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Abstract 
The Ralstonia species complex is a group of genetically diverse plant wilt pathogens. Our goal is 

to create a database that contains the reported global distribution and host range of Ralstonia clades 
(e.g. phylotypes and sequevars). In this fourth release, we have cataloged information from 197 sources 
that report one or more Ralstonia strains isolated from 105 geographic regions. Metadata for nearly 
8,000 strains are available as a supplemental table. The aggregated data suggest that the pandemic 
brown rot lineage (IIB-1) is the most widely dispersed lineage, and the phylotype I and IIB-4 lineages 
have the broadest natural host range. Although Phylotype III is largely restricted to Africa, several 
studies report that these strains have been introduced into the Americas (the Caribbean and South 
America). Similarly, although Phylotype IV is mostly found in East and Southeast Asia, phylotype IV 
strains are reported to be present in Eastern Africa.  

Additionally, we have created an open science resource for phylogenomics of the RSSC. We 
associated strain metadata (host of isolation, location of isolation, and clade) with over 250 genomes in 
a public KBase Narrative. Our colleagues can use this narrative to identify the phylogenetic position of 
newly sequenced strains.  
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Introduction 
Bacterial pathogens in the Ralstonia species complex are xylem pathogens that infect a broad 

range of agricultural and natural plant hosts. Ralstonia strains clog plant xylem vessels, leading plant 

hosts to wilt [1]. Historically, Ralstonia strains were classified based on carbon utilization patterns 

(“Biovar”) and host range (“Race”). However, DNA sequence-based taxonomies more accurately reflect 

the evolutionary trajectories of Ralstonia lineages.  

Currently, the Ralstonia solanacearum species complex (RSSC) is classified into three species: R. 

solanacearum, R. pseudosolanacearum, and R. syzygii. The separation of Ralstonia into three species 

was first proposed by Remenant et al. 2010 [2], formalized by Safni et al. 2014 [3], and reinforced by 

Prior et al. 2016 [4]. Strains are also classified into a phylotype system, which overlaps with the species 

boundaries. All R. solanacearum strains are within phylotype II, but phylotype II is divided into IIA, IIB, 

and IIC groups. R. pseudosolanacearum strains are either in phylotype I or phylotype III. R. syzygii strains 

are in phylotype IV. Strains are further sub-classified into sequence variants, or “sequevars”, based on 

the DNA sequence of the conserved egl endoglucanase gene (Fig 1). Because Ralstonia are known to be 

naturally competent, we hypothesized that horizontal gene transfer of egl could confound sequevar-

based phylogenies. We recently use whole genome phylogenetic trees to interrogate the robustness of 

egl-based trees [5]. We found that egl trees work well for phylotype II, but egl trees are highly 

inaccurate for phylotype I. Although only a small number of phylotype III and IV genomes were analyzed,

the longer branch lengths in phylotype III and IV suggests that sequevars/egl-based trees may provide 

effective estimation of these strains’ phylogenetic position. Since the phylotype-sequevar system was 

first developed and described by Prior and Fegan in 2005 [6], hundreds of papers have used this system 

to describe the genetic diversity of Ralstonia isolates around the world. However, there has not been 

any public database that aggregates this population genetics information.  

The Ralstonia community typically states that Ralstonia strains infect over 250 plant species in 

over 50 botanical families. Is that an under-estimation? Our goal is to perform a meta-analysis that 

documents the known host range and global distribution of each sequevar in the Ralstonia species 

complex. We intend to update this preprint and the associated GitHub repository at regular intervals as 

we populate the database. In version 4 of the database (this update), we also establish a user-friendly 

KBase narrative[7] that allows users to place new Ralstonia genomes within the phylogenomic context 

of public genome sequences.  

