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2. Abstract 

 

Microfluidic devices promise to overcome the limitations of conventional hemodialysis 

and oxygenation technologies by incorporating novel membranes with ultrahigh permeability 

into portable devices with low blood volume. However, the characteristically small dimensions 

of these devices contribute to both non-physiologic shear that could damage blood components 

and laminar flow that inhibits transport. While many studies have applied empirical and 

computational models of hemolysis to medical devices, such as valves and blood pumps, little is 

known about blood damage in the microfluidic flow regime. In this study, four design variants of 

a microfluidic membrane-based oxygenator and two controls (positive and negative) are 

introduced and modeled using a Computational Fluid Dynamics (CFD) model to predict 

hemolysis.  The simulations were performed in ANSYS Fluent for nine shear stress-based Power 

Law hemolysis model variants. Empirical testing of the devices in a recirculating loop revealed 

levels of hemolysis significantly lower (3 ppm hemolysis for pump, tube, and device combined) 

than the hemolysis ranges (>10 ppm) observed in conventional oxygenators. We found that most 

of the nine tested hemolysis models overpredict (5× to 10×) hemolysis compared to empirical 

experiments. However, two models demonstrated higher predictive accuracy for hemolysis 

values in devices characterized by low shear conditions, while another set of three models 

exhibited better performance for devices operating under higher shear conditions. Our study 

highlights the limitations of combining hemolysis models with computational fluid dynamics 

models for a priori in silico device-induced hemolysis. Nevertheless, with a judicious selection 

of hemolysis models based on the shear ranges of the test device, we propose that computational 

modeling can complement empirical testing in the development of novel micro-dialyzers or 

oxygenators, allowing for a more efficient iterative design process. Furthermore, the low device-

induced hemolysis (< 2 ppm) measured in our study at physiologically relevant flow rates is 

promising for the future development of microfluidic dialyzers and oxygenators. 

Keywords: Microfluidics, Hemolysis, Computational modeling, multi-physics modeling, 

CFD, UDF.  

 

3. Introduction: 

The prevalence of chronic lung diseases, such as Chronic Obstructive Pulmonary Disease 

(COPD), and unpredictable and potentially overwhelming outbreaks of acute infectious illnesses, 

such as swine flu and COVID-19, emphasizes the need for improved treatments for respiratory 

insufficiency and respiratory failure.[1]–[4]  Currently, the standard of care is mechanical 

ventilation, which involves invasive procedures that carry significant risks, including 

barotrauma, ventilator-associated pneumonia, and other infections.[5], [6] Furthermore, the 

complications linked to administering mechanical ventilation to manage novel pandemic 

illnesses such as COVID-19 have escalated the significance of Extracorporeal Membrane 

Oxygenation (ECMO), a treatment method that uses an external circuit to circulate blood for gas 

exchange in an artificial lung, enabling the possibility of reducing or, in rare cases, 

circumventing the requirement for ventilator support.[7]–[10] 

Microfluidic-based devices with ultra-high permeability membranes could revolutionize 

the Extracorporeal membrane oxygenation (ECMO) process by reducing blood volume, blood 
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contacting surface area, and overall device size. Reduced blood volume is helpful to all patients 

and critical for smaller patients, such as neonates, as the priming volume of conventional medical 

devices sometimes exceeds the total blood volume of a neonate.[11]–[14] Additionally, the 

associated decrease in membrane surface area and blood-contacting artificial materials reduces 

complications and blood damage.[15]–[17] Conventional oxygenators are typically a tube-in-

tube configuration,[18], [19] whereas microfluidic devices are often arranged in stacked planar 

plates, an architecture that lends itself to a family of recently developed ultra-high permeability 

membranes.[15], [16], [20], [21] At physiological flow rates and at flow rates observed in 

conventional ECMO devices, the small dimensions and sharp edges of microdevices may result 

in shear sufficient to induce hemolysis (rupture of red blood cells) and other bleeding 

disorders.[22]–[24] While many studies have applied empirical and computational models of 

hemolysis to medical devices, such as valves and blood pumps, little is known about blood 

damage in the microfluidic flow regime.[25]–[27] 

  Acute hemolysis is 

rare in current ECMO treatments, 

but effects can aggregate with 

frequent or continuous treatment.  

