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Abstract

A common strategy for the functional interpretation of genome-wide association study
(GWAS) findings has been the integrative analysis of GWAS and expression data. Using
this strategy, many association methods (e.g., PrediXcan and FUSION) have been
successful in identifying trait-associated genes via mediating effects on RNA expression.
However, these approaches often ignore the effects of splicing, which carries as much
disease risk as expression. Compared to expression data, one challenge to detect
associations using splicing data is the large multiple testing burden due to
multidimensional splicing events within genes. Here, we introduce a multidimensional
splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical
correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying
sparse linear combinations of genetic variants and splicing events that are maximally
correlated with each other; and 2) we test for the association between the genetically
regulated splicing CVs and the trait of interest using GWAS summary statistics.
Simulations show that MSG has proper type I error control and substantial power gains
over existing multidimensional expression analysis methods (i.e., S-MultiXcan,
UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the
Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex
human traits, MSG identified on average 83%, 115%, and 223% more significant genes
than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s
applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and
schizophrenia, and found that the majority of MSG-identified genes would have been
missed from expression-based analyses. Our results demonstrate that aggregating
splicing data through MSG can improve power in identifying gene-trait associations and
help better understand the genetic risk of complex traits.

Author summary

While genome-wide association studies (GWAS) have successfully mapped thousands of
loci associated with complex traits, it remains difficult to identify which genes they
regulate and in which biological contexts. This interpretation challenge has motivated
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the development of computational methods to prioritize causal genes at GWAS loci.
Most available methods have focused on linking risk variants with differential gene
expression. However, genetic control of splicing and expression are comparable in their
complex trait risk, and few studies have focused on identifying causal genes using
splicing information. To study splicing mediated effects, one important statistical
challenge is the large multiple testing burden generated from multidimensional splicing
events. In this study, we develop a new approach, MSG, to test the mediating role of
splicing variation on complex traits. We integrate multidimensional splicing data using
sparse canonocial correlation analysis and then combine evidence for splicing-trait
associations across features using a joint test. We show this approach has higher power
to identify causal genes using splicing data than current state-of-art methods designed
to model multidimensional expression data. We illustrate the benefits of our approach
through extensive simulations and applications to real data sets of 14 complex traits.

Introduction 1

Over the past two decades, genome-wide association studies (GWAS) have led to the 2

discovery of many trait-associated loci. However, most loci are located in non-coding 3

regions of the genome, whose functional relevance remains largely unclear [1]. Recent 4

research suggested that a large portion of GWAS loci might influence complex traits 5

through regulating gene expression levels [2, 3]. One family of methods called 6

transcriptome-wide association studies (TWAS) has been developed to integrate GWAS 7

and gene expression datasets to identify gene-trait associations [4]. In particular, TWAS 8

methods like PrediXcan [5], FUSION [6], and S-PrediXcan [7] first build gene 9

expression prediction models using reference transcriptome datasets (e.g., the 10

Genotype-Tissue Expression (GTEx) Project [8]) and then test the associations between 11

tissue-specific genetically predicted gene expressions and disease phenotypes using 12

readily-available GWAS individual- or summary-level data. These methods have been 13

widely used in practice as they facilitate the functional interpretation of existing GWAS 14

associations and detection of novel trait-associated genes. 15

Gene expression is not the only mediator of genetic effects on complex traits. 16

Splicing is of comparable importance and often functions independently of 17

expression [3, 7, 9, 10]. The splicing process involves highly context-dependent regulation 18

and other complex mechanisms, which could be prone to errors with potentially 19

pathological consequences [11]. In fact, recent studies indicated that at least 20% of 20

disease-causing mutations might affect pre-mRNA splicing [12], and splicing 21

quantitative trait loci (sQTLs) could account for disproportionately high fractions of 22

disease heritability [13,14]. Despite the importance of splicing regulation, it has been 23

understudied largely due to its complexity. Therefore, there is a pressing need to 24

investigate trait-associated genes with effects mediated by splicing. 25

While gene expression can usually be summarized into one measurement per gene 26

per tissue, there are on average eight RNA splicing events per gene per tissue [15]. To 27

analyze splicing data, a straightforward extension of the TWAS framework for 28

expression data is to test each genetically predicted splicing event separately and then 29

correct for multiple testing [9, 14,16–18]. For example, Gusev et al. [16] detected a 30

comparable number of significant genes associated with schizophrenia from around nine 31

times splicing events (99,562) compared to expression (10,819). While these results lend 32

support for the importance of splicing as a genotype-phenotype link, they also suggest 33

that there is room for appreciative power gain when information embedded in splicing 34

events can be effectively aggregated and multiple testing burden can be dramatically 35

alleviated. 36

A closely related multiple testing problem arises in TWASs when the most relevant 37
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tissue for the disease of interest is unclear, and one has to test the association between 38

the predicted gene expression and disease outcome in each tissue separately and then 39

apply multiple testing correction. To alleviate this multiple testing burden and improve 40

statistical power, multi-tissue TWAS approaches like S-MultiXcan [19] and 41

UTMOST [20] have been proposed to evaluate multiple single-tissue associations jointly 42

by an omnibus test. Specifically, S-MultiXcan first builds gene expression prediction 43

models in each tissue separately and then performs a chi-square test for the joint effects 44

of expressions from different tissues on the trait of interest. To avoid collinearity issues, 45

it applies singular value decomposition (SVD) to the covariance matrix of predicted 46

expressions and then discards the axes of small variation. UTMOST first builds 47

tissue-specific expression prediction models by borrowing information across tissues and 48

then uses the generalized Berk-Jones test [21, 22] to combine associations across tissues. 49

Recently, Feng at al. [23] proposed to use sparse canonical correlation analysis 50

(sCCA) [24] to directly build multi-tissue gene expression features and then jointly test 51

those sCCA features and single-tissue predicted expressions using the aggregate Cauchy 52

association test (ACAT) [25]. They showed that this sCCA+ACAT approach could be 53

more powerful than S-MultiXcan and UTMOST. 54

In this paper, we propose a multidimensional splicing gene (MSG) framework to 55

jointly test the association between all splicing events in a gene and the trait of interest. 56

In brief, we use sCCA to build genetically predicted multi-splicing-event features, and 57

then perform association tests of the predicted splicing events with the trait of interest. 58