 
Fig 1. Taxonomic classification of the Ralstonia species complex at the species, phylotype and sequevar levels. 
Sequevars highlighted in red or purple italics are assigned to strains in conflicting phylotypes. As a note, many 

of the phylotype I sequevars are polyphyletic (See Sharma et al 2022 for details [5]), so the Ralstonia 

community needs to identify a cost-effective alternative for describing diversity of these strains. The clonal 
lineage that cause Blood Disease of Banana (BDB) are nested within phyl. IV-10 with non BDB phyl. IV strains.  
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Methods 
Article Selection Criteria and Search Strategy:  
We prioritized articles that used the phylotype and/or phylotype-sequevar system to characterize 
strains. We identified these articles by using Google Scholar to find the papers and theses that cite “How 
complex is the Ralstonia solanacearum species complex?” by Fegan and Prior 2005 [6]. We did not 
include the Race or Biovar information in the database. Although host range is an important trait of 
strains, measuring multi-host virulence is labor and time-intensive, and has rarely been performed. 
Therefore “race” assignments are usually listed solely based off of the host-of-isolation, which does not 
accurately predict the strains’ host range. We also excluded biovar data because the carbon utilization 
patterns are not predictive of phylogeny or the most important phenotypes for Ralstonia.  

To get a better estimate of the diversity of potential hosts for Ralstonia, we did a search of the literature 
using search terms like “weeds”, “host range”, and older names for the pathogen (Pseudomonas 

solanacearum, Burkholderia solanacearum).  

Table 2: List of Papers in this Study 

Year Published References 

1971 [8,9] 

1976 [10] 

1978 [11] 

1980 [12] 

1984 [13] 

1986 [14–24] 

1993 [25–37] 

1995 [38] 

1998 [39–48] 

1999 [49–51] 

2001 [52–55] 

2003 [56–58] 

2004 [59] 

2006 [60,61] 

2007 [62–71] 

2008 [72–76] 

2009 [77–84] 

2010 [85–90] 

2011 [91–99] 

2012 [100–103] 

2013 [104–113] 

2014 [3,35,114–124] 

2015 [125–139] 

2016 [4,140–143] 

2017 [144–155] 

2018 [156–166] 

2019 [167–171] 

2020 [83,172–188] 
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2021 [189–193] 

2022 [194–198] 

Converting strain metadata into a structured format for data science:  
We focused on cataloging information that is relevant to the epidemiology of the Ralstonia 

strains: Phylogenetic position, host of isolation, and geographic location where isolated. Additionally, 
when listed, we include any NCBI accessions for the genome, egl marker genes, or other genes.  

For phylogeny, we record the phylotype (I-IV), sub-phylotype (for phylotype II, this is the IIA, IIB, 
or IIC subdivision), and sequevar (1-71). Several sequevars have been subdivided based on phylogeny 
and/or ecologically important traits, so we created a “sub-sequevar” column to denote these. This 
includes multiple subdivisions of sequevar IIB-4 and IV-10 sequevar which includes the “R. syzygii 
subspecies celebensis” (causes Blood disease of banana) and a clade of the paraphyletic “R. syzygii 
subspecies indonesiensis”.  

For host, we created several columns to annotate the host at multiple taxonomic scales (order 
to species). We attempted to systematize all common names and species to a unified label. For example, 
all potato isolates are listed as “Solanum tuberosum (Potato)”. The systematic structure will make it 
easier to use R, python Pandas, or Excel equations to summarize and visualize the contents of the 
database.  

For location, we record the most precise location information available (e.g. city, province, or 
country). We also have columns that describe the location at the country (or territory if the land region 
is geographically separated from the governing body), subcontinent, and continent levels.  

Database:  
The full dataset is available as a supplementary table on this preprint. 

Table 2: Summary of the database 

Database 
Release Date # Papers 

Paper 
published 
range # Strains # Sequevarsb 

# Countries 
or Territories 

# Host 
plants 

2020/07/03 35 2017-2020 1625 57 50 56 

2021/03/23 73 2012-2020 3395 over 64a 86 124 

2021/11/03 93 2007-2020 4924 Over 71 86 139 

2022/08/30 197 1971-2022 7794 68b 105 392 
a

As of this release, we have not investigated the sequevar assignment of strains classified into “unknown” or “new” 

sequevars.  