The devices analyzed in this study 

are microfluidic [28] ECMO 

devices with micrometer-to-

millimeter scale channel widths 

and flow rates of 100s of ml min-1, 

which are substantially slower 

than conventional ECMOs [29], 

yet are orders of magnitude larger 

and higher flow than lab on chip 

microfluidics.[28], [30] Devices at 

this scale represent a “middle 

ground” where the design 

community has limited experience 

predicting the device-induced/ 

hemolysis (Fig. 1). Furthermore, 

common models to predict 

hemolysis were empirically 

generated in Couette flow 

shearing devices and may not be 

suitable for predicting flow in 

regimes found in microfluidic 

ECMOs.  

 

 

Fig. 1. Comparison of different types of blood contacting medical devices (i.e., Lab-on-

a-Chip [28], [30], [31], Microfluidic ECMO[17], [32]–[34], Conventional ECMO[29], 

[35], [36], and Ventricular Assist Device[37]–[40]) in terms of minimum dimension of 

blood flow path and flow rate through the channel of minimum dimension. The height 

and width of the circle/oval represents the minimum dimension and flow rate ranges 

respectively. 
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Computational modeling is commonly employed during the design process of blood-

contacting medical devices.[41]–[43] Hemolysis models are frequently integrated directly into 

the framework of a computational fluid dynamic (CFD) solver [44], [45], and these methods 

guide the design process for devices such as microfluidics[46], pumps, valves, and 

catheters.[47]–[49] A range of hemolysis models exist that vary in complexity, but most predict 

hemolysis based on empirically determined functions of shear stress 𝜏𝑠 and exposure time 𝑡, both 

of which are calculated by CFD. [26], [50] Two methods/classes of implementing hemolysis 

models are commonly used: 1) Power Law models, where the damage is a result of the product 

of time and shear to empirically determined constants, and 2) Time History models, which are 

variants of the Power Law models that consider the fact that RBCs that have previously 

experienced shear will release less hemoglobin upon subsequent exposure to the same shear.[51] 

Either of these models is often used to 

predict the effect of an incremental design 

variation.[42], [48], [52] It is unclear 

whether existing hemolysis models for the 

conventional fluidic devices are suitable for 

predicting hemolysis for the development of 

micro-oxygenators and micro-dialyzers, as 

these devices may have greater or non-

uniform shear stress, exposure time, and 

flow characteristics.  

Solute transport within these devices 

is limited by the transport rate within the 

laminar fluid rather than the membrane 

permeability itself.  A solute-depleted fluid 

layer adjacent to the membrane will result in 

a reduced concentration gradient across the 

membrane, limiting membrane flux and 

resulting in insufficient filtration 

efficiency.[15], [20] Geometrical 

protrusions have been proposed as means to 

improve mixing within microfluidic 

channels (Fig. 2B). [53], [54] Any 

component of velocity that is perpendicular 

to the surface acts to move high-

concentration fluid into the boundary layer, 

thus replenishing the depleted boundary 

layer through advection. Herringbone 

mixers are chevron-shaped steps in the 

device that induce countercurrent vortices in 

the flow.[55]–[57] The staggered 

herringbone mixer is a well-characterized mixing element that has been demonstrated to improve 

mixing for a wide range of flow regimes (1 < Re < 100). [55], [58] However, the extent to which 

these flow disturbances caused by herringbone mixers contribute to flow-induced hemolysis has 

not yet been studied.  

 

Fig. 2. (A) Microfluidic dialyzer with ultra-thin highly 

permeable membrane, (B) Blood side of the dialyzer with 

herringbone mixers. 
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     Our study uses a computational model to predict hemolysis in a microfluidic ECMO. 

Advanced 3D printing techniques were employed to fabricate test device prototypes.[59], [60] In 

this study, four geometric variants of a prototype microfluidic ECMO were investigated both 

computationally and empirically to assess 1) the computational model's ability to predict 

hemolysis, 2) the comparison of empirical hemolysis with different prototype devices. 

