
a

 1.1

C/C++ Compiler Manual
for SHARC® Processors

Revision 1.2, May 2014

Part Number
82-100117-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
©2014 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, CrossCore, EngineerZone, SHARC, and
VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CrossCore Embedded Studio 1.1 iii
C/C++ Compiler Manual for SHARC Processors

 CONTENTS

PREFACE

Purpose of This Manual ... xxxix

Intended Audience ... xxxix

Manual Contents .. xl

What’s New in This Manual .. xl

Technical Support .. xli

Supported Processors ... xlii

Product Information ... xlii

Analog Devices Web Site ... xlii

EngineerZone ... xliii

Notation Conventions ... xliv

COMPILER

C/C++ Compiler Overview ... 1-3

Compiler Components .. 1-5

Compiler Command-Line Interface ... 1-7

Running the Compiler ... 1-8

Compiler Command-Line Switches ... 1-9

C/C++ Compiler Switch Summaries 1-10

Contents

iv CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

C/C++ Mode Selection Switch Descriptions 1-24

-c89 ... 1-24

-c99 ... 1-24

-c++ ... 1-25

C/C++ Compiler Common Switch Descriptions 1-25

sourcefile .. 1-25

-@ filename .. 1-25

-A name[tokens] ... 1-26

-add-debug-libpaths .. 1-27

-aligned-stack ... 1-27

-alttok .. 1-27

-always-inline ... 1-28

-annotate .. 1-28

-annotate-loop-instr .. 1-29

-asms-safe-in-simd-for-loops ... 1-29

-auto-attrs .. 1-29

-build-lib .. 1-30

-C .. 1-30

-c ... 1-30

-compatible-pm-dm .. 1-30

-component file.xml .. 1-30

-const-read-write .. 1-30

-const-strings .. 1-31

-D macro[=definition] ... 1-31

CrossCore Embedded Studio 1.1 v
C/C++ Compiler Manual for SHARC Processors

Contents

-dependency-add-target target 1-31

-double-size[-32|-64] ... 1-32

-double-size-any .. 1-32

-dry .. 1-33

-dryrun ... 1-33

-E ... 1-33

-ED .. 1-33

-EE ... 1-33

-eh .. 1-33

-enum-is-int .. 1-34

-extra-keywords ... 1-35

-extra-precision ... 1-35

-file-attr name[=value] .. 1-36

-flags -{asm|compiler|ipa|lib|link|mem|prelink}
switch [,switch2 [,...]] ... 1-36

-float-to-int ... 1-37

-force-circbuf .. 1-37

-fp-associative ... 1-38

-full-version .. 1-38

-fx-contract ... 1-38

-fx-rounding-mode-biased ... 1-38

-fx-rounding-mode-truncation 1-38

-fx-rounding-mode-unbiased ... 1-39

-g .. 1-39

-glite ... 1-39

Contents

vi CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-gnu-style-dependencies .. 1-40

-H .. 1-40

-HH ... 1-40

-h[elp] .. 1-41

-I directory [{,|;} directory...] 1-41

-I- .. 1-41

-i .. 1-42

-include filename ... 1-42

-ipa .. 1-42

-L directory[{;|,}directory…] 1-43

-l library ... 1-43

-linear-simd .. 1-44

-list-workarounds .. 1-44

-loop-simd .. 1-44

-M ... 1-44

-MD .. 1-45

-MM .. 1-45

-Mo filename ... 1-45

-Mt name .. 1-45

-map filename .. 1-45

-mem ... 1-46

-multiline ... 1-46

-never-inline ... 1-46

-no-aligned-stack .. 1-47

CrossCore Embedded Studio 1.1 vii
C/C++ Compiler Manual for SHARC Processors

Contents

-no-alttok ... 1-47

-no-annotate ... 1-47

-no-annotate-loop-instr ... 1-47

-no-assume-vols-are-iops ... 1-48

-no-auto-attrs .. 1-48

-no-circbuf .. 1-48

-no-const-strings ... 1-48

-no-db .. 1-49

-no-defs .. 1-49

-no-eh ... 1-49

-no-extra-keywords .. 1-49

-no-fp-associative .. 1-50

-no-fx-contract .. 1-50

-no-linear-simd ... 1-50

-no-main-calls-exit .. 1-50

-no-mem ... 1-51

-no-multiline .. 1-51

-no-progress-rep-timeout ... 1-51

-no-rtcheck ... 1-51

-no-rtcheck-arr-bnd .. 1-52

-no-rtcheck-div-zero .. 1-52

-no-rtcheck-heap ... 1-52

-no-rtcheck-null-ptr .. 1-53

-no-rtcheck-shift-check ... 1-53

Contents

viii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-no-rtcheck-stack .. 1-53

-no-rtcheck-unassigned ... 1-54

-no-sat-associative ... 1-54

-no-saturation ... 1-54

-no-shift-to-add .. 1-55

-no-simd .. 1-55

-no-std-ass .. 1-55

-no-std-def ... 1-55

-no-std-inc ... 1-56

-no-std-lib .. 1-56

-no-threads ... 1-56

-no-workaround workaround_id[,workaround_id …] 1-56

-normal-word-code ... 1-56

-nwc ... 1-57

-O[0|1] .. 1-57

-Oa .. 1-57

-Os ... 1-58

-Ov num ... 1-58

-o filename .. 1-60

-overlay .. 1-60

-overlay-clobbers clobbered-regs 1-60

-P ... 1-61

-PP ... 1-61

-p ... 1-61

CrossCore Embedded Studio 1.1 ix
C/C++ Compiler Manual for SHARC Processors

Contents

-path-{ asm | compiler | ipa | lib | link | prelink }
pathname .. 1-62

-path-install directory .. 1-62

-path-output directory ... 1-62

-path-temp directory ... 1-62

-pgo-session session-id .. 1-63

-pguide ... 1-63

-pplist filename .. 1-64

-proc processor .. 1-65

-prof-hw ... 1-65

-progress-rep-func ... 1-65

-progress-rep-opt ... 1-66

-progress-rep-timeout .. 1-66

-progress-rep-timeout-secs secs 1-66

-R directory[{:|,}directory …] 1-66

-R- ... 1-67

-reserve register[, register …] 1-67

-restrict-hardware-loops maximum 1-67

-rtcheck .. 1-68

-rtcheck-arr-bnd .. 1-69

-rtcheck-div-zero ... 1-69

-rtcheck-heap .. 1-69

-rtcheck-null-ptr ... 1-70

-rtcheck-shift-check ... 1-70

-rtcheck-stack ... 1-71

Contents

x CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-rtcheck-unassigned .. 1-71

-S ... 1-72

-s .. 1-72

-sat-associative .. 1-72

-save-temps ... 1-72

-section id=section_name[,id=section_name...] 1-73

-short-word-code .. 1-74

-show ... 1-74

-si-revision version ... 1-75

-signed-bitfield ... 1-75

-structs-do-not-overlap ... 1-75

-swc ... 1-76

-syntax-only .. 1-76

-sysdefs ... 1-76

-T filename .. 1-77

-threads .. 1-77

-time .. 1-77

-U macro .. 1-77

-unsigned-bitfield ... 1-78

-v ... 1-78

-verbose .. 1-79

-version .. 1-79

-W{annotation|error|remark|suppress|warn}

number[,number ...] ... 1-79

-Wannotations .. 1-80

CrossCore Embedded Studio 1.1 xi
C/C++ Compiler Manual for SHARC Processors

Contents

-Werror-limit number ... 1-80

-Werror-warnings .. 1-80

-Wremarks .. 1-80

-Wterse ... 1-80

-w ... 1-81

-warn-component .. 1-81

-warn-protos ... 1-81

-workaround workaround_id[,workaround_id …] 1-81

-xref filename ... 1-82

C Mode (MISRA) Compiler Switch Descriptions 1-83

-misra ... 1-83

-misra-linkdir directory ... 1-83

-misra-no-cross-module ... 1-83

-misra-no-runtime ... 1-83

-misra-strict .. 1-84

-misra-suppress-advisory .. 1-84

-misra-testing .. 1-84

-Wmis_suppress rule_number [, rule_number] 1-84

-Wmis_warn rule_number [, rule_number] 1-85

MISRA-C Command-line Switch Restrictions 1-85

C++ Mode Compiler Switch Descriptions 1-85

-anach ... 1-85

-check-init-order ... 1-87

-friend-injection .. 1-88

Contents

xii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-full-dependency-inclusion .. 1-88

-implicit-inclusion .. 1-88

-no-anach ... 1-89

-no-friend-injection .. 1-89

-no-implicit-inclusion ... 1-89

-no-rtti ... 1-89

-no-std-templates .. 1-90

-rtti .. 1-90

-std-templates ... 1-90

Environment Variables Used by the Compiler 1-91

Data Type and Data Type Sizes .. 1-92

Integer Data Types ... 1-93

Floating-Point Data Types .. 1-94

Optimization Control ... 1-95

Optimization Levels ... 1-95

Interprocedural Analysis ... 1-97

Interaction With Libraries ... 1-98

Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler .. 1-99

 Using the -si-revision Switch .. 1-100

Using the -workaround Switch .. 1-101

Using the -no-workaround Switch 1-102

Interactions Between the Silicon Revision and
Workaround Switches .. 1-102

Anomalies in Assembly Sources 1-103

CrossCore Embedded Studio 1.1 xiii
C/C++ Compiler Manual for SHARC Processors

Contents

Using Native Fixed-Point Types ... 1-104

Fixed-Point Type Support .. 1-104

Native Fixed-Point Types ... 1-105

Native Fixed-Point Constants ... 1-106

A Motivating Example ... 1-107

Fixed-Point Arithmetic Semantics .. 1-108

Data Type Conversions and Fixed-Point Types 1-108

Bit-Pattern Conversion Functions: bitsfx and fxbits 1-110

Arithmetic Operators for Fixed-Point Types 1-111

FX_CONTRACT ... 1-113

Rounding Behavior .. 1-115

Arithmetic Library Functions ... 1-117

divifx .. 1-117

idivfx .. 1-118

fxdivi .. 1-119

mulifx ... 1-120

absfx ... 1-121

roundfx .. 1-122

countlsfx ... 1-122

strtofxfx .. 1-123

Fixed-Point I/O Conversion Specifiers 1-123

Setting the Rounding Mode ... 1-124

Contents

xiv CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Language Standards Compliance ... 1-126

C Mode .. 1-127

C++ Mode .. 1-128

MISRA-C Compiler ... 1-129

MISRA-C Compiler Overview .. 1-129

MISRA-C Compliance .. 1-130

Using the Compiler to Achieve Compliance 1-131

Rules Descriptions .. 1-133

Run-Time Checking ... 1-143

Enabling Run-Time Checking ... 1-144

Command-Line Switches for Run-Time Checking 1-144

Pragmas for Run-Time Checking 1-146

Supported Run-Time Checks .. 1-146

Response When Problems Are Detected 1-147

Limitations of Run-Time Checking 1-148

C/C++ Compiler Language Extensions 1-149

Function Inlining .. 1-152

Inlining and Optimization .. 1-155

Inlining and Out-of-Line Copies 1-156

Inlining and Global asm Statements 1-157

Inlining and Sections .. 1-158

Inlining and Run-Time Checking 1-158

Variable Argument Macros .. 1-158

Restricted Pointers .. 1-159

CrossCore Embedded Studio 1.1 xv
C/C++ Compiler Manual for SHARC Processors

Contents

Variable-Length Array Support .. 1-160

Non-Constant Initializer Support .. 1-162

Designated Initializers ... 1-163

Hexadecimal Floating-Point Numbers 1-165

Declarations Mixed With Code .. 1-166

Compound Literals .. 1-167

C++ Style Comments ... 1-168

Enumeration Constants That Are Not int Type 1-168

Boolean Type .. 1-168

The fract Native Fixed-Point Type 1-169

Inline Assembly Language Support Keyword (asm) 1-169

asm() Construct Syntax ... 1-171

asm() Construct Syntax Rules 1-173

asm() Construct Template Example 1-174

Assembly Construct Operand Description 1-174

Using long long Types in asm Constraints 1-180

Assembly Constructs With Multiple Instructions 1-181

Assembly Construct Reordering and Optimization 1-182

Assembly Constructs With Input and Output Operands .. 1-183

Assembly Constructs With Compile-Time Constants 1-184

Assembly Constructs and Flow Control 1-185

Guidelines on the Use of asm() Statements 1-186

Contents

xvi CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Dual Memory Support Keywords (pm dm) 1-187

Memory Keywords and Assignments/Type Conversions ... 1-189

Memory Keywords and Function Declarations/Pointers ... 1-190

Memory Keywords and Function Arguments 1-191

Memory Keywords and Macros 1-191

Memory Banks .. 1-192

Memory Banks Versus Sections 1-193

Pragmas and Qualifiers ... 1-193

Memory Bank Selection .. 1-194

Memory Banks for Code ... 1-194

Memory Banks for Data .. 1-195

Performance Characteristics .. 1-197

Memory Bank Kinds ... 1-198

Predefined Banks .. 1-198

Defining Additional Banks .. 1-198

Placement Support Keyword (section) 1-199

Placement of Compiler-Generated Code and Data 1-200

Long Identifiers .. 1-200

Preprocessor Generated Warnings .. 1-201

Compiler Built-In Functions ... 1-201

builtins.h .. 1-202

Access to System Registers .. 1-202

CrossCore Embedded Studio 1.1 xvii
C/C++ Compiler Manual for SHARC Processors

Contents

Circular Buffer Built-In Functions 1-205

Automatic Circular Buffer Generation 1-205

Circular Buffer Increment of an Index 1-206

Circular Buffer Increment of a Pointer 1-206

Compiler Performance Built-In Functions 1-207

Expected Behavior ... 1-207

Known Values ... 1-209

Floating-Point Built-in Functions 1-210

Fractional Built-In Functions .. 1-211

Miscellaneous Built-In Functions 1-213

Pragmas .. 1-213

Data Declaration Pragmas ... 1-215

#pragma align num .. 1-215

#pragma alignment_region (alignopt) 1-217

#pragma pack (alignopt) .. 1-218

#pragma pad (alignopt) .. 1-218

#pragma no_partial_initialization 1-219

Interrupt Handler Pragmas .. 1-220

#pragma flush_restore_loop_stack 1-220

#pragma implicit_push_sts_handler 1-221

#pragma interrupt_complete 1-221

#pragma interrupt_complete_nesting 1-221

#pragma interrupt_dispatched_handler 1-222

#pragma interrupt_reentrant 1-222

Contents

xviii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma save_restore_40_bits 1-222

#pragma save_restore_simd_40_bits 1-223

Loop Optimization Pragmas ... 1-223

#pragma SIMD_for .. 1-224

#pragma all_aligned .. 1-224

#pragma no_vectorization ... 1-224

#pragma loop_count (min, max, modulo) 1-224

#pragma loop_unroll N .. 1-225

#pragma no_alias .. 1-227

#pragma vector_for ... 1-228

General Optimization Pragmas 1-229

Function Side-Effect Pragmas ... 1-230

#pragma alloc ... 1-230

#pragma const .. 1-231

#pragma misra_func(arg) .. 1-231

#pragma no_vectorization ... 1-231

#pragma noreturn ... 1-231

#pragma overlay ... 1-232

#pragma pgo_ignore ... 1-233

#pragma pure ... 1-233

#pragma regs_clobbered string 1-234

#pragma regs_clobbered_call string 1-238

#pragma result_alignment (n) 1-241

CrossCore Embedded Studio 1.1 xix
C/C++ Compiler Manual for SHARC Processors

Contents

Function Type-Checking Pragmas 1-242

#pragma compatible_pm_dm_params 1-242

#pragma compatible_pm_dm_retval 1-242

#pragma __printf_args .. 1-242

#pragma __scanf_args ... 1-243

Class Conversion Optimization Pragmas 1-244

#pragma param_never_null param_name [...] 1-244

#pragma suppress_null_check 1-245

Template Instantiation Pragmas 1-247

#pragma instantiate instance .. 1-248

#pragma do_not_instantiate instance 1-248

#pragma can_instantiate instance 1-249

Header File Control Pragmas ... 1-249

#pragma no_implicit_inclusion 1-249

#pragma once ... 1-250

#pragma system_header ... 1-250

Fixed-Point Arithmetic Pragmas 1-251

#pragma FX_CONTRACT {ON|OFF} 1-251

#pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED} 1-252

#pragma STDC FX_FULL_PRECISION
{ON|OFF|DEFAULT} .. 1-253

#pragma STDC FX_FRACT_OVERFLOW
{SAT|DEFAULT} ... 1-253

Contents

xx CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Inline Control Pragmas ... 1-253

#pragma always_inline .. 1-253

#pragma inline ... 1-254

#pragma never_inline ... 1-255

#pragma source_position_from_call_site 1-255

Linking Control Pragmas .. 1-256

#pragma linkage_name identifier 1-256

#pragma additional_linkage_name identifier 1-256

#pragma core .. 1-258

 #pragma retain_name .. 1-261

#pragma section/#pragma default_section 1-262

#pragma file_attr(“name[=value]” [, “name[=value]”
[...]]) ... 1-267

 #pragma weak_entry .. 1-267

Diagnostic Control Pragmas ... 1-268

Modifying the Severity of Specific Diagnostics 1-268

Modifying the Behavior of an Entire Class of
Diagnostics .. 1-270

Saving or Restoring the Current Behavior of All
Diagnostics .. 1-270

Run-Time Checking Pragmas .. 1-271

#pragma rtcheck(off) .. 1-272

#pragma rtcheck(on) ... 1-272

CrossCore Embedded Studio 1.1 xxi
C/C++ Compiler Manual for SHARC Processors

Contents

Memory Bank Pragmas ... 1-273

#pragma code_bank(bankname) 1-273

#pragma data_bank(bankname) 1-273

#pragma stack_bank(bankname) 1-275

#pragma default_code_bank(bankname) 1-276

#pragma default_data_bank(bankname) 1-276

#pragma default_stack_bank(bankname) 1-277

#pragma bank_memory_kind(bankname, kind) 1-277

#pragma bank_read_cycles(bankname, cycles[, bits]) 1-277

#pragma bank_write_cycles(bankname, cycles[, bits]) 1-278

#pragma bank_maximum_width(bankname, width) 1-279

Code Generation Pragmas ... 1-279

#pragma avoid_anomaly_45 {on | off } 1-279

#pragma no_db_return .. 1-280

Exceptions Table Pragma ... 1-281

#pragma generate_exceptions_tables 1-281

GCC Compatibility Extensions ... 1-282

Statement Expressions ... 1-282

Type Reference Support Keyword (Typeof) 1-284

Generalized Lvalues ... 1-285

Conditional Expressions With Missing Operands 1-285

Zero-Length Arrays ... 1-286

GCC Variable Argument Macros 1-286

Line Breaks in String Literals ... 1-287

Contents

xxii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Arithmetic on Pointers to Void and Pointers to Functions 1-287

Cast to Union ... 1-287

Ranges in Case Labels ... 1-287

Escape Character Constant ... 1-288

Alignment Inquiry Keyword (__alignof__) 1-288

Keyword for Specifying Names in Generated Assembler
(asm) ... 1-288

Function, Variable and Type Attribute Keyword
(__attribute__) .. 1-289

Unnamed struct/union Fields Within struct/unions 1-291

Support for 40-Bit Arithmetic ... 1-292

Using 40-Bit Arithmetic in Compiled Code 1-292

Run-Time Library Functions That Use 40-Bit Arithmetic 1-293

SIMD Support .. 1-294

A Brief Introduction to SIMD Mode 1-295

What the Compiler Can Do Automatically 1-296

What Prevents the Compiler From Automatically
Exploiting SIMD Mode ... 1-296

How to Help the Compiler Exploit SIMD Mode 1-298

How to Prevent SIMD Code Generation 1-300

Accessing External Memory on ADSP-2126x and
ADSP-2136x Processors ... 1-300

Link-Time Checking of Data Placement 1-300

Inline Functions for External Memory Access 1-301

CrossCore Embedded Studio 1.1 xxiii
C/C++ Compiler Manual for SHARC Processors

Contents

Preprocessor Features .. 1-301

Predefined Preprocessor Macros ... 1-302

Writing Macros ... 1-308

Compound Macros ... 1-308

C/C++ Run-Time Model and Environment 1-310

Registers .. 1-311

Dedicated Registers ... 1-314

Mode Registers ... 1-315

Preserved Registers .. 1-315

Scratch Registers ... 1-316

Stack Registers .. 1-317

Parameter Registers ... 1-318

Return Registers .. 1-318

Aggregate Return Register ... 1-318

Reservable Registers .. 1-318

Alternate Registers ... 1-319

Managing the Stack ... 1-320

Function Call and Return .. 1-326

Transferring Function Arguments and Return Value 1-329

Basic Argument Passing ... 1-329

Passing Parameters for Variable Argument Lists 1-330

Passing a C++ Class Instance 1-331

Return Values ... 1-332

Parameter and Return Value Examples 1-333

Contents

xxiv CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Calling Assembly Subroutines From C/C++ Programs 1-334

Calling C/C++ Functions From Assembly Programs 1-335

C/C++/Assembly Support Macros 1-336

entry .. 1-337

exit ... 1-337

leaf_entry ... 1-337

leaf_exit ... 1-337

ccall(x) ... 1-338

reads(x) .. 1-338

puts=x .. 1-338

gets(x) .. 1-338

alter(x) ... 1-338

save_reg .. 1-338

restore_reg .. 1-339

Symbol Names in C/C++ and Assembly 1-339

C/C++ and Assembly: Extern Linkage 1-340

C and Assembly: Underscore Prefix 1-340

Other Approaches ... 1-341

Implementing C++ Member Functions in Assembly
Language ... 1-341

Writing C/C++-Callable SIMD Subroutines 1-343

Mixed C/C++/Assembly Programming Examples 1-344

Using Inline Assembly .. 1-345

Using Macros to Manage the Stack 1-346

Using Scratch Registers ... 1-347

CrossCore Embedded Studio 1.1 xxv
C/C++ Compiler Manual for SHARC Processors

Contents

Using Void Functions .. 1-349

Using the Stack for Arguments 1-350

Using Registers for Arguments and Return 1-351

Using Non-Leaf Routines That Make Calls 1-352

Using Call Preserved Registers 1-355

Exceptions Tables in Assembly Routines 1-356

Data Storage Formats .. 1-360

Using Data Storage Formats .. 1-361

Floating-Point Data Size .. 1-362

Floating-Point Binary Formats ... 1-365

IEEE Floating-Point Format .. 1-365

IEEE Floating-Point Implementation 1-367

fract Data Representation .. 1-367

Precision Restrictions With 40-Bit Floating-Point
Arithmetic ... 1-370

Memory Section Usage .. 1-371

Code Storage in Program Memory 1-373

Data Storage in Data Memory ... 1-374

Data Storage in Program Memory 1-374

Run-Time Stack Storage .. 1-374

Run-Time Heap Storage .. 1-375

Initialization Data Storage ... 1-376

Global Array Alignment ... 1-376

Contents

xxvi CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Controlling System Heap Size and Placement 1-376

Managing the System Heap in the IDE 1-377

Managing the System Heap in the .ldf File 1-378

Standard Heap Interface ... 1-379

Using Multiple Heaps ... 1-380

Defining a Heap ... 1-381

Defining Additional Heaps in the IDE 1-381

Defining Heaps at Runtime .. 1-382

Tips for Working With Heaps ... 1-383

Allocating C++ STL Objects to a Non-Default Heap 1-383

Using the Alternate Heap Interface 1-386

C++ Run-Time Support for the Alternate Heap
Interface .. 1-388

Freeing Space ... 1-388

Startup and Termination ... 1-389

Memory Initialization ... 1-389

Bootable Images ... 1-390

Non-Bootable Images ... 1-391

Global Constructors ... 1-392

Constructors and Destructors of Global Class Instances 1-392

Constructors, Destructors and Memory Placement 1-394

Support for argv/argc .. 1-395

CrossCore Embedded Studio 1.1 xxvii
C/C++ Compiler Manual for SHARC Processors

Contents

Compiler C++ Template Support ... 1-395

Template Instantiation ... 1-395

Exported Templates ... 1-395

Implicit Instantiation .. 1-397

Generated Template Files .. 1-398

Identifying Un-Instantiated Templates 1-398

File Attributes ... 1-400

Automatically-Applied Attributes ... 1-401

Content Attributes .. 1-402

FuncName Attributes .. 1-403

Encoding Attributes .. 1-403

Default LDF Placement ... 1-404

Sections Versus Attributes .. 1-405

Granularity ... 1-405

“Hard” Versus “Soft” ... 1-405

Number of Values ... 1-406

Using Attributes .. 1-406

Example 1 ... 1-406

Example 2 ... 1-408

Implementation Defined Behavior ... 1-409

Enumeration Type Implementation Details 1-409

ISO/IEC 9899:1990 C Standard (C89 Mode) 1-411

G3.1 Translation ... 1-411

G3.2 Environment .. 1-411

Contents

xxviii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

G3.3 Identifiers .. 1-411

G3.4 Characters ... 1-412

G3.5 Integers ... 1-414

G3.6 Floating-Point .. 1-415

G3.7 Arrays and Pointers .. 1-416

G3.8 Registers .. 1-417

G3.9 Structures, Unions, Enumerations and Bit-Fields 1-417

G3.10 Qualifiers ... 1-418

G3.11 Declarators .. 1-419

G3.12 Statements ... 1-419

G3.13 Preprocessing Directives 1-419

G3.14 Library Functions .. 1-420

ISO/IEC 9899:1999 C Standard (C99 Mode) 1-426

J3.1 Translation .. 1-426

J3.2 Environment ... 1-427

J3.3 Identifiers ... 1-429

J3.4 Characters ... 1-430

J3.5 Integers ... 1-432

J3.6 Floating-Point ... 1-433

ISO/IEC 14822:2003 C++ Standard (C++ Mode) 1-436

1.7 The C++ Memory Model ... 1-436

1.9 Program Execution .. 1-436

2.1 Phases of Translation ... 1-436

2.2 Character Sets ... 1-437

CrossCore Embedded Studio 1.1 xxix
C/C++ Compiler Manual for SHARC Processors

Contents

2.13.2 Character Literals .. 1-437

2.13.4 String Literals .. 1-438

3.6.1 Main Function ... 1-438

3.6.2 Initialization of Non-Local Objects 1-439

3.9 Types ... 1-439

3.9.1 Fundamental Types ... 1-439

3.9.2 Compound Types .. 1-440

4.7 Integral Conversions .. 1-441

4.8 Floating-Point Conversions 1-441

4.9 Floating-Integral Conversions 1-441

5.2.8 Type Identification ... 1-441

5.2.10 Reinterpret Cast .. 1-442

5.3.3 Sizeof .. 1-443

5.6 Multiplicative Operators .. 1-443

5.7 Additive Operators ... 1-444

5.8 Shift Operators .. 1-444

7.1.5.2 Simply Type Specifiers .. 1-444

7.2 Enumeration Declarations .. 1-445

7.4 The asm Declaration ... 1-445

7.5 Linkage Specifications ... 1-445

9.6 Bit-Fields .. 1-446

14 Templates ... 1-447

14.7.1 Implicit Instantiation ... 1-447

15.5.1 The terminate() Function 1-447

Contents

xxx CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

15.5.2 The unexpected() Function 1-448

16.1 Conditional Inclusion .. 1-448

16.2 Source File Inclusion ... 1-449

16.6 Pragma Directive ... 1-449

16.8 Predefined Macro Names .. 1-450

17.4.4.5 Reentrancy .. 1-450

17.4.4.8 Restrictions on Exception Handling 1-451

18.3 Start and Termination .. 1-451

18.4.2.1 Class bad_alloc .. 1-452

18.5.1 Class type_info ... 1-452

18.5.2 Class bad_cast .. 1-453

18.5.3 Class bad_typeid .. 1-453

18.6.1 Class Exception ... 1-453

18.6.2.1 Class bad_exception .. 1-454

21 Strings Library ... 1-454

21.1.3.2 struct char_traits<wchar_t> 1-455

22.1.1.3 Locale Members .. 1-455

22.2.1.3 ctype Specializations ... 1-455

22.2.1.3.2 ctype<char> Members 1-455

22.2.5.1.2 time_get Virtual Functions 1-456

22.2.5.3.2 time_put Virtual Functions 1-456

22.2.7.1.2 Messages Virtual Functions 1-457

26.2.8 Complex Transcendentals 1-458

27.1.2 Positioning Type Limitations 1-458

CrossCore Embedded Studio 1.1 xxxi
C/C++ Compiler Manual for SHARC Processors

Contents

27.4.1 Types ... 1-458

27.4.2.4 ios_base Static Members 1-458

27.4.4.3 basic_ios iostate Flags Functions 1-459

27.7.1.3 Overridden Virtual Functions 1-459

27.8.1.4 Overridden Virtual Functions 1-459

C.2.2.3 Macro NULL .. 1-460

D.6 Old iostreams Members .. 1-460

ACHIEVING OPTIMAL PERFORMANCE FROM
C/C++ SOURCE CODE

General Guidelines ... 2-2

How the Compiler Can Help ... 2-3

Using the Compiler Optimizer .. 2-4

Using Compiler Diagnostics .. 2-5

Warnings, Annotations and Remarks 2-5

Run-Time Diagnostics .. 2-7

Steps for Developing Your Application 2-7

Using Profile-Guided Optimization 2-8

Using Profile-Guided Optimization With a Simulator 2-10

Using Profile-Guided Optimization With Hardware 2-12

Profile-Guided Optimization and Multiple Source Uses . 2-17

Profile-Guided Optimization and the -Ov num Switch ... 2-18

Profile-Guided Optimization and Multiple PGO Data
Sets .. 2-18

When to Use Profile-Guided Optimization 2-18

Contents

xxxii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Using Interprocedural Optimization 2-19

The volatile Type Qualifier .. 2-20

Data Types .. 2-21

Avoiding Emulated Arithmetic .. 2-22

Getting the Most From IPA ... 2-23

Initialize Constants Statically .. 2-24

Dual Word-Aligning Your Data ... 2-25

Using the aligned() builtin .. 2-26

Avoiding Aliases ... 2-27

Indexed Arrays Versus Pointers .. 2-29

Trying Pointer and Indexed Styles 2-29

Using Function Inlining ... 2-30

Using Inline asm Statements .. 2-31

Memory Usage .. 2-32

Improving Conditional Code .. 2-34

Using PGO in Function Profiling .. 2-37

Example of Using Profile-Guided Optimization 2-37

Opening the Project .. 2-38

Gathering the Profile .. 2-39

Rebuilding With the Profile .. 2-40

Loop Guidelines ... 2-40

Keeping Loops Short ... 2-41

Avoiding Unrolling Loops ... 2-42

Avoiding Loop-Carried Dependencies 2-42

CrossCore Embedded Studio 1.1 xxxiii
C/C++ Compiler Manual for SHARC Processors

Contents

Avoiding Loop Rotation by Hand .. 2-43

Avoiding Complex Array Indexing ... 2-44

Inner Loops Versus Outer Loops .. 2-45

Avoiding Conditional Code in Loops 2-45

Avoiding Placing Function Calls in Loops 2-47

Avoiding Non-Unit Strides .. 2-47

Loop Control .. 2-48

Using the Restrict Qualifier ... 2-49

Using Built-In Functions in Code Optimization 2-50

Using System Support Built-In Functions 2-50

Using Circular Buffers ... 2-52

Smaller Applications: Optimizing for Code Size 2-54

Using Pragmas for Optimization .. 2-56

Function Pragmas .. 2-56

#pragma alloc ... 2-56

#pragma const .. 2-57

#pragma pure .. 2-57

#pragma result_alignment ... 2-58

#pragma regs_clobbered .. 2-58

#pragma optimize_{off|for_speed|for_space|as_cmd_line} .. 2-60

Loop Optimization Pragmas .. 2-61

#pragma loop_count ... 2-61

#pragma no_vectorization ... 2-61

#pragma vector_for ... 2-62

Contents

xxxiv CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma SIMD_for .. 2-63

#pragma all_aligned .. 2-63

#pragma no_alias .. 2-64

Useful Optimization Switches ... 2-65

How Loop Optimization Works .. 2-66

Terminology ... 2-66

Clobbered Register ... 2-66

Live Register ... 2-67

Spill ... 2-67

Scheduling ... 2-67

Loop Kernel ... 2-67

Loop Prolog ... 2-68

Loop Epilog ... 2-68

Loop Invariant ... 2-68

Hoisting ... 2-68

Sinking .. 2-69

Loop Optimization Concepts .. 2-69

Software Pipelining ... 2-70

Loop Rotation .. 2-70

Loop Vectorization ... 2-73

Modulo Scheduling .. 2-74

Initiation Interval (II) and the Kernel 2-76

Minimum Initiation Interval Due to Resources
(Res MII) .. 2-79

CrossCore Embedded Studio 1.1 xxxv
C/C++ Compiler Manual for SHARC Processors

Contents

Minimum Initiation Interval Due to Recurrences
(Rec MII) ... 2-79

Stage Count (SC) .. 2-80

Variable Expansion and MVE Unroll 2-82

Trip Count ... 2-87

A Worked Example .. 2-87

Assembly Optimizer Annotations .. 2-91

Annotation Examples .. 2-92

Importing Annotation Examples .. 2-93

Viewing Annotation Examples in the IDE 2-94

Viewing Annotation Examples in Generated Assembly 2-95

Global Information ... 2-95

Procedure Statistics .. 2-96

Instruction Annotations ... 2-98

Loop Identification .. 2-99

Loop Identification Annotations 2-100

File Position .. 2-103

Vectorization ... 2-104

Unroll and Jam ... 2-105

Loop Flattening .. 2-107

Vectorization Annotations ... 2-108

Modulo Scheduling Information .. 2-109

Annotations for Modulo Scheduled Instructions 2-110

Warnings, Failure Messages and Advice 2-116

Contents

xxxvi CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Analyzing Your Application ... 2-120

Application Analysis Configuration 2-121

Application Analysis and File Naming 2-121

Device for Profiling Output .. 2-122

Frequency of Flushing Profile Data 2-123

Profiling With Instrumented Code 2-123

Generating an Application With Instrumented Profiling .. 2-124

Running the Executable File ... 2-125

Invoking the Reporter Tool ... 2-125

Invoking the instrprof.exe Command Line Reporter 2-126

Contents of the Profiling Report 2-126

The Reporter Tool Report Format 2-128

The instrprof Command Line Tool Report Format 2-129

Profiling Data Storage ... 2-130

Computing Cycle Counts ... 2-130

Multi-Threaded and Non-Terminating Applications 2-131

Flushing Profile Data .. 2-131

Profiling of Interrupts and Kernel Time 2-132

Behavior That Interferes With Instrumented Profiling . 2-133

Profile-Guided Optimization and Code Coverage 2-133

The Code Coverage Report ... 2-134

Unexpected Line Counts in a Code Coverage Report ... 2-134

CrossCore Embedded Studio 1.1 xxxvii
C/C++ Compiler Manual for SHARC Processors

Contents

Heap Debugging ... 2-135

Getting Started With Heap Debugging 2-137

Linking With the Heap Debugging Library 2-138

Heap Debugging Macro .. 2-138

Default Behavior ... 2-139

Additional Heap Overheads ... 2-140

The Heap Debugging Report 2-140

Using the Heap Debugging Library 2-141

Detected Errors ... 2-142

Viewing Reports ... 2-144

stderr Diagnostics ... 2-144

Call Stack ... 2-146

Setting the Severity of Error Messages 2-147

Default Diagnostic Severities 2-149

Guard Regions .. 2-150

Enabling and Disabling Features 2-153

Buffering .. 2-155

Pausing Heap Debugging .. 2-156

Finishing Heap Debugging .. 2-157

Verifying Heaps .. 2-157

Behavior of Heap Debugging Library 2-158

Unfreed File I/O Buffers .. 2-160

Memory Used by Operating Systems 2-160

 xxxviii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Stack Overflow Detection ... 2-160

About Stack Overflows ... 2-161

What is Stack Overflow? ... 2-161

Likely Causes of Stack Overflow 2-162

Difficulties in Diagnosing Stack Overflow 2-162

Stack Overflow Detection Facility 2-163

Limitations on the Compiler’s Stack Detection
Capability .. 2-163

Fixing a Stack Overflow .. 2-164

INDEX

CrossCore Embedded Studio 1.1 xxxix
C/C++ Compiler Manual for SHARC Processors

 PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
signal processing applications.

Purpose of This Manual
The C/C++ Compiler Manual for SHARC Processors contains information
about the C/C++ compiler and its features designed for use with
SHARC® (ADSP-21xxx) processors. It includes syntax for command
lines, switches, and language extensions. It leads you through the process
of using library routines and writing mixed C/C++/assembly code.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the SHARC architecture and instruction set
and the C/C++ programming languages.

Programmers who are unfamiliar with SHARC processors can use this
manual, but they should supplement it with other texts (such as the
appropriate hardware reference and programming reference manuals) that
describe their target architectures.

Manual Contents

 xl CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Manual Contents
This manual contains:

• Chapter 1, Compiler, provides information on compiler options,
language extensions and C/C++/assembly interfacing

• Chapter 2, Achieving Optimal Performance From C/C++ Source
Code, shows how to optimize compiler operation

What’s New in This Manual
This is Revision 1.2 of the C/C++ Compiler Manual, supporting
CrossCore® Embedded Studio (CCES) 1.0. It provides information on
the C/C++ compiler and its features and documents support for all current
SHARC processors. It does not describe C/C++ and DSP run-time librar-
ies which are separated into a library reference manual, C/C++ Library
Manual for SHARC Processors.

This revision corrects typographical errors and resolves document errata
reported against the previous revision. Additional changes in the Compiler
chapter include:

• The new additional_linkage_name, __printf_args,
__scanf_args, compatible_pm_dm_retval, and
source_position_from_call_site pragmas

• New predefined macros for distinguishing processor families

CrossCore Embedded Studio 1.1 xli
C/C++ Compiler Manual for SHARC Processors

Preface

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

mailto:processor.tools.support@analog.com
http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Supported Processors

 xlii CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “SHARC” refers to a family of Analog Devices, Inc.
high-performance 32-bit, floating-point digital signal processors that can
be used in speech, sound, graphics, and imaging applications. Refer to the
CCES online help for a complete list of supported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

http://www.analog.com
http://www.analog.com/processors/technical_library/

CrossCore Embedded Studio 1.1 xliii
C/C++ Compiler Manual for SHARC Processors

Preface

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

Notation Conventions

 xliv CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

File > Close Titles in bold style reference sections indicate the location of an item
within the CCES environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.







CrossCore Embedded Studio 1.1 1-1
C/C++ Compiler Manual for SHARC Processors

1 COMPILER

The C/C++ compiler (cc21k) is part of Analog Devices development soft-
ware for SHARC (ADSP-21xxx) processors.

 The code examples in this manual have been compiled using
CCES 1.0.2.

This chapter contains:

• C/C++ Compiler Overview
provides an overview of C/C++ compiler for SHARC processors.

• Compiler Command-Line Interface
describes the operation of the compiler as it processes programs,
including input and output files, and command-line switches.

• Using Native Fixed-Point Types
describes the compiler’s support for the native fixed-point type
fract, defined in Chapter 4 of the “Extensions to support embedded
processors” ISO/IEC draft technical report TR 18037.

• Language Standards Compliance
describes how to enable the best possible compliance to either the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C stan-
dard or the ISO/IEC 14882:2003 C++ standard.

• MISRA-C Compiler
describes how the cc21k compiler enables checking for MISRA-C:
2004 Guidelines.

1-2 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Run-Time Checking
describes the additional run-time checks supported by the
compiler.

• C/C++ Compiler Language Extensions
describes the cc21k compiler’s extensions to the ISO/ANSI stan-
dard for the C and C++ languages.

• Preprocessor Features
contains information on the preprocessor and ways to modify
source compilation.

• C/C++ Run-Time Model and Environment
contains reference information about implementation of C/C++
programs, data, and function calls in ADSP-21xxx processors.

• Compiler C++ Template Support
describes how templates are instantiated at compile time

• File Attributes
describes how file attributes help with the placement of runtime
library functions.

• Implementation Defined Behavior
describes how the compiler implements various language features
where the standard allows flexibility.

CrossCore Embedded Studio 1.1 1-3
C/C++ Compiler Manual for SHARC Processors

Compiler

C/C++ Compiler Overview
The C/C++ compiler (cc21k) is designed to aid your project development
efforts by:

• Processing C and C++ source files, producing machine-level ver-
sions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized processor
operations without having to understand the underlying processor
architecture.

The C/C++ compiler (cc21k) compiles ISO/ANSI standard C and C++
code for the SHARC processors. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in processor development. The compiler runs from the CCES environ-
ment or from an operating system command line.

The C/C++ compiler (cc21k) processes your C and C++ language source
files and produces SHARC assembler source files. The assembler source
files are assembled by the SHARC assembler (easm21k). The assembler
creates Executable and Linkable Format (ELF) object files that can either
be linked (using the linker) to create an ADSP-21xxx executable file or
included in an archive library (elfar). The way in which the compiler
controls the assemble, link, and archive phases of the process depends on
the source input files and the compiler options used.

C/C++ Compiler Overview

1-4 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Your source files contain the C/C++ program to be processed by the com-
piler. The cc21k compiler supports the following standards, each with
Analog Devices extensions enabled:

• A freestanding implementation of the ISO/IEC 9899:1990 C stan-
dard (C89).

• A freestanding implementation of the ISO/IEC 9899:1999 C stan-
dard (C99).

• A freestanding implementation of the ISO/IEC 14882:2003 C++
standard (C++ 2003). The compiler supports the language features
supported by a standard subset of the C++ Library. You can obtain
C++ library (“Dinkum EC++ Library”) reference text in the CCES
online help.

RTTI and exceptions for C++ are supported, but disabled by default. See
information on these switches: -rtti and -eh.

For information on the C or C++ language standards, see any of the many
reference texts.

The cc21k compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the ADSP-21xxx processors. For
information on these extensions, see C/C++ Compiler Language
Extensions.

You can set the compiler options in the project’s Preferences dialog box in
the CCES Integrated Development Environment (IDE). These selections
control how the compiler processes your source files, letting you select fea-
tures that include the language dialect, error reporting, and debugger
output.

The Preferences pages are accessible from the Properties choice on the
Project menu. Within the Preferences pages, navigate to C/C++ Build,
then to Settings. Alternatively, click on the Settings icon in the Project

CrossCore Embedded Studio 1.1 1-5
C/C++ Compiler Manual for SHARC Processors

Compiler

Explorer view. For both routes, the compiler options are then available
from Settings > Tool Settings > CrossCore SHARC C/C++ Compiler.

For more information on the CCES environment, see the online help.

Compiler Components
The compiler is not a single program, but a collection of programs, each
with a different task:

Compiler Driver

The compiler driver, cc21k, is the user interface to the other programs,
and is the program you invoke when you run the compiler on the com-
mand line. Its responsibility is to marshall and interpret the
command-line arguments to determine what other components and
code-generation tools need invoking, and in what order. The compiler
driver hides the complexity and presents a consistent interface. For this
reason, throughout the documentation, “the compiler”, “compiler driver”
and “cc21k” are used interchangeably.

Compiler Proper

The compiler proper, found in SHARC\etc\compiler, is the actual com-
piler; it compiles a single C/C++ source file into a single assembly output
file. The compiler driver invokes the compiler proper for each C/C++
source file specified.

The Assembler

The assembler, easm21k, assembles a single assembly source file into a sin-
gle object file. The compiler driver invokes the assembler to translate both
user-supplied assembly files and compiler-generated assembly files.

C/C++ Compiler Overview

1-6 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The Linker

The linker, linker, combines object files into executable files, and
searches library files to resolve references to undefined symbols. The linker
relies on a .ldf file to specify how the resulting collection of symbols
should be mapped into memory. The compiler driver invokes the linker
when the specified output file is an executable file.

The Prelinker

The prelinker is found at SHARC\etc\prelinker. Its purpose is to examine
the set of objects and libraries prior to linking, and to instruct the com-
piler driver to recompile files or add additional libraries or switches, as
needed. The compiler driver invokes the prelinker just prior to invoking
the linker. Language features supported by the prelinker include:

• C++ template instantiation

• Interprocedural Analysis

• Instrumented Profiling

IPA Solver

The IPA Solver, SHARC\etc\ipa, propagates information between com-
piled modules, as part of Interprocedural Analysis. The IPA Solver might
direct the compiler driver to recompile a source file, if propagated infor-
mation can improve optimization. The IPA Solver is invoked by the
prelinker when any of the input files were compiled with IPA optimiza-
tion enabled.

PGO Merger

The PGO merger, SHARC\etc\pgo, combines multiple profiles gathered
through profiled executions of an application, and produces a single pro-
file for the compiler to use. The PGO merger is invoked by the compiler
driver whenever more than one PGO profile is specified.

CrossCore Embedded Studio 1.1 1-7
C/C++ Compiler Manual for SHARC Processors

Compiler

Librarian

The librarian, elfar, provides facilities for creating, modifying and
inspecting library files. The compiler driver invokes the librarian when the
output file is a library file.

Memory Initializer

The memory initializer, MemInit, creates an initialization stream within
the executable file. The compiler driver directs the linker to invoke the
memory initializer after linking, when the -mem switch (on page 1-46) is
specified.

The assembler, linker and librarian are documented in the Assembler and
Preprocessor Manual and the Linker and Utilities Manual. The other com-
ponents should always be invoked only through the compiler driver, never
directly.

Compiler Command-Line Interface
This section describes how the cc21k compiler is invoked from the com-
mand line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• Running the Compiler

• Compiler Command-Line Switches

• Environment Variables Used by the Compiler

• Data Type and Data Type Sizes

Compiler Command-Line Interface

1-8 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Optimization Control

• Controlling Silicon Revision and Anomaly Workarounds Within
the Compiler

By default, the compiler runs with Analog Devices extension keywords for
C code enabled. This means that the compiler processes source files writ-
ten in ISO/IEC 9899:1999 standard C language supplemented with
Analog Devices extensions. Table 1-2 lists valid extensions of source files
the compiler operates upon. By default, the compiler processes the input
file through the listed stages to produce a .DXE file. (See file names in
Table 1-3.) Table 1-2 lists the switches that select the language dialect.

Although many switches are generic between C and C++, some of them
are valid in C++ mode only. A summary of the generic C/C++ compiler
switches appears in Table 1-3. A summary of the C++-specific compiler
switches appears in Table 1-5. The summaries are followed by descrip-
tions of each switch.

 When developing a project, sometimes it is useful to modify the
compiler’s default options settings. The way the compiler’s options
are set depends on the environment used to run the processor
development software. For more information, see Environment
Variables Used by the Compiler.

Running the Compiler
Use the following syntax for the cc21k command line:

cc21k [-switch [-switch …] sourcefile [sourcefile …]]

CrossCore Embedded Studio 1.1 1-9
C/C++ Compiler Manual for SHARC Processors

Compiler

Table 1-1 describes these syntax elements.

 When file names or other switches for the compiler include spaces
or other special characters, you must ensure that these are properly
quoted (usually using double-quote characters), to ensure that they
are not interpreted by the operating system before being passed to
the compiler.

The sourceFile element (the name of the source file to be processed) can
include the drive, directory, file name and file extension. The compiler
supports both Win32 and POSIX-style paths by using forward or back
slashes as the directory delimiter. It also supports UNC path names (start-
ing with two slashes and a network name).

If the name contains spaces, enclose it in straight quotes; for example,
"long file name.c". The cc21k compiler uses the file extension to deter-
mine what the file contains (Table 1-3) and what operations to perform
upon it (Table 1-2).

Compiler Command-Line Switches
This section describes the command-line switches used when compiling.
It contains a set of tables that provide a brief description of each switch.

Table 1-1. cc21k Command Line Syntax

Command
Element

Description

cc21k Name of the compiler program for SHARC processors.

-switch Switch (or switches) to process.
The compiler has many switches. These switches select the operations and
modes for the compiler and other tools. Command-line switches are case
sensitive. For example, -O is not the same as -o.

sourceFile Name of the file to be preprocessed, compiled, assembled, and/or linked

Compiler Command-Line Switches

1-10 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

These tables are organized by type of switch. Following these tables are
sections that provide fuller descriptions of each switch.

C/C++ Compiler Switch Summaries

This section contains a set of tables that summarize generic and specific
switches (options).

• C/C++ Mode Selection Switches, Table 1-2

• C/C++ Compiler Common Switches, Table 1-3

• C Mode (MISRA) Compiler Switches, Table 1-4

• C++ Mode Compiler Switches, Table 1-5

A brief description of each switch follows the tables, beginning
on page 1-24.

Table 1-2. C/C++ Mode Selection Switches

Switch Name Description

-c89
(on page 1-24)

Supports programs that conform to the ISO/IEC
9899:1990 standard

-c99
(on page 1-24)

Supports programs that conform to the ISO/IEC
9899:1999 standard. This is the default mode.

-c++
(on page 1-25)

Supports ISO/IEC 14882:2003 C++ standard with
Analog Devices extensions

Table 1-3. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
(on page 1-25)

Specifies file to be compiled

-@ filename
(on page 1-25)

Reads command-line input from the file

CrossCore Embedded Studio 1.1 1-11
C/C++ Compiler Manual for SHARC Processors

Compiler

-A name[tokens]
(on page 1-26)

Asserts the specified name as a predicate

-add-debug-libpaths
(on page 1-27)

Links against debug-specific variants of system librar-
ies, where available

-aligned-stack
(on page 1-27)

Aligns the program stack on a double-word boundary

-alttok
(on page 1-27)

Allows alternative keywords and sequences in sources

-always-inline
(on page 1-28)

Treats inline keyword as a requirement rather than a
suggestion

-annotate
(on page 1-28)

Annotates compiler-produced assembly files

-annotate-loop-instr
(on page 1-29)

Provides additional annotation information for the
prolog, kernel and epilog of a loop

-asms-safe-in-simd-for-loops
(on page 1-29)

Directs the compiler that asm statements are not a bar-
rier to SIMD inside loops with SIMD_for pragmas

-auto-attrs
(on page 1-36)

Directs the compiler to emit automatic attributes
based on the files it compiles. Enabled by default.

-build-lib
(on page 1-30)

Directs the librarian to build a library file

-C
(on page 1-30)

Retains preprocessor comments in the output file;
must run with the -E or -P switch

-c
(on page 1-30)

Compiles and/or assembles only, but does not link

-compatible-pm-dm
(on page 1-30)

Specifies that the compiler shall treat dm- and pm-qual-
ified pointers as assignment-compatible

-component file.xml
(on page 1-30)

Reads additional options from the specified XML file

-const-read-write
(on page 1-30)

Specifies that data accessed via a pointer to const data
may be modified elsewhere

-const-strings
(on page 1-31)

Directs the compiler to mark string literals as
const-qualified

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-12 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-D macro[=definition]
(on page 1-31)

Defines a macro

-dependency-add-target target
(on page 1-31)

Adds target to any emitted dependency information

-double-size [-32|-64]
(on page 1-32)

Selects 32- or 64-bit IEEE format for double.
The -double-size-32 switch is the default mode.

-double-size-any
(on page 1-32)

Indicates that the resulting object can be linked with
objects built with any double size

-dry
(on page 1-33)

Displays, but does not perform, main driver actions
(verbose dry-run)

-dryrun
(on page 1-33)

Displays, but does not perform, top-level driver
actions (terse dry-run)

-E
(on page 1-33)

Preprocesses, but does not compile, the source file

-ED
(on page 1-33)

Preprocesses and sends all output to a file

-EE
(on page 1-33)

Preprocesses and compiles the source file

-eh
(on page 1-33)

Enables exception handling

-enum-is-int
(on page 1-34)

By default enum can have a type larger than int. This
option ensures the enum type is int.

-extra-keywords

(on page 1-35)

Recognizes ADI extensions to ANSI/ISO standards for
C and C++ (default mode)

-extra-precision
(on page 1-35)

Specifies that the compiler should not automatically
generate double-word memory accesses or substitute
an instruction for another that could result in the
truncation of a 40-bit floating point value.

-file-attr name[=value]
(on page 1-36)

Adds the specified attribute name/value pair to the
file(s) being compiled

-flags {tools} <arg1> [,arg2...]
(on page 1-36)

Passes command-line switches through the compiler to
other build tools

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-13
C/C++ Compiler Manual for SHARC Processors

Compiler

-float-to-int
(on page 1-37)

Uses a support library function to convert a float to
an integer type

-force-circbuf
(on page 1-37)

Treats array references of the form array[i%n] as cir-
cular buffer operations

-fp-associative
(on page 1-38)

Treats floating-point multiply and addition as an asso-
ciative

-full-version
(on page 1-38)

Displays the version number of the driver and any pro-
cesses invoked by the driver

-fx-contract
(on page 1-38)

Sets the default mode of FX_CONTRACT to ON

-fx-rounding-mode-biased
(on page 1-38)

Sets the default mode of FX_ROUNDING_MODE to
BIASED

-fx-rounding-mode-truncation
(on page 1-38)

Sets the default mode of FX_ROUNDING_MODE to
TRUNCATION

-fx-rounding-mode-unbiased
(on page 1-39)

Sets the default mode of FX_ROUNDING_MODE to
UNBIASED

-g

(on page 1-39)

Generates DWARF-2 debug information

-glite

(on page 1-39)

Generates lightweight DWARF-2 debug information

-gnu-style-dependencies

(on page 1-40)

Produces dependency information in the style expected
by the GNU make program

-H

(on page 1-40)

Outputs a list of included header files, but does not
compile

-HH

(on page 1-40)

Outputs a list of included header files and compiles

-h[elp]

(on page 1-41)

Outputs a list of command-line switches

-I directory
(on page 1-41)

Appends directory to the standard search path

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-14 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-I-
(on page 1-41)

Establishes the point in the include directory list at
which the search for header files enclosed in angle
brackets should begin

-i
(on page 1-42)

Outputs only header details or makefile dependencies
for include files specified in double quotes

-include filename
(on page 1-42)

Includes named file prior to preprocessing each source
file

-ipa
(on page 1-42)

Enables interprocedural analysis

-L directory
(on page 1-43)

Appends directory to the standard library search path

-l library
(on page 1-43)

Searches library for functions when linking

-linear-simd
(on page 1-44)

Directs the compiler to attempt to generate SIMD
code in linear code

-list-workarounds
(on page 1-44)

Lists all compiler-supported errata workarounds

-loop-simd
(on page 1-44)

Generates SIMD code in loops

-M

(on page 1-44)

Generates make rules only, but does not compile

-MD

(on page 1-45)

Generates make rules, compiles, and prints to a file

-MM

(on page 1-45)

Generates make rules and compiles

-Mo filename
(on page 1-45)

Writes dependency information to filename. This
switch is used in conjunction with the -ED or -MD
options

-Mt filename
(on page 1-45)

Makes dependencies, where the target is renamed as
filename

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-15
C/C++ Compiler Manual for SHARC Processors

Compiler

-map filename
(on page 1-45)

Directs the linker to generate a memory map of all
symbols

-mem

(on page 1-46)

Enables memory initialization

-multiline

(on page 1-46)

Enables string literals over multiple lines (default)

-never-inline
(on page 1-46)

Ignores inline keyword on function definitions

-no-aligned-stack
(on page 1-47)

Does not double-word align the program stack

-no-alttok
(on page 1-47)

Does not allow alternative keywords and sequences in
sources

-no-annotate
(on page 1-47)

Disables the annotation of assembly files

-no-annotate-loop-instr
(on page 1-47)

Disables the production of additional loop annotation
information by the compiler (default mode)

-no-assume-vols-are-iops
(on page 1-48)

Instructs the compiler to not assume that volatile loads
and stores are to IOP addresses

-no-auto-attrs
(on page 1-48)

Directs the compiler not to emit automatic attributes
based on the files it compiles

-no-circbuf
(on page 1-48)

Disables the automatic generation of circular buffer
code by the compiler

-no-const-strings
(on page 1-48)

Directs the compiler not to make string literals const
qualified

-no-db

(on page 1-49)

Specifies that the compiler shall not generate code con-
taining delayed branches jumps

-no-defs

(on page 1-49)

Disables preprocessor definitions: macros, include
directories, library directories or keyword extensions

-no-eh
(on page 1-49)

Disables exception handling

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-16 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-no-extra-keywords

(on page 1-49)

Disables ADI keyword extensions that could be valid
C/C++ identifiers

-no-fp-associative
(on page 1-50)

Does not treat floating-point multiply and addition as
associative

-no-fx-contract
(on page 1-50)

Sets the default mode of FX_CONTRACT to OFF

-no-linear-simd

(on page 1-50)

Directs the compiler not to attempt to generate SIMD
instruction

-no-main-calls-exit

(on page 1-50)

Prevents the compiler from inserting a call to exit()
at the end of main()

-no-mem

(on page 1-51)

Disables memory initialization

-no-multiline
(on page 1-51)

Disables multiple line string literal support

-no-progress-rep-timeout
(on page 1-51)

Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-rtcheck
(on page 1-51)

Disables run-time checking

-no-rtcheck-arr-bnd

(on page 1-52)

Disables checking array boundaries at runtime

-no-rtcheck-div-zero
(on page 1-52)

Disables checking for division by zero at runtime

-no-rtcheck-heap
(on page 1-52)

Disables checking of heap operations zero at runtime

-no-rtcheck-null-ptr
(on page 1-53)

Disables checking for NULL pointer dereferences at
run-time

-no-rtcheck-shift-check
(on page 1-53)

Disables checking for negative/too-large shifts at
run-time

-no-rtcheck-stack
(on page 1-53)

Disables checking for stack overflow at runtime

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-17
C/C++ Compiler Manual for SHARC Processors

Compiler

-no-rtcheck-unassigned
(on page 1-54)

Disables checking for unassigned variables at runtime

-no-sat-associative
(on page 1-54)

Saturating addition is not associative

-no-saturation
(on page 1-54)

Causes the compiler not to introduce saturation
semantics when optimizing expressions

-no-shift-to-add
(on page 1-55)

Specifies that the compiler should not replace an arith-
metic shift by one with an add instruction

-no-simd
(on page 1-55)

Disables automatic SIMD mode

-no-std-ass

(on page 1-55)

Disables any predefined assertions and system-specific
macro definitions

-no-std-def

(on page 1-55)

Disables preprocessor definitions and ADI keyword
extensions that do not have leading underscores(__)

-no-std-inc

(on page 1-56)

Searches for preprocessor include header files only in
the current directory and in directories specified with
the -I switch

-no-std-lib

(on page 1-56)

Searches for only those library files specified with the
-l switch

-no-threads
(on page 1-56)

Specifies that all compiled code need not be
thread-safe

-no-workaround workaround_id
(on page 1-56)

Disables specific hardware anomaly workarounds
within the compiler

-normal-word-code
(on page 1-56)

Directs the compiler to generate instructions of
normal-word size (48-bits)

-nwc
(on page 1-56)

Has the same effect as compiling with the
-normal-word-code switch

-O [0|1]

(on page 1-57)

Enables code optimizations

-Oa

(on page 1-57)

Enables automatic function inlining

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-18 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-Os

(on page 1-58)

Optimizes for code size

-Ov num(on page 1-58) Controls speed versus size optimizations

-o filename
(on page 1-60)

Specifies the output file name

-overlay
(on page 1-60)

Disables the propagation of register information
between functions and forces the compiler to assume
that all functions clobber all scratch registers

-overlay-clobbers regs
(on page 1-60)

Specifies the registers assumed to be clobbered by an
overlay manager

-P

(on page 1-61)

Preprocesses, but does not compile, the source file;
omits line numbers in the preprocessor output

-PP
(on page 1-61)

Similar to -P, but does not halt compilation after pre-
processing

-p
(on page 1-61)

Generates profiling instrumentation

-path-{asm|com-
piler|ipa|lib|link|prelink}
pathname
(on page 1-62)

Uses the specified pathname as the location of the
specified compilation tool (assembler, compiler, IPA
solver, library builder, linker, or prelinker, respectively)

-path-install directory
(on page 1-62)

Uses the specified directory as the location of all com-
pilation tools

-path-output directory
(on page 1-62)

Specifies the location of non-temporary files

-path-temp directory
(on page 1-62)

Specifies the location of temporary files

-pgo-session sessionid
(on page 1-63)

Used with profile-guided optimization

-pguide
(on page 1-63)

Adds instrumentation for the gathering of a profile as
the first stage of performing profile-guided optimiza-
tion

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-19
C/C++ Compiler Manual for SHARC Processors

Compiler

-pplist filename
(on page 1-64)

Outputs a raw preprocessed listing to the specified file

-proc processor
(on page 1-65)

Specifies that the compiler should produce code suit-
able for the specified processor

-prof-hw
(on page 1-65)

Instructs the compiler to generate profiling code tar-
geted for execution on hardware. Requires the use of a
supported profiling switch.