B

 Note that sequevar is an imperfect phylogenetic system. See Sharma et al. 2022 for details [189] 

Extracting metadata for genomes available on NCBI. 
Genomes on NCBI do not always have a corresponding Genome Announcement or other 

publication, but most of these genomes are deposited with ecological metadata on the corresponding 
“BioSample” page. The NCBI taxonomy is disorganized because of taxonomic revisions in this group. 
Many genomes for “Ralstonia pseudosolanacearum” (taxonomy ID: 1310165) and “Ralstonia syzygii” 

(taxonomy ID: 28097) were deposited as the “Ralstonia solanacearum” (taxonomy ID: 305), primarily 
because they were deposited prior to the renaming in 2014. Moreover, several genomes of the blood 
disease pathogen (Ralstonia syzygii subsp. celebensis) were deposited with their own taxonomy ID due 
to a peculiar taxonomic rule: these strains could not be formally named because the type strain was not 
viable in culture collections.  

In July 2022, we extracted metadata for all RSSC genomes that we could identify in relevant 
“taxonomy IDs”. For each genome, we listed the “RefSeq Assembly Accession” when possible (GCF_xxx). 
Some assemblies have been excluded from RefSeq due to problems like “too many frameshifted 
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proteins” or “highly fragmented genome”. In this case, we list the GenBank Assembly Accession 

(GCA_xxx). 

Importing genomes into the “RSSC Phylogenomics” narrative on KBase . 
KBase is a user-friendly graphical user interface for biological informatics that is developed and 

maintained with significant investment from the US Department of Energy [194]. Because RSSC 

genomes are dispersed across several (often inaccurate) taxid pages, we developed a KBase Narrative 

that can help us and other scientists identify the phylogenetic identity of new RSSC genomes.  

We used the structured data on our spreadsheet to assign a systematic name to each genome, such as: 

“IIB-4D_UW128_Plantain-Musaceae_SouthAmerica.genome”. The systematic name lists:  

1. Phylogenetic information (phylotype, sequevar, subsequevar) 

2. Strain name (spaces and parentheses removed. Colons, underscores, and hyphens were 

often removed) 

3. Host of isolation (common name and family) 

4. Location (subcontinent)  

Initially, there were genomes that lacked precise phylogenetic information. To identify the phylogenetic 

identity of these genomes, we used the KBase App “Batch Create GenomeSet v1.2.0” to create a 

GenomeSet object that included all genomes ending in “.genome”. Then we used the “Insert Set of 

Genomes into SpeciesTree v2.2.0” to create a low-resolution phylogenetic tree. This app uses FastTree2 

[199] with the -fastest setting to construct a tree based on an MSA of 49 core, universal bacterial genes. 

We inspected the tree, and we were able to assign many genomes to phylotypes and sequevars.  

Results and Discussion 
We compiled 7,794 strains from almost 200 sources. These strains represent over 68 sequevars 

isolated from 105 countries or territories (Table 2). Most of the reported strains are phylotype I or II 

strains (Fig. 2). The full dataset is included as Table S1, which should be accessible on this pre-print. For 

each strain, we recorded taxonomy (phylotype and sequevar), host (specific name and the host plant’s 

taxonomic Family and Order), isolation year, isolation location, NCBI accessions (genome or partial 

sequences of egl, mutS and/or rplB market genes genes) and the citation.  

 

Fig 2. Phylotype assignments for strains in the Global Ralstonia Diversity database  

 

We analyzed some of the host range and biogeographic distributions of the RSSC and 

phylotypes. You can find the full details in Table S1. 

Host Range: 
Tables 3-5 summarize information about host range in the RSSC and the phylotypes. Table 6 

attempts to look at host range within more narrow clades.  
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Table 3: The number of unique plant hosts (reported at various taxonomic levels) 

 

Table 4: The top 21 most common host species to be listed in the database, sorted by frequency 

 

 

Table 5: Heatmap that attempts to answer the question: “If I have a wilted [plant species], what phylotype is most 

likely the culprit? 
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We investigated which clades of Ralstonia have been isolated from the most plant species. In 

previous versions of the database, we considered individual sequevars to be equally diverse clades. 

