Modex Electronics DATASHEET

JUNHO 2013

Isolator terminal

Features

- IP 30 terminal cover
- Positive opening contact, 2-pole
- Safety isolation of Ex e power circuits
- Replaced system shutdown or fire-work-permission

Dimensions/mounting positions

Module width: 15 mm

Wiring diagram (l-position)/ terminal assignment (l-position)

Description

The MODEX series offers an isolator terminal which can be used both for service and test jobs as well as for conventional, manual switching functions. Thanks to the visibly clear distinction between switching positions and extremely small enclosure with 4 integrated terminals, the isolator terminal is very easy to install. The labelling options are the same as for rail-mounted terminals. The MODEX isolator terminal is installed directly in an Ex e enclosure and installed like a rail-mounted terminal.

Being a terminal with positive opening operation, it offers additional safety. All conducting parts are protected against accidental contact which allows you to open the Ex e enclosure and to operate the switch by hand when voltage is applied and within the Ex area. Any actuators or sensors are isolated by the double poles and can thus be replaced under hazardous conditions providing local regulations allow this.

Explosion protection

Ex protection type

(Ex) |l 2 G / I M2
Exde IIC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 98 ATEX 1020 U
IECEx PTB 11.0087 U
CSA 2011-2484303U
INMETRO TÜV 13.1678 U

Technical data

Enclosure material

High-quality thermoplastic and duroplastic

Protection class

Module	IP 54
Terminals	IP 20
Terminals with cover	IP 30

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels
Ambient temperature
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.245 kg

Electrical data

Switching elements

2-pole positive opening contact

Service life

electrical/mechanical $0.6 \geq 10^{4}$
switching cycles

Contact material

pure silver, gold-plated

Contact version

positive opening contact

Contact type

2-pole NC contact

Rated isolation voltage

400 V

Short-circuit protection

fuse-links
characteristic - quick-acting: 10 A

Mechanical life

1×10^{6} switching cycles

Electrical life

1×10^{4} switching cycles

Conventional thermal current

7 A at $\mathrm{T}_{\mathrm{a}} \leq+40^{\circ} \mathrm{C}$

Utilization categories

AC-15 for $400 \mathrm{~V} / 2 \mathrm{~A}$
DC-13 for $250 \mathrm{~V} / 0.15 \mathrm{~A}$
Switching capacity according to EN 61058-1
see table
Rated operating current
Alternating current $\mathbf{4 0 - 8 0 ~ H z}$

Load U	Ohmic load I/AC-12 A	Inductive load I/AC-15 A
125 V	5 A	
250 V	4 A	4.0 A
400 V	2 A	2.0 A

Direct current		
	Ohmic load	Inductive load
30 V	7 A	approx. 5 A
250 V	$0,6 \mathrm{~A}$	0.15 A

Guidelines

Directive 94/9/EC

Notes

■ Adhere to VBG 4 § 6 par. 2 when working on the unit

- Provide IP 30 covers on terminals 11 and 21 (enclosed)
- Only terminals 12 and 22 can be worked with
- Protect against unintentional reclosing/sea isolator termina
- Ensure isolation from supply (pay attention to valves and fittings with energy storage mechanism)
- Cover neighboring, conducting parts

Fuse

Description

Fused modules are required to protect equipment and power circuits in areas in which an explosion hazard exists.

The increasing automation of functions and processes make it necessary to install the standard protective devices on-site.

An advantage of MODEX fuses is that they are fitted in explosion-protected enclosures with integrated double terminals. This allows the input and output voltage to be used further by the MODEX component.

Dimensions/mounting positions

Module width: 15 mm

Wiring diagram/terminal assignment

- Explosion protection

Ex protection type
を的 || 2 G / I M2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 98 ATEX 1010 U
IECEX PTB 11.0086 U
CSA 2011-2484303U
INMETRO IEE 12.0204 U

- Technical data

Enclosure material

High quality thermoplastic

Protection class

$$
\begin{array}{ll}
\text { Module } & \text { IP 66/IEC } 60529 \\
\text { Terminals } & \text { IP 20/IEC } 60529
\end{array}
$$

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels
Ambient temperature
$-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.055 kg

Electrical data

Fuse

quick acting 0.1 A

Nominal voltage

250 V

Switching capability

at $250 \mathrm{~V}, 50 \mathrm{~Hz}, \cos \varphi=1$
35 A for (F) 0.1 A

Guidelines

Directive 94/9/EC

Fuse

Description

Fused modules are required to protect equipment and power circuits in areas in which an explosion hazard exists.

The increasing automation of functions and processes make it necessary to install the standard protective devices on-site. An advantage of MODEX fuses is that they are fitted in explosion-protected enclosures with integrated double terminals.
This allows the input and output voltage to be used further by the MODEX component. Please indicate the desired current value with your order (see selection chart).

Explosion protection

Ex protection type

Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 98 ATEX 1010 U
IECEx PTB 11.0086U
CSA 2011-2484303U
INMETRO IEE 12.0204 U

Dimensions/mounting positions

Module width: 15 mm

Wiring diagram/terminal assignment

Technical data

Enclosure material

High quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.055 kg

Electrical data see selection chart

Nominal voltage

250 V

Switching capability

at $250 \mathrm{~V}, 50 \mathrm{~Hz}, \cos \varphi=1$
35 A for (T) 0.032 A to 1.25 A

Guidelines

Directive 94/9/EC

Fuse

Description

Fused modules are required to protect equipment and power circuits in areas in which an explosion hazard exists. The increasing automation of functions and processes make it necessary to install the standard protective devices on-site. An advantage of MODEX fuses is that they are fitted in explosion-protected enclosures with integrated double terminals. This allows the input and output voltage to be used further by the MODEX componentt.

