

Evaluating the ADAU1797 High-Performance Audio Codec with Integrated HiFi 3z and FastDSP Cores

GENERAL DESCRIPTION

This user guide explains the setup of the EVAL-ADAU1797Z evaluation board.

EVALUATION BOARD

This evaluation board provides full access to all analog and digital inputs/outputs on the ADAU1797. The EVAL-ADAU1797Z can be powered by a single 3.8V to 5V supply. Once the main power is supplied, onboard regulators provide the voltages needed for the ADAU1797 and other devices. The printed circuit board (PCB) is an 8-layer design, with a ground plane and power plane on the inner layers. The EVAL-ADAU1797Z contains connectors for external microphones and speakers. The master clock can be provided externally or by the onboard 24.576MHz passive crystal or onboard 24.576MHz oscillator.

Figure 1. EVAL-ADAU1797Z Evaluation Board Photograph

EVALUATION BOARD BLOCK DIAGRAM

Figure 2. EVAL-ADAU1797Z Evaluation Board Block Diagram

QUICK START

Required Equipment

• 5V Power supply through lab supply, SEGGER J-Link adapter, or Aardvark adapter

HEADERS AND JUMPERS

The EV kit is fully assembled and tested. Follow the steps to make the required hardware connections and start operation of the kit.

- 1. To communicate with the part over I²C/SPI, the USBi port (J1) provided on the evaluation board can be used with a USBi or Aardvark adapter.
- 2. The EEPROM Flash can be programmed by using the QSPI 34-pin header (J54) on the evaluation board. If using the Aardvark adapter to program with QSPI, a Level shifter board is required to convert 3.3V signals to 1.8V.
- 3. To communicate with the part through UART, the UART adapter port (J7) is provided on the evaluation board and can be used with a PMOD USB UART adapter.
- 4. The JTAG header (J6) on the evaluation board is available to connect to external JTAG adapters such as the Segger J-Link adapter. This enables C programming of the part using Xtensa Xplorer.
- 5. <u>Figure 3</u> shows the default jumper configurations for using the evaluation board. By default, the DVDD is generated internally by the ADAU1797. The part is in I²C mode in this configuration.

Figure 3. EVAL-ADAU1797Z Evaluation Board Default Jumper Connections

SETUP AND OPERATION

An example script is provided below. The script is executed in the Total Phase Aardvark I²C adapter. This script configures the following signal paths for quick hardware evaluation:

- ADC0/ADC1/ADC2 (Differential, no PGA) → FDSP (Pass-Through) → FDEC → ASRCO → SPT1
 Note: ADCs run at 384kHz. FDSP runs at 384kHz. FDEC decimates down to 48kHz.
- SPT0 \rightarrow ASRCI \rightarrow FINT \rightarrow FDSP (Pass-Through) \rightarrow HPOUT
 - Note: SPT0 at 48kHz. FINT interpolates up to 384kHz. FDSP and HPOUT run at 384kHz.
- DMIC0/1 → PDMOUT
- Note: DMIC0/1 run at 384kHz, DMIC_CLK = 6.144MHz. PDMOUT runs at 384kHz, PDM_CLK = 12.288MHz

<?xml version="1.0"?>

<aardvark>

<configure pullups="1" tpower="0" gpio="0" spi="0" i2c="1"/>

<i2c_bitrate khz="400"/>

<sleep ms="10"/>

<!-- Power Up -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 3C 01 00 00 00</i2c_write> <!-- DVDD ON power_en=1 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 2C 21 00 00 00</i2c_write> <!-- master block en 1, CP_EN =1 -->

<sleep ms="10"/>

<!-- PLL -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 40 08 07 00 00</i2c_write> <!-- CLK_CTRL0 set MCLK pll source, INT mode, intern sync, XTAL MODE-->

<sleep ms="10"/> analog.com

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 48 80 00 00 00/i2c_write> <!-- CLK_CTRL2 set PLL_INTEGER_DIVIDER = 128 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 54 01 00 00 00</i2c_write> <!-- CLK_CTRL5 PLL_UPDATE = 1 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 30 03 00 00 00/i2c_write> <!-- PLL_MB_PGA_PWR PLL_EN = 1 PGA_EN-->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 34 10 00 00 00</i2c_write> <!-- PROC_EN = 1 -->

<sleep ms="10"/>

<!-- Read PLL lock in F0000408-->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 04 08 </i2c_write> <!-- PLL Lock status -->

<sleep ms="10"/>

<i2c read addr="0x2B" count="4"/> <!-- check the value 0x00 00 01 00 if pll locked -->

<sleep ms="10"/>

<!-- check the Power_up_complete bit value -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 04 0C </i2c_write>

<sleep ms="10"/>

<i2c_read addr="0x2B" count="4"/> <!-- Read the Power_up_complete bit's value, bit 0 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 2C 23 00 00 00</i2c_write> <!-- cm_startup_over=1, master_block_en=1, CP_EN =1 -->

<sleep ms="10"/>

<!-- ADC setup -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 5c 07 00 00 00</i>

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 0C 17 00 00 00</i2c_write> <!-- 3 ADC enabled + PB0_EN -->

<sleep ms="10"/>

<!-- DMICO/1 and DMIC_CLK0 SETUP -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 28 F0 00 00 00<!-- SAL_CLK_PWR DMIC0/1_CLK_EN = Enabled -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 10 03 00 00 00</i2c_write> <!-- DMIC_PWR DMIC0/1_EN = Enabled -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 A0 04 00 00 00</i2c_write> <!-- DMIC_CTRL1 DMIC_CLK0_RATE = 6.144MHz -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 A4 27 00 00 00</i2c_write> <!-- DMIC_CTRL2 DEC_ORDER = 5th, DMIC01_FS = 384kHz -->

<sleep ms="10"/>

analog.com

<!-- PDM OUTPUT setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 90 07 00 00 00</i2c_write> <!-- PDM_CTRL1 12.288MHz,384kHz-->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 94 04 00 00 00</i2c_write> <!-- PDM_CTRL2 PDM1_0_MUTE = 0, PDM_VOL_ZC = 1 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 A4 3C 00 00 00

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 A8 3D 00 00 00</i2c_write> <!-- PDM_ROUTE1 PDM_ROUTE1 = DMIC_1-->

<sleep ms="10"/>

<!-- Multi-Purpose PIN ROUTING -->

<sleep ms="10"/>

<sleep ms="10"/>

<!-- FDEC Setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 18 47 00 00 00

<!-- FDEC_CTRL1 fs = 384KHz and fs_out = 48KHz -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 28 01 00 00 00</i2c_write> <!-- FDEC_ROUTE0 = FDSP_CH1 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 2C 02 00 00 00</i2c_write> <!-- FDEC_ROUTE0 = FDSP_CH2 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 30 03 00 00 00//2c_write> <!-- FDEC_ROUTE0 = FDSP_CH3 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 24 07 00 00 00</i2c_write> <!-- FDEC_PWR 0/1/2 ON -->

<sleep ms="10"/>

<!-- ASRCO Setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 84 14 00 00 00</i2c_write> <!-- ASRCO0_CTRL ASRCO_IN_FS = 48kHz -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 88 1E 00 00 00</i2c_write> <!-- ASRCO0_ROUTE0 CH0 = FDEC CH0 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 8C 1F 00 00 00</i2c_write> <!-- ASRC00_ROUTE0 CH0 = FDEC CH1 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 90 20 00 00 00<//> <!-- ASRCO0_ROUTE0 CH0 = FDEC CH2 -->

<sleep ms="10"/>

<!-- SPT0_INPUT Setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 00 00 00 00 00 00/i2c_write> <!-- SPT0_CTRL1, Stereo I2S-->

<sleep ms="10"/>

</

<sleep ms="10"/>

<!-- SPT1 OUTPUT Setup-->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 48 01 00 00 00</i2c_write> <!-- SPT1_CTRL1, SPT1 TDM -->

<sleep ms="10"/>

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 50 10 00 00 00 </i2c_write> <!-- SPT1_ROUTE0 = ASRC00_0-->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 54 11 00 00 00

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 58 12 00 00 00

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 05 5C 13 00 00 00

<sleep ms="10"/>

<i2c write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 28 FF 00 00 00</i2c write> <!-- ALL ON -->

