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Abstract

Background The identification of linear B-cell epitopes remains an im-
portant task in the development of vaccines, therapeutic antibodies and
several diagnostic tests. Machine learning predictors are trained to flag
potential epitope candidates for experimental validation and currently,
most predictors are trained as generalist models using large, heteroge-
neous data sets. Recently, organism-specific training has been shown to
improve prediction performance for data-rich organisms. Unfortunately,
for most organisms, large volumes of validated epitope data are not yet
available. This article investigates the limits of organism-specific training
for epitope prediction. It explores the validity of organism-specific train-
ing for data-poor organisms by examining how the size of the training data
set affects prediction performance. It also compares the performance of
organism-specific training under simulated data-poor conditions to that
of models trained using traditional large heterogeneous and hybrid data
sets.

Results This work shows how models trained on small organism-specific
data sets can outperform similar models trained on (potentially much
larger) heterogeneous and mixed data sets. The results reported indicate
that as few as 20 labelled peptides from a given pathogen can be sufficient
to generate models that outperform widely-used predictors from the lit-
erature, which are trained on heterogeneous data. Models trained using
more than about 100 to 150 organism-specific peptides perform consis-
tently better than most generalist models across a wide variety of perfor-
mance measures, and in some cases can even approach the performance
of organism-specific models trained on considerably larger data sets.
Conclusions Organism-specific training improves linear B-cell epitope
prediction performance even in situations when only small training sets
are available, which opens new possibilities for the development of be-
spoke, high-performance predictive models when studying data-poor or-
ganisms such as emerging or neglected pathogens.
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Background

The immune system is a complex network of processes designed to protect the
body against pathogens. One vital aspect of human immunity is humoral,
or antibody-mediated, immunity. In humoral immunity, B-lymphocytes, also
known as B-cells, are activated when their B-cell receptor (BCR) binds with
an antigen. Activated B-cells then produce antibodies which are released into
the circulatory system to find and bind with their specific antigens [1]. This
antigen-antibody recognition is a vital process in protecting the body against
pathogens and B-cells are key cells in this process.

A B-cell epitope (or antigenic determinant) is the exact portion of an antigen
that the antigen-binding site of a B-cell receptor recognises and binds to [2, 3].
B-cell epitope identification is an essential process in a number of medical pro-
cesses; it can help with therapeutic antibody production, vaccine development
and in developing diagnostic tools [4-6]. There are two categories of epitopes:
linear and conformational. Linear or continuous epitopes correspond to con-
tiguous sequences of amino acid (AA) residues; these epitopes are recognised by
antibodies by their primary structure/linear sequence of amino acids. Confor-
mational or discontinuous epitopes are formed by AAs that, although separated
in the primary sequence, are brought together by protein folding [7, Chapter 3].

There are several different types of epitope prediction methods and the type
of method deployed may differ depending on the type of epitope (linear or con-
formational) being predicted. Most current epitope prediction methods are de-
signed to predict linear epitopes [8-18], though the majority of epitopes (~ 90%
of all B-cell epitopes) are thought to be conformational [19,20]. There are
multiple reasons for this: due to their nature linear epitopes can be predicted
from protein sequence data alone, which is readily available in numerous public
databases [21-24]; conformational epitopes, on the other hand, require struc-
tural protein data for prediction which is not as readily available. Predicting
conformational epitopes also takes more time as it is more computationally ex-
pensive than linear epitope prediction [25] and these epitopes are more difficult
to synthesise in the laboratory [26, Chapter 1]. For these reasons many epitope
prediction works, including ours, focus on linear B-cell epitope prediction.