Please indicate the desired current value with your order (see selection chart).

Explosion protection

Ex protection type

(Ex) || 2 G/IM2
Exde llC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb
Certification
PTB 98 ATEX 1010 U
IECEx PTB 11.0086 U
CSA 2011-2484303U
INMETRO IEE 12.0204 U

Dimensions/mounting positions

Module width: 15 mm

Wiring diagram/terminal assignment

Technical data

Enclosure material
High quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.055 kg

Electrical data see selection chart

Nominal voltage

250 V

Switching capability

at $250 \mathrm{~V}, 50 \mathrm{~Hz}, \cos \varphi=1$
80 A for (M) 0.1 A to 1.25 A
35 A for (T) 0.1 A to 1.25 A

Guidelines

Directive 94/9/EC

Fuse

Description

Fused modules are required to protect equipment and power circuits in areas in which an explosion hazard exists. The increasing automation of functions and processes make it necessary to install the standard protective devices on-site.

An advantage of MODEX fuses is that they are fitted in explosion-protected enclosures with integrated double terminals.

Explosion protection

Ex protection type

(Ex) || 2 G/IM2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram/terminal assignment

\Rightarrow Technical data

Enclosure material
High quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.120 kg

Electrical data see selection chart

Nominal voltage

250 V

Switching capability

at $250 \mathrm{~V}, 50 \mathrm{~Hz}, \cos \varphi=1$
1000 A for (M) 1.6 A to 2.5 A
35 A for (T) $\quad 1.6 \mathrm{~A}$ to 2.5 A

Guidelines

Directive 94/9/EC

Fuse

Description

Fused modules are required to protect equipment and circuits in hazardous areas. With the increas-ing automation of functions and processes requires the installation of the standard protective devices on-site.

An advantage of MODEX fuses is that they are fitted in flameproof enclosures with integrated double terminals. This allows the input and output voltage to be used by other MODEX component too.

Explosion protection

Ex protection type

(Ex) \| 2 G / IM2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb
Certification
PTB 97 ATEX 1068 U
IECEx PTB 11.0083U
CSA 2011-2484303U
INMETRO IEE 12.0200U

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram/terminal assignment

Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.250 kg

- Electrical data
see selection chart

Nominal voltage

250 V
Switching capacity
at $250 \mathrm{~V}, 50 \mathrm{~Hz}, \cos \varphi=1$
1000 A for (M) 3.15 A to 6.3 A
35 A for (T) to 3.15 A
40 A for (T) 4 A
50 A for (T) 5 A
63 A for (T) 6.3 A

Guidelines

Directive 94/9/EC

Fuse

Description

With the increase in automated functions and processes, it is necessary to install common protective systems on site. Fuse elements are required to protect equipment and circuits also in hazardous areas.
MODEX fuse elements are advantageous as they are in explosion-proof encapsulation and installed in an enclosure with integrated double terminals.

- Explosion protection

Ex protection type
(Ex) \| 2 G/IM2
Exde IIC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Dimensions/mounting positions

Module width: 30 mm

-> Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.250 kg

- Electrical data
see selection chart
Rated voltage
250 V
Switching capacity
at $250 \mathrm{~V}, 50 \mathrm{~Hz}, \cos \varphi=1$
35 A for to 3.15 A
40 A for 4 A
63 A for 6.3 A

Guidelines

Directive 94/9/EC
Ditle

Freewheeling diode

Dimensions/mounting position

Module width: 15 mm

Description

A freewheeling diode acting as a sppressor, this module can be installed in series or in parallel to an electrical circuit just like any modular terminal.
There are two connection points on either side to facilitate wiring to other MODEX modules or direct connection.

Explosion protection

Ex protection type

\&x || 2 G / IM2
ExdellC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 98 ATEX 1010 U
IECEX PTB 11.0086 U
CSA 2011-2484303U
INMETRO IEE 12.0204 U

Wiring diagram 2/terminal assignment 2

[^0]
- Technical data

Enclosure material
High quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529
Terminals
$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels
Ambient temperature
$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.050 kg

Electrical data

Rated voltage

400 V
Reverse voltage
1000 V

Current

0.7 A

Type 1 N 4007
other types on request

Guidelines

Directive 94/9/EC

Freewheeling diode

Description

Suppressors for electrical and electronic control systems.

Spark suppressors for the prevention of overvoltage in inductive loads such as solenoids, DC relays etc.

Dimensions/mounting position

Module width: 30 mm

- Explosion protection

Ex protection type
(xx || 2 G / I M2
Exde IIC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Technical data
 Enclosure material

high-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded
Mounting rail
TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels
Ambient temperature
$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage temperature
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.250 kg

Electrical data

Rated voltage

400 V
Reverse voltage
1000 V

Current

Type 1N4007 max. 0.6 A
Other types on request

Guidelines

Directive 94/9/EC

Lamp test diode module

Description

This module combines a given number of diodes on a single printed board. The diodes are connected to terminals.

Typical applications:
Signal isolation in lamp testing. The diodes are connected in pairs and can be supplied with either a common cathode or anode.

