in the biomedical domain,
such as identifying genes and other named entities [4] in text and subse-
quently extracting associations between genes and other genes [5], pathways
[6], and diseases [7]. Many studies have focused on doing the latter based on
biomedical abstracts only [8], whereas fewer have included full-text articles25

too [9]. General text-mining efforts, not specifically focused on disease–gene
associations, of course also extract such associations [10, 11].

DISEASES is not the only database to gather evidence of disease–
gene associations. Such associations have for many years been manu-
ally annotated by curators of both general protein databases, such as30

UniProtKB/Swiss-Prot [12], and databases focused on genetics of diseases,
such as Online Mendelian Inheritance in Man (OMIM) [13] and Medline-
Plus from Genetics Home Reference (GHR) [14]. In addition to these broad
databases, many specialist databases exist which focus on specific diseases
or classes of diseases, including the cancer mutation databases Catalog of35

Somatic Mutations in Cancer (COSMIC) [15] and intOGen [16].
Genome-wide association studies (GWAS) are another important source

of disease–gene associations, which comes with its own ecosystem of database
resources. In GWAS, statistically significant associations between single nu-
cleotide polymorphisms (SNPs) and phenotypic traits (including diseases)40

are identified and used to infer gene–trait associations. These associations,
both at the SNP and gene level, are collected by the National Human
Genome Research Institute (NHGRI)–European Bioinformatics Institute
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(EBI) GWAS Catalog [17], GWAS Central [18] databases, and GWASdb
[19]. However, GWAS results are complex to interpret; the identified SNPs45

are typically not the causal mutations, which due to linkage disequilibrium
could reside anywhere within a chromosomal region that may contain mul-
tiple genes [20]. Several secondary GWAS databases, such as DistiLD [21]
and TIGA [22], thus aim to help non-experts interpret GWAS results by
integrating other relevant information and prioritizing the results.50

Several integrative database resources, like DISEASES, combine many
of the types of evidence for disease–gene associations mentioned above.
The best known of these are probably MalaCards/GeneCards [23] and Dis-
GeNET [24], which take two very different approaches. The MalaCards and
GeneCards databases present one page for each disease and gene, respec-55

tively, which gives the user a very comprehensive overview of the available
information, including text mining from DISEASES. DisGeNET, on the
other hand, has a strong focus on scoring the associations and on making
data available amenable to further computational analysis via application
programming interfaces (APIs). The latter is also true for knowledge-based60

aggregators such as Pharos [25] and Open Targets [26], which integrate
many types of evidence from numerous sources, including gene–disease as-
sociations.

In this paper, we describe the major improvements of the DISEASES
resource made since the 2015 publication [1]. The gene set and associ-65

ated dictionary have been updated to be consistent with the latest ver-
sion of STRING [27] and the text corpus in DISEASES is now automat-
ically constructed by merging the open-access subset of PubMed Central
(PMC) with PubMed abstracts. This has jointly led to substantial im-
provements of the text-mining results. We have further updated DIS-70

EASES to import experimental data from a new GWAS resource, TIGA
[22]. We map all disease–gene associations to a common set of identifiers
and provide confidence scores for the associations, which are comparable
across evidence types. All data are freely available both via a web interface
(https://diseases.jensenlab.org/), as bulk download files, and through75

integration into other resources and tools, specifically Cytoscape, TIN-X,
and Pharos.

2 Materials & Methods

The DISEASES database combines heterogeneous evidence from several
sources. We will go through these, starting with three databases of manually80

curated disease—gene associations, followed by two sources of experimen-
tal evidence, and finally the automatic text mining, which we break down
into corpus construction, dictionary construction, named entity recognition
(NER), and co-occurrence scoring. Finally, we describe how the DISEASES
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confidence scores are assigned for each type of evidence.85

2.1 MedlinePlus

The genetics section of the MedlinePlus resource, formerly known as Ge-
netics Home Reference, includes disease–gene associations obtained from
manual curation of the biomedical literature [14]. We first download the list
of all diseases and then query the MedlinePlus REST API with each disease90

to retrieve the list of associated HGNC gene symbols. We then use the dic-
tionaries described later to map the disease names and gene symbols to their
Disease Ontology identifiers [28] and STRING v11 identifiers, respectively.