Traditionally, experimental methods were used for B-cell epitope identifi-
cation, for example: X-ray crystallography, peptide arrays, enzyme-linked im-
munosorbent assay (ELISA) and phage display [26-28]. However, these methods
are time consuming, resource intensive and technically difficult to execute [6,26].
Because of this and the current availability of protein sequence data the focus
is now on computational methods for epitope prediction. Machine learning
algorithms for epitope prediction are trained to be able to distinguish B-cell
epitopes from non-epitopes. Numerous ML methods exist for B-cell epitope
prediction and these methods have been shown to outperform early epitope
prediction methods based solely on simple amino acid propensity scale calcu-
lations, though this is not always the case [3,29]. Examples of machine learn-
ing approaches for epitope prediction include: neural network-based methods
such as ABCpred [12], which uses a recurrent neural network (RNN) to predict
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B-cell epitopes from antigen sequences using fixed length patterns and other
amino acid composition-based features as input. Other popular ML methods
for epitope prediction include Support Vector Machines [30] which have been
used in many epitope prediction pipelines [13,31-39]. One example of this is
BCPred [13], which uses Support Vector Machine (SVM) classifiers with string
kernels [13]. Random Forest Classifiers [40] have also been used in multiple
epitope prediction pipelines [17,41], including the work by Saravanan and Gau-
tham [42] which described an amino acid composition-based feature descriptor,
Dipeptide Deviation from Expected Mean (DDE), and evaluated it using a sup-
port vector machine and an AdaBoost-Random Forest, with the latter exhibiting
the best performance.

ML methods like the ones mentioned above help to bypass some of the
difficulties usually encountered by traditional experimental epitope prediction
methods [25,43,44]. However, there is room for improvement as many prediction
methods still exhibit relatively low prediction performance [25]. Currently, most
epitope prediction models are trained on large heterogeneous data sets made up
of observations from multiple organisms including: prokaryotes, viruses, fungi,
protozoan, humans and other eukaryotes. However, in a recent work [45] we have
shown that training models on smaller organism-specific data sets may improve
prediction performance. In that work, organism-specific models were developed
for three different organisms: the nematode Onchocerca volvulus, the Epstein-
Barr Virus and the Hepatitis C Virus. These organisms were selected due to
the availability of a large volume of observations (both validated positive and
negative epitopes) for them in the Immune Epitope Database (IEDB) [46]. The
results obtained showed that, for these data-rich organisms, organism-specific
models outperformed models trained on much larger heterogeneous data sets as
well as several of the best epitope prediction tools from the literature, across
multiple performance measures.

Unfortunately, large volumes of validated epitope data are not available for
most organisms - either because the organism relates to a neglected or emerging
disease, or because it may have only a small number of epitopes. The aim of this
study is to investigate the limits of organism-specific training, by focusing on two
main questions: (i) How does the number of available organism-specific training
peptides affect prediction performance?; and (ii) What is the smallest volume
of organism-specific data that produces models surpassing the performance of
those trained on large, heterogeneous data sets? To answer those questions, we
calculate and compare the prediction performance of models trained on reduced
training sets against models trained on mixed data as well as on large, heteroge-
neous data sets. We also contrast the observed performances with four predic-
tors from the literature trained as generalist (as opposed to organism-specific)
models — Bepipred2.0 [17], LBtope [39], iBCE-EL [47] and ABCpred [6] — across
multiple performance measures.
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Methods

Data Sets

Data from three pathogens was taken from [45], specific to the organisms: On-
chocerca volvulus (taxonomy ID: 6282; ), Epstein-Barr Virus (taxonomy ID:
10376) and Hepatitis C Virus (taxonomy ID: 11102). These data sets were
generated based on the full XML export of the IEDB retrieved on the 10th of
October 2020, and filtered according to the criteria listed in [45] (section 2.1,
“Data sets”). The available data was split at the protein level, with entries
coming from the same protein, or from proteins exhibiting sequence coverage
and similarity greater than 80%, always placed in the same split. Two base
sets were derived from the data available for each organism: a Hold-out set
containing approximately 25% of the data; and a second set containing the re-
maining observations to be used for all model development activities. A set of
Heterogeneous data was also extracted for each organism, by randomly sampling
observations, grouped by taxonomy ID, from the full ITEDB export (excluding
any observations related to the specific organism). These heterogeneous sets
contain around 6000 labeled peptides, with a 50% class balance.

To investigate the effect of the size of organism-specific data sets on pre-
diction performance, and try to estimate rough lower bounds of the required
amount of data for organism-specific training to still represent a good alterna-
tive to models developed on larger, heterogeneous data sets, we extracted several
reduced organism-specific and heterogeneous/hybrid training sets for each or-
ganism, based on the available model development data described above. For
each organism and each desired training set size, we split the full model de-
velopment data into smaller non-overlapping Organism-specific data sets, each
containing data from between 20 and 500 peptides (see figure 1). The same class
balance as the full organism-specific data set was maintained in all subsets.