4. Materials and Methods 

 

Computational Model Set Up  

Geometrical model 

The geometries of a 5-channel 

oxygenator device with 1 baseline and 3 

variations were created to mirror the 

experimental setups and test the 

computational blood damage model 

against experimental results. The 

geometry of the baseline configuration is 

seen in Fig 3.  In addition, a geometry 

was created, simulating the positive 

control (high shear) case consisting of a 

30 mm long, 0.4 mm diameter tube 

segment between 2 segments of inlet and 

outlet tube at the 1.6 mm diameter used 

for the other devices’ ports.   

 

Numerical Mesh 

For each geometry, the solution 

was resolved for three mesh sizes: 80, 

113, and 160 𝜇𝑚 CutCell (hexahedral) 

elements (fine, medium, and coarse 

respectively). Mesh refinement regions 

proportional to the base mesh size were 

specified for areas with high-velocity gradients to improve solution accuracy and convergence. 

(Fig. 4) The shallow channel (250 𝜇m) of one of the test devices (the reduced gap device) 

required an element size that is even more refined (57 𝜇m) to resolve flow and reach a converged 

solution. Likewise, the smaller scale of the positive control required the size of the elements to 

be reduced to 15 𝜇𝑚.  Each mesh contained approximately 24M hexahedral computational cells 

at the finest resolution. The average cell orthogonal quality was 0.992. 

A mesh convergence study was performed using Richardson Extrapolation to assess 

mesh discretization error.[61]–[64] For the baseline configuration, the high convergence order 

suggests that grid-induced error is less than 5%. The results of the mesh convergence study can 

Fig. 3. Baseline geometry.  Dimensions in mm. 

Fig. 4. Detail from medium level mesh on baseline geometry. 
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be seen in Fig. 5.  Given the order of 

magnitude of the differences in hemolysis, 

5% grid-induced error is considered 

acceptable. 

 

   

 

 

 

 

 

 

Computational Algorithm 

     A computational model of hemolysis using the native fluid flow solver of ANSYS 

Fluent and additional User Defined Functions (UDFs) was used. The simulation workflow for 

the hemolysis is shown in Fig. 6.  The core CFD algorithm solved for the fluid dynamics of the 

system, i.e., blood [65], [66], and the UDF solved for hemoglobin released and free hemoglobin.  

Cell-free hemoglobin (CFH) was defined as a species. A UDF was implemented to model 

hemolysis by using a source term to create CFH as a function of shear stress and exposure time, 

as described in greater detail later. 

 

      

 

Fig. 5. Error calculated using Richardson extrapolation for 

baseline case. 
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A parabolic velocity profile 

(corresponding to either 100 ml min-1 or 

10 ml min-1) was specified at inlets to 

avoid non-physical wall shear stress. CFH 

at the inlet of the device was set to zero.  

Single-pass damage was quantified by the 

mass-averaged CFH concentration at the 

outlet.  

The solutions from the simulations 

were attained at steady-state using a 

blended first- and second-order upwind 

scheme (blending factor of 0.75). 

Convergence criterion of 0.5 × 10−6 was 

specified for hemolysis. Flow and 

hemolysis equations were solved 

simultaneously on a four-node cluster (4 

cores, 32GB memory per node). The 

computational time to obtain the solution 

was approximately 24 hours at the finest 

mesh resolution. 

 

 

 

 

 

Hemolysis Model 

For each iteration, scalar shear stress was calculated in each computational element. The 

concentration of a species, in this case hemoglobin, is a scalar value, for which the concentration 

can be solved at every computational cell in the domain according to (Eqn. 1), where to 𝜙𝑘 is the 

transported scalar quantity. 44 

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝜙𝑘 − 𝛤

𝜕𝜙𝑘

𝜕𝑥𝑖
) = 𝑆𝜙𝑘

             (1) 

Here, 𝜌 is the fluid density, 𝑢𝑖 is the velocity of flow along the axial direction, 𝜙𝑘 is the 

transported scalar quantity, and 𝛤 is the diffusion coefficient. The first term 𝜌𝑢𝑖𝜙𝑘 represents the 

advective term and the 𝛤
𝜕𝜙𝑘

𝜕𝑥𝑖
  term represents convection. The term on the RHS is the source 

term, which models the release of free hemoglobin from within cells to the plasma. The source 

term for each Power Law model and Time History model was defined by the governing Eqs. 2 

and 3 respectively. A total of 9 Power Law (PL) models and 9 Time History (TH) were studied. 

