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ABSTRACT 

Quorum sensing is being investigated as an alternative therapeutic strategy in antibacterial drug 

discovery to combat bacterial resistance. LsrK is an autoinducer-2 kinase, playing a key role in the 

phosphorylation of autoinducer-2 (AI-2) signalling molecules involved in quorum sensing. 

Inhibiting LsrK could result in reduced pathogenicity by interfering with the quorum sensing 

signalling. Previously, we have generated homology models to identify LsrK inhibitors using 

structure-based virtual screening and successfully found the first class of LsrK inhibitors. While 

conducting these studies, the crystal structure of LsrK was released providing us an opportunity to 

inspect the reliability and quality of our models. Structural analysis of crystal structure and 

homology models revealed the consistencies of constructed models with crystal structure in the 

structural fold and binding site. Further, binding characteristics and conformational changes are 

investigated using molecular dynamics. These simulations provided us insights into the protein 

function and flexibility that need to be considered during the structure-based drug design studies 

targeting LsrK. 
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INTRODUCTION 

Increased bacterial resistance has become a global health threat that urges the development of 

novel therapeutics. One of the main reasons for antibiotic resistance is the conventional mechanism 

of action of existing drugs i.e. targeting the protein synthesis, cell wall synthesis, and DNA 

replication1,2. Currently, novel strategies such as targeting virulence are prominent in antibacterial 

drug discovery3,4,5. Virulence strategies reduce the selection pressure on bacteria to develop 

resistance as these processes are not essential for bacterial growth6,7,8. The major focus of these 

strategies is on disrupting the host-pathogen interactions and reducing the pathogenicity by 

inhibiting the adhesion and toxin release, biofilm formation, and quorum sensing9,10,11. Quorum 

sensing (QS) is a process used by bacteria to communicate between the species and among the 

species. This communication controls the population-based behaviours and functions such as 

virulence factor secretion, biofilm formation, motility, bioluminescence, sporulation, and 

development of genetic competence12,13.  

QS process is mediated by signalling molecules called autoinducers (AIs). These signalling 

molecules can be devided into three major groups: Acylated Homoserine Lactones (AHL), 

Autoinducer peptides (AIPs), and Autoinducer-2 (AI-2). AHLs are N-Acyl-L-homoserine lactones 

varying in their acyl chain length between 4 to 18 carbon atoms while AIPs are oligopeptides. 

Generally, AIPs are utilized by gram-positive bacteria whereas AHLs are used by gram-negative 

bacteria14. In contrast, AI-2 molecules are the universal signalling molecules that are used by both 

gram-positive and gram-negative bacteria. AI-2 produced in bacteria will be internalized from the 

extracellular environment into the cells by an ATP binding cassette (ABC) transporter system 

called the Lsr transporter. Further, AI-2 is phosphorylated by LsrK (encoded by the lsrK gene) 

inside the cell and undergoes further modifications by LsrF and LsrG. The isomerized Phospho-

AI-2 is responsible for the lsr operon activation and inactivation of a repressor protein, LsrR15. 

Thus, hindering the phosphorylation of AI-2 can be a promising strategy in the design of 

antibacterial drugs. First reports by Zhu et al. provided details into the role of LsrK in AI-2 

phosphorylation and its mechanism16. LsrK phosphorylates the AI-2 precursor, DPD (4,5-

dihydroxy-2,3-Pentanedione) and thus regulates the AI-2 signalling and QS process. Implying the 

role of LsrK in QS signalling and virulence regulation, we explored LsrK to identify anti-virulence 

agents by employing the homology modelling and virtual screening approaches17. Recently, LsrK 
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crystal structure (E. coli) was published by Ha JH et al. with a phosphocarrier protein, HPr. These 

studies revealed the role of LsrK kinase activity and how its activity is modulated by HPr protein18. 

It provides an opportunity to evaluate the quality of our homology models and gain insights into 

the details of protein flexibility and inhibitor design targeting the LsrK.  

