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ABSTRACT 

Risk measurement is the core content of risk management which is one of the three pillars of modern finance research. 

Value at risk model is the main model to depict risks of financial time series. This paper analyzes empirically the 

non-parametric and parametric methods to forecast Value at risk and Expected shortfall by the Dow Jones Industrial 

Index under the confidence level of 99%, 95% respectively, and make back-test on different models’ result by 

Bernoulli coverage test and independence coverage test to make comparison of their applicability. The empirical 

analysis result is as follow: EVT is best for rare events, EWMA and GARCH are preferred for observed volatility 

clustering and historical simulation is most suitable for simplicity.  

Keywords: Value at Risk, Expected Shortfall, Back-test, Violation Ratio, Risk Model.  

1. INTRODUCTION 

Risk measurement is one of the most important 

aspects of financial investment. The common 

motivation of financial investment is profit 

maximization, however higher return usually 

corresponds with taking higher financial risk, the 

possibility of losing investment. In this paper, risk 

measures are evaluated and applied to a portfolio. Three 

of the most commonly used risk measures or 

mathematical methods for computing risk in finance are 

volatility, value at risk (VaR) and expected shortfall 

(ES). This project focuses on VaR and expected shortfall, 

since volatility has limits on valuing risk and does not 

account for the direction of an investment’s movement.  

2. METHODOLOGY 

2.1. Risk Measures 

2.1.1. VaR 
Value at risk is a measure about the worst-case 

scenario, the amount of maximum loss at a certain 

confidence level [1]. In a mathematical sense, value at 

risk is a quantile on the distribution of profit and loss 

(Q), and can be satisfied as follows:  

Pr[Q ≤ −VaR(p)] = p (1) 

Where p is the confidence percentage level.  

2.1.2. Expected Shortfall 
The expected shortfall, also known as conditional 

VaR, is a measure that produces better incentives on 

expected loss when loss actually happens [2].  

ES = −E[Q|Q ≤ −VaR(p)] (2) 

2.2. Risk Models 

In order to forecast market risk measures, VaR and 

ES, the profit and loss distribution must first be 

estimated from historical observations [3]. There are 

two main techniques for forecasting risk measures, 

nonparametric methods and parametric methods.  

2.2.1. Non-parametric Method - historical 

Simulation 
Historical simulation is the general nonparametric 

method for forecasting risk; there are no assumptions of 

statistical models, no requirements of parameter 

estimations and it uses an actual empirical distribution 

to measure risk. Essentially, historical simulation 

assumes that an observed past return is expected to be 

the next period return and each historical observation 

has equal weight. Historical simulation is more suitable 

than alternative methods when there are structural 

breaks, because it is less sensitive to outliers and does 

not have estimation errors. However, a shortcoming of 

this approach is the large sample size requirement; the 

minimum sample size recommended for a 1% 
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confidence level is 1000.  

2.2.2. Parametric Method 
For parametric methods, the general form for 

calculating VaR of a portfolio is as follows:  

VaR(p) = −σportγ(p)ϑ (3) 

σport
2 = w′Σw (4) 

where γ(p)  is inverse given distribution at the 

significance level of p, ϑ is the portfolio value, w is the 

portfolio weight vector for k assets and Σ  is the 

portfolio’s covariance matrix. Parameter methods used 

in this project can be divided into two main types, 

volatility time-independent and time-dependent [4].  

2.2.2.1. Volatility Time-Independent Models 

The time-independent methods assume the 

distribution of returns to different terms, which are 

normal distribution, student’s t-distribution and 

skewed-t distribution in this article. Because it is 

assumed that stock prices follow a random walk, it is 

intuitive to assume that returns follow a normal 

distribution with zero meannm [5]. However, the return 

distribution of financial assets in the real market have 

fatter tails than normality and non-zero mean value, so 

student’s t-distribution and skewed-t distribution 

describe the return distribution more precisely.  

2.2.2.2. EWMA 

Exponentially weighted moving average model is a 

volatility forecast model that builds on the simple 

moving average model by allocating greater weight to 

more recent observations, as follows:  

σ̂t
2 = (1 − λ)yt−1

2 + λσ̂t−1
2  (5) 

Where λϵ(0,1) is the decay factor, and is set to 0. 

94 in this project according to previous analysis. 

