Click here to ask an associate for production status of specific part numbers.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

General Description

The MAX16425/MAX16425A are fully-integrated, highly efficient step-down DC-DC switching regulators. These devices operate from 4.5 V to 16 V input supplies, and the output can be adjusted from 0.6 V to 3.3 V , delivering up to 25A of load current. These single-chip regulators provide a compact high-efficiency, power-delivery solution for precision outputs that demand fast transient response.
The two devices have different programmability options (see Table 3a and 3b for details) to enable a wide range of configurations. The programmable features include: internal/external reference voltage, output voltage set-point, switching frequency, overcurrent protection level (OCP), and soft-start timing. Discontinuous current mode (DCM) operation can be enabled through pin-strapping to improve light-load efficiency.
The MAX16425/MAX16425A include multiple protection and measurement features. Positive and negative cycle-by-cycle OCP, short-circuit protection, and overtemperature protection (OTP) ensure robust design. Input undervoltage and overvoltage lockout shut down the regulator to prevent damage when the input voltage is out of specification. Regulation is halted in case of an output overvoltage (OVP) event. A status pin indicates that the output voltage is within range and the output voltage is in regulation. The device has an analog output that can be configured to report output current or junction temperature with $\pm 5 \%$ and $\pm 8^{\circ} \mathrm{C}$ accuracy, respectively.
The devices are available in a 27 -bump ($2.2 \mathrm{~mm} \times 3.8 \mathrm{~mm}$) WLCSP package that provides low thermal resistance and minimizes the PCB area.

Applications

- Servers/ μ Servers
- I/O and Chipset Supplies
- GPU Core Supply
- DDR Memory: $V_{D D Q}, V_{P P}$, and $V_{T T}$
- Point-of-Load (PoL) Applications

DEVICE TYPE	CURRENT RATING	INPUT VOLTAGE	OUTPUT VOLTAGE
MAX16425	25 A	4.5 V to 16 V	0.6 V to 3.3 V
MAX16425A			

Quick-PWM is a trademark of Maxim Integrated Products, Inc.

Benefits and Features

- High-Efficiency Solution with External Bias Supply
- Up to 97% Peak
- Up to 87% Full-Load
- Up to 96% Light-Load Efficiency at 1A with DCM Enabled
- Wide Operating Range
- 4.5 V to 16 V Input Voltage Range
- 0.6 V to 3.3 V Output Voltage Range
- 25A (max) Load Current
- Flexible Design Allows Early PCB Definition
- Footprint Compatible with MAX16491 (9A), VT2491 (15A), and VT2492 (25A)
- Programmable Switching Frequency up to 1 MHz
- Programmable Soft-Start and STAT Delay Timings
- Programmable Reference Voltage with External Input Option
- Programmable Positive and Negative OCP Limit
- Advanced Architecture, Protection, and Reporting Guarantees Reliable Designs
- Analog Current or Temperature Reporting
- Differential Remote Sense with Open-Circuit Detection
- Fast Transient Response with Quick-PWM ${ }^{\text {TM }}$ Architecture
- Saves Board Space
- Integrated Boost Switch
- 27-Bump WLCSP ($2.2 \mathrm{~mm} \times 3.8 \mathrm{~mm}$) Footprint
- Operation Using Ceramic Input and Output Capacitors

Ordering Information appears at end of data sheet.

Basic Application Circuit

© 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Absolute Maximum Rating	
VDDH to GND (Note 1)	3 V to +23 V
VX to GND (DC).	-0.3V to +23 V
VX to GND (AC) (Notes 1, 2)	10V to +23V
VDDH to VX (DC).	-0.3V to +23V
VDDH to VX (AC) (Notes 1, 2)	-10V to +23V
BST to GND (DC).	-0.3V to +25.5 V
BST to GND (AC) (Notes 1, 2)	-7V to +25.5 V
BST to VX Differential	-0.3V to +2.5V

VCC to AGND....	to +2.5 V
OE to GND	-0.3 V to +2.5 V
PGM, SENSE+, SENSE- to GND	-0.3V to VCC +0.3 V
STAT to AGND.	-0.3V to +4V
Junction Temperature (TJ)	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Peak Reflow Temperature Lea	$\ldots . . .+260^{\circ} \mathrm{C}$

OE to GND ..-0.3V to +2.5 V
PGM, SENSE+, SENSE- to GND -0.3V to VCC +0.3 V
STAT to AGND..-0.3V to +4 V
Storage Temperature Range ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Peak Reflow Temperature Lead-Free $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Ratings

Bias-Supply Voltage (V_{CC}).................................. 1.71 V to 1.89 V
Output Current (IOUT) ..25A
Peak Output Current (IPK+,MAX)...40A

Package Information

$\mathbf{2 7}$ WLCSP	
Package Code	C272C3+1
Outline Number	$\underline{21-0928}$
Land Pattern Number	Refer to Application Note 1891
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$19^{\circ} \mathrm{C} / \mathrm{W}$ (Note 3)
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$0.75^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Note 1: Input HF capacitors placed not more than 60 mils away from the $\mathrm{V}_{\mathrm{DDH}}$ pin are required to keep inductive voltage spikes within Absolute Maximum Ratings limits.
Note 2: $A C$ is limited to 25 ns.
Note 3: Data taken using Analog Devices' evaluation kit with no air flow and no heatsink.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDH}}=12 \mathrm{~V}\right.$ unless otherwise specified. The * symbol denotes specifications that apply over the temperature range of $\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Otherwise, specifications are for $\mathrm{T}_{J}=32^{\circ} \mathrm{C}$. The \# denotes parameters that are programmable. Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+32^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY VOLTAGES, SUPPLY CURRENT, TEMPERATURE RANGE						
12V Supply Voltage Range	$\mathrm{V}_{\text {DDH }}$	*	4.5		16	V
1.8V Supply Voltage Range	$\mathrm{V}_{\text {CC }}$	*	1.71	1.8	1.89	V
VCC Supply Current	Icc	CCM *			35	mA
		DCM *			25	
		Shutdown *		32	132	$\mu \mathrm{A}$
VREF						
Programmable Reference Voltage	$V_{\text {REF }}$	\# (See Table 3)		0.6		V
			0.95			
$\mathrm{V}_{\text {REF }}$ Tolerance ($\mathrm{V}_{\text {REF_TOL }}$)		$\mathrm{T}=35^{\circ} \mathrm{C}$ (Note 4)	-0.5		+0.5	\%
$\mathrm{V}_{\text {REF }}$ Tolerance Temperature Coefficient (VREFT_COEFF)		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<100^{\circ} \mathrm{C}$ (Note 4)			0.0106	\%/ ${ }^{\circ} \mathrm{C}$
FEEDBACK LOOP						
RSENSE GAIN	Gain	\# (See Table 3)		1.4		mV/A
				2.8		
				5.4		
SWITCHING FREQUENCY						
Switching Frequency Accuracy	fsw	Relative to the nominal value (see Figure 4). $0 \mathrm{~A}<\mathrm{I}_{\mathrm{LOAD}}$ < Full Load $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DDH}} \pm 10 \%$ *	-20		+20	\%
Low fsw Threshold		DCM enabled		30		kHz
Forced Minimum fsw		DCM enabled. The low fSW threshold has been crossed.		60		kHz
INPUT PROTECTION						
Rising $\mathrm{V}_{\text {DDH }}$ UVLO Threshold	$\mathrm{V}_{\text {DDH }}$ UVLO	*	3.85	4.15	4.40	V
Falling $\mathrm{V}_{\text {DDH }}$ UVLO Threshold			3.70	3.98	4.25	V
Rising $\mathrm{V}_{\text {DDH }}$ OVLO Threshold	$\mathrm{V}_{\text {DDH }}$ OVLO	*	16.6	17.3	17.8	V
Falling $\mathrm{V}_{\mathrm{DDH}}$ OVLO Threshold			16.1	16.7	17.3	V
Rising V_{CC} UVLO Threshold	V_{CC} UVLO	*	1.49	1.62	1.70	V
Falling $\mathrm{V}_{\text {CC }}$ UVLO Threshold			1.46	1.57	1.65	V
Rising $\mathrm{V}_{\text {BST }}$ UVLO Threshold	$\mathrm{V}_{\text {BST }}$ UVLO	*	1.48	1.57	1.70	V
Falling $\mathrm{V}_{\text {BST }}$ UVLO Threshold			1.33	1.52	1.65	V