In this study, the main focus is to inspect the quality of homology models using the crystal structure 

and gain insights into protein flexibility. Molecular dynamics simulations were employed to 

understand the protein conformational changes of LsrK using crystal structures and constructed 

homology models. The structural details provided an understanding of the LsrK structure and the 

conformational changes occuring during the ATP and substrate binding. These details are helpful 

to guide the structure-based inhibitor design targeting the LsrK kinase to interfere with the quorum 

sensing process. 

RESULTS AND DISCUSSIONS 

Comparison of homology models and crystal structure  

The release of E. coli LsrK structure (ecLsrK), crystallized with HPr protein, raised the interest to 

inspect the structural quality of our homology models (S. typhimurium:stLsrK). Both sequences 

were aligned to inspect the sequence differences using the ClustalW alignment server and depicted 

in Figure S1 using ENDScript 3.0. The sequence identities between ecLsrK and stLsrK were 

82.64%. The major variation was found in Domain I of residues 76-85, and in Domain II of 

residues 419-424 and 496-503. For the structural comparison, homology models were aligned with 

the X-ray crystal structures using the protein structure alignment. The X-ray crystal structure is in 

the open state and thus the open state homology model was correlated with the X-ray crystal 

structure (CS) containing ATP, and a cryoprotectant (hexane-1,6-diol) (PDB ID: 5YA1). 

Alignment of the model and CS revealed that secondary structural elements (structure helices, 

strands and loops) are in good agreement with the X-ray structure except helix (a13) of residues 

326-337 (Figure 1 and see Supporting Information for numbering Figure S2). This region was 

predicted as a loop in the homology model whereas in the CS it is a helix and located in the vicinity 

of the ATP binding site. However, none of the residues in this helix are interacting with the ATP. 

Further, RMSD was checked between the homology model and CS. The overall backbone RMSD 

was 2.89Å and the RMSD for binding site residues was 0.97Å.  
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Figure 1. Comparison of homology model (open state: orange colour) an1d x-ray crystal structure 

(5YA1: green colour). Secondary structural element (a13) predicted to be different in the 

homology model is highlighted using the box. Domain I and domain II are labelled.  

 

Figure 2. Binding site residues near the substrate binding site. Crystal structure is shown in green 

sticks and open state models in orange sticks.  

Arg 93

Leu 261

Gln 278

Thr 456

Ile 310Leu 272

Val 254
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Further analysis revealed that CS and model are consistent in their location of the ATP binding 

site whereas they are different in the substrate location. The hexane-1,6-diol (cryoprotectant) 

present in the substrate binding site location is far from the modelled binding site (Figure SX). 

However, the binding site residues around the substrate binding site are similar in CS and 

homology model (Figure 2). To understand this in better detail, we inspected the X-ray structure 

and associated electron density maps. Density was not fully visible for the hexanediol (Figure SX). 

In addition, electron density was not identified for some of the regions (from 1-9, 46-54, 364-371 

and 505-530) in the crystal structure18.  

Protein flexibility and molecular dynamics 

Crystal structure is available in apo form (CS-Apo), with ATP (CS-ATP), and with ADP (CS-

ADP) in PDB IDs 5YA0, 5YA1 and 5YA2 respectively. There are no major conformational 

differences observed between the CS-Apo, CS-ATP, and CS-ADP. To understand how the protein 

flexibility and conformational changes occur during the substrate and ATP binding, molecular 

dynamic simulations were carried out on both homology models and all the crystal structures. 

Simulation trajectories were analysed for the Ca-atoms RMSD during the 500ns timescale (Figure 

3). 