2.2 UniProt Knowledgebase (UniProtKB)

The Swiss-Prot section of UniProtKB consists of expert-reviewed protein en-95

tries, which include diseases associated with each protein among many other
types of biological information [12]. We extract the diseases associated with
a protein entry by parsing the keyword field, where they are specified using
a controlled vocabulary. We manually mapped these to their corresponding
concepts in Disease Ontology and used the dictionary described later to map100

the UniProtKB accession numbers to STRING v11 identifiers.

2.3 Amyloidoses Collection (AmyCo)

The AmyCo database specifically collects information on amyloidoses and
other diseases related to amyloid deposition [29]. It contains data from
249 articles on 75 diseases classified into two broad groups: amyloidoses105

and clinical conditions associated with amyloidosis, including precursors and
proteins co-deposited with amyloid deposits. AmyCo identifiers are mapped
to their corresponding Disease Ontology identifiers whenever the AmyCo
name could be found as an exact synonym; otherwise the AmyCo identifier
is mapped to the Disease Ontology broader parent(s).110

2.4 Target Illumination by GWAS Analytics (TIGA)

TIGA [22] is a new weekly updated web resource that imports GWAS
data from the NHGRI-EBI GWAS Catalog [17], maps SNPs to the nearest
protein-coding genes, and evaluates the confidence of each gene–trait associ-
ation. The latter is done by calculating an average rank score based on the115

number and distance of SNPs supporting the association, the p-value of the
most significant SNP, and the number of studies supporting the association
weighted by the Relative Citation Ratio [30] of the underlying publications.
From TIGA, we extract the subset of traits that are diseases and map their
Experimental Factor Ontology (EFO) terms to the corresponding Disease120
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Ontology terms based on ontology cross-references and the EMBL-EBI On-
tology Xref Service. The Ensembl gene identifiers are mapped to STRING
v11 identifiers using the gene dictionary described later.

2.5 Text corpora

As the starting point for doing text mining, a large body of biomedical texts125

is needed. We compile such a corpus based on the PMC open-access subset
[3], which consists of 7.3 million full-text articles, and the PubMed abstract
database, which contains 39 million entries, 22 million of which have an
English abstract. To construct a combined corpus, we download both PMC
and PubMed in XML format, specifically, the BioC version of PMC [31]130

and the PubMed baseline plus daily updates. The latter updates also mean
that retracted articles are automatically removed from the corpus as soon
as they have been marked as such in PubMed. As a last step, we exclude
826 publications, which are believed to contain falsified data and to have
been created by several recently discovered paper mills [32].135

As PMC contains articles in several languages and the text-mining
pipeline in DISEASES is designed only for English text, we use the pre-
trained language detection models from fastText [33] to identify the language
of each PMC article and remove articles not in English. We next run the
NER software (described later) on the English-language articles to count the140

number of unique entities found in each article. To eliminate articles that
mention long lists of genes or diseases, we removed the 630 PMC articles
that mentioned more than 200 genes or diseases. For quality reasons and to
have consistent article metadata, we decided to only include articles from
PMC that are indexed in PubMed. We thus used the identifier mapping file145

from PMC to convert PMCIDs to PMIDs, and discarded all PMC articles
for which a PMID did not exist. For the remaining articles, we merged the
information from PMC and PubMed, using the metadata, title and abstract
from PubMed and extending it with the article body text from PMC. Where
no PMC open-access version of an article was available, we simply used the150

metadata, title, and abstract from PubMed.
The corpus in DISEASES is updated every weekend. All results pre-

sented in this paper are based on October 20th, 2021 version of the corpus
(FullText2021). To assess the impact of including full-text open-access pub-
lications, we also have a second corpus (PubMed2021), which includes only155

the title and abstract text of the same publications. Finally, to be able to
assess how much the general growth of PubMed contributes to the perfor-
mance, we have a third corpus, which consists of ∼ 24 million abstracts pub-
lished by end of 2013 (PubMed2013). This corpus closely resembles what
was in the initial version of DISEASES, which was submitted in January160

2014 [1].
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2.6 Dictionaries

For mapping names and identifiers and for recognizing them in text, we need
comprehensive dictionaries of human genes and diseases. The dictionary of
diseases is constructed based on all the names and synonyms from Dis-165

ease Ontology [28] and extended with additional amyloidoses from AmyCo,
mappings to ICD-10, and manual additions of missing disease synonyms and
acronyms. The human gene dictionary was obtained from STRING v11.0
[27] and is based on information from Ensembl [34], UniProtKB [12], and
HGNC [35] databases. We further automatically eliminate clashes between170

HGNC gene symbols and disease names and extend both dictionaries with
orthographic variations of names using the exact same rules as in the first
version of DISEASES [1].