<sleep ms="10"/>

<!-- ASRCI Setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 18 71 00 00 00
<i-- ASRC0_PWR,ASRCO_0/1/2_EN = 1 & ASRCI_0_EN = 1-->

<sleep ms="10"/>

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 7C 10 00 00 00/ -- ASRCI0_ROUTE01 = SPT_CH0,SPT_CH1 -->

<sleep ms="10"/>

<!-- FINT Setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 20 01 00 00 00

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 48 54 00 00 00</i2c_write> <!-- FINT_CTRL1, fs = 48KHz and fs_out = 384KHz -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 58 20 00 00 00</pre

<sleep ms="10"/>

<!-- DSP_PWR + FDSP ENABLE -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 34 01 01 00 00</i2c_write> <!-- DSP_PWR, FDSP ENABLE = 1 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 FC 00 00 00 00</i2c_write> <!-- HiFi Speed -->

<sleep ms="10"/>

<!-- FDSP Control Setup-->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 B8 00 00 00 00</i2c_write> <!-- FDSP RUN=0 -->

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 BC 01 00 00 00</i2c_write> <!-- FDSP Speed -->

<sleep ms="10"/>

analog.com

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 CC 09 00 00 00</i2c_write> <!-- FDSP_RATE_SOURCE = FINT 0 & 1 --> <sleep ms="10"/>

<!-- FDSP PROGRAM & PARAMETER MEMORY: FINT0 to FDSP_OUT0 (PassThrough), ADC0/1/2 to FDSP_OUT1/2/3 (PassThrough) -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 04 00 00 00 00 00 12 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 04 00 04 00 04 00 12 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 04 00 08 00 08 00 12 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 04 00 0C 00 0C 00 12 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 04 00 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 04 00 14 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 00 00 00 00 00 70 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 00 04 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 00 08 00 00 00 01 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 00 0C 00 00 00 02 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 00 10 00 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 00 14 00 00 00 0/i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 02 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 02 04 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 02 08 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 02 0C 00 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 02 10 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 02 14 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 04 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 04 04 00 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 04 08 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 04 0C 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 04 10 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 04 14 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 06 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 06 04 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 06 08 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 06 0C 00 00 00 00 </i2c write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 06 10 00 00 00 </i2c write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 06 14 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 08 00 00 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 08 04 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 08 08 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 08 0C 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 08 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 08 14 00 00 00 </i2c_write>

<i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0A 00 00 00 00 70 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0A 04 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0A 08 00 00 00 1 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0A 0C 00 00 00 02 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0A 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0A 14 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0C 00 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0C 04 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0C 08 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0C 0C 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0C 10 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0C 14 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0E 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0E 04 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0E 08 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0E 0C 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0E 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 0E 14 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 10 00 00 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 10 04 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 10 08 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 10 0C 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 10 10 00 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 10 14 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 12 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 12 04 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 12 08 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 12 0C 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 12 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 12 14 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 14 00 00 00 00 70 </i2c write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 14 04 00 00 00 00 </i2c write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 14 08 00 00 00 1 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 14 0C 00 00 00 02 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 14 10 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 14 14 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 16 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 16 04 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 16 08 00 00 00 </i2c_write>

<i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 16 0C 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 16 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 16 14 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 18 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 18 04 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 18 08 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 18 0C 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 18 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 18 14 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1A 00 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1A 04 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1A 08 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1A 0C 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1A 10 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1A 14 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1C 00 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1C 04 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1C 08 00 00 00 </i2c_write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1C 0C 00 00 00 </i2c_write> <i2c write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1C 10 00 00 00 00 </i2c write> <i2c_write nostop="1" radix="16" count="4" addr="0x2B"> F0 02 1C 14 00 00 00 </i2c_write>

<!-- HPOUT Setup -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 F4 47 00 00 00

<sleep ms="10"/>

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 08 20 00 00 00</i2c_write> <!--DAC_ROUTE0 set DAC source to FDSP0 -->

<sleep ms="10"/>

<!-- FDSP RUN -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 01 B8 01 00 00 00</i2c_write> <!-- FDSP RUN=1 -->

<sleep ms="10"/>

<!-- UnMute ADC/DAC -->

<i2c_write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 74 00 00 00 00/i2c_write> <!-- adc's unmute -->

<sleep ms="10"/>

<i2c write nostop="1" radix="16" count="4" addr="0x2B">F0 00 00 F8 04 00 00 00</i2c write> <!--DAC CTRL2 unmute DAC -->

<sleep ms="10"/>

</aardvark>

Setup for Signal Path: DMIC→ PDMOUT

Connect the PDM Output to DMIC_01, and PDM Bit Clock_OUT to DMIC_CLK0 on the J13 connector. Connect the SDATAO0 to PDM Input on APx and SDATAI1 to PDM Bit Clock_IN on APx.

Figure 4. Pin Connections for DMIC to PDMOut

Figure 5. Physical Connections to the Evaluation Board and APx

Setup for Signal Path: ADC→FDSP→FDEC→ASRCO→SPT1

Now keep the connections for the above signal path as they are and add the following connections:

Connect 2 female XLR – to – 3.5mm cable to the AIN0 and AIN1 jacks. Connect the signal from AIN0 (J25) to AIN2 (J43) with a cable as shown in the figure if there are only two Analog Balanced Outputs on the APx.

Connect SPT1 signals to the Digital Serial Receiver of the APx. The three connections needed are BCLK1, SDATAO1, and FSYNC1 on the J4 header of the evaluation board.

Figure 6. Pin Connections for ADC to SPT1

Figure 7. Evaluation Board with Cable Connections

Figure 8. APx Cable Connections to the Evaluation Board

Setup for Signal Path: SPT0→ASRCI→FINT→FDSP→HPOUT

Again, keep the connections for the above signal paths intact as they are and add the following connections:

Connect the digital serial transmitter of APx to SPT0 signals on the evaluation board. The three connections needed are BCLK0, SDATAI0, and FSYNC0 on the J52 header of the evaluation board.

Connect a $16\Omega + 33\mu$ H load to pins 1 and pins 3 of J16. Also, connect the 16Ω load to the AUX-0025 switching amplifier filter. Then connect the output of the switching amplifier filter to the analog balanced input of the audio precision.

Figure 9. Pin Connections for SPT0 to HPOUT

Figure 10. Evaluation Board Connected to the 16Ω Load which is Connected to the AUX0025 Filter

After completing the entire setup for all three signal paths, open the **Aardvark GUI** and configure the adapter. The example script can be copied into the **Batch Mode** window in the **Total Phase Control Center** software to execute the I²C instructions.

Figure 11. Aardvark Control Center GUI

ŀ	Configure Aardvark Adapter X													
	Configure Aardvark Adapter Select an Aardvark port Select a Mode													
H	Port	FW	HW	I2C	SPI	GPIO	Serial Number		O I2C - SPI I2C - GPIO					
IJ	0	3.51	3.00	Y	Y	Y	2237-219354		O SPI - GPIO					
									Batch Mode I2C Monitor					
	Refresh	List						ОК	Cancel					
								ОК	Cancel					

Figure 12. Selecting the Adapter for Batch Mode Operation

e A	ardvark I2C/SPI Control Cer	ter								-	\Box \times
File	Aardvark Help										
Bat	I2C + SPI C	rl-1									
Bate	I2C + GPIO C	rl-2									
	SPI + GPIO C	rl-3								^	Stopped
	GPIO C	rl-4									Execute
	Batch Mode Ci	rl-5									Stop
	I2C Monitor C	rl-6									Help
	I2C Pull-ups										
	Target Power										
1	Disconnect Ct	rl-D									
										~	
<										>	
0	Clear Load	Save									
Tran	saction Log										
Tim	e	Mod.	R/W	M/S	Feat.	B.R.	Addr.	Length	Data		
										Clear Log	Save to File
	2239-188618	Enable	Target Po	wer Pins							

Figure 13. Ensuring Target Power is OFF

Ensure that **Total Phase** has connected to the Aardvark in **Batch Mode** and that **Target Power** is OFF or unchecked under the **Aardvark** tab.

Once in **Batch Mode**, copy the script from this user guide and paste it into the window.

