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procedures were conducted in accordance with the ethical standards set out in the Helsinki Declaration 

of 1975, as revised in 2008.  

ABSTRACT: Mislabeling samples or data with the wrong participant information can impact study 

integrity and lead investigators to draw inaccurate conclusions. Quality control to prevent these types of 

errors is commonly embedded into the analysis of genomic datasets, but a similar identification strategy 

is not standard for cytometric data. Here, we present a method for detecting sample identification 

errors in cytometric data using expression of HLA class I alleles. We measured HLA-A*02 and HLA-B*07 

expression in 3 longitudinal samples from 41 participants using a 33-marker CyTOF panel designed to 

identify major immune cell types. 3/123 samples (2.4%) showed HLA allele expression that did not 

match their longitudinal pairs. Furthermore, these same three samples’ cytometric signature did not 

match qPCR HLA class I allele data, suggesting that they were accurately identified as mismatches. We 

conclude that this technique is useful for detecting sample labeling errors in cytometric analyses of 

longitudinal data. This technique could also be used in conjunction with another method, like GWAS or 

PCR, to detect errors in cross-sectional data.  We suggest widespread adoption of this or similar 

techniques will improve the quality of clinical studies that utilize cytometry.  

Key terms: sample swap, sample mix-up, quality control, cytometry, human leukocyte antigen, 

reproducible research 
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INTRODUCTION 

Sample annotation errors occur when clinical trial samples are paired with the incorrect participant 

metadata. This type of error can produce misleading results which can negatively impact reproducibility, 

and even undermine our understanding of biological phenomena. Investigators are increasingly aware 

of sample annotation errors, as evidence suggests they occur in many publicly available datasets (1-5). 

The reported rates of incorrect sample annotation vary. One study found 40% of publicly available 

datasets investigated contained at least one such error (2). Others reported that roughly 2% (6) or 3% 

(1) of all samples analyzed, including samples from a global network of biobanks (6) or publicly available 

genomic data from multiple studies (1), were paired with the wrong metadata. The high prevalence of 

these errors, and the recognition that even a small number of errors can negatively impact study 

integrity, has led to the adoption of quality control protocols designed to detect problematic samples in 

genomic and transcriptomic studies (1, 6-9). However, the causes of sample misannotation are not 

limited to genomic analysis. These types of issues can also occur in cytometry datasets, but there are no 

established methods for the molecular identification of a sample from information captured within 

cytometry data. In this communication, we present a simple and generalizable quality control method to 

detect sample mix-ups in cytometry datasets.  

In genomic data, sex prediction based on the presence of genes associated with sex chromosomes has 

been used to verify participant metadata for over a decade (7). While this approach has several 

limitations including the inability to identify sample mix-ups that occur between participants of the same 

sex and potential false positives in participants with sex chromosome anomalies, it has been used to 

successfully identify annotation errors in publicly available datasets (2). Another widely implemented 

method utilizes single nucleotide polymorphisms (SNPs) to identify samples collected from the same 

individual, allowing investigators to detect a larger proportion of errors in longitudinal datasets (1, 8, 9).  
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Unlike genomic data, cytometry data generally presents a snapshot of a dynamic distribution of cell 

populations as opposed to an inheritable, immutable characteristic like genotype. This presents a 

challenge in the identification of individual sample donors, because few characteristics of the sample are 

sufficiently unique to individual participants and remain unchanged in response to immune 

perturbations. One solution to this problem is the measurement of highly polymorphic cellular proteins 

such as human leukocyte antigen (HLA) class I or class II proteins. Because HLA vary greatly among 

individuals, identifying the presence or absence of specific HLA alleles can help distinguish samples from 

individuals who do not share the same genotype and can help identify longitudinal samples from the 

same individual. In fact, the measurement of specific HLA alleles has been used successfully in medical 

diagnostics to confirm that biopsies are matched with the correct patient (10).  

For this study, we successfully integrated antibodies specific for HLA-A*02 and HLA-B*07 into a 33-

marker mass cytometry panel that was developed for the identification and characterization of major 

immune cell populations in whole blood. This approach was used to analyze 3 longitudinal samples 

collected from each of 16 COVID-19 patients and 25 healthy controls for a total of 123 samples. We 

compared each individual’s longitudinal HLA measurements by CyTOF to identify sample swaps that 

occurred at any timepoint for an individual. We also utilize genomic HLA data from one timepoint as an 

external reference to confirm the HLA type for participants with mismatching longitudinal data. Here, 

we show that this approach can identify samples with potential annotation errors that can occur during 

a high throughput immunomonitoring study, facilitating their exclusion from analysis and interpretation 

of the data. 
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MATERIALS AND METHODS 