To efficiently capture the genetic components of splicing, we use the SVD regularization 59

approach of S-MultiXcan [19] to compute a pseudo-inverse of covariance matrix of the 60

genetically predicted splicing events, which removes the axes of small variation. This 61

strategy offers advantages in statistical power by reducing the degree of freedom of the 62

chi-sqared test statistic in subsequent gene-trait association analysis. 63

We evaluated the performance of our MSG approach, and compared its performance 64

with those of S-MultiXcan, UTMOST, and sCCA+ACAT through extensive simulations 65

and real data applications. In simulations, we showed that MSG provided properly 66

controlled type I error rates, and yielded substantial power gains over S-MultiXcan, 67

UTMOST, and sCCA+ACAT. Real data applications using GTEx data and summary 68

statistics from 14 complex human traits demonstrated that MSG identified on average 69

83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and 70

UTMOST, respectively. We showcased the applications of MSG to GWAS summary 71

statistics of Alzhimer’s disease (AD), low-density lipoprotein cholesterol (LDL-C), and 72

schizophrenia, and found that the majority of significant splicing-trait associated genes 73

(75%, 86%, and 89% genes for AD, LDL-C, and schizophrenia, respectively) would have 74

been missed from expression-based analyses, highlighting the potential to incorporating 75

splicing data into post-GWAS analyses to better our understanding of the genetic 76

underpinnings of complex traits. 77

Results 78

Methods overview 79

Our proposed MSG method consists of two stages. In the first stage, we use sCCA to 80

construct latent canonical vectors (CVs) by identifying sparse linear combinations of 81

single nucleotide polymorphisms (SNPs) and splicing events that are maximally 82

correlated with each other. In the second stage, we test for the association between each 83

of the genetically regulated splicing CVs and the trait of interest using GWAS summary 84

statistics. To integrate single splicing CV-trait associations into a gene-level statistic, 85

we estimate the correlation matrix of these predicted splicing CVs using an external 86
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linkage disequilibrium (LD) reference panel. We use the SVD regularization method 87

of [19] to determine the number of informative splicing CVs (i.e., effective degree of 88

freedom) that explain the largest variations. Finally, we combine the associations using 89

a chi-squared test. Fig 1 displays an overview of the MSG method (see details in the 90

Methods section). 91

Simulations: type I error and power analysis 92

We performed extensive simulations to compare the performance of MSG, S-MultiXcan, 93

UTMOST, and sCCA+ACAT in terms of their type I error and power under various 94

scenarios (see details in the Methods section). In the first set of simulations, we varied 95

the number of effect-sharing splicing events (refereed to as “sharing”), the proportion of 96

genetic variants that have non-zero effects on splicing (referred to as “sparsity”), and 97

the cis-heritability of splicing events (referred to as h2c). We found that MSG, 98

S-MultiXcan, and sCCA+ACAT have properly controlled type I error rates in all 99

scenarios, while UTMOST is slightly conservative (Table 1). Fig 2 shows that sparsity 100

has little impact on power, yet as expected, splicing heritability increase is associated 101

with power increase. In the second set of simulations, we defined “effect-sharing splicing 102

events”, “non-effect-sharing splicing events”, and “trait-contributing splicing events” as 103

splicing events that are regulated by a common set of SNPs, splicing events that are 104

regulated by non-overlapping SNPs, and splicing events that are associated with the 105

trait, respectively. We considered three scenarios: 1) all splicing events are 106

trait-contributing; 2) only effect-sharing splicing events are trait-contributing; and 3) 107

only non-effect-sharing splicing events are trait-contributing. Fig 3 shows that power 108

increases with the number of trait-contributing splicing events for all methods, 109

regardless of the number of effect-sharing splicing events. In both sets of simulations, 110

we found that MSG is unanimously more powerful than S-MultiXcan, sCCA+ACAT, 111

and UTMOST, with substantial margins. 112

Applications to complex human traits 113

Summary of applications to 14 traits 114

We applied MSG, S-MultiXcan, sCCA+ACAT, and UTMOST to splicing data from the 115

GTEx project (V8 release) to obtain genetic prediction models for splicing events. We 116

then applied the models to GWAS summary statistics of 14 complex traits to identify 117

trait-associated genes whose genetic effects were mediated via splicing. For each trait, 118

we chose the tissue with the top trait heritability enrichment in the respective 119

tissue-specific annotation using linkage disequilibrium score regression [26] as previously 120

described [20]. The sample sizes of these tissues in GTEx range from 175 (brain frontal 121

cortex BA9) to 706 (muscle skeletal). We extracted cis-SNPs within 500 kb upstream of 122

the transcription start site and 500 kb downstream of the transcription stop site. We 123

selected GWASs of 14 complex traits (both quantitative and binary traits) with 124

reasonably large sample sizes, ranging from 51,710 (bipolar disorder) to 408,953 (type 2 125

diabetes). When implementing S-MultiXcan, UTMOST, and sCCA+ACAT, we used 126

the European subjects from the 1000 Genomes Project [27] as the LD reference panel to 127

estimate the correlation matrix, following the recommendation in their original 128

publications. When implementing MSG, we used 5,000 randomly selected European 129

subjects from BioVU, the Vanderbilt University biorepository linked to de-identified 130

electronic medical records [28], because MSG requires a larger LD reference panel to 131

ensure proper type I error control (Table S1). We used Bonferroni correction to account 132

for multiple testing across all genes for each trait separately. Table 2 shows that, at 133

Bonferroni threshold of 0.05, MSG identified on average 83%, 115%, and 223% more 134
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Table 1. Type I error rates in the first set of simulations.

Sharing Sparsity h2c S-MultiXcan UTMOST sCCA+ACAT MSG
2 1% 1% 0.047 0.036 0.052 0.049

5% 0.051 0.038 0.053 0.050
10% 0.057 0.043 0.051 0.049

5% 1% 0.044 0.035 0.050 0.051
5% 0.050 0.036 0.051 0.051
10% 0.055 0.042 0.046 0.052

10% 1% 0.041 0.031 0.054 0.051
5% 0.054 0.042 0.052 0.053
10% 0.053 0.039 0.054 0.052

4 1% 1% 0.044 0.034 0.053 0.050
5% 0.053 0.039 0.052 0.051
10% 0.056 0.043 0.055 0.048

5% 1% 0.043 0.033 0.049 0.051
5% 0.048 0.034 0.054 0.049
10% 0.053 0.040 0.054 0.051

10% 1% 0.044 0.031 0.055 0.047
5% 0.047 0.037 0.055 0.051
10% 0.057 0.045 0.053 0.054

8 1% 1% 0.044 0.034 0.054 0.051
5% 0.047 0.037 0.054 0.050
10% 0.054 0.041 0.050 0.049

5% 1% 0.044 0.033 0.051 0.047
5% 0.051 0.036 0.054 0.053
10% 0.053 0.040 0.059 0.050

10% 1% 0.042 0.032 0.051 0.048
5% 0.050 0.040 0.053 0.050
10% 0.044 0.034 0.051 0.051

Note: Type I error was computed as the proportion of significant genes under the
p-value cutoff of 0.05. Each entry is based on 20,000 replicates. The total number
of splicing events is 10.