We frequently update the dictionaries to incorporate changes to Disease
Ontology and to correct errors identified by users. In this paper we make175

use of two frozen versions of the dictionaries, namely one from October
20th, 2021 (Dict2.0) and, for comparison, the dictionaries from the first
version of DISEASES [1] (Dict1.0). The latest dictionary is available from
the Downloads tab of the DISEASES web resource.

2.7 Named entity recognition (NER)180

To do NER on the very large text corpora described above — and make
frequent updates feasible — a highly efficient tool for matching the dictio-
naries against the text is needed. As in the previous version of DISEASES,
we do this using the Tagger software, which is described in detail else-
where [36] (https://github.com/larsjuhljensen/tagger). Briefly, the185

combined dictionary is first loaded into memory in a custom hash table that
allows fast, case-insensitive lookup and further allows for arbitrary insertion
and deletion of hyphens. We then tokenize the text on white-space and spe-
cial characters (including hyphen and slash) and look up combinations of
tokens in the combined dictionary to identify left-most longest matches. To190

improve the precision, we globally block tagging of names that would oth-
erwise give rise to many false positives by manually inspecting the tagging
results of all names that occur more than 2000 times in PubMed as well as
names that gave rise to errors reported by users. Each match in the text is
normalized to the unique entity identifier from the dictionary and, in case195

of diseases, the term is backtracked to all parent terms in Disease Ontology.

2.8 Co-occurrence scoring

From the NER results, we calculate co-occurrence score between any given
pair of a gene and a disease, which quantifies how much these entities have
been mentioned together in the text corpus. The scoring scheme takes into200
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account that co-occurrences within sentences are stronger evidence than co-
occurrences across sentences within a paragraph, which in turn are stronger
than co-occurrences across paragraphs within a paper. The scoring scheme
further takes into account both how much the entities co-occur on an abso-
lute scale and relative to what would be expected by random chance. This205

approach is that same as was used in DISEASES v1 [1], except that the scor-
ing having been extended to handle full-text articles as previously described
[2].

2.9 Comparison to DISEASES v1

To facilitate comparison with DISEASES v1, which differs both in terms of210

the dictionaries and the text corpus used, we generated four datasets of text-
mining results. These represent the following combinations of the old and
new dictionaries (Dict1.0 and Dict2.0 ) with text corpora representing the
abstracts used in DISEASES v1 (PubMed2013 ), the full set of abstracts now
available (PubMed2021 ), and the combined corpus including also full-text215

articles from PMC (FullText2021 ):

(i) Dict1,PubMed2013 : PubMed2013 mined using Dict1.0, representing
the text-mining channel of DISEASES v1 when published

(ii) Dict1,PubMed2021 : PubMed2021 mined using Dict1.0 to show the
effect of updating DISEASES v1 with new abstracts220

(iii) Dict2,PubMed2021 : PubMed2021 mined using Dict2.0 to capture the
changes attributed to dictionary improvements

(iv) Dict2,FullText2021 : FullText2021 mined using Dict2.0, representing
the text-mining channel of DISEASES v2

2.9.1 Gold standard of disease–gene associations225

To build an up-to-date gold standard of disease–gene associations, we fol-
lowed the approach described in the original DISEASES publication [1].
We used the knowledge channel of manually curated annotations imported
from UniProtKB and MedlinePlus (doi:10.6084/m9.figshare.17075708). A
new reduced benchmarking set is then generated that includes only entity230

names explicitly annotated in UniProtKB and MedlinePlus and, with dis-
eases broader parent terms. When an annotated disease was a child term
of another annotated disease, we kept the broader parent terms and back-
tracked the child-term annotations to it via the is a relationships in the
ontology. The final gold standard comprises 7, 005 of inferred disease–gene235

associations, all were given a high confidence score of 4 to 5 stars to show
how they are biologically meaningful.
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2.9.2 Benchmarking of text-mined associations