-progress-rep-func
(on page 1-65)

Issues a diagnostic message each time the compiler
starts compiling a new function. Equivalent to
-Wwarn=cc1472.

-progress-rep-opt
(on page 1-66)

Issues a diagnostic message each time the compiler
starts a new generic optimization pass on the current
function. Equivalent to -Wwarn=cc1473.

-progress-rep-timeout
(on page 1-66)

Issues a diagnostic message if the compiler exceeds a
time limit during compilation

-progress-rep-timeout-secs secs
(on page 1-66)

Specifies how many seconds must elapse during a com-
pilation before the compiler issues a diagnostic on the
length of compilation

-R directory
(on page 1-66)

Appends directory to the standard search path for
source files

-R-
(on page 1-67)

Removes all directories from the standard search path
for source files

-reserve <reg1>[,reg2...]
(on page 1-67)

Reserves certain registers from compiler use.
Note: Reserving registers can have a detrimental effect
on the compiler’s optimization capabilities.

-restrict-hardware-loops maximum

(on page 1-67)

Restricts the number of levels of loop nesting used by
the compiler

-rtcheck
(on page 1-68)

Enables run-time checking

-rtcheck-arr-bnd
(on page 1-69)

Enables run-time checking of array boundaries

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-20 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-rtcheck-div-zero
(on page 1-69)

Enables run-time checking for division by zero

-rtcheck-heap
(on page 1-69)

Enables run-time checking of heap operations

-rtcheck-null-ptr
(on page 1-70)

Enables run-time checking for NULL pointer derefer-
ences

-rtcheck-shift-check
(on page 1-70)

Enables run-time checking for negative/too-large shifts

-rtcheck-stack
(on page 1-71)

Enables run-time checking for stack overflow

-rtcheck-unassigned
(on page 1-71)

Enables run-time checking for unassigned variables

-S
(on page 1-72)

Stops compilation before running the assembler

-s
(on page 1-72)

Removes debug info from the output executable file

-sat-associative
(on page 1-72)

Saturating addition is associative

-save-temps
(on page 1-72)

Saves intermediate files

-section id=section_name
(on page 1-73)

Orders the compiler to place data/program of type id
into the section section_name.

-short-word-code
(on page 1-74)

Directs the compiler to generate instructions of short
word size (16/32/48-bits)

-show
(on page 1-74)

Displays the driver command-line information

-si-revision version
(on page 1-75)

Specifies a silicon revision of the specified processor.
The default setting is the latest silicon revision at the
time of release.

-signed-bitfield
(on page 1-75)

Makes the default type for int bit-fields signed

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-21
C/C++ Compiler Manual for SHARC Processors

Compiler

-structs-do-not-overlap
(on page 1-75)

Specifies that struct copies may use “memcpy” seman-
tics, rather than the usual “memmove” behavior

-swc
(on page 1-76)

Directs the compiler to generate instructions of short
word size (16/32/48-bits)

-syntax-only
(on page 1-76)

Checks the source code for compiler syntax errors, but
does not write any output

-sysdefs
(on page 1-76)

Defines the system definition macros

-T filename

(on page 1-77)

Specifies the Linker Description File

-threads
(on page 1-77)

Specifies that support for multithreaded applications is
to be enabled

-time
(on page 1-77)

Displays the elapsed time as part of the output infor-
mation on each part of the compilation process

-Umacro

(on page 1-77)

Undefines macro(s)

-unsigned-bitfield
(on page 1-78)

Makes the default type for plain int bit-fields
unsigned

-v
(on page 1-78)

Displays both the version and command-line informa-
tion

-verbose
(on page 1-79)

Displays command-line information

-version
(on page 1-79)

Displays version information

-W{annotation|error|remark|
suppress|warn} number
(on page 1-79)

Overrides the default severity of the specified error
message

-Wannotations
(on page 1-80)

Indicates that the compiler may issue code generation
annotations, which are messages milder than warnings
that may help you to optimize your code

-Werror-limit number
(on page 1-80)

Stops compiling after reaching the specified number of
errors

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-22 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-Werror-warnings
(on page 1-80)

Directs the compiler to treat all warnings as errors

-Wremarks
(on page 1-80)

Indicates that the compiler may issue remarks, which
are diagnostic messages even milder than warnings

-Wterse
(on page 1-80)

Issues only the briefest form of compiler warning,
errors, and remarks

-w
(on page 1-81)

Does not display compiler warning messages

-warn-component
(on page 1-81)

Issues warnings if any libraries specified by component
XML files could not be located

-warn-protos
(on page 1-81)

Produces a warnings when a function is called without
a prototype

-workaround workaround_id
(on page 1-81)

Enables code generator workaround for specific hard-
ware errata

-xref filename
(on page 1-82)

Outputs cross-reference information to the specified
file

Table 1-4. C Mode (MISRA) Compiler Switches

Switch Name Description

-misra
(on page 1-83)

Enables checking for MISRA-C: 2004 Guidelines, allows some
relaxation of interpretation

-misra-linkdir
(on page 1-83)

Specifies directory for generation of .misra files.
If this option is not specified, a local directory called MIS-
RARepository is created.

-misra-no-cross-module
(on page 1-83)

Enables checking for MISRA-C: 2004 Guidelines, allows some
relaxation of interpretation. Does not generate .misra files to
check for link-time rule violations.

-misra-no-runtime
(on page 1-83)

Enables checking for MISRA-C: 2004 Guidelines, allows some
relaxation of interpretation. Does not generate extra code to
perform run-time checking in support of a number of Rules.

-misra-strict
(on page 1-84)

Enables checking for MISRA-C: 2004 Guidelines

Table 1-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-23
C/C++ Compiler Manual for SHARC Processors

Compiler

-misra-suppress-advisory
(on page 1-84)

Enables checking for MISRA-C: 2004 Guidelines. Advisory
rules are not reported.

-misra-testing
(on page 1-84)

Enables checking for MISRA-C: 2004 Guidelines. Suppresses
reporting of MISRA-C rule 20.4, 20.7, 20.8, 20.9, 20.10,
20.11 and 20.12.

-Wmis_suppress
(on page 1-84)

Overrides the default severity of the specified messages relating
to the specified MISRA-C rules

-Wmis_warn
(on page 1-85)

Overrides the default severity of the specified messages relating
to the specified MISRA-C rules

Table 1-5. C++ Mode Compiler Switches

Switch Name Description

-anach
(on page 1-85)

Supports some language features (anachronisms) that are prohib-
ited by the C++ standard but still in common use

-check-init-order
(on page 1-87)

Adds run-time checking to the generated code highlighting poten-
tial uninitialized external objects

-friend-injection
(on page 1-88)

Allows non-standard behavior with respect to friend declarations.
When friend names are not injected, function names are visible
only when using argument-dependent lookup.

-full-dependency-
inclusion
(on page 1-88)

Ensures re-inclusion of implicitly included files when generating
dependency information

-implicit-inclusion
(on page 1-88)

Allows implicit inclusion of source files as a method of finding
definitions of template entities to be instantiated. It is not compat-
ible with exported templates.

-no-anach
(on page 1-89)

Disallows the use of anachronisms that are prohibited by the C++
standard

-no-friend-injection
(on page 1-89)

Allows standard behavior. Friend function names are visible only
when using argument-dependent lookup. Friend class names are
never visible.

-no-implicit-inclusion
(on page 1-89)

Prevents implicit inclusion of source files as a method of finding
definitions of template entities to be instantiated

Table 1-4. C Mode (MISRA) Compiler Switches (Cont’d)

Switch Name Description

Compiler Command-Line Switches

1-24 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform to
the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, the following switches should be used: -alttok, -const-read-write,
and -no-extra-keywords. (See Table 1-3.)

-c99

The -c99 switch directs the compiler to support programs that conform to
a freestanding implementation of the ISO/IEC 9899:1999 standard. For
greater conformance to the standard, the following switches should be
used: -alttok, -const-read-write, and -no-extra-keywords. (See
Table 1-3.)

 The compiler does not support the _Complex and _Imaginary key-
words. Complex arithmetic in C mode is enabled by including the
Analog Devices-specific header file <complex.h>.

-no-rtti
(on page 1-89)

Disables run-time type information

-no-std-templates
(on page 1-90)

Disables the lookup of names used in templates

-rtti
(on page 1-90)

Enables run-time type information

-std-templates
(on page 1-90)

Enables the lookup of names used in templates

Table 1-5. C++ Mode Compiler Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.1 1-25
C/C++ Compiler Manual for SHARC Processors

Compiler

-c++

The -c++ (C++ mode) switch directs the compiler to compile the source
file(s) written in ISO/IEC 14882:2003 standard C++ with Analog Devices
language extensions. When using this switch, source files with an exten-
sion of .c are compiled and linked in C++ mode. The compiler implicitly
adds this switch when compiling files with a .cpp extension.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification, because these impose
a run-time overhead that is not desirable for all embedded programs. Sup-
port for these features can be enabled with the -eh and -rtti switches.
(See Table 1-5.)

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in both C and C++ modes.

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. The
cc21k compiler uses the file extension to determine the operations to per-
form. Table 1-3 lists the permitted extensions and matching compiler
operations.

-@ filename

The -@filename (command file) switch directs the compiler to read
command-line input from filename. The specified file must contain
driver options but may also contain source filenames and environment
variables. It can be used to store frequently used options as well as to read
from a file list.

Compiler Command-Line Switches

1-26 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-A name[tokens]

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive. The following assertions are predefined:

The -A name(value) switch is equivalent to including

#assert name(value)

in your source file, and both may be tested in a preprocessor condition in
the following manner:

#if #name(value)

// do something

#else

// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adsp21xxx)

// do something

#endif

 The parentheses in the assertion need quotes when using the -A
switch, to prevent misinterpretation. No quotes are needed for a
#assert directive in a source file.

Table 1-6. Predefined Assertions

Assertion Value

system embedded

machine adsp21xxx

cpu adsp21xxx

compiler cc21k

CrossCore Embedded Studio 1.1 1-27
C/C++ Compiler Manual for SHARC Processors

Compiler

-add-debug-libpaths

The -add-debug-libpaths switch prepends the Debug subdirectory to the
search paths passed to the linker. The Debug subdirectory, found in each
of the silicon-revision-specific library directories, contains variants of cer-
tain libraries (for example, system services), which provide additional
diagnostic output to assist in debugging problems arising from their use.

 Invoke this switch from the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > Processor >
Use Debug System libraries.

-aligned-stack

The -aligned-stack switch directs the compiler to align the program
stack on a double-word boundary.

-alttok

In C89 and C99 modes, the -alttok (alternative tokens) switch directs
the compiler to allow digraph sequences in source files. This switch is
enabled by default in C89 and C99 modes.

In C++ mode, this switch is disabled by default. When enabled in C++
mode, the switch also enables the recognition of alternative operator key-
words listed in Table 1-7, in C++ source files.

Table 1-7. Alternative Operator Keywords

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

or ||

Compiler Command-Line Switches

1-28 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

See also the -no-alttok switch (on page 1-47).

 The -alttok switch has no effect on the use of the alternative
tokens listed in Table 1-7 when in C89 or C99 mode. Instead,
when in C89 or C99 mode, include header file <iso646.h> to use
alternative tokens.

-always-inline

The -always-inline switch instructs the compiler to always attempt to
inline any call to a function that is defined with the inline qualifier. It is
equivalent to applying #pragma always_inline to all functions in the
module that have the inline qualifier. See also the –never-inline switch
(on page 1-46).

 Invoke this switch from the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Inlining to “All functions declared inline”.

-annotate

The -annotate (enable assembly annotations) switch directs the compiler
to annotate assembly files generated by the compiler. The default behavior
is that whenever optimizations are enabled all assembly files generated by
the compiler are annotated with information on the performance of the
generated assembly.

or_eq |=

not !

not_eq !=

xor ^

xor_eq ^=

Table 1-7. Alternative Operator Keywords (Cont’d)

Keyword Equivalent

CrossCore Embedded Studio 1.1 1-29
C/C++ Compiler Manual for SHARC Processors

Compiler

For more information, see Assembly Optimizer Annotations. Also, see also
the –no-annotate switch (on page 1-47).

 Invoke this switch from the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate annotations.

-annotate-loop-instr

The -annotate-loop-instr switch directs the compiler to provide addi-
tional annotation information for the prolog, kernel and epilog of a loop.
See Assembly Optimizer Annotations for more details on this feature. See
also the –no-annotate-loop-instr switch (on page 1-47).

-asms-safe-in-simd-for-loops

The -asms-safe-in-simd-for-loops switch informs the compiler that asm
statements within loops should not be considered a barrier to SIMD code
generation, if the loop is decorated with a SIMD_for pragma, or if the
-loop-simd switch (on page 1-44) has also been specified.

For more information, see SIMD Support.

-auto-attrs

The -auto-attrs (automatic attributes) switch directs the compiler to
emit automatic attributes based on the files it compiles. Emission of auto-
matic attributes is enabled by default. See File Attributes for more
information about attributes, and what automatic attributes the compiler
emits. See also the -no-auto-attrs switch (on page 1-48) and the
-file-attr switch (on page 1-36).

 Invoke this switch from the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Auto-generated attributes.

Compiler Command-Line Switches

1-30 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-build-lib

The -build-lib (build library) switch directs the compiler to use elfar
(the librarian) to produce a library file (.dlb) as the output instead of
using the linker to produce an executable file (.dxe). The -o option must
be used to specify the name of the resulting library.

-C

The -C (comments) switch, which may only be run in combination with
the -E or -P switch, directs the C/C++ preprocessor to retain comments in
its output file.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but stop before linking. The output is an object
file (.doj) for each source file.

-compatible-pm-dm

The compatible-pm-dm switch specifies that the compiler shall treat dm-
and pm-qualified pointers as assignment-compatible.

-component file.xml

The -component (read component file) switch instructs the compiler to
read the specified XML file, and to retrieve additional switches for use
when building applications that make use of the component. The IDE
uses this switch to build projects that employ additional products beside
CCES.

See also -warn-component.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s

CrossCore Embedded Studio 1.1 1-31
C/C++ Compiler Manual for SHARC Processors

Compiler

default behavior assumes that data referenced through const pointers
never changes.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Pointers to const may point to non-const
data.

-const-strings

The -const-strings (const-qualify strings) switch directs the compiler to
mark string literals as const-qualified. This is the default behavior. See
also the -no-const-strings switch (on page 1-48).

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Literal strings are const.

-D macro[=definition]

The -D (define macro) switch directs the compiler to define a macro. If
you do not include the optional definition string, the compiler defines the
macro as the string ‘1’. Note that the compiler processes all -D switches on
the command line before any -U (undefine macro) switches. For more
information, see -U macro.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Preprocessor definitions.

-dependency-add-target target

The -dependency-add-target switch adds target as another target that
relies upon the dependencies in this build. Use this switch in conjunction

Compiler Command-Line Switches

1-32 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

with switches for emitting dependency information, e.g. -M
(on page 1-44).

For example, if you are building apple.doj from apple.c, the compiler’s
dependency output would indicate that apple.doj depends on apple.c.
Using -dependency-add-target pear.doj would cause the compiler to
emit additional dependency information to indicate that pear.doj also
depends on apple.c.

-double-size[-32|-64]

The -double-size-32 (double is 32 bits) and the -double-size-64 (dou-
ble is 64 bits) switches select the storage format that the compiler uses for
type double. The default mode is -double-size-32. For more informa-
tion, see Using Data Storage Formats.

The -double-size-32 switch defines the __DOUBLES_ARE_FLOATS__ macro,
while the -double-size-64 switch undefines the __DOUBLES_ARE_FLOATS__
macro.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Double size to the required value.

-double-size-any

The -double-size-any switch specifies that the input source files make no
use of double-typed data, and that the resulting object files should be
marked in such a way that will enable them to be linked against objects
built with doubles either 32-bit or 64-bit in size.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Allow mixing of sizes.

CrossCore Embedded Studio 1.1 1-33
C/C++ Compiler Manual for SHARC Processors

Compiler

-dry

The -dry (verbose dry run) switch directs the compiler to display main
cc21k actions, but not to perform them.

-dryrun

The -dryrun (terse dry run) switch directs the compiler to display
top-level cc21k actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C/C++ preprocessor runs (without compiling). The output (prepro-
cessed source code) prints to the standard output stream unless the output
file is specified with the -o switch.

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named original_-
filename.i. After preprocessing, compilation proceeds normally.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate preprocessed file.

-EE

The -EE (run after preprocessing) switch is similar to the -E switch, but it
does not halt compilation after preprocessing.

-eh

The -eh (enable exception handling) switch directs the compiler to allow
C++ code that contains catch statements and throw expressions and other
features associated with ANSI/ISO standard C++ exceptions. When this
switch is enabled, the compiler defines the macro __EXCEPTIONS to be 1.

Compiler Command-Line Switches

1-34 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If used when compiling C programs, without the -c++ (C++ Mode) switch
(on page 1-25), the -eh switch directs the compiler to generate exceptions
tables but does not change the language accepted. In this case __EXCEP-
TIONS is not defined.

The –eh switch also causes the compiler to define __ADI_LIBEH__ during
the linking stage so that appropriate sections can be activated in the .ldf
file, and the program can be linked with a library built with exceptions
enabled.

Object files created with exceptions enabled may be linked with objects
created without exceptions. However, exceptions can only be thrown from
and caught, and cleanup code executed, in modules compiled with -eh. If
an attempt is made to throw an exception through the execution of a
function not compiled -eh then abort or the function registered with
set_terminate is called. See also #pragma generate_exceptions_tables and
the -no-eh switch (on page 1-49).

In non-threaded applications, the buffer used for the passing of exception
data is not returned to the heap on application exit. This is to avoid
unnecessary code and will have no impact on behavior.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > C++ exceptions and RTTI.

-enum-is-int

The -enum-is-int switch ensures that the type of an enum is int. By
default, the compiler defines enumeration types with integral types larger
than int, if int is insufficient to represent all the values in the enumera-
tion. This switch prevents the compiler from selecting a type wider than
int. See Enumeration Type Implementation Details for more
information.

CrossCore Embedded Studio 1.1 1-35
C/C++ Compiler Manual for SHARC Processors

Compiler

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Enumerated types are always int.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ANSI/ISO standard C and C++, such as pm and dm, without leading under-
scores, which can affect conforming ANSI/ISO C and C++ programs.
This is the default mode.

When the -extra-keywords switch is in effect, the same set of keywords is
available regardless of language mode; which of those keywords is an
extension, and which is a part of the language Standard, varies according
to the current language mode, as indicated in Table 1-8.

The -no-extra-keywords switch (on page 1-49) can be used to disallow
support for the additional keywords. Table 1-20 provides a list and a brief
description of keyword extensions.

-extra-precision

The -extra-precision switch specifies that the compiler should avoid
instructions and code sequences that could work incorrectly if 40-bit

Table 1-8. Extra Keywords Supported According to Language Mode

Language Mode Extra Keywords Supported Beyond the Language Standard

C89 Mode inline, asm, bank, section, bool, true, false, restrict, segment, pm, dm

C99 Mode asm, bank, section, bool, true, false, segment, pm, dm

C++ Mode bank, section, restrict, segment, pm, dm

Compiler Command-Line Switches

1-36 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

memory accesses are enabled. When the switch is used, the following will
not be generated by the compiler:

• Long word (LW) memory accesses

• SIMD code (unless one of the loop optimization pragmas (SIMD_-
for or vector_for) is used)

• Instructions that could result in 40-bit values being truncated. For
example, to aid instruction grouping, the compiler may replace a
register transfer instruction with an integer PASS instruction.
Although this gives more opportunities for issuing parallel instruc-
tions, it can result in the truncation of a 40-bit extended precision
floating point value to a 32-bit floating point value.

-file-attr name[=value]

The -file-attr (file attribute) switch directs the compiler to add the
specified attribute name/value pair to all the files it compiles. To add mul-
tiple attributes, use the switch multiple times. If “=value” is omitted, the
default value of “1” will be used. See the section File Attributes for more
information about attributes, and what automatic attributes the compiler
emits. See also the -auto-attrs switch (on page 1-29) and the
-no-auto-attrs switch (on page 1-48).

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Additional attributes.

-flags -{asm|compiler|ipa|lib|link|mem|prelink} switch [,switch2
[,...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools.

The tools are listed in Table 1-9.

CrossCore Embedded Studio 1.1 1-37
C/C++ Compiler Manual for SHARC Processors

Compiler

-float-to-int

The -float-to-int switch instructs the compiler to use a support library
function to convert a float to an integer. The library support routine per-
forms extra checking to avoid a floating-point underflow occurring.

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to
make use of circular buffer facilities, even if the compiler cannot verify
that the circular index or pointer is always within the range of the buffer.
Without this switch, the compiler’s default behavior is conservative, and
does not use circular buffers unless it can verify that the circular index or
pointer is always within the circular buffer range. See Circular Buffer
Built-In Functions.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Circular buffer generation to Even when
pointer may be outside buffer range.

Table 1-9. Switches Passed to Other Build Tools

Option Tool

-asm Assembler

-compiler Compiler executable

-ipa IPA solver

-lib Library Builder (elfar.exe)

-link Linker

-mem Memory Initializer

-prelink Prelinker

Compiler Command-Line Switches

1-38 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative operations. This switch is on by
default. See the -no-fp-associative switch (on page 1-50) for more
information.

-full-version

The -full-version (display versions) switch directs the compiler to dis-
play version information for build tools used in a compilation.

-fx-contract

The -fx-contract switch sets the default state of FX_CONTRACT to ON,
which is the default setting. This switch controls the performance and
accuracy of arithmetic on the native fixed-point type, fract. See FX_-
CONTRACT for more information.

See also -no-fx-contract.

-fx-rounding-mode-biased

The -fx-rounding-mode-biased switch sets the default state of FX_ROUND-
ING_MODE to BIASED. This switch controls the rounding behavior of
arithmetic on the native fixed-point type, fract. See Setting the Rounding
Mode for more information.

-fx-rounding-mode-truncation

The -fx-rounding-mode-truncation switch sets the default state of
FX_ROUNDING_MODE to TRUNCATION, which is the default setting. This switch
controls the rounding behavior of arithmetic on the native fixed-point
type, fract. See Setting the Rounding Mode for more information.

CrossCore Embedded Studio 1.1 1-39
C/C++ Compiler Manual for SHARC Processors

Compiler

-fx-rounding-mode-unbiased

The -fx-rounding-mode-unbiased switch sets the default state of
FX_ROUNDING_MODE to UNBIASED. This switch controls the rounding behav-
ior of arithmetic on the native fixed-point type, fract. See Setting the
Rounding Mode for more information.

-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger.

When the -g switch is used in conjunction with the enable optimization
(-O) switch, the compiler performs standard optimizations. The compiler
also outputs symbols and other information to provide limited
source-level debugging through the CCES IDE (debugger). This combi-
nation of options provides line debugging and global variable debugging.

 When the -g and -O switches are specified, no debug information is
available for local variables and the standard optimizations can
sometimes rearrange program code in a way that inaccurate line
number information may be produced. For full debugging capabil-
ities, use the -g switch without the -O switch.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate debug information.

-glite

The -glite (lightweight debugging) switch can be used on its own, or in
conjunction with the -g compiler switch. When this switch is enabled it
instructs the compiler to remove any unnecessary debug information for
the code that is compiled.

When used on its own, the switch also enables the -g option.

Compiler Command-Line Switches

1-40 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 This switch can be used to reduce the size of object and executable
files, but will have no effect on the size of the code loaded onto the
target.

-gnu-style-dependencies

The -gnu-style-dependencies switch changes the format in which
dependency information, such as that produced by the -M switch, is
produced, so that it matches the format used by the GNU make program.
The differences are shown in Table 1-10.

The IDE applies this switch automatically.

-H

The -H (list headers) switch directs the compiler to output only a list of
the files included by the preprocessor via the #include directive, without
compiling.

-HH

The -HH (list headers and compile) switch directs the compiler to output
to the standard output stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.

Table 1-10. Effect of -gnu-style-dependencies switch

Without -gnu-style-dependencies With -gnu-style-dependencies

Quoting Yes (”foo”) No (foo)

Whitespace Quoted (“x y”) Escaped with backslash (x\ y)

Directory
separators

Backslash (\) Forward slash (/)

Path form Canonical (“c:\foo\bar”) Relative (../bar)

CrossCore Embedded Studio 1.1 1-41
C/C++ Compiler Manual for SHARC Processors

Compiler

-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.

-I directory [{,|;} directory...]

The -I (include search directory) switch directs the C/C++ compiler pre-
processor to append the directory (directories) to the search path for
include files. This option can be specified more than once; all specified
directories are added to the search path.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Additional include directories.

Include files, whose names are not absolute path names and that are
enclosed in “...” when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
 <VDSP++ install dir>\...\include

 If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets begins. Normally, for header files enclosed in double quotes, the
compiler searches in the directory containing the current input file; then

Compiler Command-Line Switches

1-42 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

the compiler reverts back to looking in the directories specified with the
-I switch and then in the standard include directory.

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file begins. All include
directories on the command line specified before the -I- switch are used
only in the search for header files that are enclosed in double quotes.

 The -I switch removes the directory containing the current input
file from the include directory list.

-i

The -i (less includes) switch can be used with the –H, -HH, -M, or -MM
switches to direct the compiler to only output header details (-H, -HH) or
makefile dependencies (-M, -MM) for include files specified in double
quotes.

-include filename

The -include (include file) switch directs the preprocessor to process the
specified file before processing the regular input file. Any -D and -U
options on the command line are always processed before an -include file.
Only one -include may be given.

-ipa

The -ipa (interprocedural analysis) switch turns on Interprocedural
Analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled
separately. If used, the -ipa option should be applied to all C and C++
files in the program. For more information, see Interprocedural Analysis.
Specifying -ipa also implies setting the -O switch (on page 1-57).

CrossCore Embedded Studio 1.1 1-43
C/C++ Compiler Manual for SHARC Processors

Compiler

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Interprocedural optimization.

-L directory[{;|,}directory…]

The -L (library search directory) switch directs the compiler to append the
directory to the search path for library files.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > General >
Search directories.

-l library

The -l (link library) switch directs the compiler to search the library for
functions and global variables when linking. The library name is the por-
tion of the file name between the lib prefix and .dlb extension.

For example, the -lc compiler switch directs the linker to search in the
library named c. This library resides in a file named libc.dlb.

When using this switch, list all object files on the command line before
listing libraries using the -l switch. When a reference to a symbol is made,
the symbol definition will be taken from the left-most object or library on
the command line that contains the global definition of that symbol. If
two objects on the command line contain definitions of the symbol x, x
will be taken from the left-most object on the command line that contains
a global definition of x.

If one of the definitions for x comes from user objects, and the other from
a user library, and the library definition should be overridden by the user
object definition, it is important that the user object comes before the
library on the command line.

Libraries included in the default .ldf file are searched last for symbol
definitions.

Compiler Command-Line Switches

1-44 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > General >
Additional libraries and object files.

-linear-simd

The -linear-simd (generate linear SIMD code) switch directs the com-
piler to attempt to produce SIMD instructions in linear code. For more
information, see SIMD Support.

See also -no-linear-simd.

-list-workarounds

The -list-workarounds (list supported errata workarounds) switch dis-
plays a list of all errata workarounds which the compiler supports. See
Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler for details of valid workarounds and the interaction of the
-si-revision, -workaround and -no-workaround switches.

-loop-simd

The -loop-simd (use SIMD in loops) switch directs the compiler to gener-
ate SIMD code when possible.

 On certain SHARC processors (e.g. ADSP-21367/8/9), SIMD
accesses of external memory are not supported. Do not use this
switch if the data that is accessed in the loop might be mapped to
external memory. For more information, refer to your processor’s
hardware reference manual.

For more information, see SIMD Support.

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file, but to output a rule suitable for the make utility,

CrossCore Embedded Studio 1.1 1-45
C/C++ Compiler Manual for SHARC Processors

Compiler

describing the dependencies of the main program file. The format of the
make rule output by the preprocessor is:

object-file: include-file …

-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the
dependencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch (on page 1-45).

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to standard out a rule describing the dependencies of the main
program file. After preprocessing, compilation proceeds normally.

-Mo filename

The -Mo filename (preprocessor output file) switch directs the compiler
to use filename for the output of –MD or –ED switches.

-Mt name

The -Mt name (output make rule for the named source) switch modifies the
target of generated dependencies, renaming the target to name. It only has
an effect when used in conjunction with the -M or -MM switch.

-map filename

The -map filename (generate a memory map) switch directs the linker to
output a memory map of all symbols. The map file name corresponds to
the filename argument. For example, if the argument is test, the map file
name is test.xml. The .xml extension is added where necessary.

Compiler Command-Line Switches

1-46 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-mem

The -mem (enable memory initialization) switch directs the compiler to
run the mem21k initializer (utility). The memory initializer can be con-
trolled through the -mem switch (on page 1-36), or disabled using the
-no-mem switch (on page 1-51).

For more information, see:

• Processor Startup, in the System Run-Time Documentation.

• Memory Initializer, in the Linker and Utilities Manual.

-multiline

The -multiline switch directs the compiler to allow string literals to span
multiple lines without the need for a “\” at the end of each line. This is the
default mode. See the -no-multiline switch (on page 1-51) for more
information.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Allow multi-line character strings.

-never-inline

The -never-inline switch instructs the compiler to ignore the inline
qualifier on function definitions, so that no calls to such functions will be
inlined. See also -always-inline.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Inlining to Never.

CrossCore Embedded Studio 1.1 1-47
C/C++ Compiler Manual for SHARC Processors

Compiler

-no-aligned-stack

The -no-aligned-stack (disable stack alignment) switch directs the com-
piler to not align the program stack on a double-word boundary. For more
information, see -aligned-stack.

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept digraph sequences in the source files. This switch is enabled
by default in C++ mode, and disabled by default in C89 and C99 modes.
In C++ mode, the switch also controls the acceptance of alternative opera-
tor keywords. For more information, see -alttok.

-no-annotate

The -no-annotate (disable assembly annotations) switch directs the com-
piler not to annotate assembly files generated by the compiler. The default
behavior is that whenever optimizations are enabled all assembly files gen-
erated by the compiler are annotated with information on the
performance of the generated assembly. See Assembly Optimizer Annota-
tions for more details on this feature. For more information, see
-annotate.

 Invoke this switch in the IDE by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate annotations.

-no-annotate-loop-instr

The -no-annotate-loop-instr switch disables the production of addi-
tional loop annotation information by the compiler. This is the default
mode. See the -annotate-loop-instr switch (on page 1-29).

Compiler Command-Line Switches

1-48 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-no-assume-vols-are-iops

The -no-assume-vols-are-iops switch specifies that the compiler should
not assume that volatile accesses to memory are accessing mem-
ory-mapped IOP registers. By default, the compiler will apply
workarounds for IOP-related anomalies to volatile memory accesses,
unless it can determine that the access is not to an IOP register.

-no-auto-attrs

The -no-auto-attrs (no automatic attributes) switch directs the compiler
not to emit automatic attributes based on the files it compiles. Emission of
automatic attributes is enabled by default. See File Attributes for more
information about attributes, and what automatic attributes the compiler
emits. See also the -auto-attrs switch (on page 1-29) and the -file-attr
switch (on page 1-36).

 Invoke this switch in the IDE by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Auto-generated attributes.

-no-circbuf

The -no-circbuf (no circular buffer) switch disables the automatic gener-
ation of circular buffer code by the compiler. Uses of the circindex() and
circptr() functions (that is, explicit circular buffer operations) are not
affected.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Circular Buffer Generation to Never.

-no-const-strings

The -no-const-strings switch directs the compiler not to make string lit-
erals const qualified. This is the default. See the -const-strings switch
(on page 1-31) for more information.

CrossCore Embedded Studio 1.1 1-49
C/C++ Compiler Manual for SHARC Processors

Compiler

 Invoke this switch in the IDE by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Literal strings are const.

-no-db

The -no-db (no delayed branches) switch specifies that the compiler shall
not generate jumps that use delayed branches.

 Disabling of interrupts within the epilogue code of a re-entrant
interrupt function still uses a delayed branch jump to minimise
interrupt latency.

-no-defs

The -no-defs (disable defaults) switch directs the preprocessor not to
define any default preprocessor macros, include directories, library direc-
tories or libraries. It also disables the Analog Devices cc21k C/C++
keyword extensions.

-no-eh

The -no-eh (disable exception handling) switch directs the compiler to
disallow ANSI/ISO C++ exception handling. This is the default mode. See
the -eh switch (on page 1-33) for more information.

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might conflict with valid C/C++ identifiers, for example, keywords such as
pm and dm. Alternate keywords, which are prefixed with two leading under-
scores, such as __pm and __dm, continue to work. See the -extra-keywords
switch (on page 1-35) for more information.

Compiler Command-Line Switches

1-50 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Disable Analog Devices extension keywords.

-no-fp-associative

The -no-fp-associative switch directs the compiler not to treat
floating-point multiplication and addition as associative operations. See
the -fp-associative switch (on page 1-38) for more information.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Do not treat floating-point operations as
associative.

-no-fx-contract

The -no-fx-contract switch sets the default state of FX_CONTRACT to OFF.
This switch controls the performance and accuracy of arithmetic on the
native fixed-point type, fract. See FX_CONTRACT for more
information.

See also -fx-contract.

-no-linear-simd

The -no-linear-simd (do not generate linear SIMD code) switch directs
the compiler not to attempt to produce SIMD instructions in linear code.
For more information, see SIMD Support.

See also -linear-simd.

-no-main-calls-exit

The -no-main-calls-exit switch specifies that the compiler should not
insert a call to exit() at the end of main(). Instead, main() will end with
the standard function return sequence.

CrossCore Embedded Studio 1.1 1-51
C/C++ Compiler Manual for SHARC Processors

Compiler

-no-mem

The -no-mem (disable memory initialization) switch directs the compiler
not to run the mem21k initializer. See the -mem switch (on page 1-46) for
more information.

-no-multiline

The -no-multiline switch directs the compiler to disallow string literals
which span multiple lines without a “\” at the end of each line. See the
-multiline switch (on page 1-46) for more information.

 Invoke this switch by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Allow multi-line character strings.

-no-progress-rep-timeout

The -no-progress-rep-timeout (disable progress message for long compi-
lations) switch disables the diagnostic message issued by the compiler to
indicate that it is still working, when a function’s compilation is taking an
excessively long time. The message is disabled by default. See also the
-progress-rep-timeout switch (on page 1-66) and the -prog-
ress-rep-timeout-secs switch (on page 1-66).

-no-rtcheck

The -no-rtcheck (disable run-time checking) switch directs the compiler
to disable generation of additional code to check at runtime for common
programming errors. This switch is the default, and is equivalent to speci-
fying all of the following switches:

• -no-rtcheck-arr-bnd

• -no-rtcheck-div-zero

• -no-rtcheck-heap

Compiler Command-Line Switches

1-52 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• -no-rtcheck-null-ptr

• -no-rtcheck-shift-check

• -no-rtcheck-stack

• -no-rtcheck-unassigned

See also -rtcheck.

-no-rtcheck-arr-bnd

The -no-rtcheck-arr-bnd (do not check array bounds at runtime) switch
directs the compiler not to generate additional code to verify that array
accesses are within the bounds of the array.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-div-zero

The -no-rtcheck-div-zero (do not check for division by zero at runtime)
switch directs the compiler not to generate additional code to verify that
divisors are non-zero before performing division operations.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-heap

The -no-rtcheck-heap (do not heap operations at runtime) switch directs
the compiler not to link against the debugging version of the heap
libraries.

CrossCore Embedded Studio 1.1 1-53
C/C++ Compiler Manual for SHARC Processors

Compiler

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-null-ptr

The -no-rtcheck-null-ptr (do not check for NULL pointers at runtime)
switch directs the compiler not to generate additional code to verify that
pointers are not NULL, before dereferencing them.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings > Tool
Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-shift-check

The -no-rtcheck-shift-check (do not check shift values at runtime)
switch directs the compiler not to generate additional code to verify that,
when shifting a value X by some amount Y, Y is a positive amount, and
less than the number of bits used to represent X’s type.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-stack

The -no-rtcheck-stack (do not check for stack overflow at runtime)
switch directs the compiler not to link in the modified startup and inter-
rupt vector code to enable CB7I to trap stack overflow occurrences.

Compiler Command-Line Switches

1-54 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-unassigned

The -no-rtcheck-unassigned (do not check variables are assigned at run-
time) switch directs the compiler not to generate additional code to verify
that variables have been assigned a value before they are used.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-sat-associative

The -no-sat-associative (saturating addition is not associative) switch
instructs the compiler not to consider saturating addition operations as
associative: (a+b)+c may not be rewritten as a+(b+c), when the addition
operator saturates. The default is that saturating addition is not
associative. See the -sat-associative switch (on page 1-72) for more
information.

-no-saturation

The -no-saturation switch directs the compiler not to introduce faster
operations in cases where the faster operation would saturate (if the
expression overflowed) when the original operation would have wrapped
the result. The code produced may be less efficient than when the switch
is not used. Saturation is enabled by default when optimizing, and may be
disabled by this switch. Saturation is disabled when not optimizing (this
switch is the default when not optimizing).

CrossCore Embedded Studio 1.1 1-55
C/C++ Compiler Manual for SHARC Processors

Compiler

-no-shift-to-add

The -no-shift-to-add switch prevents the compiler from replacing a
shift-by-one instruction with an addition. While this can produce faster
code, it can also lead to arithmetic overflow.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Disable shift-to-add conversion.

-no-simd

The -no-simd (disable SIMD mode) switch directs the compiler to disable
automatic SIMD code generation. Note that SIMD code is still generated
for a loop if it is preceded with the “SIMD_for” pragma. The pragma is
treated as an explicit user request to generate SIMD code and is always
obeyed, if possible. See SIMD Support for more information.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Disable automatic SIMD code generation.

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-26) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions.

 This switch also disables the Analog Devices keyword extensions
that have no leading underscores, such as pm and dm.

Compiler Command-Line Switches

1-56 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search for header files in the current directory and
directories specified with the -I switch.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Preproces-
sor > Ignore standard include paths.

-no-std-lib

The -no-std-lib (disable standard library search) switch directs the com-
piler to search for libraries in only the current project directory and
directories specified with the -L switch.

-no-threads

The -no-threads (disable thread-safe build) switch directs the compiler to
link against the non-thread-safe variants of the C/C++ run-time library.
This is the default.

See also -threads.

-no-workaround workaround_id[,workaround_id …]

The -no-workaround workaround_id (disable avoidance of specific errata)
switch disables compiler code generator workarounds for specific hard-
ware errata. See Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler for details of valid workarounds and the interactions
of the -si-revision, -workaround and -no-workaround switches.

-normal-word-code

The -normal-word-code switch has the same effect as compiling with the
-nwc switch. It directs the compiler to generate instructions of normal
word size (48-bits). This switch applies only when compiling code tar-
geted for 214xx processors.

CrossCore Embedded Studio 1.1 1-57
C/C++ Compiler Manual for SHARC Processors

Compiler

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Variable Instruction Set Encoding (VISA) to Generate Normal
Word code.

-nwc

The -nwc switch has the same effect as compiling with the
-normal-word-code switch. It directs the compiler to generate instructions
of normal word size (48-bits). This switch applies only when compiling
code targeted for 214xx processors.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Variable Instruction Set Encoding (VISA) to Generate Normal
Word code.

-O[0|1]

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the cc21k compiler. (Note that the switch settings begin with
the uppercase letter “O” and end with a digit—a zero or a one.) The
switch setting -O or -O1 turns optimization on, while setting -O0 turns off
all optimizations.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Enable optimization.

-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C/C++ functions, which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch (on page 1-58).
Therefore, use of -Ov100 indicates that as many functions as possible are

Compiler Command-Line Switches

1-58 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

auto-inlined, whereas –Ov0 prevents any function from being auto-inlined.
Specifying -Oa also implies the use of -O.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Inlining to Automatic.

-Os

The -Os (optimize for size) switch directs the compiler to produce code
that is optimized for size. This is achieved by performing all optimizations
except those that increase code size. The optimizations not performed
include loop unrolling, some delay slot filling, and jump avoidance.

-Ov num

The -Ov num (optimize for speed versus size) switch informs the compiler
of the relative importance of speed versus size, when considering whether
such trade-offs are worthwhile. The num variable should be an integer
between 0 (purely size) and 100 (purely speed).

For any given optimization, the compiler modifies the code being gener-
ated. Some optimizations produce code that will execute in fewer cycles,
but which will require more code space. In such cases, there is a trade-off
between speed and space.

The num variable indicates a sliding scale between 0 and 100 which is the
probability that a linear piece of generated code—a “basic block”—will be
optimized for speed or for space. At -Ov0 all blocks are optimized for space
(equivalent to -Os) and at -Ov100 all blocks are optimized for speed
(equivalent to -O). At any point in between, the decision is based upon num
and how many times the block is expected to be executed—the “execution
count” of the block. Figure 1-1 demonstrates this relationship.

For any given optimization where speed and size conflict, the potential
benefit is dependent on the execution count: an optimization that
increases performance at the expense of code size is considerably more

CrossCore Embedded Studio 1.1 1-59
C/C++ Compiler Manual for SHARC Processors

Compiler

beneficial if applied to the core loop of a critical algorithm than if applied
to one-time initialization code or to rarely-used error-handling functions.
If code appears to be executed only once, it will be optimized for space. As
its execution count increases, so too does the likelihood that the compiler
will consider the code increase worthwhile for the corresponding benefit
in performance.

As Figure 1-1 shows, the -Ov switch affects the point at which a given exe-
cution count is considered sufficient to switch optimization from “for
space” to “for speed”. Where num is a low value, the compiler is biased
towards space, so a block’s execution count has to be relatively high for the
compiler to apply code-increasing transformations. Where num has a high
value, the compiler is biased towards speed, so the same transformation
will be considered valid for a much lower execution count.

The -Ov switch is most effective when used in conjunction with profile-
guided optimization, where accurate execution counts are available.

Figure 1-1. -Ov Switch Optimization Curve

0

Execution
count

Optimize for speed

-Ovnum
0 100

Infinity

Optimize for space

Limit line

Compiler Command-Line Switches

1-60 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Without profile-guided optimization, the compiler makes estimates of the
relative execution counts using heuristics.

 Invoke this switch in the IDE by entering an appropriate value into
the Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > General > Optimize for code
size/speed field.

For more information, see Using Profile-Guided Optimization.

-o filename

The -o (output file) switch directs the compiler to use filename for the
name of the final output file.

-overlay

The -overlay (program may use overlays) switch will disable the propaga-
tion of register information between functions and force the compiler to
assume that all functions clobber all scratch registers. Note that this switch
will affect all functions in the source file, and may result in a performance
degradation. For information on disabling the propagation of register
information only for specific functions, see #pragma overlay.

-overlay-clobbers clobbered-regs

The -overlay-clobbers (registers clobbered by overlay manager) switch
identifies the set of registers clobbered by an overlay manager, if one is
used. The compiler will assume that any call to an overlay-managed
function will clobber the values in clobbered-regs, in addition to those
clobbered by the function in question. A function is considered to be an
overlay-managed function if the -overlay switch (on page 1-60) is speci-
fied, or if the function is marked with #pragma overlay (on page 1-232).

The clobbered-regs variable is a single string formatted as per the argu-
ment to #pragma regs_clobbered, except that individual components of
the list may also be separated by commas.

CrossCore Embedded Studio 1.1 1-61
C/C++ Compiler Manual for SHARC Processors

Compiler

 Whitespace and semi-colons are valid separators for the compo-
nents of the list, but must be properly quoted when being passed to
the compiler.

Examples:

cc21k -O t.c -overlay -overlay-clobbers r3,m4,r5

cc21k -O t.c -overlay -overlay-clobbers Dscratch

cc21k -O t.c -overlay -overlay-clobbers "r3 m4;r5"

-P

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit the #line pre-
processor command with line number information from the preprocessor
output. The -C switch can be used in conjunction with -P to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.

-p

The -p (generate instrumented profiling) switch directs the compiler to
generate the additional instructions needed to profile the program by
recording the number of cycles spent in each function.

The -p switch writes the data to a .prf file. For more information on pro-
filing, see Profiling With Instrumented Code.

 Invoke this switch in the IDE via Project >Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Profiling >
Enable compiler instrumented profiling.

Compiler Command-Line Switches

1-62 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-path-{ asm | compiler | ipa | lib | link | prelink } pathname

The -path-{asm|compiler|ipa|lib|link|prelink} pathname (tool loca-
tion) switch directs the compiler to use the specified component in place
of the default-installed version of the compilation tool. The component
comprises a relative or absolute path to its location. Respectively, the tools
are the assembler, compiler, IPA solver, library builder, linker or
prelinker. Use this switch when overriding the normal version of one or
more of the tools. The -path-{...} switch also overrides the directory
specified by the -path-install switch.

-path-install directory

The -path-install (installation location) switch directs the compiler to
use the specified directory as the location for all compilation tools instead
of the default path. This is useful when working with multiple versions of
the tool set.

 You can selectively override this switch with the -path-{asm|com-
piler|ipa|lib|link|prelink} switch.

-path-output directory

The -path-output (non-temporary files location) switch directs the com-
piler to place final output files in the specified directory.

-path-temp directory

The -path-temp (temporary files location) switch directs the compiler to
place temporary files in the specified directory.

CrossCore Embedded Studio 1.1 1-63
C/C++ Compiler Manual for SHARC Processors

Compiler

-pgo-session session-id

The -pgo-session (specify PGO session identifier) switch is used with
profile-guided optimization. It has the following effects:

• When used with the -pguide switch (on page 1-63), the compiler
associates all counters for this module with the session identifier
session-id.

• When used with a previously-gathered profile (a .pgo file), the
compiler ignores the profile contents, unless they have the same
session-id identifier.

This is most useful when the same source file is being built in more than
one way (for example, different macro definitions, or for multiple proces-
sors) in the same application; each variant of the build can have a different
session-id associated with it, which means that the compiler will be able
to identify which parts of the gathered profile should be used when opti-
mizing for the final build.

If each source file is only built in a single manner within the system (the
usual case), then the -pgo-session switch is not needed.

 Invoke this switch in the IDE by entering a suitable name into the
Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Profile-guided Optimization > PGO Session name
field.

For more information, see for more information see, Using Pro-
file-Guided Optimization.

-pguide

The -pguide switch causes the compiler to add instrumentation for the
gathering of a profile (a .pgo file) as the first stage of performing profile-
guided optimization.

Compiler Command-Line Switches

1-64 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Profile-guided Optimization > Prepare application to create new
profile.

For more information, see Using Profile-Guided Optimization.

-pplist filename

The -pplist (preprocessor listing) directs the preprocessor to output a
listing to the named file. When more than one source file is preprocessed,
the listing file contains information about the last file processed. The gen-
erated file contains raw source lines, information on transitions into and
out of include files, and diagnostics generated by the compiler.

Each listing line begins with a key character that identifies its type as
shown in Table 1-11.

Table 1-11. Key Characters

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)

CrossCore Embedded Studio 1.1 1-65
C/C++ Compiler Manual for SHARC Processors

Compiler

-proc processor

The -proc processor (target processor) switch specifies the compiler pro-
duces code suitable for the specified processor. Refer to CCES online help
for the list of supported SHARC processors. For example,

cc21k -proc ADSP-21161 -o bin\p1.doj p1.asm

 If no target is specified with the -proc switch, the system uses the
ADSP-21160 processor settings as a default.

When compiling with the -proc switch, the appropriate processor macro
as well as __ADSP21000__ are defined as 1. For example, __ADSP21160__
and __ADSP-21000__ are 1.

 See also -si-revision version for more information on silicon revi-
sion of the specified processor.

-prof-hw

The -prof-hw switch instructs the compiler to generate profiling code that
shall be run on hardware (rather than on the simulator). The switch
requires a supported profiling switch to also be specified on the command
line. Supported profiling methods are profile-guided optimization
(-pguide).

 Instrumented profiling (-p) does not differentiate between execu-
tion on hardware or simulator, and can be executed on both
targets. It does not require the -prof-hw switch.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings >Tool Settings > Compiler >
Profile-guided Optimization > Gather profile using hardware.

-progress-rep-func

The -progress-rep-func switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing very large

Compiler Command-Line Switches

1-66 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

source files. It issues a “warning” message each time the compiler starts
compiling a new function. The “warning” message is a remark that is
disabled by default, and this switch enables the remark as a warning. The
switch is equivalent to -Wwarn=cc1472.

-progress-rep-opt

The -progress-rep-opt switch provides feedback on the compiler’s prog-
ress that may be useful when compiling and optimizing a very large,
complex function. It issues a “warning” message each time the compiler
starts a new optimization pass on the current function. The “warning”
message is a remark that is disabled by default, and this switch enables the
remark as a warning. The switch is equivalent to -Wwarn=cc1473.

-progress-rep-timeout

The -progress-rep-timeout switch issues a diagnostic message if the
compiler exceeds a time limit during compilation. This indicates the com-
piler is still operating, just taking a long time.

-progress-rep-timeout-secs secs

The -progress-rep-timeout-secs switch specifies how many seconds
must elapse during a compilation before the compiler issues a diagnostic
message about the length of time the compilation has used so far.

-R directory[{:|,}directory …]

The -R directory (add source directory) switch directs the compiler to
add the specified directory to the list of directories searched for source
files. On Windows platforms, multiple source directories are given as a
colon, comma, or semicolon separated list.

The compiler searches for the source files in the order specified on the
command line. The compiler searches the specified directories before
reverting to the current project directory. The -R directory option is

CrossCore Embedded Studio 1.1 1-67
C/C++ Compiler Manual for SHARC Processors

Compiler

position-dependent on the command line. That is, it affects only source
files that follow the option.

 Source files whose file names begin with /, ./ or ../ (or Windows
equivalent) and contain drive specifiers (on Windows platforms)
are not affected by this option

-R-

The -R- (disable source path) switch removes all directories from the stan-
dard search path for source files, effectively disabling this feature.

 This option is position-dependent on the command line; it only
affects files following it.

-reserve register[, register …]

The -reserve (reserve register) switch directs the compiler not to use the
specified registers. This guarantees that a known set of registers are avail-
able for inline assembly code or linked assembly modules. Separate each
register name with a comma on the compiler command line.

You can reserve the following registers: b0, l0, m0, i0, b1, l1, m1, i1, b8,
l8, m8, i8, b9, l9, m9, i9, ustat1, ustat2, ustat3 and ustat4. When
reserving an L (length) register, you must reserve the corresponding I
(index) register; reserving an L register without reserving the correspond-
ing I register may result in execution problems.

-restrict-hardware-loops maximum

The -restrict-hardware-loops maximum switch restricts the level of
nested hardware loops that the compiler generates. The default setting is
6, which is the maximum number of levels that the hardware supports.

When compiling with the -restrict-hardware-loops maximum switch,
the compiler will assume that any functions called by the code being com-
piler also do not use more hardware loops than the number specified. It is
therefore necessary to make sure you compile any called functions with

Compiler Command-Line Switches

1-68 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

this switch too. Functions in the standard libraries shipped with CCES do
not use more than 3 levels of nested hardware loops.

C++ code makes implicit calls to code in the CCES libraries, to provide
functionality such as exception handling and memory management. These
functions may use a maximum of one hardware loop level. When compil-
ing C++ code, it is therefore not possible to restrict the hardware loop
usage to zero, since one loop level is required for these implicit calls. Use
of the -restrict-hardware-loops 0 switch to compile C++ code will
result in a build-time error.

-rtcheck

The -rtcheck (run-time checking) switch directs the compiler to generate
additional code to check at runtime for common programming errors.
This switch is equivalent to specifying all of the following switches:

• -rtcheck-arr-bnd

• -rtcheck-div-zero

• -rtcheck-heap

• -rtcheck-null-ptr

• -rtcheck-shift-check

• -rtcheck-stack

• -rtcheck-unassigned

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via Project > Properties > C/C++
Build > Settings > Tool Settings > Compiler > Processor > Enable
run-time checking.

CrossCore Embedded Studio 1.1 1-69
C/C++ Compiler Manual for SHARC Processors

Compiler

-rtcheck-arr-bnd

The -rtcheck-arr-bnd (check array bounds at runtime) switch directs the
compiler to generate additional code to verify that array accesses are
within the bounds of the array.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-div-zero

The -rtcheck-div-zero (check for division by zero at runtime) switch
directs the compiler to generate additional code to verify that divisors are
non-zero before performing division operations.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-heap

The -rtcheck-heap (check heap operations at runtime) switch directs the
compiler to link against the debugging variant of the heap library. For
more information, see Heap Debugging.

Compiler Command-Line Switches

1-70 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-null-ptr

The -rtcheck-null-ptr (check for NULL pointers at runtime) switch
directs the compiler to generate additional code to verify that pointers are
not NULL, before dereferencing them.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-shift-check

The -rtcheck-shift-check (check shift values at runtime) switch directs
the compiler to generate additional code to verify that, when shifting a
value X by some amount Y, Y is a positive amount, and less than the num-
ber of bits used to represent X’s type.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

CrossCore Embedded Studio 1.1 1-71
C/C++ Compiler Manual for SHARC Processors

Compiler

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-stack

The -rtcheck-stack (check for stack overflow at runtime) switch directs
the compiler to link with modified startup code and interrupt vector code
that uses the CB7I interrupt to trap occurrences of stack overflow. For
more information, see Stack Overflow Detection.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-unassigned

The -rtcheck-unassigned (check variables are assigned at runtime) switch
directs the compiler to generate additional code to verify that variables
have been assigned a value before they are used.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

Compiler Command-Line Switches

1-72 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-S

The -S (stop after compilation) switch directs cc21k to stop compilation
before running the assembler. The compiler outputs an assembly file
with an .s extension.