Once the script of I²C writes appears in the **Batch Mode** window, click **Execute**. The **Transaction Log** should display the I²C Reads/Writes, verifying the proper programming of the evaluation board.

-	Lenter								-		
File Aardvark Help											
Batch Mode											
Batch Instructions											
xml version="1.0"? <aardvark></aardvark>									^	Stoppe	d rute
<configure 0"="" gpio="0" pullups="1" spi<="" td="" tpower="</td><td>"><td>="1" i2c=</td><td>"1"/></td><td></td><td></td><td></td><td></td><td></td><td></td><td>St</td><td>00</td></configure>	="1" i2c=	"1"/>							St	00	
<i2c_bitrate khz="400"></i2c_bitrate> <sleep ms="10"></sleep>										He	slp
Power Up											
<pre></pre> value nostop = 0 radix = 10 <pre>set nostop = "0" radix = "16 </pre> <pre>set nostop = "1" radix = "16 </pre> <pre>ide</pre> <	5" count="4" ad 5" count="4" ad 5" count="4" ad	dr="0x28 dr="0x28 dr="0x28	>F0 00 (">F0 00 (00 3C 01 0 00 2C 31 0 00 3C 12</th <th>10 00 00<</th> <th>/i2c_write:</th> <th>> <!-- DVDD<br-->> <!-- maste</th--><th>on power_en=1> r block en 1, CP_EN =1></th><th></th><th></th><th></th></th>	10 00 00<	/i2c_write:	> DVDD maste</th <th>on power_en=1> r block en 1, CP_EN =1></th> <th></th> <th></th> <th></th>	on power_en=1> r block en 1, CP_EN =1>			
<pre><deep ms="10"></deep> <d2_read addr='0x28" count=" <dep ms="10"/> <</pre>	4"/> Save								>		
<pre><dleep ms="10"></dleep> <d2_read 10"="" addr="0x28" count=" <dep ms="></d2_read> </pre> Clear Load Transaction Log Time	4*/> Save	_ R/W -	_ <u>M/S</u> _	Feat		Addr.	Length_	Data	>		
<pre><leep ms="10"></leep> <td>4*/> Save Mod. I2C</td><td>R/W W</td><td>M/S M</td><td>Feat.</td><td>B.R. 400</td><td>Addr. 0x2b</td><td>Length</td><td>Data F0 00 10 B4 73 1C 00 00</td><td>· · ·</td><td></td><td></td></pre>	4*/> Save Mod. I2C	R/W W	M/S M	Feat.	B.R. 400	Addr. 0x2b	Length	Data F0 00 10 B4 73 1C 00 00	· · ·		
<pre><leep ms="10"></leep> <td>4*/> Save Mod. 12C 12C</td><td>R/W W W</td><td>M/S M</td><td>Feat. S S</td><td>B.R. 400</td><td>Addr. 0x2b 0x2b</td><td>Length 8 8</td><td>Data F0 00 10 B4 73 1C 00 00 F0 00 10 B8 70 00 00 00</td><td>, ·</td><td></td><td></td></pre>	4*/> Save Mod. 12C 12C	R/W W W	M/S M	Feat. S S	B.R. 400	Addr. 0x2b 0x2b	Length 8 8	Data F0 00 10 B4 73 1C 00 00 F0 00 10 B8 70 00 00 00	, ·		
<pre><leep ms="10"></leep> <td>4*/> Save Mod. 12C 12C 12C</td><td>R/W W W</td><td>M/S M M</td><td>Feat. S S</td><td>B.R. 400 400</td><td>Addr. 0x2b 0x2b 0x2b</td><td>Length 8 8 8</td><td>Data F0 00 10 B4 73 1C 00 00 F0 00 10 B8 70 00 00 00 F0 00 00 F4 47 00 00 00</td><td>, ·</td><td></td><td></td></pre>	4*/> Save Mod. 12C 12C 12C	R/W W W	M/S M M	Feat. S S	B.R. 400 400	Addr. 0x2b 0x2b 0x2b	Length 8 8 8	Data F0 00 10 B4 73 1C 00 00 F0 00 10 B8 70 00 00 00 F0 00 00 F4 47 00 00 00	, ·		
<pre><deep ms="10"></deep> <dc_read 0x28"="" 10"="" addr="0x28" count=" </dc_read addr=</td><td>4*/>
Save
Mod.
12C
12C
12C
12C</td><td>R/W
W
W
W</td><td>M/S
M
M
M
M</td><td>Feat.
S
S
S</td><td>B.R.
400
400
400</td><td>Addr.
0x2b
0x2b
0x2b
0x2b
0x2b</td><td>Length
8
8
8
8
8</td><td>Data
F0 00 10 B4 73 1C 00 00
F0 00 10 B8 70 00 00 00
F0 00 00 F4 47 00 00 00
F0 00 01 08 20 00 00 00</td><td>, v</td><td></td><td></td></tr><tr><td><pre><deep ms="></dc_read> <dc_read 0x28"="" 10"="" addr="0x28" count=" </dc_read addr=</td><td>4*/>
Save
12C
12C
12C
12C
12C
12C</td><td>R/W
W
W
W
W</td><td>M/S
M
M
M
M</td><td>Feat.
S
S
S
S
S</td><td>B.R.
400
400
400
400</td><td>Addr.
0x2b
0x2b
0x2b
0x2b
0x2b
0x2b</td><td>Length
8
8
8
8
8
8
8
8
8</td><td>Data
F0 00 10 B4 73 1C 00 00
F0 00 10 B8 70 00 00
F0 00 00 F4 47 00 00 00
F0 00 10 82 00 00 00
F0 00 01 82 00 00 00
F0 00 00 74 00 00 00</td><td>, v</td><td></td><td></td></tr><tr><td><pre></pre> </pre> Items Items Items Items Items Items Items Items Items Items Items Items Items Items </p</td><td>4*/>
Save
Nod.
12C
12C
12C
12C
12C
12C
12C</td><td>R/W
W
W
W
W</td><td>M/S
M
M
M
M
M</td><td>Feat.
S
S
S
S
S</td><td>B.R.
400
400
400
400</td><td>Addr,
0x2b
0x2b
0x2b
0x2b
0x2b
0x2b</td><td>Length
8
8
8
8
8
8
8
8</td><td>Data
F0 00 10 B4 73 1C 00 00
F0 00 10 B8 70 00 00 00
F0 00 00 F4 47 00 00 00
F0 00 01 08 20 00 00 00
F0 00 01 08 20 00 00 00
F0 00 00 74 00 00 00 00</td><td>, v</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td></tr><tr><td><pre><deep ms="></dc_read> <dream 0x28"="" 10"="" addr="0x28" count=" <dep ms="></dream> </pre> Clear Load Transaction Log Time 2023-0°-11 11:54:08.400 2023-0°-11 11:54:08.440 2023-0°-11 11:54:08.440 2023-0°-11 11:54:08.440 2023-0°-11 11:54:08.440	4*/> Save Mod. 12C 12C 12C 12C 12C 12C	R/W W W W W	M/S M M M M	Feat. S S S S	B.R. 400 400 400 400	Addr. 0x2b 0x2b 0x2b 0x2b 0x2b	Length 8 8 8 8 8 8 8	Data F0 00 10 B4 73 1C 00 00 F0 00 10 B8 70 00 00 00 F0 00 00 F4 47 00 00 00 F0 00 10 82 00 00 00 F0 00 01 82 00 00 00 00) Clear Log	Save	to File

Figure 14. Verify Successful Load by Checking the Transaction Log

After this script has been successfully executed, the above signal paths can be verified. The Audio Precision can be used to create projects that provide the input and output signals. A USB-Streamer can also be used to provide I²S/TDM input and receive I²S/TDM output, so long as the voltage levels are shifted from 3.3V to 1.8V.