September 5, 2021 5/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460009
http://creativecommons.org/licenses/by/4.0/


significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively, a 135

substantial improvement over existing methods (see Tables S2-S16 for complete lists of 136

significant genes identified by MSG). In particular, we examined closely the results for 137

AD, LDL-C, and schizophrenia, with details in the next three subsections. 138

Table 2. Numbers of significant gene-trait associations across 14 human traits using
S-MultiXcan, UTMOST, sCCA+ACAT, and MSG.

Trait Tissue MSG S-MultiXcan UTMOST sCCA+ACAT
AD Brain frontal cortex BA9 32 19 14 19

Bipolar disorder Brain frontal cortex BA9 67 23 17 31
Major depressive disorder Brain frontal cortex BA9 23 5 3 0
Body mass index (BMI) Brain frontal cortex BA9 1757 786 497 704

Schizophrenia Brain frontal cortex BA9 458 203 145 234
Neuroticism Brain frontal cortex BA9 178 68 46 72

Type 2 diabetes Adipose subcutaneous 104 53 41 59
Total cholesterol Liver 202 109 66 118

LDL-C Liver 200 108 69 120
Serum urate Liver 87 63 50 64

High-Density Lipoprotein Cholesterol Adipose subcutaneous 161 79 53 111
Triglycerides Adipose subcutaneous 144 96 69 94

Waist hip ratio adjusted for BMI Adipose subcutaneous 860 397 259 516
Age at natural menopause Muscle skeletal 220 118 79 115

Application to AD 139

We used the brain frontal cortex BA9 splicing data from the GTEx project to build 140

genetic prediction models for splicing events and then conducted gene-trait association 141

analysis using the stage I GWAS summary statistics from the International Genomics of 142

Alzheimer’s Project (IGAP) (N = 54,162) [29]. MSG, UTMOST, S-MultiXcan, and 143

sCCA+ACAT identified 32, 14, 19, and 19 significant genes, respectively (Table 2 and 144

Fig 4A). We observed that 26 out of the 32 MSG significant genes are within 500 kb 145

distance to five GWAS identified lead SNPs, including the PTK2B-CLU locus on 146

chromosome (CHR) 1, SPI1 locus on CHR 11, MS4A4A locus on CHR 11, PICALM 147

locus on CHR 11, and APOE locus on CHR 19 (Table S17). Among the gene-trait 148

associations identified using MSG, 21% (7/32) were also identified by all the other three 149

approaches; 44% (14/32) were also identified by at least one of the other approaches; 150

and 34% (11/32) were identified by MSG only (Fig 4B). To replicate our findings, we 151

applied these four methods to summary statistics from the GWAS by proxy (GWAX) 152

for AD in the UK Biobank (N = 114,564) [30]. MSG, sCCA+ACAT, S-MultiXcan, and 153

UTMOST replicated six (MARK4, ERCC1, RELB, CLASRP, PPP1R37, CEACAM19 ), 154

two (RELB, APOC1 ), one (RELB), and zero significant genes, respectively, under the 155

Bonferroni-corrected significance threshold. We compiled a list of well-known 156

AD-associated genes (Supplementary Note Section 1A) from [31], and found that several 157

MSG-identified AD genes are in this list (labelled in red in Fig 4C). 158

We also conducted a conventional TWAS using S-PrediXcan with GTEx brain 159

frontal cortex BA9 gene expression data and IGAP stage I GWAS summary statistics. 160

We found that out of the 32 genes identified by MSG using splicing data, eight genes 161

could also be identified by S-PrediXcan using expression data (Table S20). The 162

remaining 24 genes would have been missed by a conventional TWAS (Fig S1). Among 163

genes that could only be identified using splicing data, PICALM (MSG p-value 164

= 1.93× 10−9; S-PrediXcan p-value = 9.80× 10−1) and PTK2B (MSG p-value = 165

7.96× 10−9; S-PrediXcan p-value = 8.98× 10−1) are two genes previously shown to be 166

significantly differentially spliced between AD patients and healthy controls [18]. 167

MARK4 (MSG p-value = 1.31× 10−58; S-PrediXcan p-value = 8.48× 10−2) was shown 168

to change the properties of tau [32] and has variants reported to be associated with AD 169

and AD family history [33, 34]. Several genes in the APOE region are also significant in 170
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splicing but not in expression analysis: APOE (MSG p-value = 1.12× 10−8; 171

S-PrediXcan p-value = 2.49× 10−3) is a well-known risk gene [35] for late-onset AD, 172

with reports that alternative splicing (exclusion of exon 5) is associated with increased 173

beta-amyloid deposition, and affects tau structure [36]; APOC1 (MSG p-value = 174

4.65× 10−17; S-PrediXcan p-value = 2.07× 10−3) has been reported to be associated 175

with family history of AD [37,38]; TOMM40 (MSG p-value = 5.67× 10−9; S-PrediXcan 176

p-value = 4.84× 10−1) has been reported to have intronic variants associated with 177

family history of AD [33] and high density lipoprotein cholesterol (HDL-C) levels [39]; 178

ERCC1 (MSG p-value = 2.32× 10−27; S-PrediXcan p-value = 4.48× 10−2), a DNA 179

repair enzyme, has been shown to be associated with the quantification of amount of 180

tau and implicated in AD [40]. 181

Application to LDL-C 182

We used the liver splicing data from the GTEx project to build genetic prediction 183

models for splicing events and then conducted gene-trait association analysis using the 184

LDL-C GWAS summary statistics from the global lipids genetics consortium (GLGC) 185

