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It is common for animals to use self-generated movements to
actively sense the surrounding environment. For instance, ro-
dents rhythmically move their whiskers to explore the space
close to their body. The mouse whisker system has become a
standard model to study active sensing and sensorimotor inte-
gration through feedback loops. In this work, we developed
a bioinspired spiking neural network model of the sensorimo-
tor peripheral whisker system, modelling trigeminal ganglion,
trigeminal nuclei, facial nuclei, and central pattern generator
neuronal populations. This network was embedded in a virtual
mouse robot, exploiting the Neurorobotics Platform, a simula-
tion platform offering a virtual environment to develop and test
robots driven by brain-inspired controllers. Eventually, the pe-
ripheral whisker system was properly connected to an adaptive
cerebellar network controller. The whole system was able to
drive active whisking with learning capability, matching neural
correlates of behaviour experimentally recorded in mice.
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Introduction
A fundamental question in system neuroscience is to iden-
tify how peripheral sensory stimuli are processed in multi-
ple brain regions showing specific neuronal activity. Rodent
whisker-mediated touch system is a structurally well-known
system which gives rise to complex adaptive behaviours (1).
Specifically, the rodent whisker system represents an efficient
combination of active perception and sensorimotor integra-
tion, in which self-generated movements are used to actively
sense their environment, i.e., scanning the surrounding to col-
lect behaviourally-relevant information. Rodents have spe-
cialized muscles in their mystacial pad able to control the hair
position (2). They rhythmically protract their whiskers swip-
ing the space surrounding the head and gathering information
about shape and position of objects around them.
In the rodent whisker system, the primary afferences come
from the trigeminal ganglion (TG) and the efferences project
to motoneurons in the facial nuclei (FN). There are no di-
rect connections between the two, indeed the innermost feed-
back loop is a di-synaptic reflex at brainstem level, involv-
ing interneurons from the trigeminal nuclear complex (TN)
(3, 4). Outer loops in the whisker system involve multiple
brain regions: the cerebellum, the midbrain (superior collicu-
lus), and forebrain (5). The most extensive and most studied

cortical loop is the whisker-barrel loop, involving the vib-
rissa primary sensory and motor cortex (6). Therefore, this
somatosensory system is an ideal candidate to investigate the
link between circuitry and function and to understand the un-
derlying neuronal mechanisms in sensory readout and infor-
mation processing.
Computational models of this system can play a fundamental
role for multi-scale investigations, from neuron to behaviour,
also thanks to availability of multi-scale experimental data in
rodents for constraining and validating the models. In this
work, we have developed a Spiking Neural Network (SNN)
model able to process information encoded during whisking
using a time coding representation of neuronal activity (7–
10). While other models and kinds of artificial neural net-
works (e.g., rate-based or mean field models) are very pow-
erful tools, based on brain dynamics, we choose SNNs be-
cause they are closer to biological reality, since they mimic
the way information is coded and transmitted inside a real
brain. In this work, each neuron in the network have been
modeled with the most simplified spiking model, which is
the Integrate & Fire model (I&F). SNNs can learn patterns
of activity thanks to embedded plasticity models: here we in-
cluded a Spike-Timing Dependent Plasticity (STDP) model
(11–15) in the cerebellar circuit, which was inserted in the
control system (outer loop) to test learning capabilities.

Neurorobotic models of rodent whisking. Models of
brain regions embedded in neurorobots allow to repro-
duce the functional mechanisms of living beings in closed
perception-action loops (16, 17). Various examples of neuro-
robots using biologically inspired whiskers have been imple-
mented in the last years. Among them, it is worth to cite the
Whiskerbot, the SCRATCHbot and the Shrewbot (18).
The Whiskerbot consists of a robotic platform constituted
by a head sensory unit of 150x170 mm and a two-wheeled
body. The head carries six whiskers per side arranged in
rows of three. Analogue information from whisker deflec-
tion is converted in empirically-based spike trains. It is able
to freely move in an environment, actively whisking and ori-
ent toward salient stimuli using a neural network model of
the superior colliculus (18, 19). The SCRATCHbot has a
larger number of whiskers and degrees of freedom to position
them in the environment. It was developed to reproduce dif-
ferent models of whisking pattern generation and to actively
explore its environment using a simple model of tactile atten-
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tion (18, 20). Both these robots were further enriched inte-
grating the Shrewbot platform, which introduced algorithms
able to detect texture and object from an active whisker array
(18, 21, 22).
Real neurorobots are excellent test benches to challenge a
neuro-inspired controller to demonstrate its capabilities, es-
pecially because of the real time computation constraints and
the noise of the physical hardware and equipment, both in-
trinsic (non-ideal electronics sensors, limited spatio-temporal
resolution, delays) and extrinsic (unexpected changes in the
environment, external perturbing forces/torques, etc.). How-
ever, the implementation of physical neurorobots is complex
and expensive, therefore limiting their adoption by neurosci-
entists to test computational models of the brain circuitry.
Besides, it is also difficult to replicate the obtained results
without an exact replica of the equipment used. Finally, the
brain-inspired circuit controlling the robot can have a limited
complexity, in terms of realism (neuronal models), number of
elements (neurons and synapses), activity (spike events), and
functionality (e.g., short and long term plasticity rules) for
the sake of limited computational load required for real-time
computations.
In this paper, we have developed a biologically-inspired neu-
rorobotic whisker system on a virtual mouse inside the Neu-
rorobotics Platform (NRP) (23–26). This work focuses on
the reproduction of the peripheral parts of the whisker senso-
rimotor system and on the integration of the sensory inputs
with an adaptive cerebellar spiking controller to perform a
spatial learning task.