Table 1 details the information on the reduced organism-specific data sets
generated for each pathogen. Based on these variable-sized organism-specific
training sets, we assembled two groups of hybrid data sets:

e Hybrid-A, composed of the organism-specific peptides plus an equal amount
of peptides sampled from other pathogens. Consequently, Hybrid-A data
sets were always composed of twice as many peptides as their correspond-
ing organism-specific ones, and the balance between organism-specific and
“other” peptides was always 50-50%.

e Hybrid-B, composed of the organism-specific peptides plus the required
amount of peptides sampled from other pathogens to complete a data set
size of 1,000 training peptides (e.g., 20 organism specific + 980 “other”
peptides, 404960, etc.). Hybrid-B data sets had a fixed size, but a varying
balance of data from the target pathogen vs. other organisms.

For each data size tested (defined in this experiment as the number of
organism-specific peptides in the data sets) both the Hybrid-A and Hybrid-B
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Figure 1: Experimental protocol for testing the limits of organism-specific model
training for linear B-cell epitope prediction. (A) For each pathogen and each
desired data size (in terms of number of peptides from the target pathogen), the
model development data is split into non-overlapping subsets of the desired size,
each maintaining the original class balance of the data. (B) Two sets of hybrid
data sets are composed based on the organism-specific reduced-data replicates:
Hybrid-A maintains a fixed 50-50 balance between organism-specific and het-
erogeneous data at all data set sizes; Hybrid-B adds the required number of
non-target organism observations to complete a data set of 1,000 peptides, and
therefore results in sets with variable proportions of organism-specific peptides.
(C) Baseline data sets composed of 1,000 exclusively non-target pathogen pep-
tides are also generated based on different sub-samplings (without replacement)
from the heterogeneous data. All data sets are used to train Random For-
est models, which then have their performances assessed on organism-specific
hold-out data.


https://doi.org/10.1101/2021.11.02.466801
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.02.466801; this version posted November 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

groups had the same number of replicates as the organism-specific sets of that
size. The number of replicates at each size is documented in Table 1.

Table 1: Summary information on the organism-specific data sets of each
pathogen: number of positive/negative peptides in the hold-out and model de-
velopment sets, and number of replicates for each set size (set sizes being defined
by the number of organism-specific peptides in the set). Hybrid-A and Hybrid-
B sets were generated based on the same subsets of organism-specific peptides,
and therefore have the same number of replicates at each size. Heterogeneous
sets were generated separately, with 30 replicates of 1,000 non-target pathogen
peptides used in the experiments.

0. volvulus Hepatitis C virus | Epstein-Barr virus

Hold-out peptides (8324 / 777—) (2184 / 358—) (625+ / 315—)
Model dev. peptides (24414 / 2378—) (919+ / 783—) (17464 / 811—)
20-peptide sets (Nao) 237 83 124
40-peptide sets (Nao) 118 41 62
60-peptide sets (Neo) 79 27 42
80-peptide sets (Nso) 59 21 31
100-peptide sets (N1oo) 47 17 25
150-peptide sets (Niso) 32 11 16
200-peptide sets (N200) 24 8 12
250-peptide sets (Naso) 19 6 10
300-peptide sets (N3o0) 16 5 8
400-peptide sets (Naoo) 12 4 6
500-peptide sets (Nsoo) 9 4 5

Besides the hybrid data sets, for each target pathogen we also fit models
on 30 samples of 1,000 peptides from “other” organisms. In the results this
is analysed as the limit case of the Hybrid-B data sets (as a “0+1000”-peptide
set). Figure 1 illustrates the full experimental pipeline, including the generation
of all relevant data sets.