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDH}}=12 \mathrm{~V}\right.$ unless otherwise specified. The * symbol denotes specifications that apply over the temperature range of $\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Otherwise, specifications are for $\mathrm{T}_{J}=32^{\circ} \mathrm{C}$. The \# denotes parameters that are programmable. Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+32^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE PROTECTION (OVP)						
Overvoltage-Protection Rising Threshold	OVP	(Note 5)	9.5	13	16.5	\%
Overvoltage-Protection Deglitch Filter Time			25	30	36	$\mu \mathrm{s}$
Power Good Protection Falling Threshold	PWRGD	(Note 5)	-12	-9	-4.5	\%
Power Good Protection Rising Threshold		(Note 5)	-9	-6	-2	\%
Power Good Deglitch Filter Time			25	30	36	$\mu \mathrm{s}$
OVERCURRENT PROTECTION (OCP)						
Positive Overcurrent-Protection Threshold (POCP)	OCP	Valley current \#		16		A
				20		
				24		
Negative Overcurrent-Protection Threshold (NOCP)				-16		A
				-20		
				-24		
POCP Threshold Tolerance		Referenced to nominal value (Note 5) *	-20		20	\%
Hysteresis (Note 6)		Referenced to inception value (Note 5)*	12	15	18	\%
OVERTEMPERATURE PROTECTION (OTP)						
Overtemperature-Protection Inception Threshold	OTP	*	130	140	150	${ }^{\circ} \mathrm{C}$
Hysteresis			-30		-10	${ }^{\circ} \mathrm{C}$
TEMPERATURE REPORTING						
Temperature-Reporting Range	TJ		0		125	${ }^{\circ} \mathrm{C}$
Temperature-Reporting Tolerance		*	-4		+4	${ }^{\circ} \mathrm{C}$
CURRENT REPORTING						
Current-Reporting Range	ILOAD		0		25	A
Current-Reporting Tolerance		From no load to full load *	-2		+2	A
		Full load *	-8		+8	\%

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDH}}=12 \mathrm{~V}\right.$ unless otherwise specified. The * symbol denotes specifications that apply over the temperature range of $\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Otherwise, specifications are for $\mathrm{T}_{J}=32^{\circ} \mathrm{C}$. The \# denotes parameters that are programmable. Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+32^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OE PIN						
Input Range	-	*	0		1.89	V
Rising Threshold	$\left.\mathrm{V}_{\text {OE(}} \mathrm{H}\right)$	Full V_{CC} supply range. Measured at OE Pin *	0.89	1.09	1.3	V
Falling Threshold	$\mathrm{V}_{\mathrm{OE}(\mathrm{L})}$		0.44	0.65	0.83	V
Hysteresis	-	*	0.34	0.44	0.61	V
Deglitch Filter Time			230		520	ns
OE Pin Input Resistance		UVLO $<\mathrm{V}_{\text {CC }}<$ OVLO *	250	435	490	k Ω
STARTUP TIMING						
Enable Time from OE Rise to Start of Regulation	${ }^{\text {E E }}$ N		200	300	500	$\mu \mathrm{s}$
Soft-Start Ramp Time	tss	\# (see Table 3)		1.5		ms
				3		
				6		
Dwell Time at $\mathrm{V}_{\text {OUT }}$ (DCM Not Allowed)	tsettle		14		35	$\mu \mathrm{s}$
Timing to Charge Boost Capacitor	t_{BS} T			8		$\mu \mathrm{s}$
STAT PIN						
Pullup Voltage	VOHSTAT				3.6	V
Status Output Low	VOLSTAT	ISTAT $=4 \mathrm{~mA}$ *			0.4	V
		ISTAT $=0.2 \mathrm{~mA}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<U V L O$ and OV < V $\mathrm{DDH}^{<}$UVLO *			0.67	
		ISTAT $=1.3 \mathrm{~mA}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{UVLO}$ and OV < VDDH $<$ UVLO *			0.76	
Status Output High Leakage Current	ISTAT	STAT pull to 3.3 V through $20 \mathrm{k} \Omega$ *			7	$\mu \mathrm{A}$
Time from $\mathrm{V}_{\text {OUT }}$ Ramp Completion to STAT Pin Released	tstat	STAT output low to high \# (See Table 3)		128		$\mu \mathrm{s}$
			2000			
Fault Clearing		Bad-to-good delay	1.8	2	2.2	ms

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDH}}=12 \mathrm{~V}\right.$ unless otherwise specified. The * symbol denotes specifications that apply over the temperature range of $\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Otherwise, specifications are for $\mathrm{T}_{J}=32^{\circ} \mathrm{C}$. The \# denotes parameters that are programmable. Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+32^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
PGM PIN					
Reporting Voltage Range	VPGM	System regulating	0.5	1	V
Resistor Range	R_SEL	Twelve options	1.78	162	k Ω
Resistor Accuracy		EIA standard resistor values only	-1	+1	\%
Capacitor Range	C_SEL	Three options	0	820	pF
C_SEL Capacitor Accuracy			-20	+20	\%
External Capacitance		Load and stray capacitance in addition to C_SEL		20	pF
SYSTEM SPECIFICATIONS (Note 6)					
Peak-to-Peak Output Ripple Voltage, DCM Disabled	VOUT-RIPL		-1	+1	\%
Peak-to-Peak Input Ripple Voltage	VIN-RIPL	$\mathrm{V}_{\mathrm{DDH}}=10.8 \mathrm{~V}-13.2 \mathrm{~V}$	-1	+1	\%
Line Regulation	VOUT	$\mathrm{V}_{\text {DDH }}=10.8 \mathrm{~V}-13.2 \mathrm{~V}$		0.15	\%
Load Regulation (Static)		$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}-\mathrm{I}_{\text {MAX }}$	-0.5	+0.5	\%
Load Regulation (Dynamic)		$\mathrm{V}_{\mathrm{DDH}}=10.8 \mathrm{~V}-13.2 \mathrm{~V}$, IOUT step 6A at $36 \mathrm{~A} / \mu \mathrm{s}, 1 \mathrm{kHz}-1 \mathrm{MHz}$ repetition rate, 10\% - 90% duty cycle	-3	+3	\%

Note 4: To calculate the total $\mathrm{V}_{\text {REF }}$ tolerance over a temperature variation of $\Delta \mathrm{T}$:
$\mathrm{V}_{\text {REF_TOL_TOT }}=\mathrm{V}_{\text {REF_TOL }}+|\Delta \mathrm{T}| \times \mathrm{V}_{\text {REF_T_COEFF }}$
Note 5: Min/max limits are $\geq 4 \sigma$ about the mean.
Note 6: The OCP hysteresis is for positive current OCP only, negative current OCP hysteresis is always 0 .
Note 7: Tested using circuit of Reference Schematic (Figure 9) with $\mathrm{C}_{\mathrm{OUT}}=15 \times 22 \mu \mathrm{~F}$. $\mathrm{V}_{\text {OUT }}=1.05 \mathrm{~V}$. Not guaranteed; for reference only.