(N = 188,578) [41]. MSG, UTMOST, S-MultiXcan, and sCCA+ACAT identified 200, 186

108, 69, 120 significant genes, respectively (Table 2 and Fig 5A). We found that 102 out 187

of the 200 MSG significant genes are within 500 kb distance to the 20 GWAS significant 188

lead SNPs, which cluster around known SNP-level significant loci to a lesser extent than 189

AD (Table S18). Among the gene-trait associations identified by MSG, 23% (47/200) 190

were also identified by all the other three approaches; 37% (75/200) were also identified 191

by at least one of the other approaches; and 39% (78/200) were identified by MSG only 192

(Fig 5B). To replicated our findings, we applied these four approaches to summary 193

statistics from the LDL-C UK Biobank GWAS [42] (N = 343,621) and identified 474, 194

223, 254, and 175 genes using MSG, S-MultiXcan, sCCA+ACAT, and UTMOST, 195

respectively. The replication rates are high for all four methods: among the significant 196

genes identified in the GLGC GWAS, 161 out of 200 (81%), 79 out of 108 (73%), 93 out 197

of 120 (77%), and 52 out of 69 (75%) were replicated in the UK Biobank analysis using 198

MSG, S-MultiXcan, sCCA+ACAT, and UTMOST, respectively, under the 199

Bonferroni-corrected significance threshold. We compiled a list of well-known 200

LDL-associated genes (Supplementary Note Section 1B) from [43], and found that 201

several MSG-identified LDL-C genes are in this list, including LPIN3, FADS3, 202

LDLRAP1, FADS1, LDLR, FADS2 (labelled in red Fig 5C). 203

We also conducted a conventional S-PrediXcan analysis using the GTEx liver gene 204

expression data with the same GLGC GWAS summary statistics. We found that out of 205

the 200 genes identified by MSG using splicing data, 27 genes could also be identified by 206

S-PrediXcan using expression data (Table S21). The remaining 173 genes would have 207

been missed by a conventional TWAS (Fig S2). Among genes that could only be 208

identified via splicing: HMGCR (MSG p-value = 1.14× 10−40; S-PrediXcan p-value = 209

3.00× 10−4) contains variants that affect alternative splicing of exon 13 and associate 210

with LDL-C across populations [44]; PARP10 (MSG p-value = 1.51×10−8; S-PrediXcan 211

p-value = 1.07× 10−2) has been prioritized as a causal gene from exome-wide 212

association analysis in more than 300,000 individuals [45]; SMARCA4 (MSG p-value = 213

3.27× 10−109; S-PrediXcan p-value = 6.52× 10−2) has been shown to have variants 214

associated with LDL-C levels [46], coronary heart disease susceptibility [47,48], and 215

myocardial infarction [49]; LDLR (MSG p-value = 4.49× 10−73; S-PrediXcan p-value = 216

1.43× 10−1) has been reported to be associated with statin use in the UK Biobank [50], 217

and has intronic variants identified in familial hypercholesterolemia cases [51]; CARM1 218

(MSG p-value = 1.05× 10−66; S-PrediXcan p-value = 3.06× 10−1) has been reported to 219

have intronic variants associated with LDL-C and total cholesterol [52]. 220
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Application to schizophrenia 221

We used the brain frontal cortex BA9 splicing data from the GTEx project to build 222

genetic prediction models for splicing events and then conduct gene-trait association 223

analysis using a schizophrenia GWAS (N = 105,318) [53]. MSG, S-MultiXcan, 224

sCCA+ACAT, and UTMOST identified 501, 222, 234, 153 significant genes, 225

respectively (Table 2 and Fig 6A). We observe that 376 out of 501 MSG significant 226

genes are within 500 kb distance to 76 GWAS significant SNPs (see full list of these 227

genes in Table S19). Among the gene-trait associations identified using MSG, 18% 228

(83/458) were also identified by all the other three approaches; 36% (165/458) were also 229

identified by at least one of the other approaches; and 55% (253/458) were identified by 230

MSG only (Fig 6B). Current available large-scale schizophrenia GWAS often have 231

sample overlap, so we were unable to replicate the genes in an independent GWAS. We 232

found that a few genes identified by MSG had been reported to influence schizophrenia 233

risk via splicing (Supplementary Note Section 1C), including SNX19 [54], AS3MT [55], 234

and CYP2D6 [54] (Fig 6C). 235

We also conducted a conventional TWAS using S-PrediXcan, GTEx brain frontal 236

cortex gene BA9 expression data, and the same GWAS summary statistics. We found 237

that out of the 458 genes identified by MSG using splicing data, 55 genes could also be 238

identified by S-PrediXcan using expression data. Due to the complex haplotype and LD 239

structure of the major histocompatibility complex (MHC) region, we summarized the 240

results for genes in and outside of the MHC region separately. In the MHC region, 30 241

genes overlapped between 33 genes identified by S-PrediXcan and 101 genes identified 242

by MSG (Table S22). Genes with literature support to be associated with schizophrenia 243

that could only be identified using splicing data in the MHC region includes NOTCH4 244

(MSG p-value = 8.35× 10−29; S-PrediXcan p-value = 8.19× 10−2) [56], TRIM26 (MSG 245

p-value = 4.64× 10−14; S-PrediXcan p-value = 4.40× 10−1) [57], and ZSCAN9 (MSG 246

p-value = 4.64× 10−14; S-PrediXcan p-value = 4.40× 10−1) [58]. Outside of the MHC 247

region, 25 genes overlapped between 58 genes identified by S-PrediXcan and 400 genes 248

identified by MSG (Table S22). Among genes that could only be identified using 249

splicing data (Fig S3), SNX19 (MSG p-value=2.27× 10−10; S-PrediXcan 250

p-value=2.38× 10−3) has been reported to have schizophrenia risk-associated 251

transcripts, defined by an exon-exon splice junction between exons 8 and 10 (junc8.10), 252

which is predicted to encode proteins lacking the characteristic nexin C terminal 253

domain [59]; GRIA1 (MSG p-value=1.28× 10−8; S-PrediXcan p-value=1.62× 10−5) has 254

been reported to be a schizophrenia risk gene [60]; CACNA1C (MSG 255

p-value=9.35× 10−10; S-PrediXcan p-value=5.44× 10−1) and CACNA1G (MSG 256

p-value=2.45× 10−6; S-PrediXcan p-value=7.15× 10−1) encode calcium voltage-gated 257

channel subunit and have been implicated in multiple studies to be a risk gene 258

associated with schizophrenia [60,61]; and PPP1R16B (MSG p-value=4.86× 10−18; 259