-s

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output execut-
able file during linking.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > General >
Strip all symbols.

-sat-associative

The -sat-associative (saturating addition is associative) switch instructs
the compiler to consider saturating addition operations as associative:
(a+b)+c may be rewritten as a+(b+c), when the addition operator satu-
rates. The default is that saturating addition is not associative.

-save-temps

The -save-temps (save intermediate files) switch directs the compiler to
retain intermediate files, generated and normally removed as part of the
various compilation stages. These intermediate files are placed in the
–path-output specified output directory or the build directory if the
–path-output switch is not used. See Table 1-3 for a list of intermediate
files.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Save temporary files.

CrossCore Embedded Studio 1.1 1-73
C/C++ Compiler Manual for SHARC Processors

Compiler

-section id=section_name[,id=section_name...]

The -section switch controls the placement of types of data produced by
the compiler. The data is placed into the section_name section as specified
on the command line.

The compiler currently supports the following section identifiers; see
Placement of Compiler-Generated Code and Data for more information.

code Controls placement of machine instructions
Default is seg_pmco.

data Controls placement of initialized variable data
Default is seg_dmda

pm_data Controls placement of initialized data declared with the _pm keyword

constdata Controls placement of constant data

pm_constdata Controls placement of constant data declared with the _pm keyword

bsz Controls placement of zero-initialized variable data
Default is seg_dmda.

sti Controls placement of the static C++ class constructor “start” functions
Default is seg_pmco. For more information, see Constructors and
Destructors of Global Class Instances.

switch Controls placement of jump-tables used to implement C/C++ switch
statements.

strings Controls placement of string literals.

vtbl Controls placement of the C++ virtual lookup tables
Default is seg_vtbl.

vtable Synonym for vtbl

autoinit Controls placement of data used to initialise aggregate autos

alldata Controls placement of data, constdata, bss, strings and autoinit
all at once

Compiler Command-Line Switches

1-74 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Note that alldata is not a real section kind, but rather a placeholder for
data, constdata, bsz, strings and autoinit. Therefore,

-section alldata=X

is equivalent to

-section data=X

-section constdata=X

-section bsz=X

-section strings=X

-section autoinit=X

Make sure that the section selected via the command line exists within the
.ldf file. (Refer to the “Linker” chapter in the Linker and Utilities
Manual.)

-short-word-code

The -short-word-code switch has the same effect as compiling with the
-swc switch on page 1-76. It directs the compiler to generate instructions
of short word size (16/32/48-bits). This switch only applies when compil-
ing code targeted for 214xx processors and is the default setting.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Variable Instruction Set Encoding (VISA) to Generate VISA code.

-show

The -show (display command line) switch shows the command-line argu-
ments passed to cc21k, including expanded option files and environment
variables. This option allows you to ensure that command-line options
have been passed successfully.

CrossCore Embedded Studio 1.1 1-75
C/C++ Compiler Manual for SHARC Processors

Compiler

-si-revision version

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision (version). Any errata workarounds
available for the targeted silicon revision will be enabled. For more infor-
mation, see Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler.

-signed-bitfield

The -signed-bitfield (make plain bit-fields signed) switch directs the
compiler to make plain bit-fields — those which have not been declared
with an explicit signed or unsigned keyword — be signed. This is the
default mode. For more information, see -unsigned-bitfield.

-structs-do-not-overlap

The -structs-do-not-overlap switch specifies that the source code being
compiled contains no structure copies such that the source and the desti-
nation memory regions overlap each other in a non-trivial way.

For example, in the statement

*p = *q;

where p and q are pointers to some structure type S, the compiler, by
default, always ensures that, after the assignment, the structure pointed to
by “p” contains an image of the structure pointed to by “q” prior to the
assignment. In the case where p and q are not identical (in which case the
assignment is trivial) but the structures pointed to by the two pointers
may overlap each other, doing this means that the compiler must use the
functionality of the C library function “memmove” rather than “memcpy”.

It is slower to use “memmove” to copy data than it is to use “memcpy”. There-
fore, if your source code does not contain such overlapping structure
copies, you can obtain higher performance by using the command-line
switch -structs-do-not-overlap.

Compiler Command-Line Switches

1-76 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Structs/classes do not overlap.

-swc

The -swc switch has the same effect as compiling with the
-short-word-code switch on page 1-74. It directs the compiler to generate
instructions of short-word size (16/32/48-bits). This switch only applies
when compiling code targeted for 214xx processors and is the default
setting.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Variable Instruction Set Encoding (VISA) to Generate VISA code.

-syntax-only

The -syntax-only (check syntax only) switch directs the compiler to
check the source code for syntax errors but not to write any output.

-sysdefs

The -sysdefs (system definitions) switch directs the compiler to define
several preprocessor macros describing the current user and user’s system.
The macros are defined as character string constants.

The following macros are defined if the system returns information for
them (Table 1-12).

Table 1-12. System Macros Defined

Macro Description

__HOSTNAME__ The name of the host machine

__SYSTEM__ The Operating System name of the host machine

__USERNAME__ The current user’s login name

CrossCore Embedded Studio 1.1 1-77
C/C++ Compiler Manual for SHARC Processors

Compiler

-T filename

The -T (linker description file) switch directs the compiler to use the spec-
ified linker description file (.ldf) as control input for linking. If -T is not
specified, a default .ldf file is selected based on the processor variant.

-threads

The -threads switch directs the compiler to link against the thread-safe
variants of the C/C++ run-time libraries. When used, the -threads switch
defines the macro _ADI_THREADS as one (1) at the compile, assemble and
link phases of a build.

See also -no-threads.

 The use of the -threads switch does not imply that the compiler
will produce thread-safe code when compiling C/C++ source.
Make sure to use multi-threaded programming practises in your
code.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > Processor >
Link against thread-safe run-time libraries.

-time

The -time (tell time) switch directs the compiler to display the elapsed
time as part of the output information about each phase of the compila-
tion process.

-U macro

The -U (undefine macro) switch directs the compiler to undefine macros.
If you specify a macro name, it is undefined. Note that the compiler pro-
cesses all -D (define macro) switches on the command line before any -U
(undefine macro) switches. For more information, see
-D macro[=definition].

Compiler Command-Line Switches

1-78 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Preprocessors undefines.

-unsigned-bitfield

The -unsigned-bitfield (make plain bit-fields unsigned) switch directs
the compiler to make plain bit-fields—those which have not been declared
with an explicit signed or unsigned keyword—be unsigned.

For example, given the declaration

struct {

int a:2;

int b:1;

signed int c:2;

unsigned int d:2;

} x;

Table 1-13 lists the bit-field values.

See also -signed-bitfields switch (on page 1-75).

-v

The -v (version and verbose) switch directs the compiler to display both
the version and command-line information for all the compilation tools as
they process each file.

Table 1-13. Bit-Field Values

Field -unsigned-bitfield -signed-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 -1..0 Plain field

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned

CrossCore Embedded Studio 1.1 1-79
C/C++ Compiler Manual for SHARC Processors

Compiler

-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display its
version information.

-W{annotation|error|remark|suppress|warn} number[,number ...]

The -W{...} number (override error message) switch directs the compiler
to override the severity of the specified diagnostic messages (annotations,
errors, remarks, or warnings). The number argument specifies the message
to override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. The {D} (discretionary) string after the diag-
nostic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

 If the processing of the compiler command line generates a diag-
nostic, the position of the -W switch on the command line is
important. If the -W switch changes the severity of the diagnostic, it
must occur before the command line switch that generates the
diagnostic; otherwise, no change of severity will occur.

Also, as shown in the Console view and in help, error codes some-
times begin with a leading zero (for example, cc0025). If you try to
suppress error codes with #pragma diag() or
-W{annotation|error|remark|suppress|warn}, and supply the
code with a leading zero, it does not work. This is because the com-
piler reads the number as an octal value, and will suppress a
different warning or error.

Compiler Command-Line Switches

1-80 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-Wannotations

The -Wannotations (enable code generation annotations) switch directs
the compiler to issue code generation annotations, which are messages
milder than warnings that may help you to optimize your code.

 Invoke this switch in the IDE by settings Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Warning/annotation/remark control to Errors, warnings and
annotations.

-Werror-limit number

The -Werror-limit (maximum compiler errors) switch lets you set a max-
imum number of errors for the compiler before it aborts.

-Werror-warnings

The -Werror-warnings (treat warnings as errors) switch directs the com-
piler to treat all warnings as errors, with the result that a warning will
cause the compilation to fail.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages milder than warnings. Code
generation annotations will also be issued, unless disabled with the
-no-annotate switch (see -no-annotate).

 Invoke this switch in the IDE by settings Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Warning/annotation/remark control to Errors, warnings, annota-
tions and remarks.

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

CrossCore Embedded Studio 1.1 1-81
C/C++ Compiler Manual for SHARC Processors

Compiler

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

 Invoke this switch in the IDE by settings Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Warning/annotation/remark control to Errors only.

 If the processing of the compiler command line generates a warn-
ing, the position of the -w switch on the command line is
important. If the -w switch is located before the command line
switch that causes the warning, the warning will be suppressed;
otherwise, it will not be suppressed.

-warn-component

The -warn-component (warn if component elements are missing) switch
instructs the compiler to issue warnings if it cannot locate libraries that are
requested by the component’s XML file. For more information, see -com-
ponent file.xml.

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the com-
piler to issue a warning when it calls a function for which an incomplete
function prototype has been supplied. This option has no effect in C++
mode.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Function declarations without prototypes.

-workaround workaround_id[,workaround_id …]

The -workaround workaround_id [,workaround_id...] (enable avoid-
ance of specific errata) switch enables compiler code generator
workarounds for specific hardware errata.

Compiler Command-Line Switches

1-82 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

See Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler for details of valid workarounds and the interaction of the
-si-revision, -workaround and -no-workaround switches.

-xref filename

The -xref (cross-reference list) switch directs the compiler to write
cross-reference listing information to the specified file. When more than
one source file has been compiled, the listing contains information about
the last file processed.

For each reference to a symbol in the source program, a line of the form
symbol-id name ref-code filename line-number column-number

is written to the named file.

The symbol-id identifier represents a unique decimal number for the sym-
bol, and ref-code is one of the characters listed in Table 1-14.

 Please note that the compiler’s -xref switch differs from the -xref
switch used by the linker. Refer to the Linker and Utilities Manual
for more information.

Table 1-14. ref-code Characters

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference)

CrossCore Embedded Studio 1.1 1-83
C/C++ Compiler Manual for SHARC Processors

Compiler

C Mode (MISRA) Compiler Switch Descriptions

The following switches apply only to the C compiler. See MISRA-C Com-
piler for more information.

-misra

The –misra switch enables checking for MISRA-C Guidelines. Some rules
or parts of rules are relaxed with this switch enabled. Rules relaxed by this
option are 5.1, 5.7, 6.3, 6.4, 8.1, 8.2, 8.5, 10.3, 10.4, 10.5, 12.8, 13.7
and 19.7. This is explained in more detail, see Rules Descriptions.

The -misra switch is not supported in conjunction with some switches.
For more information, see MISRA-C Command-line Switch Restrictions.
The switch predefines the _MISRA_RULES preprocessor macro.

-misra-linkdir directory

The –misra-linkdir switch specifies a directory in which to place .misra
files. The default is a local directory called MISRARepository. The .misra
files enable checking of violations of rules 5.5, 8.8 and 8.10.

-misra-no-cross-module

The switch implies -misra, but also disables checking for a number of
rules that require the use of the prelinker to check across multiple modules
for rule violation. The MISRA-C rules suppressed are 5.5, 8.8 and 8.10.

The -misra-no-cross-module switch is not supported in conjunction with
some switches. For more information, see MISRA-C Command-line
Switch Restrictions.

-misra-no-runtime

The switch implies -misra, but also disables run-time checking for
MISRA-C rules 21, 17.1, 17.2 and 17.3. It limits the checking of rules
9.1, 12.8, 16.2 and 17.4.

Compiler Command-Line Switches

1-84 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The -misra-no-runtime switch is not supported in conjunction with some
switches. For more information, see MISRA-C Command-line Switch
Restrictions.

-misra-strict

The –misra-strict switch enables checking for MISRA-C Guidelines.
The switch ensures a strict interpretation of the MISRA-C: 2004 Guide-
lines. See Rules Descriptions for more detail.

The -misra-strict switch is not supported in conjunction with some
switches. For more information, see MISRA-C Command-line Switch
Restrictions. The switch predefines the _MISRA_RULES preprocessor macro.

-misra-suppress-advisory

The switch implies -misra, but suppresses the reporting of advisory rules.

The –misra-suppress-advisory switch is not supported in conjunction
with some switches. For more information, see MISRA-C Command-line
Switch Restrictions.

-misra-testing

The switch implies –misra, but also suppresses checking of MISRA-C
rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.

The -misra-testing switch is not supported in conjunction with some
switches. For more information, see MISRA-C Command-line Switch
Restrictions.

-Wmis_suppress rule_number [, rule_number]

The –Wmis_suppress switch with a rule_number argument directs the
compiler to suppress the specified diagnostic for a MISRA-C rule. The
rule_number argument identifies the specific message to override.

CrossCore Embedded Studio 1.1 1-85
C/C++ Compiler Manual for SHARC Processors

Compiler

-Wmis_warn rule_number [, rule_number]

The –Wmis_warn switch with a rule_number argument directs the compiler
to override the severity of the specified diagnostic to produce a warning
for a MISRA-C rule. The rule_number argument identifies the specific
message to override.

MISRA-C Command-line Switch Restrictions

Table 1-15 lists the command-line switches that are disallowed in
MISRA-C mode.

C++ Mode Compiler Switch Descriptions

The following switches apply only when compiling in C++ mode.

-anach

The -anach (enable C++ anachronisms) directs the compiler to accept
some language features that are prohibited by the C++ standard but still in
common use. Use the –no-anach switch (on page 1-89) for greater stan-
dard compliance.

Table 1-15. Switches Disallowed by MISRA-C

Switch Name

-w (on page 1-81)

-Wsuppress (on page 1-79)

-Wwarn (on page 1-79)

-c++ (on page 1-25)

-enum-is-int (on page 1-34)

-warn-protos (on page 1-81)

-alttok (on page 1-27)

Compiler Command-Line Switches

1-86 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The following anachronisms are accepted in C++ mode when the –anach
switch is enabled:

• Overload is allowed in function declarations. It is accepted and
ignored.

• Definitions are not required for static data members that can be
initialized using default initialization. The anachronism does not
apply to static data members of template classes; they must always
be defined.

• The number of elements in an array may be specified in an array
delete operation. The value is ignored.

• A single operator++() function can be used to overload both prefix
and postfix ++ operations.

• A single operator--() function can be used to overload both prefix
and postfix -- operations.

• The base class name may be omitted in a base class initializer if
there is only one immediate base class.

• A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

• A nested class name may be used as an un-nested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created; it is initialized from the
(converted) initial value, and the reference is set to the temporary.

CrossCore Embedded Studio 1.1 1-87
C/C++ Compiler Manual for SHARC Processors

Compiler

• A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

• A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two func-
tions named f.

int f(int);

int f(x) char x; { return x; }

-check-init-order

It is not guaranteed that global objects requiring constructors are initial-
ized before their first use in a program consisting of separately compiled
units. The compiler will output warnings if these objects are external to
the compilation unit and are used in dynamic initialization or in construc-
tors of other objects. These warnings are not dependent on the
-check-init-order switch.

In order to catch uses of these objects and to allow the opportunity for
code to be rewritten, the -check-init-order (check initialization order)
switch adds run-time checking to the code. This generates output to
stderr that indicates uses of such objects are unsafe.

 This switch generates extra code to aid development, and should
not be used when building production systems.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Check initialization order.

Compiler Command-Line Switches

1-88 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-friend-injection

The -friend-injection switch directs the compiler to conform to per-
form name lookup in a non-standard way with respect to friend
declarations. With this switch enabled a friend declaration will be injected
into the scope enclosing the class containing the friend declaration.

See -no-friend-injection on page 1-89.

-full-dependency-inclusion

The -full-dependency-inclusion switch ensures that when generating
dependency information for implicitly-included .cpp files, the .cpp file
will be re-included. This file is re-included only if the .cpp files are
included more than once in the source (via re-inclusion of their corre-
sponding header file). This switch is required only if your C++ sources
files are compiled more than once with different macro guards.

 Enabling this switch may increase the time required to generate
dependencies.

-implicit-inclusion

The -implicit-inclusion switch directs the compiler to enable the
implicit inclusion of source files as a method of finding definitions of tem-
plate entities to be instantiated. The compiler will automatically include a
source file .C, .c or .cpp when the corresponding header file .h or .hxx is
included. This is a mechanism that was common practice, but is not stan-
dard behavior.

See -no-implicit-inclusion on page 1-89.

 This switch is incompatible with the use of exported templates.

CrossCore Embedded Studio 1.1 1-89
C/C++ Compiler Manual for SHARC Processors

Compiler

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See the –anach switch (on page 1-85) for a full description of
these features.

-no-friend-injection

The -no-friend-injection switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to friend declarations. The
friend declaration is visible when the class of which it is a friend is among
the associated classes considered by argument-dependent lookup. This is
the default mode.

See -friend-injection on page 1-88.

-no-implicit-inclusion

The -no-implicit-inclusion switch prevents implicit inclusion of source
files as a method of finding definitions of template entities to be instanti-
ated. This is compatible with the use of exported templates as defined by
the ISO/IEC:14883 standard. This is the default mode.This switch is
accepted but ignored when compiling C files.

See also -implicit-inclusion.

-no-rtti

The -no-rtti (disable run-time type identification) switch directs the
compiler to disallow support for dynamic_cast and other features of
ANSI/ISO C++ run-time type identification. This is the default mode.
Use –rtti to enable this feature.

Compiler Command-Line Switches

1-90 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-no-std-templates

The -no-std-templates switch disables dependent name processing, i.e,
the special lookup of names used in templates as required by the C++
standard.

See also -std-templates.

-rtti

The -rtti (enable run-time type identification) switch directs the com-
piler to accept programs containing dynamic_cast expressions and other
features of ANSI/ISO C++ run-time type identification. The switch also
causes the compiler to define the macro __RTTI to 1. See also the –no-rtti
switch.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > C++ exceptions and RTTI.

-std-templates

The -std-templates switch enables dependent name processing, that is,
the special lookup of names used in templates as required by the C++
standard.

See also -no-std-templates.

CrossCore Embedded Studio 1.1 1-91
C/C++ Compiler Manual for SHARC Processors

Compiler

Environment Variables Used by the Compiler
The compiler refers to a number of environment variables during its oper-
ation, as listed below. The majority of the environment variables identify
path names to directories. You should be aware that placing network paths
into these environment variables may adversely affect the time required to
compile applications.

• PATH
This is your System search path, used to locate Windows applica-
tions when you run them. Windows uses this environment variable
to locate the compiler when you execute it from the command line.

• TMP
This directory is used by the compiler for temporary files, when
building applications. For example, if you compile a C file to an
object file, the compiler first compiles the C file to an assembly file
which can be assembled to create the object file. The compiler usu-
ally creates a temporary directory within the TMP directory into
which to put such files. However, if the -save-temps switch is
specified, the compiler creates temporary files in the current direc-
tory instead. This directory should exist and be writable. If this
directory does not exist, the compiler issues a warning.

• TEMP
This environment variable is also used by the compiler when look-
ing for temporary files, but only if TMP was examined and was not
set or the directory that TMP specified did not exist.

• ADI_DSP
The compiler locates other tools in the tool-chain through the
CCES installation directory, or through the -path-install switch.
If neither is successful, the compiler looks in ADI_DSP for other
tools.

Compiler Command-Line Switches

1-92 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• CC21K_OPTIONS
If this environment variable is set, and CC21K_IGNORE_ENV is not set,
this environment variable is interpreted as a list of additional
switches to be prepended to the command line. Multiple switches
are separated by spaces or new lines. A vertical-bar (|) character
may be used to indicate that any switches following it will be pro-
cessed after all other command-line switches.

• CC21K_IGNORE_ENV
If this environment variable is set, CC21K_OPTIONS is ignored.

Data Type and Data Type Sizes
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types and
therefore at high speed. Table 1-16 shows the size used for each of the
intrinsic C/C++ data types.

Table 1-16. Data Type Sizes for the ADSP-21xxx Processors

Type Bit Size Result of sizeof operator

int 32 bits signed 1

unsigned int 32 bits unsigned 1

long 32 bits signed 1

unsigned long 32 bits unsigned 1

long long 64 bits signed 2

unsigned long long 64 bits unsigned 2

bool 32 bits signed 1

char 32 bits signed 1

unsigned char 32 bits unsigned 1

short 32 bits signed 1

unsigned short 32 bits unsigned 1

CrossCore Embedded Studio 1.1 1-93
C/C++ Compiler Manual for SHARC Processors

Compiler

The Analog Devices compiler does not support data sizes smaller than the
addressable unit size on the processor. For the ADSP-21xxx processors,
this means that both short and char have the same size as int. Although
32-bit chars are unusual, they do conform to the standard. For informa-
tion about how to use the fixed-point data types in C, refer to Using
Native Fixed-Point Types.

Integer Data Types

On any platform, the basic type int is the native word size. For SHARC
processors, it is 32 bits. Many library functions are available for 32-bit
integers, and these functions provide support for the C/C++ data types
int and long int. Pointers are the same size as int. 64-bit integer support
is provided by the long long and unsigned long long data types, which
are emulated data types, implemented through software.

pointer 32 bits 1

float 32 bits float 1

short fract 32 bits fixed-point 1

fract 32 bits fixed-point 1

long fract 32 bits fixed-point 1

unsigned short
fract

32 bits unsigned fixed-point 1

unsigned fract 32 bits unsigned fixed-point 1

unsigned long
fract

32 bits unsigned fixed-point 1

double either 32 or 64 bits float (default 32) either 1 or 2 (default 1)

long double 64 bits float 2

Table 1-16. Data Type Sizes for the ADSP-21xxx Processors (Cont’d)

Type Bit Size Result of sizeof operator

Compiler Command-Line Switches

1-94 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Floating-Point Data Types

For SHARC processors, the float data type is 32 bits long. The double
data type is option-selectable for 32 or 64 bits. The C and C++ languages
tend to default to double for constants and for many floating-point
calculations. In general, double word data types run more slowly than
32-bit data types because they rely largely on software-emulated
arithmetic.

Type double poses a special problem. Without some special handling,
many programs would inadvertently end up using slow-speed, emulated,
64-bit floating-point arithmetic, even when variables are declared consis-
tently as float. In order to avoid this problem, Analog Devices provides
the -double-size[-32|-64] switch (on page 1-32), which allows you to
set the size of double to either 32 bits (default) or 64 bits. The 32-bit set-
ting gives good performance and should be acceptable for most DSP
programming. However, it does not conform fully to the ISO/IEC 9899:
1990 C standard, the ISO/IEC 9899: 1999 C standard or the ISO/IEC
14882: 2003 C++ standard, which all require that the -double-size-64
switch be enabled.

For a larger floating-point type, the long double data type provides 64-bit
floating-point arithmetic.

For either size of double, the standard #include files automatically rede-
fine the math library interfaces so that functions such as sin can be
directly called with the proper size operands. Access to 64-bit floating-
point arithmetic and libraries is always provided via long double.

Therefore,

float sinf (float); /* 32-bit */

double sin (double); /* 32 or 64-bit */

For full descriptions of these functions and their implementation, see the
C/C++ Library Manual for SHARC Processors.

CrossCore Embedded Studio 1.1 1-95
C/C++ Compiler Manual for SHARC Processors

Compiler

Optimization Control
The general aim of compiler optimization is to generate correct code that
executes quickly and is small in size. Not all optimizations are suitable for
every application or possible all the time. Therefore, the compiler
optimizer has a number of configurations, or optimization levels, which
can be applied when needed. Each of these levels are enabled by one or
more compiler switches or pragmas.

 Refer to Chapter 2, Achieving Optimal Performance From C/C++
Source Code for information on how to obtain maximal code per-
formance from the compiler.

Optimization Levels

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most
optimization listed last. The descriptions for each level outline the optimi-
zations performed by the compiler and identify any switches or pragmas
required, or that have direct influence on the optimization levels
performed.

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See -g for more
information.

• Default
The compiler does not perform any optimization by default when
none of the compiler optimization switches are used (or enabled in
CCES IDE). Default optimization level can be enabled using the
optimize_off pragma (on page 1-229).

Compiler Command-Line Switches

1-96 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O1 or O) or space (-Os)
or a factor between speed and space (-Ov). If debugging is also
requested, the optimization is given priority so the debugging
functionality may be limited. See -O[0|1], -Os and -Ov num. Pro-
cedural optimizations for speed and space (-O and -Os) can be
enabled in C/C++ source using the pragma optimize_{for_-
speed|for_space}. (For more information, see General
Optimization Pragmas.)

• Profile-Guided Optimizations (PGO)
The compiler performs advanced aggressive optimizations using
profiler statistics (.pgo files) generated from running the applica-
tion using representative training data. PGO can be used in
conjunction with IPA and automatic inlining. See -pguide for more
information.

The most common scenario in collecting PGO data is to set up one
or more simple file-to-device streams where the file is a standard
ASCII stream input file and the device is any stream device sup-
ported by the simulator target, such as memory and peripherals.
The PGO process can be broken down into the execution of one or
more data sets where a data set is the association of zero or more
input streams with one and only one .pgo output file.

For more information, see Using Profile-Guided Optimization.

 Be aware of the requirement for allowing command-line arguments
in your project when using PGO. For further details refer to Sup-
port for argv/argc.

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when

CrossCore Embedded Studio 1.1 1-97
C/C++ Compiler Manual for SHARC Processors

Compiler

it has determined that doing so reduces execution time. How
aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch which additionally enables procedural optimizations (-O).
See -Oa, -Ov num, -O[0|1] and Function Inlining for more
information.

 When remarks are enabled, the compiler produces a remark to
indicate each function that is inlined.

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. The interprocedural analysis (IPA) is enabled
using the -ipa switch which additionally enables procedural opti-
mizations (-O). See Interprocedural Analysis, -ipa and -O[0|1] for
more information.

The compiler optimizer attempts to vectorize loops when it is safe to do
so. When IPA is used it can identify additional safe candidates for vector-
ization which might not be classified as safe at a procedural optimization
level. Additionally, there may be other loops that are known to be safe
candidates for vectorization which can be identified to the compiler with
use of various pragmas. (See Loop Optimization Pragmas.)

Using the various compiler optimization levels is an excellent way of
improving application performance. However consideration should be
given to how applications are written so that compiler optimizations are
given the best opportunity to be productive. These issues are the topic of
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

Interprocedural Analysis

The cc21k compiler has a capability called interprocedural analysis (IPA),
an optimization that allows the compiler to optimize across translation
units instead of within just one translation unit. This capability effectively

Compiler Command-Line Switches

1-98 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

allows the compiler to see all of the source files that are used in a final link
at compilation time and make use of that information when optimizing.

Enable interprocedural analysis by selecting the Interprocedural analysis
check box on the Compile : General page of the CCES Properties dialog
box, or by specifying the -ipa command-line switch.

The -ipa switch automatically enables the -O switch to turn on optimiza-
tion. (See -ipa.)

Use of the -ipa switch generates additional files along with the object file
produced by the compiler. These files have .ipa filename extensions and
should not be deleted manually unless the associated object file is also
deleted.

All of the -ipa optimizations are invoked after the initial link, whereupon
a special program called the prelinker reinvokes the compiler to perform
the new optimizations, recompiling source files where necessary, to make
use of gathered information.

 Because a file may be recompiled by the prelinker, do not use the
-S option to see the final optimized assembler file when -ipa is
enabled. Instead, use the -save-temps switch (on page 1-72), so
that the full compile/link cycle can be performed first.

Interaction With Libraries

When IPA is enabled, the compiler examines all of the source files to build
up usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files by recompiling where necessary.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. IPA gathers information about each file and embeds this
within the object format, but cannot make use of it at this point, because
the library contents have not yet been used in a specific context.

CrossCore Embedded Studio 1.1 1-99
C/C++ Compiler Manual for SHARC Processors

Compiler

When IPA is invoked during linking, it will recover the gathered informa-
tion from all linked-in object files that were built with -ipa, and where
necessary and possible, will recompile source files to apply additional opti-
mizations. Modules linked in from a library are not recompiled in this
manner, as source is not available for them. Therefore, the gathered
information in a library module can be used to further optimize applica-
tion sources, but does not provide a benefit to the library module itself.

If a library module makes references to a function in a user module in the
program, this will be detected during the initial linking phase, and IPA
will not eliminate the function. If the library module was not compiled
with -ipa, IPA will not make any assumptions about how the function
may be called, so the function may not be optimized as effectively as if all
references to it were in source code visible to IPA, or from library modules
compiled with -ipa.

Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler

The compiler provides three switches which specify that code produced by
the compiler will be generated for a specific revision of a specific proces-
sor, and appropriate silicon revision targeted system run time libraries will
be linked against. Targeting a specific processor allows the compiler to
produce code that avoids specific hardware errata reported against that
revision. For the simplest control, use the -si-revision switch which
automatically controls compiler workarounds.

 The compiler cannot apply errata workarounds to code inside
asm() constructs.

When developing using the CCES IDE, the silicon revision used to build
sources is part of a projects processor settings.

Compiler Command-Line Switches

1-100 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

This section describes:

• Using the -si-revision Switch

• Using the -workaround Switch

• Using the -no-workaround Switch

• Interactions Between the Silicon Revision and Workaround
Switches

 Using the -si-revision Switch

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter version
represents a silicon revision of the processor specified by the -proc switch
(on page 1-65).

For example,

cc21k -proc ADSP-21161 -si-revision 0.1 prog.c

If silicon version none is used, then no errata workarounds are enabled,
whereas specifying silicon version any will enable all errata workarounds
for the target processor.

If the -si-revision switch is not used, the compiler will build for the lat-
est known silicon revision for the target processor at the time of release,
and any errata workarounds which are appropriate for the latest silicon
revision will be enabled.

In the SHARC\lib CCES installation directory there are a number of subdi-
rectories. Within each of these is a complete set of libraries built for
specific parts and silicon revisions. When linking an executable, the
compiler driver selects and links against the best of these sets of libraries
that is correct for the target part and has been built with the necessary sili-
con anomaly workarounds enabled to match the silicon revision switch.

CrossCore Embedded Studio 1.1 1-101
C/C++ Compiler Manual for SHARC Processors

Compiler

Note that an individual set of libraries may cover more than one specific
part or silicon revision, so if several silicon revisions are affected by the
same errata, then one common set of libraries might be used.

The __SILICON_REVISION__ macro is set by the compiler to two hexadeci-
mal digits representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100 and 10.21 becomes 0xa15.

If the silicon revision is set to any, the __SILICON_REVISION__ macro is set
to 0xffff and if the -si-revision switch is set to none the compiler will
not set the __SILICON_REVISION__ macro.

The compiler driver will pass the -si-revision switch, as specified in the
command line, when invoking other tools in the CCES toolchain.

 Visit www.analog.com/processors/tools/anomalies to get more
information on specific anomalies (including anomaly IDs).

Using the -workaround Switch

The -workaround workaround_id switch (on page 1-81) enables compiler
code generator workarounds for specific hardware errata.

When workarounds are enabled, the compiler defines the macro __WORK-
AROUNDS_ENABLED at the compile, assembly, and link build stages. The
compiler also defines individual macros for each of the enabled work-
arounds for each of these stages, as indicated by each macro description.

For a complete list of anomaly workarounds and associated workaround_id
keywords, refer to the anomaly .xml files provided in the <install_-
path>\System\ArchDef directory. These are named in the format
<platform_name>-anomaly.xml.

To find which workarounds are enabled for each chip and silicon revision,
refer to the appropriate <chip_name>-compiler.xml file in the same
directory (for example, ADSP-21488-compiler.xml). Each *-compiler.xml

http://www.analog.com/processors/tools/anomalies

Compiler Command-Line Switches

1-102 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

file references an *-anomaly.xml file via the name in the <cces-anom-
aly-dictionary> element.

The anomaly .xml files relevant to SHARC processors have filenames of
the form SHARC-21xxx-anomaly.xml.

Using the -no-workaround Switch

The no-workaround workaroundID[,workaroundID ... switch disables
compiler code generator workarounds for specific hardware errata. For a
complete list of valid workaroundID values, refer to the relevant *-anom-
aly.xml file. For more information, see Using the -workaround Switch.

The -no-workaround switch can be used to disable workarounds enabled
via the -si-revision version or -workaround workaroundID switch.

All workarounds can be disabled by providing -no-workaround with all
valid workarounds for the selected silicon revision or by using the option
-no-workaround all. Disabling all workarounds via the -no-workaround
switch will link against libraries with no silicon revision in cases where the
silicon revision is not none.

Interactions Between the Silicon Revision and Workaround
Switches

The interactions between -si-revision, -workaround and -no-work-
around can only be determined once all the command line arguments have
been parsed.

CrossCore Embedded Studio 1.1 1-103
C/C++ Compiler Manual for SHARC Processors

Compiler

To this effect options will be evaluated as follows:

1. The -si-revision version is parsed to determine which revision
of the run-time libraries the application will link against. It also
produces an initial list of all the default compiler errata work-
arounds to enable.

2. Any additional workarounds specified with the -workaround switch
will be added to the errata list.

3. Any workarounds specified with -no-workaround will then be
removed from this list.

4. If silicon revision is not none or if any workarounds were declared
via -workaround, the macro __WORKAROUNDS_ENABLED will be
defined at compile and assembly and link stages, even if -no-work-
around disables all workarounds.

Anomalies in Assembly Sources

If your project includes some hand-written assembly code, you will have
to ensure that you explicitly avoid any relevant anomalies that apply to
your target processor. This can be simplified by the use of the sys\anoma-
ly_macros_rtl.h header file. This header file defines macros for each of
the anomalies that affect the run-time libraries, which allow for condi-
tional inclusion of avoidance code.

For example, the following code makes use of the WA_09000014 macro to
conditionally select code that avoids problems with conditional stores in
delay slots.

#if WA_09000014

 r4 = r4 - r12;

 if not ac dm(-3, i3) = r12;

 jump(pc, exit_malloc);

#else

 jump(pc, exit_malloc) (DB);

Using Native Fixed-Point Types

1-104 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 r4 = r4 - r12;

 if not ac dm(-3, i3) = r12;

#endif

Using Native Fixed-Point Types
This section provides an overview of the compiler’s support for the native
fixed-point type fract, defined in Chapter 4 of the “Extensions to support
embedded processors” ISO/IEC draft technical report Technical Report
18037.

Fixed-Point Type Support
A fixed-point data type is one where the radix point is at a fixed position.
This includes the integer types (the radix point is immediately to the right
of the least-significant bit). However, this section uses the term to apply
exclusively to those that have a non-zero number of fractional bits –
that is, bits to the right of the radix point.

The SHARC processor has hardware support for arithmetic on 32-bit
fixed-point data types. For example, it is able to perform addition, sub-
traction and multiplication on 32-bit fractional values. However, the C
language does not make it easy to express the semantics of the arithmetic
that maps to the underlying hardware support.

To make it easier to use this hardware capability, and to facilitate expres-
sion of DSP algorithms that manipulate fixed-point data, the compiler
supports a number of native fixed-point types whose arithmetic obeys the
fixed-point semantics. This makes it easy to write high-performance algo-
rithms that manipulate fixed-point data, without having to resort to
compiler built-ins, or inline assembly.

CrossCore Embedded Studio 1.1 1-105
C/C++ Compiler Manual for SHARC Processors

Compiler

An emerging standard for such fixed-point types is set out in Chapter 4 of
the “Extensions to support embedded processors” ISO/IEC Technical Report
18037. CCES provides all the functionality specified in that chapter, and
the chapter is a useful reference that explains the subtleties of the seman-
tics of the library functions and arithmetic operators. However, the
following sections give an overview of these data types, the semantics of
arithmetic using these types, and guidelines for how to write high-perfor-
mance code using these types.

Native Fixed-Point Types
The keyword _Fract is used to declare variables of fixed-point type. The
_Accum keyword, defined in the ISO/IEC Technical Report to specify
fixed-point data types with an integer as well as a fractional part is not cur-
rently supported by CCES. The _Fract keyword may also be used in
conjunction with the type specifiers short and long, and signed and
unsigned. There are therefore 6 fixed-point types available, although
many of these are aliases for types of the same size and format.

By including the header file stdfix.h, the more convenient alternative
spelling fract may be used instead of _Fract. This header file also pro-
vides prototypes for many useful functions and it is highly recommended
that you include it in source files that use fixed-point types. Therefore, the
discussion that follows uses the spelling fract, as does the rest of the
CCES documentation.

The formats of the fixed-point types are given in table Table 1-17. In the
“Representation” column of the table, the number after the point indi-
cates the number of fractional bits, while the number before the point
refers to the number of integer bits, including a sign bit when it is pre-
ceded by “s”. Signed types are in two’s complement form. The range of
values that can be represented is also given in the table. Note that the bot-
tom of the range can be represented exactly, whereas the top of the range
cannot – only the value one bit less than this limit can be represented.

Using Native Fixed-Point Types

1-106 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The Technical Report also defines a _Sat (alternative spelling sat) type
qualifier for the fixed-point types. This stipulates that all arithmetic on
fixed-point types shall be saturating arithmetic (that is, that the result of
arithmetic that overflows the maximum value that can be represented by
the type shall saturate at the largest or smallest representable value). When
the sat qualifier is not used, the standard says that arithmetic that over-
flows may behave in an undefined manner. CCES accepts the sat qualifier
for compatibility but will always produce code that saturates on overflow
whether the sat qualifier is used or not. This gives maximum reproduc-
ibility of results and permits code to be written without worrying about
obtaining unexpected results on overflow.

Native Fixed-Point Constants
Fixed-point constants may be specified in the same format as for
floating-point constants, inclusive of any decimal or binary exponent.
For more information on these formats, refer to strtofxfx. Suffixes are used
to identify the type of constants. The stdfix.h header also declares mac-
ros for the maximum and minimum values of the fixed-point types. See
Table 1-18 for details of the suffixes and maximum and minimum
fixed-point values.

Table 1-17. Data Storage Formats, Ranges, and Sizes of the Native
Fixed-Point Types.

Type Representation Range sizeof Returns

short fract s1.31 [-1.0,1.0) 1

fract s1.31 [-1.0,1.0) 1

long fract s1.31 [-1.0,1.0) 1

unsigned short fract 0.32 [0.0,1.0) 1

unsigned fract 0.32 [0.0,1.0) 1

unsigned long fract 0.32 [0.0,1.0) 1

CrossCore Embedded Studio 1.1 1-107
C/C++ Compiler Manual for SHARC Processors

Compiler

A Motivating Example
Consider a very simple example—pairwise addition of two sets of frac-
tional values, saturating at the largest or smallest fractional value if the
addition overflows. How might you write this using the native fixed-point
types? Assume that the data consist of vectors of 32-bit values, represent-
ing values in the range [-1.0,1.0). Then it is natural to write:

Example

#include <stdfix.h>

void pairwise_add(fract *out, const fract *a, const fract *b,

int n)

{

 int i;

 for (i = 0; i < n; i++)

 out[i] = a[i] + b[i];

}

The above algorithm shows that it is easy to express algorithms that
manipulate fixed-point data and perform saturation on overflow without
needing to find special ways to express these semantics through integer
arithmetic.

Table 1-18. Fixed-Point Type Constant Suffixes and Macros

Type Suffix Example Minimum Value Maximum Value

short fract hr 0.5hr SFRACT_MIN SFRACT_MAX

fract r 0.5r FRACT_MIN FRACT_MAX

long fract lr 0.5lr LFRACT_MIN LFRACT_MAX

unsigned short fract uhr 0.5uhr 0.0uhr USFRACT_MAX

unsigned fract ur 0.5ur 0.0ur UFRACT_MAX

unsigned long fract ulr 0.5ulr 0.0ulr ULFRACT_MAX

Using Native Fixed-Point Types

1-108 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Fixed-Point Arithmetic Semantics
The semantics of fixed-point arithmetic according to the Technical
Report are as follows:

1. If a binary operator has one floating-point operand, the other
operand is converted to floating-point and the operator is applied
to two floating-point operands to give a floating-point result.

2. If the operator has two fixed-point operands of different signed-
ness, convert the unsigned one to signed without changing its size.
(However, see also FX_CONTRACT.)

3. Deduce the result type. The result type is the operand type of
highest rank. Rank increases in the following order: short fract,
fract, long fract (or their unsigned equivalents). An operator
with only one fixed-point operand produces a result of this
fixed-point type. (An exception is the result of a comparison, which
gives a boolean result.)

4. The result is the mathematical result of applying the operator to
the operand values, converted to the result type deduced in step 3.
In other words, the result is as if it was computed to infinite
precision before converting this result to the final result type.

The conversions between different types are discussed in Data Type Con-
versions and Fixed-Point Types.

Data Type Conversions and Fixed-Point Types
The rules for conversion to and from fixed-point types are as follows:

1. When converting to a fixed-point type, if the value of the operand
can be represented by the fixed-point type, the result is this value.
If the operand value is out of range of the fixed-point type, the
result is the closest fixed-point value to the operand value. In other

CrossCore Embedded Studio 1.1 1-109
C/C++ Compiler Manual for SHARC Processors

Compiler

words, conversion to fixed-point saturates the operand’s mathemat-
ical value to the fixed-point type’s range. If the operand value is
within the range of the fixed-point type, but cannot be represented
exactly, the result is the closest value either higher or lower than
the operand value. For more information, see Rounding Behavior.

2. When converting to an integer type from a fixed-point type, the
result is the integer part of the fixed-point type. The fractional part
is discarded, so rounding is towards zero; both (int)(0.9r)
and (int)(-0.9r) give 0.

3. When converting to a floating-point type, the result is the closest
floating-point value to the operand value.

These rules have some important consequences of which you should be
aware:

 Conversion of an integer to a fractional type is only useful when
the integer is -1, 0, or 1. Any other integer value will be saturated
to the fractional type. So a statement like

fract f = 0x40000000; // try to assign 0.5 to f

will not assign 0.5 to f, but will instead result in FRACT_MAX,
because 0x40000000 is an integer greater than 1. Instead, use

fract f = 0.5r;

- or -
fract f = 0x40000000p-31r;

Note that the second format above uses the binary exponent syntax
available for fixed-point constants; specifically the value
0x40000000 is scaled by 2-31.

Using Native Fixed-Point Types

1-110 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Assignment of a fractional value to an integer yields zero unless the
fractional value is -1.0. Assignment of an unsigned fractional value
to an integer always results in zero.

Compiler warnings will be produced to aid in the diagnosis of problems
where these conversions are likely to produce unexpected results.

Bit-Pattern Conversion Functions: bitsfx and fxbits
The stdfix.h header file provides functions to convert a bit pattern to a
fixed-point type and vice versa. These functions are particularly useful for
converting between native types (fract, unsigned fract) and integer
bit-patterns representing these values.

For each fixed-point type, a corresponding integer type is declared, which
is big enough to hold the bit pattern for the fixed-point type. These are
int_fx_t, where fx is one of hr, r, or lr, and uint_fx_t where fx is one of
uhr, ur, or ulr.

To convert a fixed-point type to a bit pattern, use the bitsfx family of
functions. fx may be any of hr, r, lr, uhr, ur, or ulr. For example, using the
prototype

uint_ur_t bitsur(unsigned fract);

you can write

#include <stdfix.h>

unsigned fract f;

uint_ur_t f_bit_pattern;

void foo(void) {

 f = 0.5ur;

 f_bit_pattern = bitsur(f); // gives 0x80000000

}

CrossCore Embedded Studio 1.1 1-111
C/C++ Compiler Manual for SHARC Processors

Compiler

For more information, see Bit-Pattern Conversion Functions: bitsfx and
fxbits.

Similarly, to convert to a fixed-point type from a bit pattern, use the
fxbits family of functions. So, to convert from a int_lr_t to a long
fract, use:

#include <stdfix.h>

#include <fract.h>

int_lr_t f32;

long fract lf;

void foo(void) {

f32 = 0x40000000; // that’s 0.5

lf = lrbits(f32); // gets 0.5lr as expected

}

For more information, see Bit-Pattern Conversion Functions: bitsfx and
fxbits

Arithmetic Operators for Fixed-Point Types
You can use the +, -, *, and / operators on fixed-point types, which have
the same meaning as their integer or floating-point equivalents, aside from
any overflow or rounding semantics. As discussed on page 1-105,
fixed-point operations that overflow give results saturated at the highest or
lowest fixed-point value. Rounding is discussed in Rounding Behavior.

You can use << to shift a fixed-point value up by a positive integer shift
amount less than the fixed-point type size in bits. This gives the same
result as multiplication by a power of 2, including overflow semantics:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

Using Native Fixed-Point Types

1-112 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

f1 = 0.125r;

f2 = f1 << 2; // gives 0.5r

}

void foo2(void) {

f1 = -0.125r;

f2 = f1 << 10; // gives -1.0r

}

You can also use >> to shift a fixed-point value down by an integer shift
amount in the same range. This is defined to give the same result as divi-
sion by a power of 2, including any rounding behavior:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.5r;

f2 = f1 >> 2; // gives 0.125r

}

void foo2(void) {

f1 = 0x00000003p-31r;

f2 = f1 >> 2; // gives 0x00000000p-31r when rounding

// mode is truncation

// and 0x00000001p-31r when rounding

// mode is biased or unbiased

}

Any of these operators can be used in conjunction with assignment, for
example:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

CrossCore Embedded Studio 1.1 1-113
C/C++ Compiler Manual for SHARC Processors

Compiler

f1 = 0.2r;

f2 = 0.3r;

f2 += f1;

}

In addition, there are a number of unary operators that may be used with
fixed-point types. These are:

• ++ Equivalent to adding integer 1

• -- Equivalent to subtracting integer 1

• + Unary plus, equivalent to adding value to 0.0 (no effect)

• - Unary negate, equivalent to subtracting value from 0.0

• ! 1 if equal to 0.0, 0 otherwise

FX_CONTRACT
Consider the example of a multiplying a signed fract by an unsigned one:

fract f;

unsigned fract uf;

f = f * uf;

Bearing in mind the rules discussed in the previous section, what are the
semantics of the multiplication? Since the two fract operands differ in
signedness, the unsigned one is first converted to signed fract, with sub-
sequently two s1.31 operands multiplied together to yield an s1.31 result.
So the rules say that it should be equivalent to writing:

fract tmp = uf;

f = f * tmp;

However, this means that one bit of precision is lost from the unsigned
operand before the multiplication. The SHARC processors, however, have
hardware support for multiplying two fractional operands of opposite

Using Native Fixed-Point Types

1-114 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

signedness together directly, which involve no loss in precision. Use of this
support is both more precise and more efficient.

For convenience, the compiler can do this step for you, using a mode
known as FX_CONTRACT. The name FX_CONTRACT is used as the behavior is
similar to that of FP_CONTRACT in C99. When FX_CONTRACT is on, the com-
piler may keep intermediate results in greater precision than that specified
by the Technical Report. In other words, it may choose not to round away
extra bits of precision or to saturate an intermediate result unnecessarily.
More precisely, the compiler keeps the intermediate result in greater preci-
sion when:

• Maintaining the higher-precision intermediate result will be more
efficient—it maps better to the underlying hardware.

• The intermediate result is not stored back to any named variable.

• No explicit casts convert the type of the intermediate result.

In other words,

f = f * uf;

will result in an instruction that multiplies the signed and unsigned oper-
ands together directly, but

f = f * (fract)uf;

- or -

fract tmp = uf;

f = f * tmp;

will both force the unsigned operand to be converted to fract type before
the multiplication.

CrossCore Embedded Studio 1.1 1-115
C/C++ Compiler Manual for SHARC Processors

Compiler

By default, the compiler permits FX_CONTRACT behavior. The FX_CONTRACT
mode can be controlled with a pragma (see also #pragma FX_CON-
TRACT {ON|OFF}) or with command-line switches, -fx-contract and –
no-fx-contract (see -fx-contract and -no-fx-contract). The pragma may
be used at file scope or within functions. It obeys the same scope rules as
the FX_ROUNDING_MODE pragma discussed on page 1-124 with an example
in Listing 1-1.

Rounding Behavior
Some fixed-point operations are also affected by rounding. For example,
multiplication of two fractional values to produce a fractional result of the
same size requires discarding a number of bits of the exact result. For
example, s1.31 * s1.31 produces an exact s2.62 result. This is saturated to
s1.62 and the thirty-one least-significant bits must be discarded to pro-
duce an s1.31 result.

By default, any bits that must be discarded are truncated—in other words,
they are simply chopped off the end of the value. For example:

#include <stdfix.h>

fract f1, f2, prod;

void foo(void) {

f1 = 0x3ffffffp-31r;

f2 = 0x10000000p-31r;

prod = f1 * f2; // gives 0x007fffffp-31r, discarded

// least-significant bits 0xe0000000

}

This is equivalent to always rounding down toward negative infinity. It
tends to produce results whose accuracy tends to deteriorate as any round-
ing errors are generally in the same direction and are compounded as the
calculations proceed.

Using Native Fixed-Point Types

1-116 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If this does not give you the accuracy you require, you can use either
biased or unbiased round-to-nearest rounding. The compiler supports
pragmas and switches to control the rounding mode. In the biased or
unbiased rounding modes, the above product will be rounded to the
nearest value that can be represented by the result type, so the final result
will be 0x00800000p-31r.

The difference between biased and unbiased rounding occurs when the
value to be rounded lies exactly half-way between the two closest values
that can be represented by the result type. In this case, biased rounding
will always round toward the greater of the two values (applying saturation
if this rounding overflows) whereas unbiased rounding will round toward
the value whose least-significant bit is zero. For example:

#include <stdfix.h>

fract f1, f2, prod;

void foo1(void) {

f1 = 0x00008000p-31r;

f2 = 0x34568000p-31r;

prod = f1 * f2; // gives 0x3456p-31r in unbiased rounding

 // mode, but 0x3457p-31r in biased rounding

 // mode

}

void foo2(void) {

f1 = 0x00008000p-31r;

f2 = 0x34578000p-31r;

prod = f1 * f2; // gives 0x3458p-31r in both unbiased

 // and biased rounding modes

}

In general, unbiased rounding is more costly than biased rounding in
terms of cycles, but yields a more accurate result since rounding errors in

CrossCore Embedded Studio 1.1 1-117
C/C++ Compiler Manual for SHARC Processors

Compiler

the half-way case are not all in the same direction and therefore are not
compounded so strongly in the final result.

The rounding discussed here only affects operations that yield a
fixed-point result. Operations that yield an integer result round toward
zero. There are also a few exceptions to the rounding rules:

• Conversion of a floating-point value to a fixed-point value rounds
towards zero.

• The roundfx, strtofxfx, and fxdivi functions always perform
unbiased rounding. They do not support the truncation rounding
mode.

Details of how to set rounding mode are given in Setting the Rounding
Mode.

Arithmetic Library Functions
The stdfix.h header file also declares a number of functions that permit
useful arithmetic operations on combinations of fixed-point and integer
types. These are the divifx, idivfx, fxdivi, mulifx, absfx, roundfx,
countlsfx, and strtofxfx families of functions.

divifx

The divifx functions, where fx is one of r, lr, ur, or ulr, allow division of
an integer value by a fixed-point value to produce an integer result. If you
write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// BAD: division of int by fract gives fract result, not int

Using Native Fixed-Point Types

1-118 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

f = 0.5r;

i = 2;

quo = i / f;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// GOOD: uses divifx to give integer result

f = 0.5r;

i = 2;

quo = divir(i, f);

}

which will store the value 4 into the variable quo.

idivfx

The idivfx functions, where fx is one of r, lr, ur, or ulr, allow division of
a fixed-point value by a fixed-point value to produce an integer result. If
you write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// BAD: division of two fracts gives fract result, not int

CrossCore Embedded Studio 1.1 1-119
C/C++ Compiler Manual for SHARC Processors

Compiler

f1 = 0.5r;

f2 = 0.25r;

quo = f1 / f2;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// GOOD: uses idivfx to give integer result

f1 = 0.5r;

f2 = 0.25r;

quo = idivr(f1, f2);

}

which will store the value 2 into the variable quo.

fxdivi

The fxdivi functions, where fx is one of r, lr, ur, or ulr, allow division of
an integer value by an integer value to produce a fixed-point result. If you
write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// BAD: division of int by int gives int result, not fract

Using Native Fixed-Point Types

1-120 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

i1 = 5;

i2 = 10;

quo = i1 / i2;

}

then the result of the division is an integer which is then converted to a
fract to be stored in the variable quo. This means that the value of quo is
zero, as the division is rounded to integer zero and then converted to
fract.

To get the desired result, write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// GOOD: uses fxdivi to give fract result

i1 = 5;

i2 = 10;

quo = rdivi(i1, i2);

}

which will store the value 0.5 into the variable quo.

mulifx

The mulifx functions, where fx is one of r, lr, ur, or ulr, allow multiplica-
tion of an integer value by a fixed-point value to produce an integer result.
If you write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

CrossCore Embedded Studio 1.1 1-121
C/C++ Compiler Manual for SHARC Processors

Compiler

// BAD: multiplication of int by fract

// produces fract result, not int

i = 50;

f = 0.5r;

prod = i * f;

}

then the result of the multiplication is a fract whose integer part is stored
in the variable prod. This means that the value of prod is zero, as the mul-
tiplication overflows and thus produces a fractional result that is nearly
one.

To get the desired result, write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

// GOOD: uses mulifx to give integer result

i = 50;

f = 0.5r;

prod = mulir(i, f);

}

which will store the value 25 into the variable prod.

absfx

The absfx functions, where fx is one of hr, r, or lr, compute the absolute
value of a fixed-point value.

In addition, you can also use the type-generic macro absfx(), where the
operand type can be any of the signed fixed-point types.

Using Native Fixed-Point Types

1-122 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

roundfx

The roundfx functions, where fx is one of hr, r, lr, uhr, ur, or ulr, take
two arguments. The first is a fixed-point operand whose type corresponds
to the name of the function called. The second gives a number of frac-
tional bits. The first operand is rounded to the number of fractional bits
given by the second operand. The second operand must specify a value
between 0 and the number of fractional bits in the type. Rounding is
unbiased to-nearest.

#include <stdfix.h>

fract f, rnd;

void foo1(void) {

f = 0x45608100p-31r;

rnd = roundr(f, 15); // produces 0x45610000p-31r;

}

void foo2(void) {

f = 0x7fff9034p-31r;

rnd = roundr(f, 15); // produces 0x7fffffffp-31r;

}

In addition, you can also use the type-generic macro roundfx(), where the
first operand type can be any of the signed fixed-point types.

countlsfx

The countlsfx functions, where fx is one of hr, r, lr, uhr, ur, or ulr,
return the largest integer value k such that its operand, when shifted up by
k, does not overflow. For zero input, the result is the size in bits of the
operand type.

#include <stdfix.h>

int scal1, scal2;

CrossCore Embedded Studio 1.1 1-123
C/C++ Compiler Manual for SHARC Processors

Compiler

void foo(void) {

scal1 = countlsr(-0.1r); // gives 3, because

// -0.1r<<3 = -0.8r

scal2 = countlsur(0.1ur); // gives 3, because

// 0.1ur<<3 = 0.8ur

}

In addition, you can also use the type-generic macro countlsfx(), where
the operand type can be any of the signed fixed-point types.

strtofxfx

The strtofxfx functions, where fx is one of hr, r, lr, uhr, ur, or ulr, parse
a string representation of a fixed-point number and return a fixed-point
result. They behave similarly to strtod, and accept input in the same
format.

Fixed-Point I/O Conversion Specifiers
The printf and scanf families of functions support conversion specifiers
for the fixed-point types. These are given in Table 1-19. Note that the
conversion specifier for the signed types, %r, is lowercase while the one for
the unsigned types, %R, is uppercase.

When used with the scanf family of functions, these conversion specifiers
accept input in the same format as consumed by the strtofxfx (for more
information, see strtofxfx) functions, which is the same as that accepted
for %f.

Table 1-19. I/O Conversion Specifiers for the Fixed-Point Types

Type Conversion Specifier

short fract %hr

fract %r

long fract %lr

Using Native Fixed-Point Types

1-124 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

When used with the printf family of functions, fixed-point values are
printed:

• As hexadecimal values by default, or when using the Lite version of
the CCES I/O library. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 40000000

• Like floating-point values when linking with the version of the
CCES I/O library with full fixed-point support, using the -link
-MD__LIBIO_FX switch. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 0.500000

Optional precision specifiers are accepted that control the number of dec-
imal places printed, and whether a trailing decimal point is printed.
However, these will have no effect unless the version of the CCES I/O
library with full fixed-point support is being used. For more information,
see the run-time library manual for SHARC processors.