 

Figure 3. RMSD of Ca-atoms during the 500ns time scale of crystal structures: apo form (5YA0 

or CS-Apo)-cyan lines, ATP bound form (5YA1 or CS-ATP)-green, ADP bound form (5YA2 or CS-

ADP)-purple, open model-orange, and closed model-yellow.   
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RMSD of each trajectory is varying. The apo form (CS-Apo) is equilibrated at a less RMSD (1.5Å 

to 2Å) compared with other two forms and homology models. Open model (containing ATP and 

substrate) and CS-ATP were stabilized around 3Å. CS-ADP was stabilized at 3.5Å whereas closed 

model (including the substrate and ADP) was stabilized at the highest RMSD (around 4Å). 

Structural and mechanistic studies on FGGY carbohydrate kinase family members E. coli xylulose 

kinase (ecXK) and glycerol kinase (ecGK) revealed that phosphorylation occurs in the active state 

i.e. closed form. LsrK crystal structures  (5YA0, 5YA1 and 5YA2) are reported to be in open 

conformation corresponding to the inactive state18. During the simulations, hexane-1,6-diol in the 

crystal structure (5YA1) and substrate in the open model (xylulose) were unstable in the binding 

site (supporting information Figures S3 and S4). This situation was contrasting in case of the 

closed model where the substrate was stable in the binding site during the 500ns timescale. This 

can be attributed to the interactions that occur between the ADP and substrate in the closed model 

during the simulation (Figure S4).  

Further, simulation data was exploited to retrieve the information on protein flexibility information 

and protein structural movements in the protein. Root Mean Square Fluctuations (RMSF) values 

were used to identify flexible regions in the protein (Figure 4). Generally, N-terminal residues, C-

terminal residues and loop regions show high fluctuations compared with other secondary 

structural elements such as helices and strands. During the 500ns simulation, the CS-ATP showed 

high fluctuations (RMSF > 5Å) at the loop regions of residues 35-47 (loop1) in domain I (located 

between a1 and b3) and 353-364 (loop2) in domain II (located between a14 and a15).  The loops 

and major changes can be seen in the figure 4B. Minor fluctuations (RMSF <2Å) were noticed at 

residues 283-292 (loop3 between b12 and b13: the catalytic cleft). Loop1 and loop2 are in close 

proximity to the binding site region where the loop1 might be involved in the phosphorylation 

process (for protein numbering refer to Figure S2). Open model also showed high RMSF (> 5Å) 

in loop2 region and minor fluctuations (RMSF <3Å) in loop1 and loop 3. In addition to this, it is 

observed that the predicted loop (corresponding to helix a13 in CS) is also highly variable (RMSF 

> 5Å). To specifically investigate the highly dynamic regions and extreme movements in the 

protein structure principal component analysis was applied (Figure 5, Figure S5, and Figure S6).  
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Figure 4. A) RMSF of Ca-atoms during the 500ns time scale. CS-Apo: cyan lines, CS-ATP: green, 

CS-ADP: purple, open model-orange, and closed model-yellow. The major fluctuating regions in 

all structures are residues 37-55, 320-330, and 360-380. B) To emphasize the regions in detail 

CS-ATP is shown. RMSF and related fluctuating regions are highlighted in the magenta circles of 

and showed them along the graph lines. Magnified version can be seen in Figure 5. 
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Figure 5. Highly variable regions in the crystal structure and homology models are presented 

using the PCA analysis: PC1 (top row) and PC2 (bottom row). Arrows (red and blue and yellow) 

indicate the direction of movement during the simulation. Extreme movements are highlighted 

using in coloured ribbons: teal (apo protein:5YA0), green (protein with ATP and hexane-1,6-

diol:5YA1), purple (protein with ADP:5YA2), orange (open model with ATP and substrate), yellow 

(closed model). 