After working more extensively with RSSC diversity, we have realized that phylotype I is about as diverse

as some phyl II, III, and IV sequevars (at the ANI level). Therefore, we analyzed the host range of all 

phylotype I strains collectively. Results are in Table 6.  

As a significant caveat, Ralstonia host range can vary between strains that are closely related 

(i.e. in the same sequevar) [64,190,195,200]. Nevertheless, host range patterns often correlate with 

phylogeny [195,200]. Collectively, Phylotype I has a wide host range (123 plant species in 43 botanical 

families). Phylotype IIB-4 has the next broadest host range (48 species in 21 botanical families). 

Phylotype IIB-1 has been isolated from 20 plant species in 7 botanical families. However, IIB-1 is also the 

most widely dispersed lineage, so it has appeared in more population survey studies than other 

lineages. The IIB-1 lineage is most commonly isolated from Solanaceae and Geranium family plants.  

Table 6: RSSC clades whose members have been isolated off of the most diverse plants. (Note, this was 

determined using the “Host species (Common Name)” column while Table 3 was determined using the “Host 

species” column, which lacks any plants that were only identified to the genus level.  

 

Biogeography 
Ralstonia strains have been isolated from over 100 countries (Fig. 3). Tables 7-8 summarize 

information about biogeography of the RSSC and the phylotypes. Table 9 attempts to look at 

distribution of more narrow clades. 

 

Fig. 3. Locations of strains included in the Global Ralstonia Database. Proportional circles in each country reflect 

the number of strains reported in the Global Ralstonia database, relative to other countries in the same 

continental group. The next update of the Global Ralstonia database will normalize the size of the circles across all 

countries and will show the abundance of Ralstonia in the Americas.  
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Table 7: Relative distribution of the RSSC and each phylotype, based on the number of unique countries where the 

strain has been isolated 

 

Table 8: Distribution of each phylotype level on different subcontinents. Red boxes indicate distributions that were

unexpected.  

 

Pandemic Clades 
We investigated which clades of Ralstonia have been isolated from the most countries. In 

previous versions of the database, we considered individual sequevars to be equally diverse clades. 

After working more extensively with RSSC diversity, we have realized that phylotype I is about as diverse

as some phyl II, III, and IV sequevars (at the ANI level). Therefore, we analyzed the distribution of all 

phylotype I strains collectively. Results are in Table 9 and Table S1. Although phylotype I has a wide 

distribution (51 countries), the pandemic brown rot lineage (IIB-1) has been reported in more countries 

(58 countries). The next most widely dispersed clades are IIB-4, IIC-7, IIA-6, IIA-35, and IIB-3. Many of the

widely dispersed clades are known to cause epidemics on crops (potato, banana, ginger) or ornamentals 

that are propagated vegetatively.  

Table 9: Distribution of clades of Ralstonia 
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RSSC Phylogenomics narrative on KBase  
We created two open KBase narratives that have 275 or 340 decent-to-high quality genomes 

labeled with a structured name that indicates their phylogenetic identity, strain name, host of isolation, 

subcontinent of isolation, and an NCBI accession number:  

• Narrative 1 has the maximum diversity of available Ralstonia genomes (n=275), but only 

has 5 of the clonal IIB-1 genomes (a pandemic lineage). This narrative has some 

suggestions for how to navigate KBase https://narrative.KBase .us/narrative/123807  

• Narrative 2 has all genomes with a RefSeq quality assembly available (n=340). 

https://narrative.KBase .us/narrative/124825 . Figure 4 shows the 340 strain tree.  

Anyone can create a copy of these narratives, upload their own assembly to KBase, annotate the

genes, and re-build the 49 gene phylogenetic tree to identify the position of new genomes. We will 

continue to update the narrative as we add genomes, so our colleagues should create a copy of the 

latest version of the narrative to assess new genomes. Narrative 1 is better suited for this purpose—

removing 65 clonal genomes will allow the KBase applications to run faster.  