Setting the Rounding Mode
As discussed in Rounding Behavior, there are three rounding modes sup-
ported for fixed-point arithmetic:

• Truncation (this is the default rounding mode)

• Biased round-to-nearest rounding

• Unbiased round-to-nearest rounding

unsigned short fract %hR

unsigned fract %R

unsigned long fract %lR

Table 1-19. I/O Conversion Specifiers for the Fixed-Point Types (Cont’d)

Type Conversion Specifier

CrossCore Embedded Studio 1.1 1-125
C/C++ Compiler Manual for SHARC Processors

Compiler

To set the rounding mode, you can use a pragma or a compile-time
switch.

The following compile-time switches control rounding behavior:

• -fx-rounding-mode-truncation (on page 1-38)

• -fx-rounding-mode-biased (on page 1-38)

• -fx-rounding-mode-unbiased (on page 1-39)

The given rounding mode will then be the default for the whole of the
source file being compiled.

You can also use a pragma to allow finer-grained control of rounding.
The pragmas are:

• #pragma FX_ROUNDING_MODE TRUNCATION

• #pragma FX_ROUNDING_MODE BIASED

• #pragma FX_ROUNDING_MODE UNBIASED

If one of these pragmas is applied at file scope, it applies until the end of
the translation unit or until another pragma at file scope changes the
rounding mode.

If one of these pragmas is applied within a compound statement (that is,
within a block enclosed by braces), the pragma applies to the end of the
compound statement where it is specified. The rounding mode will return
to the outer scope rounding mode on exit from the compound statement.
An example of how to use these pragmas is given in Listing 1-1.

Language Standards Compliance

1-126 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Listing 1-1. Use of #pragma FX_ROUNDING_MODE to Control
Rounding of Arithmetic on Fixed-Point Types

#include <stdfix.h>

#pragma FX_ROUNDING_MODE BIASED

fract my_func(void) {

// rounding mode here is biased

{

#pragma FX_ROUNDING_MODE UNBIASED

// rounding mode here is unbiased

}

// rounding mode here is biased

}

#pragma FX_ROUNDING_MODE TRUNCATION

fract my_func2(void) {

// rounding mode here is truncation

}

For more information, see #pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED}.

Language Standards Compliance
The compiler supports code that adheres to the ISO/IEC 9899:1990 C
standard, ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003
C++ standard.

The compiler’s level of conformance to the applicable ISO/IEC standards
is validated using commercial test-suites from Plum Hall, Perennial and
Dinkumware.

CrossCore Embedded Studio 1.1 1-127
C/C++ Compiler Manual for SHARC Processors

Compiler

C Mode
The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 9899:1990 C standard, but it does not
prohibit the use of language extensions (C/C++ Compiler Language
Extensions) that are compatible with the correct translation of stan-
dard-conforming programs. To enable this mode the -c89 switch should
be used. (-c89).

The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 9899:1999 C standard, but it does not
prohibit the use of language extensions (C/C++ Compiler Language
Extensions) that are compatible with the correct translation of stan-
dard-conforming programs. The compiler does not support the C99
keywords _Complex and _Imaginary. The ISO/IEC 9899:1990 C standard
library provided in C89 mode is used in C99 mode. This is the default
mode (-c99).

In C mode, the best standard conformance is achieved using the default
switches and the following non-default switches:

• -const-strings (See -const-strings)

• -double-size-64 (See -double-size[-32|-64])

• -enum-is-int (See Enumeration Type Implementation Details)

The language extensions cannot be disabled to ensure strict compliance to
the language standards. However, when compiling for MISRA-C
(MISRA-C Compiler) compliance checking, language extensions are
disabled.

Language Standards Compliance

1-128 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

When the -c89 switch is enabled, these extensions already include many of
the ISO/IEC 9899:1999 standard features. The following features are only
available in C99 mode.

• Type qualifiers may appear more than once in the same
specifier-qualifier-list.

• __func__ predefined identifier is supported.

• Universal character names (\u and \U) are accepted.

• The use of function declarations with non-prototyped parameter
lists are faulted.

• The first statement of a for-loop can be a declaration, not just
restricted to an expression.

• Type qualifiers and static are allowed in parameter array
declarators.

C++ Mode
The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 14882:2003 C++ standard, but it does
not prohibit the use of language extensions (C/C++ Compiler Language
Extensions) that are compatible with the correct translation of stan-
dard-conforming programs. The Library provided in C++ mode is a
proper subset of the full Standard C++ Library and is designed specifically
for the needs of the embedded market.

In C++ mode, the best possible standard conformance is achieved using
the following default switches:

• -no-friend-injection (-no-friend-injection)

• -no-anach (-no-anach)

CrossCore Embedded Studio 1.1 1-129
C/C++ Compiler Manual for SHARC Processors

Compiler

• -no-implicit-inclusion (-no-implicit-inclusion)

• -std-templates (-std-templates)

In addition, the best possible standard conformance is achieved using the
following non-default switches:

• -eh (-eh)

• -const-strings (-const-strings)

• -double-size-64 (-double-size[-32|-64])

• -rtti (-rtti)

MISRA-C Compiler
This section provides an overview of MISRA-C compiler and MISRA-C
2004 Guidelines.

MISRA-C Compiler Overview
The Motor Industry Software Reliability Association (MISRA) in 1998
published a set of guidelines for the C programming language to promote
best practice in developing safety related electronic systems in road vehi-
cles and other embedded systems. The latest release of MISRA-C:2004 has
addressed many issues raised in the original guidelines specified in
MISRA-C:1998. Complex rules are now split into component parts.
There are 121 mandatory and 20 advisory rules. The compiler issues a dis-
cretionary error for mandatory rules and a warning for advisory rules.
More information on MISRA-C can be obtained at www.misra.org.uk/.

The compiler detects violations of the MISRA-C rules at compile-time,
link-time and runtime. It has full support for the MISRA-C 2004 Guide-
lines. The majority of MISRA-C rules are easy to interpret.

http://www.misra.org.uk

MISRA-C Compiler

1-130 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Those that require further explanation can be found in Rules
Descriptions.

As a documented extension, the compiler supports the type qualifiers __pm
and __dm (see Dual Memory Support Keywords (pm dm)) and the integral
types long long and unsigned long long. No other language extensions
are supported when MISRA checking is enabled. Common extensions,
such as the keywords section and inline, are not allowed in the
MISRA-C mode, but the same effects can be achieved by using pragmas
#pragma section/#pragma default_section and #pragma inline. Rules can
be suppressed by the use of command-line switches or the MISRA-C
extensions to Diagnostic Control Pragmas (on page 1-268).

 The run-time checking that is used for validating a number of rules
should not be used in production code. The cost of detecting these
violations is expensive in both run-time performance and code size.
A subset of these run-time checks can also be enabled when
MISRA-C is not enabled. For more information, see Run-Time
Checking.

Refer to Table 1-4 for the list of MISRA-C command-line switches.

MISRA-C Compliance
The MISRA-C:2004 Guidelines Forum (visit www.misra.org.uk/) is an
essential reference for ensuring that code developed or requiring modifica-
tion complies to these guidelines. A rigorous checking tool such as his
compiler makes achieving compliance a lot easier than using a less capable
tool or simply relying on manual reviews of the code. The MISRA-C:2004
Guidelines Forum describes a compliance matrix that a developer uses to
ensure that each rule has a method of detecting the rule violation. A com-
pliance checking tool is a vital component in detecting rule violations. It is
recognized in the guidelines document that in some circumstances it may
be necessary to deviate from the given rules. A formal procedure has to be

http://www.misra.org.uk

CrossCore Embedded Studio 1.1 1-131
C/C++ Compiler Manual for SHARC Processors

Compiler

used to authorize these deviations rather than an individual programmer
having to deviate at will.

Using the Compiler to Achieve Compliance

The CCES compiler is one of the most comprehensive MISRA-C: 2004
compliance checking tools available. The compiler has various
command-line switches and Diagnostic Control Pragmas (on page 1-268)
to enable you to achieve MISRA-C: 2004 compliance.

During development, it is recommended that the application is built with
maximum compliance enabled.

Use the -misra-strict command-line switch to detect the maximum
number of rule violations at compile-time. However, if existing code is
being modified, using -misra-strict may result in a lot of errors and
warnings. The majority are usually common rule violations that are
mainly advisory and typically found in header files as a result of macro
expansion. These can be suppressed using the -misra command-line
switch. This has the potential benefit of focussing change on individual
source file violations, before changing headers that may be shared by more
than one project.

The -misra-no-cross-module command-line switch disables checking
rule violations that occur across source modules. During development,
some external variables may not be fully utilized and rather than add in
artificial uses to avoid rule violations, use this switch.

The -misra-no-runtime command-line switch disables the additional
run-time overheads imposed by some rules. During development these
checks are essential in ensuring code executes as expected. Use this switch
in release mode to disable the run-time overheads.

You can use the -misra-testing command-line switch during develop-
ment to record the behavior of executable code. Although the MISRA-C:
2004 Guidelines do not allow library functions, such as those that are

MISRA-C Compiler

1-132 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

defined in header <stdio.h>, it is recognized that they are an essential part
of validating the development process.

During development, it is likely that you will encounter areas where some
rule violations are unavoidable. In such circumstances you should follow
the procedure regarding rule deviations described in the MISRA-C: 2004
Guidelines Forum. Use the -Wmis_suppress and -Wmis_warn switches to
control the detection of rule violations for whole source files. Finer con-
trol is provided by the diagnostic control pragmas. These pragmas allow
you to suppress the detection of specified rule violations for any number
of C statements and declarations.

Example

#include <misra_types.h>
#include <def21266.h>
#include "proto.h" /* prototype for func_state and my_state */
int32_t func_state(int32_t state)
{
return state & TIMOD1;
/* both operands signed, violates rule 12.7 */
}

#define my_flag 1

int32_t my_state(int32_t state)
{
return state & my_flag;
/* both operands signed, violates rule 12.7 */
}

In the above example, <def21266.h> uses signed masks and signed literal
values for register values. The code is meaningful and trusted in this con-
text. You may suppress this rule and document the deviation in the code.
For code violating the rule that is not from the system header, you may
wish to rewrite the code:

#include <misra_types.h>
#include <def21266.h>

CrossCore Embedded Studio 1.1 1-133
C/C++ Compiler Manual for SHARC Processors

Compiler

#include "proto.h" /* prototype for func_state and my_state */

#ifdef _MISRA_RULES
#pragma diag(push)
#pragma diag(suppress:misra_rule_12_7:"Using the def file is
a safe and justified deviation for rule 12.7")

#endif /* _MISRA_RULES */

int32_t func_state(int32_t state)
{
return state & TIMOD11;
/* both operands signed, violates rule 12.7 */
}

#ifdef _MISRA_RULES
 #pragma diag(pop)
/* allow violations of 12.7 to be detected again */
#endif /* _MISRA_RULES */

#define my_flag 1u

uint32_t my_state(uint32_t state)
{
return state & my_flag;/* o.k both unsigned */
}

Rules Descriptions
The following are brief explanations of how some of the MISRA-C rules
are supported and interpreted in this CCES release due to the fact that
some rules are handled in a nonstandard way, or some are not handled at
all.

MISRA-C Compiler

1-134 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Since the data types char, short and int are all represented as
32-bit integers on the SHARC architecture, MISRA rules relating
to the size of variables may not be issued.

• Rule 1.4 (required): The compiler/linker shall be checked to
ensure that 31 character significance and case sensitivity are sup-
ported for external identifiers.
The compiler and linker fully support this requirement.

• Rule 1.5 (required): Floating-point implementations should com-
ply with a defined floating-point standard.
Refer to Floating-Point Data Types.

• Rule 2.4 (advisory): Sections of code should not be “commented
out”.
A diagnostic is reported if one of the following is encountered
inside of a comment.
- character ‘{‘ or ‘}’

- character ‘;’ followed by a new-line character

• Rule 5.1 (required): Identifiers (internal and external) shall not
rely on the significance of more than 31 characters.
This rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-84).

• Rule 5.5 (advisory): No object or function identifier with static
storage duration should be reused.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the same identifier is not used at file-scope within another module.
This rule is not enforced if the -misra-no-cross-module compiler
switch is specified (on page 1-83).

• Rule 5.7 (advisory): No identifier shall be reused.
This rule is limited to a single source file. The rule is only enforced
when the -misra-strict compiler switch is enabled
(on page 1-84).

CrossCore Embedded Studio 1.1 1-135
C/C++ Compiler Manual for SHARC Processors

Compiler

• Rule 6.3 (advisory): typedefs that indicate size and signedness
should be used in place of basic types.
The typedefs for the basic types are provided by the system header
files <stdint.h> and <stdbool.h>. The rule is only enforced when
the -misra-strict compiler switch is enabled (on page 1-84).

• Rule 6.4 (advisory): Bit fields shall only be defined to be of type
unsigned int or signed int.
The rule regarding the use of plain int is only enforced when the
-misra-strict compiler switch is enabled (on page 1-84).

• Rule 8.1 (required): Functions shall have prototype declarations
and the prototype shall be visible at both the function definition
and the call.
For static and inline functions this rule is only enforced when the
-misra-strict compiler switch is enabled (on page 1-84).

• Rule 8.5 (required): There shall be no definitions of objects or
functions in a header file.
This rule does not apply to inline functions.

• Rule 8.8 (required): An external object or function shall be
declared in one and only one file.
This rule is enforced by the compiler prelinker. The compiler
generates .misra extension files that the prelinker uses to ensure
that the global is used in another file. The rule is not enforced if
the -misra-no-cross-module switch is enabled (on page 1-83).

• Rule 8.10 (required): All declarations and definitions of objects or
functions at file scope shall have internal linkage unless external
linkage is required.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-83).

MISRA-C Compiler

1-136 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Rule 9.1 (required): All automatic variables shall have been
assigned a value before being used.
The compiler attempts to detect some instances of violations of this
rule at compile-time. There is additional code added at run-time to
detect unassigned scalar variables. The additional Integral types
with a size less than an int are not checked by the additional
run-time code. This check is also available separately, via the
-rtcheck switch (on page 1-68) and the -rtcheck-unassigned
switch (on page 1-71). The run-time code is not added if the
-misra-no-runtime compiler switch is enabled (on page 1-83), or
if the -no-rtcheck-unassigned switch is enabled (on page 1-54).

• Rule 10.5 (required): If the bitwise operators ~ and << are applied
to an operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the underlying type
of the operand.
When constant-expressions violate this rule, they are only detected
when the -misra-strict compiler switch is enabled
(on page 1-84).

• Rule 11.3 (advisory): A cast shall not be performed between a
pointer type and an integral type.
The compiler always allows a constant of integral type to be cast to
a pointer to a volatile type.
volatile int32_t *n;

n = (volatile int32_t *)10;

There is only one case where this rule is not applied.
int32_t *n;

n = (int32_t *)10;

• Rule 12.4 (required): The right-hand operand of a logical && or
|| operator shall not contain side-effects.
A function call used as the right-hand operand will not be faulted if
it is declared with an associated #pragma pure directive.

CrossCore Embedded Studio 1.1 1-137
C/C++ Compiler Manual for SHARC Processors

Compiler

• Rule 12.7 (required): Bitwise operators shall not be applied to
operands whose underlying type is signed.
The compiler will not enforce this rule if the two operands are
constants.

• Rule 12.8 (required): The right-hand operand of a shift operator
shall lie between zero and one less than the width in bits of the
underlying type of the left-hand operand.
If the right-hand operand is not a constant expression, the viola-
tion will be checked by additional run-time code when
-misra-no-runtime is not enabled. If both operands are constants,
the rule is only enforced when neither the -misra-strict compiler
switch (on page 1-84) nor the -no-rtcheck-shift-check switch
(on page 1-53) are enabled. This check is also available separately,
via the -rtcheck switch (on page 1-68), and the
-rtcheck-shift-check switch (on page 1-70).

• Rule 12.12 (required): The underlying bit representations of
floating-point values shall not be used.
MISRA-C rules such as 11.4 prevent casting of bit-patterns to
floating-point values. Hexadecimal floating-point constants are
also not allowed when MISRA-C switches are enabled.

• Rule 13.2 (advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.
The compiler treats variables which use the type bool (a typedef is
declared in <stdbool.h>) as “Effectively Boolean” and will not raise
an error when these are implicitly tested as zero, as follows:
bool b = 1;

if(bool)

…;

MISRA-C Compiler

1-138 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Rule 13.7 (required): Boolean operations whose results are invari-
ant shall not be used.
The compiler does not detect cases where there is a reliance on
more than one conditional statement. Constant expressions violat-
ing the rule are only detected when the -misra-strict compiler
switch is enabled (on page 1-84).

• Rule 16.2 (required): Functions shall not call themselves, either
directly or indirectly.
A compile-time check is performed for a single file. Run-time code
is added to ensure that functions do not call themselves directly or
indirectly, but this code is not generated if the -misra-no-runtime
compiler switch is enabled (on page 1-83).

• Rule 16.4 (required): The identifiers used in the declaration and
definition of a function shall be identical.
A declaration of a parameter name may have one leading under-
score that the definition does not contain. This is to prevent name
clashing. If the -misra-strict compiler switch is enabled
(on page 1-84), the underscore is significant and results in the vio-
lation of this rule.

• Rule 16.5 (required): Functions with no parameters shall be
declared and defined with parameter type void.
Function main shall only be reported as violating this rule if the
-misra-strict compiler switch is enabled (on page 1-84).

• Rule 16.10 (required): If a function returns error information,
then the error information shall be tested.
A function declared with return type bool, which is a typedef
declared in header file <stdbool.h> will be faulted if the result of
the call is not used.

CrossCore Embedded Studio 1.1 1-139
C/C++ Compiler Manual for SHARC Processors

Compiler

• Rule 17.1 (required): Pointer arithmetic shall only be applied to
pointers that address an array or array element.
Checking is performed at runtime. A run-time function looks at
the value of the pointer and checks to see whether it violates this
rule. This check is also available via the -rtcheck switch
(on page 1-68) and the -rtcheck-arr-bnd switch (on page 1-69).
It can be disabled via the -no-rtcheck-arr-bnd switch
(on page 1-52).

• Rule 17.2 (required): Pointer subtraction shall only be applied to
pointers that address elements of the same array.
Checking is performed at runtime. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.3 (required): >, >=, <, <= shall not be applied to pointers
that address elements of different arrays.
Checking is performed at runtime. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.4 (required): Array indexing shall be the only allowed
form of pointer arithmetic.
Checking is performed at runtime to ensure the object being
indexed is an array. A run-time function looks at the value of the
pointers and checks to see whether it violates this rule.

All other forms of pointer arithmetic are reported at compile-time
as violations of this rule.

MISRA-C Compiler

1-140 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Rule 17.6 (required): The address of an object with automatic
storage shall not be assigned to another object that may persist
after the first object has ceased to exist.
Rule is not enforced under the following circumstances: if the
address of a local variable is passed as a parameter to another func-
tion, the compiler cannot detect whether that address has been
assigned to a global object.

• Rule 18.2 (required): An object shall not be assigned to an over-
lapping object.
The rule is not enforced by the compiler.

• Rule 18.3 (required): An area of memory shall not be reused for
unrelated purposes.
The rule is not enforced by the compiler.

• Rule 19.4 (required): C macros shall only expand to a braced ini-
tializer, a constant, a string literal, a parenthesized expression, a
type qualifier, a storage class specifier, or a do-while-zero con-
struct.
Use of #pragma diag(suppress:misra_rule_19_4) will suppress
violations of this rule for any macro expansion during the scope of
the suppression. If a macro is defined within the scope of the sup-
pression, then the macro expansion will not be detected for
violation of rule 19.4 even if the expansion point does not suppress
the rule. See Diagnostic Control Pragmas.

• Rule 19.7 (advisory): A function shall be used in preference to a
function-like macro.
The rule is only enforced when the compiler option -misra-strict
is enabled (on page 1-84).

CrossCore Embedded Studio 1.1 1-141
C/C++ Compiler Manual for SHARC Processors

Compiler

• Rule 19.15 (required): Precautions shall be taken in order to pre-
vent the contents of a header file being included twice.
The compiler will report this violation if a header file is included
more than once and does not prevent redeclarations of types, vari-
ables or functions.

• Rule 20.3 (required): The validity of values passed to library
functions shall be checked.
This is not enforced by the compiler. The rule puts the responsibil-
ity on the programmer.

• Rule 20.4 (required): Dynamic heap memory allocation shall not
be used.
Prototype declarations for functions performing heap allocation
should be declared with an associated #pragma misra_func(heap)
directive. This directive allows the compiler to detect violations of
this rule when these functions are used.

• Rule 20.7 (required): The setjmp macro and longjmp function
shall not be used.
Prototype declarations for these should be declared with an associ-
ated #pragma misra_func(jmp) directive. This directive allows the
compiler to detect violations of this rule when these functions are
used.

• Rule 20.8 (required): The signal handling facilities of <signal.h>
shall not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(handler) direc-
tive. This directive allows the compiler to detect violations of this
rule when these functions are used.

MISRA-C Compiler

1-142 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Rule 20.9 (required): The input/output library <stdio.h> shall
not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(io) directive.
This directive allows the compiler to detect violations of this rule
when these functions are used.

• Rule 20.10 (required): The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(string_conv) directive. This
directive allows the compiler to detect violations of this rule when
these functions are used.

• Rule 20.11 (required): The library functions abort, exit, getenv
and system from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(system) directive. This direc-
tive allows the compiler to detect violations of this rule when these
functions are used.

• Rule 20.12 (required): The time handling functions of library
<time.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(time) directive. This directive
allows the compiler to detect violations of this rule when these
functions are used.

• Rule 21.1 (required): Minimization of run-time failures shall be
ensured by the use of at least one of: (a) static analysis tools/tech-
niques; (b) dynamic analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.
The compiler performs some static checks on uses of unassigned
variables before conditional code and use of constant expressions.
The compiler performs run-time checks for arithmetic errors, such
as division by zero, array bound errors, unassigned variable

CrossCore Embedded Studio 1.1 1-143
C/C++ Compiler Manual for SHARC Processors

Compiler

checking and pointer dereferencing. Run-time checking has a nega-
tive effect on code performance. The -misra-no-runtime compiler
switch turns off the run-time checking (on page 1-83).

Run-Time Checking
The compiler provides support for detecting common programming mis-
takes, such as dereferencing a NULL pointer, or accessing an array beyond
its bounds. The compiler does this by generating additional code to check
for such conditions at runtime. Such code occupies space and incurs a per-
formance penalty, so you should only use run-time checking when
developing and debugging your application; products for release should
always have run-time checking disabled.

The compiler’s run-time checks are a subset of those enabled when
MISRA-C run-time checking is active. For more information, see
MISRA-C Compiler.

The following sections describe run-time checking in more detail:

• Enabling Run-Time Checking

• Supported Run-Time Checks

• Response When Problems Are Detected

• Limitations of Run-Time Checking

Run-Time Checking

1-144 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Enabling Run-Time Checking
Because of the associated overheads, run-time checking is disabled by
default. You can enable run-time checking:

• By specifying command-line switches;

• Through the IDE, via run-time checking options under Project >
Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Run-time Checks.

In both cases, you can enable all supported run-time checks, or just enable
specific subsets.

Once run-time checking is enabled to some level, you can further turn
that checking off and on again within your code, with pragmas. This
allows you to narrow your focus down to particular functions, or to
exclude certain functions from checking.

Command-Line Switches for Run-Time Checking

The following switches are used to turn run-time checking on:

• -rtcheck: Turns on all run-time checks.

• -rtcheck-arr-bnd: Turns on checking of array boundaries.

• -rtcheck-div-zero: Turns on checking for division by zero.

• -rtcheck-heap: Turns on checking of heap operations.

• -rtcheck-null-ptr: Turns on checking for NULL pointer
dereferencing.

• -rtcheck-shift-check: Turns on checking of shift operations.

CrossCore Embedded Studio 1.1 1-145
C/C++ Compiler Manual for SHARC Processors

Compiler

• -rtcheck-stack: Turns on checking for stack overflow.

• -rtcheck-unassigned: Turns on checking for use of variables
before they’ve been assigned values.

The following switches are used to turn run-time checking off:

• -no-rtcheck: Turns off all run-time checks.

• -no-rtcheck-arr-bnd: Turns off checking of array boundaries.

• -no-rtcheck-div-zero: Turns off checking for division by zero.

• -no-rtcheck-heap: Turns off checking of heap operations.

• -no-rtcheck-null-ptr: Turns off checking for NULL pointer
dereferencing.

• -no-rtcheck-shift-check: Turns off checking of shift operations.

• -no-rtcheck-stack: Turns off checking for stack overflow.

• -no-rtcheck-unassigned: Turns off checking for use of variables
before they’ve been assigned values.

You can use combinations of these switches to enable the subset you
require. For example, the following two sets of switches are equivalent:

• -rtcheck -no-rtcheck-arr-bnd -no-rtcheck-div-zero \

 -no-rtcheck-heap -no-rtcheck-stack

• -rtcheck-null-ptr -rtcheck-shift-check -rtcheck-unassigned

For more information, see -rtcheck.

Run-Time Checking

1-146 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Pragmas for Run-Time Checking

The following pragmas are used to enable and disable run-time checks.

• #pragma rtcheck(on): Turns on that subset of run-time checking
that has been enabled by command-line switches.

• #pragma rtcheck(off): Turns off all run-time checking.

Note that these pragmas do not affect which run-time checks apply—use
command-line switches to select the appropriate checks, then use the
pragmas to enable those checks during compilation of your functions of
interest.

 These pragmas cannot disable and re-enable heap-operation check-
ing, or stack overflow detection. These checks are provided by
linking in alternative library support, which apply to the whole
application.

For more information, see Run-Time Checking Pragmas.

Supported Run-Time Checks
The following run-time checks are supported by the compiler:

Array Boundary Checks

When generating code to access arrays, the compiler generates additional
code to see whether the location accessed falls within the boundaries of a
live automatic array.

Division by Zero Checks

When generating code to perform an integer or floating-point division,
the compiler generates additional code to check that the divisor is
non-zero.

CrossCore Embedded Studio 1.1 1-147
C/C++ Compiler Manual for SHARC Processors

Compiler

Heap Checks

The debugging version of the heap library checks for leaks, multiple frees
of the same pointer, writes beyond the bounds of an allocation, and so on.

NULL Pointer Checks

When generating code to read the value pointed to by a pointer, the com-
piler generates additional code to verify that the pointer is not NULL.

Shift Checks

When generating code to shift a value X by some amount Y, the compiler
generates additional code to check that:

• Y is not a negative value.

• Y is less than the number of bits required to represent X’s type.

Stack Overflow Checks

When enabled, the run-time environment makes use of the SHARC pro-
cessors circular-buffer mechanism for stack overflow detection: if the stack
pointer (I7) advances beyond the limits defined by its corresponding base
and length registers, a circular-buffer interrupt (CB7I) occurs and is
trapped.

Unassigned Variable Checks

When generating code to read the value of a variable, the compiler
gener.ates additional code to make sure a value has previously been
assigned to the variable.

Response When Problems Are Detected
In most cases, the additional code generated by the compiler includes code
for emitting a diagnostic message to the stderr stream. This message is
emitted when the run-time check finds a problem.

Run-Time Checking

1-148 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

When stack overflow is detected, however, the generated code transfers
control to the special label _adi_stack_overflowed, as emitting a
diagnostic to the stderr stream would require additional stack space. The
IDE normally places a breakpoint on the _adi_stack_overflowed label.
For more information, see Stack Overflow Detection.

The heap debugging library also provides support for logging problems to
a file instead of reporting them immediately to the stderr stream. For
more information, see Heap Debugging.

Limitations of Run-Time Checking
Besides the space/performance overheads incurred by the additional code,
the following limitations apply to run-time checking:

• Compiled code only: Because the run-time checks rely on addi-
tional code emitted during function compilation, the run-time
checks can only apply to code compiled by the compiler, while
run-time checks are enabled. Hand-written assembly or previ-
ously-compiled code cannot make benefit from run-time checking.

• No asm statements: The compiler has no visibility into the con-
tents of asm statements, so any actions carried out by asm
statements will not be checked by any enabled run-time checking.
For more information, see Inline Assembly Language Support Key-
word (asm).

• Stdio support required: Because the generated diagnostics are emit-
ted to the stderr stream, run-time checking is only beneficial when
the application supports the standard error stream, and the stream
is attached to some suitable output device (such as the IDE con-
sole, which is the usual case when running an application within
the debugger).

CrossCore Embedded Studio 1.1 1-149
C/C++ Compiler Manual for SHARC Processors

Compiler

C/C++ Compiler Language Extensions
The compiler supports a set of extensions to the ANSI standard for the C
and C++ languages. These extensions add support for DSP hardware and
allow some C++ programming features when compiling in C mode. Most
extensions are also available when compiling in C++ mode.

This section contains information on ISO/IEC 9899:1999 standard fea-
tures that are supported in C89 mode:

• Function Inlining

• Variable Argument Macros

Restricted Pointers

• Variable-Length Array Support

• Non-Constant Initializer Support

• Designated Initializers

• Hexadecimal Floating-Point Numbers

• Declarations Mixed With Code

• Compound Literals

• C++ Style Comments

• Enumeration Constants That Are Not int Type

• Boolean Type

This section also contains information on other language extensions:

• The fract Native Fixed-Point Type

• Inline Assembly Language Support Keyword (asm)

C/C++ Compiler Language Extensions

1-150 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Dual Memory Support Keywords (pm dm)

• Memory Banks

• Placement Support Keyword (section)

• Placement of Compiler-Generated Code and Data

• Long Identifiers

• Preprocessor Generated Warnings

• Compiler Built-In Functions

• Pragmas

• GCC Compatibility Extensions

• Support for 40-Bit Arithmetic

• SIMD Support

• Accessing External Memory on ADSP-2126x and ADSP-2136x
Processors

The additional keywords that are part of the C/C++ extensions do not
conflict with any ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch (on page 1-49) is
used, the compiler defines the shorter form of the keyword extension that
omits the leading underscores.

This section describes only the shorter forms of the keyword extensions,
but in most cases you can use either form in your code. For example, all
references to the inline keyword in this text appear without the leading
double underscores, but you can interchange inline and __inline in your
code.

CrossCore Embedded Studio 1.1 1-151
C/C++ Compiler Manual for SHARC Processors

Compiler

You might need to use the longer form (such as __inline) exclusively if
porting a program that uses the extra Analog Devices keywords as identifi-
ers. For example, a program might declare local variables, such as pm or dm.
In this case, use the -no-extra-keywords switch, and if you need to
declare a function as inline, or allocate variables to memory spaces, you
can use __inline or __pm/__dm respectively.

This section provides an overview of the extensions, with brief descrip-
tions, and directs you to text with more information on each extension.

Table 1-20 provides a brief description of each keyword extension and
directs you to sections of this chapter that document the extensions in
more detail. Table 1-21 provides a brief description of each operational
extension and directs you to sections that document these extensions in
more detail.

Table 1-20. Keyword Extensions

Keyword extensions Description

inline Directs the compiler to integrate the function code into the code of
the calling function(s). For more information, see Function Inlining.

asm() Places ADSP-21xxx assembly language instructions directly in your
C/C++ program. For more information, see Inline Assembly Lan-
guage Support Keyword (asm).

dm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Data Memory (DM). For more
information, see Dual Memory Support Keywords (pm dm).

pm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Program Memory (PM). For
more information, see Dual Memory Support Keywords (pm dm).

section("string") Specifies the section in which an object or function is placed. The
section keyword has replaced the segment keyword of the previous
releases of the compiler software. For more information, see Place-
ment Support Keyword (section).

bool, true, false A boolean type. For more information, see Boolean Type.

C/C++ Compiler Language Extensions

1-152 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Function Inlining
The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline function
support and the inline keyword is a standard feature of C++ and the

restrict keyword Specifies restricted pointer features. For more information, see
Restricted Pointers.

fract Support for fixed-point arithmetic. For more information, see Using
Native Fixed-Point Types.

Table 1-21. Operational Extensions

Operation extensions Description

Variable-length arrays Support for variable-length arrays lets you use arrays whose length is
not known until run time. For more information, see Vari-
able-Length Array Support.

Long identifiers Supports identifiers of up to 1022 characters in length. For more
information, see Long Identifiers.

Non-constant initializers Support for non-constant initializers lets you use non-constants as
elements of aggregate initializers for automatic variables. For more
information, see Non-Constant Initializer Support.

Designated initializers Support for designated initializers lets you specify elements of an
aggregate initializer in arbitrary order. For more information, see
Designated Initializers.

Compound literal expres-
sions

Support for compound literals lets you create an aggregate array or
structure value from component values within an expression.
For more information, see Compound Literals.

Preprocessor-generated
warnings

Lets you generate warning messages from the preprocessor.
For more information, see Preprocessor Generated Warnings.

C++ style comments Allows for “//” C++ style comments in C programs. For more
information, see C++ Style Comments.

Table 1-20. Keyword Extensions (Cont’d)

Keyword extensions Description

CrossCore Embedded Studio 1.1 1-153
C/C++ Compiler Manual for SHARC Processors

Compiler

ISO/IEC 9899:1999 C standard; the compiler provides this keyword as a
C extension in C89 mode. (For more information, see -c89.)

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included.

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b, int c) {
return max (a, max(b, c));

}

The compiler can decide not to inline a particular function declared with
the inline keyword, with a diagnostic remark cc1462 issued if the com-
piler chooses to do this. The diagnostic can be raised to a warning by use
of the -Wwarn switch. For more information, see -W{annotation|error|remark|sup-

press|warn} number[,number ...].

Function inlining can also occur by use of the -Oa (automatic function
inlining) switch (for more information, see -Oa), which enables the inline
expansion of C/C++ functions that are not necessarily declared inline in
the source code. The amount of auto-inlining the compiler performs is
controlled using the –Ov (optimize for speed versus size) switch.

The compiler follows a specific order of precedence when determining
whether a call can be inlined. The order is:

1. If the definition of the function is not available (for example, it is a
call to an external function), the compiler cannot inline the call.

2. If the -never-inline switch has been specified (on page 1-46), the
compiler will not inline the call. If the call is to a function that has
#pragma always_inline specified (see Inline Control Pragmas), a
warning will also be issued.

C/C++ Compiler Language Extensions

1-154 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

3. If the call is to a function that has #pragma never_inline specified,
the call will not be inlined.

4. If the call is via a pointer-to-function, the call will not be inlined
unless the compiler can prove that the pointer will always point to
the same function definition.

5. If the call is to a function that has a variable number of arguments,
the call will not be inlined.

6. If the module contains asm statements at global scope (outside
function definitions), the call may not be inlined because the asm
statement restricts the compiler’s ability to reorder the resulting
assembly output.

7. If the call is to a function that has #pragma always_inline speci-
fied, the call is inlined. If the call exceeds the current speed/space
ratio limits, the compiler will issue a warning, but will still inline
the call.

8. If the call is to a function that has the inline qualifier, or has
#pragma inline specified, and the -always-inline switch
(on page 1-28) has been specified, the compiler will inline the call.
If the call exceeds the current speed/space ratio limits, the compiler
will issue a warning, but will still inline the call.

9. If the caller and callee are mapped to different code sections, the
call will not be inlined unless the callee has the inline qualifier or
has #pragma inline specified.

10.If the call is to a function that has the inline qualifier or has
#pragma inline specified and optimization is enabled, the called
function will be compared against the current speed/size ratio

CrossCore Embedded Studio 1.1 1-155
C/C++ Compiler Manual for SHARC Processors

Compiler

limits for code size and stack size. The calling function will also be
examined against these limits. Depending on the limits and the rel-
ative sizes of the caller and callee, the inlining may be rejected.

11.If the call is to a function that does not have the inline qualifier or
#pragma inline, and does not have #pragma weak_entry, then if
the -Oa switch has been specified to enable automatic inlining, the
called function will be considered as a possible candidate for inlin-
ing, according to the current speed/size ratio limits, as if the inline
qualifier were present.

The compiler bases its code-related speed/size comparisons on the -Ov
switch. When -Ov is in the range 1...100, the compiler performs a calcula-
tion upon the size of the generated code using the -Ov value, and this will
determine whether the generated code is “too large” for inlining to occur.
When -Ov has the value 1, only very small functions are considered small
enough to inline; when -Ov has the value 100, larger functions are more
likely to be considered suitable as well.

When -Ov has the value 0, the compiler is optimizing for space. The
speed/space calculation will only accept a call for inlining if it appears that
the inlining is likely to result in less code than the call itself would
(although this is an approximation, since the inlining process is a
high-level optimization process, before actual machine instructions have
been selected).

Inlining and Optimization

The inlining process operates regardless of whether optimization has been
selected (although if optimization is not enabled, then inlining will only
happen when forced by #pragma always_inline or the -always-inline
switch). The speed/size calculation still has an effect, although an opti-
mized function is likely to have a different size from a non-optimized one,
which is smaller (and therefore more likely to be inlined) and is dependent
on the kind of optimization done.

C/C++ Compiler Language Extensions

1-156 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

A non-optimized function has loads and stores to temporary values which
are optimized away in the optimized version, but an optimized function
may have unrolled or vectorized loops with multiple variants, selected at
runtime for the most efficient loop kernel, so an optimized function may
run faster, but not be smaller.

Given that the optimization emphasis may be changed within a module –
or even turned off completely – by the optimization pragmas, it is possible
for either, both, or neither of the caller and callee to be optimized. The
inlining process still operates, and is only affected by this in as far as the
speed/size ratios of the resulting functions are concerned.

Inlining and Out-of-Line Copies

If a function is static (that is, private to the module being compiled) and
all calls to that function are inlined, then there are no calls remaining that
are not inline. Consequently, the compiler does not generate an
out-of-line copy for the function, thus reducing the size of the resulting
application.

If the address of the function is taken, it is possible that the function could
be called through that derived pointer, so the compiler cannot guarantee
that all calls have been accounted for. In such cases, an out-of-line copy
will always be generated.

A function declared inline must be defined (its body must be included)
in every file in which the function is used. This is normally done by plac-
ing the inline definition in a header file.

In C99 mode, the compiler fully supports inline functions with external
linkage as described in the ISO/IEC 9899:1999 standard. In C89 mode, it
will treat the function as if it were declared with internal linkage.

In C++ mode, the compiler ensures that non-static inline functions con-
form to the ISO/IEC 14882:2003 C++ standard.

CrossCore Embedded Studio 1.1 1-157
C/C++ Compiler Manual for SHARC Processors

Compiler

Inlining and Global asm Statements

Inlining imposes a particular ordering on functions. If functions A and B
are both marked as inline, and each calls the other, only one of the inline
qualifiers can be followed. Depending on which the compiler chooses to
apply, either A will be generated with inline versions of B, or B will be
generated with inline versions of A. Either case may result in no
out-of-line copy of the inlined function being generated. The compiler
reorders the functions within a module to get the best inlining result.
Functionally, the code is the same, but this affects the resulting assembly
file.

When global asm statements are used with the module, between the func-
tion definitions, the compiler cannot do this reordering process, because
the asm statement might be affecting the behavior of the assembly code
that is generated from the following C function definitions. Because of
this, global asm statements can greatly reduce the compiler’s ability to
inline a function call.

C/C++ Compiler Language Extensions

1-158 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Inlining and Sections

Before inlining, the compiler checks any section directives or pragmas on
the function definitions. For example,

section("secA") inline int add(int a, int b) { return a + b; }

section("secB") int times_two(int a) { return add(a, a); }

Since add() and times_two() are to be generated into different code sec-
tions, this call is ignored during the inlining process, so the call is not
inlined. If the callee is marked with #pragma always_inline
(on page 1-253), however, or the -always-inline switch (on page 1-28) is
in force, the compiler will inline the call despite the mismatch in sections.

Inlining and Run-Time Checking

When run-time checking is enabled, the compiler generates the additional
code for the checks when the function is first defined. The implications
for function inlining are as follows:

• When a function defined with run-time checking enabled is inlined
into a function without run-time checking enabled, the inlined
version still includes the run-time checks.

• When a function defined with run-time checking disabled is
inlined into a function with run-time checking enabled, the inlined
version does not acquire any run-time checks.

For more information, see Run-Time Checking.

Variable Argument Macros
This ISO/IEC 9899:1999 C standard feature is enabled as an extension in
C89 mode and in C++ mode. The final parameter in a macro declaration
may be an ellipsis (...) to indicate the parameter stands for a variable
number of arguments. In the replacement text for the macro, the

CrossCore Embedded Studio 1.1 1-159
C/C++ Compiler Manual for SHARC Processors

Compiler

predefined name __VA_ARGS__ represents the parameters that were sup-
plied for the ellipsis in the macro invocation. At least one argument must
be provided for the ellipsis, in an invocation.

For example:

#define tracec99(file,line,...) logmsg(file,line, __VA_ARGS__)

can be used with differing numbers of arguments: the following
statements:

tracec99("a.c", 999, "one", "two", "three");

tracec99("a.c", 999, "one", "two");

tracec99("a.c", 999, "one");

tracec99("a.c", 999);

expand to the following code:

logmsg("a.c", 999, "one", "two", "three");

logmsg("a.c", 999, "one", "two");

logmsg("a.c", 999, "one");

logmsg("a.c", 999,); // error - must provide an argument

 This variable argument macro syntax comes from the ISO/IEC
9899:1999 C standard. The compiler supports both GCC and C99
variable argument macro formats in C89, C99 and C++ modes.
(See GCC Variable Argument Macros.)

Restricted Pointers
The restrict operator keyword is a standard feature of the ISO/IEC
9899:1999 C standard, and is available as an extension in C89 and C++
modes.

C/C++ Compiler Language Extensions

1-160 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The use of restrict is limited to the declaration of a pointer and specifies
that the pointer provides exclusive initial access to the object to which it
points. More simply, restrict is a way that you can identify that a
pointer does not create an alias. Also, two different restricted pointers can-
not designate the same object, and therefore, they are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing to better optimize C/C++ code that uses pointers.The keyword is
most useful when applied to function parameters about which the com-
piler would otherwise have little information.

For example,

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers, except for the following cases:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If you have a program that uses a restricted pointer in a way that it does
not uniquely refer to storage, then the behavior of the program is
undefined.

Variable-Length Array Support
The compiler supports variable-length automatic arrays. This ISO/IEC
9899:1999 standard feature is also allowed as an extension in C89 mode.
(For more information, see -c89.) Variable-length arrays are not supported
in C++ mode.

CrossCore Embedded Studio 1.1 1-161
C/C++ Compiler Manual for SHARC Processors

Compiler

Unlike other automatic arrays, variable-length arrays are declared with a
non-constant length. This means that the space is allocated when the array
is declared, and deallocated when the brace-level is exited.

The compiler does not allow jumping into the brace-level of the array, and
produces a compile time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

You can use variable-length arrays as function arguments, such as:

void
tester (int len, char data[len][len])
{

/* code using data[][] */
}

The variable used for the array length must be in scope, and must have
been previously declared.

The compiler calculates the length of an array at the time of allocation. It
then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

Because variable-length arrays must be stored on the stack, it is impossible
to have variable-length arrays in program memory. The compiler issues an
error if an attempt is made to use a variable-length array in pm.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as the input matrices. Declaring an automatic variable-size
matrix is more convenient than allocating it from a heap. Note, however,
that variable-length arrays are allocated on the stack, which means that
sufficient stack space must be available.

The expression declares an array with a size that is computed at run time.
The length of the array is computed on entry to the block and saved in
case the sizeof() operator is used to determine the size of the array. For

C/C++ Compiler Language Extensions

1-162 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

multidimensional arrays, the boundaries are also saved for address compu-
tation. After leaving the block, all the space allocated for the array is
deallocated. For example, the following program prints 10, not 50.

main ()

{
foo(10);

}

void foo (int n)

{
char c[n];
n = 50;
printf("%d", sizeof(c));

}

Non-Constant Initializer Support
The compiler does not require the elements of an aggregate initializer for
an automatic variable to be constant expressions. This is a standard feature
of the ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003
C++ standard. The compiler supports it as an extension in C89 mode.

The following example shows an initializer with elements that vary at run
time.

void initializer (float a, float b)
{

float the_array[2] = { a-b, a+b };
}

void foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
}

CrossCore Embedded Studio 1.1 1-163
C/C++ Compiler Manual for SHARC Processors

Compiler

Designated Initializers
This is a standard feature of the ISO/IEC 9899:1999 C standard. The
compiler supports it as an extension in C89 and C++ modes.

This feature lets you specify the elements of an array or structure initial-
izer in any order by specifying their designators—the array indices or
structure field names to which they apply. All designators must be con-
stant expressions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index initialized by that value. Subsequent ini-
tializer elements are then applied to the sequentially following elements of
the array, unless another use of the [INDEX] syntax appears. The index
values must be constant expressions, even when the array being initialized
is automatic.

The following example shows equivalent array initializers—the first in
C89 form (without using the extension) and the second in C99 form,
using the designators. Note that the [INDEX] designator precedes the value
being assigned to that element.

/* Example 1 C Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, 0, 15, 0, 29, 0 };

/* Equivalent C99 array initializer (with designators) */

int a[6] = { [4] 29, [2] 15 };

C/C++ Compiler Language Extensions

1-164 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

You can combine this technique of designated elements with initialization
of successive non-designated elements. The two instructions below are
equivalent. Note that any non-designated initial value is assigned to the
next consecutive element of the structure or array.

/* Example 2 Mixed Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* Equivalent C99 array initializer (with designators) */

 int a[6] = { [1] v1, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the designators are characters or enum type.

/* Example 3 C Array Initializer With enum Type Indices */

/* C99 C array initializer (with designators) */

int whitespace[256] =

{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1

};

enum { e_ftp = 21, e_telnet = 23, e_smtp = 25, e_http = 80, e_nntp

= 119 };

char *names[] = {

[e_ftp] "ftp",

[e_http] "http",

[e_nntp] "nntp",

[e_smtp] "smtp",

[e_telnet] "telnet"

};

CrossCore Embedded Studio 1.1 1-165
C/C++ Compiler Manual for SHARC Processors

Compiler

In a structure initializer, specify the name of the field to initialize with
fieldname: before the element value. The C89 and C99 struct initializers
in the example below are equivalent.

/* Example 4 struct Initializer */

/* C89 struct Initializer (no designators) */

struct point {int x, y;};

struct point p = {xvalue, yvalue};

/* Equivalent C99 struct Initializer (with designators) */

struct point {int x, y;};

struct point p = {y: yvalue, x: xvalue};

Hexadecimal Floating-Point Numbers
This is a standard feature of the ISO/IEC:9899 1999 C standard. The
compiler supports this as an extension in C89 mode and in C++ mode.

Hexadecimal floating-point numbers have the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix]

hex-significand: hex-digits [. [hex-digits]]

binary-exponent-part: {p|P} [+|-] decimal-digits

floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number.
The digit sequence in the exponent part is interpreted as a decimal integer.
The exponent indicates the power of two by which the significand is to be
scaled. The floating suffix has the same meaning that it has for decimal
floating constants: a constant with no suffix is of type double, a constant
with suffix F is of type float, and a constant with suffix L is of type long
double.

C/C++ Compiler Language Extensions

1-166 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant. For example, the
declaration

float f = 0x1p-126f;

causes f to be initialized with the value 0x800000.

Declarations Mixed With Code
In C89 mode, the compiler accepts declarations placed in the middle of
code. This allows the declaration of local variables to be placed at the
point where they are required. Therefore, the declaration can be combined
with initialization of the variable. This is a standard feature of the
ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003 C++
standard.

For example, in the following function:

void func(Key k) {

Node *p = list;

while (p && p->key != k)

p = p->next;

if (!p)

return;

Data *d = p->data;

while (*d)

process(*d++);

}

the declaration of d is delayed until its initial value is available, so that no
variable is uninitialized at any point in the function.

CrossCore Embedded Studio 1.1 1-167
C/C++ Compiler Manual for SHARC Processors

Compiler

Compound Literals
This is a standard feature of the ISO/IEC:9899 1999 standard. The com-
piler supports it as an extension in C89 mode. It is not allowed in C++
mode.

The following example shows an ISO/IEC 9899:1990 standard C struct
usage, followed by an equivalent ISO/IEC 9899:1999 standard C code
that has been simplified using a compound literal.

/* C89/C++ Constructor struct */

/* Standard C struct */

struct foo {int a; char b[2];};

struct foo make_foo(int x, char *s)

{

 struct foo temp;

 temp.a = x;

 temp.b[0] = s[0];

 if (s[0] != '\0')

 temp.b[1] = s[1];

 else

 temp.b[1] = '\0';

 return temp;

}

/* Equivalent C99 constructor struct */

struct foo make_foo(int x, char *s)

{

return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});

}

C/C++ Compiler Language Extensions

1-168 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

C++ Style Comments
The compiler accepts C++ style comments in C programs, beginning with
// and ending at the end of the line. This is essentially compatible with
standard C, except for the following case.

a = b
//* highly unusual */ c
;

which a standard C compiler processes as:

a = b / c;

Enumeration Constants That Are Not int Type
The compiler allows enumeration constants to be integer types other than
int such as unsigned int, long long or unsigned long long. See Enu-
meration Type Implementation Details for more information.

Boolean Type
The compiler supports a Boolean data type bool, with values true and
false. This is a standard feature of the ISO/IEC 14882:2003 C++
standard, and is available as a standard feature in the ISO/IEC 9899:1999
C standard when the stdbool.h header is included. It is supported as an
extension in C89 mode, and as an extension in C99 mode when the std-
bool.h header has not been included.

The bool keyword is a unique signed integral type. There are two built-in
constants of this type: true and false. When converting a numeric or
pointer value to bool, a zero value becomes false, and a non-zero value
becomes true. A bool value may be converted to int by promotion,
taking true to one and false to zero. A numeric or pointer value is con-
verted automatically to bool when needed.

CrossCore Embedded Studio 1.1 1-169
C/C++ Compiler Manual for SHARC Processors

Compiler

The fract Native Fixed-Point Type
The compiler has support for the native fixed-point type fract, as defined
by Chapter 4 of the “Extensions to support embedded processors” ISO/IEC
draft technical report TR 18037. This support is available for the C lan-
guage only. A discussion of how to use this support is given in Using
Native Fixed-Point Types.

Inline Assembly Language Support Keyword (asm)
The cc21k asm() construct is used to code ADSP-21xxx assembly language
instructions within a C/C++ function. The asm() construct is useful for
expressing assembly language statements that cannot be expressed easily or
efficiently with C/C++ constructs.

Using asm(), you can code complete assembly language instructions and
specify the operands of the instruction using C/C++ expressions. When
specifying operands with a C/C++ expression, you do not need to know
which registers or memory locations contain C/C++ variables.

 The compiler does not analyze code defined with the asm() con-
struct; it passes this code directly to the assembler. The compiler
does perform substitutions for operands of the formats %0
through %9; however, it passes everything else through to the
assembler without reading or analyzing it. This means that the
compiler cannot apply any enabled workarounds for silicon errata
that may be triggered either by the contents of the asm construct,
or by the sequence of instructions formed by the asm() construct
and the surrounding code produced by the compiler.

asm() constructs are executable statements, and as such, may not
appear before declarations within C/C++ functions in MISRA-C
mode.

C/C++ Compiler Language Extensions

1-170 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

asm() constructs may also be used at global scope, outside function
declarations. Such asm() constructs are used to pass declarations
and directives directly to the assembler. They are not executable
constructs, and may not have any inputs or outputs, or affect any
registers.

In addition, when optimizing, the compiler sometimes changes the
order in which generated functions appear in the output assembly
file. However, if global-scope asm constructs are placed between
two function definitions, the compiler ensures that the function
order is retained in the generated assembly file. Consequently,
function inlining may be inhibited.

An asm() construct without operands takes the form as shown below.

asm("nop;");

The complete assembly language instruction, enclosed in quotes, is the
argument to asm().

 The compiler generates a label before and after inline assembly
instructions when generating debug code (the -g switch
on page 1-39). These labels are used to generate the debug line
information used by the debugger. If the inline assembler inserts
conditionally assembled code, an undefined symbol error is likely
to occur at link time. For example, the following code could cause
undefined symbols if MACRO is undefined:

asm("#ifdef MACRO");

asm(" // assembly statements");

asm("#endif");

If the inline assembler changes the current section and thereby causes the
compiler labels to be placed in another section, such as a data section
(instead of the default code section), then the debug line information is
incorrect for these lines.

CrossCore Embedded Studio 1.1 1-171
C/C++ Compiler Manual for SHARC Processors

Compiler

Using asm() constructs with operands requires some additional syntax
described in the following sections.

• asm() Construct Syntax

• Assembly Construct Operand Description

• Assembly Constructs With Multiple Instructions

• Assembly Construct Reordering and Optimization

• Assembly Constructs With Input and Output Operands

• Assembly Constructs With Compile-Time Constants

• Assembly Constructs and Flow Control

• Guidelines on the Use of asm() Statements

asm() Construct Syntax

Using asm() constructs, you can specify the operands of the assembly
instruction using C/C++ expressions. You do not need to know which
registers or memory locations contain C/C++ variables. Use the following
general syntax for your asm() constructs.

asm [volatile] (
template
[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]
[:clobber string]]]

);

The syntax elements are defined as:

• template
The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of appearance from left to

C/C++ Compiler Language Extensions

1-172 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

right, starting at 0. Separate multiple instructions with a semico-
lon, and enclose the entire string within double quotes. For more
information on templates containing multiple instructions, see
Assembly Constructs With Multiple Instructions.

• constraint
The constraint string directs the compiler to use certain groups of
registers for the input and output operands. Enclose the constraint
string within double quotes. For more information on operand
constraints, see Assembly Construct Operand Description.

• output operand
The output operands are the names of C/C++ variables that receive
output from corresponding operands in the assembly instructions.

• input operand
The input operand is a C/C++ expression that provides an input to
a corresponding operand in the assembly instruction.

• clobber string
The clobber string notifies the compiler that a list of registers are
overwritten by the assembly instructions. Use lowercase characters
to name clobbered registers. Enclose each name within double
quotes, and separate each quoted register name with a comma. The
input and output operands are guaranteed not to use any of the
clobbered registers, so you can read and write the clobbered regis-
ters as often as you like. See Table 1-23 for the list of individual
registers that can be used, and Table 1-26 for the list of register sets
that can be used.

It is vital that any register overwritten by an assembly instruction
and not allocated by the constraints is included in the clobber list.
The list must include memory if an assembly instruction accesses
memory.

CrossCore Embedded Studio 1.1 1-173
C/C++ Compiler Manual for SHARC Processors

Compiler

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax.

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression; that is, the expression must
be legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand

• The last output operand from the first input operand

• The last input operand from the clobbered registers

• A space must be added between adjacent colon field delimiters in
order to avoid a clash with the C++ “::” reserved global resolution
operator.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

 The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

C/C++ Compiler Language Extensions

1-174 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the SHARC assembly language assignment instruction.

{
int result, x;
asm (

"%0= %1;" :
"=d" (result) :
"d" (x)

);
}

In the above example, note:

• The template is "%0= %1;". The %0 is replaced with operand zero
(result), the %1 is replaced with operand one (x).

• The output operand is the C/C++ variable result. The letter d is
the operand constraint for the variable. This constrains the output
to a data register R{0-15}. The compiler generates code to copy the
output from the R register to the variable result, if necessary. The
= in =d indicates that the operand is an output.

• The input operand is the C/C++ variable x. The letter d in the
operand constraint position for this variable constrains x to a data
register R{0-15}. If x is stored in a different kind of register or in
memory, the compiler generates code to copy the value into an R
register before the asm() construct uses it.

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. Several pieces of information
must be conveyed for the compiler to know how to assign registers to
operands. This information is conveyed with an operand constraint. The

CrossCore Embedded Studio 1.1 1-175
C/C++ Compiler Manual for SHARC Processors

Compiler

compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
that describes the class of allowable registers.

Table 1-22 describes the correspondence between constraint letters and
register classes.

 The use of any letter not listed in Table 1-22 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

To assign registers to the operands, cc21k must also be informed which
operands in an assembly language instruction are inputs, which are out-
puts, and which outputs may not overlap inputs.

The compiler is told this in three ways, such as:

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and always follow the out-
put operands.

• The operand constraints (Table 1-22) describe which registers are
modified by an assembly language instruction. The “=” in =con-
straint indicates that the operand is an output; all output operand
constraints must use =. Operands that are input-outputs must use
“+”. (See below.)

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the =& constraint modifier. This is because cc21k assumes that
the inputs are consumed before the outputs are produced. This

C/C++ Compiler Language Extensions

1-176 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use =& for each output
operand that must not overlap an input.

Operand constraints indicate what kind of operand they describe by
means of preceding symbols. The possible preceding symbols are: no sym-
bol, =, +, &, ?, and #.