Fig. 6. Flow chart of the hemolysis incorporated via UDFs. 

Fluent solves for fluid flow using the core algorithms (illustrated 

in the right column). Hemoglobin is treated as a species with a 

source term that allows for the generation of hemolysis from 

shear stresses. 
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D(τ,t) = 
∆𝑓𝐻𝑏

𝐻𝑏
= 𝐶 𝜏𝛼  𝑡𝛽           (2) 

D(τ,t) = 
∆𝑓𝐻𝑏

𝐻𝑏
=  ∑𝑖

𝑖=𝑖𝑛𝑙𝑒𝑡  𝐶𝛽 [ ∑
𝑗
 𝑗=1  𝜏𝑡𝑗

𝛼

𝛽 ∆𝑡𝑗 ]
𝛽−1

 𝜏𝑡𝑖

𝛼

𝛽 ∆𝑡𝑖      (3) 

  

For both Power Law and Time History model three sets of previously published empirical 

constants, C, 𝛼, and 𝛽, were considered in our study. These were published Giersiepen, 

Heuser/Optiz, and Zhang.[26], [67]–[69] Lastly three different methods of computing the scalar 

shear stress based on the viscous stress tensor reported by Fluent were employed. Two out of the 

three methods are based on the second stress invariant (𝜏𝑣𝑚 and 𝜏p) and one is based on the 

viscous stress tensor (𝜏b). 𝜏p is the square root of the absolute value of the second stress invariant 

of the deviatoric stress tensor.[70] 𝜏𝑣𝑚 is the von mises stress of this stress tensor, or simply 

√3 ∗𝜏𝑝. 𝜏b is computed from the off-diagonal components of this stress tensor 𝜏b as shown in 

Bludszuweit et al.[71] A total of eighteen damage models were studied (PL & TH, 2 * 3 

parameter sets * 3 scalar stress for each = 18) (Table 1).  The values of the constants C, 𝛼, and 𝛽 

are listed in supplementary table S4. The hemolysis per pass through the device was calculated 

using Eq. 4 as the average index of hemolysis percentage (IH%) at the device outlet. Ht denotes 

the hematocrit level in whole blood. 

𝐼𝐻% =  
∆𝑓𝐻𝑏

𝐻𝑏
 (1 − 𝐻𝑡) × 100               (4) 

 

 

 

Parameter 

Set 

 

Shear Stress Model 

τvm τb τp 

Giersiepen PL-1, TH-1 PL-2, TH-2 PL-3, TH-3 

Heuser/Optiz PL-4, TH-4 PL-5, TH-5 PL-6, TH-6 

Zhang PL-7, TH-7 PL-8, TH-8 PL-9, TH-9 

 

 

 

Table 1: Hemolysis model parameters 
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Empirical: Hemolysis 

We measured hemolysis in four 

geometrical variants of a microfluidic 

oxygenator, as well as positive and 

negative controls, to explore the model’s 

predictive power of both absolute 

magnitude and sensitivity to geometry 

variations (Fig. 7. Table 2). All the devices 

contain an inlet manifold which transitions 

from circular ports to rectangular channels 

and the rectangular channels subsequently 

transition into an outlet manifold with 

circular ports for the outlet. The four 

geometric variations display variations in 

both average and maximum shear rates 

(Table S3), suggesting the possibility of 

distinct hemolytic potentials for each 

device. The devices were fabricated by 

stereolithography (Form 3 SLA Printer, 

Biomed Amber Resin, Formlabs). Induced 

hemolysis was measured using a 

recirculating circuit driven by a custom 

syringe pump (Fig. 8A, 8B). Empirical 

experiment setups (test circuits) were 

constructed of 60 ml syringes (Qosina) 

attached to a custom-built syringe pump, 

polycarbonate fittings (VWR), silicone 

tubing (MasterFlex), microfluidic devices, 

and blood-bags (100 ml, 2 port blood bag, 

Qosina). A device-free circuit (1.6 mm ID 

tubing) was included as a negative control 

and to establish a suitable positive control, 

a tubing with a 0.4 mm ID was chosen, as 

it generates the highest shear levels among 

all tested devices while remaining within 

the observed range of shear experienced by 

blood-contacting devices.[24] 

 

 

 

 

 

Fig. 7. Device variants and their corresponding flow domains. 