Study Population 

The participants included in this analysis were enrolled in two observational cohorts; 16 (39.0%) were 

enrolled in a study of COVID-19 positive individuals (11). 25 subjects (61.0%) were enrolled in an 

investigation of the immune systems of individuals with no personal history of chronic disease, 

autoimmunity, or severe allergy called the Sound Life Project.  Our analysis included qPCR data from one 

visit and CyTOF data from three longitudinal visits for each participant. Samples were collected from 

COVID-19 patients as soon as possible upon hospital admission, daily for the first week of 

hospitalization, then at 3–4-day intervals. For participants with no history of chronic disease, 

autoimmunity or severe allergy, samples were collected at Day 0, Day 7, and Day 90.  

Both study protocols were approved by the Benaroya Research Institute Institutional Review Board 

(IRB20-036 for COVID-19 subjects and IRB19-045 for Sound Life Project subjects). All study procedures 

were conducted in accordance with the ethical standards set out in the Helsinki Declaration of 1975, as 

revised in 2008.  

HLA assessment via qPCR 

Primers (Invitrogen/ThermoFisher) and MGB-modified probes (Applied Biosystems/ThermoFisher) for 

the detection of HLA-B*07 were designed for this study (Supplementary Table 1). HLA-DRA was used as 

an internal control (12). Reactions were amplified on an ABI StepOne Plus Sequence Detection System 

(Applied Biosystems, Inc). For all participants, only enrollment samples were assayed via qPCR. 

HLA assessment via CyTOF 
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Antibodies against HLA-A*02 and HLA-B*07 were purchased from BioLegend and BD Biosciences, 

respectively, and conjugated to their metal isotopes using a MaxPar X8 Multimetal Labeling Kit 

(Fluidigm). Antibody cocktails were made in bulk, then aliquoted and frozen prior to use as previously 

described (11, 13, 14). Two antibody cocktail batches were used for the samples included in this study. 

We did not observe a difference in staining intensity for either HLA-A*02 or HLA-B*07 between the two 

antibody cocktails. 

Whole blood specimens were collected and stained using methods that have been previously described 

(11). The 33-marker panel used to identify major immune cell types has also been previously published 

(11) and was based on Staser et al. (15). In brief, blood was collected via venipuncture into a sterile 

vacutainer containing EDTA for COVID participants and sodium heparin for Sound Life Project 

participants. Within 24 hours of blood draw, samples were washed with phosphate-buffered saline (PBS) 

twice before staining with cisplatin (100 µM, Enzo Life Sciences). After a one minute room temperature 

incubation, cisplatin was quenched with MaxPar Cell Staining Buffer (Fluidigm). Cells were stained with 

thawed antibody cocktail for 20 minutes at 4°C. Red blood cell lysis was performed using RBC 

Lysis/Fixation solution (BioLegend) at room temperature for five minutes. Cells were washed with Cell 

Staining Buffer then resuspended with CELL-ID Intercalator in MaxPar Fix and Perm Buffer (Fluidigm) 

before storage at 4°C until data acquisition. On the day of acquisition, cells were washed with Cell 

Staining Buffer and Milli-Q water, then resuspended in ultrapure water containing MaxPar Four Element 

Calibration Beads (Fluidigm). Samples were acquired on a Helios CyTOF mass cytometer (Fluidigm) at a 

rate of approximately 500 events/second. We targeted 100,000 live events per sample. In all cases 

acquisition occurred within seven days of sample draw. The resulting data were gated manually using 

FlowJo software.  
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RESULTS 

Calculating the percentage of errors that are detectable using two HLA antibodies 

One requirement of this technique was the ability to sufficiently distinguish individuals from one 

another in order to enable detection of sample mismatches. We targeted a minimum of 50% detection 

of sample mismatches, similar to the detection ability of sex-based methods frequently used in cross-

sectional studies of genomics data. To understand how well HLA-A*02 and HLA-B*07 would distinguish 

individuals, we estimated the percentage of study participants who would be expected to bear each HLA 

allele combination in our study population. That percentage allowed us to calculate the probability that, 

in the event of a sample swap, the two participants involved would have different HLA types, making the 

swap detectable via this method.   