Materials and methods
In this section, anatomy and physiology of the rodent whisker
system are described and for each peripheral component (ac-
tive vibrissae, sensory pathway, motor pathway, and trigemi-
nal loop) the neurorobotic implementation is reported. Then
the protocol to test the whisking controller, including an
adaptive cerebellar network, is described, tailored on the
experimental paradigms used on mice to understand neural
mechanisms of active whisking and reward-based learning.
Finally, the software libraries and computing resources are
reported.

Rodent whisker system and its neurorobotic imple-
mentation. Given the low number of degrees of freedom in-
volved and the ease to make tests in laboratory conditions,
the rodents whisker system has become a popular model for
studying brain development, experience-dependent plasticity,
active sensation, motor control, and sensorimotor integration
(2, 5).
We have implemented the physical and the neural elements
that constitute the whisker system of a rodent. The first step
was the implementation of active whiskers (or vibrissae) in
the mouse robot, making them controllable and allowing the
reading of dynamic and kinematic parameters and informa-
tion about the contact with external objects. Then, it was
necessary to read inputs from the simulated environment and
encode them realistically in the behaviour of vibrissal affer-

ents. Once unprocessed data were gathered from afferents,
further elaboration steps were carried out. These processed
signals were used to directly control the motor actions, thus
closing the first sensorimotor feedback loop, or extracting
higher level information such as the phase of the whisking
when a contact happened.

Active vibrissae. Vibrissae are long and sensitive hairs com-
mon to most mammals, including all primates except humans
(27). Mystacial vibrissae are the ones growing on the mysta-
cial pad, located at the sides of the animal snout, and have a
major role in tactile spacial sensing and object discrimination
(28).
Neurorobotic implementation
To implement sensible whiskers in the mouse robot model
inside the Neurorobotic Platform, we started from the HBP
Mouse Robot v2 (dimensions: 140 cm from the nose tip to
the end of the tail, 35 cm width, 35 cm height). The 3D mod-
els of the whiskers were defined as rigid cylinders: two right
and two left whiskers, anchored to the mouse nose and with
two different lengths and roll angles (Figure 1A). The lower
whiskers (L0 and R0 for left and right whisker, respectively)
are longer (50 cm each) and are rotated of 11◦, while the up-
per whiskers (L1 and R1) are shorter (25 cm each) and are ro-
tated of 22◦. All whiskers have a diameter of 1 cm and their
position can be independently controlled setting a torque at
the revolving joints that link them to the mouse nose.

Sensory pathway. In the rodent whisker system (Figure 1B),
the primary afferents have their nucleus located in the trigem-
inal ganglion.
When an object enters the peri-personal space around the
head of a rodent, it will be sensed by the moving whiskers and
its position and shape are encoded by neuronal signals. This
can be done directly by the primary afferents or after some
processing inside inner brain structures. The way the posi-
tion of an external object is represented inside the vibrissal
system of rodents is called vibrissal location coding (29).
The spatial organization of whiskers in the mystacial pad
varies between different mammals, but are quite similar be-
tween rats and mice (28). Rats and mice whiskers are aligned
in 5 rows, the upper 2 have four whiskers each, while the
lower 3 counts 7 whiskers each (5). From rostral to caudal in
each vibrissal row, the whisker length increases exponentially
(28).
In the vibrissal follicle, three types of mechanoreceptors are
present: Merkel cells, lanceolate endings and free nerve
endings (5). Merkel cells ending are slowing adapting
mechanoreceptors and they mostly signal ongoing move-
ments, while lanceolate endings are rapidly adapting and re-
spond to fast changes.
Mechanoreceptors surrounding each whisker transmit sen-
sory information through cells whose bodies are located in
the TG. Each neuron sends signals from a single vibrissa,
while each follicle is innervated by ∼200 TG neurons.
A main distinction between trigeminal ganglion cells can be
drawn based on the kind of receptor they receive information
from: rapidly adapting or slowly adapting. While measuring
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Fig. 1. The rodent whisker system. A) Virtual robotic mouse implemented in the NRP, with two whiskers per side. L0 and R0 are the lower left and right whiskers, L1 and
R1 are the upper whiskers. B) Block diagram of the rodent whisker system, including sensory and motor pathways, and its integration with higher-order areas (thalamus and
cortex). C) SNN implementation of the mouse peripheral whisker system; numbers in each block represent the size of the neural populations included in that brain region.
Arrows represent excitatory connections, circles inhibitory connections.