Modelling and Performance Assessment

Epitope prediction models were developed by training Random Forest (RF)
predictors on each of the training data sets outlined above, using Scikit-learn
version 0.24.1 [48] under standard hyper-parameter values. The choice of Ran-
dom Forest was based on preliminary experimentation, as documented in [45],
and also to make this work more directly comparable with the results reported
in that earlier one. The trained models were then used to generate predic-
tions for the organism-specific hold-out data sets and prediction performance
was assessed using multiple different performance measures, namely: Balanced
Accuracy (BAL.ACC), Matthew’s Correlation Coefficient (MCC), Area Under
the Curve (AUC), Positive Predictive Value (PPV), Negative Predictive Value
(NPV) and Sensitivity (SENS). Being as these measures were calculated on the
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hold-out data sets (which were not seen by the models at any point other than
testing) it can be assumed that these values represent a reasonable estimate of
the generalisation performance of the models used for epitope prediction on pro-
teins coming from each of the pathogens. The estimated mean performance and
standard errors for each quality indicator were calculated from the replicates at
each pathogen and data set size.

Besides the new results obtained by the models trained in this study, we
also included the following comparison baselines, extracted from [45], in our as-
sessment of the models’ performance: the observed performance of Bepipred2.0
[17], LBtope [39], iBCE-EL [47] and ABCpred [6], on the hold-out set of each
pathogen; the results obtained by Random Forest models trained on the full
model development data and on a set of 6000 non-target pathogen peptides, for
each organism.

Results

Figures 2-3 display the mean performance results from each set of models on the
hold-out data set of each pathogen. Each figure plots the number of organism-
specific peptides in the training data set versus the estimated mean performance
according to different indicators.

For Onchocerca volvulus (the largest data set in this study), the highest
scores on the hold-out set are from the full organism-specific model (except for
sensitivity), as documented earlier in [45]. The next highest scores are from the
split-sampling organism-specific models (for data sizes > 40 peptides), which
approach the full organism-specific performance after about 150 peptides. A
clear pattern can be seen across all performance measures: models trained on
the organism-specific data sets consistently and uniformly outperform those
trained on Hybrid-A (double size) data sets, which in turn outperform the mod-
els trained on Hybrid-B (1,000-peptides) data sets.! Within each group of mod-
els tested (trained on organism-specific, Hybrid-A and Hybrid-B) the pattern of
performance improvement as the training set becomes larger was observed, as
expected. The small-sample organism-specific models outperform those trained
on the large heterogeneous (Heter 6k) and large hybrid (OS-full+6k) models (for
> 40 peptides), and also all models from the literature across all performance
measures — except sensitivity, where Bepipred2.0 had the highest score; and
NPV, where Bepipred2.0 outperformed the models trained with < 40 organism-
specific peptides.

A similar pattern can be noticed for the Epstein-Barr Virus data. Figure(s)
2-3 again show that, across all performance measures, the highest scores on the
hold-out set are from the full organism-specific model, with the exceptions of
positive predictive value (where LBtope has the highest score) and sensitivity,
where the full organism-specific model and the reduced split-sampling organism-

IThe largest data sets from both Hybrid-A and Hybrid-B always have very similar scores,
as expected as in both cases the sets contain 500 peptides coming from the target pathogen
data and 500 coming from the non-target pathogen data.
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Figure 2: Mean performance (AUC, balanced accuracy, MCC) and standard
errors for all models tested. Blue squares indicate the scores from models trained
on organism-specific data sets, red circles are from those trained on the Hybrid-
A (“doubled data”) data sets, and green triangles refer to models trained on
the Hybrid-B (“1000 peptides”) data sets. Horizontal lines indicate reference
values extracted from [45]: models trained on the full training set (’OS-full’),
on a large heterogeneous set (’Heter 6K’), and on a large hybrid set (’OS-
full+6K7), as well as the scores of several predictors from the literature on
the same hold-out sets. For all pathogens tested, organism-specific training
resulted in uniformly better performance across all data sizes when compared
to models trained on hybrid or purely heterogeneous data, even when as few as
20 organism-specific peptides are used in the training set. Notice also how the
performance of organism-specific models quickly surpasses that of most of the
comparison predictors tested, even when very few organism-specific peptides are
available to fit the models. (Note: standard error bars are in most cases shorter
than the size of the point estimate markers)


https://doi.org/10.1101/2021.11.02.466801
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.02.466801; this version posted November 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