Typical Operating Characteristics

$\left(V_{D D H}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}\right.$. Curve indicates $\mathrm{T}_{\text {CASE }}=125^{\circ} \mathrm{C}$ or IOUT $=\mathrm{I}_{\mathrm{MAX}}$, whichever happens first. $)$

SAFE OPERATING AREA (SOA)

CONDITIONS: 200LFM, HEASTSINK

CONDITIONS: OLFM, NO HEASTSINK
SAFE OPERATING AREA (SOA)

Regulator with Selectable Applications Configurations

Typical Operating Characteristics (continued)
$\left(V_{D D H}=12 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=1.8 \mathrm{~V}\right.$, fSW Setting \#6, C $\mathrm{C}_{\text {OUT }}=5 \times 22 \mu \mathrm{~F}+4 \times 47 \mu \mathrm{~F}$, L $\mathrm{L}_{\text {OUT }}=680 \mathrm{nH}$ for $\mathrm{V}_{\text {OUT }} \geq 2.5 \mathrm{~V}$, L $\mathrm{L}_{\text {OUT }}=200 \mathrm{nH}$ for $\mathrm{V}_{\text {OUT }} \leq 1.8 \mathrm{~V}$)

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DDH}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}\right.$, Circuit of Figure 3, $\mathrm{R}_{-} \mathrm{SEL}=6.04 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 1}=4.32 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=2.61 \mathrm{k} \Omega$, No heatsink, $\mathrm{I}_{\text {LOAD }}=15 \mathrm{~A}$, unless otherwise noted.)

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DDH}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}\right.$, Circuit of Figure $6, \mathrm{R}_{-} \mathrm{SEL}=9.09 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 1}=4.32 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=2.61 \mathrm{k} \Omega$, External $\mathrm{V}_{\text {REF }}=0.95 \mathrm{~V}$. No heatsink, unless otherwise noted.)

Typical Operating Characteristics (continued)

$\left(V_{D D H}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathbf{2 . 5 V}\right.$, Circuit of Figure 3, $\mathrm{C}_{\mathrm{OUT}}=5 \times 22 \mu \mathrm{~F}+4 \times 47 \mu \mathrm{~F}, \mathrm{~L}=\mathbf{6 8 0 n H}, \mathrm{f}_{\text {SW }}$ Setting \#6, Load Step $=$ 6A at 36A/ $\mu \mathrm{s}$.)

Typical Operating Characteristics (continued)

$\left(V_{D D H}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}\right.$, Circuit of Figure 3, $\mathrm{C}_{\text {OUT }}=5 \times 22 \mu \mathrm{~F}+4 \times 47 \mu \mathrm{~F}, \mathrm{~L}=\mathbf{6 8 0 n H}, \mathrm{f}$ SW Setting $\# 6, \mathrm{OCP}=16 \mathrm{~A}$. No heatsink, unless otherwise noted.)

NEGATIVE OVERCURRENT PROTECTION

$10 \mu \mathrm{~s} / \mathrm{div}$

Pin Configuration

(TOP VIEW)

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Pin Description

PIN	NAME	FUNCTION
A1	SENSE-	Negative Remote-Sense/External-Reference Input. Connect the SENSE- pin to ground at the load with a Kelvin connection to use the internal voltage reference, or connect the pin to an external reference voltage as shown in Figure 6.
A2	AGND	Analog/Signal Ground. Connect to ground plane following the recommendations mentioned in the Printed Circuit Board Layout section.
A4	STAT	Open-Drain Status Output. This pin is pulled low to indicate a fault or output-undervoltage and output-overvoltage events.
B1	PGM	Programming Input/Telemetry Output. Connect PGM to analog ground using a programming resistor and capacitor. The resistance and capacitance values are measured at startup to determine the desired regulator settings (see Table 3a and 3b). Refer to the Current/Temperature Reporting and Programming Options sections for more information.
B2	SENSE+	Positive Remote-Sense Input. Connect SENSE+ to VOUT at the load using a Kelvin connection. A resistive voltage-divider can be inserted between the output and SENSE+ to regulate the output above the reference voltage.
B3	OE	Output-Enable Input. Connect to enable signal through a $20 \mathrm{k} \Omega$ resistor. When OE is low, the VX node is high-impedance. Toggle OE to clear the fault-protection latch.
B4	V_{CC}	Supply-Voltage Input. Use this pin for the regulator's analog, digital and gate drive circuits. Connect V_{CC} to 1.8 V and closely bypass the pin to power ground with a $1 \mu \mathrm{~F}$ or greater ceramic capacitor.
C1-C3	$V_{\text {DDH }}$	Power-Input Voltage. Connect $\mathrm{V}_{\text {DDH }}$ to the input power supply source. High-frequency ceramic decoupling capacitors must be placed in close proximity to the pin. Refer to Table 4 for decoupling recommendations.
C4	BST	Bootstrap Supply Input. Connect a $0.47 \mu \mathrm{~F}$ ceramic capacitor in close proximity to the IC between BST and VX, as specified in Table 4 and the Printed Circuit Board Layout section.
D1-D4, F1-F4	VX	Switching Node. Connect to the switching node of the power inductor.
E1-E4, G1-G4	GND	Power Ground. Connect to the return path of the output load.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Block Diagram

Detailed Description

Control Architecture

The MAX16425/MAX16425A step-down regulators are ideal for low-duty cycle (high-input voltage to low-output voltage) applications. Analog Devices' proprietary Quick-PWM pulse-width modulator in the MAX16425/ MAX16425A is a pseudo-fixed frequency, constant ontime, current-mode regulator with voltage feed-forward (Block Diagram). The architecture is specifically designed for handling fast load steps while maintaining a relatively constant operating frequency and inductor operating
point over a wide range of input voltages. This approach circumvents the poor load-transient timing problems of fixed-frequency, current-mode PWMs while also avoiding the problems caused by widely varying switching frequencies in conventional constant-on-time pulse-frequency modulation control schemes, regardless of input voltage.
Traditional constant on-time architectures require an output capacitor with a specified minimum ESR to ensure stable operation. This restriction does not apply to the MAX16425/MAX16425A because the inductor valley current is added to the feedback signal using a proprietary current-sense method, which improves stability.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

The control algorithm is simple: the high-side switch on-time is determined solely by a one-shot whose pulse width is inversely proportional to input voltage and directly proportional to output voltage (Equation 1). Another oneshot sets a minimum off-time of 100ns (typ).
Under normal operating conditions, the on-time one-shot is triggered if the sum of the feedback voltage and the valley current-sense signal falls below the control voltage, and the minimum off-time one-shot has timed out. The ton pulse width is clamped to a maximum of $2.5 \mu \mathrm{~s}$.

Equation 1

$$
\mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{VX}}{\mathrm{AVE}}{ }_{\mathrm{f}_{\mathrm{SW}} \times \mathrm{V}_{\mathrm{DDH}}}
$$

where:

$$
\begin{array}{ll}
\mathrm{f}_{\mathrm{SW}} & =\text { Switching frequency }(\mathrm{MHz}) \\
\mathrm{t}_{\mathrm{ON}} & =\text { On-time period for high-side switch }(\mu \mathrm{s}) \\
\mathrm{VX} & \text { AVE } \\
\text { A Average } \mathrm{VX} \text { voltage }(\mathrm{V}) \\
\text { VDDH }^{\text {DD }} & =\text { Input voltage }(\mathrm{V})
\end{array}
$$

Voltage Regulator Enable and Turn-On Sequencing

The startup sequence is shown in Figure 1. Once the OE pin rises above the $\mathrm{V}_{\mathrm{OE}(\mathrm{H})}$ threshold, the control circuits wait for a $300 \mu \mathrm{~s}$ teN time to allow the bias circuits, analog blocks, and other circuits to settle to their proper states before beginning the regulation.
The OE pin has a voltage rating of 1.8 V . For control signal voltages higher than 1.8 V , a resistor-divider network must be used to drive the OE pin.
In addition, the impedance of the OE pin is reduced when the V_{CC} is below UVLO. To prevent any damage to the part due to lowering the impedance, a resistor is used to limit the current. For 1.8 V control signals, this resistor has a value of $20 \mathrm{k} \Omega$ and it is placed in series with the OE pin. For higher drive voltages to $O E$ that require a resistive voltage-divider, choose $20 \mathrm{k} \Omega$ for the bottom resistor to ground. The top resistor is given by Equation 2. Use closest higher resistor value available.