DETAILED DESCRIPTION OF HARDWARE

JUMPERS AND CONNECTORS

Table 1. Connector and Jack Descriptions

REFERENCE TYPE		FUNCTIONAL NAME	DESCRIPTION		
J1 2x5 Pin header 0.1" pitch		AARDVARK I ² C/SPI CONNECTOR	10-Pin header used to connect aardvark adapter.		
J2	DC jack	5V DC INPUT	Barrel jack that provides external power to the board. J2 accepts a 3.8V DC to 6V DC input.		
J3	2-Pin header 0.1" pitch	EXT DVDD	2-Pin header to connect external DVDD supply.		
J4	2x5 Pin header 0.1" pitch	Serial Audio Port 1	10-Pin header to connect I ² S signals to Serial Port1.		
J5	2x8 Pin header 0.1" pitch	I ³ C CONNECTOR	16-Pin header used to connect I ³ C adapter.		
J6	2x10 Pin header 0.1" pitch	JTAG ADAPTER	20-Pin header used to connect JTAG adapter.		
J7	6-Pin header 0.1" pitch	UART ADAPTER	6-Pin header used to connect 3.3V UART adapter.		
J8	2-Pin header 0.1" pitch	IOVDD	Jumper connects power to the IOVDD supply of the ADAU1797 from the power supply section.		

REFERENCE DESIGNATOR	ТҮРЕ	FUNCTIONAL NAME	DESCRIPTION		
J9	2-Pin header 0.1" pitch	HPVDD	Jumper connects power to the HPVDD supply of the ADAU1797 from the power supply section.		
J10	2-Pin header 0.1" pitch	RESET	Header used to generate the reset for ADAU1797.		
J11, J14, J21	2-Pin header 0.1" pitch	ECM Micbias	Jumpers used to add a microphone bias to the analog microphone inputs AIN0, AIN1, and AIN2.		
J12	2-Pin header 0.1" pitch	DVDD	Jumper connects power to the DVDD supply of the ADAU1797 from the power supply section.		
J13	2x8 Pin header 0.1" pitch	DMIC CONNECTOR	Used to connect DMIC inputs to ADAU1797.		
J15	2-Pin header 0.1" pitch	POWER DOWN	Jumper used to power down the ADAU1797 analog and digital circuits.		
J16, J59	3-Pin header 0.1" pitch	OUTPUT	Jumper provides access to the left/right channel mono differential headphone output.		
J17	2-Pin header 0.1" pitch	AVDD	Jumper connects power to the AVDD supply of the ADAU1797 from the power supply section.		
J18, J20, J22	Stereo mini jack	AIN0, AIN1, AIN2	Analog Input channels.		
J19	2x3 Pin header 0.1" pitch	GPIO	Male headers for connecting the ADAU1797 GPIO pins to switches.		
J24	3-Pin header 0.1" pitch	INT DVDD REG_EN	Used to select between the external DVDD source or on-board regulator for DVDD.		
J26	6-Way SIP socket	GPIO	Female header used for LEDs.		
J27	2x4 Pin header 0.1" pitch	MPx pin jumpers	Jumper used to connect push-buttons on the board to the MPx pins on ADAU1797.		
J28	2x2 Pin header 0.1" pitch	VOLTAGE SEL_LED	Jumper to select between 3.3V or 4.5V to LED.		
J29	2-Pin header 0.1" pitch	EXTERNAL AVDD	Jumper used to connect external AVDD supply to the board.		
J30	3-Pin header 0.1" pitch	EXTERNAL/CRYSTAL SELECT	Jumper used to select between routing the onboard crystal to the device or using an external clock signal to route to MCLK.		
J31	Binding post	GND	Connect to GND or 0V of the power supply.		
J32	2-Pin header 0.1" pitch	OSCILLATOR ENABLE	Jumper for enabling or disabling the on-board oscillator. Remove to enable the oscillator.		
J33	3-Pin header 0.1" pitch	EXTERNAL/OSCILLATOR SELECT	Used to select between using the on-board oscillator or the external master clock to route to the ADAU1797.		
J34	3-Pin header 0.1" pitch	AARDVARK OR PROMIRA I2C SELECT	Jumper to select between Aardvark or Promira for I ² C control.		
J35	2-Pin header 0.1" pitch	EXTERNAL IOVDD	Jumper used to connect external IOVDD supply to the board.		
J36	2-Pin header 0.1" pitch	+5V/GND	External header to connect 5V and GND to board.		
J37	2x3 Pin header 0.1" pitch	IOVDD SELECT	Jumper used to select the IOVDD (1.8V/1.2V/EXT) to ADAU1797.		
J38	Binding post	+5V	Binding Post is used to connect the external +5V supply to the board.		
J39	2x3 Pin header 0.1" pitch	AVDD SELECT	Jumper used to select the AVDD 1.8V (EXT/Switching regulator/Linear regulator) to ADAU1797.		
J40	2x5 Pin header 0.1" pitch	Serial Audio Port 0	10-Pin header to connect I ² S signal to Serial Port 0.		
J41	2-Pin header 0.1" pitch	ADAU1797 XTAL OUT	ADAU1797 Crystal Oscillator Output		
J44	3-Pin header 0.1" pitch	AARDVARK OR PROMIRA I2C SELECT	Jumper to select between Aardvark or Promira for I ² C control.		

REFERENCE DESIGNATOR	ТҮРЕ	FUNCTIONAL NAME	DESCRIPTION		
J45	2-Pin header 0.1" pitch	3.3V REG output	Jumper used to connect the 3.3V regulator output.		
J46, J47, J48	2-Pin header 0.1" pitch	SE-MODE	Jumper to connect AIN1, AIN2, and AIN0 in Single- Ended Mode to ADAU1797.		
J50 2x4 Pin header 0.1 pitch		GPIO	Male headers for connecting the ADAU1797 GPIO pins to switches.		
J51	2x4 Pin header 0.1" pitch	Serial Audio Port 1	10-Pin header to connect I ² S signals to Serial Port1.		
J52	2x4 Pin header 0.1" pitch	Serial Audio Port 0	10-Pin header to connect I2S signals to Serial Port0.		
J53	2x4 Pin header 0.1" pitch	GPIO	Male header to connect the ADAU1797 GPIO for external use.		
J54	2x17 Pin header 0.1" pitch	QSPI PORT- PROMIRA CONNECTOR	34-Pin header used to connect the Promira adapter.		
J55, J57, J58	3-Pin header 0.1" pitch	DIFFERENTIAL MODE HEADERS	Headers when connected in position 1-2 provide AIN0, AIN1, and AIN2 in Differential Mode to ADAU1797, when connected in position 2-3 provide MICBias for MEMS Mic.		
J56	6-Pin header 0.1" pitch	UART CONNECTOR	Used for 1.8V UART connection.		
J60, J61, J62, J63	2-Pin headers 0.1" pitch	UART 3.3V I/O	Used to provide 3.3V level shifted signals to ADAU1797 UART Port.		
J64, J65, J66	2-Pin header 0.1" pitch	SE/DIFF Input	Do not install for SE mode or install for DIFF mode.		
J67	3-Pin header 0.1" pitch	SCL/SDA	Header used to monitor SCL, SDA signals to ADAU1797.		

Table 2. Switch Descriptions

REFERENCE TYPE DESIGNATOR		FUNCTIONAL NAME	DESCRIPTION		
S1	SPST	SW REG ENABLE	Switch to enable the 1.8V switching regulator.		
S2 SPDT		SELFBOOT	Switch to turn Selfboot mode ON/OFF.		
S3	4PDT	I2C/SPI SELECT	Switch to select I ² C or SPI mode.		
S4	2 Section SPST	I2C DEVICE ADDRESS	Switch to set I ² C device address.		
S5	SPST-NO	RESET	Switch to provide a reset signal to ADAU1797.		
S6	SPST	REG ENABLE	Switch to enable the 3.3V regulator.		
S8, S12	2xSPST	GPIO	DIP switches for GPIO function.		
S9, S10, S11, S13, S14, S15, S16	SPST-MOM	GPIO	Push switches for GPIO function.		
S17	SPST	MASTER_SLAVE_SEL	Switch to select between SPI master or SPI slave mode for ADAU1797.		
S18	SPST	DVDD REG ENABLE	Switch to enable 1.1V regulator.		
S19	SPST	LIN REG ENABLE	Switch to enable 1.8V Linear Regulator.		
S20	SPST	IOVDD REG ENABLE	Switch to enable 1.2V Linear Regulator.		