To evaluate and compare the quality of the text-mining results, we bench-
marked each of the four sets of text-mining results (Dict1.0 PubMed2013,240

Dict1.0 PubMed2021, Dict2.0 PubMed2021, and Dict2.0 FullText2021 ) on
the gold standard of disease–gene associations. Given a disease–gene associ-
ation, we labeled it as positive if the association exists in the gold standard,
labeled it as negative if both the disease and the gene (but not the asso-
ciation) exist in the gold standard, and otherwise discarded it. Based on245

this binary labeling, we constructed receiver operating characteristic (ROC)
curves for each of the four sets of text-mining results by sorting the associa-
tions descending by score and plotting the true positive rate (TPR) against
the false positive rate (FPR). To quantify the difference between the ROC
curves, we calculated the area under curve (AUC) for each.250

3 Results & Discussion

3.1 Overview of the DISEASES resource

Figure 1 gives an overview of the disease–gene associations in DISEASES by
mapping them onto high-level terms in Disease Ontology that have at least
100 associated genes. For each disease term, the area shows the number255

of associations with a confidence score of at least 3 stars, which is further
broken down based on the source of the associations (knowledge, experi-
ments, or text mining). Automatic text mining is by far the biggest source
of associations for all diseases, accounting for more than 60% of the total.

The category of diseases with the most associations, especially from260

knowledge and experiments, is disease of anatomical entity, within which
we see a fairly even distribution across many anatomical systems. This is
followed by disease of cellular proliferation, which almost exclusively covers
cancer–gene associations. By contrast, we find quite few associations (7443)
for disease of infectious agent, which come exclusively from text mining.265

3.2 Growth of the number of disease-gene associations

The number of open access articles available from PMC has been grown
exponentially over time, reaching more than 7 million as of September 2021.
The inclusion of these — as well as the more than 8 million new PubMed
abstracts published since the initial release of DISEASES in 2015 — has270

an obvious and direct effect on the number of disease–gene association one
can find by text mining. While the text-mining channel in the DISEASES
database is our main focus in this article, it is not the only improvement.
Table 1 provides an overview of the content of the original and the new
releases DISEASES database, showing the number of genes, diseases, and275

associations provided by each evidence channel.
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disease of mental
health

substance-related
disorder

benign neoplasm

musculoskeletal
system disease

cognitive disorder

thoracic disease

sleep disorder

disease of
anatomical entity

gastrointestinal
system disease

nervous system
disease

integumentary
system disease

cardiovascular
system disease

inherited metabolic
disorder

acquired metabolic
disease

syndrome

immune system
disease

disease by
infectious agent

genetic disease

reproductive
system disease

hematopoietic
system disease

viral infectious
disease

urinary system
disease

disease of
metabolism

bacterial infectious
disease

cancer

physical disorder

disease

parasitic infectious
disease

respiratory system
disease

developmental
disorder of mental

health

fungal infectious
disease

endocrine system
disease

disease of cellular
proliferation

pre-malignant
neoplasm

Experiments

Text mining 

Knowledge 

Figure 1: Overview of disease–gene associations in DISEASES. The
number of disease–gene associations with a confidence score of at least 3
stars is proportional to the area of the pie charts, which represent high-level
terms from Disease Ontology. In each pie chart, the associations are broken
down by evidence type, i.e. curated knowledge, GWAS experiments, and
automatic text mining of the literature.
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The Knowledge channel has more than doubled in terms of both disease–
gene associations and unique diseases covered. This growth comes primarily
from GHR, which has in the meantime been integrated into MedlinePlus,
but UniProtKB has also grown substantially. AmyCo contributes a compa-280

rably low number of new associations, since it covers only a specific type of
diseases.

The Experiments channel has in many ways between the two versions.
Replacing DistiLD with TIGA has increased the number GWAS-based asso-
ciations by more than a factor of four and more than doubled the coverage of285

genes. However, with the new release we have also to remove COSMIC for
license reasons, thus losing more than half of the experimental associations
in the original release of DISEASES. All in all, the Experiments channels
has grown by over 70%.