As observed in the RMSF analysis, crystal structure (apo protein and ATP bound) showed large 

movements in loop regions i.e. loop1 of domain I and loop2 of domain II. These loop movements 

were also observed in the ADP bound structure (5YA2) and homology models.  In addition to this, 

ADP bound LsrK showed large movements in the helix a14 (present near the ADP binding site) 

of domain II and a2 turn in domain I. Open model has also shown major movements near the helix 

a14 along with loop 1 and 2. During the simulation closed model showed extreme movements in 

domain II and small-scale movements in domain I (loop1 and loop proceeding a9). Overall, there 

are no structural movements observed near the substrate binding site in crystal structures and 

A) B)

CS (ATP, HEZ)CS (Apo) CS (ADP) Open model Closed model

C) D) E)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.281394doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.281394


 9 

homology models. However, the loop1 (residues 35-45) stay in the proximity of catalytic cleft 

affecting the binding site size. This might be playing the role of gatekeeper during the substrate 

binding and the catalytic reaction in LsrK. Unfortunately, this is not established yet and this loop 

was not solved in the crystal structure (hence modelled using the Prime loop modelling for the 

simulations). Further, this analysis also revealed domain movements during the simulation and is 

also evident from the pocket shape and size analysis discussed in the next section. 

Understanding the domain movements using pocket shape and size analysis.   

 

Figure 6. Pocket shape analysis of trajectory clusters of crystal structure (CS-ATP) showing the 

domain movements: domain I (blue) and domain II (orange). The snapshots of lowest pocket 

volume (A) and highest pocket volume (B) are visualized in orange and cyan colors. Other 

structures are shown in different angles to visualize the domain movements. Grey spheres indicate 

the site points.   

The simulation trajectory clustering was performed based on the backbone RMSD using the 

Schrodinger trajectory clustering tool. To investigate the pocket size and volume of the substrate 

binding site, resulted ten clusters (centroids) were used. These clusters were subjected to pocket 

parameter prediction using Sitemap in Schrodinger KNIME workflows. Sitemap predicts possible 

A)

B)

90° 90°
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druggable pockets and associated parameters such as size, volume, Sitescore, Dscore, 

hydrophobicity and hydrophilicity. Here, single binding site i.e. substrate binding site is analysed 

to predict the pocket parameters throughout the trajectory. Based on the predicted pocket volume, 

clusters were generated for all structures (CS-Apo, CS-ATP, CS-ADP, open model and closed 

model). All pocket parameters are tabulated in Supporting Information (Table T1-T5).  

  
Figure 7. Trajectory clusters of crystal structure showing the domain movements: domain I (blue) 

and domain II (orange). Sitemap was utilized to predict the site volume. Top row represents the 

lowest site volume and bottom row with the highest site volume of apo structure (A), CS-ATP (B, 

CS-ADP (C), open model (D), and closed model (E). Grey spheres indicate the size of the pocket. 

Site volume and size are listed in supplementary information.  

Analysis of these Sitemap pocket predictions revealed that volume of the pocket in each structure 

is varying throughout the simulation. The pocket shape analysis revealed that the change is due to 

the movement of protein domains (domain I and domain II). Figure 6 shows the ATP bound LsrK 

pocket changes in volume from 190.70Å to 294.63Å in panel A and panel B respectively. Pocket 

changes resulted majorly due to movements of loop 1 and domain II movement towards domain I. 

The domain movements and the pocket volume (lowest to highest) changes are shown in figure 7 

for all structures. The structural changes in LsrK apo form, CS-ATP, and CS-ADP are evident 

from the pocket analysis. Crystallography predictions based on the superposition of xylulose 

A) B) C) D) E)
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kinase and glycerol kinase with LsrK revealed that ATP bound form (Figure 7B) is in open state. 

During the simulation, pocket volume among the three forms (apo, CS-ATP, and CS-ADP) 

changed from 112.16Å to 316.93Å. This demonstrates that LsrK undergoes conformational 

changes to accommodate ATP and substrate during the phosphorylation that incurs binding site 

volume changes presented here. Open model also showed considerable pocket volume changes 

from 245.24Å to 410.22Å. Closed model clusters sitemap predictions showed considerable domain 

I movement leading to the closure of binding site. Figure 7 shows the close packing of both 

domains in the closed model in comparison with the other structures.  

 

Figure 8. Superposition of xylulose kinase (PDBID:2ITM) and glycerol kinase (PDBID:1GLC). 