Equation 2

$$
\mathrm{R}_{\mathrm{TOP}}=20 \mathrm{k} \Omega \times\left[\left(\frac{\mathrm{V}_{\mathrm{SIG}}}{1.8 \mathrm{~V}}\right)-1\right]
$$

Output enable delay timing can be added using an RC network connected between control signal and OE pin. R-C delay networks are designed based on desired turn on/off timings and the $\mathrm{V}_{\mathrm{OE}(\mathrm{H})} / \mathrm{V}_{\mathrm{OE}(\mathrm{L})}$ thresholds.
The OE pin has nominal input impedance, which should be included in calculations for the divider network (see the Electrical Characteristics table for nominal impedance).
When the system pulls OE low, the MAX16425/ MAX16425A enter low-power shutdown mode. STAT is pulled low immediately. The MAX16425/MAX16425A discharge the inductor by keeping the low-side FET enabled until the current reaches zero. Under these conditions, both power FETs are in high-impedance and the regulator enters shutdown.

Soft-Start Control

Once the OE reaches its threshold and the $t_{E N}$ has elapsed, the regulator performs the bootstrap capacitor charging sequence. After bootstrap capacitor is fully charged, the internal reference voltage starts ramping to the target voltage with the appropriate soft-start time (tss). Both soft-start timing, and target voltage can be programmed (see the Programming Options section, and Table 3a and 3b).
If the regulator is enabled with a prebiased output voltage, the system does not regulate until the reference voltage ramps above the SENSE+ node voltage. Upon reaching the SENSE+ voltage, the regulator performs the $\mathrm{C}_{\mathrm{BST}}$ charging sequence and starts normal operation. If, at the end of tSS, the SENSE+ pin voltage is still higher than the internal reference, continuous conduction mode (CCM) operation is forced for a short period of time (tSETTLE) to discharge the output to the desired voltage. After this period, discontinuous conduction mode (DCM) is allowed, if selected, and the OVP/UVP circuitry becomes active.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Remote Output Voltage Sensing

Remote output-voltage sensing is implemented to improve output-voltage regulation accuracy at the load. This technique reduces errors due to voltage drops in the plane impedance between the load and the MAX16425/ MAX16425A, particularly in cases where the load is placed away from the MAX16425/MAX16425A. Remote output-voltage sensing is implemented by using the SENSE- node as a reference for the internal voltage reference $V_{\text {REF }}$.

Switching Operation Modes

The MAX16425/MAX16425A support both CCM and DCM. The mode of operation can be programmed as indicated in the Programming Options section, and Table 3a and 3b.
If DCM is enabled, MAX16425/MAX16425A transition seamlessly to DCM at light loads to improve efficiency. Once in DCM, the switching frequency decreases as load decreases until a minimum frequency of 30 kHz is reached. The purpose of this minimum switching frequency limitation is to prevent operation in the audible frequency range to reduce audible noise.
If the load is such that no $t_{O N}$ pulse is generated for $\sim 33 \mu s$ $(1 / 30 \mathrm{kHz})$ since the last pulse was issued, the low-side FET is turned ON until the error comparator commutates, and a toN pulse is issued. Once this minimum frequency mode is entered, the IC operates with a minimum switching frequency of 60 kHz , to provide proper hysteresis and prevent the IC from moving in and out of this mode.

Figure 1. Startup Timing

Protection And Status Features

Output Voltage Protection (OVP)

The SENSE + pin is continuously monitored for both undervoltage and overvoltage conditions. If the output voltage falls below the PWRGD threshold (9% of programmed output voltage) for more than $30 \mu \mathrm{~s}$ (typ), the STAT pin is driven low while the MAX16425/MAX16425A continue to operate, attempting to maintain regulation. If the output voltage rises above the overvoltage protection threshold (13% of programmed output voltage) for more than $30 \mu \mathrm{~s}$ (typ), the STAT pin is driven low and the MAX16425/MAX16425A latch off (high-side and lowside FETs turn off). Toggle OE or cycling V_{CC} supply is required to clear fault conditions.

Current Limiting

The MAX16425/MAX16425A have a current limit that can be programmed using the appropriate R_SEL value (see Table 3a and 3b). The overcurrent protection (OCP) monitors and limits the low-side FET current on a cycle-by-cycle basis. If the minimum instantaneous "valley" lowside switch current level exceeds the OCP (source) level, the IC delays the next on-time pulse until the current falls below the threshold level (Figure 2). Since the regulator responds to the inductor valley current, the DC current delivered during positive (source) current limit is the programmed valley current (IOCP - hysteresis) plus half of the inductor ripple. During the current limit event (source), the output voltage drops and if the voltage reaches the PWRGD threshold, the STAT pin is driven low.

Figure 2. Inductor Current During Current Limit Event

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

The MAX16425/MAX16425A also have negative OCP limits (Sink). When this threshold is reached, the IC issues an on-time pulse to limit the negative current. This on-time pulse is issued regardless of the error comparator state. Therefore, it is possible to cause an overvoltage protection (OVP) event if the negative load exceeds the negative current limit.

UVLO and OVLO Protection

The regulator monitors $\mathrm{V}_{\mathrm{DDH}}$ with both undervoltage lockout (UVLO) and overvoltage lockout (OVLO) circuits. UVLO protection is also present on BST and V_{CC} supplies. When any of the supply voltages is below the UVLO threshold or $\mathrm{V}_{\mathrm{DDH}}$ is above the OVLO threshold, the regulator stops switching, and the STAT pin is driven low (refer to the Electrical Characteristics table for UVLO and OVLO levels).

Overtemperature Protection (OTP)

If the die temperature exceeds the overtemperature threshold during operation, the MAX16425/MAX16425A stop regulation and the STAT pin is driven low. Regulation starts again once the die temperature falls below the new overtemperature threshold (overtemperature threshold - hysteresis) value. The STAT pin eventually goes high again once the output voltage reaches the expected value.

Regulator Status

The regulator status (STAT) signal provides an opendrain output (4 V max, refer to the Absolute Maximum Rating section) that indicates whether the MAX16425/ MAX16425A are functioning properly. An external pullup resistor is required.
After the startup ramp is completed (tSTAT), if the output voltage is within the PWRGD/OVP regulation window, the STAT pin goes high impedance. The STAT pin is driven low when one or more of the following conditions exist:

Table 1. Summary of Fault Actions

FAULT TYPE	REGULATOR RESPONSE	STAT	DESCRIPTION
Power Good (PWRGD)	Continue Operation	LOW	V $_{\text {OUT }}<(1-9 \%) V_{\text {OUTNOM }}$
Overvoltage Protection (OVP)	Shutdown and Latchoff	LOW	V $_{\text {OUT }}>(1+13 \%) V_{\text {OUTNOM }}$
Overtemperature Protection (OTP)	Shutdown	LOW	$T_{J}>140^{\circ} \mathrm{C}$
Overcurrent Protection (OCP)	Clamping	V $_{\text {OUT }}$ Drop, LOW	Valley current higher than selected limit
Boost Undervoltage	Shutdown	LOW	$(\mathrm{BST}-\mathrm{VX})<1.52 \mathrm{~V}$
V $_{\text {DDH }}$ Supply	Shutdown	LOW	$\mathrm{V}_{\text {DDH }}<4.5 \mathrm{~V}$ or $\mathrm{V}_{\text {DDH }}>16 \mathrm{~V}$
V $_{\text {CC }}$ Supply	Shutdown	LOW	V $_{\text {CC }}<1.57 \mathrm{~V}$
SENSE-/SENSE+ Disconnected	Do Not Start	LOW	Open Sense Lines

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Reference Design

The typical application circuit is shown in Figure 3.

Programming Options

The MAX16425/MAX16425A allow programming of several key parameters to allow optimization for specific applications. The parameters that are programmable are shown in Table 2. A resistor and capacitor connected from the programming pin to ground select a set of parameters.

By selecting the appropriate values of resistor and capacitor, the desired set of parameters (scenario) can be programmed, as shown in Table 3a and 3b.