S-PrediXcan p-value=8.62× 10−1) has been reported to be associated with 260

schizophrenia in several populations [60,62] and multiple psychiatric disorders [63,64]. 261

Discussion 262

While there is extensive research on trait-associated gene discovery based on gene 263

expression using methods like S-Predixcan and FUSION and their multidimensional 264

variants like S-MultiXcan, UTMOST, and sCCA+ACAT recently, there has been few 265

studies on trait-associated gene discovery using splicing data so far. Splicing data 266

present unique challenges due to its multidimensional nature, which demands the 267

development of efficient analytic approaches. In this paper, we proposed MSG, a 268

framework to construct cross-splicing event models using sCCA to boost power in 269
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identifying genes influencing traits via splicing. Through simulations, we showed that 270

MSG has proper type I error control and superior power compared to current 271

state-of-the-art approaches, e.g. S-MultiXcan, UTMOST, and sCCA+ACAT. In real 272

data applications, MSG identified on average 83%, 115%, and 223% more significant 273

genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively, across 14 complex 274

traits. We highlighted our findings on AD, LDL-C, and schizophrenia, and found 275

independent literature support for MSG-identified genes, showcasing MSG’s advantage 276

of capturing novel risk genes mediated via splicing. 277

Through MSG, we found a considerable number of trait-associated genes that were 278

not identified from S-PrediXcan using expression data, demonstrating the 279

complementary roles of genetic regulation through splicing and expression on trait 280

variation and disease susceptibility. The number of genes identified by MSG using 281

splicing data is usually larger than that identified by S-PrediXcan using expression data. 282

A few factors may contribute to this phenomenon. One factor is that splicing is highly 283

prevalent, affecting over 95% of human genes [12]. It provides the possibility of cell 284

type- and tissue-specific protein isoforms, and the possibility of regulating the 285

production of different proteins through specific signaling pathways [65]. Another factor 286

is that the rich multidimensional splicing information may yield higher power to detect 287

gene-trait associations compared to one-dimensional expression information. It was 288

shown that the power of conventional TWASs increase to a maximum when the sample 289

size of the reference transcriptome dataset exceeds 1000 [6]. As most tissues in GTEx 290

have sample sizes less than 1000, the sample size of a target tissue may be too small to 291

yield enough power for expression data-based TWAS analysis, but may be sufficient to 292

detect associations for multidimensional splicing data analysis. Thus, we believe that 293

splicing data may offer unique opportunities to study genetic risk of complex traits, and 294

view our method as an important step toward using sQTLs for GWAS interpretation 295

and gene discovery. 296

We observed 83%–223% increase in the number of trait-associated splicing genes 297

identified by MSG compared to established methods like sCCA+ACAT, S-MultiXcan, 298

and UTMOST. The relative increase of power using MSG can be attributed to several 299

factors. Specifically, the MSG models tend to be less sparse (i.e., include more SNPs 300

with non-zero weights) than the S-MultiXcan and UTMOST models and explain more 301

variability in splicing variation. As a result, we found that in MSG, more genes are 302

“testable” than S-MultiXcan and UTMOST. For example, there are 1041 genes not 303

testable by S-MultiXcan or UTMOST but testable by MSG using the brain frontal 304

cortex BA9 splicing data from the GTEX project. MSG is also substantially more 305

powerful than sCCA+ACAT, despite the fact that both use SCCA to build genetically 306

regulated splicing models. We speculate that it may be due to the following reasons: 1) 307

MSG directly uses the sCCA-generated CVs for association tests, while sCCA+ACAT 308

retrains the splicing CV models using elastic net, which tends to generate models that 309

are more sparse and captures less splicing variation; 2) MSG chooses the number of CVs 310

to be included in the association test in an adaptive manner using the SVD 311

regularization approach of [19], while sCCA+ACAT uses three CVs throughout, which 312

may not be optimal for all genes and tissues; 3) MSG fully incorporates information 313

from multiple CVs using a multi-degree-of-freedom chi-square test, while the ACAT test 314

directly combines p-values and thus could entail information loss. 315

Because the MSG models tend to be less sparse compared to alternative methods, 316

they require a larger reference panel than the commonly used 1000 Genomes European 317

samples to ensure accurate LD calculation and proper type I error control. We 318

conducted simulation studies using LD reference panels of different sizes when 319

performing gene-trait association analysis using the summary statistics of a GWAS with 320

50,000 samples and found that a reference panel of 5,000 individuals is adequate for 321
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MSG (Table S1). To construct this large reference sample in practice, we randomly 322

selected 5,000 samples of European descent in BioVU [28]. When such LD reference 323

panels are not available, one may still use the 1000 Genomes samples for initial 324

screening purposes, but more stringent validation will be needed to follow up with the 325

candidate genes identified. 326

There are several limitations in our study. First, we focused on single-gene, 327

single-trait analyses of splicing data, and there are exciting opportunities for methods 328

development and gene discovery in multi-tissue, multi-trait, multi-gene, and cis and 329

trans effects analyses [23,66,67]. Second, we used the GTEx transcriptome data from 330

adult bulk tissues. Consequently, findings driven by differences in cellular composition 331

or developmental stages cannot be fully resolved. As splicing is likely to be tightly 332

regulated, the association of splicing implicated genes with traits in different cell types 333

or developmental stages remains to be studied. Third, like other TWAS-type 334

approaches, results from our method need to be interpreted with caution: they do not 335

implicate causality. Further causal analysis using methods like FOCUS [68] and 336

experimental validation are needed to determine causal genes. 337

Conclusion 338

By integrating multidimensional splicing information with GWAS summary statistics, 339

we are able to pinpoint candidate risk genes associated with common traits via splicing. 340