Baseline: five open channels, Reduced Gap: fewer channels with 

smallest height to increase shear, Reduced Port: small inlet and 

outlet ports, Herringbone: channels with herringbone features to 

enhance mixing; herringbone height is half of the channel height. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2020.06.15.152686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152686
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 

 

 

 Baseline Reduced 

Port 

Reduced 

Gap 

Herringbone Positive 

Control 

Negative 

Control 

# of Channels 5 5 2 5 − − 

Channel Width 

(mm) 

1.6 1.6 1.6 1.6  
− 

 

− 

Channel Height 

(mm) 

2.8 2.8 0.25 2.8 − − 

Channel Length 

(mm) 

20 20 20 20 30 50 

Port ID (device)/ 

Tube ID (control) 

1.6 1 1.6 1.6 0.4 1.6 

# of Herringbones 

per channel 

0 0 0 12 − − 

Table 2. Geometrical features of microfluidic devices. The difference from the Baseline device is 

bolded.  
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Fig. 8. (A) Schematic diagram of the experimental setup. (B) Test circuit with Custom Syringe Pump, Microfluidic Devices, and 

Blood Bags. (C) Procedure to obtain IHPP from the blood samples. 

 

Citrated bovine calf whole blood was acquired through venipuncture (Lampire Biological 

Laboratories, PA) from a single donor animal, shipped overnight in a refrigerated container, and 

used within 12 hours of receipt. Blood was filtered through a 250-micron pore mesh (McMaster 

Carr). Before each experiment, the circuits were filled with 1X Phosphate Buffered Saline (PBS) 

for priming and circulated for 20 minutes according to standardized hemolysis testing 

protocols.[52] The PBS was subsequently removed, and 60 mL of blood was immediately 

infused into the circuits via the syringe pump. The syringes were programmed to pass blood 650 

times through each device at a flow rate of 100 ml min-1 for both aspiration and infusion. After 

every 100 strokes of the syringe, a blood sample of 2 ml was aspirated from each circuit. The 

samples were centrifuged at 13,000g for 10 minutes and the separated plasma was isolated and 

centrifuged again to remove any remaining cells. CFH in the plasma was measured according to 

the Cripps method,[72] which is a well-established method for measuring hemolysis that uses 

light absorbance values at 560, 576, and 593 nm wavelengths by a spectrophotometer 

(Spectramax iD3, Molecular Devices).  The index of hemolysis (IH) was computed by 

accounting for the hematocrit. The number of passes was calculated with consideration of circuit 

volume, flow rate, and total number of syringe strokes. 4 to 7 biological replicates were collected 

for each device from distinct donor animals. The mean IH was calculated for each device 

incorporating hemolysis values obtained from all the days of experiments. The standard mean of 

error was also calculated for each mean IH. A procedure workflow for getting IHPP from blood 

samples has been shown in Fig. 8C. 
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Data Analysis 

The slope of a linear regression between IH% and the number of passes through the 

device or control (IH% pass-1, written as IHPP, index of hemolysis per pass) was used as the 

metric for damage. IHPP from each of the eighteen variations of the hemolysis model were 

compared to each other and to corresponding empirical data. The cross-device hemolysis 

comparison for the empirical experiments was done using the one-way analysis of variance 

(ANOVA), where p < 0.05 indicates that two sets of data are distinct. The computational and 

empirical data for the devices were compared by one-sample t-test, where a p < 0.05 indicates 

that the computational datum is distinct from the empirical data.  

 

5. Results 

Simulation: Hemolysis 

Simulation results of the 18 

different hemolysis models for baseline 

geometry showed little difference between 

power law and time-history models (Fig. 

9A). Being so, only the power law models 

are shown in Fig. 9B and 9C and hereafter. 