C_SEL selects the fSW setting. There are six options available (from \#1 to \#6), indicating six different nominal switching frequencies, from lowest to highest. Since the actual value of fSW also depends on VOUT, refer to Figure 4 to select the proper f_{SW} setting for a specific application.
The MAX16425/MAX16425A feature two different configuration tables to provide a wider range of options. Table 3a and 3b show the scenario options for the MAX16425/MAX16425A, respectively.

Figure 3. Typical Application Circuit
Table 2. Programmable Options

PARAMETER	DESCRIPTION
$V_{\text {REF }}$	Selects internal or external voltage reference. For internal $\mathrm{V}_{\text {REF }}$ two values are available.
Soft-Start Time	The time required to ramp the reference voltage to its final value
OCP Inception	The valley current at which the overcurrent protection is tripped (see the Current Limiting section).
Operation Modes	Selects whether DCM is allowed. If allowed the IC transitions to DCM mode for light loads
Reporting	Selects the parameter reported through the analog output voltage on the PGM pin during regulation.
R $_{\text {SENSE }}$ Gain	Selects the sense loop gain. By changing this value, the operation and components selection can be optimized.
fSW $^{\text {tsTAT }}$	Switching frequency setting.

Table 3a. MAX16425 Configuration Table

$\begin{gathered} \text { R_SEL } \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {REF }} \\ (\mathrm{V}) \end{gathered}$	SOFT-START TIME (tss) (ms)	VALLEY OCP INCEPTION (A)	OPERATION MODES	REPORTING (CURRENT/TEMP)	RSENSE (GAIN) ($\mathrm{m} \Omega$)	fSW SETTING			$\begin{gathered} \mathbf{t}_{\text {STAT }} \\ (\mu \mathrm{s}) \end{gathered}$
								C_SEL		
							0pF	200pF	820pF	
1.78	0.95	6	16	CCM	Current	2.8	fsw \#4	fsw \#5	fsw \#6	2000
2.67				CCM/DCM						
4.02		3		CCM						
6.04				CCM/DCM						
9.09	Ext			CCM						
13.3		1.5								
20	0.6	6	24	CCM/DCM						
30.9				CCM						
46.4			16							
71.5				CCM/DCM	Temp					
107					Current	1.4				
162	Ext.	1.5	20	CCM	Temp		$\mathrm{f}_{\text {SW }}$ \#1	fsw \#2	fsw \#3	128

Table 3b. MAX16425A Configuration Table

$\begin{gathered} \text { R_SEL } \\ (\mathbf{k} \Omega) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{REF}} \\ (\mathrm{~V}) \end{gathered}$	SOFT-START TIME (tss) (ms)	VALLEY OCP INCEPTION (A)	OPERATION MODES	REPORTING (CURRENT/TEMP)	RSENSE (GAIN) ($\mathrm{m} \Omega$)	fSW SETTING			$\begin{gathered} \mathbf{t}_{\text {STAT }} \\ (\mu \mathrm{s}) \end{gathered}$
								C_SEL		
							0pF	200pF	820pF	
1.78	0.95	1.5	16	CCM	Current	2.8	fsw \#4	fsw \#5	fsw \#6	2000
2.67				CCM/DCM						
4.02		3		CCM						
6.04				CCM/DCM						
9.09	Ext			CCM						
13.3				CCM/DCM						
20	0.6		24			2.8				
30.9				CCM						
46.4			16							
71.5				CCM/DCM	Temp					
107	Ext.		20	CCM		1.4				
162		1.5					fsw \#1	fsw \#2	fsw \#3	128

Figure 4. Nominal Switching Frequency vs. $V_{\text {OUT }}$ and $f_{\text {SW }}$ Setting

Setting the Output Voltage

The output voltage of the MAX16425/MAX16425A is set by selecting a reference voltage and using an appropriate resistive voltage-divider, as shown in Equation 5.
The reference voltage is selected using R_SEL (see Table 3a and 3 b) and can be either internal or external (refer to the Operation with External $V_{R E F}$ section for more details). In order to improve the DC output voltage accuracy, use the highest $\mathrm{V}_{\text {REF }}$ value available and suitable for the application.
For instance, use $\mathrm{V}_{\text {REF }}=0.6 \mathrm{~V}$ for $0.6 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }}<0.95 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=0.95 \mathrm{~V}$ for $0.95 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }}<3.3 \mathrm{~V}$.
To optimize the common-mode rejection of the error amplifier, choose the voltage-divider resistors so that their parallel resistance is as close as possible to $2 \mathrm{k} \Omega$ (Equation 6).

Equation 5

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}} \times\left(1+\frac{\mathrm{R}_{\mathrm{FB} 1}}{\mathrm{R}_{\mathrm{FB} 2}}\right)
$$

Refer to Table 3a and 3b for $V_{\text {REF }}$ values.

Equation 6

$$
\begin{gathered}
\mathrm{R}_{\mathrm{FB} 1}=\mathrm{V}_{\mathrm{OUT}} \times\left(\frac{\mathrm{R}_{\mathrm{PAR}}}{\mathrm{~V}_{\mathrm{REF}}}\right) \\
\mathrm{R}_{\mathrm{FB} 2}=\mathrm{R}_{\mathrm{FB} 1} \times\left(\frac{\mathrm{R}_{\mathrm{PAR}}}{\mathrm{R}_{\mathrm{FB} 1}-\mathrm{R}_{\mathrm{PAR}}}\right)
\end{gathered}
$$

where:

$$
\begin{aligned}
& R_{\text {FB1 }}= \text { Top voltage-divider resistor } \\
& R_{\text {FB2 }}= \text { Bottom voltage-divider resistor } \\
& R_{P A R}= \text { Desired parallel resistance of } R_{\text {FB1 }} \text { and } \\
& R_{\text {FB2 }} \\
& V_{\text {OUT }}= \text { Output voltage } \\
& V_{\text {REF }}=\text { Reference voltage }
\end{aligned}
$$

The Effect of Resistor Selection on DC Output Voltage Accuracy

$\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\text {FB2 }}$ set the output voltage as described in Equation 5. The tolerance of these resistors affects the accuracy of the programmed output voltage.

Equation 7

$$
\varepsilon_{\mathrm{RV}}^{\mathrm{OUT}} ⿵ 冂=\frac{2 \varepsilon_{\mathrm{R}}}{1-\varepsilon_{\mathrm{R}}}\left(\frac{\mathrm{~V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{REF}}}{\mathrm{~V}_{\mathrm{OUT}}}\right)
$$

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Figure 5 shows the effect of 1% tolerance resistors over a range of output voltages. To ensure accuracy over temperature, the temperature coefficients must also be included in the error calculation (i.e., for $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistors over a $50^{\circ} \mathrm{C}$ excursion, add 0.125% to the $25^{\circ} \mathrm{C}$ tolerance).
The error due to the voltage-feedback resistors' tolerance, $R_{\text {FB1 }}$ and $R_{\text {FB2 }}$ should be added to the output voltage tolerance due to the IC's $\mathrm{V}_{\text {REF }}$ tolerance listed in the Electrical Characteristics table.

Equation 8

$$
\varepsilon_{\mathrm{V}_{\mathrm{OUT}}}=\varepsilon_{\mathrm{V}_{\mathrm{REF}}}+\varepsilon_{\mathrm{RV}}
$$

Voltage Margining

Voltage margining can be implemented by changing the effective feedback divider ratio. FET switches can be used to introduce or remove parallel resistors to RFB2, to increase or decrease the output voltage respectively. In order to avoid triggering OVP or UVP faults, the circuits used to introduce resistive divider changes should have switching time constants greater than the response time of the MAX16425/MAX16425A.