This approach can potentially be extended to integrate molecular data beyond splicing, 341

such as epigenetic data. With the increasing availability of GWAS summary statistics of 342

many complex traits and molecular data, we believe that our framework and its 343

extensions will enable us to better understand how genes influence complex traits 344

through diverse regulatory effects. 345

Methods 346

MSG framework 347

In this study, we use splicing and genotype data from the GTEx project and GWAS 348

summary statistics of the traits of interest to identify splicing-trait-associated genes. For 349

a given gene, let n, p, and q denote the sample size, number of SNPs in the cis-region of 350

the gene (i.e., a 1-Mb window around the transcription start sites of a gene), and the 351

number of splicing events, respectively, in GTEx. We note that q � p in practice. Let X 352

and Y denote the n× p standardized genotype matrix and n× q matrix of standardized 353

measured splicing events, respectively. In the first stage of MSG, we use sCCA [24,69] 354

implemented in the R package “PMA” to identify sparse linear combinations of the 355

columns of X and Y that are highly correlated with each other. That is, we wish to find 356

vectors w1 and u1 that solve the following optimization problem: 357

maximizew1,u1
wT

1 X
TY u1 subject to ‖w1‖22 ≤ 1, ‖u1‖22 ≤ 1, ‖w1‖1 ≤ c1, ‖u1‖1 ≤ c2,

(1)
where ‖·‖1 and ‖·‖2 denote the L1 and L2 norms, respectively, and c1 and c2 are 358

parameters that control the sparsity of w1 and u1, respectively. We choose c1 and c2 359

using the default settings of the “CCA” function in “PMA”. Given the selected pair of 360

(c1, c2), we obtain subsequent CVs by repeatedly applying the sCCA algorithm (1) to 361

the updated matrix XTY after regressing out the previous CVs. We repeat this 362

procedure q − 1 times to obtain (w2, u2), . . . , (wq, uq). Let W ≡ (w1, . . . , wq) be the 363

p× q matrix of SNP weights. 364

September 5, 2021 10/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460009
http://creativecommons.org/licenses/by/4.0/


In the second stage of MSG, we test the association between the genetically 365

regulated splicing CVs and the trait of interest using GWAS summary statistics. 366

Specifically, let z be the vector of z-statistics in the GWAS of trait of interest. The 367

multivariate z-statistic for the association between genetically regulated splicing CVs 368

and the trait of interest is WTz. Under the null hypothesis of no association, it can be 369

shown that WTz follows a multivariate normal distribution with mean zero and 370

covariance matrix WTΣW , where Σ is the p× p LD matrix. In practice, we can 371

estimate Σ using an external LD reference panel. A chi-squared test statistic about the 372

gene-trait association can be constructed as 373

T = zTW
(
WTΣW

)−1
WTz. (2)

In practice, the splicing events within a gene can be highly correlated, such that the 374

rank of the SNP weight matrix W can be less than q, and the majority of variations 375

may be explained by a few leading splicing CVs. Consequently, WTΣW in expression 376

(3) can be close to singular and its inverse cannot be reliably estimated for many genes. 377

To address this problem, we use the SVD regulation of [19]. Specifically, we compute 378

the pseudo-inverse of WTΣW via SVD, decomposing it into its principal components 379

and removing those with small eigenvalues. We use the condition number threshold 380

λmax/λi < 30 to select the number of components, where λi and λmax are the ith and 381

maximum eigenvalue of WTΣW . Denoting the resulting pseudo-inverse of WTΣW as 382(
WTΣW

)−
and substitute it into equation (3), we have 383

T = zTW
(
WTΣW

)−
WTz. (3)

Under the null hypothesis, T2 follows a χ2
r distribution, where r is the number of 384

components that contribute to the pseudo-inverse. We test the gene-trait association 385

using a chi-squared test. For each trait and tissue combination, we use Bonferroni 386

correction to determine the genome-wide significance threshold by dividing 0.05 with 387

the number of genes with at least two splicing events in that tissue. This value varies 388

between trait-tissue pairs, and is usually around 0.05/10000 = 5× 10−6. 389

Simulations 390

To evaluate the type I error rate and power of the gene-trait association tests, we 391

simulated a training dataset with genetic and splicing data, a GWAS dataset, and a LD 392

reference panel. Then, we conducted gene–trait association tests using our proposed 393

MSG method and the S-MultiXcan, UTMOST, and sCCA+ACAT methods in a variety 394

of realistic scenarios. 395

To simulate the training dataset with genetic and splicing data, we set n = 200, 396

p = 300, and q = 10. We generated rows of X independently from a multivariate normal 397

distribution with mean 0, variance 1, and autoregressive covariance structure 398

determined by ρX = 0.1. We generated Y from the multivariate linear regression model 399

Y = XB + E, where B is a p× q matrix of genetic effects on splicing events, and E is 400

n× q matrix of random errors. Following [70], we factor the effect size matrix B into 401

SNP- and splicing event-dependent components, such that B = diag(b)D, where b is a 402

p-vector of shared genetic effects on all splicing events, diag(b) is the p× p diagonal 403

matrix expanded by b, and D is a p× q matrix of splicing event-specific effects. We 404

specify the structure of D through the following parameters: the number of 405

effect-sharing splicing events (i.e., sharing = 2, 4, 8), the fraction of shared SNPs among 406

non-zero effect SNPs for those effect-sharing splicing events (fixed at 0.3); and the 407

proportion of genetic variants that have non-zero effects on splicing (i.e., sparsity = 408

1%, 5%, 10%). We generated the elements of b independently from a standard normal 409
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distribution. We generated the non-zero elements in D independently from the uniform 410

distribution on [−1, 1]. We generated the rows of E independently from a multivariate 411

normal distribution with mean zero, variance scaled such that the desirable splicing 412

heritability h2c (0.01, 0.05, 0.1) was achieved, and autoregressive covariance structure 413

determined by ρE = 0.5. 414

To simulate the GWAS dataset, we generated a genotype matrix X1 with 50,000 415

rows representing the subjects and 300 columns representing the cis-SNPs. We 416

generated the rows of X1 in a similar manner as we generated X. We generated the 417

trait of interest using Y1 = X1Bα+ ε, where α is a q-vector of splicing effects on the 418

trait, and ε is a vector of random errors. Under the null hypothesis of no gene-trait 419

association, we set α = 0. Under the alternative hypothesis, we denote the splicing 420

events with non-zero elements in α as the “trait-contributing splicing events”, with 421

non-zero values generated independently from a uniform distribution on [−1, 1]. We 422

generated the elements of ε independently from a normal distribution with mean zero 423

and variance scaled such that the trait heritability was 0.01. We first generated the 424

individual-level dataset and then obtained the GWAS summary statistics. We assumed 425

that only the GWAS summary statistics rather than the individual-level data were 426

available in the subsequent gene-trait association analysis. 427

We generated an independent genotype matrix X3 in a similar manner as we 428

generated X1 and X2 and used it as an external LD reference panel. We considered two 429

sample sizes for this LD reference panel: 400 (mimicking the 1000 Genomes European 430

reference samples) and 5,000 (mimicking the randomly selected BioVU European 431

samples). Our simulation showed that the MSG method requires more than 400 432

subjects in the LD reference panel to ensure proper type I error control (Table S1). 433