EWMA is favorable for forecasting risk with the 

property of volatility clusters, where observed volatility 

will be maintained in the short-term.  

2.2.2.3. GARCH 

The GARCH model is given by:  

σt
2 = ω + αYt−1

2 + βσt−1
2  (6) 

Similarly to EWMA, in GARCH, older returns have 

less impact on current volatility than more recent returns. 

However, the two coefficients (α, β) of GARCH are 

time dependent and estimated by the maximum 

likelihood method [6]. Optimal values of two 

parameters (p, q) in GARCH need to be determined. In 

this project, we set p and q from 1 to 3 resulting in 9 

combinations of values for p and q. By using 

information criteria, AIC and BIC, we can determine the 

optimal number of lagged terms in the model [7].  

2.2.2.4. Extreme Value Theory 

Extreme value theory describes the science of 

estimating the tails of a distribution, and can smooth the 

tails of the probability distribution of portfolio changes 

computed by using historical simulation. When using 

historical simulation to estimate VaR, the higher VaR 

confidence level required, then the higher the standard 

error will be; and EVT can be used to decrease the 

standard error.  

Suppose that F(v) is the cumulative distribution 

function for the variable of profit and loss over a certain 

time period. The probability that v lies between u and 

u+y with v>u is as follows:  

Fu(y) =
F(u + y) − F(u)

1 − F(u)
 

(7) 

Fu(y) is the right-tail of the cumulative probability 

distribution, and converges to a Generalized Pareto 

Distribution (GPD) when the threshold u increases.  

Gξ,β(y) = 1 − [1 + ξ
y

β
]−1/ξ 

(8) 

GPD has two parameters, which can be estimated 

using maximum likelihood methods. The first parameter, 

ξ  is the shape parameter that determines the tail 

heaviness of the distribution. For most financial 

investment data, the shape parameter is between 0. 1 

and 0. 4. The other is the scale parameter, β. These two 

risk measures can be determined as shown below:  

VaR = U +
y

β
{[

n

nu

(1 − q)]
−ξ

− 1} 
(9) 

ES =
VaR + β − ξu

1 − ξ
 

(10) 

where n is the total number of observations, and nu 

is the number of observations where v>u.  

2.2.2.5. Cornish-Fisher Expansion 

Cornish-Fisher Expansion, also known as modified 

VaR, is an alternative method to calculate VaR when the 

portfolio return distribution is not normally distributed. 

CFE takes higher moments, skewness and kurtosis, into 

consideration. The formula for modified VaR is:  

mVaR = μ(X) + σ(X)Zcf (11) 

Zcf = qp +
(qp

2 − 1)S(X)

6
+

(qp
3 − 3qp)K(X)

24

−
(2qp

3 − 5qp)S2(X)

36
 (12) 

Where Zcf  is the CFE critical value under the 
significance level, p.  

2.2.2.6. Monte Carlo Simulation 

MCS is an independent method from non-parametric 

and parametric estimations, which simulates returns 

over past returns under specific distribution and uses 

these values to compute simulated future returns and 

corresponding risk measures [8].  

Advances in Social Science, Education and Humanities Research, volume 500

193



 

2.3. Backtesting 

Backtesting is a useful procedure for testing and 

determining the best-fit models. Specifically, its main 

purpose is to compare forecasts to historical realized 

returns. Its first step is to determine the length of an 

estimation window (WE), and set the remaining horizon 

to be the testing window (WT). Using the return from 

the estimation window, risk of the next period is 

forecasted. Then, by moving the estimation window 

forward, a series of forecasts, which has the same length 

as the testing window, can be derived from the data in 

the rolled estimation window. Furthermore, if the real 

losses exceed the estimated VaRs for specific days, a 

VaR violation is said to have occurred. The violation 

ratio, which is a main indicator of feasibility of models 

in backtesting, can be calculated:  

ηt = {
1  if yt ≤ VaRt

0  if  yt > VaRt
  

(13) 

v1 = ∑ ηt   (14) 

v0 = WT − v1  (15) 

T = WT + WE  (16) 

VA =
observed number of violations

Expected number of violations
=

v1

p×WT
  (17) 

There are different estimation window length 

requirements for each model. Even within the same 

model, different WT  will lead to varying results; so 

choosing an appropriate estimation window length is 

crucial.  