DEFAULT SWITCH AND JUMPER SETTINGS

CLOCKING SETUP

The EVAL-ADAU1797Z provides the following multiple options for clocking the ADAU1797:

- Option # 1: Provide MCLK externally
 - In this option, the external master clock is connected to the "EXT MCLKIN" pin of J4. The top pins of J4 are GND.
 - J30 would be shunted toward "OSC." J33 would be shunted toward "EXT." J32 would not be important.
- Option # 2: Use the on-board 24.576MHz external oscillator
 - In this option, J30 would be shunted toward "OSC." J33 would be shunted toward the bottom. J32 would be left open.
- Option # 3: Use the ADAU1797 XTAL Oscillator

• In this option, J30 would be shunted toward "XTAL." J33 and J32 would not be important. The default jumper settings use Option #3 to use the ADAU1797 XTAL oscillator (see *Figure 15*).

Figure 15. Clocking Setup, XTAL Mode

I²C SETUP

The ADAU1797 has two address pins, ADDR0 and ADDR1, that help to set the I²C device address. To set the ADDR0/ADDR1 pins to either IOVDD or GND, use S4 as shown in <u>Figure 16</u>. The boards as currently configured are set such that ADDR1 = ADDR0 = IOVDD, which results in a Device Address of 0x2B.

By default, jumpers J34 and J44 are set to connect the Aardvark I²C signals to the ADAU1797. This is also shown in *Figure 16*.

Figure 16. I²C Configuration

POWER SETUP

The EVAL-ADAU1797Z must be powered with a +5V DC power supply. This can be provided through banana jacks J38 and J31, or by the wall-wart connection J2. Likewise, +5V power from the Aardvark I²C/SPI or Promira I²C/SPI adapter can be used instead. The +5V power from the JTAG or UART adapters can also be used. Diodes exist on the board to prevent issues if more than one power source is on at the same time.

Besides the +5V main board power supply, the EVAL-ADAU1797Z has onboard regulators to generate +1.8V, +1.2V, +1.1V, and +3.3V. Not all regulators must be enabled, but some must be enabled to ensure the ADAU1797 and some additional devices receive power.

Note that the +1.8V, +1.2V, and + 1.1V regulators are likely to be used for the ADAU1797 power supplies AVDD/HPVDD, IOVDD, and DVDD respectively. The EVAL-ADAU1797Z allows options for these supplies to be provided externally. Also, there are options to use the +1.8V linear regulator instead of the +1.8V switching regulator and to use the +1.8V regulator for IOVDD instead of the +1.2V regulator.

As the boards are currently configured, the +3.3V regulator (U16) is enabled. This means that S6 is switched to ON and that J45 is shunted. The +1.1V regulator (U3) is also enabled, meaning that S18 is switched to ON, and JP1 is set to "DVDD \diamond INT." The +1.2V regulator (U8) is also enabled, meaning that S20 is switched to ON, and J37 is set to "+1.2V" Lastly, the +1.8V switching regulator (U17) is enabled. This means that S1 is switched to ON, and J39 is set to "1.8V SW." These connections are shown in *Figure 17*.

Figure 17. Power and Regulators

ADAU1797 POWER AND CURRENT MEASUREMENTS

The EVAL-ADAU1797Z has current measurement headers so that the AVDD, HPVDD, DVDD, or IOVDD current can be measured independently. In order to ensure the power supplies reach the ADAU1797, these jumpers should normally be shunted. J12 may be left open if REG_EN = ON. These headers and their locations are shown in <u>Figure 18</u>.

Figure 18. Current Measurement Headers

ANALOG INPUTS

The ADAU1797 provides three analog inputs. The analog inputs can be configured as Differential, Pseudo-differential, or Single Ended. The J18, J20, and J22 (3.5mm Stereo Jack) are provided to connect the external analog inputs to the board. For the ECM microphone, the 1.8V Micbias can be provided by installing jumpers for the headers J11/J14/J21. If using the Mems microphones, then install a jumper in position 2-3 for J55/J57/J58 to provide the 1.8V Micbias.

Table 3. Analog Inputs

HEADER	DIFFERENTIAL	PSEUDO-DIFFERENTIAL	SINGLE-ENDED	
J64, J65, J66	Install	Install	OPEN	
J46, J47, J48	OPEN	Install	Install	
J55, J57, J58	Install 1-2 position	OPEN	OPEN	

DIGITAL MICROPHONE INPUTS

The ADAU1797 provides ten digital microphone inputs. The inputs are provided in pairs e.g., DMIC_01, DMIC_23, DMIC_45, DMIC_67, and DIMC_89. The two Clock outputs are provided for connecting to the external digital microphones. The header J13 can be used to connect the external digital microphones. The digital microphones must be 1.8V logic. The J13 also provides 1.8V output to power the external digital microphones.

HPOUT HEADERS

The ADAU1797 has integrated Class-D headphone output. There are two headers available to find the Class-D headphone output: J59 and J16. J59 is placed before any filtering components. J16 is placed after the filtering component's placeholders. Note that currently, R13 and R12 are 0Ω resistors. C15, C4, and C32 are left open. But if desired, these placeholders can be replaced with EMI filtering components for example.

On both J59 and J16, the middle pin is GND. The outer pins are HPOUT+ and HPOUT-. This is shown in *Figure 19*.

Figure 19. Class-D Headphone Output

SERIAL PORT HEADERS

The ADAU1797 has two serial ports, which are both accessible on the EVAL-ADAU1797Z. The header J4 has the connections for Serial Port 1. The header J51 has a second, redundant set of connections for Serial Port 1. The header J52 has the connections for Serial Port 0. The header J40 has a second, redundant set of connections for Serial Port 0.

Figure 20. Serial Port Headers

GPIO

The ADAU1797 provides a total of 31 multipurpose pins that can be configured for GPIO use. 15 MPx pins are brought out to the headers J27, J50, J19, and J53. Some of these can be connected to onboard switches as well as for LED indication purposes. These MPx pins are compatible with 1.8V logic.

UART

The UART port connections for ADAU1797 are available at the header J56 which supports the 1.8V logic. In addition, the header J7 is provided to support the 3.3V logic signals. The UART provides RTS, CTS, TXD, and RXD signal pins. The UART port is tested with a PMOD adapter as shown in *Figure 21*.

Figure 21. PMOD USB/UART Connection

TeraTerm software can be used to program the device using UART. The steps to set up TeraTerm are as follows:

Open TeraTerm and set up a serial connection through the USB serial port. Depending on the PC setup, the COM # could be different on the setup. Be sure to select the COM # that specifies the USB serial port as seen in <u>Figure 22</u>.

⊖ TCP/IP	Host:	myhost.exa	ample.com		~
	Service:	History	ТСР ро	rt#: 22	
		SSH	SSH version:	SSH2	
		O Other	IP version:	AUTO	
Serial	Port:	COM4: USE	3 Serial Port (CO	M4)	~

Figure 22. TeraTerm Setup

Click OK and a blank TeraTerm window appears. From here, Click Setup → Serial port...

The Connection Speed can be changed from the default of 9600 if needed, according to the script, and click New setting.

Port:	COM4	~		Port:	COM4 v	New cetting
Sneed'	9600		New setting	Speed:	1200 🗸	New setting
Data:	8 hit	~		Data:	8 bit 🗸	Cancel
Parity.	none	~	Cancel	Parity:	none ~	Canter
Ston bits:	1 bit	~	Help	Stop bits:	1 bit v	Help
Flow control:	none v			Flow control:	none ~	
Transı O	mit delay] msec/cha	r O	msec/line	Transı O	mit delay msec/char 0	msec/line

Figure 23. Setting Rate from 9600 to 1200

A blank terminal is now idling.

Next, open the **Aardvark GUI** and connect the Aardvark adapter for Batch Mode. Load the script which contains the code either for transmission or reception.

Transmitting data using UART:

Execute the script in the **Aardvark Control Center** and check that the **TeraTerm** window displays the expected output as per the script.

To clear the transmitted message on the **TeraTerm** window, go to **TeraTerm** and click **Edit** \rightarrow **Clear Screen** to remove the message from the Terminal.

Receiving data using UART:

Here, the user can verify that the USB serial port can transmit data through the UART.

In the blank **TeraTerm** window, type any single alphabetical letter/message, and then click **Enter**. Switch back to the **Aardvark Control Center** and **Execute** the script for receiving data.