We first estimated the frequencies of HLA-A*02 and HLA-B*07 in White, Black, and Asian participants, 

who together make up over 90% of the population in the geographic area from which participants were 

recruited (16),  using previously published data collected from bone marrow donors (Table 1) (17). We 

used an average, weighted by the racial demographics of King County, WA, USA (14), to calculate the 

predicted frequency of each HLA allele. We assumed our study population’s demographics would mirror 

those of the broader population and estimated the probability of detecting a sample swap in our 

population would be 51.5%. In other words, there was a 51.5% probability that samples collected from 

any two participants in our population would have a different combination of HLA-A*02 and HLA-B*07. 
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This was sufficient to suggest that HLA-A*02 and HLA-B*07 were likely, in combination, to meet our goal 

of 50% detection of sample mismatches.   

We included 41 participants in our study. The racial make-up of the cohort can be seen in 

Supplementary Table 2 and was generally representative of the population of King County, WA. Using 

the actual racial make-up of our cohort, we calculated that our method had a 52.5% probability of 

correctly identifying sample swaps and a 47.5% probability of missing a swap because it occurred 

between participants with the same combination of HLA-A*02 and HLA-B*07 alleles.  

HLA-A*02 and HLA-B*07 expression varies by cell population 

HLA-A*02 and HLA-B*07 specific antibodies were incorporated into a CyTOF panel designed to identify 

major immune cell populations. Our gating strategy was previously used to characterize major immune 

cell populations in whole blood collected from SARS-CoV-2+ patients (11). To help inform our strategy 

for identifying participants who were positive for either HLA allele, we examined median metal intensity 

in 10 immune cell populations, including the overall CD45+ population (Figure 1). We observed low 

expression levels of both alleles in the neutrophil population, which likely contributed to low expression 

levels observed in the overall CD45+ population. We observed higher expression of both alleles among 

mononuclear cell subsets, particularly monocytes, B cells, and NK cells. Overall, staining for HLA-B*07 

was less intense than HLA-A*02 in our assay. To ensure that we were gating on a sufficiently large 

population of cells and to reduce false negatives caused by low HLA expression, we chose to gate for 

HLA-A*02 and HLA-B*07 positive cells among non-granulocytes—the general CD45+ population with the 

granulocytes (basophils, eosinophils, and neutrophils) gated out.  This selection also allows this 

technique to be readily transferrable to frozen PBMC samples, which lack these polymorphonuclear 

subsets.  
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Representative gating in participants who were positive and negative for each allele is shown in Figure 2. 

Samples were considered positive for the HLA-A*02 allele if the frequency of parent was above 20%. 

Samples were considered positive for the HLA-B*07 allele if the frequency of parent was above 5%.  

Identifying sample annotation errors  

We classified each sample as positive or negative for HLA-A*02 and HLA-B*07, and compared these 

classifications taken from CyTOF data at three timepoints. We identified three longitudinal sample sets 

with a case of mismatching allele expression (Figure 3). In all three cases, the identified mismatch was in 

the HLA-B*07 cytometry data; no mismatches for HLA-A*02 were identified. In two cases, the apparent 

mismatched sample was negative for HLA-B*07 while the other 2 samples were positive for this allele. 

For one subject, the apparent mismatched sample was positive while other samples were negative. 

qPCR data for HLA-B*07 agreed with the majority of the cytometry data, with Participants 1 and 2 being 

positive and Participant 3 being negative for HLA-B*07.  

Sample annotation error rate estimation 

Comparison of longitudinal CyTOF data allowed us to identify three samples that were paired with the 

incorrect metadata; this was confirmed by qPCR. These three samples constitute 2.4% (3/123) of all the 

CyTOF samples included in this analysis.  As this method is predicted to detect approximately half of all 

mismatches in our cohort, the true error rate is likely approximately 5%. This error rate is similar to the 

error rate reported by others investigating publicly available genomic datasets (1, 6) using methods with 

similar detection levels. 
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DISCUSSION 

We developed a technique that allows investigators to perform quality control on cytometry datasets by 

measuring HLA class I alleles. We demonstrate that this technique can be used in longitudinal samples to 

identify sample annotation errors in cytometry data. We also show this technique can be used in 

conjunction with a secondary method, like qPCR, which could be implemented to assess data validity in 

cross-sectional studies when longitudinal data is unavailable. This novel technique could aid  

investigators performing cytometry on clinical samples in avoiding the commonly identified problem of 

misannotation (1, 2). 