The magnitude of hemolysis predicted by 

the various computational models for a 

single geometry varies drastically (Fig. 9B, 

9C), with an overall range of two orders of 

magnitude difference between Model 3 

and 5 (Fig. 9B, 9C). The strongest effect is 

a result of the parameters 𝐶, 𝛼, 𝑎𝑛𝑑 𝛽 

derived from the literature, with 

Giersiepen (Models 1-3) predicting the 

highest hemolysis and Heuser-Opitz 

(Models 4-6) the lowest. The means of 

calculating shear has a weaker effect on 

the prediction with 𝜏𝑝 shear (Models 3, 6, 

and 9); consistently predicting 4 times 

greater hemolysis per pass than the 𝜏𝑏 

shear (Models 2, 5, and 8). All models are 

consistent in predicting the relative 

changes between devices, namely the herringbones increase hemolysis per pass through the 

device <10% and all models predict the small port and reduced channel gap devices (high shear) 

induce a 10 to 20-fold increase in hemolysis compared to the featureless device (baseline). The 

right-most group in figure 6B depicts the hemolysis values found from the empirical 

experiments, which will be described in the Computational vs. Empirical Hemolysis section. The 

negative control showed the lowest level of hemolysis in all models when compared to the 

devices. The positive control had orders of magnitude higher hemolysis compared to the other 

devices. 
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Empirical: Hemolysis 

Fig 10A shows representative data 

from one day of empirical experiments. 

Hemolysis is nearly linear with the 
number of passes. It is evident that all 

devices exhibit significantly lower levels 

of hemolysis (<1.5 × 10−4 IHPP) 

compared to the positive control 

(~1× 10−2
 IHPP). Fig. 10B presents the 

mean hemolysis values of all experiment 

days. It was observed that even without a 

device attached to the circuit (tubing only), 

the mean hemolysis values were found to 

be statistically comparable to the values 

that which the devices were attached (p > 

0.05). This suggests the device-only 

hemolysis (excluding pump, tubing, and 

connectors), calculated as the difference 

between the maximum device-induced damage and the tubing-only circuit is 1.5 × 10−4 IHPP ( 

3 × 10−4– 1.5 × 10−4 = 1.5 × 10−4 IHPP). As the empirical hemolysis values for 100 ml min-1 

flow rates were so low, we determined that 10 ml min-1 flow conditions would generate 

hemolysis well below our measurement sensitivity, thus empirical experiments were not 

performed for 10 ml min-1. While comparing within the empirical cases, the baseline hemolysis 

value was not statistically distinguishable from the other devices (herringbone, reduced port, and 

reduced gap) (p > 0.05). The positive control IHPP values on the other hand was statistically 

significantly different from all other devices (p < 0.05). Table S1 reports the cross-device 

comparison p values obtained from the one-way ANOVA test. 

 

Fig. 9. (A) Comparison of hemolysis data for the Baseline device 

for both PL and TH models (total 18 models) with Giersiepen 

parameters (Models 1-3), Heuser/Opitz parameters (Models 4-6), 

and the Zhang parameters (Models 7-9) (B, C) simulation 

hemolysis values for the Power-law models for all four devices 

and controls for flow rates 100 ml min-1 (B) and 10 ml min-1 (C) 

respectively. Panel B also includes the empirical hemolysis 

values. 
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     Fig. 10. (A) IH% Vs. No. of Passes plot for one empirical experiment, (B) Overall mean of empirical data comparing IHPP for 

each device and controls. The solid midline represents the median IHPP and the whiskers are the lower and upper range of IHPP. 

Boxes containing asterisks depicts significantly different IHPP value from the positive control (p < 0.005). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2020.06.15.152686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152686
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 

Empirical vs. Simulation Hemolysis 

For all cases (devices and controls) models (1, 2, 3) overpredicted (IHPP to IHPP) the hemolysis 

values when compared to the empirical (Fig. 8). Models (4, 5, 6) underpredicted (to IHPP) for 

the negative control, baseline, and herringbone device, but the prediction they provided for 

relatively higher shear devices: reduced port, reduced gap, and positive control, were rather 

accurate. Likewise, models (7 and 8) that best agreed for negative control, baseline, and 

herringbone device overpredicted (to 0.45 IHPP) for reduced port, reduced gap, and positive 

control. Model 9 followed a similar trend as models (7 and 8) with lesser accuracy. Table S2 

reports the empirical vs. simulation comparison p values obtained from one sample t-test. 