Risk under-forecast occurs when the violation ratio 

is greater than 1, otherwise risk over-forecast occurs. If 

the VA ∈  [0. 8,1. 2], then the forecast is suitable. When 

VA < 0. 5 or VA > 1. 5, the model is inaccurate. If the 

violation ratios are the same for different methods, then 

the standard deviation of VaR estimates should be 

considered for comparison, the method with lower 

standard deviation is better [9, 10].  

3. DATA 

For the first part of the test, we chose Dow Jones 

Industrial Index (DJIA) as it resembles a stock market 

index. To mimic the index, we use the component stocks 

of DJIA as the basic component of the portfolio. Since 

DJIA is a price-weighted index, we simply sum all of 

the prices of the component stocks to obtain the price of 

the mimicking portfolio, from which we compute the 

return of the portfolio. All component stocks’ prices are 

acquired by using the “hist_stock_data’’ function in 

Matlab, except for that of Visa, because of a lack of data 

during the sample period. Therefore, 1258 days of 

portfolio sample returns, from September 16, 2005 to 

September 16, 2010, are obtained from the 29 stocks’ 

prices within the sample period. The portfolio returns 

are used as the whole sample data.  

Next, to examine the role that risk measures play in 

a portfolio with exposure to interest rate risk, interest 

rate related assets are included in the portfolio. The 

corresponding assets used are returns of a bond index, 

namely S&P/BGCantor U. S. Treasury Bond Index, 

during the sample periods. Missing prices in the sample 

are computed as the average of the prices of the 

previous and latter days. Weights of assets in the 

portfolio are determined by the capability of the 

tangency portfolio in minimum variance portfolio 

theory.  

4. EMPIRICAL RESULTS 

4.1. Results of Stock Portfolio 

Figure 1 and Figure 2 below display the features of 

trend and distribution of the mimicking portfolio return.  

 
Figure 1 Portfolio Returns With Respect To Time 

 
Figure 2 Histogram of Portfolio Returns and Fitting 

Distribution 

From Figure 1, it is clear that the mean of portfolio 

return is around zero, which makes the assumption in 

normal and student’s t models more reliable. But the 

volatilities are changing with time, as the volatilities in 

2008 are the highest due to the financial crisis. 

Moreover, Figure 1 also shows the phenomenon of 

volatility clustering in this sample data, since relatively 

high or low volatilities endure for a period of time, 
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probably leading to a violation of estimated risk 

measures within that time.  

Figure 2 presents the histogram of portfolio returns, 

and fitting distribution under the assumption of normal 

(depicted as red line) and student’s t distribution 

(depicted as green line). Once again, we could observe 

the zero mean property. However, the real distribution 

of returns is more leptokurtic than what normal 

distribution describes, and also fatter tails. These two 

features can be more precisely described by student’s t 

distribution, which has positive excess kurtosis. Hence 

it is reasonable to assume returns follow student’s t 

distribution.  

Table 1 presents the results of VaR and Expected 

Shortfall estimates, under confidence level of 95 and 99 

percent, within the whole sample period, by using 

different risk models [11]. The values of 95% VaR 

derived are approximately 0. 02, while volatility 

time-dependent models give relatively small VaR, since 

they consider conditional volatilites of returns rather 

than unconditional, which make more precise estimates.  

Although student’s t-distribution gives a smaller 

95% VaR estimate compared to normal distribution, it 

has a distinctly larger 99% VaR value, owing to the fat 

tails of the t-distribution. The same observation can be 

made on the non-central t-distribution. However, 

Cornish Fisher expansion has the largest 99% VaR, 

giving a large penalty to extreme losses, since it revises 

the critical values for a given confidence level by 

considering higher moments of a distribution.  

Obviously, ES has larger values than the 

corresponding VaR. The fat tail in the t-distribution has 

more effect on valuing risk, which results in the largest 

expected shortfall. Also, extreme value theory gives 

larger expected shortfall than the whole return 

distribution; hence it is more precise when estimating 

situations that rarely occur.  

Table 2 shows the results of backtesting, and 

includes the mean estimation value of VaR and ES 

during the testing windows as well as the standard 

deviation. After backtesting, the difference between the 

results of the models appears to be narrower, especially 

under the 95% confidence level, owing to backtest 

taking the trend of returns into account and then making 

the estimates more precise. Volatility time-dependent 

models’ estimations have larger standard deviation, 

which can be explained as time-varying volatilities of 

returns make VaR and ES forecasts time varying. Hence 

estimations from volatility time-dependent models are 

unstable, but consistent with recent market changes. 