For the Text mining channel, we subdivide the evidence by their con-290

fidence scores as presented in the DISEASES web interface. That is, we
present the number of genes, diseases, and associations that rated as 2-, 3-,
and 4-star confidence as well as the total numbers for the channel (including
association scoring below 2 stars). The number of associations has increased
dramatically at all confidence levels and especially at high confidence levels,295

with over 9-fold increase overall and over 17-fold increase for 4-star associ-
ations. The same trend holds true when looking at the numbers of unique
genes and diseases covered.

3.3 Improved quality of text-mined associations

We assessed the quality of the disease–gene associations from the new version300

of DISEASES to the originally published version by benchmarking both
against a gold standard of manually annotated gene–disease associations
(see Materials & Methods for details). The results are shown as ROC curves
in Figure 2, which reveals a substantial improvement both overall (AUC
increasing from 0.829 to 0.916) and in the low false-positive-rate part, which305

is arguably the most relevant part. As the ROC curve for the new version
is consistently above that of the original one, the new version constitutes an
improvement regardless of whether the user cares most about getting higher
true positive rate or lower false positive rate.

This performance improvement is due to a combination of i) general310

growth in the number of biomedical abstracts available from PubMed, ii)
improvements to the dictionaries used for NER, and iii) the addition of
full-text articles from the PMC open access subset. To quantify the im-
portance of each of these factors, we show two additional ROC curves in
Figure 2: performance when updating with new abstracts but still using315

the original dictionaries and performance when further updating the dictio-
naries. Comparing the four ROC curves shows that the growth of PubMed
abstracts alone gives only a small improvement of the AUROC from 0.845 to
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Evidence channel Associations Genes Diseases
Knowledge

DISEASES 2021 36,448 (6,739) 3,723 1,528 (1,048)
AmyCo 1,225 (186) 57 180 (52)
MedlinePlus 23,957 (3,516) 2,383 1,460 (966)
UniProtKB 19,517 (3,739) 2,642 270 (119)

DISEASES 2015 15,231 (2,953) 2,001 735 (453)
GHR 7,551 (1,169) 965 671 (390)
UniProtKB 11,576 (2,187) 1,651 271 (120)

Experiments
DISEASES 2021 152,611 (26,346) 9,180 574 (295)

TIGA 152,611 (26,346) 9,180 574 (295)
DISEASES 2015 89,073 (20,206) 10,711 423 (264)

COSMIC 55,791 (13,050) 8,786 142 (76)
DistiLD 36,650 (7,185) 4,315 351 (210)

Text mining
DISEASES 2021 4,512,870 19,116 8,537

4 star confidence 18,129 2,988 2,959
3 star confidence 224,642 11,207 6,711
2 star confidence 1,659,331 18,913 8,342

DISEASES 2015 478,407 15,631 4,598
4 star confidence 1,044 478 662
3 star confidence 15,226 3,207 2,267
2 star confidence 142,892 12,706 4,354

Table 1: Comparison of the new and original versions of DIS-
EASES. For each evidence channel we show the number of associations,
unique genes, and unique diseases for both the new and the originally pub-
lished version of DISEASES. In case of the knowledge and experiments chan-
nels, these numbers are further provided for each of the source databases.
The numbers in parentheses are the counts before evidence was backtracked
to parent terms in Disease Ontology. For the text mining channel, we instead
subdivide the counts by confidence score.

0.859. The use of the new dictionaries leads to a bigger incremental improve-
ment, increasing the AUROC from 0.859 to 0.866. However, the addition320

of full-text articles to the corpus is responsible for the biggest improvement,
bringing the AUROC from 0.866 to = 0.922.

These results show that while the growth of the literature does give
an almost free improvement, only requiring the pipeline to rerun on latest
PubMed, the vast majority of the improvement seen between the original325

version of DISEASES and the new version stems from our work on improving
the dictionaries used for NER and on integrating full-text articles into the
corpus. The results also highlight how important it is for text mining efforts
to be permitted to process full-text articles rather than only abstracts.