• (no symbol)
The operand is an input. It must appear as part of the third argu-
ment to the asm() construct. The allocated register is loaded with
the value of the C/C++ expression before the asm() template is
executed. Its C/C++ expression is not modified by the asm(), and
its value may be a constant or literal.
Example: d

• = symbol
The operand is an output. It must appear as part of the second
argument to the asm() construct. Once the asm() template has
been executed, the value in the allocated register is stored into the
location indicated by its C/C++ expression; therefore, the expres-
sion must be one that would be valid as the left-hand side of an
assignment.
Example: =d

• + symbol
The operand is both an input and an output. It must appear as part
of the second argument to the asm() construct. The allocated regis-
ter is loaded with the C/C++ expression value, the asm() template
is executed, and then the allocated register’s new value is stored
back into the C/C++ expression. Therefore, as with pure outputs,
the C/C++ expression must be one that is valid on the left-hand
side of an assignment.
Example: +d

CrossCore Embedded Studio 1.1 1-177
C/C++ Compiler Manual for SHARC Processors

Compiler

• ? symbol
The operand is temporary. It must appear as part of the third argu-
ment to the asm() construct. A register is allocated as working
space for the duration of the asm() template execution. The regis-
ter’s initial value is undefined, and the register’s final value is
discarded. The corresponding C/C++ expression is not loaded into
the register, but must be present. This expression is normally speci-
fied using a literal zero.
Example: ?d

• & symbol
This operand constraint may be applied to inputs and outputs. It
indicates that the register allocated to the input (or output) may
not be one of the registers that are allocated to the outputs (or
inputs). This operand constraint is used when one or more output
registers are set while one or more inputs are still to be referenced.
(This situation sometimes occurs if the asm() template contains
more than one instruction.)
Example: &d

• # symbol
The operand is an input, but the register's value is clobbered by the
asm() template execution. The compiler may make no assumptions
about the register’s final value. An input operand with this con-
straint will not be allocated the same register as any other input or
output operand of the asm(). The operand must appear as part of
the second argument to the asm() construct.
Example: #d

Table 1-22 lists the registers that may be allocated for each register con-
straint letter. The use of any letter not listed in the “Constraint” column
of this table results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter. Table 1-23 lists the
registers that may be named as part of the clobber list.

C/C++ Compiler Language Extensions

1-178 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list, as shown in Table 1-23.

For example,

asm("%0 = %1 * %2;"

:"=r13"(result) /* output */

:"r14"(x),"r15"(y) /* input */

 :”astat” /* clobber */

);

would load x into r14, load y into r15, execute the operation, and then
store the total from r13 back into result.

 Naming the registers in this way allows the asm() construct to
specify several registers that must be related, such as the DAG reg-
isters for a circular buffer. This also allows the use of registers not
covered by the register classes accepted by the asm() construct.

Table 1-22. asm() Operand Constraints

Constraint1 Register type Registers

a DAG2 B registers b8 — b15

b Q2 R registers r4 — r7

c Q3 R registers r8 — r11

d All R registers r0 — r15

e DAG2 L registers l8 — l15

F Floating-point registers F0 — F15

f Accumulator register mrf, mrb

h DAG1 B registers b0 — b7

CrossCore Embedded Studio 1.1 1-179
C/C++ Compiler Manual for SHARC Processors

Compiler

I 64-bit R register pair r0 — r15 (For more information, see
Using long long Types in asm Con-
straints.)

j DAG1 L registers l0 — l7

k Q1 R registers r0 - r3

l Q4 R registers r12 - r15

r General registers r0 — r15

u User registers ustat1 — ustat4

w DAG1 I registers I0 — I7

x DAG1 M registers M0 — M7

y DAG2 I registers I8 — I15

z DAG2 M registers M8 — M15

n None
(For more information, see Assembly Constructs With Compile-Time
Constants.)

=&constraint Indicates that the constraint is applied to an output operand that may not
overlap an input operand

=constraint Indicates that the constraint is applied to an output operand

&constraint Indicates the constraint is applied to an input operand that may not be
overlapped with an output operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and output operand

#constraint Indicates that the constraint is an input operand whose value is changed

1 The use of any letter not listed in Table 1-22 results in unspecified behavior. The compiler does
not check the validity of the code by using the constraint letter.

Table 1-22. asm() Operand Constraints (Cont’d)

Constraint1 Register type Registers

C/C++ Compiler Language Extensions

1-180 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Using long long Types in asm Constraints

It is possible to use an asm() constraint to specify a long long value, in
which case the compiler will claim a valid register pair. The syntax for
operands within the template is extended to allow the suffix “H” for the

Table 1-23. Register Names for asm() Constructs

Clobber String Meaning

"r0", "r1", "r2", "r3", "r4", "r5", "r6",
"r7", "r8", "r9", "r10", "r11", "r12", "r13",
"r14", "r15"

General data registers

"f0", "f1", "f2", "f3", "f4", "f5", "f6",
"f7", "f8", "f9", "f10", "f11", "f12", "f13",
"f14", "f15"

Floating-point data registers

"i0", "i1", "i2", "i3", "i4", "i5", "i8",
"i9", "i10", "i11", "i12", "i13", "i14", "i15"

Index registers

"m0", "m1", "m2", "m3", "m4", "m8", "m9",
"m10", "m11", "m12"

Modifier registers

"b0", "b1", "b2", "b3", "b4", "b7", "b8",
"b9", "b10", "b11", "b12", "b13", "b14",
"b15",

Base registers

"l0", "l1", "l2", "l3", "l4", "l5", "l8",
"l9", "l10", "l11", "l12", "l13", "l14", "l15"

Length registers

"mrf", "mrb" Multiplier result registers

"astat”, acc", "mcc", "scc", "btf" Condition registers

"lcntr" Loop counter register

"PX" PX register

"ustat1", "ustat2", "ustat3", "ustat4" User-defined status registers

"s0", "s1", "s2", "s3", "s4", "s5", "s6",
"s7", "s8", "s9", "s10", "s11", "s12", "s13",
"s14", "s15"

Shadow data registers

"smrf", "smrb" Shadow multiplier result registers

"astaty”, sacc", "smcc", "sscc", "sbtf" Shadow condition registers

"memory" Unspecified memory locations

CrossCore Embedded Studio 1.1 1-181
C/C++ Compiler Manual for SHARC Processors

Compiler

high-numbered register of the register pair, and the suffix “L” for the
low-numbered register of the pair. A long long type is represented by the
constraint letter “I”. Note that the high-numbered register contains the
least-significant bits of the long long value, while the low-numbered reg-
ister contains the most-significant bits.

For example,

long long int res;

int main(void) {

long long result64, x64 = 123;

asm(

"%0H = %1H; %0L = %1L;" :

"=I" (result64) :

"I" (x64)

);

res = result64;

}

In this example, the template is “%0H=%1H; %0L=%1L;”. The %0H is replaced
with the register containing the least-significant 32 bits of operand zero
(result64), and %0L is replaced with the register containing the most-sig-
nificant 32 bits of operand zero (result64). Similarly, %1H and %1L are
replaced with the registers containing the least-significant 32 bits and
most-significant 32 bits, respectively, of operand one (x64).

Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. Normal rules
for line-breaking apply. In particular, the statement may spread over mul-
tiple lines. You are recommended not to split a string over more than one
line, but to use the C language’s string concatenation feature. If you are
placing the inline assembly statement in a preprocessor macro, see Com-
pound Macros.

C/C++ Compiler Language Extensions

1-182 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The following listing is an example of multiple instructions in a template.

/* (pseudo code) r7 = x; r6 = y; result = x + y; */
asm (“r7=%1;”
"r6=%2;"
"%0=r6+r7;"
: "=d" (result) /* output*/
: "d" (x), "d" (y) /* input */
: "r7", "r6", “astat”); /* clobbers */

Do not attempt to produce multiple-instruction asm constructs via a
sequence of single-instruction asm constructs, as the compiler is not guar-
anteed to maintain the ordering.

For example, the following should be avoided:

/* BAD EXAMPLE: Do not use sequences of single-instruction
** asms. Use a single multiple-instruction asm instead. */

asm("r7=%0;" : : "d" (x) : "r7");

asm("r6=%0;" : : "d" (y) : "r6");
asm("%0=r6+r7;" : "=d" (result) : “astat”);

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands. This
does not mean that you cannot use instructions with side effects, but be
careful to notify the compiler that you are using them by using the clobber
specifiers.

The compiler may eliminate supplied assembly instructions if the output
operands are not used, move them out of loops, or reorder them with
respect to other statements, where there is no visible data dependency.
Also, if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later if
it happens to be found in a register.

CrossCore Embedded Studio 1.1 1-183
C/C++ Compiler Manual for SHARC Processors

Compiler

Use the keyword volatile to prevent an asm() instruction from being
moved or deleted. For example,

asm volatile("idle;");

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use only one asm volatile() construct, or
use the output of the asm() construct in a C/C++ statement.

Assembly Constructs With Input and Output Operands

When an asm construct has both inputs and outputs, there are two aspects
to consider:

• Whether a value read from an input variable will be written back to
the same variable or a different variable on output.

• Whether the input and output values will reside in the same regis-
ter or different registers.

The most common case is when both input and output variables and
input and output registers are different. In this case, the asm construct
reads from one variable into a register, performs an operation which leaves
the result in a different register, and writes that result from the register
into a different output variable:

asm("%0 = %1;" : "=d" (newptr) : "d" (oldptr));

When the input and output variables are the same, it is usual that the
input and output registers are also the same. In this case, you use the “+”
constraint:

asm("%0 = MAX(%0,%1);"
 : "+d" (x)

C/C++ Compiler Language Extensions

1-184 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 : "d" (y)
 : "astat");

When the input and output variables are different, but the input and out-
put registers have to be the same (usually because of requirements of the
assembly instructions), you indicate this to the compiler by using a differ-
ent syntax for the input’s constraint. Instead of specifying the register or
class to be used, you specify the output to which the input must be
matched.

For example,

asm("modify(%0,m7);"

:"=w" (newptr) // an output, given an I register,
// stored into newptr.

:"0" (oldptr)); // an input, given same reg as %0,
// initialized from oldptr

This specifies that the input oldptr has 0 (zero) as its constraint string,
which means it must be assigned the same register as %0 (newptr).

Assembly Constructs With Compile-Time Constants

The n input constraint informs the compiler that the corresponding input
operand should not have its value loaded into a register. Instead, the com-
piler is to evaluate the operand, and then insert the operand’s value into
the assembly command as a literal numeric value. The operand must be a
compile-time constant expression. For example,

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "d" (sizeof(arr))); // "d"
constraint

produces code like

R0 = 100 (X); // compiler loads value into register
R1 = R0; // compiler replaces %1 with register

CrossCore Embedded Studio 1.1 1-185
C/C++ Compiler Manual for SHARC Processors

Compiler

whereas:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (sizeof(arr))); // "n"

constraint

produces code like

R1 = 100; // compiler replaces %1 with value

If the expression is not a compile-time constant, the compiler gives an
error:

int r; int arr[100];
asm("%0 = %1;" : "=d" (r) : "n" (arr)); // error: operand

// for "n" constraint
// must be a compile-time constant

Assembly Constructs and Flow Control

 Do not place flow control operations within an asm() construct
that “leaves” the asm() construct, such as calling a procedure or
performing a jump to another piece of code that is not within the
asm() construct itself. Such operations are invisible to the com-
piler, may result in multiple-defined symbols, and may violate
assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.

It is also inadvisable to use labels in asm() statements, especially when
function inlining is enabled. If a function containing such asm statements
is inlined more than once in a file, there will be multiple definitions of the
label, resulting in an assembler error. If possible, use PC-relative jumps in
asm statements.

C/C++ Compiler Language Extensions

1-186 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Guidelines on the Use of asm() Statements

There are certain operations that are performed more efficiently using
other compiler features, and result in source code that is clearer and easier
to read.

Accessing System Registers

System registers are accessed most efficiently using the functions in
sysreg.h instead of using asm() statements. For example, the following
asm() statement:

asm("R0 = 0; bit tst MODE1 IRPTEN; if TF r0 = r0 + 1; %0 = r0;"

: "=d"(test) : : "r0");

can be written as:

#include <sysreg.h>

#include <def21160.h>

test = sysreg_bit_tst(sysreg_MODE1, IRPTEN);

Refer to Access to System Registers for more information.

Accessing Memory-Mapped Registers (MMRs)

MMRs can be accessed using the macros in the Cdef*.h files (for example,
Cdef21160.h) that are supplied with CCES.

For example, IOSTAT can be accessed using asm() statements, such as:

asm("R0 = 0x1234567; dm(IOSTAT) = R0;" : : : "r0");

This can be written more cleanly and efficiently as:

#include <Cdef21160.h>

...

*pIOSTAT = 0x1234567;

CrossCore Embedded Studio 1.1 1-187
C/C++ Compiler Manual for SHARC Processors

Compiler

Dual Memory Support Keywords (pm dm)
This section describes cc21k language extension keywords to C and C++
that support the dual-memory space, modified Harvard architecture of the
ADSP-21xxx processors. There are two keywords used to designate mem-
ory space: dm and pm. They can be used to specify the location of a static or
global variable or to qualify a pointer declaration.

The following rules apply to dual memory support keywords:

• The memory space keyword (dm or pm) refers to the expression to
the right of the keyword.

• You can specify a memory space for each level of pointer. This cor-
responds to one memory space for each * in the declaration.

• The compiler uses Data Memory (DM) as the default memory
space for all variables. All undeclared spaces for data are Data
Memory spaces.

• The compiler always uses Program Memory (PM) as the memory
space for functions. Function pointers always point to Program
Memory.

• You cannot assign memory spaces to automatic variables. All auto-
matic variables reside on the stack, which is always in Data
Memory.

• Literal character strings always reside in Data Memory.

The following listing shows examples of dual memory keyword syntax.

int pm buf[100];
/* declares an array buf with 100 elements in Program Memory */
int dm samples[100];
/* declares an array samples with 100 elements in Data Memory */
int points[100];
/* declares an array points with 100 elements in Data Memory */
int pm * pm xy;

C/C++ Compiler Language Extensions

1-188 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

/* declares xy to be a pointer which resides in Program
Memory and points to a Program Memory integer */

int dm * dm xy;
/* declares xy to be a pointer which resides in Data Memory and

points to a Data Memory integer */
int *xy;
/* declares xy to be a pointer which resides in Data Memory

and points to a Data Memory integer */
int pm * dm datp;
/* declares datp to be a pointer which resides in Data Memory

and points to a Program Memory integer */
int pm * datp;
/* declares datp to be a pointer which resides in Data Memory

and points to a Program Memory integer */
int dm * pm progd;
/* declares progd to be a pointer which resides in Program

Memory and points to a Data Memory integer */
int * pm progd;
/* declares progd to be a pointer which resides in Program

Memory and points to a Data Memory integer */
float pm * dm * pm xp;
/* declares xp as a pointer in Program Memory,

that points to a pointer in Data Memory,
which in turn points to a float back in Program Memory */

Memory space specification keywords cannot qualify type names and
structure tags, but you can use them in pointer declarations. The follow-
ing shows examples of memory space specification keywords in typedef
and struct statements.

/* Dual Memory Support Keyword typedef & struct Examples */

typedef float pm * PFLOATP;

/* PFLOATP defines a type which is a pointer to /
/* a float which resides in pm.*/

struct s {int x; int y; int z;};

static pm struct s mystruct={10,9,8};
/* Note that the pm specification is not used in */

CrossCore Embedded Studio 1.1 1-189
C/C++ Compiler Manual for SHARC Processors

Compiler

/* the structure definition. The pm specification */
/* is used when defining the variable mystruct */

Memory Keywords and Assignments/Type Conversions

The compiler allows pm pointers to be assigned using dm pointer type vari-
ables as any subsequent access of the assigned variable will be valid and no
data will be lost when the pointer is dereferenced. The compiler issues an
error cc0513 for assignments of pm pointers to dm pointer type variables
unless the -compatible-pm-dm (on page 1-30) switch is used. The ratio-
nale for an error in this case is that the DM load and store instructions
that will eventually be used might not be what you intended.

One potential problem occurs if a multi-issue instruction ends up access-
ing the same memory. The behavior of the processor in this situation is
well defined. A memory access conflict occurs resulting in an extra stall
cycle. The DM bus access completes first and the PM bus access completes
in the following (extra) cycle.

So reading data is not problem, it just results in a stall cycle. However
writes could end up being done in a different order from how they are
written in C or C++ source because of the way the buses arbitrates the
conflict.

For example, say you have two stores in C and the pointers are for the
same address:

*pm_ptr = v1;

*dm_ptr = v2;

The compiler could create the following dual store multi-issue instruction:

DM(I4,M4)=R12, PM(I12,M12)=R2;

And this would result in the DM v1 store occurring before the v2 PM
store and not as in the source if the pointers were the same address.

C/C++ Compiler Language Extensions

1-190 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Obviously this is a contrived example but it is worth considering if mixing
pm and dm pointers.

The following listings show a code segment with variables in different
memory spaces being assigned and a code segment with illegal mixing of
memory space assignments.

/* Legal Dual Memory Space Variable Assignment Example */
int pm x;
int dm y;
x = y; /* Legal code */

/* Illegal Dual Memory Space Type Cast Example */

/* when -compatible-pm-dm isn’t used */

int pm *x;

int dm *y;
int dm a;
x = y; /* Compiler will flag error cc0513 */
x = &a; /* Compiler will flag error cc0513 */

Memory Keywords and Function Declarations/Pointers

Functions always reside in Program Memory. Pointers to functions always
point to Program Memory. The following listing shows some sample
function declarations with pointers.

/* Dual Memory Support Keyword Function Declaration (With Point-
ers) Syntax Examples */
int * y(); /* function y resides in */

/* pm and returns a */
/* pointer to an integer */
/* which resides in dm */

int pm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in pm */

CrossCore Embedded Studio 1.1 1-191
C/C++ Compiler Manual for SHARC Processors

Compiler

int dm * y(); /* function y resides in */

/* pm and returns a */
/* pointer to an integer */
/* which resides in dm */

int * pm * y(); /* function y resides in */

/* pm and returns a */
/* pointer to a pointer */
/* residing in pm that */
/* points to an integer */
/* which resides in dm */

Memory Keywords and Function Arguments

The compiler checks calls to prototyped functions for memory space spec-
ifications consistent with the function prototype. The following listing
shows sample code that cc21k flags as inconsistent use of memory spaces
between a function prototype and a call to the function.

/* Illegal Dual Memory Support Keywords & Calls To Prototyped
Functions */
extern int foo(int pm*);
/* declare function foo() which expects a pointer to an int
residing in pm as its argument and which returns an int */

int x; /* define int x in dm */

foo(&x); /* call function foo() */
/* using pm pointer (location of x) as the */
/* argument. cc21k FLAGS AS AN ERROR; this is an */
/* inconsistency between the function’s */
/* declared memory space argument and function */
/* call memory space argument */

Memory Keywords and Macros

Using macros when making memory space specification for variables or
pointers can make your code easier to maintain. If you must change the

C/C++ Compiler Language Extensions

1-192 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

definition of a variable or pointer (moving it to another memory space),
declarations that depend on the definition may need to be changed to
ensure consistency between different declarations of the same variable or
pointer.

To make changes of this type easier, you can use C/C++ preprocessor mac-
ros to define common memory spaces that must be coordinated. The
following listing shows two code segments that are equivalent after pre-
processing. The code segment guarded by EASILY_CHANGED lets you
redefine the memory space specifications by redefining the macros SPACE1
and SPACE2, and making it easy to redefine the memory space specifica-
tions at compile-time.

/* Dual Memory Support Keywords & Macros */

#ifdef EASILY_CHANGED

/* pm and dm can be easily changed at compile-time. */
#define SPACE1 pm
#define SPACE2 dm
char SPACE1 * foo (char SPACE2 *);
char SPACE1 * x;
char SPACE2 y;
x = foo(&y);

#else
/* not so easily changed. */
char pm * foo (char dm *);
char pm * x;
char dm y;
x = foo(&y);
#endif

Memory Banks
By default, the compiler assumes that all memory may be accessed with
equal performance, but this is not always the case: some parts of your
application may be in faster internal memory, and other parts in slower,

CrossCore Embedded Studio 1.1 1-193
C/C++ Compiler Manual for SHARC Processors

Compiler

external memory. The compiler supports the concept of memory banks to
group code or data with equivalent performance characteristics. By
providing this information to the compiler, you can improve the perfor-
mance of your application.

Memory Banks Versus Sections

Note that memory banks are different from sections:

• Section is a “hard” directive, using a name that is meaningful to the
linker. If the .ldf file does not map the named section, a linker
error occurs.

• A memory bank is a “soft” informational characterization, using a
name that is not visible to the linker. The compiler uses optimiza-
tion to take advantage of the bank’s performance characteristics.
However, if the .ldf file maps the code or data to memory that
performs differently, the application still functions (albeit with a
possible reduction in performance).

Pragmas and Qualifiers

Memory banks may be referenced through both memory bank pragmas
and memory bank qualifiers:

• Use memory bank pragmas to specify the memory banks used by
all the code or data of a function. For example:

#pragma data_bank(bank_external)

int *getptr(void) { return ptr2; }

• Use memory bank qualifiers to specify the memory bank referenced
by individual variables. For example:

int bank("bank_internal") *ptr1;

int bank("bank_external") *ptr2;

C/C++ Compiler Language Extensions

1-194 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Memory Bank Selection

The compiler applies the following process for determine which bank is
being referenced.

Memory Banks for Code

The compiler uses the following process for deducing the memory bank
which contains instructions:

1. If the function is immediately preceded by #pragma
code_bank(bank), then the function’s instructions are considered
to reside in memory bank bank.

2. If the function is immediately preceded by #pragma code_bank or
#pragma code_bank(), then the function’s instructions are not con-
sidered to reside in any defined memory bank.

3. Otherwise, if #pragma default_code_bank(defbank) has been used
in the compilation unit prior to the definition of the function, the
function’s instructions are considered to reside in memory bank
defbank.

4. Otherwise, the function’s instructions are not considered to reside
in any defined memory bank.

For more information, see #pragma code_bank(bankname).

CrossCore Embedded Studio 1.1 1-195
C/C++ Compiler Manual for SHARC Processors

Compiler

Memory Banks for Data

The compiler uses the following process for deducing which memory bank
contains variables that are auto storage class:

1. If the variable declaration includes a memory bank qualifier, for
example,

int bank(“bank”) x;

then the variable will be considered to reside in bank bank.

2. Otherwise, if the function is immediately preceded by #pragma
stack_bank(bank), then the variable is considered to reside in
memory bank bank.

3. Otherwise, if the function is immediately preceded by #pragma
stack_bank or #pragma stack_bank(), then the variable is not con-
sidered to reside in any memory bank.

4. Otherwise, if #pragma default_stack_bank(defbank) has been
used in the compilation unit prior to the definition of the function,
the variable is considered to reside in memory bank defbank.

5. Otherwise, the variable is not considered to reside in any defined
memory bank.

For more information, see #pragma stack_bank(bankname).

The compiler uses the following process for selecting the memory bank to
contain static variables defined within a function:

1. If the variable declaration includes a memory bank qualifier, for
example,

static int bank(“bank”) x;

then the variable will be considered to reside in bank bank.

C/C++ Compiler Language Extensions

1-196 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

2. Otherwise, if the function is immediately preceded by #pragma
data_bank(bank), then the variable is considered to reside in mem-
ory bank bank.

3. Otherwise, if the function is immediately preceded by #pragma
data_bank or #pragma data_bank(), then the variable is not con-
sidered to reside in any memory bank.

4. Otherwise, if #pragma default_data_bank(defbank) has been used
in the compilation unit prior to the definition of the function, the
variable is considered to reside in memory bank defbank.

5. Otherwise, the variable is not considered to reside in any defined
memory bank.

For more information, see #pragma data_bank(bankname).

The compiler uses the following process for selecting the memory bank to
contain variables defined at global scope:

1. If the variable declaration includes a memory bank qualifier, for
example,

int bank(“bank”) x;

then the variable will be considered to reside in bank bank.

2. Otherwise, if #pragma default_data_bank(defbank) has been used
in the compilation unit prior to the definition of the variable, the
variable is considered to reside in memory bank defbank.

3. Otherwise, the variable is not considered to reside in any defined
memory bank.

CrossCore Embedded Studio 1.1 1-197
C/C++ Compiler Manual for SHARC Processors

Compiler

The identified memory bank is used for pointer dereferences. For
example:

#pragma data_bank(bank_external)

int f(int *a, int *b) {

 return *a + *b; // *a and *b both considered to be

} // loads from “bank_external”

For more information, see #pragma default_data_bank(bankname).

Performance Characteristics

You can specify the performance characteristics of a memory bank. This
will allow the compiler to generate optimal code when accessing the bank.
You can specify the following characteristics:

• Cycles required to read the memory bank. Use #pragma
bank_read_cycles(bankname, cycles[, bits]) to specify this
characteristic.

• Cycles required to write the memory bank. Use #pragma
bank_write_cycles(bankname, cycles[, bits]) to specify this
characteristic.

• The maximum bit width supported by accesses to the memory
bank. Use #pragma bank_maximum_width(bankname, width) to
specify this characteristic.

C/C++ Compiler Language Extensions

1-198 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Memory Bank Kinds

Each memory bank has a defined kind. The memory bank kinds sup-
ported on SHARC processors are listed in Table 1-24. Not all kinds are
available on all processors.

Predefined Banks

The compiler predefines a memory bank for each supported memory bank
kind, using the same name but with a “bank_” prefix. For example, the fol-
lowing uses the internal and external memory banks:

#pragma code_bank("bank_external")

int next_counter(void) {

 static int bank("bank_internal") counter;

 return counter++;

}

These predefined memory banks have predefined performance characteris-
tics, such as read and write cycle counts, that are appropriate for the kind
of memory. You can override these performance characteristics via prag-
mas. For more information, see Memory Bank Pragmas.

The memory bank kinds are listed in Table 1-24.

Defining Additional Banks

New memory banks are defined when first used, whether this happens in a
memory bank pragma, or in a memory bank qualifier. When created,

Table 1-24. Memory Bank Kinds

Kind Meaning

internal Corresponds to internal memory

external Corresponds to memory that is external to the processor.

CrossCore Embedded Studio 1.1 1-199
C/C++ Compiler Manual for SHARC Processors

Compiler

memory banks have kind internal, unless otherwise specified by #pragma
memory_bank_kind.

The compiler does not attach any significance to the name of any new
memory banks you create.

Placement Support Keyword (section)
The section keyword directs the compiler to place an object or function
in an assembly .SECTION of the compiler’s intermediate output file. You
name the assembly .SECTION directive with the section()’s string literal
parameter. If you do not specify a section() for an object or function
declaration, the compiler uses a default section.

For information on the default sections, see Memory Section Usage.

Applying section() is meaningful only when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have a static duration, are explicitly static,
or are given as external-object definitions.

The following example shows the definition of a static variable that is
placed in the section called bingo.

static section("bingo") int x;

The section() keyword has the limitation that section initialization qual-
ifiers cannot be used within the section name string. The compiler may
generate labels containing this string, which will result in assembly syntax
errors. Additionally, the keyword is not compatible with any pragmas that
precede the object or function. For finer control over section placement
and compatibility with other pragmas, use #pragma section.

Refer to #pragma section/#pragma default_section for more information.

C/C++ Compiler Language Extensions

1-200 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 Note that section has replaced the segment keyword in earlier
releases of the compiler. Although the segment() keyword is sup-
ported by the compiler of the current release, we recommend that
you revise the legacy code.

Placement of Compiler-Generated Code and
Data

If the section() keyword (Placement Support Keyword (section)) is not
used, the compiler emits code and data into default sections. The -sec-
tion switch (on page 1-73) can be used to specify alternatives for these
defaults on the command-line, and the default_section pragma
(on page 1-262) can be used to specify alternatives for some of them
within the source file.

In addition, when using certain features of C/C++, the compiler may be
required to produce internal data structures. The -section switch and the
default_section pragma allow you to override the default location where
the data would be placed. For example,

cc21k -section vtbl=vtbl_data test.cpp -c++

would instruct the compiler to place all the C++ virtual function look-up
tables into the section vtbl_data, rather than the default vtbl section. It
is the user’s responsibility to ensure that appropriately named sections
exist in the .ldf file.

When both -section switches and default_section pragmas are used, the
default_section pragmas take priority.

Long Identifiers
The compiler supports C identifiers of up to 1022 characters in length;
C++ identifiers typically have a slightly shorter limit, as the limit applies
to the identifier after name mangling is used to transform it into a suitable

CrossCore Embedded Studio 1.1 1-201
C/C++ Compiler Manual for SHARC Processors

Compiler

symbol for linking, and for C++, some of the symbol space is required to
represent the identifier’s type.

Preprocessor Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text on the remainder of the line
that follows #warning is used as the warning message.

Compiler Built-In Functions
The compiler supports built-in functions (sometimes called intrinsics)
that enable efficient use of hardware resources. Knowledge of these func-
tions is built into the cc21k compiler. Your program uses them via normal
function call syntax. The compiler notices the invocation and generates
one or more machine instructions, just as it does for normal operators,
such as + and *.

Built-in functions have names which begin with __builtin_. Note that
identifiers beginning with double underlines (__) are reserved by the C
standard, so these names do not conflict with user program identifiers.

This section describes:

• builtins.h

• Access to System Registers

• Circular Buffer Built-In Functions

• Compiler Performance Built-In Functions

• Fractional Built-In Functions

The cc21k compiler provides built-in versions of some C library functions
as described in the section “Using Compiler Built-In C Library Functions”
of the C/C++ Library Manual for SHARC Processors.

C/C++ Compiler Language Extensions

1-202 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

builtins.h

The builtins.h header file defines prototypes for all built-in functions
supported by the compiler; include this header file in any module that
invokes a built-in function.

The header file also defines short names for each built-in function: for
each built-in function __builtin_func(), the header file defines the short
name func(). These short names can be disabled selectively or en masse, by
defining macros prior to include the header file. Table 1-25 lists these
macros.

Access to System Registers

The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes, and addresses not normally accessible
from C source. These functions are specific to individual architectures.

This section describes the functions that provide access to system registers.
These functions are based on underlying hardware capabilities of the
ADSP-21xxx processors. The functions are defined in the header file
sysreg.h. They allow direct read and write access, as well as the testing
and modifying of bit sets.

Table 1-25. Macros controlling builtins.h

Macro name Effect

__NO_SHORTNAMES If defined, prevents any short names from being defined.

__SPECIFIC_NAMES If defined, short name func will only be defined if corre-
sponding macro __ENABLE_FUNC is defined.

__ENABLE_FUNC Causes short name func to be defined, if
__SPECIFIC_NAMES is also defined.

__DISABLE_FUNC Prevents short name func from being defined.

__DEFINED_FUNC Multiple-inclusion guard. The header file defines this
macro when it defines short name func, but will not
define short name func if this macro is already defined.

CrossCore Embedded Studio 1.1 1-203
C/C++ Compiler Manual for SHARC Processors

Compiler

The functions are:

int sysreg_read (const int SR_number);

sysreg_read reads the value of the designated register and returns
it.

void sysreg_write (const int SR_number, const int new_value);

sysreg_write stores the specified value in the nominated system
register.

void sysreg_write_nop (const int SR_number, const int new_value);

sysreg_write_nop stores the specified value in the nominated sys-
tem register, but also places a ‘NOP;’ after the instruction.

void sysreg_bit_clr (const int SR_number, const int bit_mask);

sysreg_bit_clr clears all the bits of the nominated system register
that are set in the supplied bit mask.

void sysreg_bit_clr_nop (const int SR_number, const int bit_mask);

sysreg_bit_clr_nop clears all the bits of the nominated system
register that are set in the supplied bit mask, but also places ‘NOP;’
after the instruction.

void sysreg_bit_set (const int SR_number, const int bit_mask);

sysreg_bit_set sets all the bits of the nominated system register
that are also set in the supplied bit mask.

void sysreg_bit_set_nop (const int SR_number, const int bit_mask);

sysreg_bit_set_nop sets all the bits of the nominated system reg-
ister that are also set in the supplied bit mask, but also places ‘NOP;’
after the instruction.

C/C++ Compiler Language Extensions

1-204 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

void sysreg_bit_tgl (const int SR_number, const int bit_mask);

sysreg_bit_tgl toggles all the bits of the nominated system regis-
ter that are set in the supplied bit mask.

void sysreg_bit_tgl_nop (const int SR_number, const int bit_mask);

sysreg_bit_tgl_nop toggles all the bits of the nominated system
register that are set in the supplied bit mask, but also places ‘NOP;’
after the instruction.

int sysreg_bit_tst (const int SR_number, const int bit_mask);

sysreg_bit_tst returns a non-zero value if all of the bits that are
set in the supplied bit mask are also set in the nominated system
register.

int sysreg_bit_tst_all (const int SR_number, const int value);

sysreg_bit_tst_all returns a non-zero value if the contents of the
nominated system register are equal to the supplied value.

 The SR_number parameters must be compile-time constants; sys-
reg.h defines suitable macros. The effect of using the incorrect
function for the size of the register or using an undefined register
number is undefined.

On all ADSP-21xxx processors, the system registers are:

sysreg_IMASK sysreg_IMASKP

sysreg_ASTAT sysreg_STKY

sysreg_USTAT1 sysreg_USTAT2

sysreg_USTAT3 sysreg_USTAT4

sysreg_MODE1 sysreg_MODE2

sysreg_IRPTL sysreg_ASTATX

sysreg_LIRPTL sysreg_MMASK

CrossCore Embedded Studio 1.1 1-205
C/C++ Compiler Manual for SHARC Processors

Compiler

sysreg_ASTATY sysreg_FLAGS

sysreg_STKYY

Header files specific to each processor provide symbolic names for the
individual bits in the processor’s system registers—for example,
def21160.h for the ADSP-21160 processor, and def21469.h for the
ADSP-21469 processor. Including the header platform_include.h will
automatically include the def21xxx.h header for the processor for which
the application is being compiled.

Circular Buffer Built-In Functions

The C/C++ compiler provides built-in functions that use the processor’s
circular buffer mechanisms. These functions provide automatic circular
buffer generation, circular indexing, and circular pointer references.

Automatic Circular Buffer Generation

If optimization is enabled, the compiler automatically attempts to use
circular buffer mechanisms where appropriate. For example,

void func(int *array,int n,int incr)

{

int i;

for (i = 0;i < n;i++)

array [i % 10] += incr;

}

The compiler recognizes that the “[i % 10]” expression is a circular
reference, and uses a circular buffer if possible. There are cases where the
compiler is unable to verify that the memory access is always within the
bounds of the buffer. The compiler is conservative in such cases, and does
not generate circular buffer accesses.

C/C++ Compiler Language Extensions

1-206 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The compiler can be instructed to still generate circular buffer accesses
even in such cases, by specifying the -force-circbuf switch.

For more information, see -force-circbuf.

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index:

ptrdiff_t circindex(ptrdiff_t ptr, ptrdiff_t incr, size_t len);

The equivalent operation is:

index += incr;

if (index < 0)

index += len;

else if (index >= len)

index -= len;

 Note that, for correct operation, the increment should not exceed
the buffer length.

Circular Buffer Increment of a Pointer

The following operation provides a circular buffer increment of an
pointer.

void *circptr(const void *ptr, ptrdiff_t incr,

 const void *base, size_t buflen);

The equivalent operation is:

ptr += incr;

if (ptr < base)

ptr += buflen;

else if (ptr >= (base+buflen))

ptr -= buflen;

CrossCore Embedded Studio 1.1 1-207
C/C++ Compiler Manual for SHARC Processors

Compiler

 Note that, for correct operation, the increment should not exceed
the buffer length.

For more information on circindex and circptr library functions, refer
to the C/C++ Library Manual for SHARC Processors.

The compiler also attempts to generate circular buffer increments for
modulus array references, such as array[index %nitems]. For this to
happen, the compiler must be able to determine that the starting value for
index is within the range 0...(nitems-1). When the -force-circbuf
switch (on page 1-37) is specified, the compiler always treats array refer-
ences of the form [i%n] as a circular buffer operation on the array.

Compiler Performance Built-In Functions

The compiler performance built-in functions do not have any effect on
the functional behavior of compiled code. Instead, they provide the com-
piler with additional information about the code being compiled, allowing
the compiler to generate more efficient code. The facilities are:

• Expected Behavior

• Known Values

Expected Behavior

The expected_true and expected_false functions provide the compiler
with information about the expected behavior of the program. You can
use these built-in functions to tell the compiler which parts of the pro-
gram are most likely to be executed; the compiler can then arrange for the
most common cases to be those that execute most efficiently.

#include <processor_include.h>

int expected_true(int cond);
int expected_false(int cond);

C/C++ Compiler Language Extensions

1-208 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For example, consider the code

extern int func(int);
int example(int call_the_function, int value)
{

int r = 0;
if (call_the_function)

r = func(value);
return r;

}

If you expect that parameter call_the_function to be true in the majority
of cases, you can write the function in the following manner:

extern int func(int);
int example(int call_the_function, int value)
{

int r = 0;
if (expected_true(call_the_function))

// indicate most likely true
r = func(value);

return r;
}

This indicates to the compiler that you expect call_the_function to be
true in most cases, so the compiler arranges for the default case to be to
call function func(). If, on the other hand, you were to write the function
as:

extern int func(int);
int example(int call_the_function, int value)
{

int r = 0;
if (expected_false(call_the_function))

// indicate most likely false
r = func(value);

return r;
}

then the compiler arranges for the generated code to default to the oppo-
site case, of not calling function func().

CrossCore Embedded Studio 1.1 1-209
C/C++ Compiler Manual for SHARC Processors

Compiler

These built-in functions do not change the operation of the generated
code, which will still evaluate the boolean expression as normal. Instead,
they indicate to the compiler which flow of control is most likely, helping
the compiler to ensure that the most commonly-executed path is the one
that uses the most efficient instruction sequence.

The expected_true and expected_false built-in functions only take
effect when optimization is enabled in the compiler. They are only sup-
ported in conditional expressions.

Known Values

The __builtin_assert() function provides the compiler with informa-
tion about the values of variables which it may not be able to deduce from
the context. For example, consider the code

int example(int value, int loop_count)

{
int r = 0;
int i;
for (i = 0; i < loop_count; i++) {

r += value;
}
return r;

}

The compiler has no way of knowing what values may be passed in to the
function. If you know that the loop count will always be greater than four,
you can allow the optimizer to make use of that knowledge using
__builtin_assert():

int example(int value, int loop_count)
{

int r = 0;
int i;
__builtin_assert(loop_count > 4);
for (i = 0; i < loop_count; i++) {

r += value;
}

C/C++ Compiler Language Extensions

1-210 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

return r;
}

The optimizer can now omit the jump over the loop body it would other-
wise have to emit to cover loop_count == 0. In more complicated code,
further optimizations may be possible when bounds for variables are
known.

Floating-Point Built-in Functions

The compiler provides the following functions for operations on float-
ing-point types:

• float frecips(float val);

Creates a seed value for computing 1/val, the reciprocal of val.
This built-in function generates the recips instruction.

• float frsqrtsf(float val);

Creates a seed value for computing the reciprocal square root of
val. This built-in function generates the rsqrts instruction.

• float fscalbf(float val, int amount);

Scales the exponent of val by adding amount to the exponent. This
built-in function generates the scalb val by amount instruction.

• float faddabsf(float x, float y);

Adds x and y, then returns the absolute value of the sum.

• float fsubabsf(float x, float y);

Subtracts y from x, then returns the absolute value of the resulting
amount.

• int conv_fix_by(float val, int amount);

Scales val by adding amount to val’s exponent, then converts the
result to an integer. This built-in function generates the fix val
by amount instruction, so rounding is affected by the MODE1
register.

CrossCore Embedded Studio 1.1 1-211
C/C++ Compiler Manual for SHARC Processors

Compiler

• float conv_float_by(int val, int amount);

Converts val to a floating-point value, then scales that value by
adding amount to the value’s exponent. This built-in function gen-
erates the float val by amount instruction, so rounding is affected
by the MODE1 register.

• int conv_trunc_by(float val, int amount);

Scales val by adding amount to val’s exponent, then converts the
result to an integer. This built-in function generates the trunc val
by amount instruction; rounding always truncates towards zero.

Fractional Built-In Functions

The SHARC compiler provides a set of fractional built-in functions,
declared in builtins.h. These built-in functions are:

• float conv_RtoF(int __a);

Converts a fractional value to floating point representation. This
function is implemented by a float instruction. Conversion from a
fractional value to a floating-point value may result in some preci-
sion loss.

An alternative way to generate the same code is to use the fract
native fixed-point type. In this case, we can cast the fract-typed
argument to float type without the need to use a built-in function.
For more information, see Using Native Fixed-Point Types.

• int conv_FtoR(float __a);

Converts a floating point value to a fractional representation. This
function is implemented by a fix instruction and does not satu-
rate. Conversion of a floating point value that cannot be
represented as a fractional value will return 0xFFFFFFFF.

Similar functionality is provided by the fract native fixed-point
type. In this case, we can simply cast the float-typed argument to
fract type without the need to use a built-in function. The

C/C++ Compiler Language Extensions

1-212 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

behavior of this cast differs from the built-in, in that it does not
depend on the rounding mode specified in the MODE1 register. For
more information, see Using Native Fixed-Point Types.

• int RxR(int __a, int __b);

Multiplies two fractional values, returning a fractional value. This
function is implemented by a multiply instruction followed by a
sat instruction. The function will saturate. The operation (-1)*(-1)
will return 0x7FFFFFFF.

An alternative way to generate the same code is to use the fract
native fixed-point type. In this case, we multiply two fract-typed
arguments directly using the unbiased rounding mode, without the
need to use a built-in function. For more information, see Using
Native Fixed-Point Types.

• int RxItoI(int __a, int __b);

Multiplies a fractional value with an integral value, returning an
integral value. This function is implemented as a multiply instruc-
tion followed by a sat instruction.

Similar functionality is provided by the fract native fixed-point
type through use of the mulir function (see mulifx). The behavior
of this function differs from the built-in, in that it rounds towards
zero and does not saturate.

• int RxItoR(int __a, int __b);

Multiplies a fractional value with an integral value, returning a
fractional value. This function is implemented by a multiply
instruction followed by a sat instruction. This function will
saturate. Any negative number that cannot be represented by fract
will return 0x80000000, and any positive number that cannot be
represented will return 0x7FFFFFFF.

CrossCore Embedded Studio 1.1 1-213
C/C++ Compiler Manual for SHARC Processors

Compiler

An alternative way to generate the same code is to use the fract
native fixed-point type. In this case, we multiply a fract-typed and
an int-typed argument directly without the need to use a built-in
function. For more information, see Using Native Fixed-Point
Types.

Miscellaneous Built-In Functions

int funcsize(const void *func)

The funcsize built-in function returns the size of function in instruction
words. The result is calculated from the difference between the start and
end labels for the function operand. The compiler creates these labels for
all C/C++ functions.

The start label is the mangled name of the function. The end label used is
a dot (“.”) followed by the start label followed by “.end”. For example,
for C function foo, these labels are “_foo:” and “._foo.end:”.

When using the funcsize built-in for assembly functions, the start and
end labels need to be correctly defined for it to work.

 The funcsize built-in does not work for functions defined in dif-
ferent modules than it is used, because end labels are not usually
externally visible.

Pragmas
The compiler supports a number of pragmas. Pragmas are implementa-
tion-specific directives that modify the compiler’s behavior. There are two
types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

C/C++ Compiler Language Extensions

1-214 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragma linkage_name mylinkname

can also be equivalently be expressed using the following pragma operator

_Pragma ("linkage_name mylinkname")

The examples in this manual use the directive form.

The following sections describe the pragmas supported by the compiler:

• Data Declaration Pragmas

• Interrupt Handler Pragmas

• Loop Optimization Pragmas

• General Optimization Pragmas

• Function Side-Effect Pragmas

• Function Type-Checking Pragmas

• Class Conversion Optimization Pragmas

• Template Instantiation Pragmas

• Header File Control Pragmas

• Fixed-Point Arithmetic Pragmas

• Inline Control Pragmas

• Linking Control Pragmas

• Diagnostic Control Pragmas

CrossCore Embedded Studio 1.1 1-215
C/C++ Compiler Manual for SHARC Processors

Compiler

• Run-Time Checking Pragmas

• Code Generation Pragmas

• Exceptions Table Pragma

The compiler issues a warning when it encounters an unrecognized
pragma directive or pragma operator. Refer to Chapter 2, Achieving Opti-
mal Performance From C/C++ Source Code on how to use pragmas for
code optimization.

Data Declaration Pragmas

The data declaration pragmas include align, alignment_region, pack, pad
and no_partial_initialization pragmas.

Alignments specified using these pragmas must be a power of two. The
compiler rejects uses of those pragmas that specify alignments that are not
powers of 2.

#pragma align num

This pragma may be used before variable declarations and field declara-
tions. It applies to the variable or field declaration that immediately
follows the pragma.

The pragma’s effect is that the next variable or field declaration should be
forced to be aligned on a boundary specified by num.

• If the pragma is being applied to a local variable (since local vari-
ables are stored on the stack), the alignment of the variable will
only be changed when num is not greater than the stack alignment
(that is, 2 words). If num is greater than the stack alignment, then a
warning is given that the pragma is being ignored.

C/C++ Compiler Language Extensions

1-216 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• If num is greater than the alignment normally required by the fol-
lowing variable or field declaration, then the variable or field
declaration’s alignment is changed to num.

• If num is less than the alignment normally required, then the vari-
able or field declaration’s alignment is changed to num, and a
warning is given that the alignment has been reduced.

For example,

typedef struct {
#pragma align 4

int foo;
int bar;

#pragma align 4

int baz;
} aligned_ints;

The pragma also allows the following keywords as allowable alignment
specifications:

_WORD – Specifies a 32-bit alignment

_LONG – Specifies a 64-bit alignment

_QUAD – Specifies a 128-bit alignment

 The align pragma only applies to the immediately-following defi-
nition, even if that definition is part of a list. For example,

#pragma align 8
int i1, i2, i3; // pragma only applies to i1

CrossCore Embedded Studio 1.1 1-217
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma alignment_region (alignopt)

Sometimes it is desirable to specify an alignment for a number of consecu-
tive data items rather than individually. This can be done using the
alignment_region and alignment_region_end pragmas:

• #pragma alignment_region sets the alignment for all following
data symbols up to the corresponding alignment_region_end
pragma.

• #pragma alignment_region_end removes the effect of the active
alignment region and restores the default alignment rules for data
symbols.

The rules concerning the argument are the same as for #pragma align.
The compiler faults an invalid alignment (such as an alignment that is not
a power of two). The compiler warns if the alignment of a data symbol
within the control of an alignment_region is reduced below its natural
alignment (as for #pragma align).

Use of the align pragma overrides the region alignment specified by the
currently active alignment_region pragma (if there is one). The currently
active alignment_region does not affect the alignment of fields.

Example:

#pragma align 4

int aa; /* alignment 4 */

int bb; /* alignment 1 */

#pragma alignment_region (2)

int cc; /* alignment 2 */

int dd; /* alignment 2 */
int ee; /* alignment 2 */

C/C++ Compiler Language Extensions

1-218 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma align 4

int ff; /* alignment 4 */

int gg; /* alignment 2 */
int hh; /* alignment 2 */

#pragma alignment_region_end

int ii; /* alignment 1 */

#pragma alignment_region (3)

long double kk; /* the compiler faults this, alignment is not

a power of two */

#pragma alignment_region_end

#pragma pack (alignopt)

This pragma may be applied to struct definitions. It applies to all struct
definitions that follow, until the default alignment is restored by omitting
alignopt; for example, by #pragma pack() with empty parentheses.

The pragma is used to reduce the default alignment of the struct to be
aligned. If there are fields within the struct that have a default alignment
greater than align, their alignment is reduced to be alignopt. If there are
fields within the struct that have alignment less than align, their align-
ment is unchanged.

If alignopt is specified, it is illegal to invoke #pragma pad until the default
alignment is restored. The compiler generates an error if the pad and pack
pragmas are used in a manner that conflicts.

#pragma pad (alignopt)

This pragma may be applied to struct definitions. It applies to all struct
definitions that follow, until the default alignment is restored by omitting

CrossCore Embedded Studio 1.1 1-219
C/C++ Compiler Manual for SHARC Processors

Compiler

alignopt. This pragma is effectively shorthand for placing #pragma align
before every field within the struct definition. Like the #pragma pack, it
reduces the alignment of fields that default to an alignment greater than
alignopt. However, unlike the #pragma pack, it also increases the align-
ment of fields that default to an alignment less than alignopt.

If alignopt is specified, it is illegal to invoke #pragma pad until default
alignment is restored.

 While #pragma pack (alignopt) generates a warning if a field
alignment is reduced, #pragma pad (alignopt) does not. If
alignopt is specified, it is illegal to invoke #pragma pack, until
default alignment is restored.

The following example shows how to use #pragma pad().

#pragma pad(4)
struct {

int i;
int j;

} s = {1,2};
#pragma pad()

#pragma no_partial_initialization

The no_partial_initialization pragma indicates that the compiler
should raise a diagnostic if the following structure declaration does not
provide an initialization value for all members of the structure. The
pragma is useful when a structure declaration is extended between revi-
sions of the software.

The following example shows how to use #pragma
no_partial_initialization:

struct no_err {

 int x;

 int y;

C/C++ Compiler Language Extensions

1-220 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

};

#pragma no_partial_initialization

struct with_err {

 int x;

 int y;

};

struct no_err s1 = { 5 }; // no diagnostic

struct with_err s2 = { 5 }; // diagnostic reported

Interrupt Handler Pragmas

The interrupt pragmas provide a method by which you can write interrupt
service routines in C and install them directly into the interrupt vector
table, bypassing the dispatcher provided with the C run-time library.

 It will not normally be necessary to use these pragmas when writing
interrupt handlers; the standard interrupt dispatcher will be a more
convenient approach. For details on writing and installing inter-
rupt handlers, refer to the System Run-Time Documentation.

 When using these interrupt pragmas, you must use the correct
pragmas for your application’s context. Do not use these pragmas
unless you know which registers require saving, are comfortable
with modifying and rebuilding your startup code, and can ensure
that your interrupt handlers will comply with the requirements of
any RTOS you are using.

#pragma flush_restore_loop_stack

When this pragma is applied to an interrupt handler, the compiler will
generate code to save the current loop status registers (CURLCTR and LADDR)
to the stack, and to empty the loop stack, and to restore the loop stack at
the end of the handler.

CrossCore Embedded Studio 1.1 1-221
C/C++ Compiler Manual for SHARC Processors

Compiler

The pragma takes effect only when it is used in conjunction with one of
#pragma interrupt_complete or #pragma interrupt_complete_nesting,
otherwise an error message will be issued.

#pragma implicit_push_sts_handler

When this pragma is applied to an interrupt handler, the compiler does
not generate an explicit PUSH and POP of STS.

The pragma takes effect only when it is used in conjunction with one of
#pragma interrupt_complete or #pragma interrupt_complete_nesting,
otherwise an error message will be issued.

The compiler cannot determine whether the handler for the pragma is
applied as a handler for the VIRPT, IRQ, or timer interrupts; it is your
responsibility to determine whether the pragma should be used.

#pragma interrupt_complete

The #pragma interrupt_complete pragma is similar to the #pragma
interrupt_complete_nesting pragma, except that it does not re-enable
interrupts. (It is for non-nested interrupt handlers.) This is done by not
modifying the MODE1 register.

By default, this pragma saves and restores only the top 32 bits of each data
register. See #pragma save_restore_40_bits and #pragma save_restore_-
simd_40_bits for information on saving all 40 bits of the data registers.

#pragma interrupt_complete_nesting

The #pragma interrupt_complete_nesting pragma is used before a func-
tion definition, which is to be used as an interrupt handler that can be
called directly from the interrupt vector table. It produces a function that
terminates with a “return from interrupt” sequence. Like #pragma inter-
rupt, it saves and restores all registers used by the function. It also
performs a PUSH STS instruction at the start of the function to save the sta-
tus and MODE1 registers.

C/C++ Compiler Language Extensions

1-222 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Since this instruction disables nested interrupts, and this pragma can be
used with nested interrupts, it re-enables interrupts by way of the BIT SET
MODE1 0x1000; instruction. At the end of the function, it performs a POP
STS instruction to restore the status and MODE1 registers.

By default, this pragma saves and restores only the top 32 bits of each data
register. See #pragma save_restore_40_bits and #pragma save_restore_-
simd_40_bits for information on saving all 40 bits of the data registers.

#pragma interrupt_dispatched_handler

#pragma interrupt_dispatched_handler may be used before a function
declaration or definition. It applies to the function declaration or defini-
tion that immediately follows this pragma.

The interrupt_dispatched_handler pragma is used for functions that
will be called by an interrupt dispatcher. It indicates that the compiler
should ensure that all used registers (including scratch registers) are
restored at the end of the function. The compiler also ensures that, if an I
register is used in the function, the corresponding L register is set to zero,
so that circular buffering is not inadvertently invoked. The generated
function uses the normal function return sequence; it does not use a
“return from interrupt” sequence.

#pragma interrupt_reentrant

#pragma interrupt_reentrant is used in conjunction with #pragma
interrupt_dispatched_handler, to generate a function that re-enables
interrupts, so that the low-level dispatched handler can be interrupted by
higher-priority interrupts.

#pragma save_restore_40_bits

#pragma save_restore_40_bits is used along with #pragma interrupt_-
complete or #pragma interrupt_complete_nesting to save and restore all
40 bits of the data registers (“Dregs”) used by the handler. This ensures
that any routines using 40-bit arithmetic that are interrupted do not suffer

CrossCore Embedded Studio 1.1 1-223
C/C++ Compiler Manual for SHARC Processors

Compiler

accuracy problems. For leaf routines (that is, routines that do not call any
other functions), the compiler saves and restores only the registers that are
used. For non-leaf routines, the compiler saves and restores 40 bits of all
Dregs. Note that saving and restoring each Dreg requires 6 instructions.

#pragma save_restore_simd_40_bits

#pragma save_restore_simd_40_bits is used along with #pragma inter-
rupt_complete and #pragma interrupt_complete_nesting to save and
restore all 40 bits of any PEx data registers (“Dregs”) and PEy data regis-
ters (“Sregs”) that are used by the handler. This ensures that any routines
using 40-bit arithmetic and SIMD mode that are interrupted do not suffer
accuracy problems. For leaf routines (that is, routines that do not call any
other functions), the compiler saves and restores only the registers that are
used. For non-leaf routines, the compiler saves and restores 40 bits of all
Dregs and Sregs. Note that saving and restoring each Dreg and Sreg
requires 6 instructions.

 Only one run-time library routine (cfft_mag()) uses 40-bit arith-
metic and SIMD mode.

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, which allows the compiler to per-
form more aggressive optimization. The pragmas are placed before the
loop statement, and apply to the statement that immediately follows,
which must be a for, while or do statement to have effect. In general, it is
most effective to apply loop pragmas to inner-most loops, since the com-
piler can achieve the most savings there.

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis (Interprocedural Analysis) to increase the cases where it knows it
is safe to do so.

C/C++ Compiler Language Extensions

1-224 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma SIMD_for

This pragma must precede a for, while or do..while loop construct, and
informs the compiler that the loop fulfils these conditions:

• Memory accesses are suitably aligned.

• There are no memory accesses that rely on data stored during the
previous iteration of the loop.

• There are no memory accesses that alias each other.

See SIMD Support for more details.

#pragma all_aligned

This pragma applies to the subsequent loop. This pragma tells the com-
piler that all pointer-induction variables in the loop are initially
double-word aligned.

The variable takes an optional argument (n) which can specify that the
pointers are aligned after n iterations. Therefore, #pragma all_aligned(1)
says that after one iteration, all the pointer induction variables of the loop
are so aligned. In other words, the default argument is zero.

#pragma no_vectorization

When this pragma is specified on a loop, it ensures the compiler does not
generate vectorized SIMD code for the loop.

This pragma may also be specified on a function definition. For more
information, see #pragma no_vectorization.

#pragma loop_count (min, max, modulo)

This pragma appears just before the loop it describes. It asserts that the
loop iterates at least min times, no more than max times, and a multiple of
modulo times. This information enables the optimizer to omit loop guards
and to decide whether the loop is worth completely unrolling and whether

CrossCore Embedded Studio 1.1 1-225
C/C++ Compiler Manual for SHARC Processors

Compiler

code needs to be generated for odd iterations. Any of the parameters of the
pragma that are unknown may be left blank.

For example,

int i;
#pragma loop_count(24, 48, 8)
for (i=0; i < n; i++)

#pragma loop_unroll N

The loop_unroll pragma can be used only before a for, while or
do.. while loop. The pragma takes exactly one positive integer argument,
N, and it instructs the compiler to unroll the loop N times prior to further
transforming the code.