cell activities in-vivo during free whisking, it can be observed
that slowly adapting cells fire more during whisking in air. In
fact, when contacting an object, all cells increase their firing
rate, but the increase is more consistent for rapidly adapting
cells (30).
In 2003, Szwed et al. induced artificial whisking in rats and
measured the activity of TG cells (31). According to their
results, TG neurons can be classified into distinct categories
based on their responses to whisking in air and against an
object:

• Touch cells responding only when the whisker touches
an object, they can be further divided into contact
cells, responding only at the beginning of the contact,
detach cells, only at the end of the contact, and pres-
sure cells with a tonic force-dependent response.

• Whisking cells responding only on whisker movement
and not on object contact (if the contact does not affect
the movement of the follicle).

• High threshold cells responding only to strong me-
chanical stimulations.

Neurorobotic implementation
The Neurorobotics Platform permits to connect the environ-
ment to the robot sensors and actuators using so called trans-
fer functions. These are Python functions defining to and
from which ROS topics and neural populations read and

write. They can be defined as Robot2Neuron (sensory) or
Neuron2Robot (motor) according to the direction of the in-
formation flow.
The transfer function written to implement the follicle sen-
sors is of theRobot2Neuron kind, since it reads the informa-
tion on whisker mechanical status and position, and then pro-
cess the data to obtain: possible contacts of a whisker against
an object, the contact distance from the snout, the whisker
angular position. The input transfer function is connected
to the trigeminal ganglion neurons (Figure 1C), divided in
five populations (TG pressure, TG high threshold, TG con-
tact, TG detach, and TG whisking cells) with 20 neurons per
whisker each, based on the functional separation observed in
literature (31).
TG high threshold cells fire with a fixed rate when the con-
tact is very close to the snout (less then 2 cm), constituting de-
facto a labelled line encoding for proximity, and TG whisking
cells encode the current whisker position, each neuron has a
Gaussian-shaped sensitivity and fire when the whisker posi-
tion is within a narrow range around its maximum sensitive
angle.

Motor pathway. The head of a rodent exploring its peri-
personal space is constantly moving, side-to-side and up-and-
down, while its nose moves side-to-side and the whiskers
scan back-and-forth. These movements have a rhythmic
component phase locked to sniffing, centered around 7 Hz
in rats and 11 Hz in mice (6).
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The representation of vibrissae in the primary motor cor-
tex occupies around 20% of motor cortical area. There
is no accepted topographic map, some studies obtained
single-whisker responses, others observed how the number of
whiskers showing evoked movements changes with the level
of anesthesia used. In-vivo single cell microstimulation con-
sistently evoked multi-whisker movements. There is strong
evidence that the primary motor cortex controls only indi-
rectly the muscle activity projecting to brainstem premotor
networks, acting as central pattern generators (CPG) (32).
Motor neurons controlling muscles of the whisker pad are
located in the lateral FN and send motor commands via the
facial nerve. About 80% of the FN neurons evoking whisker
movements induce protractions of a single whisker and about
20% the retraction of multiple whiskers (5).
Neurorobotic implementation
The CPG has been implemented in the robot mouse as a sin-
gle neuron. Controlled by a Robot2Neuron transfer func-
tion, the CPG neuron emits regular spikes at a constant fre-
quency in lower-theta band (4 Hz). It is connected with ex-
citatory synapses to both protractors and retractors neurons,
with delays of 1ms and 50ms respectively, in order to gen-
erate a rhythmic whisking movement .
Facial nuclei (Figure 1C) are divided into protractors and re-
tractors. Protractors have been implemented with four pop-
ulations of 20 neurons, where each population controls one
whisker (L0, L1, R0, and R1). For retractors there are just
two populations, one for each side (one population for L0
and L1, and one population R0 and R1). Sizes of populations
are based on biological evidences, as described before.
The spiking activity of protractors and retractors is then trans-
formed into a torque signal, applied to each whisker, using
(1).

torque(t) = αpro ·FRpro(t)−αret ·FRret(t) (1)

Where FRpro(t) and FRret(t) are the instantaneous firing
rates of protractors and retractors, respectively (in Hz), while
αpro and αret are constant gains, set to 0.15 Nm/Hz and 0.10
Nm/Hz, respectively.