Dimensions/mounting positions

Module width: 75 mm

Wiring diagram/terminal assignment

Explosion protection

Ex protection type
《x || 2 G / I M2
Exde IIC Gb
Exdelmb
Class I Zone 1 IIC
A/Ex d e IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Technical data

Enclosure material
High quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage temperature
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.400 kg

Electrical data
Reverse voltage
max. DC 300 V

Reverse voltage

1000 V

Diode current

0.3 A max per lamp

Type 1 N 4007

Guidelines

Directive 94/9/EC

Resistor

Dimensions/mounting position

Module width: 15 mm

Wiring diagram 2/terminal assignment 2

Description

For general use throughout the field of measuring and control engineering for hazardous areas (e. g. monitoring switching contacts, open circuit monitoring).

Explosion protection

Ex protection type

© $x_{1}| | 2$ G / M M 2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 98 ATEX 1010 U
IECEx PTB 11.0086 U
CSA 2011-2484303U
INMETRO IEE 12.0204 U

Selection chart

Rating		Spacing	Wiring diagram terminal assigment	Code no.
$\begin{array}{rr} \mathrm{R} 1 & 10 \mathrm{k} \Omega \\ \mathrm{R} 2 & 1 \mathrm{k} \Omega \\ \pm & 1 \% \\ \hline \end{array}$	$\begin{aligned} I_{\text {max. }} & =6 \mathrm{~mA} \\ I_{\text {max. }} & =6 \mathrm{~mA} \end{aligned}$	without	2	
$\begin{array}{lll} \mathrm{R} 1 & 3.3 \mathrm{k} \Omega & \pm \\ \text { R2 } & 1.8 \mathrm{k} \Omega & \pm \\ \hline \end{array}$	$\begin{aligned} I_{\text {max. }} & =8 \mathrm{~mA} \\ I_{\text {max. }} & =8 \mathrm{~mA} \end{aligned}$	without	2	
$\mathrm{R} 14.7 \mathrm{k} \Omega \pm 5 \%$	$I_{\text {max }}=12 \mathrm{~mA}$	without	1	
$R 1120 \Omega \pm 1 \%$	$I_{\text {max }}=60 \mathrm{~mA}$	without	1	
$\mathrm{R} 1 \quad 1 \mathrm{k} \Omega \pm 1 \%$	$I_{\text {max. }}=25 \mathrm{~mA}$	without	1	
$R 1250 \Omega \pm 0,1 \%$	$I_{\text {max }}=50 \mathrm{~mA}$	without	1	
$\begin{array}{ll} \mathrm{R} 1 & 2 \mathrm{k} \Omega \pm 1 \% \\ \text { R2 } & 1 \mathrm{k} \Omega \\ \pm & 1 \% \end{array}$	$I_{\max .}=6 \mathrm{~mA}$	without	2	
$\begin{aligned} & \text { R1 } 249 \Omega=1 \% \\ & \text { R2 } 100 \Omega \\ & \pm \\ & \hline \end{aligned}$	$I_{\max .}=50 \mathrm{~mA}$	without	2	
$\begin{array}{rr} \mathrm{R} 1 & 10 \mathrm{k} \Omega \\ \text { R2 } & 2 \mathrm{k} \Omega \\ \pm & \pm 1 \% \end{array}$	$I_{\max .}=6 \mathrm{~mA}$	without	2	
$\begin{array}{lll} \mathrm{R} 1 & 8.2 \mathrm{k} \Omega & \pm \\ \text { R2 } & 1.5 \mathrm{k} \Omega & \pm \\ \hline \end{array}$	$\begin{aligned} & I_{\text {max. }}=8 \mathrm{~mA} \\ & I_{\text {max. }}=19 \mathrm{~mA} \end{aligned}$	without	2	

(Precision) Resistors

Description

For general use throughout the field of measuring and control engineering for hazardous areas (e. g. monitoring switching contacts, open circuit monitoring).

- Explosion protection

Ex protection type
(Ex) || 2 G / / M2
ExdellC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

-> Technical data

Enclosure material
High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TS 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.110 kg

Electrical data see selection chart

Guidelines

Directive 94/9/EC

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram 2/terminal assignment 2

Wiring diagram 3/terminal assignment 3

Selection chart

Miniature switching relay

Description

The relay modules of the MODEX series offer most up-to-date switching configurations. A suppressor diode on the coil protects the power circuit from peak voltages. High shock and vibration resistance is just as important as the IP 66 protection of the contacts.

The MODEX relay switches circuits up to 5 A and is used as an isolator between low-current control circuits and high-current switching circuits.