In the most general case, the effect of:

#pragma loop_unroll N
for (init statements; condition; increment code) {

loop_body
}

is equivalent to transforming the loop to:

for (init statements; condition; increment code) {
loop_body /* copy 1 */
increment_code
if (!condition)

break;

loop_body /* copy 2 */

increment_code
if (!condition)

break;

...

loop_body /* copy N-1 */

increment_code

C/C++ Compiler Language Extensions

1-226 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

if (!condition)
break;

loop_body /* copy N */

}

Similarly, the effect of

#pragma loop_unroll N
while (condition) {

loop_body
}

is equivalent to transforming the loop to:

while (condition) {
loop_body /* copy 1 */
if (!condition)

break;

loop_body /* copy 2 */

if (!condition)
break;

...

loop_body /* copy N-1 */

if (!condition)
break;

loop_body /* copy N */

}

and the effect of:

#pragma loop_unroll N
do {

loop_body
} while (condition)

CrossCore Embedded Studio 1.1 1-227
C/C++ Compiler Manual for SHARC Processors

Compiler

is equivalent to transforming the loop to:

do {
loop_body /* copy 1 */
if (!condition)

break;

loop_body /* copy 2 */

if (!condition)
break;

...

loop_body /* copy N-1 */

if (!condition)
break;

loop_body /* copy N */

} while (condition)

#pragma no_alias

Use this pragma to tell the compiler that the following loop has no loads
or stores that conflict. When the compiler finds memory accesses that
potentially refer to the same location through different pointers, known as
“aliases”, the compiler is restricted in how it may reorder or vectorize the
loop, because all the accesses from earlier iterations must be complete
before the compiler can arrange for the next iteration to start.

In the example,

void vadd(int *a, int *b, int *out, int n) {
int i;

#pragma no_alias
for (i=0; i < n; i++)

out[i] = a[i] + b[i];
}

C/C++ Compiler Language Extensions

1-228 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

the use of no_alias pragma just before the loop informs the compiler that
the pointers a, b and out point to different arrays, so no load from b or a is
using the same address as any store to out. Therefore, a[i] or b[i] is
never an alias for out[i].

Using the no_alias pragma can lead to better code because it allows the
loads and stores to be reordered and any number of iterations to be per-
formed concurrently (rather than just two at a time), thus providing better
software pipelining by the optimizer.

#pragma vector_for

This pragma tells the compiler that all iterations of the loop may be run in
parallel with each other and that data accessed in the loop are aligned suit-
ably for SIMD operation. The vector_for pragma does not force the
compiler to vectorize the loop. The optimizer checks various properties of
the loop and does not vectorize it if it believes it is unsafe or if it cannot
deduce that the various properties necessary for the vectorization transfor-
mation are valid.

The pragma has two effects:

• It asserts to the compiler that data accesses are suitably aligned for
SIMD operation.

• It disables checking for loop-carried dependencies.

void copy(short *a, short *b) {
int i;
#pragma vector_for

for (i=0; i<100; i++)
a[i] = b[i];

}

In cases where vectorization is impossible (for example, if array a were
aligned on a word boundary but array b was not), the information given in
the assertion made by vector_for may still be put to good use in aiding
other optimizations.

CrossCore Embedded Studio 1.1 1-229
C/C++ Compiler Manual for SHARC Processors

Compiler

General Optimization Pragmas

The compiler supports several pragmas which can change the optimization
level while a given module is being compiled. These pragmas must be used
globally, immediately prior to a function definition. The pragmas do not
just apply to the immediately following function; they remain in effect
until the end of the compilation, or until superseded by one of the follow-
ing optimize_ pragmas.

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled, meaning it
has the same effect as compiling with no optimization enabled.

• #pragma optimize_for_space

This pragma turns the optimizer back on, if it was disabled, or sets
the focus to give reduced code size a higher priority than high per-
formance, where these conflict.

• #pragma optimize_for_speed

This pragma turns the optimizer back on, if it was disabled, or sets
the focus to give high performance a higher priority than reduced
code size, where these conflict.

• #pragma optimize_as_cmd_line

This pragma resets the optimization settings to be those specified
on the cc21k command line when the compiler was invoked.

These are code examples for the optimize_ pragmas.

#pragma optimize_off

void non_op() { /* non-optimized code */ }

#pragma optimize_for_space

void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed

C/C++ Compiler Language Extensions

1-230 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

void op_for_sp() { /* code optimized for speed */ }

/* subsequent functions declarations optimized for speed */

Function Side-Effect Pragmas

The function side-effect pragmas (alloc, pure, const, regs_clobbered,
regs_clobbered_call, misra_func, no_vectorization, noreturn, over-
lay, pgo_ignore and result_alignment) are used before a function
declaration to give the compiler additional information about the function
in order to enable it to improve the code surrounding the function call.
These pragmas should be placed before a function declaration and should
apply to that function. For example,

#pragma pure

long dot(short*, short*, int);

#pragma alloc

The alloc pragma tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.
In the example,

#define N 100

#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int i;
int *out = new_buf();

for (i = 0; i < N; ++i)
out[i] = a[i] * b[i];

return out;
}

the compiler can reorder the iterations of the loop because the #pragma
alloc tells it that a and b cannot overlap out.

CrossCore Embedded Studio 1.1 1-231
C/C++ Compiler Manual for SHARC Processors

Compiler

The GNU attribute malloc is also supported with the same meaning.

#pragma const

The const pragma is a more restrictive form of the pure pragma. The
pragma tells the compiler that the function does not read from global vari-
ables as well as not writing to them or reading or writing volatile variables.
The result of the function is therefore a function of its parameters. If any
of the parameters are pointers, the function may not even read the data
they point at.

#pragma misra_func(arg)

The misra_func(arg) pragma is placed before a function prototype. It is
used to support MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and
20.12. The arg indicates the type of function with respect to the
MISRA-C Rule. Functions following Rule 20.4 would take arg heap, 20.7
arg jmp, 20.8 arg handler, 20.9 arg io, 20.10 arg string_conv, 20.11 arg
system and 20.12 arg time.

#pragma no_vectorization

When this pragma is specified immediately before a function definition, it
ensures the compiler does not generate vectorized SIMD code for any loop
in the function on which it is specified.

This pragma may also be specified on individual loops. For more informa-
tion, see #pragma no_vectorization.

#pragma noreturn

The noreturn pragma can be placed before a function prototype or defini-
tion. The pragma tells the compiler that the function to which it applies
will never return to its caller. For example, a function such as the standard
C function “exit” never returns.

C/C++ Compiler Language Extensions

1-232 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The use of this pragma allows the compiler to treat all code following a
call to a function declared with the pragma as unreachable and hence
removable.

#pragma noreturn
void func() {

while(1);
}

main() {
func();
/* any code here will be removed */

}

#pragma overlay

When compiling code which involves one function calling another in the
same source file, the compiler optimizer can propagate register informa-
tion between the functions. This means that it can record which scratch
registers are clobbered over the function call. This can cause problems
when compiling overlaid functions, as the compiler may assume that cer-
tain scratch registers are not clobbered over the function call, but they are
clobbered by the overlay manager. The #pragma overlay, when placed on
the definition of a function, will disable this propagation of register infor-
mation to the function’s callers.

For example,

#pragma overlay
int add(int a, int b)
{
// callers of function add() assume it clobbers
// all scratch registers
return a+b;

}

CrossCore Embedded Studio 1.1 1-233
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma pgo_ignore

The pgo_ignore pragma tells the compiler that no profile should be gener-
ated for this function, when using profile-guided optimization. This is
useful when the function is concerned with error checking or diagnostics.

extern const short *x, *y;
int dotprod(void) {

int i, sum = 0;
for (i = 0; i < 100; i++)

sum += x[i] * y[i];
return sum;

}

#pragma pgo_ignore
int check_dotprod(void) {

/* The compiler will not profile this comparison */
return dotprod() == 100;

}

#pragma pure

This pragma tells the compiler that the function does not write to any
global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers, the function may read the data they
point at but it may not write it.

As this means the function call has the same effect every time it is called,
between assignments to global variables, the compiler does not need to
generate the code for every call.

Therefore, in this example,

#pragma pure
long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {

int i;

C/C++ Compiler Language Extensions

1-234 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

long s = 0;
for (i = 1; i < 10; ++i)

s += sdot(a, b, n); // call can get hoisted out of loop
return s;}

the compiler can replace the ten calls to sdot with a single call made
before the loop.

#pragma regs_clobbered string

This pragma may be used with a function declaration or definition to
specify which registers are modified (or clobbered) by that function. The
string contains a list of registers and is case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion telling the compiler something it would not be able to discover
for itself. In the example,

#pragma regs_clobbered "r4 r8 i4"

void f(void);

the compiler knows that only registers r4, r8 and i4 may be modified by
the call to f, so it may keep local variables in other registers across that
call.

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition (when it acts as a command to the
compiler to generate register saves, and restores on entry and exit from the
function) to ensure it only modifies the registers in string.

For example,

#pragma regs_clobbered "r3 m4 r5 i12"
// Function "g" will only clobber r3, m4, r5, and i12
int g(int a) {

return a+3;
}

CrossCore Embedded Studio 1.1 1-235
C/C++ Compiler Manual for SHARC Processors

Compiler

 The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both are specified, a warning is issued and
the regs_clobbered pragma is ignored.

To obtain optimum results with the pragma, it is best to restrict the clob-
bered set to be a subset of the default scratch registers. When considering
when to apply the regs_clobbered pragma, it may be useful to look at the
output of the compiler to see how many scratch registers were used.
Restricting the volatile set to these registers will produce no impact on the
code produced for the function but may free up registers for the caller to
allocate across the call site.

 The regs_clobbered pragma cannot be used in any way with
pointers to functions. A function pointer cannot be declared to
have a customized clobber set, and it cannot take the address of a
function which has a customized clobber set. The compiler raises
an error if either of these actions are attempted.

String Syntax

A regs_clobbered string consists of a list of registers, register ranges, or
register sets that are clobbered (Table 1-26). The list is separated by
spaces, commas, or semicolons.

A register is a single register name, which is the same as that which may
be used in an assembly file.

A register range consists of start and end registers which both reside in
the same register class, separated by a hyphen. All registers between the
two (inclusive) are clobbered.

C/C++ Compiler Language Extensions

1-236 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

A register set is a name for a specific set of commonly clobbered regis-
ters that is predefined by the compiler. Table 1-26 shows defined
clobbered register sets.

When the compiler detects an illegal string, a warning is issued and the
default volatile set as defined in this compiler manual is used instead.

Unclobberable and Must Clobber Registers

There are certain caveats as to what registers may or must be placed in the
clobbered set (Table 1-26). On SHARC processors, certain registers may
not be specified in the clobbered set, as the correct operation of the func-
tion call requires their value to be preserved.

If the user specifies these registers in the clobbered set, a warning is issued
and they are removed from the specified clobbered set.

I6, I7, B6, B7, L6, L7

Registers from these classes,

Table 1-26. Clobbered Register Sets

Set Registers

CCset ASTATx, ASTATy

SHADOWset All S regs, all Shadow MR regs, ASTATy. Always clobbered whether speci-
fied or not.

MRset MRF, MRB; shadow MRF, shadow MRB

DAG1scratch Members of DAG1 I, M, B and L-registers that are scratch by default

DAG2scratch Members of DAG2 I, M, B and L-registers that are scratch by default

DAGscratch All members of DAG1scratch and DAG2scratch

Dscratch All D-registers that are scratch by default, ASTAT

ALLscratch Entire default scratch register set

everything All registers, apart from those that are user-reserved or unclobberable

CrossCore Embedded Studio 1.1 1-237
C/C++ Compiler Manual for SHARC Processors

Compiler

D, I, B, LCNTR, PX, MR

may be specified in the clobbered set and code is generated to save them as
necessary.

The L-registers are required to be set to zero on entry and exit from a
function. A user may specify that a function clobbers the L-registers. If it
is a compiler-generated function, then it leaves the L-registers at zero at
the end of the function. If it is an assembly function, then it may clobber
the L-registers. In that case, the L-registers are re-zeroed after any call to
that function. The soft-wired registers M5,M6,M7 and M13,M14,M15 are reset
in an analogous manner.

The registers R2 and I12 are always clobbered. If the user specifies a func-
tion definition with the regs_clobbered pragma that does not contain
these registers, a warning is issued and these registers are added to the
clobbered set.

User-Reserved Registers

Registers in the USTAT class and user-reserved registers, which are indicated
via the -reserve switch (on page 1-67), are never preserved in the func-
tion wrappers whether in the clobbered set or not.

Function Parameters

Function calling conventions are visible to the caller and do not affect the
clobbered set that may be used on a function. For example,

#pragma regs_clobbered ""// clobbers nothing

void f(int a, int b);

void g() {

f(2,3);

}

The parameters a and b are passed in registers R4 and R8, respectively. No
matter what happens in function f, after the call returns, the values of R4
and R8 are still set to 2 and 3, respectively.

C/C++ Compiler Language Extensions

1-238 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Function Results

The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee but it makes no difference to the
generated code—the return registers are not saved and restored. Only the
return registers used by the particular function return type are special.
Return registers used by different return types are treated in the clobbered
list in the conventional way.

For example,

typedef struct { int x; int y; } Point;
typedef struct { int x[10]; } Big;
int f(); // Result in R0. R1 may be preserved across call
Point g();// Result in R0 and R1
Big f(); // Result pointer in R0, R1 may be preserved

across call.

#pragma regs_clobbered_call string

This pragma may be applied to a statement to indicate that the call within
the statement uses a modified volatile register set. The pragma is closely
related to #pragma regs_clobbered, but avoids some of the restrictions
that relate to that pragma.

These restrictions arise because the regs_clobbered pragma applies to a
function’s declaration—when the call is made, the clobber set is retrieved
from the declaration automatically. This is not possible when the declara-
tion is not available, because the function being called is not directly tied
to a declaration of a specific function. This affects:

• pointers to functions

• class methods

• pointers to class methods

• virtual functions

CrossCore Embedded Studio 1.1 1-239
C/C++ Compiler Manual for SHARC Processors

Compiler

In such cases, the regs_clobbered_call pragma can be used at the call site
to inform the compiler directly of the volatile register set to be used
during the call.

The pragma’s syntax is as follows:

#pragma regs_clobbered_call clobber_string
statement

where clobber_string follows the same format as for the regs_clobbered
pragma and statement is the C statement containing the call expression.

There must be only a single call within the statement; otherwise, the state-
ment is ambiguous. For example,

#pragma regs_clobbered "r0 r1 r2 i12"
int func(int arg) { /* some code */ }

int (*fnptr)(int) = func;

int caller(int value) {

int r;

#pragma regs_clobbered_call "r0 r1 r2 i12"

r = (*fnptr)(value);
return r;

}

 When you use the regs_clobbered_call pragma, you must ensure
that the called function does indeed only modify the registers listed
in the clobber set for the call—the compiler does not check this for
you. It is valid for the callee to clobber less than is listed in the
call’s clobber set. It is also valid for the callee to modify registers
outside of the call’s clobber set, as long as the callee saves the values
first and restores them before returning to the caller.

The following examples show this.

C/C++ Compiler Language Extensions

1-240 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Example 1:

#pragma regs_clobbered "r0 r1 r2 i12"
void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1 r2 i12"

callee(); // Okay - clobber sets match

Example 2:

#pragma regs_clobbered "r0 r2 i12"
void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1 r2 i12"

callee(); // Okay - callee clobber set is a subset
// of call's set

Example 3:

#pragma regs_clobbered "r0 r1 r2 i12"
void callee(void) { ... }

#pragma regs_clobbered_call "r0 r2 i12"

callee(); // Error - callee clobbers more than
// indicated by call.

Example 4:

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1 r2 i12"

callee(); // Error - callee uses default set larger
// than indicated by call.

Limitations

Pragma regs_clobbered_call may not be used on constructors or
destructors of C++ classes.

CrossCore Embedded Studio 1.1 1-241
C/C++ Compiler Manual for SHARC Processors

Compiler

The pragma only applies to the call in the immediately-following state-
ment. If the immediately-following line contains more than one
statement, the pragma only applies to the first statement on the line:

#pragma regs_clobbered "r0 r1 r2 i12"
x = foo(); y = bar();// only "x = foo();" is affected by

// the pragma.

Similarly, if the immediately-following line is a sequence of declarations
that use calls to initialize the variables, then only the first declaration is
affected:

#pragma regs_clobbered "r0 r1 r2 i12"
int x = foo(), y = bar();// only "x = foo()" is affected

// by the pragma.

Moreover, if the declaration with the call-based initializer is not the first
in the declaration list, the pragma will have no effect:

#pragma regs_clobbered "r0 r1 r2 i12"
int w = 4, x = foo(); y = bar();// pragma has no effect

// on "w = 4".

The pragma has no effect on function calls that get inlined. Once a func-
tion call is inlined, the inlined code obeys the clobber set of the function
into which it has been inlined. It does not continue to obey the clobber set
that will be used if an out-of-line copy is required.

#pragma result_alignment (n)

This pragma asserts that the pointer or integer returned by the function
has a value that is a multiple of n.

The pragma is often used in conjunction with the #pragma alloc of
custom-allocation functions that return pointers that are more strictly
aligned than could be deduced from their type. The following example
shows a use of the pragma. Note that this pragma will not change the
alignment of data returned by the declared function. It is a guideline to
the compiler.

C/C++ Compiler Language Extensions

1-242 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma result_alignment(8)
int * alloc_align8_data(unsigned long size);

Function Type-Checking Pragmas

The function type-checking pragmas (compatible_pm_dm_params, compat-
ible_pm_dm_retval, __printf_args and __scanf_args) can be used before
a function declaration to give the compiler additional information about
the function’s argument and return types. The pragmas affect the
type-checking of invocations of the function.

#pragma compatible_pm_dm_params

The compatible_pm_dm_params pragma tells the compiler to treat pointers
to dm-qualified types as assignment-compatible to pointers to pm-qualified
types when checking the arguments that are passed to the function. The
pragma is ignored if it does not immediately precede a function
declaration.

See also the -compatible-pm-dm switch (on page 1-30).

#pragma compatible_pm_dm_retval

The compatible_pm_dm_retval pragma tells the compiler to treat pointers
to dm-qualified types as assignment-compatible to pointers to pm-qualified
types when the function’s return value is used. The pragma is ignored if it
does not immediately precede a function declaration.

See also the -compatible-pm-dm switch (on page 1-30).

#pragma __printf_args

The __printf_args pragma can be placed before a function prototype or
definition. It tells the compiler that the function interprets its arguments
like the standard printf family of functions, which take a format string
argument followed by a variable-length argument list corresponding to
specifiers in the format string. When such a function is called, the

CrossCore Embedded Studio 1.1 1-243
C/C++ Compiler Manual for SHARC Processors

Compiler

compiler checks that the number and types of variable arguments match
the specifiers in the format string, issuing a warning if they do not.

The pragma is ignored for functions that do not take a string argument
followed by a variable-length argument list.

For example:

#pragma __printf_args

void error(char *where, char *msg, ...);

With that, the following invocation of the function will result in a warn-
ing that the format string requires an additional argument:

error("Parser", "Unexpected token '%s'")

#pragma __scanf_args

The __scanf_args pragma can be placed before a function prototype or
definition. It tells the compiler that the function interprets its arguments
like the standard scanf family of functions, which take a format string
argument followed by a variable-length argument list corresponding to
specifiers in the format string. When such a function is called, the com-
piler checks that the number and types of variable arguments match the
specifiers in the format string, issuing a warning if they do not.

The pragma is ignored for functions that do not take a string argument
followed by a variable-length argument list.

For example:

#pragma __scanf_args

void scan_channel(int chan, char *format, ...);

C/C++ Compiler Language Extensions

1-244 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

With that, the following invocation of the function will result in a warn-
ing that the format string requires an additional argument:

scan_channel(3, "%u,%u", &x);

Class Conversion Optimization Pragmas

The class conversion optimization pragmas (param_never_null, sup-
press_null_check) allow the compiler to generate more efficient code
when converting class pointers from a pointer-to-derived-class to a
pointer-to-base-class, by asserting that the pointer to be converted will
never be a null pointer. This allows the compiler to omit the null check
during conversion.

#pragma param_never_null param_name [...]

This pragma must immediately precede a function definition. It specifies a
name or a list of space-separated names, which must correspond to the
parameter names declared in the function definition. It checks that the
named parameter is a class pointer type. Using this information it will
generate more efficient code for a conversion from a pointer to a derived
class to a pointer to a base class. It removes the need to check for the null
pointer during the conversion.

For example,

#include <iostream>

using namespace std;
class A {

int a;
};
class B {

int b;
};
class C: public A, public B {

int c;
};

CrossCore Embedded Studio 1.1 1-245
C/C++ Compiler Manual for SHARC Processors

Compiler

C obj;

B *bpart = &obj;
bool fail = false;

#pragma param_never_null pc

void func(C *pc)
{

B *pb;
pb = pc; /* without pragma the code generated has to

check for NULL */
if (pb != bpart)

fail = true;
}

int main(void)

{
func(&obj);
if (fail)

cout << "Test failed" << endl;
else

cout << "Test passed" << endl;
return 0;

}

#pragma suppress_null_check

This pragma must immediately precede an assignment of two pointers or a
declaration list.

If the pragma precedes an assignment it indicates that the second operand
pointer is not null and generates more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer before assignment.

On a declaration list it marks all variables as not being the null pointer. If
the declaration contains an initialization expression, that expression is not
checked for null.

C/C++ Compiler Language Extensions

1-246 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For example,

#include <iostream>
using namespace std;
class A {

int a;
};
class B {

int b;
};
class C: public A, public B {

int c;
};

C obj;

B *bpart = &obj;
bool fail = false;

void func(C *pc)

{
B *pb;
#pragma suppress_null_check
pb = pc; /* without pragma the code generated has to

check for NULL */
if (pb != bpart)

fail = true;
}

void func2(C *pc)

{
#pragma suppress_null_check
B *pb = pc, *pb2 = pc; /* pragma means these initializations

need not check for NULL. It also marks pb and
pb2

as never being NULL, so the compiler will not
generate NULL checks in class conversions using
these pointers. */

if (pb != bpart || pb2 != bpart)
fail = true;

}

CrossCore Embedded Studio 1.1 1-247
C/C++ Compiler Manual for SHARC Processors

Compiler

int main(void)

{
func(&obj);
func2(&obj);
if (fail)

cout << "Test failed" << endl;
else

cout << "Test passed" << endl;
return 0;

}

Template Instantiation Pragmas

The template instantiation pragmas (instantiate, do_not_instantiate
and can_instantiate) give fine-grain control over where (that is, in which
object file) the individual instances of template functions, and member
functions and static members of template classes are created. The creation
of these instances from a template is called instantiation. As templates are
a feature of C++, these pragmas are allowed only in -c++ mode.

Refer to Compiler C++ Template Support for more information on how
the compiler handles templates.

These pragmas take the name of an instance as a parameter, as shown in
Table 1-27.

Table 1-27. Instance Names

Name Parameter

a template class name A<int>

a template class declaration class A<int>

a member function name A<int>::f

a static data member name A<int>::I

a static data declaration int A<int>::I

C/C++ Compiler Language Extensions

1-248 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If instantiation pragmas are not used, the compiler chooses object files in
which to instantiate all required instances automatically during the
pre-linking process.

#pragma instantiate instance

This pragma requests the compiler to instantiate instance in the current
compilation.

For example,

#pragma instantiate class Stack<int>

causes all static members and member functions for the int instance of a
template class Stack to be instantiated, whether they are required in this
compilation or not. The example,

#pragma instantiate void Stack<int>::push(int)

causes only the individual member function Stack<int>::push(int) to be
instantiated.

#pragma do_not_instantiate instance

This pragma directs the compiler not to instantiate instance in the cur-
rent compilation. For example,

#pragma do_not_instantiate int Stack<float>::use_count

prevents the compiler from instantiating the static data member
Stack<float>::use_count in the current compilation.

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

Table 1-27. Instance Names (Cont’d)

Name Parameter

CrossCore Embedded Studio 1.1 1-249
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma can_instantiate instance

This pragma tells the compiler that if instance is required anywhere in
the program, it should be instantiated in this compilation.

 Currently, this pragma forces the instantiation even if it is not
required anywhere in the program. Therefore, it has the same effect
as #pragma instantiate.

Header File Control Pragmas

The header file control pragmas (no_implicit_inclusion, once, and sys-
tem_header) help the compiler to handle header files.

#pragma no_implicit_inclusion

When the -c++ switch (on page 1-25) is used for each included .h file, the
compiler attempts to include the corresponding .c or .cpp file. This is
called implicit inclusion.

If #pragma no_implicit_inclusion is placed in an .h file, the compiler
does not implicitly include the corresponding .c or .cpp file with the -c++
switch. This behavior only affects the .h file with #pragma no_implic-
it_inclusion within it and the corresponding .c or .cpp files.

For example, if there are the following files

t.c

which contains

#include "m.h"

and m.h and m.c are both empty, then

cc21k -c++ t.c -M

shows the following dependencies for t.c:

t.doj: t.c

C/C++ Compiler Language Extensions

1-250 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

t.doj: m.h

t.doj: m.c

If the following line is added to m.h,

#pragma no_implicit_inclusion

running the compiler as before would not show m.c in the dependencies
list, such as:

t.doj: t.c

t.doj: m.h

#pragma once

This pragma, which should appear at the beginning of a header file, tells
the compiler that the header is written in such a way that including it sev-
eral times has the same effect as including it once. For example,

#pragma once

#ifndef FILE_H

#define FILE_H

... contents of header file ...

#endif

 In this example, the #pragma once is actually optional because the
compiler recognizes the #ifndef/#define/#endif idiom and does
not reopen a header that uses it.

#pragma system_header

This pragma identifies an include file as a file supplied with CCES. The
compiler makes use of this information to help optimize uses of the sup-
plied library functions and inline functions that these files define. The
pragma should not be used in user application source.

CrossCore Embedded Studio 1.1 1-251
C/C++ Compiler Manual for SHARC Processors

Compiler

Fixed-Point Arithmetic Pragmas

The compiler supports several pragmas which can change the semantics of
arithmetic on the native fixed-point type, fract. These are #pragma FX_-
CONTRACT {ON|OFF} and #pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED}. In addition, #pragma STDC FX_-
FULL_PRECISION {ON|OFF|DEFAULT} and #pragma STDC
FX_FRACT_OVERFLOW {SAT|DEFAULT} are accepted by the compiler but have
no effect on generated code.

These pragmas may be used at file scope, in which case they apply to all
following functions until another pragma is respecified to change the
pragma state. Alternatively, they may be specified in a { } delimited scope
(or compound statement), where they will temporarily override the
current setting of the pragma’s state until the end of the scope.

For more information, see Using Native Fixed-Point Types.

#pragma FX_CONTRACT {ON|OFF}

The FX_CONTRACT {ON|OFF} pragma may be used to control the precision
of intermediate results of calculations on the native fixed-point type
fract. If FX_CONTRACT is ON, where an intermediate result is not stored
back to a named variable, the compiler may choose to keep the intermedi-
ate result in greater precision than that mandated by the ISO/IEC C
Technical Report 18037. It will do this where maintaining the higher pre-
cision allows more efficient code to be generated.

When FX_CONTRACT is OFF, the compiler will adhere strictly to the
ISO/IEC Technical Report 18037 and will convert all intermediate results
to the type dictated in this standard before use.

The following example shows the use of this pragma.

fract mulsu(fract f1, unsigned fract f2) {

#pragma FX_CONTRACT ON

C/C++ Compiler Language Extensions

1-252 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

return f1 * f2; /* compiler creates signed-unsigned multiply

*/

}

The default state of the FX_CONTRACT pragma is ON.

#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}

The FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED} pragma may be
used to control the rounding mode used during calculations on the native
fixed-point type fract.

When FX_ROUNDING_MODE is set to TRUNCATION, the exact mathematical
result of a computation is rounded by truncating the least significant bits
beyond the precision of the result type. This is equivalent to rounding
towards negative infinity.

When FX_ROUNDING_MODE is set to BIASED, the exact mathematical result of
a computation is rounded to the nearest value that fits in the result type. If
the exact result lies exactly half-way between two consecutive values in the
result type, the result is rounded up to the higher one.

When FX_ROUNDING_MODE is set to UNBIASED, the exact mathematical result
of a computation is rounded to the nearest value that fits in the result
type. If the exact result lies exactly half-way between two consecutive val-
ues in the result type, the result is rounded to the even value.

The following example shows the use of this pragma.

fract divide_biased(fract f1, fract f2) {

#pragma FX_ROUNDING_MODE BIASED

return f1 / f2; /* compiler creates divide with biased

rounding */

}

The default state of the FX_ROUNDING_MODE pragma is TRUNCATION.

CrossCore Embedded Studio 1.1 1-253
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}

The STDC FX_FULL_PRECISION {ON|OFF|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate faster code for fixed-point arithmetic, but produce lower-accu-
racy results.

The compiler always produces full-accuracy results. Therefore, although
the pragma is accepted by the compiler, the code generated will be the
same regardless of the state of FX_FULL_PRECISION.

#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}

The STDC FX_FRACT_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate fract-typed results on overflow.

fract arithmetic with the compiler always saturates on overflow. There-
fore, although the pragma is accepted by the compiler, the code generated
will be the same regardless of the state of FX_FRACT_OVERFLOW.

Inline Control Pragmas

The compiler supports three pragmas to control the inlining of code.
These pragmas are #pragma always_inline, #pragma inline and #pragma
never_inline. Additionally, #pragma source_position_from_call_site
affects the debug information on inlined functions.

#pragma always_inline

This pragma may be applied to a function definition to indicate to the
compiler that the function should always be inlined, and never called “out
of line”. The pragma may only be applied to function definitions with the
inline qualifier, and may not be used on functions with variable-length
argument lists. It is invalid for function definitions that have interrupt-
related pragmas associated with them.

C/C++ Compiler Language Extensions

1-254 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If the function in question has its address taken, the compiler cannot guar-
antee that all calls are inlined, so a warning is issued.

See Function Inlining for details of pragma precedence during inlining.

The following are examples of the always_inline pragma.

int func1(int a) { // only consider inlining
return a + 1; // if -Oa switch is on

}

inline int func2(int b) {// probably inlined, if optimizing

return b + 2;
}

#pragma always_inline

inline int func3(int c) {// always inline, even unoptimized
return c + 3;

}

#pragma always_inline

int func4(int d) {// error: not an inline function
return d + 4;

}

#pragma inline

This pragma instructs the compiler to inline the function if it is consid-
ered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the inline keyword is not allowed
(such as when compiling in MISRA-C mode). For more information, see
MISRA-C Compiler.

#pragma inline

int func5(int a, int b) { /* can be inlined */

return a / b;

}

CrossCore Embedded Studio 1.1 1-255
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma never_inline

This pragma may be applied to a function definition to indicate to the
compiler that the function should always be called “out of line”, and that
the function’s body should never be inlined.

This pragma may not be used on function definitions that have the inline
qualifier. See Function Inlining for details of pragma precedence during
inlining.

These are code examples for the never_inline pragma.

#pragma never_inline
int func5(int e) {// never inlined, even with -Oa switch

return e + 5;
}

#pragma never_inline

inline int func5(int f) {// error: inline function
return f + 6;

}

#pragma source_position_from_call_site

This pragma may be applied to function definitions. It affects the debug
information emitted when a function is inlined: instead of using the actual
source code position of each inlined statement, the position of the call to
the inlined function is attached to code generated for the function.

When stepping through a program in the debugger, this can be useful on
very small inlined functions, so as to avoid the current position jumping
between the code under investigation and the definitions of inlined
functions.

The pragma is used in the builtins.h header for compiler built-in func-
tions. It does not affect the generated machine code.

C/C++ Compiler Language Extensions

1-256 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Linking Control Pragmas

Linking pragmas (linkage_name, additional_linkage_name, core, sec-
tion and weak_entry) change how a given global function or variable is
viewed during the linking stage.

#pragma linkage_name identifier

This pragma associates the identifier with the next external function decla-
ration. It ensures that the identifier is used as the external reference,
instead of following the compiler’s usual conventions. For example,

_Pragma("linkage_name __realfuncname")

void funcname ();

#pragma additional_linkage_name identifier

This pragma associates the identifier with the next external function defi-
nition. It ensures that the identifier is used as an additional linkage name
for the function, by generating a .set assembly directive to create an alias
symbol. This allows the same function to be called through multiple
names without indirection overhead, and can be useful for example when
a function name is changed but backward compatibility needs to be
ensured.

_Pragma("additional_linkage_name _func_alias")

void func () { /* ... */ }

When building a project that targets multiple processors or multiple cores
on a processor, a link stage may produce executables for more than one
core or processor. The interprocedural analysis (IPA) framework requires
that some conventions be adhered to in order to successfully perform its
analyses for such projects.

Because the IPA framework collects information about the whole pro-
gram, including information on references which may be to definitions

CrossCore Embedded Studio 1.1 1-257
C/C++ Compiler Manual for SHARC Processors

Compiler

outside the current translation unit, the IPA framework must be able to
distinguish these definitions and their references without ambiguity.

If any confusion were allowed about which definition a reference refers to,
then the IPA framework could potentially cause bad code to be generated,
or could cause translation units in the project to be continually recom-
piled ad infinitum. It is the global symbols that are really relevant in this
respect. The IPA framework will correctly handle locals and static symbols
because multiple definitions are not possible within the same file, so there
can be no ambiguity.

In order to disambiguate all references and the definitions to which they
refer, it is necessary to have a unique name for each definition within a
given project. It is illegal to define two different functions or variables
with the same name. This is illegal in single-core projects because this
would lead to multiple definitions of a symbol and the link would fail. In
multi-core projects, however, it may be possible to link a project with
multiple definitions because one definition could be linked into each link
project, resulting in a valid link. Without detailed knowledge of what
actions the linker had performed, however, the IPA framework would not
be able to disambiguate such multiple definitions. For this reason, to use
the IPA framework, it is up to you to ensure unique names even in proj-
ects targeting multiple cores or processors.

There are a few cases for which it is not possible to ensure unique names
in multi-core or multi-processor projects. One such case is main. Each
processor or core will have its own main function, and these need to be
disambiguated for the IPA framework to be able to function correctly.
Another case is where a library (or the C run-time startup) references a
symbol which the user may wish to define differently for each core.

For this reason, CCES supports the #pragma core(corename).

This pragma can be provided immediately prior to a definition or a decla-
ration. This pragma allows you to give a unique identifier to each
definition. It also allows you to indicate to which definition each reference

C/C++ Compiler Language Extensions

1-258 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

refers. The IPA framework will use this core identifier to distinguish all
instances of symbols with the same name and will therefore be able to
carry out its analyses correctly.

 The corename specified should only consist of alphanumeric char-
acters. The core name is case sensitive.

#pragma core

The pragma should be used:

• On every definition (not in a library) for which there needs to be a
distinct definition for each core.

• On every declaration of a symbol (not in a library) for which the
relevant definition includes the use of #pragma core. The core
specified for a declaration must agree with the core specified for the
definition.

It should be noted that the IPA framework will not need to be informed of
any distinction if there are two identical copies of the same function or
data with the same name. Functions or data that come from objects and
that are duplicated in memory local to each core, for example, will not
need to be distinguished. The IPA framework does not need to know
exactly which instance each reference will get linked to because the infor-
mation processed by the framework is identical for each copy. Essentially,
the pragma only needs to be specified on items where there will be differ-
ent functions or data with the same name incorporated into the executable
for each core.

Here is an example of #pragma core usage to distinguish two different
main functions:

/* foo.c */

#pragma core("coreA")
int main(void) {

/* Code to be executed by core A */
}

CrossCore Embedded Studio 1.1 1-259
C/C++ Compiler Manual for SHARC Processors

Compiler

/* bar.c */
#pragma core("coreB")
int main(void) {

/* Code to be executed by core B */
}

Omitting either instance of the pragma will cause the IPA framework to
issue a fatal error indicating that the pragma has been omitted on at least
one definition.

Here is an example that will cause an error to be issued because the name
contains a non-alphanumeric character:

#pragma core("core/A")

int main(void) {
/* Code to executed on core A */

}

Here is an example where the pragma needs to be specified on a declara-
tion as well as the definitions. There is a library which contains a reference
to a symbol which is expected to be defined for each core. Two more mod-
ules define the main functions for the two cores. Two further modules,
each only used by one of the cores, makes a reference to this symbol, and
therefore requires use of the pragma. For example,

/* libc.c */

#include <stdio.h>
extern int core_number;
void print_core_number(void) {

printf("Core %d\n", core_number);
}
/* maina.c */
extern void fooa(void)
#pragma core("coreA")
int core_number = 1;
#pragma core("coreA")
int main(void) {

/* Code to be executed by core A */
print_core_number();

C/C++ Compiler Language Extensions

1-260 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

fooa();
}
/* mainb.c */
extern void foob(void)
#pragma core("coreB")
int core_number = 2;
#pragma core("coreB")
int main(void) {

/* Code to be executed by core B */
print_core_number();
foob();

}
/* fooa.c */
#include <stdio.h>
#pragma core("coreA")
extern int core_number;
void fooa(void) {

printf("Core: is core%c\n", ‘A’ - 1 + core_number);
}
/* foob.c */
#include <stdio.h>
#pragma core("coreB")
extern int core_number;
void fooa(void) {

printf("Core: is core%c\n", ‘A’ - 1 + core_number);
}

In general, it will only be necessary to use #pragma core in this manner
when there is a reference from outside the application (in a library, for
example) where there is expected to be a distinct definition provided for
each core, and where there are other modules that also require access to
their respective definition. Notice also that the declaration of core_number
in lib.c does not require use of the pragma because it is part of a transla-
tion unit to be included in a library.

A project that includes more than one definition of main will undergo
some extra checking to catch problems that would otherwise occur in the
IPA framework. For any non-template symbol that has more than one
definition, the tool chain will fault any definitions that are outside

CrossCore Embedded Studio 1.1 1-261
C/C++ Compiler Manual for SHARC Processors

Compiler

libraries that do not specify a core name with the pragma. This check does
not affect the normal behavior of the prelinker with respect to templates
and in particular the resolution of multiple template instantiations.

To clarify:

Inside a library, #pragma core is not required on declarations or defini-
tions of symbols that are defined more than once. However, a library can
be responsible for forcing the application to define a symbol more than
once (that is, once for each core). In this case, the definitions and declara-
tions require the pragma to be used outside the library to distinguish the
multiple instances.

It should be noted that the tool chain cannot check that uses of #pragma
core are consistent. If you use the pragma inconsistently or ambiguously
then the IPA framework may end up causing incorrect code to be gener-
ated or causing continual recompilation of the application’s files.

It is also important to note that the pragma does not change the linkage
name of the symbol it is applied to in any way.

For more information on IPA, see Interprocedural Analysis.

 #pragma retain_name

This pragma indicates that the function or variable declaration that fol-
lows the pragma is not removed even though it apparently has no uses.
Normally, when Interprocedural Analysis or linker elimination are
enabled, the CCES tools will identify unused functions and variables, and
will eliminate them from the resulting executable to reduce memory
requirements. The retain_name pragma instructs the tools to retain the
specified symbol, regardless.

The following example shows how to use this pragma.

int delete_me(int x) {

return x-2;

C/C++ Compiler Language Extensions

1-262 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

}

#pragma retain_name

int keep_me(int y) {

return y+2;

}

int main(void) {

return 0;

}

Since the program has no uses for either delete_me() or keep_me(), the
compiler removes delete_me(), but keeps keep_me() because of the
pragma. You do not need to specify retain_name for main().

The pragma is only valid for global symbols. It is not valid for the follow-
ing kinds of symbols:

• Symbols with static storage class

• Function parameters

• Symbols with auto storage class (locals). These are allocated on the
stack at runtime.

• Members/fields within structs/unions/classes

• Type declarations

For more information on IPA, see Interprocedural Analysis.

#pragma section/#pragma default_section

The section pragmas provide greater control over the sections in which the
compiler places symbols.

The section(SECTSTRING [, QUALIFIER, ...]) pragma is used to over-
ride the target section for any global or static symbol immediately

CrossCore Embedded Studio 1.1 1-263
C/C++ Compiler Manual for SHARC Processors

Compiler

following it. The pragma allows greater control over section qualifiers
compared to the section keyword.

The default_section(SECTKIND [, SECTSTRING [, QUALIFIER, ...]])
pragma is used to override the default sections in which the compiler is
placing its symbols.

The default sections fall into the categories listed under SECTKIND. Except
for the STI category, this pragma remains in force for a section category
until its next use with that particular category, or the end of the file. The
STI is an exception, in that only one STI default_section can be specified
and its scope is the entire file scope, not just the part following the use of
STI. A warning is issued if several STI sections are specified in the same
file.

The omission of a section name results in the default section being reset to
be the section that was in use at the start of the file, which can be either a
compiler default value, or a value set by the user through the -section
command line switch (for example, -section SECTKIND=SECTSTRING).

In all cases (including STI), the default_section pragma overwrites the
value specified with the -section command line switch.

#pragma default_section(DATA, "NEW_DATA1")

int x;

#pragma default_section(DATA, "NEW_DATA2")

int x=5;

#pragma default_section(DATA, "NEW_DATA3")

int x;

In this case x is placed in NEW_DATA2, because the definition of x is within
its scope.

A default_section pragma can only be used at global scope, where global
variables are allowed.

C/C++ Compiler Language Extensions

1-264 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

SECTKIND can be one of the following keywords found in Table 1-28.

SECTSTRING is the double-quoted string containing the section name,
exactly as it appears in the assembler file.

Changing one section kind has no effect on other section kinds. For
instance, even though STRINGS and CONSTDATA are by default placed by the
compiler in the same section, if CONSTDATA default_section is changed,
the change has no effect on the STRINGS data.

Please note that ALLDATA is not a real section, but a rather pseudo-kind
that stands for DATA, CONSTDATA, STRINGS, AUTOINIT and BSZ, and changing
ALLDATA is equivalent to changing all of these section kinds. Therefore,
#pragma default_section(ALLDATA, params)

Table 1-28. SECTKIND Keywords

Keyword Description

CODE Section is used to contain procedures and functions

ALLDATA Shorthand notation for DATA, CONSTDATA, BSS, STRINGS and AUTOINIT

DATA Section is used to contain “normal data”

CONSTDATA Section is used to contain read-only data

BSZ Section is used to contain zero-filled data

SWITCH Section is used to contain jump-tables to implement C/C++ switch state-
ments

VTABLE Section is used to contain C++ virtual-function tables

STI Section that contains code required to be executed by C++ initializations.
For more information, see Constructors and Destructors of Global Class
Instances.

STRINGS Section that stores string literals

AUTOINIT Contains data used to initialize aggregate autos.

PM_DATA Section is used to contain normal data declared with _pm keyword

PM_CONSTDATA Section is used to contain read-only data declared with _pm keyword

CrossCore Embedded Studio 1.1 1-265
C/C++ Compiler Manual for SHARC Processors

Compiler

is equivalent with the sequence:

#pragma default_section(DATA, params)

#pragma default_section(CONSTDATA, params)

#pragma default_section(STRINGS, params)

#pragma default_section(AUTOINIT, params)

#pragma default_section(BSZ, params)

QUALIFIER can be one of the following keywords found in Table 1-29.

There may be any number of comma-separated section qualifiers within
such pragmas, but they must not conflict with one another. Qualifiers
must also be consistent across pragmas for identical section names, and
omission of qualifiers is not allowed even if at least one such qualifier has
appeared in a previous pragma for the same section. If any qualifiers have
not been specified for a particular section by the end of the translation
unit, the compiler uses default qualifiers appropriate for the target

Table 1-29. QUALIFIER Keywords

Keyword Description

PM Section is located in program memory

DM Section is located in data memory

ZERO_INIT Section is zero-initialized at program startup

NO_INIT Section is not initialized at program startup

RUNTIME_INIT Section is user-initialized at program startup

DOUBLE32 Section may contain 32-bit but not 64-bit doubles

DOUBLE64 Section may contain 64-bit but not 32-bit doubles

DOUBLEANY Section may contain either 32-bit or 64-bit doubles

SW Code is short-word (214xx only).

NW Code is normal-word (214xx only).

DMAONLY Section is located in memory that can only be accessed by DMA. On
ADSP-2126x and certain ADSP-2136x processors, this keyword applies
to external memory.

C/C++ Compiler Language Extensions

1-266 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

processor. The following specifies that f() should be placed in a section
"foo", which is DOUBLEANY qualified:

#pragma section("foo", DOUBLEANY)

void f() {}

The compiler always tries to honor the section pragma as its highest pri-
ority, and the default_section pragma is always the lowest priority.

For example, the following code results in function f being placed in sec-
tion foo:

#pragma default_section(CODE, "bar")

#pragma section("foo")

void f() {}

The following code results in x being placed in section zeromem:

#pragma default_section(BSZ, "zeromem")

int x;

However, the following example does not result in the variable a being
placed in section onion because it was declared with the __pm qualifier and
therefore is placed in the PM data section:

#pragma default_section(DATA, "onion")

__pm int a = 4;

If the PM data is explicitly set as in this example,

#pragma default_section(PM_DATA, "pm_onion")

#pragma default_section(DATA, "onion")

__pm int a = 4;

then the variable a gets placed in the pm_onion section.

The following code results in code in section "foo" being compiled as
short-word code (214xx processors only):

CrossCore Embedded Studio 1.1 1-267
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma section("foo", SW)

The following results in code in section "foo2" being compiled as normal
word code (214xx processors only):

#pragma default_section(CODE,"foo2", NW)

 In cases where a C++ STL object must be placed in a specific mem-
ory section, using #pragma section/default_section will not
work. Instead, a non-default heap must be used, as explained in
Allocating C++ STL Objects to a Non-Default Heap.

#pragma file_attr(“name[=value]” [, “name[=value]” [...]])

This pragma directs the compiler to emit the specified attributes when it
compiles a file containing the pragma. Multiple #pragma file_attr direc-
tives are allowed in one file.

If “=value” is omitted, the default value of “1” will be used.

 The value of an attribute is all the characters after the '=' symbol
and before the closing '”' symbol, including spaces. A warning will
be emitted by the compiler if you have a preceding or trailing space
as an attribute value, as this is likely to be a mistake.

See File Attributes for more information on using attributes.

 #pragma weak_entry

This pragma may be used before a static variable or function declaration
or definition. It applies to the function/variable declaration or definition
that immediately follows the pragma. Use of this pragma causes the com-
piler to generate the function or variable definition with weak linkage.

The following are example uses of the pragma weak_entry directive.

#pragma weak_entry

int w_var = 0;

C/C++ Compiler Language Extensions

1-268 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma weak_entry

void w_func(){}

 When a symbol definition is weak, it may be discarded by the
linker in favor of another definition of the same symbol. Therefore,
if any modules in the application make use of the weak_entry
pragma, interprocedural analysis is disabled because it would be
unsafe for the compiler to predict which definition will be selected
by the linker. For more information, see Interprocedural Analysis.

Diagnostic Control Pragmas

The compiler supports #pragma diag which allows selective modification
of the severity of compiler diagnostic messages.

The directive has three forms:

• Modify the severity of specific diagnostics

• Modify the behavior of an entire class of diagnostics

• Save or restore the current behavior of all diagnostics

Modifying the Severity of Specific Diagnostics

This form of the directive has the following syntax:

#pragma diag(ACTION: DIAG [, DIAG ...][: STRING])

CrossCore Embedded Studio 1.1 1-269
C/C++ Compiler Manual for SHARC Processors

Compiler

The action: qualifier can be one of the following keywords.

If not in MISRA-C mode, the diag qualifier can be one or more
comma-separated compiler diagnostic numbers without the preceding
“cc” or zeros. The choice of error numbers is limited to those that may
have their severity overridden (such as those that are displayed with a
“{D}” in the error message).

In addition, some diagnostics are global (for example, diagnostics emitted
by the compiler back-end after lexical analysis and parsing, or before pars-
ing begins), and these global diagnostics cannot have their severity
overridden by the diagnostic control pragmas. To modify the severity of
global diagnostics, use the diagnostic control switches. For more informa-
tion, see -W{annotation|error|remark|suppress|warn} number[,number
...].

In MISRA-C mode, the diag qualifier is a list of MISRA-C rule numbers
in the form misra_rule_number_6_3 and misra_rule_number_19_4 for
rules 6.3 and 19.4, and so on. Special cases are rules 10.1 and 10.2, which
are both split into four distinct rule checks. For example, 10.1(c) should
be stated as misra_rule_10_1_c. diag may also be the special token

Table 1-30. Keywords for Action Qualifier

Keyword Action

suppress Suppresses all instances of the diagnostic

dmaonly Section is located in memory that can only be accessed by DMA. On
ADSP-2126x and certain ADSP-2136x processors, this keyword applies
to external memory.

remark Changes the severity of the diagnostic to a remark.

annotation Changes the severity of the diagnostic to an annotation.

warning Changes the severity of the diagnostic to a warning.

error Changes the severity of the diagnostic to an error.

restore Restores the severity of the diagnostic to what it was originally at the start
of compilation after all command-line options were processed.

C/C++ Compiler Language Extensions

1-270 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

misra_rules_all, which specifies that the pragma applies to all MISRA-C
rules.

The third optional argument is a string-literal to insert a comment regard-
ing the use of the #pragma diag.

Modifying the Behavior of an Entire Class of Diagnostics

This form of the directive has the following syntax, which is not allowed
when in MISRA-C mode:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(errors)

This pragma can be used to inhibit all subsequent warnings and
remarks (equivalent to the -w switch option).

• #pragma diag(remarks)

This pragma can be used to enable all subsequent remarks, annota-
tions and warnings (equivalent to the -Wremarks switch option).

• #pragma diag(annotations)

This pragma can be used to enable all subsequent annotations and
warnings (equivalent to the -Wannotations switch option).

• #pragma diag(warnings)

This pragma can be used to restore the default behavior when the
-w, -Wremarks and -Wannotations switches are not specified, which
is to display warnings but inhibit remarks and annotations.

Saving or Restoring the Current Behavior of All Diagnostics

This form has the following syntax:

#pragma diag(ACTION)

CrossCore Embedded Studio 1.1 1-271
C/C++ Compiler Manual for SHARC Processors

Compiler

The effects are as follows:

• #pragma diag(push)

This pragma may be used to store the current state of the severity
of all diagnostic error messages.

• #pragma diag(pop)

This pragma restores all diagnostic error messages that was previ-
ously saved with the most recent push.

All #pragma diag(push) directives must be matched with the same num-
ber of #pragma diag(pop) directives in the overall translation unit, but
need not be matched within individual source files, unless in MISRA-C
mode. Note that the error threshold (set by the remarks, annotations,
warnings or errors keywords) is also saved and restored with these
directives.

The duration of such modifications to diagnostic severity are from the
next line following the pragma to either the end of the translation unit,
the next #pragma diag(pop) directive, or the next overriding #pragma
diag() directive with the same error number. These pragmas may be used
anywhere and are not affected by normal scoping rules.

All command-line overrides to diagnostic severity are processed first and
any subsequent #pragma diag() directives will take precedence, with the
restore action changing the severity back to that at the start of compilation
after processing the command-line switch overrides.

 Note that the directives to modify specific diagnostics are singular
(for example, “error”), and the directives to modify classes of diag-
nostics are plural (for example, “errors”).

Run-Time Checking Pragmas

Run-time checking pragmas allow you to control the compiler’s genera-
tion of additional checking code. This code can test at runtime for
common programming errors. The -rtcheck command-line switch

C/C++ Compiler Language Extensions

1-272 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

(on page 1-68) and its related switches control which common errors are
tested for. Use the command-line switches to enable run-time checking;
once run-time checking is enabled, the run-time checking pragmas can be
used to disable and re-enable checking, for specific functions.

This section describes the following pragmas:

• #pragma rtcheck(off)

• #pragma rtcheck(on)

 Run-time checking causing the compiler to generate additional
code to perform the checks. This code has space and performance
overheads. Use of run-time checking should be restricted to appli-
cation development, and should not be used on applications for
release.

#pragma rtcheck(off)

The rtcheck(off) pragma disables any run-time check code generation
that has been enabled via command-line switches such as -rtcheck
(on page 1-68). The pragma is only valid at file scope, and affects code
generation for function definitions that follow.

The pragma has no effect on checks for stack overflow, or checks of heap
operations. This is because such checks are provided by selecting alterna-
tive library support at link-time, and so apply to the whole application.

#pragma rtcheck(on)

The rtcheck(on) pragma re-enables any run-time check code generation
that was enabled via command-line switches such as -rtcheck
(on page 1-68). The pragma is only valid at file scope, and affects code
generation for function definitions that follow. If no run-time checking
was enabled by command-line switches, the pragma has no effect.

CrossCore Embedded Studio 1.1 1-273
C/C++ Compiler Manual for SHARC Processors

Compiler

Memory Bank Pragmas

The memory bank pragmas provide additional performance characteristics
for the memory areas used to hold code and data for the function.

By default, the compiler assumes that there are no external costs associated
with memory accesses. This strategy allows optimal performance when the
code and data are placed into high-performance internal memory. In cases
where the performance characteristics of memory are known in advance,
the compiler can exploit this knowledge to improve the scheduling of gen-
erated code.

#pragma code_bank(bankname)

The code_bank pragma informs the compiler that the instructions for the
immediately-following function are placed in a memory bank called
bankname. Without this pragma, the compiler assumes that instructions
are placed into the default bank, if one has been specified; see Memory
Bank Selection for details. When optimizing the function, the compiler is
aware of attributes of memory bank bankname, and determines how long it
takes to fetch each instruction from the memory bank.

If bankname is omitted, the instructions for the function are not consid-
ered to be placed into any particular bank.

In the following example, the add_slowly() function is placed into the
“slowmem” bank, which may have different performance characteristics
from the default code bank, into which add_quickly() is placed.

#pragma code_bank(slowmem)

int add_slowly (int x, int y) { return x + y; }

int add_quickly(int a, int b) { return a + b; }

#pragma data_bank(bankname)

The data_bank pragma informs the compiler that the immediately-follow-
ing function uses the memory bank bankname as the model for memory

C/C++ Compiler Language Extensions

1-274 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

accesses for non-local data that does not otherwise specify a memory bank;
see Memory Bank Selection for details. Without this pragma, the compiler
assumes that non-local data should use the default bank, if any has been
specified, for behavioral characteristics.

If bankname is omitted, the non-local data for the function is not consid-
ered to be placed into any specific bank.

In both green_func() and blue_func() of the following example, i is
associated with the memory bank “blue”, and the retrieval and update of i
are optimized to use the performance characteristics associated with
memory bank “blue”.

#pragma data_bank(green)

int green_func(void)

{

extern int arr1[32];

extern int bank("blue") i;

i &= 31;

return arr1[i++];

}

int blue_func(void)

{

extern int arr2[32];

extern int bank("blue") i;

i &= 31;

return arr2[i++];

}

The array arr1 does not have an explicit memory bank in its declaration.
Therefore, it is associated with the memory bank “green”, because
green_func() has a specific default data bank. In contrast, arr2 is
associated with the default data memory bank (if any), because blue_-
func() does not have a #pragma data_bank preceding it.

CrossCore Embedded Studio 1.1 1-275
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma stack_bank(bankname)

The stack_bank pragma informs the compiler that all locals for the
immediately-following function are to be associated with memory bank
bankname, unless they explicitly identify a different memory bank.
Without this pragma, all locals are assumed to be associated with the
default stack memory bank, if any; see Memory Bank Selection for details.

If bankname is omitted, locals for the function are not considered to be
placed into any particular bank.

In the following example, the dotprod() function places the sum and i
values into memory bank “mystack”, while fib() places r, a, and b into
the default stack memory bank (if any), because there is no stack_bank
pragma. The count_ticks() function does not declare any local data, but
any compiler-generated local storage uses the “sysstack” memory bank’s
performance characteristics.

#pragma stack_bank(mystack)

short dotprod(int n, const short *x, const short *y)

{

int sum = 0;

int i = 0;

for (i = 0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

int fib(int n)

{

int r;

if (n < 2) {

r = 1;

} else {

int a = fib(n-1);

int b = fib(n-2);

r = a + b;

C/C++ Compiler Language Extensions

1-276 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

}

return r;

}

#pragma stack_bank(sysstack)

void count_ticks(void)

{

extern int ticks;

ticks++;

}

#pragma default_code_bank(bankname)

The default_code_bank pragma informs the compiler that bankname
should be considered the default memory bank for the instructions gener-
ated for any following functions that do not explicitly use #pragma
code_bank.

If bankname is omitted, the pragma sets the compiler’s default back to not
specifying a particular bank for generated code.

For more information, see Memory Bank Selection.

#pragma default_data_bank(bankname)

The default_data_bank pragma informs the compiler that bankname
should be considered the default memory bank for non-local data accesses
in any following functions that do not explicitly use #pragma data_bank.

If bankname is omitted, the pragma sets the compiler’s default back to not
specifying a particular bank for non-local data.

For more information, see Memory Bank Selection.