Operation with External VREF

When using an external reference, adopt the configuration shown in Figure 6. The MAX16425/MAX16425A employ a specialized soft-start sequence. Once OE is asserted, the regulator briefly discharges the SENSE- node and releases it as regulation begins. The resulting soft-start ramp timing is determined by the external low-pass filter time constant. The external filter time constant needs to be lower than $\mathrm{tss}_{\mathrm{s}} / 3$ in order to avoid premature assertion of the STAT pin while the output voltage is still ramping.
The external reference voltage should be limited between 0.8 V and 1.1 V and can be applied prior to enabling the regulator, or ramped up right after enable is asserted. In both cases, the low-pass filtered reference voltage at the SENSE- pin must reach its final value within tss.
Typical values for the filter components are:

- $R_{F}=2.2 \mathrm{k} \Omega$
- $\mathrm{C}_{\mathrm{F}}=0.22 \mu \mathrm{~F}$

When changing the external reference voltage during normal operation (after the part has powered up, and reached regulation level), the regulator must be able to

Figure 5. Contribution of 1\% Tolerance Resistors on VOUT Error

Figure 6. Electrical Connections to Use the External Voltage Reference Feature
follow the reference-voltage change fast enough as to avoid OVP and PWRGD faults. Please make sure that reference-voltage change timing from the initial to the final value does not exceed $1 /(2 \times B W)$, where BW is the bandwidth of the regulator in Hertz (Hz).

Control Loop

The MAX16425/MAX16425A use Quick PWM architecture with current-sense signal added to feedback. Hence, without additional compensation, the voltage-loop gain consists of the following terms:

- The IC's current-mode control scheme has an effective transconductance gain of $1 / R_{\text {SENSE (GAIN). See Table }}$ 3a and 3b for correct RSENSE(GAIN) values.
- The output capacitors contribute an impedance gain of $1 /(2 \times \pi \times$ COUT $\times f)$.
- The feedback divider contributes an attenuation of $K_{\text {DIV }}=R_{F B 2} /\left(R_{F B 1}+R_{F B 2}\right)$.

Thus, when the ramp injection components $\left(R_{R}, C_{R 1}\right.$, $\mathrm{C}_{\mathrm{R} 2}$), lead compensation components (CLEAD, RLEAD) and lag compensation components ($R_{\text {LAG }}, C_{L A G}$) are not used, the approximate loop gain and bandwidth (BW) are given by the following equations.

Equation 9

$$
\begin{aligned}
\text { Loop_Gain(} \mathrm{f}) & =\frac{\mathrm{K}_{\text {DIV }}}{2 \times \pi \times \mathrm{R}_{\text {SENSE }(\mathrm{GAIN})} \times \mathrm{C}_{\text {OUT }} \times \mathrm{f}} \\
\text { BW }= & \frac{\mathrm{K}_{\text {DIV }}}{2 \times \pi \times \mathrm{R}_{\text {SENSE }(\mathrm{GAIN})} \times \mathrm{C}_{\text {OUT }}} \\
\text { or } \quad \mathrm{BW} & =\frac{1}{2 \times \pi \times \mathrm{R}_{\text {GAIN_EFF }} \times \mathrm{C}_{\text {OUT }}}
\end{aligned}
$$

where, $R_{G A I N}$ EFF equals $R_{\text {SENSE }}(G A I N) / K_{\text {DIV }}$.
For stability, COUT should be chosen so that BW < fSW/3. Designing with no loop compensation can result in fairly large Cout; compensation schemes such as Lead, Lag and Ramp Injection can be used to allow Cout reduction.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

These compensations impact the transient performance as they change the BW of the system. This should be included in design analysis.

Integrator

The IC has an integrator included in its error amplifier to improve load regulation. The integrator only adds gain at low frequencies, so it does not affect the loop BW; therefore, it was not considered in previous equations. With the integrator, the loop gain from Equation 9 is multiplied by a factor of

$$
\left(1 / \tau_{\text {REC }}+s\right) / s
$$

where, $\tau_{\text {REC }}=20 \mu \mathrm{~s}$.

Step Response

RGAIN_EFF determines the small-signal transient response of the regulator. When a load step is applied that does not exceed the slew rate capability of the inductor current, the regulator responds linearly and VOUT temporarily changes by the amount of VOUT_ERROR (Equation 10a). If the load step applied exceeds the slew rate capability of the inductor current, the voltage deviation (VOUT_ERROR) is solely determined by output filter values (Equation 10a).
The actual voltage deviation (VOUT_ERROR) is given by the largest of the values calculated using Equation 10a and Equation 10b

Equation 10.

a)

$$
V_{\text {OUT_ERROR }}=I_{\text {STEP }} \times R_{\text {GAIN_EFF }}
$$

b)

$$
\mathrm{V}_{\text {OUT_ERROR }} \approx \frac{\left(\mathrm{I}_{\text {STEP }} \times \mathrm{L}\right)}{2 \times \mathrm{V}_{\text {OUT }} \times \mathrm{C}_{\text {OUT }}}
$$

After a transient event, V ${ }_{\text {OUT }}$ returns to the nominal value with a $20 \mu \mathrm{~s}$ time constant, due to the integrator circuit. A first order average small-signal model of the regulator is shown in Figure 7. V_{EQ} is an ideal voltage source equal to $V_{\text {OUT }}, R_{\text {EQ }}$. (RGAIN_EFF) is an emulated lossless resistance created by the control-loop action and LEQ ($\tau_{\text {REC }}$ $x R_{\text {GAIN_EFF }}$) is an emulated inductance. Note that $L_{E Q}$ is not the same as the actual LOUT inductor, which has been absorbed into the model. COUT is the actual output capacitance.

Figure 7. Averaged Small-Signal Equivalent Circuit of Regulator

Lag Compensation

In cases where the response is faster than desired, the lag compensation network ($\mathrm{R}_{\mathrm{LAG}}, \mathrm{C}_{\text {LAG }}$) can be used to decrease the BW. This has the effect of lowering the gain contribution of the feedback network at higher frequencies, by effectively placing $R_{\text {LAG }}$ in parallel with $R_{\text {FB2 }}$. For the lag network to be effective and to achieve optimal phase margin, the zero at $1 /\left(2 \times \pi \times R_{\text {LAG }} \times C_{\text {LAG }}\right)$ should be placed at least a decade below the crossover frequency (BW/10). With lag, K DIV near the crossover frequency becomes Equation 11.

Equation 11

$$
\begin{gathered}
K_{\text {DIV_LAG }}=\frac{\left(R_{\text {FB2 }} \square R_{\text {LAG }}\right)}{\left(R_{\text {FB1 }}+R_{F B 2} \square R_{\text {LAG }}\right)} \\
R_{\text {GAIN_EFF }}=\frac{R_{\text {GAIN }}}{K_{\text {DIV_LAG }}}
\end{gathered}
$$

Lag compensation increases RGAIN_EFF and VOUT_ERROR while decreasing BW. An increase in Vout_ERROR can also result in higher overshoot at startup especially when the system recovers after hitting OCP. To avoid this, make sure that Equation 12 is satisfied.

Equation 12

$$
\mathrm{C}_{\mathrm{LAG}}<\frac{\mathrm{V}_{\mathrm{OUT}} \times \mathrm{C}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{OCP}} \times\left(\mathrm{R}_{\mathrm{LAG}}+\mathrm{R}_{\mathrm{FB} 1} \square \mathrm{R}_{\mathrm{FB} 2}\right) \times 3}
$$

Lead Compensation

In cases where the response is slower than desired, the lead compensation network ($\mathrm{R}_{\text {LEAD }}, \mathrm{C}_{\text {LEAD }}$) can be used to increase the bandwidth. This has the effect of increasing the gain contribution of the feedback network at higher frequencies, by effectively placing R LEAD in parallel with $\mathrm{R}_{\mathrm{FB} 1}$.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

For the lead network to be effective and to achieve optimal phase margin, the zero at $1 /(2 \times \pi \times$ R LEAD \times $\mathrm{C}_{\text {LEAD }}$) should be placed below the crossover frequency (BW/10 < fz < BW).
With lead compensation, KDIV near the crossover frequency becomes Equation 13.
Equation 13

$$
\begin{gathered}
\mathrm{K}_{\text {DIV_LEAD }}=\frac{R_{\text {FB2 }}}{\left(\mathrm{R}_{\mathrm{FB} 1} \square \mathrm{R}_{\mathrm{LEAD}}+\mathrm{R}_{\mathrm{FB} 2}\right)} \\
\mathrm{R}_{\text {GAIN_EFF }}=\frac{R_{\text {GAIN }}}{\mathrm{K}_{\text {DIV_LEAD }}}
\end{gathered}
$$

Lead compensation decreases RGAIN_EfF and Vout_ ERROR while increasing BW accordingly.