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram/terminal assignment

Explosion protection

Ex protection type

Ex || 2 G / I M2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb
Certification
PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TS 35×7.5 (15) EN 60715

Labelling

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.250 kg

Electrical data

Coil data

AC/DC 11.2 V to $16 \mathrm{~V} / 0.53 \mathrm{VA} / 0.37 \mathrm{~W}$ AC/DC 21.5 V to $28 \mathrm{~V} / 0.43 \mathrm{VA} / 0.33 \mathrm{~W}$ AC/DC 42 V to $60.5 \mathrm{~V} / 0.53 \mathrm{VA} / 0.4 \mathrm{~W}$ AC/DC 54 V to $72 \mathrm{~V} / 0.41 \mathrm{VA} / 0.3 \mathrm{~W}$
AC 96 V to $144 \mathrm{~V} ; 50 / 60 \mathrm{~Hz} / 0.85 \mathrm{VA}$ AC 176 V to $264 \mathrm{~V} ; 50 \mathrm{~Hz} / 1.5 \mathrm{VA}$

Contact material

AgCdO
Max. switching voltage
AC 250 V/DC 300 V

Max. switching capacity

(ohmic load)
1250 VA (50 W)

Test voltage

Coil-contact 4 kV

Mechanical life

min. 3×10^{6} switching cycles

Electrical life

 $>1 \times 10^{5}$ switching cycles/ AC $220 \mathrm{~V}, 5$ A ohmic load
Operating frequency

7200 switching cycles/h

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Relay

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram 2/terminal assignment 1

Description

The relay modules of the MODEX series offer most up-to-date switching configurations. A suppressor diode on the coil protects the power circuit from peak voltages.

The MODEX relay serves for the switching of power circuits up to 6 A . Thanks to its low power consumption it can be controlled by means of electronic circuits, optorelays from BARTEC or standard power circuits.

Explosion protection

Ex protection type

©
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083U
CSA 2011-2484303U

Technical data

Enclosure material

High-quality thermoplastic

Protection class

$\begin{array}{ll}\text { Module } & \text { IP 66/IEC } 60529 \\ \text { Terminals } & \text { IP 20/IEC } 60529\end{array}$
Terminals
$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) DIN EN 60715

Labelling

written marking labels
Storage temperature
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Weight

0.250 kg

Electrical data

Coil

$\begin{aligned} & \text { AC/DC } 12 \text { V } \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & \text { AC/DC } 24 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$
$\begin{aligned} & 0.45 \mathrm{~W} \\ & 0.6 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 0.46 \mathrm{~W} \\ & 0.56 \mathrm{VA} \end{aligned}$
$\begin{aligned} & \text { AC } 110 \text { V } \\ & \text { +10 \% } \end{aligned}$	$\begin{aligned} & \text { AC } 120 \text { V } \\ & +10 \% / 60 \mathrm{~Hz} \end{aligned}$
1.2 VA	1.0 VA
	$\begin{aligned} & \text { AC 230/240 V } \\ & +10 \% \end{aligned}$
	1.2 VA

Contact data Contact material AgCdO

$\mathbf{U}_{\mathbf{A}}$	$\mathbf{I}_{\text {max. }}$	$\mathbf{P}_{\text {max. }}$	(1 changeover contact)	
AC	400 V	2.0 A	700 VA	$\cos \varphi$ AC
	250 V	6.0 A	1400 VA	1 DC
125 V	0.6 A	75 W	ohmic DC	50 V

U_{A}	$\mathrm{I}_{\text {max }}$	$\mathbf{P}_{\text {max }}$	(2 changeover contacts)
AC 400 V	1.0 A	350 VA	$\} \cos \varphi$
AC 250 V	3.0 A	700 VA	\} =1
DC 125 V	0.25 A	30 W	\} ohmic
DC 50 V	1.5 A	75 W	γ load

Making current (16 ms)

20 A (1 changeover contact)
10 A (2 changeover contacts)

Test voltage

Coil-contact 4 kV

Mechanical life

$>20 \times 10^{6}$ switching cycles

Electrical life

$>1 \times 10^{5}$ switching cycles/AC 230 V
6 A ohmic load (1 changeover contact)
$>1 \times 10^{5}$ switching cycles/AC 230 V
3 A ohmic load (2 changeover contacts)

Operating frequency

1800 switching cycles/h

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Miniature switching relay

Description

The relay modules of the MODEX series offer most up-to-date switching configurations. A suppressor diode on the coil protects the power circuit from peak voltages. High shock and vibration resistance is just as important as the IP 66 protection of the contacts.

The MODEX relay switches circuits up to 5 A and is used as an isolator between low-current control circuits and high-current switching circuits.

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram/terminal assignment

Explosion protection

Ex protection type

\&x | $\mid 2$ G / IM2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb
Certification
PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TS 35×7.5 (15) EN 60715

Labelling

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.250 kg

Electrical data

Coil data

AC/DC 11.2 V to $16 \mathrm{~V} / 0.53 \mathrm{VA} / 0.37 \mathrm{~W}$ AC/DC 21.5 V to $28 \mathrm{~V} / 0.43 \mathrm{VA} / 0.33 \mathrm{~W}$ AC/DC 42 V to $60.5 \mathrm{~V} / 0.53 \mathrm{VA} / 0.4 \mathrm{~W}$ AC/DC 54 V to $72 \mathrm{~V} / 0.41 \mathrm{VA} / 0.3 \mathrm{~W}$
AC 96 V to $144 \mathrm{~V} ; 50 / 60 \mathrm{~Hz} / 0.85 \mathrm{VA}$ AC 176 V to $264 \mathrm{~V} ; 50 \mathrm{~Hz} / 1.5 \mathrm{VA}$

Contact material

AgCdO
Max. switching voltage
AC 250 V/DC 300 V

Max. switching capacity

(ohmic load)
1250 VA (50 W)

Test voltage

Coil-contact 4 kV

Mechanical life

min. 3×10^{6} switching cycles

Electrical life

 $>1 \times 10^{5}$ switching cycles/ AC $220 \mathrm{~V}, 5$ A ohmic load
Operating frequency

7200 switching cycles/h

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Optocoupler

Description

This optocoupler provides for a safe galvanic isolation between a non-intrinsically safe incoming circuit (transmitter) and the output connected to an intrinsically safe circuit (receiver), which is clearly identified by means of light blue terminals.
The two channels are also safely galvanically isolated among each other.