If the script has a read command, the user should be able to see the HEX equivalent of the received data in the **Transaction Log** of the **Aardvark Control Center**.

QSPI

The QSPI port connections are available for ADAU1797 at header J54. The Aardvark adapter can be used to program the device along with a Level Shifter which converts the output voltage from the Aardvark adapter to 1.8V which is desirable for ADAU1797 EVB.

To test the QSPI, connect the Aardvark adapter to the PC using the USB cable and connect the other end of the Aardvark adapter to the Level Shifter Board from Total Phase on the "ADAPTER" Port as shown in <u>Figure 24</u>. On the other end of the Level Shifter Board, connect the QSPI cable to the "TARGET1" port. Now connect the QSPI cable to J54 of the evaluation board (QSPI Promira Adapter) port. Turn the SELBOOT pin OFF by pushing S2 high (to the **OFF** silkscreen label).

Figure 24. QSPI Connection

Now turn the +5V power supply to the evaluation board **ON** and open the **Aardvark GUI**. Click on **Configure Aardvark Adapter**.

đ	Aardvark 12	C/SPI Control	Center								_		\times
File	Aardvark	Help											
					Ca	- -	Aard		lantar				
					CO	niigure	Aaro	vark Ad	apter				
Tran	anotion I	0.0									 		
Tim	isacuon L	Uÿ	Mod.	R/W	M/S	Feat.	B.R.	Addr.	Length	Data			
									-				
											Clear Log	Sav	e to File

Figure 25. Aardvark Control Center

Select the adapter as seen in *Figure 26* and click **OK**.

of Con	🕈 Configure Aardvark Adapter													
Confi Select	Configure Aardvark Adapter Select an Aardvark port Select a Mode													
Port	FW	HW	I2C	SPI	GPIO	Serial Number		O I2C - SPI						
0	3.51	3.00	Y	Y	Y	2237-219354		O SPI - GPIO GPIO Only Batch Mode I2C Monitor						
Refres	h List						OK	Cancel						

Figure 26. Selecting Adapter for Batch Mode

Now click on the **Adapter** tab and click **Target Power** in the drop-down menu. If an option for 5.5V is visible select that, otherwise, turn ON **Target Power**. Target Power should have a checkmark on the left. After this step, the user should see a green LED glowing on the I²C/SPI Level Shifter board.

ď /	Aardvark I2C/SI	PI Control Cente	er								-	
File	Aardvark H	lelp										
Bat	I2C + SP	Pl Ctrl	-1									
Bate	12C + G	PIO Ctrl	-2									
	SPI + GP	PIO Ctrl	-3								^	Stopped
	GPIO	Ctrl	-4									Execute
	Batch M	lode Ctrl	-5									Stop
	I2C Mor	nitor Ctrl	-6									Help
	✓ I2C Pull-	-ups										
	 Target P 	ower										
	Disconn	nect Ctrl-	D									
											~	
<											>	
	Clear	Load Sa	ive									
Tran	saction Log											
Tim	e		Mod.	R/W	M/S	Feat.	B.R.	Addr.	Length	Data		
											Clear Log	Save to File
	2237-21	19354	Enable	larget Pov	ver Pins							

Figure 27. Target Power ON

Figure 28. Verify Level Shifter LED

After this step, program the Flash using the Flash Center software. Make sure to close the Aardvark Control Center software before opening the Flash Center software, otherwise, the Aardvark adapter is unavailable to use.

Open the **Total Phase Flash Center** software. From the tabs at the top, click on **Adapters** \rightarrow **Add Adapters...** and the software should show the connected Aardvark adapter. Click on it and click **Add**.

Figure 29. Total Phase Control Center

Flash Center v1.45.002																	
File Adapters Operations	Help		1	1													
a 🔒 🦓 🎉	2	B	8														
Status				Data													
				Offset	0	12	3 4	567	8	9 A E	C D	E F ASCII					
Ready.				00000													
Device Control				00010													
Target:		Macronix MX	25U3235F	00030													
Canacitur		45	decelouter	00040													
Diversity.			kun	00050													
Dicrolog:		0000		00070													
12C Slave Hodress:				00080													
5PI I/O Mode:	Sta	ndard		00090													
Promira Power Control				000B0	5												
Target Power (Pin 4, 6):		5 V	\sim	00000)												
IO Power (Pin 22, 24):		Disabled		000D0	2												
Level Shift:			3.3V 🗸	000E0													
Adapters				00100													
				00110													
				00120					A	dd Adapte	ers						×
				00140					Se	ect Program	mming Ad	apters:					
				00150					P	ort		Туре	FW		HW	Serial Number	
				00160								Aardvark I2C/SPI	I 3.51		3.00	TP2237-21935	4
				00180													
							-	_									
					lear		FIL	_									
				Trans	actio	n Log											
				6	ndex	Times	tamp		Te	Use the c	ontrol or	shift key to select	multiple adapter	'5 .			
				0		2022-1	Nov-22	15:40:55.5	i27 Cu	stom IPs							
						2022-1	Nov-22	15:40:55.5	30 107			Add	Refresh		Cancel		
				1 '		2022-1	wdv-22	10.4030.0		_	_						_

Figure 30. Select Aardvark Adapter

Once the user clicks on Add, the console shows a message saying connected to the Aardvark adapter.

Figure 31. After Connecting Adapter

Next, go to **Operations** in the menu bar and select **Choose Target**.

💣 Flas	h Center v	/1.45.002										
File /	Adapters	Operations Help										
	2	Choose Target	Ctrl+T									
		Read Target	Ctrl+R									
Statu	S	Program + Verify	Ctrl+P	Data								
		Program	Ctrl+G	Offset 0	1234	456	78	9 A	BCD	EF	ASCII	
Ready		Program (No Erase)	Ctrl+M	00010								
Devic	e Contre	Verify	Ctrl+Y	00020								
Target	:	Erase	Ctrl+E	00030								
Capaci	ty:	Abort	Ctrl+Z	00040								
Bit rate	::	√×	8000 kHz 🗸 🗸	00060								
I2C Sla	we Address	51		00070								
SPI I/C	Mode:	Standard	~	00090								
Prom	ira Pow	er Control		000A0								
Target	Power (Pin	4, 6):	5 V 🗸	000000								
IO Pov	ver (Pin 22,	24): Disable	ed 🗸 🗸	000D0								
Level S	hift:		3.3 V 🗸	000E0 000F0								
Adap	ters			00100								
1 🗹	Aardvark I	2C/SPI 🕁 TP2237-21	19354	00110								
		8000 kHz	×	00130								
				00140								
				00150								
				00160								
				00170								
				Clear	Fill							
				Transactio	on Log							
				Index	Timestamp	р		Sur	nmary			
				0	2022-Nov-	22 15:45:30).814	Loa	ded Macro	nix MX	(25U3235F 4 Megabyte SPI Flash. Maximun	n bitrate
				1	2022-Nov-	22 15:45:30).817	Sup	ported IO I	Node: 1	Standard	
				2	2022-Nov-	22 15:45:30	0.866	Sele	cted SPI IC	Mode	e is Standard	
				3	2022-Nov-	22 15:45:39	9.188	Cor	nected to	Aardva	ark I2C/SPI at index 1 TP2237-219354 (USB 1	.1).
				4	2022-Nov-	22 15:45:39	1.263	Sup	ported Fea	tures: l	I2C, SPI(Standard)	

Figure 32. Choose Target

Choose the target as per the name shown in <u>Figure 33</u>. This is the name for the QSPI Flash device on ADAU1797. Note, this can be typed in under the **Selected Device** menu bar. Once the device is found, the user does not need to re-find it when opening this window for subsequent tests. Simply verify the text is already in the **Selected Device** section and then click **OK**.