External Ramp

The ramp compensation stabilizes the converter if the ESR of the output capacitor bank is low. The ramp is added to the internal current-sense signal at the error comparator inputs, which improves the signal-to-noise ratio and reduces the offtime jitter.
The amplitude of the external ramp is determined by R_{R} and $\mathrm{C}_{\mathrm{R} 2}$ (Figure 8). A voltage signal, which approximates the inductor current appears across $\mathrm{C}_{\mathrm{R} 2}$ and it is injected to the feedback node through $\mathrm{C}_{\mathrm{R} 1}$.

Values of ramp compensation network are selected as follows:

1) $C_{R 1}$ is chosen to maximize the coupling of the ramp signal on the feedback node:
$C_{R 1} \times R_{F B 1}\left\|R_{F B 2}\right\| R_{\text {LEAD }} \| R_{L A G} \approx 10 \times \mathrm{tsw}$
2) $C_{R 2}$ is chosen such that the ramp signal is unaffected by the value of $C_{R 1}: C_{R 2} \approx 10 \times C_{R 1}$.
3) R_{R} is chosen to achieve the desired ramp injection signal. Use Equation 14 to calculate proper R_{R} value.
The approximate amplitude of the external ramp at the SENSE+ pin is given by Equation 14.
Equation 14

$$
V_{\text {RAMP_EXT }}=\frac{V_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right)}{\left(\mathrm{V}_{\text {IN }} \times R_{R} \times \mathrm{C}_{R 2} \times f_{S W}\right)}
$$

The sensed inductor current ramp at the comparator input is given in Equation 15.

Equation 15

$$
V_{\text {RAMP_IND }}=\frac{R_{\text {GAIN }} \times V_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{\left(\mathrm{V}_{\text {IN }} \times L_{\text {OUT }} \times f_{\text {SW }}\right)}
$$

where, $\mathrm{R}_{\text {GAIN }}$ equals the internal current sense gain (see Electrical Characteristics table)

Figure 8. Ramp Compensation Diagram

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

The high-frequency gain from SENSE+ to the comparator input is unity. Therefore, with the external ramp, the comparator sees an effective ramp given in Equation 16.

Equation 16

$$
\begin{aligned}
V_{\text {RAMP_EFF }} & =V_{\text {RAMP_IND }+V_{\text {RAMP_EXT }}} \\
& =V_{\text {OUT }} \times \frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{\left(\mathrm{V}_{\text {IN }} \times \mathrm{L}_{\mathrm{OUT}} \times \mathrm{f}_{\mathrm{SW}}\right)} \times\left[\mathrm{R}_{\mathrm{GAIN}}+\frac{\mathrm{L}_{\text {OUT }}}{\left(\mathrm{R}_{\mathrm{R}} \times \mathrm{C}_{\mathrm{R} 2}\right)}\right]
\end{aligned}
$$

For best results, it is recommended that $V_{\text {RAMP_EFF }}$ be at least 15 mV .
The effective $\mathrm{R}_{\mathrm{GAIN}}$ with external ramp is given in Equation 17.

Equation 17

$$
\mathrm{R}_{\mathrm{GAIN}, \mathrm{EFF}}=\mathrm{R}_{\mathrm{GAIN}}+\frac{\mathrm{L}_{\mathrm{OUT}}}{\left(\mathrm{R}_{\mathrm{R}} \times \mathrm{C}_{\mathrm{R} 2}\right)}
$$

The ramp injection capacitors effectively bypass the divider near the cross-over frequency, so in this case K KIV is approximately 1 and drops out of the loop gain equation.
Similar to lag compensation, ramp injection increases $R_{\text {GAIN_EFF }}$ and VOUT_ERR.

Inductor Selection

The inductor value is selected based on the switching frequency and the percentage ratio of the inductor ripple to the peak load current (LIR - inductor current ratio).

Equation 18

$$
L=\left[\frac{\left(V_{I N}-V_{\mathrm{OUT}}\right)}{f_{\mathrm{SW}} \times \mathrm{I}_{\mathrm{LOAD}(\mathrm{MAX})} \times \mathrm{LIR}}\right] \times \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}
$$

where:

$$
\begin{array}{ll}
\text { LIR } & \text { I Inductor current ratio } \\
\text { ILOAD(MAX) } & =\text { Peak load current }
\end{array}
$$

A lower LIR results in lower RMS losses in passive and active components, which improves the regulator efficiency. A higher LIR results in faster inductor current slew rate, better transient performance and lower inductor value/ size. Optimal inductor selection is performed by evaluating these trade-offs according to design requirements.
The inductor must have a saturation current higher than the peak current during OCP event. The highest peak current is reached when a hard VOUT short circuit is applied during operation (See Equation 19). In addition, the application circuit design must ensure that the peak current never exceeds the maximum operating current (IPK) listed in the Operating Ratings section.
Equation 19

$$
I_{S A T}>I_{P K(M A X)}=I_{O C P}+\frac{V_{O U T}}{L \times f_{S W}}
$$

where:

$$
\begin{aligned}
\text { ISAT }= & \text { Inductor saturation current } \\
\text { IOCP }= & \text { Overcurrent protection threshold (see Table 3a } \\
& \text { and } \underline{3 b})
\end{aligned}
$$

Output Capacitor Selection

Output capacitor selection is based on output-ripple and load-transient requirements. Low ESR capacitors (MLCCs) are recommended to minimize ripple.
The output ripple is affected by three components: a resistive component due to effective ESR of the output capacitor bank, an inductive component due to parasitic inductance of the capacitor package (ESL) and capacitive component based on total COUT. See Equation 20 for an approximate expression of the output voltage ripple.

Table 4. Typical Boost, Filtering and Decoupling Capacitor Requirements

DESCRIPTION	VALUE	TYPE	PACKAGE	QTY
$\mathrm{V}_{\text {CC }}$ Capacitor	$1 \mu \mathrm{~F} / 6.3 \mathrm{~V}$	$\mathrm{X} 7 \mathrm{R} / 125^{\circ} \mathrm{C}$	$0402 / 0603$	1
Boost Capacitor	$0.47 \mu \mathrm{~F} / 6.3 \mathrm{~V}$	$\mathrm{X} 7 \mathrm{R} / 125^{\circ} \mathrm{C}$	0402	1
$\mathrm{~V}_{\text {DDH }}$ HF Capacitor (Note 1)	$1 \mu \mathrm{~F} / 16 \mathrm{~V}$	$\mathrm{X} 7 \mathrm{R} / 125^{\circ} \mathrm{C}$	0603	1
$\mathrm{~V}_{\text {DDH }}$ HF Capacitor (Note 1)	$0.1 \mu \mathrm{~F} / 16 \mathrm{~V}$	$\mathrm{X} 7 \mathrm{R} / 125^{\circ} \mathrm{C}$	0402	1
$\mathrm{~V}_{\text {DDH }}$ Bulk Capacitor (Note 2)	$10 \mu \mathrm{~F} / 16 \mathrm{~V}$	X 5 R	$0805 / 1206$	2

Note 1: All $\mathrm{V}_{\mathrm{DDH}}$ high-frequency capacitors must be placed in close proximity to the slave IC and on the same side of the PCB as the slave IC. Refer to Analog Devices' layout guideline for component placement requirements and recommendations.
Note 2: For operation below 10.8 V , two $22 \mu \mathrm{~F}$ bulk capacitors are recommended instead of two $10 \mu \mathrm{~F}$ capacitors.