 

 

 

Fig. 11. IH% per pass for individual devices and controls: Empirical vs. Simulation. The whiskers are the lower and upper range 

of IHPP. The squares, circles, and triangles represent Giersiepen (models 1 to 3), Heuser-Optiz (models 4 to 6), and Zhang 

(models 7 to 9) PL models respectively. 

 

 

 

6. Discussion 

The models predicted hemolysis values across several orders of magnitude, which is 

consistent with the literature.[26] It was observed that the time history model results in no 
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significant improvement in the accuracy of prediction. This is expected because the time-history 

effect should be small since the magnitude of hemolysis predicted was low. Our observations 

revealed that for devices with average shear rates below 500 s-1 (baseline, herringbone, and 

negative control), models 7 and 8 exhibited the closest predictions. Conversely, for devices 

operating at shear rates equal to or exceeding 600 s-1 (reduced port, reduced gap, and positive 

control), models 4-6 demonstrated the closest predictions. This relationship suggests that when 

designing a microfluidic device expected to operate in a low shear range, selecting models 7 and 

8 for hemolysis prediction is optimal. Conversely, when the prototype device is anticipated to 

operate in a high shear range, selecting models 4-6 is ideal. Although beyond the scope of this 

work, recent studies have presented methods to develop device-specific parameters using 

empirical data that spans multiple flow rates and a range of device geometries.[73] They 

determined device-specific model parameters, through a high number of empirical replicates and 

Kriging surrogate modeling, that produce hemolysis values that are closer to the empirical 

findings.[73]   

The coefficients for the Giersiepen models (models 1-3) were derived from experiments 

encompassing shear rate ranges from 0 s-1 to 70833 s-1, for the Heuser/Optiz models (models 4-6) 

the shear rate ranged from 10000 s-1 to 166700 s-1, and for the Zhang models (models 7-9) the 

shear rate ranged from 13890 s-1 to 88890 s-1. Notably, the Heuser/Optiz models exhibited the 

highest shear rate ranges while calculating their coefficients, and as mentioned earlier, these 

models demonstrated good agreement with high-shear devices. This observation might suggest 

that the coefficients determined by Heuser/Optiz, being derived from shear rate ranges closest to 

those employed by high-shear devices, resulted in a closer agreement with these devices. 

Conversely, for the other models, such a clear correlation is not evident. This lack of correlation 

might be attributed to the differences in shear application methods utilized by those models 

compared to our approach of using microfluidics. Other factors, such as differing blood 

characteristics may also contribute to differences between empirical data and the previously 

derived models.  In summary, the variations in the experimental shear rate ranges and the 

methods of shear application among different models can potentially impact their correlation 

with specific devices, especially in the context of microfluidics-based studies. A future work 

could be to recommend new sets of coefficients derived from microfluidic shear applications, 

which can lead to the development of more accurate hemolysis prediction models for 

microfluidics. 

For all computational models, the three device modifications yielded an increase in 

hemolysis over the baseline device. This means the models were sensitive to each of the three 

design changes introduced and successfully predicted an increase in hemolysis for all three, with 

the largest incremental increase resulting from the two designs intended to increase shear 

(reduced port and reduced gap). The models may be useful for device design if multiple devices 

are required to be compared with each other in terms of their hemolytic tendency. 

Empirical hemolysis observed for all four microfluidic devices was remarkably low (< 2 

ppm hemolysis) and statistically indistinguishable for all four design iterations when compared 

to the negative control (p > 0.05) (Fig. 7). The low device-induced damage within all devices is 

promising for clinical use. A maximum of 3 ppm pass-1 of RBCs are damaged by the device, 

tubing and pump combined, which is lower than conventional ECMO loops (~ 10 ppm pass-1). 

[74] The incremental damage caused by any of these devices is less than 1.5 ppm pass-1. 

Although these devices contain sharp edges and small features that induce non-physiological 
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shear stresses at the tested flow rates, these stresses appear insufficient to induce significant 

hemolysis in the devices. The experimental conditions (flow rate: 100 ml min-1, reservoir 

volume: 60 mL, experiment length: 5-8 hours) generate over 650 passes through the devices, 

which is comparable to the time required for short-term ECMO support as a “bridge”. [75]  The 

number of passes through the device in these experiments may greatly exceed what would 

normally be experienced if used clinically as a wearable continuous-flow device.  