Select Target Device ×								
Select Target De	vice:							
Device Type:	Manufacturer:		Part Number:					
All	All	^	24AA00	^				
I2C EEPROM	Atmel		24AA01					
SPI EEPROM	Catalyst Semiconductor		24AA014					
SPI Flash	Chingis Technologies		24AA02					
	Cypress		24AA024					
	Gigadevice		24AA025					
	IC Microsystems / Xicor		24AA04					
	ISSI		24AA08					
	Intel		24AA 1025					
	Macronix		24AA128					
	Microchip Technology		24AA16					
	Micron		24AA 164					
	NXP / Philips Semicondu		24AA256					
	Renesas Technology		24AA32A					
	SST		24AA512					
	STMicro		24AA512SC					
	Samsung Electronics	¥	24AA515	~				
Selected Device:								
Macronix MX25U	Macronix MX25U3235F 4 Megabyte SPI Flash							
OK Cancel Load Part File								

Figure 33. Select Macronix MX25U3235F 4MB SPI Flash

After clicking **OK**, the console should show that the QSPI was loaded.

00170 00180		
Clear	Fill	
Transact	ion Log	
Index	Timestamp	Summary
0	2022-Nov-22 15:45:30.814	Loaded Macronix MX25U3235F 4 Megabyte SPI Flash. Maximum bitrate 24000 kHz.
1	2022-Nov-22 15:45:30.817	Supported IO Mode: Standard
2	2022-Nov-22 15:45:30.866	Selected SPI IO Mode is Standard
3	2022-Nov-22 15:45:39.188	Connected to Aardvark I2C/SPI at index 1 TP2237-219354 (USB 1.1).
4	2022-Nov-22 15:45:39.263	Supported Features: I2C, SPI(Standard)
5	2022-Nov-22 15:55:36.486	Loaded Macronix MX25U3235F 4 Megabyte SPI Flash. Maximum bitrate 24000 kHz.
6	2022-Nov-22 15:55:36.559	Supported IO Mode: Standard
7	2022-Nov-22 15:55:36.742	Selected SPI IO Mode is Standard
<u> </u>	2022-Nov-22 15:55:36.852	Adapter 1: Requested bitrate (24000 kHz) is not supported by the adapter. Bitrate set to 8000 kHz.

Figure 34. Confirm Target Loaded

Now go to File \rightarrow Load File..., change the file type to Binary files, and load the .bin file. Click Open. The Data should display on the right side of the screen. Now click on Program + Verify.

Figure 35. Program + Verify

The user might see a pop-up from **Flash** as follows, say **yes**:

) I Flash	/C TU /. T KI	×
r c		
· ?	Requested erase range contains partial sectors. Expand range to sector boundary and continue?	-
	Warning: extra data may be erased.	
na	Yes No	
•d		40

Figure 36. Erase Data Prompt

It should take a few seconds to load the data in the Flash and the progress is shown in a progress bar on the left. After successful programming and verification, the user sees the status **Verify xxx bytes Succeeded**.

Now the Flash is programmed. Next, turn OFF the power supply to the evaluation board. Switch the SELFBOOT back to ON, and then turn the power supply ON to power the evaluation board again before moving on.

Next, disconnect the flash center adapter cable, close the Flash Center software, and power down the board. Turn the SELFBOOT switch (S2) back to ON. Power the board back on, and now the part self-boots with the loaded program.

I3C

The J5 header is available for connecting to an I³C adapter or external I³C devices. By connecting the I³C adapter to J5, communication with the device can be established.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 37. EVAL-ADAU1797Z Schematic Block Diagram

Figure 38. EVAL-ADAU1797Z Schematic

Figure 39. EVAL-ADAU1797Z Schematic Power Supply

Figure 40. EVAL-ADAU1797Z Schematic Control Port

Figure 41. EVAL-ADAU1797Z Layout: Top Assembly

Figure 42. EVAL-ADAU1797Z Layout: Top Copper

Figure 43. EVAL-ADAU1797Z Layout: Layer2 Ground Plane

Figure 44. EVAL-ADAU1797Z Layout: Layer3 Power Plane

Figure 45. EVAL-ADAU1797Z Layout: Layer4

Figure 46. EVAL-ADAU1797Z Layout: Layer5

Figure 47. EVAL-ADAU1797Z Layout: Layer6

Figure 48. EVAL-ADAU1797Z Layout: Layer7

Figure 49. EVAL-ADAU1797Z Layout: Bottom Copper

Figure 50. EVAL-ADAU1797Z Layout: Fab Drawing

ORDERING INFORMATION BILL OF MATERIALS

Table 4. Bill of Materials

QTY	REFERENCE DESIGNATOR	DESCRIPTION	VALUE	SUGGESTED MANUFACTURER	SUGGESTED PART NUMBER
1	C21	Multilayer Ceramic 6.3V X5R (0402)	2.2µF	Digi-Key	587- JMK105BJ225K VHFCT-ND
1	C52	Multilayer Ceramic 50V NP0 (0402)	1.0nF	Digi-Key	490-3244-1-ND
10	C1-2 C17 C19 C26-27 C29 C31 C53 C66	Multilayer Ceramic 10V X7R (0805)	10µF	Digi-Key	490-3905-1-ND
8	C16 C34 C37 C39-40 C51 C59 C75	Multilayer Ceramic 6.3V X7R (0402)	1µF	Digi-Key	311-1702-1-ND
3	C18 C50 C58	Multilayer Ceramic 16V X7R (0603)	1.0µF	Digi-Key	490-3900-1-ND
6	C23-24 C57 C61-63	Multilayer Ceramic 16V X7R (0402)	0.10µF	Digi-Key	490-3261-1-ND
2	C3 C5	Multilayer Ceramic 50V NPO (0201)	16pF	Digi-Key	490-17812-1-ND
6	C30 C28 C33 C38 C43 C46	Do Not Stuff	OPEN	OPEN	OPEN
5	C35-36 C41-42 C65	Multilayer Ceramic 6.3V X5R (0402)	10µF	Digi-Key	490-13211-1-ND

-					
3	C4 C15 C32	Do Not Stuff	OPEN	OPEN	OPEN
2	C49 C60	Multilayer Ceramic 25V X7R (0402)	10nF	Digi-Key	490-6340-1-ND
28	C6-14 C20 C22 C25 C44-45 C47-48 C54-56 C64 C67-74	Multilayer Ceramic 6.3V X5R (0201)	100nF	Digi-Key	490-3167-1-ND
1	D7	Blue 25millicandela 470nm 1210	Blue Clear	Digi-Key	67-1871-1-ND
1	D10	Yellow Diffused 4.0millicandela 585nm 1206	Yellow Diffused	Digi-Key	L62307CT-ND
6	D1-6	Schottky 30V 0.5A SOD123 Diode	MBR053 0T1G	Digi-Key	MBR0530T1GO SCT-ND
2	D8 D11	Red Diffused 6.0millicandela 635nm 1206	Red Diffused	Digi-Key	67-1003-1-ND
3	D9 D12-13	Green Diffused 10millicandela 565nm 1206	Green Diffused	Digi-Key	67-1002-1-ND
1	J1	10-Way Shroud Polarized Header	2x5	Digi-Key	MHC10K-ND
1	J2	Mini Power Jack 0.08" R/A TH	RAPC72 2X	Digi-Key	SC1313-ND
1	J4	10-Way (2X5) UnShroud 0.1" Header	2x5	Digi-Key	S2011EC-05-ND
1	J6	20-way Shroud Polarized	2x10	Digi-Key	MHC20K-ND
1	J28	4-Way Unshrouded Header	2x2	Digi-Key	S2011E-02-ND
1	J54	Header 2x17Way, 2mm Pitch, Shrouded, Polarized	2x17 Pin, 2mm Pitch	Digikey	WM6581-ND
3	J16 J59 J67	3-Pin Header Unshrouded 0.10"	3 Pin Header	Digi-Key	S1011E-03-ND
3	J18 J20 J22	Stereo Mini Jack, SMT	SJ-3523- SMT	Digi-Key	CP-3523SJCT-ND
3	J19 J37 J39	6-Way Unshrouded Header	2x3	Digi-Key	S2011E-03-ND
7	J23 J27 J40 J50-53	8-Way Unshrouded Header Dual Row	2x4	DigiKey	S2011E-04-ND; or cut S2011E-36- ND
9	J24 J30 J33-34 J44 J55 J57-58 JP1	3-Pos SIP Header	3-Jumper	Digi-Key	S1011E-03-ND
7	J25 J42-43 J45-48	2-Pin Header Unshrouded Jumper 0.10"	2-Jumper	Digi-Key	S1011E-02-ND
6	J3 J29 J35-36 J41 J49	2-Pin Header Unshrouded Jumper 0.10"; use Shunt Tyco 881545-2	2-Jumper	Digi-Key	S1011E-02-ND
2	J31 J38	Binding Post Mini Uninsulated Base TH	Nickel Binding Post	Digikey	J587-ND
2	J5 J13	16-Way Unshrouded	2x8	Digi-Key	S2011E-08-ND
3	J7 J26 J56	6-Way Female Socket, 0.1"	1x6	Digi-Key	S7039-ND
17	J8-12 J14-15 J17 J21 J32 J60-66	2-Pin Header Unshrouded Jumper 0.10"; use Shunt Tyco 881545-2	2-Jumper	Digi-Key	S1011E-02-ND
1	L1	2.2µH Inductor	2.2µH	Digi-Key	490-5336-1-ND
4	MTH1-4	HEX Standoff 4-40 Nylon 1/2" Standoff RND 4-40THR .500"L ALIM	4-40 Mounting Hole for Standoff	Digikey	1902CK-ND
4	MTH1-4	Nylon Screw Pan Phillips 4-40	4-40 Panhead Screw	Digikey	H542-ND