CrossCore Embedded Studio 1.1 1-277
C/C++ Compiler Manual for SHARC Processors

Compiler

#pragma default_stack_bank(bankname)

The default_stack_bank pragma informs the compiler that bankname
should be considered the default memory bank for local data in any fol-
lowing functions that do not explicitly use #pragma stack_bank.

If bankname is omitted, the pragma sets the compiler’s default back to not
specifying a particular bank for local data.

For more information, see Memory Bank Selection.

#pragma bank_memory_kind(bankname, kind)

The bank_memory_kind pragma informs the compiler of what kind of
memory the memory bank bankname is. See Memory Bank Kinds for the
kinds supported by the compiler.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

In the following example, the compiler knows that all accesses to the
data[] array are to the “blue” memory bank, and hence to internal,
in-core memory.

#pragma bank_memory_kind(blue, internal)

int sum_list(const int bank("blue") *data, int n)

{

int sum = 0;

while (n--)

sum += data[n];

return sum;

}

#pragma bank_read_cycles(bankname, cycles[, bits])

The bank_read_cycles pragma tells the compiler that each read operation
on the memory bank bankname requires cycles cycles before the resulting
data is available. This allows the compiler to generate more efficient code.

C/C++ Compiler Language Extensions

1-278 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If the bits parameter is specified, it indicates that a read of bits bits will
take cycles cycles. If the bits parameter is omitted, the pragma indicates
that reads of all widths will require cycles cycles. bits may be one of 32
or 64.

In the following example, the compiler assumes that a read from *x takes a
single cycle, as this is the default read time, but that a read from *y takes
twenty cycles, because of the pragma.

#pragma bank_read_cycles(slowmem, 20)

int dotprod(int n, const int *x, bank("slowmem") const int *y)

{

int i, sum;

for (i=sum=0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

#pragma bank_write_cycles(bankname, cycles[, bits])

The bank_write_cycles pragma tells the compiler that each write opera-
tion on memory bank bankname requires cycles cycles before it completes.
This allows the compiler to generate more efficient code.

If the bits parameter is specified, it indicates that a write of bits bits will
take cycles cycles. If the bits parameter is omitted, the pragma indicates
that writes of all widths will require cycles cycles. bits may be one of 32
or 64.

In the following example, the compiler knows that each write through ptr
to the “output” memory bank takes six cycles to complete.

#pragma bank_write_cycles(output, 6)

void write_buf(int n, const char *buf)

CrossCore Embedded Studio 1.1 1-279
C/C++ Compiler Manual for SHARC Processors

Compiler

{

volatile bank("output") char *ptr = REG_ADDR;

while (n--)

*ptr = *buf++;

}

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

#pragma bank_maximum_width(bankname, width)

The bank_maximum_width pragma informs the compiler that width is the
maximum number of bits to transfer to/from memory bank bankname in a
single access. On SHARC processors, the width parameter may only be 32
or 64.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

Code Generation Pragmas

The code generation pragmas are described below in the following
sections.

#pragma avoid_anomaly_45 {on | off}

When executing code from external SDRAM on the ADSP-21161 proces-
sor, conditional instructions containing a DAG1 data access may not be
performed correctly.

These pragmas, #pragma avoid_anomaly_45 on and #pragma avoid_anom-
aly_45 off, allow you to initiate (or avoid) the generation of such
instructions on a function-by-function basis. The pragmas should be used
before a function definition and remain in effect until another variant of
the pragma is seen.

C/C++ Compiler Language Extensions

1-280 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma no_db_return

This pragma is used immediately before a function definition and will
cause the compiler to ensure that non-delayed-branch instructions are
used to return from the function. The pragma may be applied to both
interrupt and non-interrupt function definitions. Applying the pragma to
an interrupt function can be used as a workaround for ADSP-213xx sili-
con anomalies 02000069, 04000068, 06000028, 07000021, 08000026,
and 09000015, “Incorrect Popping of stacks possible when exiting
IRQx/Timer interrupts with DB modifiers.”

If the pragma does not appear immediately before a function definition
then a compiler error message is issued.

The following examples show uses of this pragma:

Example 1

#pragma no_db_return

int max(int x, int y)

{

if (y > x)

return y;

else

return x;

}

Example 2

#pragma no_db_return

#pragma interrupt_complete_nesting

void foo(void) {

. . .

}

CrossCore Embedded Studio 1.1 1-281
C/C++ Compiler Manual for SHARC Processors

Compiler

Example 3

#pragma no_db_return

int i; /* INVALID - not a function definition, causes compiler

error cc1943 */

Exceptions Table Pragma

The following is an exceptions table pragma.

#pragma generate_exceptions_tables

This pragma may be applied to a C function definition to request the
compiler to generate tables which enable C++ exceptions to be thrown
through executions of this function.

The following example consists of two source files. The first is a C file
which contains the pragma applied to the definition of function
call_a_call_back.

#pragma generate_exceptions_tables
void call_a_call_back(void pfn(void)) {
pfn();/* without pragma program terminates when

throw_an_int throws an exception */
}

The second source file contains C++ code. The function main calls
call_a_call_back, from the C file listed above, which in turn calls
throw_an_int. The exception thrown by throw_an_int will be caught by
the catch handler in main because use of the pragma ensured the compiler
generated an exceptions table for call_a_call_back.

#include <iostream>
extern "C" void call_a_call_back(void pfn());

static void throw_an_int() {
throw 3;

}

C/C++ Compiler Language Extensions

1-282 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

int main() {
try {

call_a_call_back(throw_an_int);
} catch (int i) {

if (i == 3) std::cout << "Test passed\n";
}

}

An alternative to using #pragma generate_exceptions_tables is to com-
pile C files with the -eh (enable exception handling) switch
(on page 1-33) which, for C files, is equivalent to using the pragma before
every function definition.

GCC Compatibility Extensions
The compiler provides compatibility with many features of the C dialect
accepted by version 3.4 of the GNU C Compiler. Many of these features
are available in the ISO/IEC 9899:1999 standard. A brief description of
the extensions is included in this section. For more information, refer to
the following URL:

http://gcc.gnu.org/onlined-

ocs/gcc-3.4.6/gcc/index.html#toc_C-Extensions

 The GCC compatibility extensions are only available in C89 and
C99 modes. They are not accepted in C++ dialect mode.

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
A compound statement itself is enclosed in braces { }, so this construct is
enclosed in parentheses-brace pairs ({ }).

The value computed by a statement expression is the value of the last
statement which should be an expression statement. The statement

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/index.html#toc_C-Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/index.html#toc_C-Extensions

CrossCore Embedded Studio 1.1 1-283
C/C++ Compiler Manual for SHARC Processors

Compiler

expression may be used where expressions of its result type may be used.
But they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro. In the following example,

#define min(a,b) ({ \
short __x=(a),__y=(b),__res;\
if (__x > __y) \

__res = __y; \
else \

__res = __x; \
__res; \

})

int use_min() {

return min(foo(), thing()) + 2;
}

The foo() and thing() statements get called once each because they are
assigned to the variables __x and __y which are local to the statement
expression that min expands to and min() can be used freely within a larger
expression because it expands to an expression.

Labels local to a statement expression can be declared with the __label__
keyword. For example,

#define checker(p) ({ \

__label__ exit; \

int i; \

for (i=0; p[i]; ++i) { \

int d = get(p[i]); \

if (!check(d)) goto exit; \

process(d); \

} \

exit: \

i; \

})

C/C++ Compiler Language Extensions

1-284 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

extern int g_p[100];

int checkit() {

int local_i = checker(g_p);

return local_i;

}

 Statement expressions are not supported in C++ mode. Also, state-
ment expressions are an extension to C originally implemented in
the GCC compiler. Analog Devices support the extension primar-
ily to aid porting code written for that compiler. When writing
new code, consider using inline functions, which are compatible
with ANSI/ISO standard C++ and C99, and are as efficient as mac-
ros when optimization is enabled.

Type Reference Support Keyword (Typeof)

The typeof(expression) construct can be used as a name for the type
of expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once such as macros or
include files more generic.

The typeof keyword may be used where ever a typedef name is permitted
such as in declarations and in casts. For example,

#define abs(a) ({ \
typeof(a) __a = a; \
if (__a < 0) __a = - __a; \
__a; \

})

shows typeof used in conjunction with a statement expression to define a
“generic” macro with a local variable declaration.

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C type declaration syntax.

CrossCore Embedded Studio 1.1 1-285
C/C++ Compiler Manual for SHARC Processors

Compiler

For example,

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

declares y to be an array of four pointers to char.

 The typeof keyword is not supported in C++ mode.
The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C/C++ and has not been
adopted by the more recent C99 standard.

Generalized Lvalues

Lvalues are expressions that may appear on the left-hand side of an assign-
ment. GCC provides several lvalue-related extensions to C, which are
supported by the compiler for GCC compatibility:

• A cast is an lvalue if its operand is an lvalue. This C-mode exten-
sion is not allowed in C++ mode.

• A comma operator is an lvalue if its right operand is an lvalue. This
C-mode extension is a standard feature of C++.

• A conditional operator is an lvalue if its last two operands are lval-
ues of the same type. This C-mode extension is a standard feature
of C++.

Conditional Expressions With Missing Operands

The middle operand of a conditional operator can be left out. If the con-
dition is non-zero (true), then the condition itself is the result of the
expression. This can be used for testing and substituting a different value

C/C++ Compiler Language Extensions

1-286 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

when a pointer is NULL. The condition is only evaluated once; therefore,
repeated side effects can be avoided. For example,

printf("name = %s\n", lookup(key)?:"-");

calls lookup() once, and substitutes the string “-” if it returns NULL. This
is an extension to C, provided for compatibility with GCC. It is not
allowed in C++ mode.

Zero-Length Arrays

Arrays may be declared with zero length. This is an anachronism sup-
ported to provide compatibility with GCC. Use variable length array
members instead.

GCC Variable Argument Macros

The final parameter in a macro declaration may be followed by an ellipsis
(...) to indicate the parameter stands for a variable number of arguments.

#define tracegcc(file,line,msg ...) \

 logmsg(file,line, ## msg)

can be used with differing numbers of arguments: the following
statements:

tracegcc("a.c", 999, "one", "two", "three");

tracegcc("a.c", 999, "one", "two");

tracegcc("a.c", 999, "one");

tracegcc("a.c", 999);

expand to the following code:

logmsg("a.c", 999,"one", "two", "three");

logmsg("a.c", 999,"one", "two");

logmsg("a.c", 999,"one");

logmsg("a.c", 999);

CrossCore Embedded Studio 1.1 1-287
C/C++ Compiler Manual for SHARC Processors

Compiler

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments: if
the parameter expands to nothing, then it removes the preceding comma.

 This variable argument macro syntax comes from GCC. The com-
piler supports both GCC and C99 variable argument macro
formats in C89, C99 and C++ modes. (For more information, see
Variable Argument Macros.)

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. This extension is not supported in C++ mode. The extension is not
compatible with many dialects of C, including ANSI/ISO C89 and C99.
However, it is useful in asm statements, which are intrinsically
non-portable.

This extension may be disabled via the -no-multiline switch
on page 1-51.

Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof() operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the union’s member types to the union type.

Ranges in Case Labels

A consecutive range of values can be specified in a single case by separating
the first and last values of the range with the three-period token “...”.

C/C++ Compiler Language Extensions

1-288 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For example,

case 200 ... 300:

Escape Character Constant

The character escape '\e' may be used in character and string literals and
maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct
can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left hand side of an assign-
ment), the alignment returned takes into account alignment requested by
pragmas and the default variable allocation rules.

Keyword for Specifying Names in Generated Assembler
(asm)

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. (See also #pragma linkage_name
identifier.)

For example,

int N asm("C11045");

tells the compiler to use the label C11045 in the assembly code it gener-
ates wherever it needs to access the source level variable N. By default, the
compiler would use the label _N.

CrossCore Embedded Studio 1.1 1-289
C/C++ Compiler Manual for SHARC Processors

Compiler

The asm keyword can also be used in function declarations but not func-
tion definitions. However, a definition preceded by a declaration has the
desired effect.

For example,

extern int f(int, int) asm("func");

int f(int a, int b) {

. . .
}

Function, Variable and Type Attribute Keyword (__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables and types, as in these examples,

void func(void) __attribute__ ((section("fred")));

int a __attribute__ ((aligned (8)));

typedef struct {int a[4];} __attribute__((aligned (4))) Q;

The __attribute__ keyword is supported, and therefore code, written for
GCC, can be ported. Table 1-31 lists the accepted keywords.

Table 1-31. Keywords for __attribute__

Attribute Keyword Behavior

alias("name") Accepted on functions declarations. Declares the function
to be an alias for name.

aligned(N) Accepted on variables, where it is equivalent to #pragma
align(N). Accepted (but ignored) on typedefs.

always_inline Accepted on function declarations. Equivalent to the
pragma of the same name.

const Accepted on function declarations. Equivalent to the
pragma of the same name.

constructor Accepted (but ignored) on function declarations.

C/C++ Compiler Language Extensions

1-290 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

deprecated Accepted on function, variable and type declarations.
Causes the compiler to emit a warning if the entity with the
attribute is referenced within the source code.

destructor Accepted (but ignored) on function declarations.

format(kind,str,args) Accepted on function declarations. Indicates that the func-
tion accepts a formatting argument string of type kind, e.g.
printf. str and args are integer values; the strth param-
eter of the function is the formatting string, while the
argsth parameter of the function is the first parameter pro-
cessed by the formatting string.

format_arg(kind, str) Accepted on function declarations. Indicates that the func-
tion accepts and returns a formatting argument string of
type kind. str is an integer value; the strth parameter of
the function is the formatting string.

malloc Accepted on function declarations. Equivalent to using
#pragma alloc.

naked Accepted (but ignored) on function declarations.

no_instrument_function Accepted (but ignored) on function declarations.

nocommon Accepted on variable declarations. Causes the compiler to
treat the declaration as a definition.

noinline Accepted on function declarations. Equivalent to #pragma
never_inline.

nonnull Accepted on function declarations. Causes the compiler to
emit a warning if the function is invoked with any NULL
parameters.

noreturn Accepted on function declarations. Equivalent to using the
pragma of the same name.

nothrow Accepted (but ignored) on function declarations.

packed Accepted (but ignored) on typedefs. When used on variable
declarations, this is equivalent to using the pragma of the
same name.

pure Accepted on function declarations. Equivalent to using the
pragma of the same name.

Table 1-31. Keywords for __attribute__ (Cont’d)

Attribute Keyword Behavior

CrossCore Embedded Studio 1.1 1-291
C/C++ Compiler Manual for SHARC Processors

Compiler

Unnamed struct/union Fields Within struct/unions

The compiler allows you to define a structure or union that contains, as
fields, structures and unions without names. For example:

struct {

int field1;

union {

int field2;

section("name") Accepted on function declarations. Equivalent to using the
pragma of the same name.

sentinel Accepted on function declarations. Directs the compiler to
emit a warning for any calls to the function which do not
provide a null pointer literal as the last parameter. Accepts
an optional integer position P (default 0) to indicate that
the Pth parameter from the end is the sentinel instead.

transparent_union Accepted on union definitions. When the union type is
used for a function’s parameter, the parameter can accept
values which match any of the union’s types.

unused Accepted on declarations of functions, variables and types.
Indicates that the entity is known not to be used, so the
compiler should not emit diagnostics complaining that
there are no uses of the entity.

used Accepted on declarations of functions and variables. Indi-
cates that the compiler should emit the entity even when
the compiler cannot detect uses. Similar to #pragma
retain_name, but this attribute can be applied to static
entities that will not be visible outside the module. Con-
versely, this attribute will not prevent linker elimination
from deleting the entity.

warn_unused_result Accepted (but ignored) on function declarations.

weak Accepted on function and variable declarations. Equivalent
to using #pragma weak_entry

Table 1-31. Keywords for __attribute__ (Cont’d)

Attribute Keyword Behavior

C/C++ Compiler Language Extensions

1-292 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

int field3;

};

int field4;

} myvar;

This allows the user to access the members of the unnamed union as
though they were members of the enclosing struct; for example,
myvar.field2.

Support for 40-Bit Arithmetic
The SHARC family of processors support 40-bit, floating-point arithme-
tic. Although this feature is not supported by the compiler, it is used by
some run-time library functions and compiler support functions. This sec-
tion provides information on the following topics:

• The implications of using 40-bit arithmetic in C/C++ code

• Library functions that use 40-bit arithmetic (directly or indirectly)

Using 40-Bit Arithmetic in Compiled Code

Although 40-bit arithmetic can be enabled in C/C++ code (by clearing the
RND32 bit on the MODE1 register), there are a number of factors that
mean that arithmetic operations can produce inconsistent results:

• Where possible, the compiler will attempt to perform constant
folding (the simplification of constant expressions at compile
time). The results of floating-point constant folding may be differ-
ent from the results generated by performing the same calculation
using the SHARC processor’s 40-bit arithmetic.

• The compiler will sometimes use the integer PASS instruction ("Rx
= PASS Ry;") to copy a floating-point value from one register to
another. This operation will result in a 40-bit value being trun-
cated to a 32-bit value. It is not possible to predict whether the

CrossCore Embedded Studio 1.1 1-293
C/C++ Compiler Manual for SHARC Processors

Compiler

compiler will use this instruction—it depends on many factors,
such as the code sequence being compiled and whether optimiza-
tion has been enabled.

• By default, data memory (including the stack) is configured as 32
bits wide, so any data stored to memory will be truncated from 40
bits to 32 bits. It is not possible to anticipate exactly when the
compiler will place data in memory (especially when the optimizer
has been enabled), meaning that it is not possible to guarantee that
all 40 bits of a calculation will be preserved. For example, when
preserving the value of a local variable across a function call, the
compiler can either store the variable on the stack (which truncates
it) or store it in a preserved register (for example, R3 which will pre-
serve all 40 bits). As before, the behavior depends on many factors
such as the code sequence and optimization.

For these reasons, it is recommended that 40-bit arithmetic is not used in
C/C++ code.

Run-Time Library Functions That Use 40-Bit Arithmetic

The following run-time library functions use 40-bit arithmetic:

The compiler support functions for the following operations use 40-bit
arithmetic:

cfft_mag cosf div fir (the scalar-valued
version from the header
file filters.h)

iir (the scalar-valued
version from the header
file filters.h)

ldiv fmodf rfft_mag

rsqrtf sinf sqrtf

modulus operator integer division

C/C++ Compiler Language Extensions

1-294 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

A number of library functions do not themselves use 40-bit arithmetic but
they invoke one or more of the above functions and may therefore gener-
ate less accurate results if they are interrupted:

If the switch -double-size-64 has not been specified, then the following
functions are also affected:

SIMD Support
The SHARC processors supported by the compiler allow Single Instruc-
tion, Multiple Data (SIMD) execution. When optimizing, the compiler
can automatically exploit SIMD mode, subject to certain constraints being
met. If the compiler is unable to automatically exploit SIMD mode, it will
generate normal code (Single Instruction, Single Data, “SISD”). You can
also use pragmas and other facilities to inform the compiler when SIMD
mode is appropriate.

This section contains:

• A Brief Introduction to SIMD Mode

• What the Compiler Can Do Automatically

acosf asinf cabsf cartesianf

cexpf normf polarf gen_blackman

gen_hamming gen_hanning gen_harris gen_kaiser

rmsf twidfftf twiffft

acos asin cabs cartesian

cexp cos fmod norm

polar rms rsqrt sin

sqrt

CrossCore Embedded Studio 1.1 1-295
C/C++ Compiler Manual for SHARC Processors

Compiler

• What Prevents the Compiler From Automatically Exploiting
SIMD Mode

• How to Help the Compiler Exploit SIMD Mode

• How to Prevent SIMD Code Generation

A Brief Introduction to SIMD Mode

This brief discussion is only concerned with aspects of SIMD architecture
as they relate to the compiler. For full details on SIMD mode, refer to
your processor’s hardware reference manual.

In SIMD mode, the processor uses an additional computation unit operat-
ing in parallel with the first computation unit. This additional unit has its
own register file. Whereas in SISD mode, only the first unit fetches values
from memory, performs operations on them and stores the results back in
memory, in SIMD mode, both units do this at once. The two units access
adjacent memory locations, so that if the first unit accesses location M, the
second unit will access location M+1. The operation performed in both
units will be the same, but each unit will be performing the operation on
its own data.

Because the processor is performing two operations in parallel, SIMD
mode can provide double the computational throughput of SISD mode.
However, because SIMD mode accesses adjacent memory locations, the
compiler can only exploit SIMD mode when the source code being com-
piled supports such access patterns.

SIMD is a processor mode. For a given compute instruction I, if the pro-
cessor is in SISD mode, the processor will execute I as a SISD instruction,
on the first computation unit. In SIMD mode, the processor will execute
the same instruction I as a SIMD instruction, executing it on both com-
putation units. (Not all instructions behave differently in SISD and SIMD
modes; for example, address arithmetic will always execute only on the
first computation unit regardless of the processor mode.)

C/C++ Compiler Language Extensions

1-296 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

What the Compiler Can Do Automatically

To exploit SIMD mode, you must enable the compiler optimizer.

No C/C++ language extensions are necessary for SIMD use; rather, the
compiler can automatically generate SIMD code from standard C/C++ as
long as there is sufficient information to indicate that the transformation
does not alter the semantics of the source code.

There is a cost associated with switching between SISD and SIMD modes,
so the compiler will generate code that exploits SIMD mode when it can
determine that the source code meets the appropriate constraints and that
the improvement in performance is likely to outweigh the cost of switch-
ing the modes.

Because of the cost of switching between modes, the compiler is most
likely to generate SIMD code within loops, as the time spent within the
loop in SIMD mode generally outweighs the mode-switching costs outside
the loop. In contrast, SIMD mode is relatively rare in linear code, as the
access patterns typically do not allow for many operations in a given mode
before the mode must be switched again.

What Prevents the Compiler From Automatically Exploiting
SIMD Mode

The compiler will verify that the source code is suitable for SIMD mode
before transforming it. There are a number of reasons why a given piece of
source code may not be suitable for SIMD mode, including:

• The memory access patterns are not suitable, e.g. they do not access
adjacent memory locations.

• The number of consecutive operations that can exploit SIMD
mode are insufficient to justify the cost of switch into SIMD and
back to SISD.

CrossCore Embedded Studio 1.1 1-297
C/C++ Compiler Manual for SHARC Processors

Compiler

• Some of the code is conditional, and the compiler cannot imple-
ment them with conditional instructions.

• The code contains function calls that cannot be inlined.

• The code is a loop that contains dependencies between successive
iterations, i.e. there is an operation in iteration N+1 that depends
on the result of an operation in iteration N.

• The code accesses memory locations that are not double-word
aligned.

• The compiler cannot be certain that input and output buffer point-
ers do not point to the same array.

• The data being accessed might end up in external memory, and the
target processor has external memory which does not support
SIMD accesses, i.e. the target processor is one of ADSP-2116x,
ADSP-2137x, ADSP-21367, ADSP-21368 or ADSP-21369.

• The code contains asm statements: the compiler has no knowledge
of the instructions executed by asm statements, so cannot automat-
ically determine whether the instructions would be safe in SIMD
mode.

When the compiler detects such problems, it automatically avoids using
SIMD mode, and generates normal SISD mode code. The compiler will
not generate SIMD code for source code where the compiler can deter-
mine that the resulting SIMD code would not be a valid representation of
the source.

If the compiler determines that the only reason why the code is not suit-
able for SIMD mode is because the data in question is not appropriately
aligned, it also issues a warning to that effect; you may be able to modify
your source code so that the compiler can see that the data is suitably
aligned, in which case SIMD mode code will be possible.

C/C++ Compiler Language Extensions

1-298 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For more information, see How to Help the Compiler Exploit SIMD
Mode.

If the compiler can neither prove that your code is suitable for SIMD nor
prove that it is not, the compiler will take the conservative approach, and
will generate SISD code.

How to Help the Compiler Exploit SIMD Mode

Achieving Optimal Performance From C/C++ Source Code contains a
great deal of advice on how you can write your source code so that the
compiler can obtain the information it needs to verify that SIMD mode is
safe for your application.

The compiler will not automatically attempt to generate SIMD code if:

• the optimizer is not enabled.

• SIMD generation has been explicitly disabled; see How to Prevent
SIMD Code Generation.

• the target processor supports external memory, and external mem-
ory does not support SIMD memory accesses.

Therefore, you should:

• enable the optimizer; see Optimization Control.

• remove any switches that disable SIMD generation.

• specify the -loop-simd switch or the -linear-simd switch, as
required, to tell the compiler to attempt SIMD generation, if your
processor has external memory that is problematic for SIMD
access.

This will mean that the compiler will attempt SIMD generation, but the
compiler may still have difficulty if it cannot verify all the operations
would be safe in SIMD mode.

CrossCore Embedded Studio 1.1 1-299
C/C++ Compiler Manual for SHARC Processors

Compiler

In circumstances where your application is suitable for SIMD, but the
compiler cannot prove this, the compiler will default to generating SISD
code. In such cases, you can use #pragma SIMD_for (on page 1-224). The
pragma is used before a loop construct, and tells the compiler that for all
memory accesses, you have verified that:

• the accesses are suitably aligned.

• there are no accesses that rely on data stored during the previous
iteration of the loop.

• the accesses do not alias each other.

• the code is not accessing external memory (if that is problematic
for SIMD operations on the target processor).

The pragma will not force the compiler to generate SIMD code if the
compiler can prove that the source code is not suitable for SIMD mode,
but where the compiler is unable to resolve the matter either way, #pragma
SIMD_for tells the compiler that it is safe to proceed with SIMD mode
code generation.

If your loop contains asm statements, this is normally a barrier to SIMD
generation, since the compiler cannot tell whether the instructions within
the asm statement would be valid in SIMD mode. However, you can spec-
ify the -asms-safe-in-simd-for-loops switch (on page 1-29) to tell the
compiler that, for loops with the SIMD_for pragma, asms should be consid-
ered safe.

 SIMD accesses are not supported to external memory on
ADSP-2116x, ADSP-2137x, ADSP-21367, ADSP-21368 or
ADSP-21369 processors, so to obtain SIMD code for these proces-
sors, you must use either #pragma SIMD_for, the -linear-simd
switch or the -loop-simd switch to enable SIMD code generation,
and you must ensure the associated data is not mapped to external
memory.

C/C++ Compiler Language Extensions

1-300 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

How to Prevent SIMD Code Generation

To guarantee that the compiler will not generate SIMD code even when
possible, use one of the following:

• The -no-simd switch (on page 1-55)

• #pragma no_vectorization (on page 1-224)

You can disable SIMD generation for linear code, but still leave SIMD
generation for loops enabled, using the -no-linear-simd switch
(on page 1-50).

Accessing External Memory on ADSP-2126x and
ADSP-2136x Processors

On ADSP-2126x and some ADSP-2136x processors, it is not possible to
access external memory directly from the processor core. The compiler
provides some facilities to allow access to variables in external memory
from C/C++ code, and to reduce the possibility of errors due to incorrect
data placement.

Link-Time Checking of Data Placement

Data which is placed in external memory on ADSP-2126x and 2136x pro-
cessors must be defined using the DMAONLY qualifier of the section or
default_section pragmas (on page 1-262). For example:

#pragma section("seg_extmem1", DMAONLY)
int extmem1[100];

The linker will perform additional checks to ensure that data marked as
DMAONLY is not placed in internal memory, and that “normal” data is not
placed in external memory. If data is placed incorrectly, the linker will
issue an error.

CrossCore Embedded Studio 1.1 1-301
C/C++ Compiler Manual for SHARC Processors

Compiler

Refer to the Linker and Utilities Manual for additional information on
LDF changes.

Inline Functions for External Memory Access

Two inline functions, read_extmem and write_extmem, are provided to
transfer data between internal and external memory. A full description of
these functions is provided in the C/C++ Library Manual for SHARC
Processors.

Preprocessor Features
Several features of the C/C++ preprocessor are used by CCES to control
the programming environment. The cc21k compiler provides standard
preprocessor functionality, as described in any C text. The following
extensions to standard C are also supported:

• C++ Style Comments

• Preprocessor Generated Warnings

• GCC Variable Argument Macros

 The compiler’s preprocessor is an integral part of the compiler; it is
not the preprocessor described in the Assembler and Preprocessor
Manual.

This section contains:

• Predefined Preprocessor Macros

• Writing Macros

Preprocessor Features

1-302 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Predefined Preprocessor Macros
Table 1-32 describes the predefined preprocessor macros.

Table 1-32. Predefined Preprocessor Macro Listing

Macro Function

__2116x__
__ADSP2116x__
__ADSP211xx__

When compiling for the ADSP-21160 or ADSP-21161 pro-
cessors, cc21k defines these macros as 1.

__2126x__
__ADSP2126x__
__ADSP212xx__

When compiling for the ADSP-21261, ADSP-21262, or
ADSP-21266 processors, cc21k defines these macros as 1.

__213xx__
__ADSP213xx__

When compiling for the ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, ADSP-21366, ADSP-21367,
ADSP-21368, ADSP-21369, ADSP-21371 or ADSP-21375
processors, cc21k defines these macros as 1.

__2136x__
__ADSP2136x__

When compiling for the ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, ADSP-21366, ADSP-21367,
ADSP-21368 or ADSP-21369 processors, cc21k defines
these macros as 1.

__2137x__
__ADSP2137x__

When compiling for the ADSP-21371 and ADSP-21375 pro-
cessors, cc21k defines these macros as 1.

__214xx__
__ADSP214xx__

When compiling for ADSP-2146x, ADSP-2147x or
ADSP-2148x processors, cc21k defines these macros as 1.

__2146x__
__ADSP2146x__

When compiling for the ADSP-21467 or ADSP-21469 pro-
cessors, cc21k defines these macros as 1.

__ADSP21160_FAMILY__ When compiling for the ADSP-21160 processor, cc21k
defines this macro as 1.

__ADSP21161_FAMILY__ When compiling for the ADSP-21161 processor, cc21k
defines this macro as 1.

__ADSP21266_FAMILY__ When compiling for the ADSP-21261, ADSP-21262, or
ADSP-21266 processors, cc21k defines this macro as 1.

__ADSP21362_FAMILY__ When compiling for the ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365 or ADSP-21366 processors,
cc21k defines this macro as 1.

CrossCore Embedded Studio 1.1 1-303
C/C++ Compiler Manual for SHARC Processors

Compiler

__ADSP21367_FAMILY__ When compiling for the ADSP-21367, ADSP-21368 or
ADSP-21369 processors, cc21k defines these macros as 1.

__ADSP21371_FAMILY__ When compiling for the ADSP-21371 and ADSP-21375 pro-
cessors, cc21k defines this macro as 1.

__ADSP21469_FAMILY__ When compiling for the ADSP-21467 or ADSP-21469 pro-
cessors, cc21k defines this macro as 1.

__ADSP21479_FAMILY__ When compiling for ADSP-2147x or ADSP-2148x proces-
sors, cc21k defines this macro as 1.

__2147x__
__ADSP2147x__

When compiling for the ADSP-21477, ADSP-21478, or
ADSP-21479 processors, cc21k defines these macros as 1.

__2148x__
__ADSP2148x__

When compiling for the ADSP-21483, ADSP-21486,
ADSP-21487, ADSP-21488, or ADSP-21489 processors,
cc21k defines these macros as 1.

__ADSPSHARC__ cc21k defines __ADSPSHARC__ as 0x110 for ADSP-2116x,
ADSP-2126x and ADSP-213xx processors, as 0x140 for
ADSP-2146x processors, and as 0x147 for ADSP-2147x and
ADSP-2148x processors.

__ADSP21000__ cc21k always defines __ADSP21000__ as 1.

__ADSP21160__ cc21k defines __ADSP21160__ as 1 when you compile with
the -proc ADSP-21160 command-line switch.

__ADSP21161__ cc21k defines __ADSP21161__ as 1 when you compile with
the -proc ADSP-21161 command-line switch.

__ADSP21261__ cc21k defines __ADSP21261__ as 1 when you compile with
the -proc ADSP-21261 command-line switch.

__ADSP21262__ cc21k defines __ADSP21262__ as 1 when you compile with
the -proc ADSP-21262 command-line switch.

__ADSP21266__ cc21k defines __ADSP21266__ as 1 when you compile with
the -proc ADSP-21266 command-line switch.

__ADSP21362__ cc21k defines __ADSP21362__ as 1 when you compile with
the -proc ADSP-21362 command-line switch.

__ADSP21363__ cc21k defines __ADSP21363__ as 1 when you compile with
the -proc ADSP-21363 command-line switch.

Table 1-32. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-304 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

__ADSP21364__ cc21k defines __ADSP21364__ as 1 when you compile with
the -proc ADSP-21364 command-line switch.

__ADSP21365__ cc21k defines __ADSP21365__ as 1 when you compile with
the -proc ADSP-21365 command-line switch.

__ADSP21366__ cc21k defines __ADSP21366__ as 1 when you compile with
the -proc ADSP-21366 command-line switch.

__ADSP21367__ cc21k defines __ADSP21367__ as 1 when you compile with
the -proc ADSP-21367 command-line switch.

__ADSP21368__ cc21k defines __ADSP21368__ as 1 when you compile with
the -proc ADSP-21368 command-line switch.

__ADSP21369__ cc21k defines __ADSP21369__ as 1 when you compile with
the -proc ADSP-21369 command-line switch.

__ADSP21371__ cc21k defines __ADSP21371__ as 1 when you compile with
the -proc ADSP-21371 command-line switch.

__ADSP21375__ cc21k defines __ADSP21375__ as 1 when you compile with
the -proc ADSP-21375 command-line switch.

__ADSP21467__ cc21k defines __ADSP21467__ as 1 when you compile with
the -proc ADSP-21467 command-line switch.

__ADSP21469__ cc21k defines __ADSP21469__ as 1 when you compile with
the -proc ADSP-21469 command-line switch.

__ADSP21477__ cc21k defines __ADSP21477__ as 1 when you compile with
the -proc ADSP-21477 command-line switch.

__ADSP21478__ cc21k defines __ADSP21478__ as 1 when you compile with
the -proc ADSP-21478 command-line switch.

__ADSP21479__ cc21k defines __ADSP21479__ as 1 when you compile with
the -proc ADSP-21479 command-line switch.

__ADSP21483__ cc21k defines __ADSP21483__ as 1 when you compile with
the -proc ADSP-21483 command-line switch.

__ADSP21486__ cc21k defines __ADSP21486__ as 1 when you compile with
the -proc ADSP-21486 command-line switch.

__ADSP21487__ cc21k defines __ADSP21487__ as 1 when you compile with
the -proc ADSP-21487 command-line switch.

Table 1-32. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

CrossCore Embedded Studio 1.1 1-305
C/C++ Compiler Manual for SHARC Processors

Compiler

__ADSP21488__ cc21k defines __ADSP21488__ as 1 when you compile with
the -proc ADSP-21488 command-line switch.

__ADSP21489__ cc21k defines __ADSP21489__ as 1 when you compile with
the -proc ADSP-21489 command-line switch.

_ADI_COMPILER Always defined as 1.

__ANALOG_EXTENSIONS__ cc21k defines __ANALOG_EXTENSIONS__ as 1 unless
MISRA-C is enabled.

_ADI_THREADS Defined as 1 when compiling with the -threads switch.

__BASE_FILE__ The preprocessor expands this macro to a string constant
which is the current source file being compiled as seen on the
compiler command-line.

__CCESVERSION__ The preprocessor defines this macro to be an eight-digit hexa-
decimal representation of the CCES release, in the form 0xM-
MmmUUPP, where:
– MM is the major release number
– mm is the minor release number
– UU is the update number
– PP is the patch release number
For example, CrossCore Embedded Studio 1.0.2.0 would

define __CCESVERSION__ as 0x01000200.

__cplusplus cc21k defines __cplusplus as 199711L when compiling
C++ source files. It also gets defined as 1 for use in LDFs.

__DATE__ The preprocessor expands this macro into the preprocessing
date as a string constant. The date string constant takes the
form Mmm dd yyyy. (ANSI standard).

__DOUBLES_ARE_FLOATS__ cc21k defines __DOUBLES_ARE_FLOATS__ as 1 when the size
of the double type is the same as the single-precision float
type. When the -double-size-64 compiler switch is used
(on page 1-32), the macro is not defined.

__ECC__ cc21k always defines __ECC__ as 1.

__EDG__ cc21k always defines __EDG__ as 1. This signifies that an
Edison Design Group compiler front-end is being used.

Table 1-32. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-306 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

__EDG_VERSION__ cc21k always defines __EDG_VERSION__ as an integral value
representing the version of the compiler’s front-end.

__EXCEPTIONS cc21k defines __EXCEPTIONS as 1 when C++ exception han-
dling is enabled (using the -eh command-line switch
on page 1-33).

__FILE__ The preprocessor expands this macro into the current input
file name as a string constant. The string matches the name of
the file specified on the compiler’s command-line or in a pre-
processor #include command (ANSI standard).

__FIXED_POINT_ALLOWED Defined as 1 unless MISRA-C is enabled. It is defined to
indicate that the native fixed-point types support may be
used. For more information, see Using Native Fixed-Point
Types.

_HEAP_DEBUG cc21k defines _HEAP_DEBUG as 1 when Heap Debugging
support is enabled, otherwise _HEAP_DEBUG is undefined. For
more information, see Heap Debugging.

__IDENT__ The preprocessor expands __IDENT__ to a string normally
set using #ident.

_INSTRUMENTED_PROFILING cc21k defines _INSTRUMENTED_PROFILING as 1 when
instrumented profiling is enabled (using the -p switch
on page 1-61).

_LANGUAGE_C cc21k always defines _LANGUAGE_C as 1 when building C or
C++ sources.

__LINE__ The preprocessor expands this macro into the current input
line number as a decimal integer constant (ANSI standard).

_LONG_LONG cc21k always defines _LONG_LONG as 1 when compiling C
and C++ sources to indicate that 64-bit double word integer
types are supported.

_MISRA_RULES cc21k defines _MISRA_RULES as 1 when compiling in
MISRA-C mode.

__NOSIMD__ cc21k defines __NOSIMD__ as 1 when SIMD code generation
is disabled (using the -no-simd command-line switch
(on page 1-55).

Table 1-32. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

CrossCore Embedded Studio 1.1 1-307
C/C++ Compiler Manual for SHARC Processors

Compiler

__NORMAL_WORD_CODE__ When compiling for ADSP-214xx processors, cc21k defines
__NORMAL_WORD_CODE__ as 1, when compiling in nor-
mal-word mode. For more information, see -nwc.

__NUM_CORES__ cc21k defines __NUM_CORES__ to the number of cores on the
target SHARC part. This is always 1.

_PGO_HW cc21k defines _PGO_HW as 1 when you compile with the
-pguide (on page 1-63) and -prof-hw (on page 1-65) com-
mand-line switches.

__RTTI cc21k defines __RTTI as 1 when C++ run-time type informa-
tion is enabled (using the -rtti command-line switch
on page 1-90).

__SHORT_WORD_CODE__ When compiling for ADSP-214xx processors, cc21k defines
__SHORT_WORD_CODE__ as 1, when compiling in short-word
mode. This is the default when compiling for ADSP-214xx
processors.

__SIGNED_CHARS__ cc21k defines __SIGNED_CHARS__ as 1 indicating that plain
char type variables are signed rather than unsigned. The
macro is defined by default.

__SILICON_REVISION__ cc21k defines __SILICON_REVISION__ to a hexadecimal
constant corresponding to the target processor revision. For
more information, see Using the -si-revision Switch.

__SIMDSHARC__ cc21k defines __SIMDSHARC__ as 1. The __SIMDSHARC__
macro is used to identify processors that are capable of exe-
cuting SIMD code.

__STDC__ cc21k always defines __STDC__ as 1.

__STDC_VERSION__ cc21k defines __STDC_VERSION__ as 199409L when com-
piling in C89 mode, and as 199901L when compiling in C99
mode.

__TIME__ The preprocessor expands this macro into the preprocessing
time as a string constant. The date string constant takes the
form hh:mm:ss (ANSI standard).

__VERSION__ The preprocessor expands this macro into a string constant
containing the current compiler version.

Table 1-32. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

Preprocessor Features

1-308 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Writing Macros
A macro is a name standing for a block of text that the preprocessor sub-
stitutes. Use the #define preprocessor command to create a macro
definition. When the macro definition has arguments, the block of text
the preprocessor substitutes can vary with each new set of arguments.

Compound Macros

Whenever possible, use inline functions rather than compound macros. If
compound macros are necessary, define such macros to allow invocation
like function calls. This will make your source code easier to read and
maintain. If you want your macro to extend over more than one line, you
must escape the newlines with backslashes. If your macro contains a string
literal and you are using the -no-multiline switch (on page 1-51), then
you must escape the newline twice, once for the macro and once for the
string.

__VERSIONNUM__ The preprocessor defines __VERSIONNUM__ as a numeric vari-
ant of __VERSION__ constructed from the version number of
the compiler. Eight bits are used for each component in the
version number and the most significant byte of the value
represents the most significant version component. As an
example, a compiler with version 7.1.0.0 defines __VERSION-
NUM__ as 0x07010000 and 7.1.1.10 would define __VER-
SIONNUM__ to be 0x0701010A.

__WORKAROUNDS_ENABLED cc21k defines this macro to be 1 if any hardware work-
arounds are implemented by the compiler. This macro is set if
the -si-revision switch (on page 1-75) has a value other
than “none” or if any specific workaround is selected by
means of the -workaround compiler switch (on page 1-81).

Table 1-32. Predefined Preprocessor Macro Listing (Cont’d)

Macro Function

CrossCore Embedded Studio 1.1 1-309
C/C++ Compiler Manual for SHARC Processors

Compiler

The following two code segments define two versions of the macro
SKIP_SPACES:

/* SKIP_SPACES, regular macro */

#define SKIP_SPACES (p,limit) { \

char *lim = (limit); \

while ((p) != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

}

/* SKIP_SPACES, enclosed macro */

#define SKIP_SPACES (p,limit) \

do { \

char *lim = (limit); \

while ((p) != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

} while (0)

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you sometimes need to omit the semicolon after the macro call in order to
have a legal program. This leads to a need to remember whether a function
or macro is being invoked for each call and whether the macro needs a
trailing semicolon or not. With the do {…} while (0) construct, you can
pretend that the macro is a function and always put the semicolon after it.

C/C++ Run-Time Model and Environment

1-310 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For example,

/* SKIP_SPACES, enclosed macro, ends without ‘;’ */

if (*p != 0)

SKIP_SPACES (p, lim);

else …

This expands to:

if (*p != 0)

do {

…

} while (0);/* semicolon from SKIP_SPACES (…); */

else …

Without the do {…} while (0) construct, the expansion would be:

if (*p != 0)

{

 …

}

;/* semicolon from SKIP_SPACES (…); */

else

C/C++ Run-Time Model and
Environment

This section describes the SHARC processor C/C++ run-time model and
run-time environment. The C/C++ run-time model, which applies to
compiler-generated code, includes descriptions of layout of the stack, data
access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
SHARC processors. Assembly routines linked to C/C++ routines must
follow these conventions.

CrossCore Embedded Studio 1.1 1-311
C/C++ Compiler Manual for SHARC Processors

Compiler

 Analog Devices recommends that assembly programmers maintain
stack conventions.

The run-time environment issues include the following items:

• Registers

• Managing the Stack

• Function Call and Return

• Data Storage Formats

• Memory Section Usage

• Global Array Alignment

• Controlling System Heap Size and Placement

• Using Multiple Heaps

• Startup and Termination

Registers
The compiler makes use of the processor’s registers in a variety of ways, as
shown in Table 1-33. Some registers fulfill more than role, depending on
context.

This section contains:

• Dedicated Registers

• Preserved Registers

• Scratch Registers

• Stack Registers

• Parameter Registers

C/C++ Run-Time Model and Environment

1-312 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Return Registers

• Aggregate Return Register

• Reservable Registers

• Alternate Registers

Table 1-33. Processor Register Categorization

Register Categorization

R0 Scratch Register, Result Register

R1 Scratch Register, Long Result Register, Aggregate Result
Register

R2 Scratch Register

R3 Preserved Register

R4 Scratch Register, Parameter Register

R5, R6, R7 Preserved Registers

R8 Scratch Register, Parameter Register

R9, R10, R11 Preserved Registers

R12 Scratch Register, Parameter Register

R13, R14, R15 Preserved Registers

S0-S15 Scratch Registers

I0, I1, I2, I3 Preserved Registers

I4 Scratch Register

I5 Preserved Register

I6 Frame Pointer

I7 Stack Pointer

I8, I9, I10, I11 Preserved Registers

I12 Return Address Register, Scratch Register

I13 Scratch Register

I14, I15 Preserved Registers

CrossCore Embedded Studio 1.1 1-313
C/C++ Compiler Manual for SHARC Processors

Compiler

B0, B1, B2, B3 Preserved Registers

B4 Scratch Register

B5 Preserved Register

B6, B7 Stack Base Register

B8, B9, B10, B11 Preserved Registers

B12, B13 Scratch Registers

B14, B15 Preserved Registers

L0-L5 Preserved Registers, 0

L6, L7 Stack Length Register

L8-L15 Preserved Registers, 0

M0, M1, M2, M3 Preserved Registers

M4 Scratch Register

M5 Dedicated Register, 0

M6 Dedicated Register, 1

M7 Dedicated Register, -1

M8, M9, M10, M11 Preserved Registers

M12 Scratch Register

M13 Dedicated Register, 0

M14 Dedicated Register, 1

M15 Dedicated Register, -1

USTAT0 - USTAT3 User Registers

MRF, MRB Preserved Registers

ASTAT, ASTATy Scratch Register

STKY, STKYy Scratch Register

MODE0, MODE1 Preserved Registers

MMASK Dedicated Register, 0xE03003

Table 1-33. Processor Register Categorization (Cont’d)

Register Categorization

C/C++ Run-Time Model and Environment

1-314 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Dedicated Registers

The C/C++ run-time environment specifies a set of registers whose con-
tents should not be changed except in specific defined circumstances.
If these registers are changed, their values must be saved and restored.
The dedicated register values must always be valid:

• On entry to any compiled function.

• On return to any compiled function.

• On exit from asm statements and interrupt handlers.

The dedicated registers are I6, I7, B6, B7, M5-M7, M13-M15, MODE0, MODE1,
MMASK, and all L registers.

• I7 and I6 are the stack pointer and the frame pointer registers,
respectively. B7 and B6 indicate the base of the stack, and L7 and L6
indicate the stack length.

• The remaining L registers define the lengths of the DAG’s circular
buffers. The compiler uses the DAG registers, both in linear mode
and in circular buffering mode. The compiler assumes that the
Length registers are zero, both on entry to functions and on return
from functions, and ensures this is the case when it generates calls
or returns. Your application may modify the Length registers and
use the circular buffers, but you must ensure that the Length regis-
ters are appropriately reset when calling compiled functions, or
returning to compiled functions. Interrupt handlers must save
and restore the Length registers, if using DAG registers.

• Registers M5-M7 and M13-M15 contain the fixed values of 0, 1 and -1
(M5 and M13 contain 0, M6 and M14 contain 1 and M7 and M15 contain
-1).

CrossCore Embedded Studio 1.1 1-315
C/C++ Compiler Manual for SHARC Processors

Compiler

• MODE0 and MODE1 are set to control the overall state of the processor,
such as saturation, truncation and circular buffering. The compiler
may change specific bits in these registers temporarily, in order to
perform operations with specific semantics. For more information,
see Mode Registers.

• The MMASK register ensures that MODE1 is set to the correct value
before the interrupt dispatcher code is executed. It ensures that the
following bits are cleared: BR0, BR8, IRPTEN, ALUSAT, PEYEN, BDCST1,
BDCST9.

Mode Registers

The C/C++ run-time environment:

• Uses default bit order for DAG operations (no bit reversal)

• Uses the primary register set (not background set)

• Uses .PRECISION=32 (32-bit floating-point) and .ROUND_NEAREST
(round-to-nearest value) assembly directives

• Disables ALU saturation (MODE1 register, ALUSAT bit = 0)

• Uses default FIX instruction rounding to nearest (MODE1 register,
TRUNCATE=0)

• Enables circular buffering by setting CBUFEN on MODE1

Preserved Registers

These registers are also known as callee-preserved registers, as it is the cal-
lee’s responsibility to ensure that these registers have the same value upon
function return as they did upon entry to the function, regardless of
whether the registers changed value in the meantime.

The C/C++ run-time environment specifies a set of registers whose con-
tents must be saved and restored. Your assembly function must save these

C/C++ Run-Time Model and Environment

1-316 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

registers during the function’s prologue and restore the registers as part of
the function’s epilogue. The call-preserved registers must be saved and
restored if they are modified within the assembly function; if a function
does not change a particular register, it does not need to save and restore
the register.

Table 1-34 lists the default set of preserved registers.

 Functions may declare a non-standard partitioning of pre-
served/scratch registers through mechanisms such as #pragma
regs_clobbered string, which any calling function must respect.

Scratch Registers

Scratch registers are also known as caller-preserved registers, as it is the
caller’s responsibility to ensure that the value of these registers is preserved
across function calls, if required.

Table 1-34. Callee-Preserved Registers

b01

1 If you use a callee-preserved I register in an assembler routine called from an as-
sembler routine, you must save and zero (clear) the corresponding L register as
part of the function prologue. Then, restore the L register as part of the function
epilogue.

b1 b2 b3 b5 b8

b9 b10 b11 b14 b15

i0 i1 i2 i3 i5 i8

i9 i10 i11 i14 i15 mode1

mode2 mrb mrf m0 m1 m2

m3 m8 m9 m10 m11 r3

r5 r6 r7 r9 r10 r11

r13 r14 r15

CrossCore Embedded Studio 1.1 1-317
C/C++ Compiler Manual for SHARC Processors

Compiler

The C/C++ run-time environment specifies a set of registers whose
contents need not be saved and restored. Note that the contents of these
registers are not preserved across function calls.

Table 1-35 lists the default set of scratch registers.

 Functions may declare a non-standard partitioning of pre-
served/scratch registers through mechanisms such as #pragma
regs_clobbered string, which any calling function must respect.

Stack Registers

The C/C++ run-time environment reserves a set of registers for con-
trolling the run-time stack. These registers may be modified for stack
management in assembly functions, but they must be saved and restored
Never modify the stack registers within compiled functions. Table 1-36
lists these registers.

 The run-time environment makes use of the processors circu-
lar-buffer mechanism for stack overflow detection: if the stack
pointer (I7) advances beyond the limits defined by its

Table 1-35. Scratch Registers

b4 b12 b13 r0 r1 r2 r4 r8 r12

i4 i12 i13 m4 m12 PX ASTATy STKYy

s0 s1 s2 s3 s4 s5 s6 s7 s8

s9 s10 s11 s12 s13 s14 s15

C/C++ Run-Time Model and Environment

1-318 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

corresponding base (B7) and length (L7) registers, a circular-buffer
interrupt occurs (CB7I). Thus, it is essential that the B7 and L7
registers are set correctly.

Parameter Registers

When calling a function, the first three words of parameter data are passed
to the callee in registers R4, R8 and R12.

Return Registers

When a function returns a value back to its caller, if the returned value is
64 bits or smaller in size, the value is returned in the R0 register and, if
necessary, in the R1 register (with R0 containing the most significant word
and R1 containing the least significant word).

Aggregate Return Register

When a function returns a value back to its caller, if the returned value is
larger than 64 bits in size, the value is returned in space reserved on the
stack. This stack space is allocated by the caller, and a pointer to the start
of the space is passed to the callee by the caller in the R1 register.

Reservable Registers

The -reserve command-line switch lets you reserve registers for your
inline assembly code or assembly language routines. If reserving an L

Table 1-36. Stack Registers

Register Value Modification Rules

I7 Stack pointer Modify for stack management, restore when done

I6 Frame pointer Modify for stack management, restore when done

B6, B7 Stack base address Do not modify

L6, L7 Stack length Do not modify

CrossCore Embedded Studio 1.1 1-319
C/C++ Compiler Manual for SHARC Processors

Compiler

register, you must reserve the corresponding I register; reserving an L reg-
ister without reserving the corresponding I register can result in execution
problems.

You must reserve the same list of registers in all linked files; the whole
project must use the same -reserve option. Table 1-37 lists the registers
that can be reserved with this switch. Note that the C run-time library
does not use these registers, unless explicitly noted in the function’s
description in the C/C++ Library Manual for SHARC Processors.

 Reserving registers can negatively influence the efficiency of com-
piled C/C++ code; use this option sparingly.

Registers in the USTAT class are never used by the compiler, except when
explicitly directed via asm statements. Although USTAT registers may be
included in clobber sets and specified by the -reserve switch, the com-
piler will not generate code to save or restore them.

Alternate Registers

With the exception of the background multiplier register MRB, which is
visible at the same time as the foreground register MRF, the C/C++
run-time environment model does not use—or have any knowledge of—
the alternate registers. To use these registers, you must first understand
several aspects of the C/C++ run-time model.

The C/C++ run-time model uses register I6 as the frame pointer and regis-
ter I7 as the stack pointer. Setting the DAG register set that contains I6 and

Table 1-37. Reservable Registers

Register Value Modification Rule

i0, b0, l0, m0,
i1, b1, l1, m1,
i8, b8, l8, m8,
i9, b9, l9, m9,
mrb, ustat1, ustat2, ustat3, ustat4

user defined If not reserved, modify for
temporary use, restore when
done
If reserved, usage is not lim-
ited

C/C++ Run-Time Model and Environment

1-320 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

I7 from a background register set to an active register set will have a direct
affect on any stack operations, so you must ensure that I6 and I7 are set
correctly before any stack operations are performed:

• Before switching to the alternate register set, save I6, B6 and L6,
and I7, B7 and L7.

• After switching, restore I6, B6 and L6, and I7, B7 and L7 to the
saved values.

If the background I6 and I7 registers are active and an interrupt occurs,
the C/C++ run-time model will use I6 and I7 to update the stack. This
will result in faulty stack handling if they are not set properly.

 If you do not intend to set I6 and I7, ensure that interrupts are
disabled.

Managing the Stack
The C/C++ run-time environment uses the run-time stack to store auto-
matic variables and return addresses. The stack is managed by a frame
pointer (I6) and a stack pointer (I7) and grows downward in memory,
moving from higher to lower addresses.

The stack pointer points to the location where the next value to be pushed
will be stored, i.e. push operations write a value, then move the stack
pointer to the next free address.

Whenever storing data on the stack, you must always decrement the stack
pointer first, so that any data on the stack has an address that is higher
than the current stack pointer value. Otherwise, data may be corrupted by
interrupt handlers as they will save and restore context onto the top of the
stack.

A stack frame is a section of the stack used to hold information about the
current context of the C/C++ program. Information in the frame includes

CrossCore Embedded Studio 1.1 1-321
C/C++ Compiler Manual for SHARC Processors

Compiler

local variables, compiler temporaries, and parameters for the next
function.

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 1-2 shows an example section of a run-time stack. In the figure, the
currently executing routine, Current(), was called by Previous(), and
Current() in turn calls Next(). The state of the stack is as if Current()
has pushed all the arguments for Next() onto the stack and is just about to
call Next().

 Stack usage for passing any or all of a function’s arguments
depends on the number and types of parameters to the function.

The prototypes for the functions in Figure 1-2 are as follows:

void Current(int a, int b, int c, int d, int e);

void Next(int v, int w, int x, int y, int z);

In generating code for a function call, the compiler produces the following
operations to create the called function’s new stack frame:

• Loads the r2 register with the frame pointer (in the i6 register)

• Sets the FP, i6 register, equal to the SP (in the i7 register)

• Uses the delayed-branch instruction to pass control to the called
function

• Pushes the FP, r2, onto the run-time stack during the first branch
delay slot

• Pushes the return address, pc, onto the run-time stack during the
second delay-branch slot

C/C++ Run-Time Model and Environment

1-322 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The following instructions create a new stack frame. Note how the two
initial register moves are incorporated into the cjump instruction.

cjump my_function (DB);

/* where my_function is the called function */

dm(i7, m7) = r2;

dm(i7, m7) = pc;

Figure 1-2. Example Run-Time Stack

.

.

.

Second (and last) word of
Current()'s stack parameters;

argument e to Current()

First word of Current()'s stack
parameters; argument d to

Current()

Frame pointer (i6) saved
from Previous()

Return address

Local variables and saved
registers for Current()

...
Last word of Next()'s stack
parameters; argument z to

Next()

Second-to-last word of
Next()'s stack parameters;

argument y to Next()

Empty (will hold stack pointer (i7))

Previous()'s Frame

Current()'s Frame

Next()'s Frame

...

CrossCore Embedded Studio 1.1 1-323
C/C++ Compiler Manual for SHARC Processors

Compiler

 When generating short-word code for 214xx processors, .label-1
is used instead of pc.

As you write assembly routines, note that the operations to create a stack
frame are the responsibility of the called function, and you can use the
entry or leaf_entry macros to perform these operations. For more infor-
mation on these macros, see C/C++/Assembly Support Macros.