When choosing HLA class I alleles as our target proteins, we considered several important 

characteristics. For a clinical study of human blood samples, our target proteins needed to be: 

detectable by cytometry, consistently expressed on blood cells, and measurable with commercially 

available reagents. The medical community has a longstanding interest in HLA typing because of its 

importance in assessing compatibility of organ donors (18), creating an incentive to develop a variety of 

typing techniques and commercially available reagents. Indeed, a technique for HLA typing of subjects 

via flow cytometry has already been published (19), and HLA typing for selection of samples in tetramer 

assays has been in place for some time. Our target proteins needed to be detectable over time with 
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expression remaining robust during immune challenges like disease or vaccination. HLA class I proteins 

are expressed on the surface of most nucleated cells (18). Even in cases where cell subset frequencies 

fluctuate, such as COVID-19 infection, a large number of HLA class I presenting cells remain present in 

the sample.  

Additionally, our target proteins needed to be sufficiently unique to individual participants. The MHC is 

the most highly polymorphic region of the human genome with over 25,000 alleles (20), providing us 

with many targets to choose from. We chose two HLA alleles HLA-A*02 and HLA-B*07 which together 

gave us a > 50% probability that any two samples in our dataset would be distinguishable, a level of 

detectability that is similar to existing methods for sex-based detection of misannotation.  

Investigators wishing to maximize their ability to detect swaps could consider increasing the number of 

target proteins included in their panel. Other potential target proteins include additional HLA class I 

alleles, HLA class II alleles, or other polymorphic proteins like FcgRIII or KIR. Alternatively, targets that 

are differentially expressed by sex, such as H-Y antigen or HDH1, KDM6A, EIF1AX, UTY, DDX3Y, and ZFY 

could be appropriate. When choosing a target, investigators should be aware of which cell subsets 

express target proteins and how those cell subsets vary over the course of the study. Investigators may 

also consider choosing target proteins that are as evenly distributed across their population as possible. 

For example, a panel including two target proteins, Allele A and Allele B, will have maximum 

detectability (75%) if 25% of the population is double positive, 25% is positive for Allele A and negative 

for Allele B, 25% is negative for Allele A and positive for Allele B, and 25% is double negative. As the 

allele distribution becomes less even, the detectability will also decrease. In this study, the addition of a 

sex chromosome-associated marker, which would have been evenly distributed across our cohort, 

would have increased the probability that we would detect a swap to 74.6%. In all studies, the ability to 

add target proteins to detect a swap must be balanced against the need to answer the primary study 

question.  
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In this study, we used qPCR as a secondary measure to validate HLA-type when HLA was already 

classified using CyTOF, but similar genomic methods could also be used as an external data source for 

quality control of cross-sectional data when longitudinal data is unavailable. Investigators should be 

aware, however, that if genomic and cytometric data are discordant, it may be difficult to determine 

where the error occurred, and both sets of data may need to be excluded from analysis or further 

investigated.  

For the analysis of longitudinal cytometry data, we found this technique was useful for identifying 

potentially misannotated samples. However, we did identify several key limitations. This technique was 

not designed to identify sample swaps between individuals of the same HLA-type. This limitation is likely 

to be shared, to varying degrees, by other polymorphic or sex-associated protein targets. Another 

limitation of this technique was the potential for non-specific binding of the HLA antibodies. This 

limitation could cause samples that are correctly annotated to be identified as erroneous. We also note 

that the HLA-B*07 frequency of parent determined by CyTOF was close to our chosen cut off for HLA-

B*07 positivity in some apparent mismatched samples. Given the low expression of HLA-B*07 in all 

samples, and the variability we observed in staining intensity, it is likely that our HLA-B*07 antibody was 

not saturating. We would recommend careful titration of the antibody to others wishing to utilize this 

technique. In this case, confirmation of the HLA type by qPCR provided further evidence that these three 

samples were misannotated.  

This technique – with antibody modifications specific to any given study - is a novel and important tool 

for ensuring the integrity of cytometry datasets. As a community we must accelerate the development 

of sample identification approaches so that mismatches between assay and clinical data can be detected 

when they occur. Incorporating this quality control will ensure that scientific advances based on 

cytometry data are accurate and reproducible.  
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Table 1. Frequency (%) of HLA-A*02 and HLA-B*07 in North American Population 

      
Race 

HLA-A*02-  
HLA-B*07- 

HLA-A*02+  
HLA-B*07- 

HLA-A*02-  
HLA-B*07+ 

HLA-A*02+  
HLA-B*07+ 

Probability of 
detecting a swap (%) 

Asian* 71.1 24.2 3.8 0.5 43.0 

Black, African American* 70.5 17.4 9.1 1.5 44.9 

White, Caucasian* 59.2 25.2 8.7 3.4 54.3 

Total Cohort 61.4 24.8 8.0 2.9 51.5 
*Based on published allele frequencies(17) 
¥Excluding participants of unknown or mixed race from the probability assessment   
Note: frequencies do not sum to 100% due to rounding 
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