Dimensions/mounting positions

Module width: 30 mm

Explosion protection

Ex protection type

©x |l| 2 (1) G / I M2
Ex de [ia Ga] IIC Gb
Exde [ia Ma] $I M b$
Class I Zone 1 IIC
A/Ex de [ia] IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083 U
TÜV 01 ATEX 1715
IECEX TUN $11.0029 \times$
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Fitting

Type 17-9135-4.......
(Ex) \| (1) $G / \|(1) D$
[Ex ia Ga] IIC
[Ex ia Da] IIIC
For further data see verification certificates.

- Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/EC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.250 kg

Electrical data
Total power dissipation
$P_{\text {max }}=0.8 \mathrm{~W}$
No capacities and inductances

- Input data

Input voltage

DC 20 to 28 V (non-interchangeable)

Input current

5.5 mA to 9.2 mA

- Output data

Voltage

DC 4 V to max. 30 V

Saturation voltage

0.9 V

Current

max. 50 mA (only for connecting to certified intrinsically safe circuits.
Ci and Li negligible).

- Transmission data

Switching frequency

$$
\text { max. } 5 \mathrm{kHz} \text { (with } \mathrm{U}_{\mathrm{A}}=10 \mathrm{~V} \text {) }
$$

Switching times measured at
$U_{E}=20 \mathrm{~V}_{\text {SS }} ; U_{A}=10 \mathrm{~V}_{\text {SS }} ; I_{A}=50 \mathrm{~mA}$
Rise time approx. $15 \mu \mathrm{~s}$
Drop-out time approx. $13 \mu \mathrm{~s}$
Switch-on time approx. $18 \mu \mathrm{~s}$
Switch-off time approx. $19 \mu \mathrm{~s}$

Galvanic isolation transmitter/receiver

max. 375 V (peak value)

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Power relay

Dimensions/mounting positions

Module width: 75 mm

Description

Relay modules in the MODEX system offer modern switch features in explosive areas.
The MODEX power relay is used to switch loadcurrent circuits to 12 A , e. g. heating circuits or smaller motors.

- Explosion protection

Ex protection type
(Ex) || 2 G / M M2
ExdellC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083U
CSA 2011-2484303U
INMETRO IEE 12.0200 U
-> Technical data

Enclosure material

High quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

Mounted in sequence on TH
at $\geq 16 \mathrm{~mm}$ spacing
$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.500 kg

Electrical data

Coil data

DC $24 \mathrm{~V} \pm 10 \%$
AC $230 \mathrm{~V} \pm 10 \%$

Nominal power

DC 24 V approx. 1.25 W
AC 230 V approx. 1.9 VA

Contact data

Contact material AgCdO
Max. switching voltage AC 400 V

Max. switching current (ohmic load) 12 A

Max. switching capacity (ohmic load) 4560 VA

Test voltage

Coil contact 2.5 kV effective
15/10 ms

Mechanical life

20×10^{6} switching cycles

Switching frequency

6000 switching cycles/h without load
1000 switching cycles/h at nominal load

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Cradle relay

Description

Cradle relay for direct and alternating voltages, neutral, monostable. High-quality cradle relays for different AC and DC voltage ranges are encapsulated flameproof and installed in the MODEX enclosure. Protection class IP 66 guarantees that the contacts are protected against aggressive atmospheres.

Applications:

Switching of measuring and control circuits in industrial plants.

Wiring diagrams/terminal assignments

4 changeovers

Dimensions/mounting positions

Module width: 75 mm

Note

■ For use with inductive loads the relays can be connected with an effective suppressor in order to protect the contacts.

Explosion protection

Ex protection type

(xx)|| 2 G / IM2

Exde IIC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

- Technical data

Enclosure material

High-quality thermoplastics

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels

Ambient temperature

$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage temperature
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.500 kg

Electrical data

Operating data (coil circuit)

$\mathbf{U}_{\mathbf{N}}$	$\mathbf{I}_{\mathbf{N}}$ (8 contact decks)
DC 15 V	60 mA
DC 24 V	27 mA
DC 48 V	17 mA
AC 110 V	25 mA
AC $120 \mathrm{~V} / 50 \mathrm{~Hz}$	28 mA
AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	25 mA
AC 220 V	13 mA
AC $230 / 240 \mathrm{~V}$	13 mA

Contact data

Switching voltage: $U_{A \text { max }}=A C / D C 125 \mathrm{~V}$
Switching current: $I_{\text {max. }}=1 \mathrm{~A}$ (per contact)
Switching capacity
$P_{\text {max. }}=40 \mathrm{~W} / 50 \mathrm{VA}$
Contact material
silver, gold-flashed

Contact arrangement

4 changeovers; 8 NO;
4 NO; 4 NC

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Other data		AC types	DC types
Max. switching frequency	(switching cycles $/$ sec.)	20	50
Mech. service life	(switching cycles)	approx. 10^{7}	approx. 10^{8}
Test voltage:	coil/contact $\left(\mathrm{V}_{\sim_{\text {ms }}}\right)$	500 at $\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V}$	500
		2000 at $\mathrm{U}_{\mathrm{N}}>60 \mathrm{~V}$	
	contact/contact $\left(\mathrm{V}_{\sim_{\text {ms }}}\right)$	500	500

Transformer

Description

The control transformer steps down mains voltage to low voltage. Input and output are electrically isolated.
Especially suitable for supplying low power AC devices in zone 1 hazardous areas.