Trigeminal loop. The trigeminal loop in the brainstem is a
second order loop and is the most peripheral of the various
loops constituting the vibrissal sensorimotor system. On the
afferent side, neurons in the TG gather information from the
follicles and project with excitatory synapses to the trigemi-
nal nuclei complex. On the efferent side, subcortical whisk-
ing centers and CPG send motor commands to the motoneu-
rons in the FN (3). Facial motoneurons driving muscles to
protract the vibrissae receive a short latency input (7.5±0.4
ms) followed by synaptic excitation from neurons in TN.
These connections result in a pull-push mechanism allowing
for rapid modulation of vibrissa touch during exploration.
Neurorobotic implementation
When a whisker touches an object, the physical simulator
makes it bounce according to physical properties of the sim-
ulated materials, producing a noisy contact signal. This of-
fers us the possibility to apply the trigeminal feedback mech-

anisms previously described as a biologically inspired de-
bouncing mechanism. First, a neural population (TN contact)
has been created in the trigeminal nuclei, of the same size of
TG contact and taking from it excitatory, one-to-one connec-
tions (Figure 1C). Then, TN contact neurons were connected
to the facial nuclei protractors with excitatory synapses hav-
ing a 7.5 ms delay (4), and with inhibitory synapses to the
retractors. This increases the joint torque sent to the collid-
ing whiskers, in order to impede their rebound and to keep
them at contact with the touched object.
In the TN, we have included an additional population made of
20 neurons for each whisker, that has to encode the phase of
the whisking period at which the contact occurs. TG has been
implemented as an array of coincidence detectors (phase de-
coder), one for each TG whisking neuron, gating them in
a logical AND with TG pressure neurons. The result is a
labelled-line encoding of contact phase. The phase decoder
is implemented by a transfer function that takes input from
afferents in TG (pressure and whisking cells) and projects to
the TN phase population in the trigeminal nuclei (Figure 1C).
For each TG whisking cell, the same spike rate is propagated
downward only if pressure cells are firing. The phase infor-
mation is needed for the precise localization, with respect to
the mouse head, of the object touched by the whiskers.
Table 1 summarizes the connectivity between the different
populations of the whisker system.

Testing protocol. The peripheral components of the
whisker system described above has been tested inside the
Neurorobotics Platform in free whisking conditions. The
mouse moved its whiskers in an empty environment or touch-
ing an object and the spiking activity of FN, TG and TN has
been recorded in order to verify the proper functioning of the
developed system.

Experimental whisking-based object localization task. To
provide a meaningful example of how the developed mouse
whisker system can be used to build in-silico neurorobotic
experiments, we reproduced an experimental study which in-
vestigated the involvement of the cerebellum in a whisking-
based object localization task in head-fixed mice (33). Rah-
mati and colleagues tested two populations of mice, one wild-
type (Control) and one knock-out (L7-PP2B), suffering from
genetically impaired cerebellar plasticity. Water-deprived
mice had to learn to locate a vertical bar in their whisker field
and lick a water droplet (GO trial) within a time response
window or to refrain from licking (NOGO trial) according to
the bar position.
During the first sessions, both mouse populations started with
high hit rates and high false alarm rates. Control mice showed
faster learning capabilities, reducing their licking response to
NOGO trials after the first 4 training sessions. Conversely,
knock-out mice reduced their licking in a random fashion
staying close to the guess rate (33). Therefore, they con-
cluded that cerebellar plasticity has a crucial role in this so-
phisticated cognitive task requiring strict temporal process-
ing.
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Table 1. Connectivity of the SNN whisker system model

Synaptic Connection Type Number Convergence Divergence
CPG-FN protractors Excitatory 80 1 80
CPG-FN retractors Excitatory 40 1 40
TG contact-TN contact Excitatory 80 20 1
TN contact-FN protractors Excitatory 80 1 20
TN contact-FN retractors Inhibitory 80 1 20

Cerebellar SNN model. To investigate in-silico the role of
cerebellar plasticity during the task, we integrated a well es-
tablished cerebellar-inspired SNN model to the whisker sys-
tem described above. Recently, a detailed spiking neural net-
work model of the cerebellar microcircuit proved able to re-
produce multiple cerebellar-driven tasks (26, 34–37). Here,
we used the model to drive learning in the in-silico whisking-
based object localization task.
The SNN cerebellar microcircuit (Figure 2) was populated
with leaky Integrate&Fire neurons, distinguishing between
different neural groups. Mossy Fibers (MFs), the input to the
cerebellar module, encode the state of the body-environment
system: the whisker current position and the localization of
an eventual object, e.g., the cue signalling a GO trial. There-
fore, MFs receive excitatory connections from TG pressure
cells and TN phase cells. Granular Cells (GrCs) represent
in a sparse way the input from the MFs. Inferior Olive neu-
rons (IOs), the other input to the cerebellar module, encode
the reward, which is provided when a response is correctly
generated (i.e., in a GO trial). In fact, this neural popula-
tion responds to attention or surprise signals. Purkinje Cells
(PCs) integrate the sparse information coming from the GrCs
through the Parallel Fibers (PFs), while Deep Cerebellar Nu-
clei (DCN), the only output of the cerebellar module, gen-
erate the response (i.e., the equivalent of licking). The firing
rate of DCN is monitored and a response is detected when the
firing rate exceeds a pre-defined threshold (i.e., 80 Hz). The
network structure and connectivity are reported in Figure 2
and Table 2.