However, this feature fades out when the confidence 

level rises to 99%. Same as the analysis above, fat-tails 

of the t-distribution has a larger effect when the 

confidence level is high, and which is not obvious at 

95%.  

Compared to EWMA, the GARCH model gives a 

looser view about risk, resulting in smaller values of 

VaR and ES, but larger volatilities of both estimators. 

Current volatility being dependent on lagged volatilities, 

but also on lagged returns in the GARCH model may 

explain this phenomenon.  

Likewise to previous results using whole sample 

data, Cornish-Fisher expansion has a strict view on risk 

when the confidence level is high, and extreme value 

theory has a different view when using the estimator of 

expected shortfall. Estimations of Monte Carlo 

simulation stay low due to the nonpositive value of VaR 

during the beginning of time period, resulting from 

initial tiny variation of returns derived by MCS, which 

can be observed in Figure 3. More surprisingly, 

historical simulation seems to be a good choice for 

measuring risks, because of its simplicity.  

In addition, from Figure 3, we could observe the 

trend of VaR estimation. It is obvious to find out 

volatility time-dependent models, i. e. , EWMA and 

GARCH have the more volatile VaR estimation than the 

other models. Results of those time-independent models 

are more like parallel to each other, except for Monte 

Carlo method, which has the similar trend but much 

more volatility within small time period.  

 
Figure 3 Backtesting 95% VaR Estimation of All 

Models 
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Table 1. VaR and ES for Whole Sample Period 

Models VaR ES 

Confidence Level 0. 95 0. 99 0. 95 0. 99 

Historical Simulation 0. 02316 0. 04981 0. 03772 0. 06201 

Normal Distribution 0. 02494 0. 03528 0. 03128 0. 04041 

t-dist 0. 02135 0. 04968 0. 04364 0. 09698 

Skew t 0. 02056 0. 04887 0. 04283 0. 09614 

EWMA 0. 01668 0. 02360 0. 02092 0. 02703 

GARCH 0. 01024 0. 01449 0. 01285 0. 01660 

CF Expansion 0. 02197 0. 06562 0. 04118 0. 00005 

EVT 0. 02302 0. 04281 0. 05093 0. 07127 

Monte Carlo 0. 02572 0. 04006 0. 03303 0. 04301 

 

Table 2. Backtesting Results of VaR and ES 

Confidence level = 95% 

 
VaR ES 

Models mean std-d mean std-d 

Historical Simulation 0. 02729 0. 00787 0. 04081 0. 01340 

Normal Distribution 0. 02731 0. 00886 0. 03425 0. 01111 

t-dist 0. 02474 0. 00767 0. 04474 0. 01589 

Skew-t 0. 02422 0. 00797 0. 04421 0. 01614 

EWMA 0. 02659 0. 01484 0. 03335 0. 01861 

GARCH 0. 02570 0. 01487 0. 03222 0. 01865 

CF Expansion 0. 02581 0. 00776 0. 04020 0. 01689 

EVT 0. 02729 0. 00787 0. 05458 0. 01887 

Monte Carlo 0. 01924 0. 01384 0. 02578 0. 01638 

Confidence level = 99% VaR ES 

Models mean std-d mean std-d 

Historical Simulation 0. 04603 0. 01409 0. 06126 0. 02138 

Normal Distribution 0. 03862 0. 01253 0. 04425 0. 01435 

t-dist 0. 05181 0. 01815 0. 08931 0. 03695 

Skew-t 0. 05128 0. 01841 0. 08877 0. 03714 

EWMA 0. 03761 0. 02099 0. 04309 0. 02404 

GARCH 0. 03634 0. 02103 0. 04164 0. 02410 

CF expansion 0. 05602 0. 02039 0. 00339 0. 00195 

EVT 0. 04603 0. 01409 0. 06359 0. 01999 

Monte Carlo 0. 03091 0. 01843 0. 03545 0. 01990 

 