Dimensions/mounting positions

Module width: 75 mm

Wiring diagram/terminal assignment

- Explosion protection

Ex protection type
© $x_{x} \| 2$ G / I M2
Exde IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex d e IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

- Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×7.5 (15) EN 60715
Terminal designation
written marking labels
Ambient temperature
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Temperature class T5

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Weight

0.900 kg

Electrical data
Input voltage
$A C 230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$

Output voltage

AC $24 \mathrm{~V} \pm 10 \%$

Output current

max. 500 mA

Power

12 VA

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Converter

Description

The power supply module is ideal for instrumentation and process control engineering PLCs as well as for Ex de loads with DC connection. The power supply unit has a stabilzed output and offers short-circuit protection.

- Explosion protection

Ex protection type
《x || 2 G / | M2
Ex de IIC Gb
ExdelMb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminal IP 20/IEC 60529

Mounting rail

TH 35×7.5 (15) EN 60715

Terminal designation

written marking labels
Ambient temperature
$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Weight

0.400 kg

Electrical data

Input voltage

AC $24 \mathrm{~V}+15 \%-5 \%, 50 / 60 \mathrm{~Hz}$
Output voltage
DC $24 \mathrm{~V} \pm 5 \%$
Output current 450 mA

Power dissipation $\leq 2.5 \mathrm{~W}$

Residual ripple $\leq 20 \mathrm{mV}_{\text {ss }}$

Power consumption

 max. 13 W
Guidelines

Directive 2004/108/EC
in connection with a transformer Type 07-7311-97S3/H3N0
Directive 94/9/EC

Power supply unit

Dimensions/mounting positions

Features

- Wide input range AC 94 V to 264 V
- High efficiency
- Interference immunity in according with DIN EN 61000-4-2: 2001,
DIN EN 61000-4-3: 2008,
DIN EN 61000-4-4: 2003,
DIN EN 61000-4-6: 2007

Description

This power supply unit is universally applicable and offers a wide input range.
The DC output voltage is stabilized, galvanically isolated and permanently protected against shortcircuits.

Explosion protection

Ex protection type
(Ex) \| 2 G Ex de IIC
(Ex) IM2 Ex del

Certification

PTB 97 ATEX 1066 U

Technical data

Construction

Flameproof, clip-on enclosure for TH 35 rail

Enclosure material

High-quality thermoplastic

Protection class

Module	IP 66
Terminals	IP 20
Terminals with cover	IP 30

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Terminal designation

written marking labels

Display

LEDs on front panel
Storage temperature
$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Ambient temperature
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Weight

2.1 kg

Electrical data
 Supply voltage
 AC 110 to $250 \mathrm{~V}, 47$ to 63 Hz

Input voltage range

AC 94 to 265 V

Nominal input current

0.6 A at AC $230 \mathrm{~V} / 1.1 \mathrm{~A}$ at AC 120 V

Power consumption

$\mathrm{P}=66 \mathrm{~W}$ (max.)

Power dissipation

 $P_{\text {viot. }}=7.3 \mathrm{~W}$Galvanic isolation Input//Output

Display

Operation LED green
Overload > 3 A
resp. short-circuit LED green flashing

- Output data

Output voltage
DC $24 \mathrm{~V}+/-3$ \%

Output current

2 A at $\mathrm{T}_{\mathrm{u}}<+50^{\circ} \mathrm{C}$

Power derating

$2.5 \% / K>+50^{\circ} \mathrm{C}$

Nominal output power

$$
P_{a}=48 \mathrm{~W}
$$

Residual ripple

$<50 \mathrm{mV}$ at $\mathrm{T}_{\mathrm{u}}=-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Protection and monitoring

Permanent short-circuit protection Overload proof

Guidelines/norms/certifications

Directive 2004/108/EC
Directive 94/9/EC

Note

- A clearance of 40 mm must be ensured around the power supply unit.

Wiring diagram/terminal assignment

Power supply unit

Description

This power supply can be universally used with either AC or DC voltage on the input side.

The output voltage is stabilized and conditionally short-circuit and overload-protected.

An additional output circuit protection is recommended.

Dimensions/mounting positions

Module width: 75 mm

Wiring diagram 1/terminal assignment 1

Explosion protection

Ex protection type

© $\times 1| | 2$ G / | M2
ExdelIC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Wiring diagram 2/terminal assignment 2

Technical data

Enclosure material
High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

max. $2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×15 (7.5) EN 60715

Terminal designation

written marking labels
Ambient temperature
mounted on rail with 8 mm spacing $-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

Weight

0.600 kg

Electrical data see selection chart
Input voltage
DC 110 V to max. 320 V
AC 100 V to max. $250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

Residual ripple

max. $150 \mathrm{mV}_{\mathrm{ss}}$

Power dissipation

max. 3 W

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Isolator amplifier

Features

- 4-channel
- For NAMUR sensors EN 60947-5-6
- For mechanical contacts
- Galvanic isolation EN 60079-11
- LED displays
- Ex ia/ib
- Active transistor outputs
- Additional group fault signal output
- Standard or inverted

Dimensions/mounting positions

Module width: 75 mm

Wiring diagram/terminal assignment

Description

4NAMUR sensors, optocouplers, mechanical contacts or other operating elements can be connected to the isolator amplifier in an intrinsically safe way.