Fig. 2. SNN implementation of the cerebellum. Whisking sensory signals are con-
veyed to the cerebellar MFs from TG pressure and TN phase neurons, while the
reward signal during correct GO trials reach the IO neurons; the cerebellum con-
trols the output motor response (head movement) according to DCN activity (i.e.,
generation of a response, head raise, when the firing rate exceeds a set threshold).
Arrows and circles represent excitatory and inhibitory connections, respectively.

The cerebellar SNN model included one plasticity site, at
the cortical level, between PFs and PCs, based on a well-
known kind of STDP (38–40). Synaptic weights between

PF-PC plasticity are modulated by IO activity (IOs-PCs con-
nections in Table 2 are indicated as "teaching"), depending
on the difference between the pre- and post-synaptic firing
times (36, 41, 42). Long-Term Potentiation (LTP) and Long-
Term Depression (LTD) are the two possible changes that
each synaptic connection can undergo. Synaptic weights in-
crease (LTP) whenever a PC only receives an input from a
PF, while they decrease (LTD) when associated with IO in-
puts (43–47). The learning rule can be formalized as in (2).

∆WPFi→PCj
(t) =

LTD

tIOspikej∫
−∞

K(t−x)δPFi
(t−x)dx if PCj active

t= tIOspikej

LTP if PCj active
t 6= tIOspikej

0 otherwise

(2)

where:

δPFi
(s) =

{
1 if PFi is active at time s
0 otherwise

(3)

and the kernel function is:

K(z) = e−(z−t0)
(
sin
(

2π(z− t0)
))20

(4)

where tIOspikej
is the time when IOj emits a spike; K(z)

is the integral kernel function, which has its peak at t0 (100
ms) before tIOspikej

. The plastic learning rule is character-
ized by two constants, LTP and LTD, which regulate the
amount of synaptic change. These constants cannot be di-
rectly computed from physiological data, but they have been
set to values found in related modelling studies (LTP = 0.01,
LTD = -0.03) (37).

Neurorobotic implementation of the whisking-based object
localization task. In the NRP, a licking-like movement, has
been set for the virtual mouse: it has to rise its head and touch
a shelf positioned just above. During GO trials, a vertical bar
is displaced in the left whisker field and if the mouse rises its
head, a reward signal is triggered. During NOGO trials the
bar is on the right and if the mouse rises its head it does not
receive any reward (Figure 3A).
The experiment is composed of short trials of 2 seconds, di-
vided in GO and NOGO trials. The vertical bar is displayed
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Table 2. Connectivity of the SNN cerebellar model

Synaptic Connection Type Number Convergence Divergence
TG pressure-MFs Excitatory 80 1 1
TN phase-MFs Excitatory 80 1 1
MFs-GrCs Excitatory 8000 4 80
PFs-PCs Excitatory 115200 1600 58
IOs-PCs Teaching 72 1 1
MFs-DCN Excitatory 3600 100 36
PCs-DCN Inhibitory 72 2 1

in the mouse whisker field for 1 second, while the response
window continue till the end of the trial.
Trials were grouped in sessions composed of 10 trials, 5 GO
and 5 NOGO, performed in a randomized sequence. The
neurorobotic experiment included 27 sessions, following the
experimental protocol. In order to evaluate the learning of
the controller, for each session we recorded the percentage of
correct responses in GO trials ("hit rate"), and the percentage
of responses in NOGO trials ("false alarms").

Experimental and in-silico cerebellar impairment. PC-
specific PP2B knock-out (L7-PP2B) mice show deficits
in motor learning, consolidation, and procedural learning
(48, 49) while they behave normally in standard non-motor
tasks (50). In their experiment, Rahmati and colleagues
tested how an impairment of the PF-PC LTP influenced
the performance in the whisking-based object localization
task. They demonstrated that learning in L7-PP2B mice was
severely impaired, indicating that this task can depend, at
least to some extent, on cerebellar plasticity.
We recreated in-silico the impaired cerebellum dramatically
reducing the constant LTP (see (2)) to 10% (LTPL7−PP2B
= 0.001). We repeated each experiment (i.e., 27 sessions,
10 trials each, therefore 270 trials) of the localization proto-
col 10 times, using the impaired cerebellar model, then we
compared the curves of hit rate and false alarms between L7-
PP2B and control mice.

Hardware and software. For the simulations, we have used
a local installation of the NRP version 3.1, exploiting Python
3.8 (RRID:SCR_008394), Gazebo 11 (51), and ROS Noetic
(52).
The simulation of the controller has been done with NEST,
a software simulator for spiking neural networks (53–55).
We used NEST 2.18 (56) (RRID:SCR_002963), interfaced
through PyNN 0.9.5 (57) (RRID:SCR_002963).
All the simulations have been carried out on a Desktop PC
provided with Intel Core i7-2600 CPU @ 3.40 GHz and 16
GB of RAM, running 64 bit Ubuntu 20.04.2 LTS.