We considered a number of realistic scenarios by varying splicing sparsity, splicing 434

heritability, effect-sharing splicing events, and trait-contributing splicing events. When 435

implementing the S-MultiXcan, MSG, and sCCA+ACAT methods, we used their 436

default settings. For type I error evaluation, we used 20,000 replicates for each scenario 437

and used the p-value cutoff of 0.05. For power evaluation, we used 2,000 replicates for 438

each scenario and used the p-value cutoff of 5× 10−6, which was chosen to mimic the 439

Bonferroni correction in real data applications. 440

Compilation of well-known trait-associated gene lists 441

We obtained AD genes (Supplementary Note Section 1A) from [31]. The authors 442

performed intensive hand-curation to identify confident AD-associated genes from 443

various disease gene resources, including AlzGene, AlzBase, OMIM, DisGenet, DistiLD, 444

UniProt, Open Targets, GWAS Catalog, ROSMAP, and existing literature. We 445

obtained LDL-C genes (Supplementary Note Section 1B) from [43] that included genes 446

from KEGG pathways and existing literature. We obtained a list of genes that influence 447

schizophrenia via splicing (Supplementary Note Section 1C) from [54,71–73]. 448

Availability of data and materials 449

The genotype data for the GTEx project are available on AnVIL 450

(https://anvilproject.org/learn/reference/ 451

gtex-v8-free-egress-instructions#downloading-vs-analyzing-in-terra) [74]. 452

Processed GTEx gene expression and splicing data (fully processed, filtered, and 453

normalized splice phenotype matrices in BED format) are downloaded from the GTEx 454

portal (https://gtexportal.org/home/datasets) [75]. With the downloaded GTEx 455

data, we formatted each protein-coding gene with at least two splicing events into a 456

genotype matrix and a splicing events matrix for downstream TWAS analyses. The 457

source of the summary statistics datasets of all GWAS meta-analyses analyzed in this 458
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paper can be found in Table S2. The LD matrices for cis-SNPs of each gene from a 459

reference panel of 5,000 randomly selected BioVU samples of European ancestry will be 460

available at the repository Zenodo. The LD reference panel from 1000 Genomes is 461

available at 462

https://data.broadinstitute.org/alkesgroup/FUSION/LDREF.tar.bz2 [76]. In 463

this analysis, we restricted the analysis to SNPs in the HapMap 3 reference panel that 464

are in the LD reference dataset 465

(https://data.broadinstitute.org/alkesgroup/FUSION/LDREF.tar.bz2 [76]) 466

since we are focused on common, well-imputed variants [26]. The code for MSG is 467

available on Github at https://github.com/yingji15/MSG_public [77]. 468

Figures 469

Figure 1. Schematic of the MSG method.

Supporting information 470

AdditionalFile1.pdf 471

Supplementary Note 1. Well-known trait-associated gene lists. 472
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Figure 2. Power comparison between the S-MultiXcan, UTMOST,
sCCA+ACAT, and MSG methods in the first set of simulations. With
different number of effect-sharing splicing events (2, 4, 8), sparsity (0.01, 0.05, 0.1) and
splicing heritability (0.01, 0.05, 0.1). The trait heritability is fixed at 0.01. For each
subplot, the x-axis stands for the number of effect-sharing splicing events and the y-axis
stands for the proportion of significant genes under the p-value cutoff of 5× 10−6 across
2000 replicates.

Fig S1. AD genes identified via splicing analysis using MSG that would have been 473

missed from expression analysis using S-PrediXcan. 474

Fig S2. LDL-C genes identified via splicing analysis using MSG that would have been 475

missed from expression analysis using S-PrediXcan. 476

Fig S3. Schizophrenia genes identified via splicing analysis using MSG that would 477

have been missed from expression analysis using S-PrediXcan. 478

Table S1. Comparison of type I error for MSG using individual GWAS, MSG with 479

GWAS summary statistics and reference genome of 400 and 5000 individuals in 480

simulation. 481
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Figure 3. Power comparison between the S-MultiXcan, UTMOST,
sCCA+ACAT, and MSG models in the second set of simulations. With
different trait-contributing splicing events. For each subplot, the x-axis stands for the
number of effect-sharing splicing events (2, 4, 8) and the y-axis stands for the proportion
of significant genes under the p-value cutoff of 5× 10−6 across 2000 replicates.

AdditionalFile2.xlsx 482

Tables S2-S16. Summary of MSG application to 14 human traits. The source of 483

GWAS and MSG identified trait-associated genes are provided. 484

Tables S17-S19. MSG identified genes that are within 500 kb distance to GWAS 485

significant loci in AD, LDL-C and schizophrenia. 486

Tables S20-S22. MSG identified genes that overlap with S-PrediXcan identified 487

genes in AD, LDL-C, and schizophrenia. 488
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Figure 4. Results of the AD analysis using the IGAP stage I GWAS
summary statistics. A) Bar plots of the number of significant genes using different
methods; B) Venn diagram showing the overlap of significant genes identified by
different methods; C) Manhattan plot for the MSG analysis. Genes with strong
literature support are labeled in red.
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10. Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, et al.
Using an atlas of gene regulation across 44 human tissues to inform complex
disease-and trait-associated variation. Nat Genet. 2018;50(7):956–967.

11. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet.
2016;17(1):19–32.

12. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the
decoding machinery. Nat Rev Genet. 2007;8(10):749–761.

13. Akula N, Marenco S, Johnson K, Feng N, Zhu K, Schulmann A, et al. Deep
transcriptome sequencing of subgenual anterior cingulate cortex reveals
cross-diagnostic and diagnosis-specific RNA expression changes in major
psychiatric disorders. Neuropsychopharmacol. 2021; p. 1–9.

14. Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, De La
Torre-Ubieta L, et al. Genetic control of expression and splicing in developing
human brain informs disease mechanisms. Cell. 2019;179(3):750–771.

15. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al.
Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet.
2018;50(1):151–158.

16. Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al.
Transcriptome-wide association study of schizophrenia and chromatin activity
yields mechanistic disease insights. Nat Genet. 2018;50(4):538–548.