The intrinsically safe inputs are safely galvanically isolated from the supply voltage and the outputs in accordance with EN 60079-11. Open- and shortcircuits of the sensor lines are detected and signaled via an additional transistor output as group fault signal. LEDs display the output states.

- Explosion protection

Ex protection type

(Ex) || 2 (1) G/| M2
Ex de [ia Ga] IIC Gb
Exde [ia Ma] I Mb
Class I Zone 1 IIC
A/Ex de [ia] IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
TÜV 97 ATEX 1211 X
IECEX TUN 11.0027X
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Fitting

Type 17-5521-4.../....
(x \| \| (1) G/\|(1)D
[Ex ia Ga] IIC
[Ex ia Da] IIIC
$\mathrm{U}_{\mathrm{m}}=253 \mathrm{~V}$
$\mathrm{I}_{0}=30 \mathrm{~mA}$
$\mathrm{U}_{0}=11.55 \mathrm{~V}$
$\mathrm{P}_{0}=86.4 \mathrm{~mW}$
For further data see verification certificates.

Technical data

Construction

Clip－on enclosure for TH 35 rail

Enclosure material

High－quality thermoplastics

Protection class

Module	IP 66／IEC 60529
Terminals	IP 20／IEC 60529
Terminals with cover	IP 30／IEC 60529

Terminals
max． $2.5 \mathrm{~mm}^{2}$ ，fine stranded

Mounting rail

TH 35×15（7．5）EN 60715
Terminal designation
written marking labels
Ambient temperature
$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Weight

0.640 kg
． 6 k

Notes

■ Observe the terminal assignment
－Transistor output is not short－circuit proof
■ For open／short－circuit monitoring with contact call－up，use $1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ resistive coupling link；「ylie ī－Jでじぐく0002

Input		B／S	Out	B／S	Out	B／S	Out
damped	$\stackrel{\square}{\square}$ 回	0	1	0	0	1	1
un－ damped		0	0	0	1	1	0
open circuit	$\sqrt{\text { ！}}$	1	1	1	0	0	1
short circuit	$\square \square^{\square} V \quad \boxtimes V \quad 亡$	1	0	1	1	0	0

Measuring transducer

Description

The MODEX series includes a temperature measuring transducer mounted on-site in the same way as a modular terminal. The module transforms the signal received from the Pt100 temperature sensor into a proportional, load-in-dependent 4 to 20 mA output signal. The sensor circuit is intrinsically safe according to Ex protection type Ex ia.

An output current exceeding the 4 to 20 mA range signals a senor fault (open/short circuit). The Pt100 temperature sensor can be operate in 2 - or 3 -wire circuits within Zone 0 or 1 .

Dimensions/mounting positions

Module width: 30 mm

Wiring diagram/terminal assignment

Features

For Pt100

- Analog output 4 to 20 mA

Fault detector

- Ex ia/ib
- Two-, three-wire senors
- EMV according to DIN EN 61000-6-3: 2005;

DIN EN 61000-6-4: 2002;
DIN EN 61000-6-1: 2002;
DIN EN 61000-6-2: 2006

Explosion protection

Ex protection type

(Ex) || 2 (1) G/IM2
Ex de [ia Ga] IIC/IIB Gb
Ex de [ia Ma] I Mb
Class I Zone 1 IIC
A/Ex de [ia] IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEx PTB 11.0083 L
TÜV 97 ATEX 1204 X
IECEx TUN 11.0030X
CSA 2011-2484303U

Fitting

Pt100 measuring transducer
Type 17-6582-1.../...
〔xx II (1) G [Ex ia Ga] IIC/IIB
II (1) D [Ex ia Da] IIIC/IIIB
For further data see verification certificates.

Safety data

$\mathrm{U}_{\mathrm{m}}=253 \mathrm{~V}$
$\mathrm{I}_{0}=63.1 \mathrm{~mA}$
$U_{0}=21 \mathrm{~V}$
$P=331 \mathrm{~mW}$

Exia	IIC	IIB
$\mathrm{L}_{0}(\mathrm{mH}) \leq$	9	35
$\mathrm{C}_{0}(\mathrm{nF}) \leq$	170	1250

Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×15 (7.5) EN 60715

Terminal designation

written marking labels

Stockage temperature

Ambient temperature

$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Weight

0.250 kg

Electrical data
Operating voltage
DC $24 V+10 \%,-15 \%$
Power consumption 0.6 W

Sensor

Pt100 temperature sensor
2- or 3-wire circuits

Output

Load independent current: 4 to 20 mA
Max. load: $\leq 400 \Omega$

Temperature range

$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$

Accuracy

$\pm 1 \%$ of upper value
Function test
Connect 100Ω resistance to terminal
15-16 and bridge terminals 16 and 17 .
Apply current between L - and terminal 31 .

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Note: Observe terminal assignment.

Two-position controller

Dimensions/mounting positions

Module width: 75 mm

Wiring diagram/terminal assignment

03-0330-0105/D-10/2012-BAT-124646

Description

MODEX controller module for more switching configurations in the Ex area. The standard twoposition controller monitors limit values (limit monitor). The analog input signal is compared with the potentiometer setpoint.
A floating relay changeover contact is provided as output. The two-point controller is available with overcurrent/undercurrent detection, current output and signalling relay. The current output allows you to loop in (input current balancing) further devices up to a total load of 400Ω into power circuit (4 to 20 mA).