Table 3. Violation Ratio, Bernoulli and Independence Coverage Test Results 

Models VA BER BER-P IND IND-P 

Historical Sim.  1. 60950 12. 61165 0. 00038 0. 26747 0. 60504 

Normal Dist.  1. 55673 10. 64958 0. 00110 0. 04029 0. 84092 

t-dist 1. 87335 24. 48282 0. 00000 0. 02096 0. 88490 

Skew-t 2. 03166 33. 12612 0. 00000 0. 69622 0. 40406 

EWMA 1. 37203 4. 97234 0. 02576 2. 87631 0. 08989 

GARCH 1. 47757 7. 98368 0. 00472 1. 55432 0. 21250 

CF Expansion 1. 74142 18. 13196 0. 00002 0. 12322 0. 72557 

EVT 1. 60950 12. 61165 0. 00038 0. 26747 0. 60504 

Monte Carlo Sim 4. 16887 232. 18296 0. 00000 34. 23811 0. 00000 
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Table 4. VaR and ES for Whole Sample Period with Interest Rate Exposure 

Whole Sample VaR ES 

Confidence level 95% 99% 95% 99% 

Historical Simulation 0. 01825 0. 03916 0. 02946 0. 04897 

Normal Distribution 0. 01962 0. 02775 0. 02461 0. 03180 

t-dist 0. 01679 0. 03901 0. 03424 0. 07595 

skew t 0. 01615 0. 03836 0. 03359 0. 07528 

EWMA 0. 01278 0. 01807 0. 01602 0. 02071 

GARCH 0. 01271 0. 01797 0. 01594 0. 02059 

CF expansion 0. 01712 0. 05184 0. 03282 0. 00003 

EVT 0. 01811 0. 03282 0. 04354 0. 05625 

Monte Carlo 0. 01859 0. 02510 0. 02277 0. 02708 

 

Table 5. Backtesting Results of VaR and ES with Interest Rate Exposure 

Confidence level = 95% VaR (95%) ES 

 mean std-d mean std-d 

Historical Simulation 0. 02130 0. 00621 0. 03201 0. 01065 

Normal Distribution 0. 02149 0. 00699 0. 02695 0. 00876 

t-dist 0. 01945 0. 00602 0. 03514 0. 01253 

skew t 0. 01902 0. 00627 0. 03471 0. 01274 

EWMA 0. 02082 0. 01180 0. 02611 0. 01480 

GARCH 0. 01814 0. 01215 0. 02275 0. 01523 

CF expansion 0. 02016 0. 00609 0. 03194 0. 01346 

EVT 0. 02130 0. 00621 0. 04375 0. 02068 

Monte Carlo 0. 01423 0. 01105 0. 01921 0. 01333 

Confidence level = 99% VaR (99%) ES 

 mean std-d mean std-d 

Historical Simulation 0. 03583 0. 01115 0. 04816 0. 01707 

Normal Distribution 0. 03039 0. 00988 0. 03482 0. 01132 

t-dist 0. 04069 0. 01431 0. 07010 0. 02920 

skew t 0. 04026 0. 01453 0. 06966 0. 02937 

EWMA 0. 02945 0. 01669 0. 03374 0. 01912 

GARCH 0. 02566 0. 01718 0. 02939 0. 01968 

CF expansion 0. 04409 0. 01634 0. 00273 0. 00159 

EVT 0. 03583 0. 01115 0. 04704 0. 01458 

Monte Carlo 0. 02308 0. 01519 0. 02665 0. 01649 

 

Table 6. Violation Ratio, Bernoulli and Independence Coverage Test Results (with bonds) 

Models VA BER BER-P IND IND-P 

Historical Sim.  1. 60950 12. 61165 0. 00038 0. 26747 0. 60504 

Normal Dist.  1. 63588 13. 64645 0. 00022 0. 78702 0. 37500 

t-dist 1. 89974 25. 84786 0. 00000 0. 22684 0. 63387 

skew t 2. 00528 31. 61127 0. 00000 0. 29074 0. 58974 

EWMA 1. 31926 3. 71166 0. 05403 2. 44711 0. 11774 

GARCH 1. 82058 21. 84637 0. 00000 4. 59910 0. 03199 

CF expansion 1. 74142 18. 13196 0. 00002 0. 12322 0. 72557 

EVT 1. 60950 12. 61165 0. 00038 0. 26747 0. 60504 

Monte Carlo Sim 4. 27441 245. 19094 0. 00000 33. 94315 0. 00000 
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In Table 3, the violation ratio, the results of 

Bernoulli coverage test and independence coverage test 

are presented. Except for the extremely large value for 

MCS, the violation ratios in all of the models are 

between 1 and 2, indicating that the observed number of 

violations exceeds the estimated number of violations, i. 

e. , all of the risk models underestimate the market risk 

[12]. However, volatility time-varying models have 

comparatively better results, with the lowest violation 

ratio belonging to EWMA. Therefore, inaccuracy is 

attributed to instability of volatility of returns, which 

can be obviously observed during the financial crisis in 

2008.  