Results
We successfully developed a SNN model of the sensorimotor
peripheral whisker system, modelling trigeminal ganglion,
trigeminal nuclei, facial nuclei, and central pattern generator
neuronal populations. This peripheral SNN was embedded

in a virtual mouse robot, and it was properly connected to
an adaptive cerebellar SNN. The whole system was able to
drive active whisking with learning capability, matching neu-
ral correlates of behaviour experimentally recorded in mice.

Motor pathway. The four whiskers are controlled by the mo-
toneurons present in the FN. They are working under the con-
trol of a single CPG neuron, firing at 4 Hz, which rhythmi-
cally excites protractors and retractors neurons. Motoneu-
rons spikes are then transformed into torques applied inde-
pendently at each whisker. As shown in Figure 3B, during a
free whisking period, the spiking pattern of the four groups
of neurons is very similar, with a precise temporal alternation
between protractors, causing the whisker to move forward,
and retractors, pulling the whiskers back to the initial posi-
tion. Whiskers’ movements are slightly shifted with respect
to the spikes due to the delays introduced by the conversion
between spikes and torques and by the mechanical inertia of
the whiskers. The mean firing rate of protractors and retrac-
tors neurons are 3.80 Hz and 4.00 Hz, respectively, with a
peak firing rate of 48.75 Hz and 55.00 Hz, respectively. Fig-
ure 3C shows how the whisker trajectory changes during GO
and NOGO trials. Namely, in GO trials a bar is placed for 1
second in the left whisker field, therefore whiskers L0 and L1
hit it and their range of motion is therefore reduced to ∼ 15
degrees. The same behaviour can be observed during NOGO
trials for whiskers R0 and R1.

Sensory pathway. Neurons in the TG and TN compose the
sensory pathway and the first stage of elaboration is done
by TG neurons. Each group of TG shows specific activity
patterns depending on its function (Figure 4A). TG whisk-
ing neurons follow the angular profile of each of the four
whiskers; it is possible to notice the differences between GO
and NOGO trials, where left and right whiskers change their
spatial profile when hitting the bar in the first second of each
trial. Their mean firing rate is 3.65 (± 1.93) Hz. TG contact
neurons fire at ∼ 5 Hz when the whisker hits the bar, while
TG detach neurons when the whisker is no longer in contact
with the bar, because the bar has been removed or because the
whisker has been retracted. TG pressure neurons are active
for the whole duration of the contact between the whisker and
the bar (27.00 ± 17.69 Hz). In the SNN model, we have in-
cluded an additional population, TG high threshold neurons,
which are activated when the contact happens close to the
nose of the robot (less than 2 cm). However, in our protocol
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Fig. 3. A) experimental protocol, during GO trials, a sensory cue (a small bar, depicted as a black dot) is placed in the left whisker field of the mouse. Correct responses lead
to a reward (water drop). During NOGO trials, the sensory cue is placed in the right whisker field and a response does not result in any reward. B) Spiking activity of motor
neurons for protraction and retraction during one trial. 20 protractors neurons for each whisker and 20 retractor neurons for each side (L and R) fire under the control of the
CPG neuron at 4 Hz. The resulting displacement of each whisker is depicted in the upper part of the panel. C) Angular displacement of the four whiskers during one GO and
one NOGO trial. During the GO trial, in the first second, left whiskers hit the sensory cue bar, placed in the left whisker field. On the other hand, during the NOGO trial, the
right whiskers hit the sensory cue bar placed in the right whisker field.

the bar is placed at a higher distance, therefore those neurons
were never activated.
Figures 4B and 4C provide a direct comparison between
the firing rates of the different TG populations during one
whisker movement. Figure 4B has been adapted from (29),
while in Figure 3C the firing rates of the neurons in a specific
trial (the magnified inset from Figure 4A) have been com-
puted with bins of 10 ms. It is possible to appreciate that in-
silico TG neurons show a behaviour comparable to the one of
biological neurons, especially for the timing of their response
with respect to the events of protraction, contact, detach, and
retraction.

Learning performance. We have shown that the SNN rep-
resenting the sensorimotor whisker system is able to encode
in a biologically realistic way the sensory and motor signals
exchanged with a robotic plant. To demonstrate how this sys-
tem can be used to recreate a complex behavioural test, we
connected the whisking sensory system to an adaptive SNN
and we challenged the integrated system in the object locali-
sation experiment proposed by Rahmati and colleagues (33).
The aim of the mouse is to lick during the GO trials and to
refrain from licking during the NOGO trials, distinguishing
between the two conditions according to the position of a bar
placed into their whisker field. Figure 5B reports the per-
centages of correct licks in GO trials and the number of in-
correct licks in NOGO trials. The reference behavioural data
recorded in animals are reported in Figure 5A.