Explosion protection

Ex protection type

-xx || 2 G / I M2
ExdellC Gb
Exdel Mb
Class I Zone 1 IIC
A/Ex de IIC Gb

Certification

PTB 97 ATEX 1068 U
IECEX PTB 11.0083 U
CSA 2011-2484303U
INMETRO IEE 12.0200 U

Technical data

Enclosure material

High-quality thermoplastic

Protection class

Module IP 66/IEC 60529
Terminals IP 20/IEC 60529

Terminals

$2.5 \mathrm{~mm}^{2}$, fine stranded

Mounting rail

TH 35×15 (7.5) EN 60715

Terminal designation

written marking labels

Ambient temperature

mounted on rail
with spacing $\geq 16 \mathrm{~mm}$:
$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Weight

0.500 kg

Electrical data
Supply voltage
DC $24 \mathrm{~V}+15 \%$

Nominal power

max. 2.5 W

Input signal

0 to 35 mA
$\leq 3.5 \mathrm{~mA}$ - undercurrent
$\geq 25 \mathrm{~mA}$ - overcurrent
4 to $20 \mathrm{~mA} \cong 0$ to 100%
Load: 200Ω

Hysteresis

2 mA

Repeat accuracy

$\pm 0.5 \%$ of under range limit (20 mA)

Ambient temperature

Influence: $\leq 0.008 \% / K$

Outputs

Relay output:
Load: AC $250 \mathrm{~V}, 3 \mathrm{~A}, 750 \mathrm{VA}$
Optional
Signal relay: AC 250 V, 1 A, 250 VA
Sensor fault relay: AC $250 \mathrm{~V}, 1$ A, 250 VA
Current output: 4 to 20 mA
Load: 400Ω

Guidelines

Directive 2004/108/EC
Directive 94/9/EC

Resistive coupling element

Description

The $1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ resistive coupling element is used to monitor open and short circuits in isolator amplifiercircuits controlled by mechanical contacts.
The coupling element is installed directly to the control contact or inside its terminal box.

Function

Numerous isolator amplifiers can monitor the connected sensor line for open or short circuit conditions thanks to the employment of electronic proximity switches to which current can be applied in both damped and undamped status (DIN EN 60947-$5-6)$. Current values outside the specified range are identified as open or short circuits.
If simple mechanical contacts are used, it is not possible to identify a short circuit. Neither can be distinguished between open circuit and open contact.

This problem can be solved by installing a resistor combination at the end of the sensor line immediately before the switch.

This combination provides a closed-circuit current even when the contacts is open.

At closed contact it restricts the current to a value which lies clearly below the response threhold for short circuit.

Wiring diagram

Four states can be detected:

- open circuit (broken cable)
- open switch
- closed switch
- short circuit

Installation

for example, in the sensor terminal box

Dimensions

Technical data

Resistance
$1 \mathrm{k} \Omega / 0.6 \mathrm{~W}$
$10 \mathrm{k} \Omega / 0.6 \mathrm{~W}$

Terminals

$1.5 \mathrm{~mm}^{2}$
Connection cable
$0.75 \mathrm{~mm}^{2}$
Supply voltage
max. DC 20 V
Ambient temperature
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Storage temperature

$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
The resistive coupling element can be used with all isolator amplifiers featuring open and short circuit monitoring, e. g.
BARTEC, CEAG, Hartmann \& Braun, Pepperl + Fuchs

Application

Open/short circuit monitoring for isolator amplifiers with contact control.

Technical data subject to change without notice.

Description

The $1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ resistive coupling element is used to monitor open and short circuits in isolator amplifier circuits controlled by mechanical contacts. The coupling element is installed directly to the control contact or inside its terminal box.

Function

Numerous isolator amplifiers can monitor the connected sensor line for open or short circuit conditions thanks to the employment of electronic proximity switches to which current can be applied in both damped and undamped status DIN EN 60947-5-6. Current values outside the specified range are identified as open or short circuits.
If simple mechanical contacts are used, it is not possible to identify a short circuit. Neither can be distinguished between open circuit and open contact. This problem can be solved by installing a resistor combination at the end of the sensor line immediately before the switch.
This combination provides a closed-circuit current even when the contacts is open. At closed contact it restricts the current to a value which lies clearly below the response threhold for short circuit.

Wiring diagram/terminal assigment

Four states can be detected:

- open circuit (broken cable)
- open switch
- closed switch
- short circuit

1 Isolator amplifier
2 Cable and sub-distribution
3 Resistive coupling element mounted on sensor
4 Sensorand onnade tor montiotiong
The resistive coupling element can be used with all isolator amplifiers featuring open and short circuit monitoring.

Technical data subject to change without notice!

Contactos/Contacts:

Comercial/Commercial:
Fernando Mena Costa
e-mail: fcosta@bhb,pt
Tel: (+351) 218436400
Fax: (+351) 218436409

Assistência/Service:
Patricia Costa
e-mail: ppcosta@bhb.pt
Tel: (+351) 218436400

MADE IN PORTUGAL
FOR THE WORLD

- $\mathrm{H}=3$

[^0]: Variant 2