+ Hybrid - A + Hybrid - B * Organism-specific

EBV HepC Ovolvulus
08 oS
ags® o 9 22 [ 3 |
o an e os4 SRR S 2 | - 3
o5t - ) R | P Lo S CEEE—
06 P L N Set 4
Ll At [E
an et 3
. [
.l P . ES
04 ,_.,‘ - 4—————Thuope
A
0S-ulls6k A
AAAAAA x
8 o2
=
S o5t
< o7 YT LIRS e S et | s e L g2
s st e 4 R 1
= o® A
xx = 4
8 o6 anat s S - Estipesz |
5] 4 ash
15 A 3
£ o S e s
S o5t p— s |
g ot 1
= Ry
B s Heter —
T
£ 4
@
w osi-gniy m 8 B .w. .. ... .. |
o 0.0 .o .
Sete 2 S
075 . 5 A } -...: : PO = ostil——y—w—g 48 | feopresz
A Bepprod2 LY . o ...-4 2as. A A
4 k- —=s e g o
+ A ascrea (e
Ak v A
e i oo e | B
AL o
os ek i
Hoter s e
025
BCE IBCE-EL
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Number of organism-specific peptides in training set

Figure 3: (Continuing from figure 2) Mean performance (PPV, NPV, Sensitiv-
ity) and standard errors for all models tested. The same pattern observed in
figure 2 — uniform superiority of organism-specific training, when compared to
models trained on bigger, but hybrid /heterogeneous, data sets — is also observed
in the case of the three performance metrics shown here. As documented in [45],
the apparently excellent performance of LBtope on the Hepatitis C data across
all performance indicators can be partially attributed to the fact that several
of the hold-out peptides used in this work are also found in LBtope’s training
data [39].
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specific models have very similar scores across all training data sizes. The
second highest scores across all performance measures are almost always the
split-sampling organism-specific models (down to the smallest size: 20 peptides)
apart from for AUC, where LBtope approaches the performance of the full
organism-specific model. The overall pattern of our reduced data set EBV
models is the same as that of the Onchocerca volvulus models: organism-specific
> Hybrid-A > Hybrid-B. The performance of the models also generally decreases
as the training data becomes more scarce, as expected. The EBV small-sample
organism-specific models outperform all the tested models from the literature,
as well as the OS-full+6k & Heter 6k results, across all performance measures
except AUC and PPV, where LBtope yields better performane values.

The results for the Hepatitis C Virus reinforce the performance patterns
observed for the other two pathogens. As documented in [45], the apparently
excellent performance of LBtope for this pathogen across all performance indica-
tors can be partially attributed to the fact that several of the hold-out peptides
used in this work are also part of LBtope’s training data?. With the exception
of LBtope’s results, the pattern we observe for the Hepatitis C models closely
mirrors the results on the other two pathogens, with organism-specific models
generally outperforming the literature predictors tested even when trained with
a very modest amount of peptides between 40 and 100, depending on the per-
formance indicator. For this pathogen, the performance difference between each
group is considerably smaller than the differences that can be seen for the other
organisms tested, albeit still with a clear trend of organism-specific > Hybrid-
A > Hybrid-B for all performance indicators except PPV, in which the three
training regimens generally overlap across all data sizes.

When comparing all organism-specific reduced-data models scores to the
heterogeneous model scores, across all organisms and for all performance mea-
sures, Figures 2-3 clearly show that almost all organism-specific models score
considerably higher than the purely heterogeneous models (left-most point in
the Hybrid-B group), as well as the hybrid models (Hybrid-A & Hybrid-B);
the larger hybrid model from the previous study (OS-full+6k) and the gen-
eralist predictors from the literature, even when the organism-specific models
are trained on modest-sized data sets. In all cases, prediction performance de-
creases as the number of organism-specific peptides used is reduced, even if the
total number of peptides in the training set is kept fixed (Hybrid-B). For the
organisms in this study, the organism-specific models also appear to be the most
robust, with smaller performance decreases as the amount of organism-specific
data is reduced when compared to Hybrid-A and, in particular, Hybrid-B.