Considering control animals, it is possible to see that mice
lick continuously in the first sessions (i.e., hit rate and false
alarms are both close to 100%), without distinguishing GO
and NOGO trials. While the experiment proceeds, the ani-
mals learn to refrain from licking during the NOGO trials. In
fact, the percentage of false alarms decreases toward 0%. At
the same time, the percentage of correct licks remains close
to 100%.
Control and L7-PP2B mice differed in their learning skills.
Both started the training with high hit and false alarm rates.
As a result, they performed close to the guess rate. During
the subsequent sessions, control mice consistently increased
accuracy, specifically reducing their response to NOGO tri-
als. In contrast, L7-PP2B mice continue for more sessions
to not discriminate between GO and NOGO trials. In the
later sessions, also L7-PP2B diminished their licks in the
NOGO trials, but their learning trajectories remained noisier
than those of controls, taking a longer time to reach high per-
formance levels. This observation suggested that a functional
LTP mechanism was important to obtain a superior ability to
rapidly discriminate between GO and NOGO cues, and then
respond accordingly.
The performances and the learning trajectories of control and
L7-PP2B in-silico models (Figure 5B) are similar to their bi-
ological counterparts. While both models maintain a perfect
recognition of GO trials, the control model learned to refrain
from licking in NOGO trial faster and stably. The variability
present between the 10 different tests is due to the different
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Fig. 4. A) Spiking activity of the Trigeminal Ganglion (TG) neurons during GO and NOGO trials. Each row represents the activity of one neuron, different shades of red are
used to plot the activity of the four groups of TG neurons. The inset shows a magnified portion of the full scatterplot, focusing on a single protraction-retraction movement of
the whiskers. (B) Firing rates of TG populations measured experimentally during a single protraction-retraction movement, as reported in (29). Vertical dashed lines represent
the four main events: start of the protraction, contact of the whisker against an object, start of the retraction, detach of the whisker from the object. (C) Firing rates recorded
from the simulation of the SNN model of TG populations. The length of each bin is 10 ms. Colors are the same as panels A and B.

sequences of GO and NOGO trials, which were randomly
extracted for each session.
Looking at the spiking activity of the cerebellar network, and
in particular at the DCN population (Figure 5C), which drives

the response of the mouse, it is possible to appreciate the dif-
ferent evolution in the spiking patterns. Control and L7-PP2B
simulations have a similar activity in the DCN during the 10
trials of the first session, the neurons fire regardless of the in-
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put arriving from the whisker system (right or left contacts)
and therefore DCN generate a response during both GO and
NOGO trials. After 10 sessions of training, the Control simu-
lation shows intense DCN activity during GO trial and weak
or null activity during NOGO trials, proving that the cere-
bellar network has learned the association between left/right
stimulation with the presence/absence of the reward. This
behaviour is impaired for the L7-PP2B simulation, in fact,
there are still several DCN that are firing during both GO and
NOGO trials, then causing a high False alarm rate.
Each session took about 140 minutes for a simulated time of
540 seconds (i.e., 270 trials of 2 seconds each), with a scale-
up with respect to the real-time equal to ∼ 15 times. The
maximum RAM consumption was equal to ∼ 15 GB.

Discussion and conclusions
We developed a spiking neural model of the mouse whisker
system, covering both sensory and motor pathways, and their
interconnections. The implemented system takes into ac-
count the different roles that groups of cells have at the dif-
ferent stages of the sensorimotor processing, providing cod-
ing for complex information such as the object localization
performed during the active whisking. This system, properly
connected to an adaptive cerebellar-inspired spiking network,
reproduced complex in-vivo experiments, by using the neuro-
robotics platform.
The peripheral whisker system showed appropriate discharge
patterns as in in-vivo experimental recordings during whisk-
ing, in precise time-windows of exploration and object inter-
action and depending on which side the stimulus was pre-
sented within the whisker field.
The peripheral system, when wired to a cerebellar SNN with
plasticity and tested in an object-localization task, was able
to reduce the number of useless responses along a sequence
of trials (triggered by the NOGO trials) which did not corre-
spond to any reward. This learning curve was slowed down
when the plasticity parameter (LTP rate) of the cerebellar
SNN was strongly reduced, as in knock-out mice recorded
experimentally.
The integrated circuit, entirely made of spiking neurons,
proved the good integration of different ways of neural cod-
ing. In fact, while the main parameter correlating response
patterns to behavior was the average firing frequency of the
DCN population, other elements of the whisker system used
a variety of encoding strategies. For instance, the time-coded
activity of TG contact and TG detach cells or the TG whisk-
ing cells encoding the current whisker position by means of
their Gaussian-shaped sensitivity.
The model here proposed can be used as a reference for future
advanced neurorobots and for neuroscience in-silico experi-
ments, to investigate the role of cerebro-cerebellar loops and
cerebellar physiology in whisking protocols.