6	Q1-6	Pre-Biased Transistor NPN- DTC114YET1G	DTC114 YET1G	Digi-Key	DTC114YET1GO SCT-ND
1	R3	Chip Resistor 1% 50mW Thick Film 0201	1k0	Digi-Key	YAG3431CT-ND
1	R8	Chip Resistor 1% 50mW Thick Film 0201	1K	Digi-Key	YAG3431CT-ND
1	R68	Chip Resistor 1% 63mW Thick Film 0402	20k0	Digi-Key	311-20.0KLRCT- ND
1	R69	Chip Resistor 1% 63mW Thick Film 0402	1M00	Digi-Key	311-1.00MLRCT- ND
1	R94	Do Not Stuff	OPEN	OPEN	OPEN
1	R1	RES 3.74kΩ 1% 1/16W 0402	3k74	Digi-Key	311-3.74KLRCT- ND
1	R25	Chip Resistor 1% 63mW Thick Film 0402	1k00	Digi-Key	311-1.00KLRCT- ND
4	R10 R14 R18 R23	Chip Resistor 1% 50mW Thick Film 0201	10k0	Digi-Key	311-10KNCT-ND
2	R92-93	Chip Resistor 1% 1/20W Thick Film 0201	2k67	Digi-Key	541- CRCW02012K67F NEDCT-ND
3	R107 R115-116	Chip Resistor 1% 100mW Thick Film 0402	100R	Digi-Key	P100LCT-ND
2	R12-13	Chip Resistor 5% 125mW Thick Film 0603	0R00	Digi-Key	P0.0GCT-ND
4	R16-17 R19 R22	Do Not Stuff	OPEN	OPEN	OPEN
12	R2 R38 R70-73 R101-104 R130 R132	Chip Resistor 1% 100mW Thick Film 0402	10k0	Digi-Key	P10.0KLCT-ND
2	R24 R76	Chip Resistor 1% 100mW Thick Film 0402	100k	Digi-Key	P100KLCT-ND
2	R32-33	Chip Resistor 5% 100mW Thick Film 0402	0R00	Digi-Key	P0.0JCT-ND
9	R36 R42 R48 R53-54 R75 R79 R111-112	Chip Resistor 5% 63mW Thick Film 0402	0R00	Digi-Key	P0.0JCT-ND
33	R4-7 R15 R26-31 R34-35 R43 R45-46 R49 R51 R56- 57 R77 R80-89 R97-98	RES 33R Ω 1/20W 5% 0201 SMD	33R	DIGIKEY	311-33NCT-ND
6	R41 R47 R52 R55 R74 R78	Chip Resistor 1% 63mW Thick Film 0402	49k9	Digi-Key	541-49.9KLCT-ND
3	R44 R50 R59	Chip Resistor 1% 63mW Thick Film 0402	2k00	Digi-Key	P2.00KLCT-ND
7	R58 R63 R105-106 R108- 110	Chip Resistor 1% 125mW Thick Film 0805	150R	Digi-Key	P150CCT-ND
14	R9 R11 R20-21 R37 R39-40 R60-62 R64-67	Chip Resistor 1% 50mW Thick Film 0201	10k0	Digi-Key	311-10KNCT-ND
4	R90-91 R99-100	Chip Resistor 1% 1/20W Thick Film 0201	2k67	Digi-Key	541- CRCW02012K67F NEDCT-ND
2	R95-96	Chip Resistor 5% 50mW Thick Film 0201	OPEN	Digi-Key	P0.0JCT-ND
1	S2	SPDT Slide Switch PC Mount	SPDT	Digi-Key	EG1918-ND
1	S3	4PDT Slide Switch Vertical Break- Before-Make	4PDT Slide	Digi-Key	450-1633-ND
1	S5	Tact Switch 6mm Gull Wing	SPST- NO	Digi-Key	450-1133-ND
6	S1 S6 S17-20	1 Section SPST SMD	1x SPST	Digi-Key	563-1003-1-ND

3	S4 S8 S12	2 Section SPST SMD Switch Raised Act	2x SPST	Digi-Key	CT2192LPST-ND
7	S9-11 S13-16	Tact Switch Long Stroke (Normally open)	SPST- MOM	Digi-Key	SW426-ND
1	TP5	Mini Test Point White .1" OD	5002	Digi-Key	5002K-ND
10	TP1-2 TP13 TP15-17 TP19 TP33 TP35-36	Mini Test Point White .1" OD	5002	Digi-Key	5002K-ND
1	U1	Low Latency Audio CODEC with DSP ADAU1797	ADAU17 97	Analog Devices Inc.	ADAU1797BCBZ- RL
1	U2	32Mbit QSPI CSerial EEPROM- WLCSP-12	MX25U3 232FM2I 02	Digi-Key	1092- MX25U3232FM2I 02-ND
1	U3	Adjustable Low-Dropout Voltage Regulator	ADP1715 ARM Z- R7	Digikey	ADP1715ARMZ- R7CT-ND
1	U5	SNGL BUS BUFF NON-INV GATE OPEN DRAIN SC70-5	SN74AU C1G07D CKR	DigiKey	296-12464-1-ND
1	U6	High-Accuracy, Ultralow IQ, 500mA, anyCAP Low Dropout Regulator	ADP3335 ACPZ- 1.8-RL	Digikey	ADP3335ACPZ- 1.8-R7CT-ND
1	U8	Fixed Low-Dropout Voltage Regulator 1.2V	ADP1713 AUJZ- 1.2-R7	Digikey	ADP1713AUJZ- 1.2-R7CT-ND
1	U11	IC TXRX DUAL 3ST 6TSSOP	74AVC1 T45	Digikey	568-9222-1-ND
1	U12	IC I2C BUS REPEATER 8-TSSOP PCA9617A	PCA9617 ADM R2G	DigiKey	2156- PCA9617ADMR2 G-OS-ND
1	U13	32Mbit QSPI CSerial EEPROM- WLCSP-12	MX25U3 232FM2I 02	Digi-Key	1092- MX25U3232FM2I 02-ND
1	U16	Linear Regulator 3.3V, 100mA TSOT- 23-5	LT1761- 3.3	Digikey	LT1761IS5- 3.3#TRMPBFCT- ND
1	U17	Ultra Low Power Step-Down Regulator ADP5302-ACPZ-1	ADP5302 ACPZ-1	DIGIKEY	ADP5302ACPZ-1- R7CT-ND
1	U18	IC 4BIT DUAL BUS TXRX TSSOP16	SN74AV C4T24 5PWR	DigiKey	296-18056-1-ND
4	U4 U7 U9-10	IC TRANSLATOR BIDIR SIP6	FXLH1T4 5L6X	Digikey	FXLH1T45L6XFS CT-ND
1	Y1	24.576MHz Fixed SMD Oscillator 1.8 - 3.3VDC	24.576M Hz	Digi-Key	535-11729-1-ND
1	Y2	Crystal 24.576MHz SM1612	24.576M Hz	Digi-key	

REVISION HISTORY

9/2023—Revision 0: Initial Version

ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENCE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS WHICH ADI PRODUCTS ALL INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.