According to the Bernoulli test, the predictability of 

all models is questionable, since all models reject the 

null hypothesis that real number of violations equals 

estimated number of violations, under the significance 

level of 5%, while EWMA cannot reject the null when 

the significance level declines to 1%.  

With respect to independence coverage test, which 

examines the independence of violation observations 

and volatility cluster, all models, other than EWMA and 

MCS, claim no clustering in violations. Nevertheless, 

volatility clustering exists according to the return 

distribution. Hence EWMA precisely observe this fact 

when measuring risk, although the level of significance 

is not high enough.  

4.2. Results of Portfolio with Interest Rate 

Exposure 

Comparing the Table 4 with Table 1, by adding 

interest rate related assets to the portfolio, it becomes 

obvious that the estimated risk measures of portfolios 

with the bond index are generally lower than those of 

portfolios without the bond index. It can simply be 

explained that bonds have comparatively lower risk than 

stock assets. Therefore, inter-asset diversification that 

includes fixed income securities in the portfolio is able 

to significantly reduce the exposure to market risk, thus 

making portfolio resilient to any shocks in the market.  

Comparing the results between Table 2 and Table 5, 

it is obvious that the features of the metrics previously 

derived from the models are preserved when adding the 

bond index into the portfolio. Since the weights of 

component assets we chose to construct the portfolio 

stay unchanged during the testing period, any changes 

in the estimated values of VaR and ES should not be 

observed. The effect of changes of weights of bond 

assets on the estimation values for various models needs 

to be further evaluated.  

In Figure 4, the trend features of different models’ 

VaR estimation when adding the bond index into the 

portfolio are unchanged. EWMA and GARCH still have 

the more volatile VaR estimation than the other models. 

Results of those time-independent models are more like 

parallel to each other, except for Monte Carlo method, 

which has the similar trend but much more volatility 

within small time period.  

Table 6 displays the significance of backtests when 

the portfolio includes bonds. Even with bonds, the 

violation ratio is not reduced, resulting in 

underestimation of market risks of the models. However, 

the EWMA model has a more precise forecast, since we 

cannot reject the null in the Bernoulli test under a 

significance level of 5%. With regard to the GARCH 

model, it fails to reject the null in the independence 

coverage test under 5% significance level, indicating 

that it is more likely to observe volatility clustering with 

the bonds in the portfolio.  

 
Figure 4 Backtesting 95% VaR Estimation of All 

Models (with bonds) 

5. CONCLUSION 

Theoretically, ES further considers the average loss 

degree in extreme cases on the basis of VaR, which can 

measure the extreme loss risk of a portfolio more 

completely. From the empirical analysis, VaR and ES 

are effective risk measures to value risk of investment 

portfolio. However, the analysis result shows that all of 

the risk models underestimate the market risk by 

estimating VaR, and the all ES of the risk models are 

larger than VaR. Even though inaccuracy of VaR is 

attributed to instability of volatility during the financial 

crisis, ES is more accurate than VaR to value market 

risk in this case. Hence, it may be beneficial to repeat 

this analysis on data excluding such extreme events.  

Besides that, there are various risk models to 

measure VaR. Given their differences, some may be 

more appropriate for different situations. In this analysis, 

parametric methods and nan-parametric methods have 

been used to forecast market risk measures, VaR and ES. 

Comparing the backtest results of different models, it 

was observed that EVT is best for rare events, EWMA 

and GARCH are preferred for observed volatility 

clustering, historical is most suitable for simplicity and 

estimations provided by Monte Carlo simulation are low 
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because of inaccurate price simulation. Furthermore, 

diversifying by the addition of bonds to the portfolio 

generally reduces risk and does not affect backtesting.  
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