 

Fig 4. A phylogenetic tree of 340 RSSC strains. The outgroup is an R. mannitolytica genome. To create the stylized 

tree, the Newick format tree was downloaded from Narrative 2, stylized in iTol [201], and annotated in Affinity 

Designer. A high resolution version (PDF, PNG, or Newick format) can be downloaded from the KBase narrative.  
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We used the tree to curate the phylogenetic assignments of strains:   

• One genome clustered in an unexpected position in the tree. Strain CRMRs218 was labeled a 
phylotype I strain in the original genome announcement [144], however, it clearly clusters with 
IIA strains. A search of Google Scholar indicates that many prior studies have drawn the same 
conclusion. We re-labeled this genome as a IIA strain.  

• There was one strain (CIP120) that was called a “IIA-38” or a “IIA-50” sequevar strain in different 
references, but the whole-genome tree revealed that this strain is not closely related with three 
other IIA-38 strains (P597, RS489, and P816). So we assigned this strain to IIA-50.  

• We assigned 21 genomes to phylotype I: B17_UW800, FJ1003, FJAT1303.F1, FJAT1452.F1, FJAT-
1458, FJAT1463.F1, FJAT15244.F1, FJAT15252.F1, FJAT15304.F1, FJAT15340.F1, FJAT15353.F1, 
FJAT442.F1, FJAT445.F1, FJAT448.F1, FJAT454.F1, FJAT-91, KACC10709, MAFF241647, 
MAFF241648, MAFF311693, and P380. These genomes had all been deposited to the R. 

pseudosolanacearum taxid, which can correspond to phyl I or III strains.  
 

• We assigned 1 genome to phylotype III: LMG9673. This genome had been deposited to the R. 

pseudosolanacearum taxid, which can correspond to phyl I or III strains.  
 

• We assigned 1 genome to phylotype IIA: RS489. RS489 is closely related to the IIA-38 genomes 
P597 and P816, so we assigned it to sequevar 38.  

 
• We assigned 3 genomes to phylotype IIB: NCPPB3985, RS488, RsT01. Of these, RsT01 is closely 

related to the IIB-4 genomes in the C/E subclades, so we assigned it to IIB-4 (C or E).  
 

• We assigned 1 genome to phylotype IV (R. syzygii subsp. syzygii): LMG10661. 
 

• We assigned 2 genomes to phylotype IV (R. syzygii subsp. indonesiensis): KACC10722, T12.  
 

Assessing quality of genomes for downstream analyses   
Not all genome assemblies are equal. Assemblies can suffer from many flaws. We did not import 

genomes that NCBI flagged as “many frameshifted proteins” (often due to being a Nanopore-only 
assembly), “fragmented assembly” (4700+ contigs, which suggests that the user uploaded only the 
coding sequences instead of the actual assembly)  

For the assemblies imported into the KBase narrative, we used CheckM to assess their quality. 
CheckM yields estimates of the genomes’ completeness (are all of the expected genes present in the 
genome assembly?) and contamination (are there multiple homologs of genes that should be present in 
a single copy, suggesting that an unrelated genome has contaminated the assembly?). For 
completeness, we set a cut-off of requiring genomes to have no more than 4 missing “single copy 
genes”. This generally corresponds to a 99% complete cut-off. For contamination, we set a cut-off of 1%.  

CheckM ran an error when processing eight genomes, so these could not be assessed. Based on 
the cut-offs, we classified 39 genomes as low-quality (24 genomes for low completeness and 15 
genomes for high contamination). All of the draft genomes from Ailloud et al. 2015 have low 
completeness, likely because they were assembled from very short Illumina reads (2P×P50-nt paired). 
These genomes are estimated at 96-98% complete, which means the assemblies could be missing 
upwards of 200 genes. Two additional genomes have very low completeness: phyl. IIA-38 genome P816 
was 81% complete and phyl. I genome VT0801 is 91% complete. After filtering for quality, there are only 
four phylotype IIA high quality genomes available, making this the least represented major branch of 
Ralstonia diversity.  
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Conclusion 
Bacterial wilt pathogens in the Ralstonia species complex are high impact global pathogens. We 

created a strain database that we will regularly update to document the distribution and host range of 
Ralstonia.  
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