The conformational variations are highlighted in green color (xylulose kinase) and blue color 

(glycerol kinase). 

To further confirm and investigate the conformational flexibility in related carbohydrate kinases, 

xylulose kinase and glycerol kinase structures were analysed. Large-scale differences were 

observed in domain I of crystal structures of xylulose kinase (PDB ID: 2ITM) and glycerol kinase 

(PDB ID: 1GLC). The domain I motion is in the vicinity of the beta sheet fold of substrate binding 
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site (conserved hexokinase fold of the carbohydrate kinase family) and the loop 1. The major 

movements observed in LsrK during the dynamic simulations are coherent with the conformational 

flexibility observed in the xylulose kinase and glycerol kinase. 

CONCLUSIONS 

The necessity to design new antibacterials has been raised to fight the emerging microbial 

resistance for the existing drugs and antibiotics. Alternative therapies such as targeting virulence 

to address the resistance is gaining interest in the research areas. One of such efforts is targeting 

the bacterial quorum sensing process that controls virulence and pathogenesis. LsrK is the key 

kinase involved in the quorum sensing process that regulates the lsr operon. Implying the role of 

LsrK in QS and virulence, computational methods are employed to understand the binding 

characteristics of LsrK and conformational changes associated with it. Our previous virtual 

screening driven by homology models led to the identification of first class of inhibitors for LsrK. 

The current study proves the quality of homology models and structural consistency with the 

crystal structure. Simulations are providing details about domain movements and structural 

flexibility that can help the structure-based drug design efforts to target LsrK binding site. 

Experimental studies are needed to depict the phosphorylation events occurring in the LsrK active 

site as this information would help LsrK targeted drug design further.  

 

METHODS 

Homology modelling  

Structure of LsrK kinase of Salmonella typhimurium was modelled using FGGY carbohydrate 

kinase family proteins: xylulose kinase (23%) and glycerol kinase (26.5%) based on the sequence 

homology. Sequence alignment of LsrK and templates was carried out in prime and then manually 

edited with the help of multiple sequence alignment. Two models were built in Prime module of 

Schrödinger suite (Schrödinger release 2015-3: Prime, Schrödinger, LLC, New York, NY, 2015) 

using the templates in two different conformations. Template crystal structures i.e. xylulose kinase 

(3HZ6) and glycerol kinase (1GLC) were retrieved form PDB. Prime refinement protocol was 

used to predict the side chains and then minimized using OPLS_2005 force field19. Models were 

validated for their stereochemical quality and other parameters using tools such as Ramachandran 
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Plot, ModVal and ERRAT factor. In Ramachandran plot, 98% and 94.8% residues are in allowed 

regions of open model and closed model. The ERRAT quality factor of the open model is 82.7 and 

closed model is 80.1. ModVal Predicted GA-341 is > 0.7 which indicates that models are reliable 

with ≥ 95% probability of the correct fold. Based on these statistical parameters, homology models 

were found to be of optimum quality that can be used for virtual screening purposes. Thus, 

homology models were further used to identify LsrK inhibitors using structure-based virtual 

screening. The detailed procedures of the homology modelling, virtual screening and experimental 

bioassays can be found in our previous paper17.  

Comparison of X-ray structure and Models 

Sequence and Structure Analysis: LsrK sequences (E. coli and S. typhimurium) were retrieved 

from UniprotKB and analysed for the identity and similarity using ClustalW alignment server. 