3.4 Research paper mills330

To the best of our knowledge, all assessment of text-mining results to date
have focused purely on the ability of a text-mining system to correctly ex-
tract what is stated in the text. However, from the perspective of using text
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Figure 2: Performance improvement of the text mining chan-
nel. As shown in the receiver operating characteristic (ROC) curves,
text mining performs markedly better in the new version of DIS-
EASES (Dict2,FullText2021) compared to the originally published one
(Dict1,PubMed2013). To quantify the sources of improvements, we show
two additional curves: one using the new dictionary on the latest abstract
collection only (Dict2,PubMed2021), and another using the old dictionary
on the same abstracts (Dict1,PubMed2021). Comparing the curves reveals
that most of the improvement stems from the addition of full-text articles,
but that the new disease and gene dictionaries also led to considerable im-
provement. By contrast, the growth in PubMed abstracts from 2013 to
2021 made only a minor difference. The insert shows a zoom of the high-
confidence part of the plot.

mining to construct a knowledgebase from literature, is equally important
if what is stated in the text is true. Co-mentioning-based systems indirectly335

address this, since high-scoring associations will be supported by multiple
publications.
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Recently, the problem of incorrect information in the literature has be-
come a bigger concern due to the discovery of so-called ”paper mills”. These
appear to be companies that mass produce fake articles and sell them to re-340

searchers at Chinese hospitals [37]. As these articles were published in inter-
national journals indexed in PubMed, they would by default be included in
our text corpus, thus providing false support for disease–gene associations in
our database. To avoid this, we have compiled a list of the 826 papers iden-
tified so far to originate from paper mills (as per June 2021) and explicitly345

exclude these from our text corpus. To allow others to also easily exclude
these papers, the latest list is available for download from the DISEASES
website.

3.5 Integration into other resources

Just like DISEASES itself builds upon other databases, we have designed350

it to be easy to integrate into other resources. We do this both from a
technical perspective by providing simple bulk download options and from
a legal perspective by not integrating any data that would prevent us using
an open license. Several tools and databases already take advantage of
this, importing either disease–gene associations from all evidence channels355

or specifically the associations from text mining.
The GeneCards and MalaCards databases, both members of the

GeneCards suite, provide a comprehensive overview of information on hu-
man genes, including diseases associations, by integrating evidence from
150 sources [38]. One of these is the text-mined disease–gene associa-360

tions from DISEASES, which GeneCards/MalaCards downloads on a regu-
lar basis and combines with associations from other source databases. The
GeneCards/MalaCards web resources link back to DISEASES website to
allow users to easily inspect the text-mining evidence for any given associ-
ation. The Target Central Resource Database (TCRD) and the associated365

Pharos [25] and TIN-X web resources [39], which aim to shed light on poten-
tial new drug targets, similarly obtain up-to-date disease–gene associations
from the DISEASES database. DISEASES (and “tagger” output) are also
an integral part of Geneshot [40] and Harmonizome [41].

DISEASES is also designed to interface easily with the STRING, COM-370

PARTMENTS and TISSUES resources by using the same gene identifiers.
Through the Cytoscape app stringApp, it is thus possible to quickly re-
trieve a human protein network for any disease of interest [42]. To do this,
stringApp first queries the DISEASES database to obtain a list of genes
associated with the disease and subsequently queries STRING to obtain the375

corresponding protein network.
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4 Conclusion

The DISEASES database has since 2014 provided the community with a
weekly updated resource of disease–gene associations. The latest version
features several important improvements compared to the original publica-380

tion. In addition to text mining PubMed, which has meantime grown by
another 8 million abstracts, the DISEASES text corpus now also includes
open access full-text articles from PubMed Central. Together with technical
improvements to the text-mining pipeline itself, this has led to a > 9-fold
increase in the number of disease–gene associations extracted at any con-385

fidence cutoff. DISEASES has also been upgraded to use GWAS data via
the new TIGA database [22], which increased the number of experimental
associations by more than 70%.

The database is freely available at https://diseases.jensenlab.org/
where it can be browsed via a web interface as well as downloaded in its390

entirety to facilitate large-scale analysis. Moreover, DISEASES is designed
to integrate easily with other resources, and the disease–gene associations
are available through other resources, including the GeneCards/MalaCards
and TCRD/Pharos databases, Harmonizome, Geneshot, and the Cytoscape
stringApp.395
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