17. Li YI, Wong G, Humphrey J, Raj T. Prioritizing Parkinson’s disease genes using
population-scale transcriptomic data. Nat Commun. 2019;10(1):1–10.

18. Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S, et al. Integrative
transcriptome analyses of the aging brain implicate altered splicing in
Alzheimer’s disease susceptibility. Nat Genet. 2018;50(11):1584–1592.

19. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating
predicted transcriptome from multiple tissues improves association detection.
PLoS Genet. 2019;15(1):1–20.

20. Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, et al. A statistical framework
for cross-tissue transcriptome-wide association analysis. Nat Genet.
2019;51(3):568–576.

21. Sun R, Lin X. Set-based tests for genetic association using the generalized
Berk-Jones statistic. arXiv preprint arXiv:171002469. 2017;.

22. Sun R, Hui S, Bader GD, Lin X, Kraft P. Powerful gene set analysis in GWAS
with the Generalized Berk-Jones statistic. PLoS Genet. 2019;15(3):1–27.

23. Feng H, Mancuso N, Gusev A, Majumdar A, Major M, Pasaniuc B, et al.
Leveraging expression from multiple tissues using sparse canonical correlation
analysis and aggregate tests improves the power of transcriptome-wide
association studies. PLoS Genet. 2021;17(4):1–21.

24. Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis.
Biostatistics. 2009;10(3):515–534.

September 5, 2021 19/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460009
http://creativecommons.org/licenses/by/4.0/


25. Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. Acat: A fast and
powerful p value combination method for rare-variant analysis in sequencing
studies. Am J Hum Genet. 2019;104(3):410–421.

26. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al.
LD Score regression distinguishes confounding from polygenicity in genome-wide
association studies. Nat Genet. 2015;47(3):291–295.

27. Consortium GP, et al. A global reference for human genetic variation. Nature.
2015;526(7571):68.

28. Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR, et al.
Development of a large-scale de-identified DNA biobank to enable personalized
medicine. Clin Pharmacol. 2008;84(3):362–369.

29. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C,
et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
Alzheimer’s disease. Nat Genet. 2013;45(12):1452–1458.

30. Liu JZ, Erlich Y, Pickrell JK. Case–control association mapping by proxy using
family history of disease. Nat Genet. 2017;49(3):325–331.

31. Lin CX, Li HD, Deng C, Liu W, Erhardt S, Wu FX, et al. Genome-wide
prediction and integrative functional characterization of Alzheimer’s
disease-associated genes. bioRxiv. 2021;.

32. Oba T, Saito T, Asada A, Shimizu S, Iijima KM, Ando K. Microtubule
affinity–regulating kinase 4 with an Alzheimer’s disease-related mutation
promotes tau accumulation and exacerbates neurodegeneration. J Biol Chem.
2020;295(50):17138–17147.

33. Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD, et al.
GWAS on family history of Alzheimer’s disease. Transl Psychiatry. 2018;8(1):1–7.

34. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al.
Genome-wide meta-analysis identifies new loci and functional pathways
influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–413.

35. Yu CE, Seltman H, Peskind ER, Galloway N, Zhou PX, Rosenthal E, et al.
Comprehensive analysis of APOE and selected proximate markers for late-onset
Alzheimer’s disease: patterns of linkage disequilibrium and disease/marker
association. Genomics. 2007;89(6):655–665.

36. Love JE, Hayden EJ, Rohn TT. Alternative splicing in Alzheimer’s disease. J
Parkinsons Dis Alzheimers Dis. 2015;2(2):6.

37. Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N,
et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization
implicate new Alzheimer’s disease risk genes. Nat Genet. 2021; p. 1–11.

38. Herold C, Hooli BV, Mullin K, Liu T, Roehr JT, Mattheisen M, et al.
Family-based association analyses of imputed genotypes reveal genome-wide
significant association of Alzheimer’s disease with OSBPL6, PTPRG, and
PDCL3. Mol Psychiatry. 2016;21(11):1608–1612.

39. Zhu Z, Lin Y, Li X, Driver JA, Liang L. Shared genetic architecture between
metabolic traits and Alzheimer’s disease: a large-scale genome-wide cross-trait
analysis. Hum Genet. 2019;138(3):271–285.

September 5, 2021 20/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460009
http://creativecommons.org/licenses/by/4.0/


40. Wang H, Yang J, Schneider JA, De Jager PL, Bennett DA, Zhang HY.
Genome-wide interaction analysis of pathological hallmarks in Alzheimer’s
disease. Neurobiology of aging. 2020;93:61–68.

41. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al.
Discovery and refinement of loci associated with lipid levels. Nat Genet.
2013;45(11):1274–1283.

42. UK Biobank GWAS round 2 results from the Neale lab;. Available from:
http://www.nealelab.is/uk-biobank/.

43. Zhou D, Jiang Y, Zhong X, Cox NJ, Liu C, Gamazon ER. A unified framework
for joint-tissue transcriptome-wide association and Mendelian randomization
analysis. Nat Genet. 2020;52(11):1239–1246.

44. Burkhardt R, Kenny EE, Lowe JK, Birkeland A, Josowitz R, Noel M, et al.
Common SNPs in HMGCR in micronesians and whites associated with
LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb
Vasc Biol. 2008;28(11):2078–2084.

45. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al.
Exome-wide association study of plasma lipids in > 300,000 individuals. Nat
Genet. 2017;49(12):1758–1766.

46. Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA,
Davey Smith G, et al. Evaluating the relationship between circulating lipoprotein
lipids and apolipoproteins with risk of coronary heart disease: A multivariable
Mendelian randomisation analysis. PLoS Med. 2020;17(3):1–22.

47. Guo X, Wang X, Wang Y, Zhang C, Quan X, Zhang Y, et al. Variants in the
SMARCA4 gene was associated with coronary heart disease susceptibility in
Chinese han population. Oncotarget. 2017;8(5):7350–7356.

48. Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S, et al.
Shared genetic susceptibility to ischemic stroke and coronary artery disease: a
genome-wide analysis of common variants. Stroke. 2014;45(1):24–36.

49. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A
comprehensive 1000 Genomes–based genome-wide association meta-analysis of
coronary artery disease. Nat Genet. 2015;47(10):1121–1130.

50. Wang Q, Wang Y, Lehto K, Pedersen NL, Williams DM, Hägg S.
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