2https://webs.iiitd.edu.in/raghava/lbtope/data/LBtope_Variable_Positive_
epitopes.txt
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Discussion

The results from this study indicate that, when compared to heterogeneous and
hybrid training, organism-specific training produces higher linear B-cell epitope
prediction performance scores, even for very small data set sizes. The number
of organism-specific peptides in the training set is shown to strongly affect the
predictive performance of organism-specific models across multiple performance
indicators, particularly up to 100 or 150 peptides, after which performance con-
tinues to increase with more data but with diminishing returns, asymptotically
approaching that of models trained on the full available training data for each
pathogen [45]. The results also show that organism-specific training outper-
forms generalist training (predictors from the literature, trained on peptides
from a wide variety of pathogens) even when very small organism-specific data
sets are available. The only systematic exception was the high observed per-
formance of LBtope for the Hepatitis C Virus; However, as mentioned earlier,
“part of the hold-out examples used to asses the performance of the models is
present in the training data of LBtope (9.59% of the Hep C hold-out sequences
are present in the LBtope training data set)” [45], which in the case of our ex-
periments would result in some level of data leakage [49]. In addition to showing
that organism-specific training outperforms heterogeneous and hybrid training,
this work shows that adding unrelated data to organism-specific training sets
decreases the generalisation performance of the resulting model when tasked
with predicting epitopes for the target pathogen. It is also apparent that the
more heterogeneous data is added to the training set, the poorer the prediction
performance becomes, which can be clearly seen from the comparison between
Hybrid-A and Hybrid-B results in Figures 2-3. This suggests that, when train-
ing models for organism-specific predictions, the training data sets should be as
specific (containing only labelled peptides from that organism) as possible.
Taken together, the results presented here provide a strong indication that
organism-specific models trained on data sets beyond 100-150 peptides pro-
vide very competitive predictive performance when compared to the generalist
predictors tested. Additionally, the point at which organism-specific models
start to outperform generalist predictors depends on the organism. For O.
volvulus and Epstein-Barr Virus models the performance of organism-specific
models compared favourably to that of generalist models down to the small-
est organism-specific data set tested (20 peptides), while for Hepatitis C more
peptides were required for the organism-specific training to become competi-
tive. This highlights the strengths of organism-specific training and extends the
conclusions and scope of application of the methods described in our previous
study [45], which were limited to data-rich organisms. In contrast, this study
has shown that organism-specific training improves epitope prediction perfor-
mance for data-poor organisms as well. As a comparison, the number of labelled
peptide examples in the full training sets used in [45] were: 8,819 for O. volvulus,
2,557 for Epstein-Barr Virus, and 1,702 for Hepatitis C Virus. These are three
of the most data-rich organisms on the IEDB. Currently, most organisms have
far fewer labelled epitope examples available to them, and this work has shown
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that, for many if not most of these organisms, organism-specific training can
provide significant improvements in prediction performance.

Conclusions

In a previous work, we showed that organism-specific training improves linear
B-cell epitope prediction performance for data-abundant organisms. This work
extends the scope of organism-specific modelling by showing that, contrary to
our initial assumptions, organism-specific training is also a viable option for
relatively data-poor organisms. However, it is clear that there are limits to
organism-specific training for epitope prediction. The results documented in
this study suggest that organism-specific models trained with more than about
100 labelled peptides will generally compare favourably to generalist predictors
trained on substantially larger, but heterogeneous, data sets. It also confirms
that predictive performance, across a wide variety of indicators, tends to in-
crease monotonically with the number of organism-specific peptides included in
the training data. It should be noted, however, that the results documented
in this work have only been validated for reasonably class-balanced data sets.
We have not tested models trained on strongly imbalanced data (the worst case
among the pathogens tested was the Epstein-Barr virus data with a 2:1 bal-
ance of classes, which does not configure extreme class imbalance). While a
further investigation of imbalanced classification approaches for epitope predic-
tion would potentially help extend the scope of the organism-specific training
framework even further, the results presented here, coupled with the increas-
ingly cheap availability of computing power, already indicate a promising new
direction for the development of bespoke predictors for pathogens under study,
even for relatively data-poor organisms such as neglected pathogens or emerging
health threats.
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Split sampling:
organism-specific datasets
Generate non-overlapping splits for
each desired number of peptides,
keeping overall class balance.
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Performance calculation

Calculate predictive performance of each model

on the hold-out set.
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Estimated performance on hold-out set
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Estimated performance on hold-out set
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