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Equation 20

$$
\mathrm{V}_{\mathrm{PP}}=E S R\left(\mathrm{I}_{\mathrm{OUTRIPL}}\right)+E S L\left(\frac{\mathrm{~V}_{\text {IN }}}{\mathrm{L}_{\mathrm{OUT}}}\right)+\left(\frac{\mathrm{l}_{\mathrm{OUTRIPL}}}{8 \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{C}_{\mathrm{OUT}}}\right)
$$

where:

ESR	$=$ Equivalent series resistance at the output
IOUTRIPL $=$	Peak-to-peak inductor current ripple
ESL $=$	High-frequency equivalent series induc-
	tance at output
$V_{\text {IN }}=$	Input voltage
LOUT $=$ Output inductance	
fSW $^{\text {O }}=$ Switching frequency	
COUT $=$ Output capacitance	

Low ESR MLCC capacitors minimize the voltage drop due to fast load transients. Follow Equation 9 and the description in the Control Loop section to properly size the output capacitor bank.
In addition to output-voltage ripple and transient requirements for determining the output capacitance, ripple-current rating and power dissipation of the output capacitors should also be considered (Equation 21 and Equation 22).
Equation 21

$$
\mathrm{I}_{\text {RMS_COUT }}=\frac{\mathrm{I}_{\mathrm{OUTRIPL}}}{\sqrt{12}}
$$

where lOUTRIPL equals peak-to peak ripple current value. Equation 22

$$
P_{\text {COUT }}=I_{\text {RMSCOUT }}{ }^{2} \times \text { ESR }
$$

where ESR equals the equivalent series resistance of the entire output capacitor bank.

Input Capacitor Selection

Input capacitors are designed to filter the pulsed current drawn by the switching regulator when the high-side FET is conducting. Filtering is primarily accomplished by the bulk input capacitors, while the high-frequency capacitors are used to minimize the parasitic inductance between the input supply and the voltage regulator. This arrangement minimizes the voltage transients during the commutations of high-side and low-side MOSFETs. For effective
input decoupling, it is critical that the high-frequency decoupling be placed in close proximity to the MAX16425/ MAX16425A VDDH and GND pins, and on the same side of the PCB board as the MAX16425/MAX16425A. Follow Table 4 for minimum input decoupling recommendations. It is also recommended to keep the input ripple below 3\% of the DC voltage. To meet this target, additional capacitance can be required other than the minimum recommendations listed in Table 4. Use Equation 23 to calculate total input capacitance based on desired peak-to-peak input-voltage ripple.

Equation 23

$$
\mathrm{C}_{\mathrm{IN}}=\frac{\mathrm{I}_{\mathrm{MAX}} \times \mathrm{V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\mathrm{DDH}}-\mathrm{V}_{\mathrm{OUT}}\right)}{\left(\mathrm{f}_{\mathrm{SW}} \times \mathrm{V}_{\mathrm{DDH}^{2}} \times \mathrm{V}_{\mathrm{DDH}_{-}}-\mathrm{P}\right)}
$$

where:

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{IN}} & =\text { Input capacitance (MLCC) } \\
\mathrm{I}_{\mathrm{MAX}}=\text { Maximum load current } \\
\mathrm{V}_{\mathrm{DDH}}=\text { Input voltage } \\
\mathrm{V}_{\mathrm{OUT}}=\text { Output voltage } \\
\mathrm{f}_{\mathrm{SW}}=\text { Switching frequency (CCM) } \\
\mathrm{V}_{\text {DDH_P-P }}=\text { Target peak-to-peak input-voltage ripple }
\end{array}
$$ Because of discontinuous current drawn from the input supply, the power-dissipation and ripple-current rating of input capacitors are more important than those of the output capacitors. Use Equation 24 to calculate the RMS current that the input capacitors must withstand. Multiple input caps can be placed in parallel to achieve the required total input RMS current rating.

Equation 24

$$
\mathrm{I}_{\text {RMS_CIN }}=\frac{\mathrm{I}_{\mathrm{LOAD}} \sqrt{\mathrm{~V}_{\mathrm{OUT}}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)}}{\mathrm{V}_{\mathrm{IN}}}
$$

where $l_{\text {LOAD }}$ equals the output DC load current.
With an equivalent series resistance of the bulk input capacitor bank ($\mathrm{ESR}_{\mathrm{CIN}}$), the total power dissipation in the input capacitors is given by Equation 25.

Equation 25

$$
\mathrm{P}_{\mathrm{CIN}}=\mathrm{I}_{\text {RMS_CIN }}{ }^{2} \times \mathrm{ESR}_{\mathrm{CIN}}
$$

25A, 4.5V to 16V, Integrated Step-Down Switching Regulator with Selectable Applications Configurations

Printed Circuit Board Layout

Careful PCB layout is critical to achieve low switching losses and clean, stable operation. The high current path requires particular attention. If possible, place all the power components on the top side of the board with their ground terminals flushed against one another. Follow these guidelines for good PCB layout:

1) Keep the power traces and load connections short. This is essential for high efficiency and stable operation. The use of thick copper PCBs (2oz vs. 1oz) can enhance full-load efficiency by 1% or more. Pay close attention to correct routing and PCB trace length reduction even by fraction of inches, where a single $m \Omega$ of excess trace resistance causes a measurable efficiency penalty. For maximum efficiency place the regulator, output inductor, and output capacitors as close as possible to the load. If this is not possible, keep the output capacitors close to the load and output inductor close to the regulator.
2) Keep the high-current traces (VX, $\mathrm{V}_{\mathrm{DDH}}, \mathrm{V}_{\mathrm{CC}}$ and BST) short and wide to minimize trace resistance and inductance. Traces connecting the input capacitors and $V_{\text {DDH }}$ (power input node) on the IC require particular attention since they carry currents with the largest RMS values and fastest slew rates.
3) The input capacitors should be placed as close to the input supply pins ($V_{D D H}$ and GND) as possible. High-frequency filter capacitors (see Table 4) must be placed within 60 mils of $V_{D D H} / G N D$ pins. $V_{C C}$ and BST decoupling capacitors (see Table 4) must be placed on the same side of the PCB board as the IC. There should be an uninterrupted ground plane located immediately underneath these high-frequency current paths with the ground plane located no more than 8 mils below the top layer. By keeping the flow of this high frequency AC current localized to a tight loop at the regulator, electromagnetic interference (EMI) can be minimized.
4) Keep the sensitive analog signals away from highspeed switching nodes. The ground plane can be used to shield these sensitive signals and protect them from coupling of high-frequency noise. Voltage sense lines should be routed differentially with Kelvin connections to the load points. For remote-sense applications where the load and regulator IC are separated by a significant distance or impedance, it is important to place the majority of the output capacitors directly at the load for system stability. In remote-sense applications, common-mode filtering is necessary to filter high-frequency noise in the sense lines.

The following layout recommendations should be used for optimal performance:

- It is essential to have a low-impedance and uninterrupted ground plane under the IC and extended out underneath the inductor and output capacitor bank.
- Multiple vias are recommended for all paths that carry high currents (i.e., GND, VDDH, VX). Vias should be placed close to the IC to create the shortest possible current loops. Via placement must not obstruct the flow of currents or mirror currents in the ground plane.
- A single via in close proximity to the chip should be used to tie the top layer AGND trace to the second layer ground plane. It must not be connected to the top power ground area.
- The feedback divider and compensation network should be close to the IC.
Gerber files with layout information and complete reference designs can be obtained by contacting an Analog Devices account representative.

Reference Schematic

Figure 9. Reference Schematic

Ordering Information

PART NUMBER	PIN-PACKAGE	CURRENT LEVEL (A)	SHIPPING METHOD
MAX16425GCJ+	27-bump WLCSP	25	2.5 ku Tape \& Reel
MAX16425GCJ+T	27-bump WLCSP	25	2.5 ku Tape \& Reel
MAX16425AGCJ+	27-bump WLCSP	25	2.5 ku Tape \& Reel
MAX16425AGCJ+T	27-bump WLCSP	25	2.5 ku Tape \& Reel

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$1 / 19$	Initial Data Sheet	-
1	$5 / 23$	Added $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {OUT }}$, and IOUT range details to title, General Description, Benefits and Features, and Basic Application Circuit	All