Further, to inspect the structural differences crystal structures (5YA0, 5YA1, 5YA2) were 

downloaded from the RCSB PDB. Crystal structures often have problems such as lack of 

hydrogens, missing residues, incorrect protonation states etc. Hence, proteins are prepared using 

the protein preparation wizard (PPW) module in Schrödinger (Schrödinger Release 2019-3: 

Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2019) to assign bon orders, 

add hydrogens, fill missing side chains and loops, and generate ionization states to hereto atoms 

according to pH. Here, missing residues (45 -55) were added based on the sequence using serial 

loop sampling method in Prime module (Schrödinger Release 2019-3: Prime, Schrödinger, LLC, 

New York, NY, 2019). Further, h-bond assignment was optimized and then structures were 

subjected to restrained minimization using OPLS3e force field20. To perform the structure analysis, 

prepared crystal structures and homology models were aligned using the Schrödinger superpose 

tool based on the backbone C-alpha atoms and calculated the RMSD. Further, structures were 

visually inspected near the ATP and substrate binding site to find the differences.   

Molecular Dynamics: Crystal structures (PDB ID: 5YA0, 5YA1, 5YA2) and homology models 

(open and closed forms) were subjected 500 ns simulations using GPU-accelerated Desmond 

program using OPLS3e force field (Schrödinger Release 2019-3: Desmond, New York, NY, 

2019). To carry out simulations, systems were built using system builder panel of Desmond. 

Systems were solvated with the T1P3P solvent model and orthorhombic periodic boundary 

conditions (of box size 10Å) and neutralized by placing ions of sodium (Na+). The solvated 
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systems were equilibrated for 160 ps prior to the production runs using default NPT ensemble 

relaxation protocol in Desmond. This includes several stages: i) 100 ps of Brownian dynamics 

with NVT ensemble at 10 K temperature by posing restraints on solute heavy atoms ii)12 ps 

simulations with NVT ensemble using a Langevin thermostat (of 10 K) and restraints on solute 

heavy atoms iii)12 ps simulations of NPT ensemble using a Langevin thermostat (of 10 K), 

Langevin barostat (of 1 atm), and restraints on solute heavy atoms iv) solvating the pocket v)12 ps 

simulations with NPT ensemble using  Langevin thermostat (of 300 K), Langevin barostat (of 1 

atm), and restraints on solute heavy atoms vi) 24 ps simulations with NPT ensemble using 

Langevin thermostat (of 300 K), Langevin barostat (of 1 atm), and no restraints. Production runs 

were carried out for 500 ns using an NPT ensemble at 310 K with Nose-Hoover chain Langevin 

thermostat method and a pressure of 1.01 bar using the Martyna-Tobias-Klein barostat method. 

Initial atom velocities were assigned by randomization. The Coulombic interactions were 

truncated by using a cutoff value of 9 Å. RESPA based integration method was used with a 2.0 fs 

timestep and structures (around 1000 frames) were saved for every 100 ps for further analyses. 

Primary trajectory analyses were carried out using the simulation interaction diagram (SID) tool 

in Desmond. This tool calculates the RMSD and RMSF of the protein and ligand based on the 

selected atoms of the reference structure (i.e. RMSD and RMSF of each frame in the trajectory to 

the reference frame). It also provides information of protein-ligand interactions during the 

simulation and the ligand torsions. Here, RMSD and RMSF for all structures (5YA0, 5YA1, 

5YA2, open model, and closed model) were calculated based on their Ca-atoms to the initial 

protein structure coordinates (X-ray structure and model). The RMSD and RMSF values were 

plotted using MS excel. Further, essential dynamics analysis was done using principal component 

analysis (PCA) using Bio3D21 in R console. PCA analysis was conducted with reference to the 

backbone Ca atoms of protein structures. Bio3D is used for the PCA analysis and results are 

visualized using Modevectors script22 in PyMOL 2.4.0 (The PyMOL Molecular Graphics System, 

Version 2.0 Schrödinger, LLC). Further, trajectory cluster analysis was performed using Desmond 

trajectory clustering tool to investigate the binding site volume changes. Each trajectory was 

subjected to this clustering tool to generate ten clusters representing the full trajectory. These ten 

clusters were further utilized to evaluate the substrate binding site using Sitemap module in Knime 

workflows23. The resulted structures were clustered based on binding site volume and visualized 

in PyMOL 2.4.0 (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.  
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