Limitations and future challenges. Considering the
robotic aspects, a limitation of the physical simulator
(Gazebo) regards the properties of the materials that can be
used. Rodents rely on whiskers bending to recognise the

shape of objects and on their resonance frequencies to de-
tect textures (58, 59), but the current state of the simulators
used by the NRP supports only rigid bodies. Using only
rigid whiskers makes object recognition tasks more difficult,
unless maybe using large arrays of finely spaced whiskers.
Therefore, this work focused on extracting only spatial in-
formation, which can be easily performed with just rigid
whiskers, and not more sophisticated features of the touched
object.
Much of the work on the whisker system consisted in the en-
coding of information in TG primary afferents, ignoring all
of the internal brain structures involved in the whisker sys-
tem, in particular the somatotopic mapping emerging in the
TN and propagated in the thalamo-cortical system. Loops
between thalamus and cortex have been cited as possible lo-
cation for mechanisms decoding phase information, with the
use of neuronal phase-locking loops. A possible future devel-
opment can be exploring other loops in the brainstem outside
the TN, such as the ones involving the superior colliculus and
their interactions with attention and foveation (60).
The work on the cerebellar control mechanisms was mainly
limited by the long simulation times of the NRP, which influ-
enced the choice of network and learning parameters. Given
the limited number of mossy fibers and granule cells (100
and 2000, respectively), the cerebellar network showed a re-
duced generalization capability. The discrimination task, in
this case, was between two very different conditions (object
hit with the left or with the right whiskers). Mice have a
higher resolution, since they can recognize objects slightly
moved or even objects with different textures. With larger
populations, training could make different sub-populations
respond to different inputs, encoding for more complex fea-
tures of the sensed environment. Future work can explore
this hypothesis making rigorous analyses on cell responses
and optimizing the network size to the variety of input pat-
terns.
We have chosen I&F neuron models as building blocks of
the SNN network. However, nowadays, there are much more
complex models, taking into account many mechanisms re-
lated to membrane potential and ionic currents (biophysical
models (61)) or more advanced I&F neuron models (62, 63).
Even though these models are more accurate representations
of the biological elements, their complexity would require
too much computational power to simulate a network made
of thousands of neurons, which would eventually prevent
from embedding these models as controllers in neurorobots.
Therefore, the model we are proposing is a trade-off between
computational efficiency and biological realism.
NEST-based simulations offer a great possibility to de-
velop and test biologically inspired models, but require
high-performance computing for large-scale models (64) and
therefore does not allow performances sufficient to control
robots in real world situations. This could allow testing the
robustness of the bioinspired controller against common en-
vironmental noise, increasing the similarity with experimen-
tal results (e.g., the imperfect (< 100%) hit rates accuracies
achieved by experimental animals). An already available so-
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Fig. 5. A) Learning curves recorded in the experiment performed by Rahmati and colleagues (33). The upper row shows the Hit rate (i.e., the percentage of correct responses
in GO trials) along sessions, where each session is composed of 10 trials. The lower row shows the False alarms (i.e., the percentage of incorrect responses in NOGO trials)
along sessions. The blue and red curves show the mean values for control animals and knock-out (L7-PP2B) mice. Shaded areas show the standard deviation. B) Learning
curves recorded from the in-silico experiments (10 control and 10 knock-out models). Colors are the same as in panel A. C) Spiking activity of the DCN neurons during GO
(green) and NOGO (red) trials, in the first session (left column) and after 10 sessions of training (right column). The first row reports the activity of one Control simulation,
while the second row reports one knock-out simulation. Each dot is a spike of one of the 36 DCN in the cerebellar network. The order of GO and NOGO trials is randomized
for each session and simulation, but all sessions have 5 GO and 50 NOGO trials.

lution to achieve real-time performances can be to rely on
spiking neural networks running on neuromorphic hardware.
Very recently, a cerebellar-inspired model made of 97 thou-
sand neurons and 4.2 million synapses has been implemented
on the neuromorphic platform SpiNNaker (65). This type of
solution could be applicable if the plasticity rule used at PF-
PC synapses, supervised by IO activity, will be implemented
on this or other neuromorphic systems. On the other hand,
the SNN whisker system here presented can be simulated on
SpiNNaker chips, since it has been developed using PyNN,

which supports both NEST and SpiNNaker as simulators.

Conclusions. Neuroscientists have not fully uncovered the
neural mechanisms for mouse whisking, but it is clear that
it involves a complex architecture composed of multiple sen-
sorimotor loops. In this work, we developed and tested a
spiking computational model of the peripheral whisker sys-
tem, reproducing the neural dynamics observed in its differ-
ent components and embedded in a virtual mouse neurorobot
controlled by a cerebellar SNN.
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The virtual mouse enriched with this peripheral whisker sys-
tem may be connected to more realistic multi-area brain mod-
els, to shed light on how these regions together may con-
trol the precise timing of whisker movements and coordinate
whisker perception.
In the future, refined versions of the model could exhibit
more advanced features, such as the recognition of surface
textures, identification of movements of the touched object,
or other complex touch-guided behaviours. From a techno-
logical perspective, neuromorphic implementations can be
employed to speed up the computation until reaching real-
time performances, granting the possibility to embed the
whisker system in physical robots.
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