As previously stated, the results of empirical hemolysis for all four devices did not 

demonstrate a significant difference when compared to the negative control. This suggests that 

the hemolysis induced by the test loop and syringe pump may have overshadowed any hemolysis 

induced by the devices themselves. Therefore, the device-induced hemolysis level was deemed 

negligible for the tested devices. However, it is important to note that the positive control 

hemolysis was considerably higher, as confirmed by both empirical and computational analyses. 

Although the computational models did not accurately predict subtle differences in hemolysis 

between the devices, they were able to differentiate high levels of hemolysis induced by the 

positive control. This indicates that for microfluidic design iterations, the model can predict the 

trend of hemolysis accurately if the modeled hemolysis exceeds a certain threshold IHPP. Based 

on our experiments, this threshold is currently set at the hemolysis level obtained from the 

positive control. In future studies, it will be necessary to refine this threshold value and 

determine the lowest IHPP for computational analyses to align with empirical hemolysis 

measurements. Furthermore, future experiments should consider incorporating both 

computational and empirical testing of thrombosis for the devices to enhance hemocompatibility 

assessment. 

 The use of multi-functional or multi-physical models to guide device design is promising 

and increasingly practical with advancements in techniques and computer power. The ability to 

study design variants through simulation leads to less expensive and faster design iteration, 

eventually resulting in better-optimized designs. The low device-induced hemolysis (< 2 ppm) 

measured in our study at physiologically relevant flow rates is promising for the future 

development of microfluidic dialyzers and oxygenators, and our work demonstrates that 

computational modeling may supplement empirical testing to expedite the design optimization of 

these devices. Further, the study indicates that the power law has a higher tendency to over-

predict hemolysis in microfluidic devices, and further customization is required to implement 

these existing models to a microfluidic device geometry. 
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Supplementary: 

 

Devices Negative Control Baseline Reduced Port Reduced Gap Herringbone 

Negative Control - - - - - 

Baseline >0.9999 - - - - 

Reduced Port >0.9999 >0.9999 - - - 

Reduced Gap >0.9999 >0.9999 >0.9999 - - 

Herringbone >0.9999 >0.9999 >0.9999 >0.9999 - 

Positive Control <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 

Table S1: One-way ANOVA p values, (cross-device comparison of empirical values), boxes highlighted in orange (p < 0.05) 

means the IHPP difference was statistically significant. Whereas the non-highlighted boxes represent the differences not to be 

statistically significant. 
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 Models 

Devices 1 2 3 4 5 6 7 8 9 

Negative Control <0.0001 <0.0001 <0.0001 0.0056 0.0034 0.0095 0.3538 0.1461 0.0056 

Baseline <0.0001 <0.0001 <0.0001 0.0029 0.002 0.0036 0.3261 0.0384 0.0237 

Reduced Port <0.0001 <0.0001 <0.0001 0.2413 0.0301 0.0028 <0.0001 <0.0001 <0.0001 

Reduced Gap <0.0001 <0.0001 <0.0001 0.0053 0.567 0.0001 <0.0001 <0.0001 <0.0001 

Herringbone <0.0001 <0.0001 <0.0001 0.0057 0.0031 0.0081 0.0216 0.2246 0.001 

Positive Control <0.0001 <0.0001 <0.0001 0.8388 0.0592 0.106 <0.0001 0.0001 <0.0001 

 

Table S2: One sample t-test p values, (empirical vs model), boxes highlighted in green (p > 0.05) means the difference between 

the IHPP of empirical and model was not statistically significant. Whereas the non-highlighted boxes represent statistically 

significant differences. 

 

 

Device 

Volm. Avg. 

Shear Rate 

(1/s) 

Max. Shear 

Rate (1/s) 

Negative Control 284 596 

Baseline 363 37430 

Reduced Port 597 150878 

Reduced Gap 947 105511 

Herringbone 486 51482 

Positive Control 14267 273768 

 

Table S3: Device shear rates for 100 ml/min flow rate 
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Table S4: Properties of each hemolysis model tested in-silico. 
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