In generating code for a function return, the compiler uses the following
operations to restore the calling function’s stack frame.

• Pops the return address off the run-time stack and loads it into the
i12 register

• Uses the delayed-branch instruction to pass control to the calling
function and jumps to the return address (i12 + 1)

• Restores the caller’s stack pointer, i7 register, by setting it equal to
FP, i6 register, during the first branch delay slot

• Restores the caller’s frame pointer, i6 register, by popping the pre-
viously saved FP off the run-time stack and loading the value into
i6 during the second delay-branch slot

The following instructions return from the function and restore the stack
and frame pointers. Note that the restoring of SP and FP are incorporated
into the rframe instruction.

i12 = dm(-1, i6);

jump (m14, i12) (DB);

nop;

rframe;

As you write assembly routines, note that the operations to restore stack
and frame pointers are the responsibility of the called function, and you
can use the exit or leaf_exit macros to perform these operations. For
more information on these macros, see C/C++/Assembly Support Macros.

C/C++ Run-Time Model and Environment

1-324 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

In the following code examples (Listing 1-2 and Listing 1-3), observe how
the function calls in the C code translate to stack management tasks in the
compiled (assembly) version of the code. The comments have been added
to the compiled code to indicate the function prologue and function
epilogue.

 Listing 1-3 shows non-optimized assembly code, for clarity; in
optimized assembly code, the function prologue and epilogue
instructions are often inter-mixed with instructions from the body
of the function, for performance reasons.

Listing 1-2. Stack Management, Example C Code

/* Stack management — C code */

int my_func(int, int);

int arg_a, return_c;

void foo(void)

{

int arg_b = 0;

return_c = my_func(arg_a, arg_b);

}

int my_func(int arg_1, int arg_2)

{

return (arg_1 + arg_2)/2;

}

Listing 1-3. Stack Management, Example ADSP-2116x Assembly Code

/* Stack management - C code compiled for ADSP-21160 */

 .section/pm/DOUBLE32 seg_pmco;

.epctext:

CrossCore Embedded Studio 1.1 1-325
C/C++ Compiler Manual for SHARC Processors

Compiler

_my_func:

 /* Reserve space for local copies of parameters */

 modify(i7,-2);

 /* Save incoming parameters on stack */

 dm(-2,i6)=r8;

 dm(-3,i6)=r4;

 /* Compute result = (arg_1+arg_2)/2 */

 /* i.e. r0 = (r4+r8)/2 */

 r8=r4+r8;

 r12=lshift r8 by -31;

 r2=r8+r12;

 r0=ashift r2 by -1;

 /* Function return sequence */

 i12=dm(m7,i6);

 jump (m14,i12) (db); rframe; nop;

._my_func.end:

 .global _my_func;

 .type _my_func,STT_FUNC;

_foo:

 /* Reserve stack space for local variable arg_b */

 modify(i7,-2);

 /* Initialise arg_b to zero */

 dm(-2,i6)=m13;

 /* set first param register, r4, to arg_a */

 r4=dm(_arg_a);

 /* set second param register, r8, to arg_b, i.e. zero */

 r8=m5;

C/C++ Run-Time Model and Environment

1-326 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 /* Function call sequence */

 cjump _my_func (db); dm(i7,m7)=r2; dm(i7,m7)=pc;

 /* Store function result register, r0, into return_c */

 dm(_return_c)=r0;

 /* Function return sequence */

 i12=dm(m7,i6);

 jump (m14,i12) (db); rframe; nop;

._foo.end:

 .global _foo;

 .type _foo,STT_FUNC;

The next two sections, Transferring Function Arguments and Return
Value and Using Macros to Manage the Stack, provide additional detail
on function call requirements.

Function Call and Return
The transfer of control from a calling function to a called function, and
returning control back again, is the joint responsibility of the calling func-
tion and the called function. The calling function has to pass the
appropriate parameters, in registers or upon the stack, and in some cases
has to provide space for the return value too. The called function has to
keep its own temporary workspace separate from that of its caller. Both are
required to ensure the integrity of some parts of the register set.

CrossCore Embedded Studio 1.1 1-327
C/C++ Compiler Manual for SHARC Processors

Compiler

From the caller’s point of view, the sequence of actions looks like this:

• If the function being called clobbers registers that contain values
being used by the caller, the caller must save those values on the
stack prior to making the call. In Figure 1-2, this is the “saved
registers”.

• If the called function returns an aggregate value that is returned via
the stack, the caller must allocate stack space for this returned
value. See Aggregate Return Register.

• If the called function takes parameters, the caller must set up those
parameters, either in registers or on the stack. In Figure 1-2, this is
“Next()’s stack parameters”.

• The caller can now call the function.

• After the function returns, the caller must reset the stack pointer,
to dispose of “Next()’s stack parameters”, and restore any needed
registers that might have been clobbered by the called function.

From the callee’s point of view, the sequence of actions looks like this:

• Upon entry to the callee, the stack pointer will point to the top of
the “First word of Current()’s stack parameters” area of Figure 1-2.
Note that this figure is viewed differently by caller and callee:
“Next()’s stack parameters” of the caller are “Current()’s stack
parameters” as far as the callee is concerned.

• If the function will be calling any further functions, it will have to
save the Frame Pointer, I6.

• If the function needs any space for temporaries, it must create the
“local variables” space on the stack.

C/C++ Run-Time Model and Environment

1-328 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• If the function needs to modify any registers that are not consid-
ered scratch registers, the function must save their current values
prior to changing them. In other words, the function must preserve
the value of any callee-preserved registers.

• The function may now perform its main task.

• Upon completion, the function may need to return a value to the
caller. To do this, it must either load the value into the Result Reg-
isters, or store it to the stack.

• Prior to returning, the function must restore the value of any cal-
lee-preserved registers it has modified.

• The function must pop the “local variables” space from the stack,
restore the RETS value, restore the caller’s Frame Pointer value (if
changed) and restore the Stack Pointer to the value it had on entry
to the function. These operations are all combined; restoring the
stack pointer to its previous position discards the “local variables”
space.

• The function must retrieve the return address from the stack,
where it was placed by the caller.

• Finally, the function can return control back to the caller.

Further details are given in the following sections:

• Transferring Function Arguments and Return Value

• Calling Assembly Subroutines From C/C++ Programs

• Calling C/C++ Functions From Assembly Programs

• C/C++/Assembly Support Macros

• Symbol Names in C/C++ and Assembly

• Implementing C++ Member Functions in Assembly Language

CrossCore Embedded Studio 1.1 1-329
C/C++ Compiler Manual for SHARC Processors

Compiler

• Writing C/C++-Callable SIMD Subroutines

• Mixed C/C++/Assembly Programming Examples

• Exceptions Tables in Assembly Routines

Transferring Function Arguments and Return Value

The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call or when
they are called by C/C++ functions.

This section covers:

• Basic Argument Passing

• Passing Parameters for Variable Argument Lists

• Passing a C++ Class Instance

• Return Values

• Parameter and Return Value Examples

Basic Argument Passing

Because it is most efficient to use registers for passing parameters, the
run-time environment attempts to pass the first three parameters in a
function call using registers; it then passes any remaining parameters on
the run-time stack.

C/C++ Run-Time Model and Environment

1-330 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The convention is to pass the function’s first parameter in r4, the second
parameter in r8, and the third parameter in r12. The following exceptions
apply to this convention:

• If any parameter is larger then a single 32-bit word, then that
parameter and all subsequent parameters are passed on the stack.

• Functions with variable-length parameter lists. For more informa-
tion, see Passing Parameters for Variable Argument Lists.

Table 1-38 lists the rules that cc21k uses for passing parameters in regis-
ters to functions and the rules that your assembly code must use for
returns.

Passing Parameters for Variable Argument Lists

The details of argument passing change slightly for variable argument lists.

For example, a function declared as follows may receive two or more
arguments.

int varying(char *fmt, int flag, ...) { /* ... */ }

Table 1-38. Parameter and Return Value Transfer Registers

Register Parameter Type Passed Or Returned

r4 Pass first 32-bit data type parameter

r8 Pass second 32-bit data type parameter

r12 Pass third 32-bit data type parameter

stack Pass fourth and remaining parameters; see exceptions to this rule on this page.

r0 Return int, long, char, float, short, pointer, and one-word structure
parameters

r0, r1 Return long double, long long, unsigned long long and two-word structure
parameters. Place MSW in r0 and LSW in r1

r1 Return the address of results that are longer than two words; r1 contains the first
location in the block of memory containing the results

CrossCore Embedded Studio 1.1 1-331
C/C++ Compiler Manual for SHARC Processors

Compiler

Variable argument lists are processed using the macros defined in the
stdarg.h header file. The va_start() function obtains a pointer to the list
of arguments which may be passed to other functions, or which may be
walked by the va_arg() macro.

To support this, the compiler passes the last named argument—flag, in
this case—on the stack, even if it would normally have been passed in R4,
R8 or R12 (in this case, it would have been passed in R8). Any following
arguments after the last named argument are also passed on the stack.

The va_start() function can then take the address of the last non-varying
argument (flag, in the example above), and va_arg() can walk through
the complete argument list on the stack.

 Any arguments before the last named parameter are passed as normal. In
this case, the first argument, fmt, is passed in R4.

Passing a C++ Class Instance

A C++ class instance function parameter is always passed by reference
when a copy constructor has been defined for the C++ class. If a copy con-
structor has not been defined for the C++ class then the C++ class instance
function parameter is passed by value.

Consider the following example.

class fr

{

public:

int v;

fr () {}

fr (const fr& rc1) : v(rc1.v) {}

};

extern int fn(fr x);

fr Y;

C/C++ Run-Time Model and Environment

1-332 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

int main() {

return fn (Y);

}

The function call fn (Y) in main will pass the C++ class instance Y by ref-
erence because a copy constructor for that C++ class has been defined by
fr (const fr& rc1) : v(rc1.v) {}. If this copy constructor were
removed, then Y would be passed by value.

Return Values

Values are usually returned from a called function to the caller in register
R0, or in the register pair R0-R1, if necessary. The details are as follows:

• 32-bit arithmetic values are returned in R0.

• 64-bit arithmetic types are returned in R0 and R1, with the least sig-
nificant bits in R1.

• Pointer values are returned in R0.

• Aggregate types of 32 bits or less are returned in R0.

• Aggregate types of 64 bits in size are returned in R0and R1, with the
lower-addressed bytes in R0.

• Aggregate values larger than 64 bits in size are returned on the
stack. The caller must allocate sufficient space on the stack within
the caller’s own frame, and load the address of the lowest-addressed
part of this storage into register R1 before calling the function.

CrossCore Embedded Studio 1.1 1-333
C/C++ Compiler Manual for SHARC Processors

Compiler

Parameter and Return Value Examples

Consider the following function prototype example.

pass(int a, float b, char c, float d);

The first three arguments, a, b, and c are passed in registers r4, r8, and
r12, respectively. The fourth argument, d, is passed on the stack.

This next example illustrates the effects of passing long double
arguments.

count(int w, long double x, char y, float z);

The first argument, w, is passed in r4. Because the second argument, x, is a
multi-word argument, x is passed on the stack. As a result, the remaining
arguments, y and z, are also passed on the stack.

The following example illustrates the effects of variable arguments on
parameter passing.

compute(float k, int l, char m,…);

Here, the first two arguments, k and l, are passed in registers r4 and r8.
Because m is the last named argument, m is passed on the stack, as are all
remaining variable arguments.

When arguments are placed on the stack, they are pushed on from right to
left. The right-most argument is at a higher address than the left-most
argument passed on the stack.

The following example shows how to access parameters passed on the
stack.

tab(int a, char b, float c, int d, int e, long double f);

Parameters a, b, and c are passed in registers because they are single-word
parameters. The remaining parameters, d, e, and f, are passed on the
stack.

C/C++ Run-Time Model and Environment

1-334 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

All parameters passed on the stack are accessed relative to the frame
pointer, register i6. The first parameter passed on the stack, d, is at
address i6 + 1. To access it, you could use this assembly language
statement.

r3=dm(1,i6);

The second parameter passed on the stack, e, is at i6 + 2 and can be
accessed by the statement

r3=dm(2,i6);

The third parameter passed on the stack, f, is a long double that has its
most significant word at i6 + 3 and its least significant word at i6 + 4.
The most significant word of f can be accessed by the statement

r3=dm(3,i6);

Calling Assembly Subroutines From C/C++ Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly-recommended practice for
good software engineering. When the prototype is omitted, the compiler
cannot perform argument-type checking and assumes that the return value
is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

C, C++ and assembly code use different namespaces for symbols. Refer to
Symbol Names in C/C++ and Assembly for ways to specify an assembly
routine from C/C++.

The compiler will assume that the called assembly function will obey the
run-time model’s rules on register usage. Refer to Registers for details.

CrossCore Embedded Studio 1.1 1-335
C/C++ Compiler Manual for SHARC Processors

Compiler

 Functions may declare a non-standard partitioning of pre-
served/scratch registers through mechanisms such as #pragma
regs_clobbered string, which any calling function must respect. If
the assembly function being called from C/C++ uses a non-stan-
dard clobber set, declare this in the prototype.

The compiler also assumes that the machine state does not change during
execution of the assembly language subroutine. If you change modes
within your assembly routine—for example, enabling saturation via the
MODE registers—ensure that you restore them to their previous value before
returning.

Calling C/C++ Functions From Assembly Programs

C/C++ functions can be called from assembly code. The situation is simi-
lar to that described in Calling Assembly Subroutines From C/C++
Programs:

• The namespaces for C/C++ and assembly code are different; refer
to Symbol Names in C/C++ and Assembly for details on how to
specify a C/C++ function that can be referenced from assembly.

• The C/C++ function will obey the run-time model’s rules
described in Registers, so your calling assembly code must respect
this, by not expecting caller-preserved registers to maintain their
values over the call.

• If your assembly code is passing parameters to the C/C++ function
or receiving a return value from it, you must follow the rules
described in Transferring Function Arguments and Return Value.

C/C++ Run-Time Model and Environment

1-336 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

There are additional requirements you must fulfil when calling C/C++
code from assembly code, however:

• You must ensure that the system stack is valid and appropriately
aligned, as described in Managing the Stack.

• You must ensure that Dedicated Registers have their correct values.

• You must ensure that a system heap is set up. This is done for you
if you are using the default or generated startup code and .ldf files.
For more information, see Startup and Termination.

C/C++/Assembly Support Macros

This section describes macros defined in the asm_sprt.h system header
file. Use these macros in your assembly language modules, to simplify
interfacing with C/C++ functions.

 Although the syntax for each macro does not change, the listing of
asm_sprt.h in this section may not be the most recent version. To
see the current version, check the asm_sprt.h file that came with
your software package.

The following macros are available:

• entry

• exit

• leaf_entry

• leaf_exit

• ccall(x)

• reads(x)

• puts=x

CrossCore Embedded Studio 1.1 1-337
C/C++ Compiler Manual for SHARC Processors

Compiler

• gets(x)

• alter(x)

• save_reg

• restore_reg

entry

The entry macro expands into the function prologue for non-leaf func-
tions. This macro should be the first line of any non-leaf assembly routine.
Note that this macro is currently null, but it should be used for future
compatibility.

exit

The exit macro expands into the function epilogue for non-leaf func-
tions. This macro should be the last line of any non-leaf assembly routine.
Exit is responsible for restoring the caller’s stack and frame pointers and
jumping to the return address.

leaf_entry

The leaf_entry macro expands into the function prologue for leaf func-
tions. This macro should be the first line of any non-leaf assembly routine.
Note that this macro is currently null, but it should be used for future
compatibility.

leaf_exit

The leaf_exit macro expands into the function epilogue for leaf func-
tions. This macro should be the last line of any leaf assembly routine.
leaf_exit is responsible for restoring the caller’s stack and frame pointers
and jumping to the return address.

C/C++ Run-Time Model and Environment

1-338 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

ccall(x)

The ccall macro expands into a series of instructions that save the caller’s
stack and frame pointers and then jump to function x().

reads(x)

The reads macro expands into an instruction that reads a value off the
stack and puts the value in the indicated register.

puts=x

The puts macro expands into an instruction that pushes the value in regis-
ter x onto the stack.

CrossCore Embedded Studio 1.1 1-339
C/C++ Compiler Manual for SHARC Processors

Compiler

gets(x)

The gets macro expands into an instruction that reads a value off the
stack and puts the value in the indicated register.

register = gets(x);

The value is located at an offset x from the stack pointer.

alter(x)

The alter macro expands into an instruction that adjusts the stack
pointer by adding the immediate value x. With a positive value for x,
alter removes x words from the top of the stack. You could use alter to
clear x number of parameters off the stack after a call.

save_reg

The save_reg macro expands into a series of instructions that push the
register file registers (r0–r15) onto the run-time stack.

restore_reg

The restore_reg macro expands into a series of instructions that pop the
register file registers (r0–r15) off the run-time stack.

Symbol Names in C/C++ and Assembly

You can use C/C++ symbols (function or variable names) in assembly
routines and use assembly symbols in C/C++ code. This section describes
how to name and use C/C++ and assembly symbols.

Only global C/C++ symbols can be referenced from assembly source.

To use a C/C++ function or variable in an assembly routine, declare it as
global in the C program. Import the symbol into the assembly routine by
declaring the symbol with the .EXTERN assembler directive.

C/C++ Run-Time Model and Environment

1-340 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C
program.

Table 1-39 shows several examples of the C/C++ and assembly interface
naming conventions.

The following sections cover different approaches:

• C/C++ and Assembly: Extern Linkage

• C and Assembly: Underscore Prefix

• Other Approaches

Table 1-39. C/C++ Naming Conventions for Symbols

In the C/C++ Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;
.type _c_var,STT_OBJECT;

void c_func(void); .global _c_func;
.type _c_func,STT_FUNC;

extern int asm_var; .global _asm_var;
.type _asm_var,STT_OBJECT;
.byte = 0x00,0x00,0x00,0x00

extern void asm_func(void); .global _asm_func;
.type _asm_func,STT_FUNC;
_asm_func:

CrossCore Embedded Studio 1.1 1-341
C/C++ Compiler Manual for SHARC Processors

Compiler

C/C++ and Assembly: Extern Linkage

The compiler supports the use of extern to declare symbol names in the
different C, C++ and assembly namespaces. For example:

extern int def_fn(void); // “_def_fn” or “__Z6def_fnv”

extern “asm” int asm_fn(void); // “asm_name” in assembly

extern “C” int c_fn(void); // “_c_name” in assembly

When compiling your source in C or C++ mode, you can use extern
“asm” or extern “C” to specify which namespace you want your external
symbols to use. Without the external linkage specifier, your symbol will
use C namespace when compiling in C mode, and C++ namespace (man-
gled) when compiling in C++ mode.

C and Assembly: Underscore Prefix

As can be seen in C/C++ and Assembly: Extern Linkage, when the com-
piler generates the assembly version of a C-namespace symbol, it prepends
an underscore. You can take advantage of this in your assembly source
when referring to C-mode symbols, by adding the underscore yourself.

C/C++ Run-Time Model and Environment

1-342 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Other Approaches

In addition to the external linkage feature described in C/C++ and Assem-
bly: Extern Linkage, you can also use the following approaches in your
C/C++ source:

• When declaring functions, you can provide an alternative linkage
name, using #pragma linkage_name identifier

• When declaring variables in C, you can provide an alternative link-
age name, using Keyword for Specifying Names in Generated
Assembler (asm)

• When declaring functions in C, you can use Function, Variable
and Type Attribute Keyword (__attribute__) to specify aliases of
functions.

Implementing C++ Member Functions in Assembly Language

If an assembly language implementation is desired for a C++ member
function, the simplest way is to use C++ to provide the proper interface
between C++ and assembly.

In the class definition, write a simple member function to call the assem-
bly-implemented function (subroutine). This call can establish any
interface between C++ and assembly, including passing a pointer to the
class instance. Since the call to the assembly subroutine resides in the class
definition, the compiler inlines the call (inlining adds no overhead to
compiler performance). From an efficiency point of view, the assembly
language function is called directly from the user code.

As for any C++ function, ensure that a prototype for the assembly-imple-
mented function is included in your program. As discussed in Symbol
Names in C/C++ and Assembly, you declare your assembly language
subroutine’s name with the .GLOBAL directive in the assembly portion and
import the symbol by declaring it as extern “C” in the C++ portion of the
code.

CrossCore Embedded Studio 1.1 1-343
C/C++ Compiler Manual for SHARC Processors

Compiler

Note that using this method you avoid name mangling—you choose your
own identifier for the external function. Access to internal class informa-
tion can be done either in the C++ portion or in the assembly portion. If
the assembly subroutine needs only limited access to the class members, it
is easier to select those in the C++ code and pass them as explicit argu-
ments. This way the assembly code does not need to know how data is
allocated within a class instance.

#include <stdio.h>

/* Prototype for external assembly routine: */

/* C linkage does not have name mangling */

extern "C" int cc_array(int);

class CC {

private:

int av;

public:

CC(){};

CC(int v) : av(v){};

int a() {return av;};

/* Assembly routine call: */

int array() {return cc_array(av);};

};

int main(void)

{

CC samples(11);

CC points;

points = CC(22);

int j, k;

j = samples.a();

k = points.array(); // Test asm call

printf ("Val is %d\n", j);

printf ("Array is %d\n", k);

C/C++ Run-Time Model and Environment

1-344 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

return 1;

}

/* In a separate assembly file: */

.section /pm seg_pmco;

.global _cc_array;

_cc_array:

modify(i7,-3);

dm(-4,i6)=r3;

dm(-2,i6)=r4;

r3=r4;

r0=r3+r3;

r3=dm(-4,i6);

i12=dm(m7,i6);

jump(m14,i12)(DB);

rframe;

nop;

Writing C/C++-Callable SIMD Subroutines

You can write assembly subroutines that use SIMD mode and call them
from your C programs. The routine may use SIMD mode (PEYEN bit=1)
for all code between the function prologue and epilogue, placing the chip
in SISD mode (PEYEN bit =0) before the function epilogue or returning
from the function.

 While it is possible to write subroutines that can be called in SIMD
mode (i.e., the processor is in SIMD mode before the call and after
the return), the compiler does not support a SIMD call interface.
For example, trying to call a subroutine from a #pragma SIMD_for
loop prevents the compiler from executing the loop in SIMD mode
because the compiler does not support SIMD mode calls. For more
information, see SIMD Support.

CrossCore Embedded Studio 1.1 1-345
C/C++ Compiler Manual for SHARC Processors

Compiler

Because transfers between memory and data registers are doubled in
SIMD mode (each explicit transfer has a matching implicit transfer), it is
recommended that you access the stack in SISD mode to prevent corrupt-
ing the stack. For more information on SIMD mode memory accesses, see
the “Memory” chapter in the hardware reference manual for the appropri-
ate processor.

Mixed C/C++/Assembly Programming Examples

This section shows examples of types of mixed C/C++/assembly program-
ming in order of increasing complexity. The examples in this section are as
follows:

• Using Inline Assembly

• Using Macros to Manage the Stack

• Using Scratch Registers

• Using Void Functions

• Using the Stack for Arguments

• Using Registers for Arguments and Return

• Using Non-Leaf Routines That Make Calls

• Using Call Preserved Registers

Leaf routines are routines that return without making any calls. Non-leaf
routines call other routines before returning to the caller.

You should use cc21k to compile your C/C++ program and assemble your
assembly language modules. cc21k will invoke the compiler for C and C++
files, and will invoke the assembler for assembly files, defining common
sets of macros, passing processor-specific switches and so on.

C/C++ Run-Time Model and Environment

1-346 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For example, the following cc21k command line

cc21k my_prog.c my_sub1.asm

runs cc21k with the following modules listed in Table 1-40. For more
information, see Compiler Components.

Using Inline Assembly

The following example shows how to write a simple routine in
ADSP-21xxx assembly code that properly interfaces to the C/C++ envi-
ronment. It uses the asm() construct to pass inline assembly code to the
compiler.

int add(int x, int y, int z)

{

int res;

asm("%0=%2+%1; %0=%0+%3;":
"=d"(res):"d"(x),"d"(y),"d"(z):”astat”);

return res;

}

For more information, see Inline Assembly Language Support Keyword
(asm).

Using Macros to Manage the Stack

Listing 1-4 and Listing 1-5 show how macros can simplify function calls
between C, C++, and assembly functions. The assembly function uses the

Table 1-40. Modules for Running cc21k

Module Description

my_prog.c Selects a C language source file for your program

my_sub1.asm Selects an assembly language module to be assembled and linked
with your program

CrossCore Embedded Studio 1.1 1-347
C/C++ Compiler Manual for SHARC Processors

Compiler

entry, exit, and ccall macros to keep track of return addresses and man-
age the run-time stack.

For more information, see C/C++/Assembly Support Macros.

Listing 1-4. Subroutine Return Address Example – C Code

/* Subroutine Return Address Example—C code: */

/* assembly and c functions prototyped here */

void asm_func(void);

void c_func(void);

/* c_var defined here as a global */

/* used in .asm file as _c_var */

int c_var=10;

/* asm_var defined in .asm file as _asm_var */

extern int asm_var;

int main(void)

{

asm_func(); /* call to assembly function */

}

/* this function gets called from asm file */

void c_func(void)

{

if (c_var != asm_var)

exit(1);

else

exit(0);

}

C/C++ Run-Time Model and Environment

1-348 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Listing 1-5. Subroutine Return Address Example – Assembly Code

/* Subroutine Return Address Example—Assembly code: */

#include <asm_sprt.h>

.section/dm seg_dmda;

.var _asm_var=0; /* asm_var is defined here */

.global _asm_var; /* global for the C function */

.section/pm seg_pmco;

.global _asm_func; /* _asm_func is defined here */

.extern _c_func; /* c_func from the C file */

.extern _c_var; /* c_var from the C file */

_asm_func:

entry; /* entry macro from asm_sprt */

r8=dm(_c_var); /* access the global C var */

dm(_asm_var)=r8; /* set _asm_var to _c_var) */

ccall(_c_func); /* call the C function */

exit; /* exit macro from asm_sprt */

_asm_func.end:

Using Scratch Registers

To write assembly functions that can be called from a C/C++ program,
your assembly code must follow the conventions of the C/C++ run-time
environment and use the conventions for naming functions. The dot()
assembly function described below demonstrates how to comply with
these specifications. For more information, see Scratch Registers.

This function computes the dot product of two vectors. The two vectors
and their lengths are passed as arguments. Because the function uses only
scratch registers (as defined by the run-time environment) for

CrossCore Embedded Studio 1.1 1-349
C/C++ Compiler Manual for SHARC Processors

Compiler

intermediate values and takes advantage of indirect addressing, the func-
tion does not need to save or restore any registers.

/* dot(int n, dm float *x, pm float *y);

Computes the dot product of two floating-point vectors of length

n. One is stored in dm and the other in pm. Length n must be

greater than 2.*/

#include <asm_sprt.h>

.section/pm seg_pmco;

/* By convention, the assembly function name is the C function

name with a leading underscore; "dot()" in C becomes "_dot" in

assembly */

.global _dot;

_dot:

leaf_entry;

r0=r4-1,i4=r8;

/* Load first vector address into I register, and load r0 with

length -1 */

r0=r0-1,i12=r12;

/* Load second vector address into I register and load r0 with

length-2 (because the 2 iterations outside feed and drain the

pipe */

f12=f12-f12,f2=dm(i4,m6),f4=pm(i12,m14);

/* Zero the register that will hold the result and start

feeding pipe */

f8=f2*f4, f2=dm(i4,m6),f4=pm(i12,m14);

/* Second data set into pipeline, also do first multiply */

C/C++ Run-Time Model and Environment

1-350 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

lcntr=r0, do dot_loop until lce;

/* Loop length-2 times, three-stage pipeline: read, mult, add */

dot_loop:

f8=f2*f4, f12=f8+f12,f2=dm(i4,m6),f4=pm(i12,m14);

f8=f2*f4, f12=f8+f12;

f0=f8+f12;

/* drain the pipe and end with the result in r0, where it’ll be

returned */

leaf_exit;

/* restore the old frame pointer and return */

_dot.end:

Using Void Functions

The simplest kind of assembly routine is one with no arguments and no
return value, which corresponds to C/C++ functions prototyped as void
my_function(void). Such routines could be used to monitor an external
event or used to perform an operation on a global variable.

It is important when writing such assembly routines to pay close attention
to register usage. If the routine uses any call-preserved or compiler
reserved registers (as defined in the run-time environment), the routine
must save the register and restore it before returning. Because the follow-
ing example does not need many registers, this routine uses only scratch
registers (also defined in the run-time environment) that do not need to
be saved. For more information, see Registers.

Note that in the example all symbols that need to be accessed from C/C++
contain a leading underscore. Because the assembly routine name _delay
and the global variable _del_cycle must both be available to C and C++
programs, they contain a leading underscore in the assembly code.

CrossCore Embedded Studio 1.1 1-351
C/C++ Compiler Manual for SHARC Processors

Compiler

For more information, see Symbol Names in C/C++ and Assembly.

/* Simple Assembly Routines Example — _delay */

/* void delay (void);

An assembly language subroutine to delay N cycles, where N is

the value of the global variable del_cycle */

#include <asm_sprt.h>;

.section/pm seg_pmco;

.extern _del_cycle;

.global _delay;

_delay:

leaf_entry; /* first line of any leaf func */

R4 = DM (_del_cycle);

/* Here, register r4 is used because it is a scratch register

and does not need to be preserved */

LCNTR = R4, DO d_loop UNTIL LCE;

d_loop:

nop;

leaf_exit; /* last line of any leaf func */

_delay.end:

Using the Stack for Arguments

A more complicated kind of routine is one that has parameters but no
return values. The following example adds together the five integers
passed as parameters to the function. For more information, see Function
Call and Return.

/* Assembly Routines With Parameters Example — _add5 */

/* void add5 (int a, int b, int c, int d, int e);

An assembly language subroutine that adds 5 numbers */

#include <asm_sprt.h>

.section/pm seg_pmco;

C/C++ Run-Time Model and Environment

1-352 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

.extern _sum_of_5; /* variable where sum will be stored */

.global _add5;

_add5:

leaf_entry;

/* the calling routine passes the first three parameters in

registers r4, r8, r12 */

r4 = r4 + r8; /* add the first and second parameter */

r4 = r4 + r12; /* adds the third parameter */

/* the calling routine places the remaining parameters

(fourth/fifth) on the run-time stack; these parameters can be

accessed using the reads() macro */

r8 = reads(1); /* put the fourth parameter in r8 */

r4 = r4 + r8; /* adds the fourth parameter */

r8 = reads(2); /* put the fifth parameter in r8 */

r4 = r4 + r8; /* adds the fifth parameter */

dm(_sum_of_5) = r4;

/* place the answer in the global variable */

leaf_exit;

_add5.end:

Using Registers for Arguments and Return

There is another class of assembly routines in which the routines have
both parameters and return values. The following example of such a rou-
tine adds two numbers and returns the sum. Note that this routine follows
the run-time environment specification for passing function parameters
(in registers r4 and r8) and passing the return value (in register r0).

CrossCore Embedded Studio 1.1 1-353
C/C++ Compiler Manual for SHARC Processors

Compiler

For more information, see Function Call and Return.

/* Routine With Parameters & Return Value — _add2 */

/* int add2 (int a, int b);

An assembly language subroutine that adds two numbers and returns

the sum */

#include <asm_sprt.h>

.section/pm seg_pmco;

.global _add2;

_add2:

leaf_entry;

/* per the run-time environment, the calling routine passes the

first two parameters passed in registers r4 and r8; the return

value goes in register r0 */

r0 = r4 + r8;

/* add the first and second parameter, store in r0*/

leaf_exit;

_add2.end:

Using Non-Leaf Routines That Make Calls

A more complicated example, which calls another routine, computes the
root mean square of two floating-point numbers, such as

Although it is straight-forward to develop your own function that calcu-
lates a square-root in ADSP-21xxx assembly language, the following
example demonstrates how to call the square root function from the

z 2x 2y+=

C/C++ Run-Time Model and Environment

1-354 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

C/C++ run-time library, sqrtf. In addition to demonstrating a C
run-time library call, this example shows some useful calling macros. For
more information, see Function Call and Return.

/* Non-Leaf Assembly Routines Example — _rms */

/* float rms(float x, float y); An assembly language subroutine

to return the rms z = (x^2 + y^2)^(1/2) */

#include <asm_sprt.h>

.section/pm seg_pmco;

.extern _sqrtf;

.global _rms;

_rms:

entry; /* first line of non-leaf routine */

f4 = f4 * f4;

f8 = f8 * f8;

f4 = f4 + f8;

/* f4 contains argument to be passed to sqrtf function */

ccall (_sqrtf);

/* use the ccall() macro to make a function call in a C

environment; f0 contains the result returned by the _sqrtf

function. In turn, _rms returns the result to its caller in f0

(and it is already there) */

exit; /* last line of non-leaf routine */

_rms.end:

If a called function takes more than three single word parameters, the
remaining parameters must be pushed onto the stack and popped off the
stack after the function call. The following function could call the _add5
routine shown in Using the Stack for Arguments. Note that the last
parameter must be pushed on the stack first.

CrossCore Embedded Studio 1.1 1-355
C/C++ Compiler Manual for SHARC Processors

Compiler

/* Non-Leaf Assembly Routines Example — _calladd5 */

/* int calladd5 (void); An assembly language subroutine that
calls another routine with more than 3 parameters.

This example adds the numbers 1, 2, 3, 4, and 5. */

#include <asm_sprt.h>

.section/pm seg_pmco;

.extern _add5;

.extern _sum_of_5;

.global _calladd5;

_calladd5:

entry;

r4 = 5;

/* the fifth parameter is stored in r4 for pushing onto stack */

puts=r4; /* put fifth parameter in stack */

r4 = 4;

/* the fourth parameter is stored in r4 for pushing onto stack */

puts=r4; /* put fourth parameter in stack */

r4 = 1; /* the first parameter is sent in r4 */

r8 = 2; /* the second parameter is sent in r8 */

r12 = 3; /* the third parameter is sent in r12 */

ccall (_add5);

/* use the ccall macro to make a function call in a C environment

*/

alter(2);

/* call the alter() macro to remove the two arguments from

the stack */

r0 = dm(_sum_of_5);

/* _sum_of_5 is where add5 stored its result */

exit;

_calladd5.end:

C/C++ Run-Time Model and Environment

1-356 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Using Call Preserved Registers

Some functions need to make use of registers that the run-time environ-
ment defines as call preserved registers. These registers, whose contents are
preserved across function calls, are useful for variables whose lifetime
spans a function call. The following example performs an operation on the
elements of a C array using call preserved registers. For more information,
see Preserved Registers.

/* Non-Leaf Assembly Routines Example — _pass_array */

/* void pass_array(

float function(float),

float *array,

int length);

An assembly language routine that operates on a C array */

#include <asm_sprt.h>

.section/pm seg_pmco;

.global _pass_array;

_pass_array:

entry;

puts = i8;

/* This function uses a call preserved register, i8, because

it could be used by multiple functions, and this way it does

not have to be stored for every function call */

r0 = i1;

puts = r0; /* i1 is also call preserved */

i8 = r4;

/* read the first argument, the address of the function to call

*/

CrossCore Embedded Studio 1.1 1-357
C/C++ Compiler Manual for SHARC Processors

Compiler

i1 = r8;

/* read the second argument, the C array containing the data

to be processed */

r0 = r12;

/* read third argument, the number of data points in the array */

lcntr=r0, do pass_array_loop until lce;

/* loop through data points */

f4=dm(i1,m5);

/* get data point from array, store it in f4 as a parameter for

the function call */

r2=i6;

i6=i7;

jump (m13,i8) (DB);

dm(i7,m7)=r2;

dm(i7,m7)=PC;

pass_array_loop:

dm(i1,m6)=f0;

/* store the return value back in the array */

i1 = gets(1); /* restore the value of i1 */

i8 = gets(2); /* restore the value of i8 */

exit;

_pass_array.end:

Exceptions Tables in Assembly Routines

C++ functions can throw C++ exceptions, which must be caught by
another function earlier in the call-stack. Part of this catching process
involves unwinding the stack of intervening, still-active function calls.
The C++ exception support library uses additional function details to

C/C++ Run-Time Model and Environment

1-358 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

perform this unwinding. The exception support gets this information
from different places:

• When C++ modules are compiled with exceptions enabled by the
-eh switch (on page 1-33), the compiler generates the necessary
unwinding tables.

• When C modules are compiled, exceptions information is not usu-
ally necessary, but the compiler will generate unwinding
information if the -eh switch is specified.

• Assembly modules are not compiled, so unwinding information
must be supplied manually, if necessary.

Assembly functions rarely need to provide exception-unwinding informa-
tion. It is only necessary when all of the following conditions apply:

• The assembly routine may be called by a C or C++ function.

• The assembly routine calls a C++ function (or a C function that
may lead to a C++ function being called, while the assembly rou-
tine is still active).

• The called C++ function may throw an exception.

The assembly routine must allocate a stack frame as described in Manag-
ing the Stack. On entry to the assembly routine, call-preserved registers
(on page 1-315) that are modified in the routine should be saved into a
contiguous region within the stack frame, called the save area. Registers
are saved at ascending addresses in the save area in the order given in
Table 1-42.

A word in the .gdt section must be initialized with the address of the
function exceptions table. This word must be marked with the
.RETAIN_NAME directive to prevent it being removed by linker data
elimination. The function exceptions table itself must be initialized as
illustrated in Table 1-41.

CrossCore Embedded Studio 1.1 1-359
C/C++ Compiler Manual for SHARC Processors

Compiler

The bit set field of the function exceptions table contains a bit for each
register. The bits corresponding to registers saved in the save area must be
set to one and the other bits set to zero. The bit numbers corresponding to
each register are given in Table 1-42, where bit 0 is the least significant bit
of the lowest addressed word, bit 31 the most significant bit of that word,
bit 32 the least significant bit of the second lowest addressed word and so
on.

Bit numbering may best be explained by the C code to test bit number,

int wrd = r/32;

int bit = lu << (r%32);

if (bitset[wrd] & bit)

/* register r was saved */

Table 1-41. Function Exceptions Table

Offset Size Meaning

0 1 Start address of the routine

1 1 First address after end of routine

2 1 Signed offset from frame pointer of register
save area

3 4 Bit set indicating which registers are saved

8 1 Always zero. Indicates this is not C++ code

Table 1-42. Function Exception Table Register Numbers

Register Bit Number Words Taken in Save Area if Saved

ASTAT 0 1

ASTATY 1 1

R0 - R15 2 - 17 1

S0 - S15 18 -33 1

M0 - M15 34 - 49 1

B0 - B15 50 - 65 1

C/C++ Run-Time Model and Environment

1-360 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

This example shows an assembly routine with function exceptions table.

.section/pm seg_pmco;

_asmfunc:

.LN._asmfunc:

modify(i7,-6); // allocate stack frame

// save area at I6-7

dm(-7,i6)=r5; // save_area[0] = r5

dm(-6,i6)=r6; // save_area[1] = r6

dm(-5,i6)=r7; // save_area[2] = r7

r2=i0; dm(-4,i6)=r2; // save_area[3] = i0

r2=i1; dm(-3,i6)=r2; // save_area[4] = i1

r2=i2; dm(-2,i6)=r2; // save_area[5] = i2

// use R5,R6,R7,I0,I1,I2, call a C++ function

i0=dm(-4,i6);

i1=dm(-3,i6);

i2=dm(-2,i6);

r5=dm(-7,i6);

r6=dm(-6,i6);

r7=dm(-5,i6);

i12=dm(m7,i6);

I0 - I15 66 - 81 1

L0 - L15 82 - 97 1

MRF 98 3

SMRF 99 3

MRB 100 3

SMRB 101 3

PX1, PX2 102 - 103 1

USTAT1 - USTAT4 104 - 107 1

Table 1-42. Function Exception Table Register Numbers (Cont’d)

Register Bit Number Words Taken in Save Area if Saved

CrossCore Embedded Studio 1.1 1-361
C/C++ Compiler Manual for SHARC Processors

Compiler

jump (m14,i12) (db); rframe; nop;

.LN._asmfunc.end:

._asmfunc.end:

.global _asmfunc;

.type _asmfunc, STT_FUNC;

.section/dm .edt; // conventionally function exceptions

// tables go in .edt

.var .function_exceptions_table[8] =

.LN._asmfunc, // first address of _asmfunc

.LN._asmfunc.end, // first address after _asmfunc

-7, // offset of save area from I6

0x00000380, 0, 0x0000001c, 0,

// bit set, bits 7=R5,8=R6,9=R7,66=I0,67=I1,68=I2

0; // always zero for non-c++

.section/dm .gdt;

.align 4;

.fet_index:

.var = .function_exceptions_table;

// address of table in .gdt

.retain_name .fet_index;

Data Storage Formats
This section explains how the compiler stores some kinds of data. It covers
the following topics:

• Using Data Storage Formats

• Floating-Point Data Size

• Floating-Point Binary Formats

• fract Data Representation

• Precision Restrictions With 40-Bit Floating-Point Arithmetic

C/C++ Run-Time Model and Environment

1-362 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Using Data Storage Formats

The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types,
and, therefore, at high speed. The C/C++ run-time environment uses the
intrinsic C/C++ data types and data formats that appear in the
Table 1-43, Table 1-44, Figure 1-3, and Figure 1-4. For more informa-
tion, see Using Native Fixed-Point Types.

 The 64-bit data types are implemented using software emulation,
and are expected to run more slowly than hardware-supported
native data types. The emulated data types are long double, long
long, and unsigned long long. When the -double-size-64 switch
(on page 1-32) is specified, double is also an emulated data type.

 The native fixed-point type fract is available only when the std-
fix.h header file is included.

Table 1-43. Data Storage Formats and Data Type Sizes

Applied Type Number Representation

int 32-bit two’s complement

long int 32-bit two’s complement

long long int 64-bit two’s complement

short int 32-bit two’s complement

unsigned int 32-bit unsigned magnitude

unsigned long int 32-bit unsigned magnitude

unsigned long long int 64-bit unsigned magnitude

bool 32-bit two’s complement

char 32-bit two’s complement

unsigned char 32-bit unsigned magnitude

short fract 32-bit fractional, s1.31

fract 32-bit fractional, s1.31

CrossCore Embedded Studio 1.1 1-363
C/C++ Compiler Manual for SHARC Processors

Compiler

Floating-Point Data Size

On SHARC processors, the float data type is 32 bits, and the double data
type default size is 32 bits. This size is chosen because it is the most effi-
cient. The 64-bit long double data type is available if more precision is
needed, although this is more costly because the type exceeds the data sizes
supported natively by hardware.

In the C language, floating-point literal constants default to the double
data type. When operations involve both float and double, the float

long fract 32-bit fractional, s1.31

unsigned short fract 32-bit fractional, 0.32

unsigned fract 32-bit fractional, 0.32

unsigned long fract 32-bit fractional, 0.32

float 32-bit IEEE single-precision

double 32-bit IEEE single-precision
or 64-bit IEEE double-precision if you compile with the
-double-size-64 switch

long double 64-bit IEEE double-precision

Table 1-44. Data Storage Formats and Data Storage

Data Big Endian Storage Format

long long Writes 64-bit two’s complement data with the most significant word
closer to address 0x0000, proceeds toward the top of memory with
the rest.

unsigned long long Writes 64-bit magnitude data with the most significant word closer
to address 0x0000, proceeds toward the top of memory with the rest.

long double Writes 64-bit IEEE double-precision data with the most significant
word closer to address 0x0000, proceeds toward the top of memory
with the rest. (See Figure 1-4 for details.)

Table 1-43. Data Storage Formats and Data Type Sizes (Cont’d)

Applied Type Number Representation

C/C++ Run-Time Model and Environment

1-364 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

operands are promoted to double and the operation is done at double size.
By having double default to a 32-bit data type, the SHARC compiler
usually avoids additional expense during these promotions. This does not,
however, fully conform to the ISO/IEC 9899:1990 C standard, the
ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003 C++ stan-
dard, all of which require that the double type supports at least 10 digits
of precision.

The -double-size-64 switch (on page 1-32) sets the size of the double
type to 64 bits if additional precision, or full standard conformance, is
required.

The -double-size-64 switch causes the compiler to treat the double data
type as a 64-bit data type, instead of a 32-bit data type. This means that
all values are promoted to 64 bits, and consequently incur more storage
and cycles during computation. The switch does not affect the size of the
float data type, which remains at 32 bits.

Consider the following case.

float add_two(float x) { return x + 2.0; } // has promotion

When compiling this function, the compiler promotes the float value x
to double, to match the literal constant 2.0. The addition becomes a
double operation, and the result is truncated back to a float before being
returned.

By default, or with the -double-size-32 switch (on page 1-32), the pro-
motion and truncation operations are empty operations—they require no
work because the float and double types default to the same size. Thus,
there is no cost.

With the -double-size-64 switch, the promotion and truncation opera-
tions require work because the double constant 2.0 is a 64-bit value. The x
value is promoted to 64 bits, a 64-bit addition is performed, and the result
is truncated to 32 bits before being returned.

CrossCore Embedded Studio 1.1 1-365
C/C++ Compiler Manual for SHARC Processors

Compiler

In contrast, since the literal constant 2.0f in the following example has an
“f” suffix, it is a float-type constant, not a double-type constant.

float add_two(float x) { return x + 2.0f; } // no promotion

Thus, both operands to the addition are of type float, and no promotion
or truncation is necessary. This version of the function does not produce
any performance degradation when the -double-size-64 switch is used.

You must be consistent in your use of the -double-size-{32|64} switch.

Consider the two files, such as:

file x.c:

double add_nums(double x, double y) { return x + y; }

file y.c:

extern double add_nums(double, double);

double times_two(double val) { return add_nums(val, val); }

Both files must be compiled with the same usage of -double-size{32|64}.
Otherwise, times_two() and add_nums() will be exchanging data in mis-
matched formats, and incorrect behavior will occur. Table 1-45 shows the
results for the various permutations.

Table 1-45. Use of the -double-size-{32|64} Switch

x.c y.c Result

default default Okay

default -double-size-32 Okay

-double-size-32 default Okay

-double-size-32 -double-size-32 Okay

-double-size-64 -double-size-64 Okay

-double-size-32 -double-size-64 Error

-double-size-64 -double-size-32 Error

C/C++ Run-Time Model and Environment

1-366 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If a file does not make use of any double-typed data, it may be compiled
with the -double-size-any switch (on page 1-32), to indicate this fact.
Files compiled in this way may be linked with files compiled with
-double-size-32 or with -double-size-64, without conflict.

Conflicts are detected by the linker and result in linker error li1151,
“Input sections have inconsistent qualifiers”.

Floating-Point Binary Formats

This section covers:

• IEEE Floating-Point Format

• IEEE Floating-Point Implementation

IEEE Floating-Point Format

By default, the SHARC compiler provides floating-point arithmetic using
IEEE single- and double-precision formats. Single-precision IEEE format
(Figure 1-3) provides a 32-bit value, with 23 bits for the mantissa, 8 bits
for the exponent, and 1 bit for the sign. This format is used for the float
data type, and for the double data type by default and when the
-double-size-32 switch is used. The 32-bit double data type violates the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C standard,
and the ISO/IEC 14882:2003 C++ standard.

In Figure 1-3, the single word (32-bit) data storage format equates to:

1Sign 1.Mantissa 2 Exponent 127– –

CrossCore Embedded Studio 1.1 1-367
C/C++ Compiler Manual for SHARC Processors

Compiler

where

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa 23 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 8-bit exponent.

Double-precision IEEE format (Figure 1-4) provides a 64-bit value, with
52 bits for the mantissa, 11 bits for the exponent, and 1 bit for the sign.
This format is used for the long double data type, and for the double data
type when the -double-size-64 switch is used. A 64-bit value for the dou-
ble data type is compliant to with the ISO/IEC 9899:1990 C standard,
the ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003 C++
standard. (See Language Standards Compliance.)

In Figure 1-4, the two-word (64-bit) data storage format equates to:

Figure 1-3. Data Storage Format for Float and Double Types

Single Word (32 bits)

Sign Bit

2223 031

8-Bit Exponent
Biased by +127

Mantissa

1Sign 1.Mantissa 2 Exponent 1023– –

C/C++ Run-Time Model and Environment

1-368 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

where

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa 52 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 11-bit exponent.

IEEE Floating-Point Implementation

The SHARC compiler supports IEEE floating-point as follows:

• For 32-bit (single-precision) arithmetic, the majority of operations
are implemented using the processor’s native hardware.

• For 64-bit (double-precision) arithmetic, operations are emulated
using a software library.

fract Data Representation

The fract types are native fixed-point types that can be used to write code
using saturating, fixed-point arithmetic. The native fixed-point types are
discussed in Using Native Fixed-Point Types.

The short fract, fract and long fract type represent a 32-bit signed
fractional value. All types have the range [-1.0,+1.0).

Figure 1-4. Double-Precision IEEE Format

Most Significant Word (32 bits)
at Memory Address N

Sign Bit

52 062

11-Bit Exponent
Biased by +1023

Mantissa

5163

Least Significant Word (32 bits)
at Memory Address N+1

31

CrossCore Embedded Studio 1.1 1-369
C/C++ Compiler Manual for SHARC Processors

Compiler

The short fract, fract, and long fract data representations are shown
in Figure 1-5.

Therefore, to represent 0.25 in fract, the HEX representation would be
0x20000000 (2-2). For -1, the HEX representation in fract is 0x80000000.
short fract, fract, and long fract cannot represent +1 exactly, but they
get quite close with 0x7fffffff.

The unsigned short fract, unsigned fract and unsigned long fract
types represent a 32-bit unsigned fractional value. All types have the range
[0.0,+1.0).

Figure 1-5. Data Storage Format for short fract, fract, and long fract

Short fract, fract (1.31)

Bit 31 30 29 2 1 0

Long fract (1.31)

Bit

Weight

Weight

31 30 29 2 1 0

2-29 2-30 2-31

(-1) 2-1 2-2 2-29 2-30 2-31

(-1) 2-1 2-2

C/C++ Run-Time Model and Environment

1-370 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The unsigned short fract, unsigned fract and unsigned long fract
data representations are shown in Figure 1-6.

Therefore, to represent 0.25 in unsigned fract, the HEX representation
would be 0x40000000 (2-2). unsigned short fract, unsigned fract and
unsigned long fract cannot represent +1 exactly, but they get quite close
with 0xffffffff.

Figure 1-6. Data Storage Format for unsigned short fract, unsigned
fract, and unsigned long fract

Unsigned short fract, unsigned fract (0.32)

Bit 31 30 29 2 1 0

Unsigned long fract, unsigned fract (0.32)

Bit

Weight

Weight

31 30 29 2 1 0

2-1 2-2 2-3 2-30 2-31 2-32

2-1 2-2 2-3 2-30 2-31 2-32

CrossCore Embedded Studio 1.1 1-371
C/C++ Compiler Manual for SHARC Processors

Compiler

Precision Restrictions With 40-Bit Floating-Point Arithmetic

CCES does not provide full support for 40-bit arithmetic for SHARC
processors. If you attempt to use 40-bit arithmetic, you may encounter
circumstances that result in variable precision. For instance:

• By default, the SHARC memory is configured for 32-bit data, so
any values that are saved and restored from memory will lose
precision.

• The compiler often copies data in a way that does not preserve all
40 bits of data. For example, it may use a DAG register as tempo-
rary storage if this offers a performance benefit.

The following run-time library routines supplied with CCES use 40-bit
arithmetic internally (their inputs and outputs do not):

asinf cabsf cartesianf cexpf

cfft_mag cosf div fir (the
scalar-valued version
from the header file
filters.h)

fmodf gen_blackman gen_hamming gen_hanning

gen_harris iir (the scalar-val-
ued version from the
header file filters.h)

ldiv normf

polarf rfft_mag rmsf rqsrtf

sinf sqrtf twidfftf twidfft

C/C++ Run-Time Model and Environment

1-372 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

If the switch -double-size-64 has not been specified, then the following
functions also use 40-bit arithmetic internally:

The compiler support routines for the following C/C++ operations use
40-bit arithmetic:

• Long double-to-unsigned integer conversion

• Modulus operator

• Integer division

To preserve all 40 bits of registers used in these routines, we recommend
using the interrupt dispatchers provided by ADI; refer to the System
Run-Time Documentation.

Memory Section Usage
The C/C++ run-time environment requires that a specific set of memory
section names are used to place code in memory. In assembly language
files, these names are used as labels for the .SECTION directive. In the .ldf
file, these names are used as labels for the output section names within the
SECTIONS{} command. For information on .ldf file syntax and other
information on the linker, see the Linker and Utilities Manual.

Table 1-46 lists the input section names used by the compiler and
run-time libraries. Refer to this table when creating your own mappings in
a .ldf file. You can change the section into which the compiler maps your
code or data by using #pragma section/#pragma default_section.

asin cabs cexp cos

fmod norm polar rms

rsqrt sin sqrt

CrossCore Embedded Studio 1.1 1-373
C/C++ Compiler Manual for SHARC Processors

Compiler

Table 1-46. Input Section Names Used by the Compiler and Libraries

Names Usage Description

seg_pmco This section must be in Program Memory (PM), holds code, and is
required by some functions in the C/C++ run-time library. For more infor-
mation, see Code Storage in Program Memory.

seg_swco This section contains short-word instructions for targets that support
VISA (variable instruction set) execution. It is used by the compiler and by
some functions in the short-word variants of the C/C++ run-time libraries.
For more information, see Code Storage in Program Memory.

seg_dmda This section must be in Data Memory (DM), is the default location for
global and static variables and string literals, and is required by some func-
tions in the C/C++ run-time library. For more information, see Data Stor-
age in Data Memory.

seg_pmda This section must be in PM, holds PM data variables, and is required by
some functions in the C/C++ run-time library. For more information, see
Data Storage in Program Memory.

seg_init This section must be in PM, holds system initialization data, and is
required for system initialization. For more information, see Initialization
Data Storage.

iv_code This section contains the interrupt vector code, and must be mapped to
the correct interrupt address range. For more details on interrupt manage-
ment, refer to the System Run-Time Documentation.

seg_int_code
seg_int_code_sw

These input sections are used to ensure that code is mapped to internal
memory, and never to external memory, when it is desirable for perfor-
mance reasons or necessary for any other reason (such as a silicon anomaly
workaround) .
The seg_int_code section can be used to map normal-word or
short-word code on processors that support VISA execution. The
seg_int_code_sw input section can only be used to map short-word
code.
The default and generated .ldf files map these sections to internal mem-
ory configured for code of the required width.
The run-time libraries make use of seg_int_code to avoid silicon anoma-
lies 02000055 and 04000046 in a small number of functions.

C/C++ Run-Time Model and Environment

1-374 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The following sections cover:

• Code Storage in Program Memory

• Data Storage in Data Memory

• Data Storage in Program Memory

• Run-Time Stack Storage

• Run-Time Heap Storage

• Initialization Data Storage

Code Storage in Program Memory

For processors that do not support VISA execution, seg_pmco is the loca-
tion where the compiler puts all the instructions that it generates when
you compile your program. When linking, use your .ldf file to map this
section to a Program Memory (PM) section.

On processors that support VISA execution, the compiler puts all the
instructions that it generates into seg_swco by default. When linking, use
your .ldf file to map this section to an SW-qualified memory output sec-
tion. When -nwc or -normal-word-code is used, the compiler puts all
instructions into seg_pmco. When linking, use your .ldf file to map this
section to a PM-qualified output section.

If you are assembling legacy assembly files and are using VISA execution
support in your executable, use your .ldf file to map the input sections to
an SW-qualified output section.

For processors that support VISA execution, the run-time libraries use
both seg_pmco and seg_swco section names for VISA code; when map-
ping input sections to a VISA output section, the linker only maps input
sections with the “short word” qualifier.

CrossCore Embedded Studio 1.1 1-375
C/C++ Compiler Manual for SHARC Processors

Compiler

Data Storage in Data Memory

The Data Memory data section, seg_dmda, is where the compiler puts
global and static data. When linking, use your .ldf file to map this section
to DM space.

By default, the compiler places static and global variables in the Data
Memory data section. The compiler’s dm and pm keywords (memory type
qualifiers) let you override this default. If a memory type qualifier is not
specified, the compiler places static and global variables in Data Memory.
For more information on type qualifiers, see Dual Memory Support Key-
words (pm dm). The following example allocates an array of 10 integers in
the DM data section:

static int data [10];

Data Storage in Program Memory

The Program Memory data section, seg_pmda, is where the compiler puts
global and static data in Program Memory. When linking, use your .ldf
file to map this section to PM space.

By default, the compiler stores static and global variables in the Data
Memory data section. The compiler’s pm keyword (memory type qualifier)
lets you override this default and place variables in the Program Memory
data section. If a memory type qualifier is not specified, the compiler
places static and global variables in Data Memory. For more information
on type qualifiers, see Dual Memory Support Keywords (pm dm). The
following example allocates an array of 10 integers in the PM data section:

static int pm coeffs[10];

Run-Time Stack Storage

Because the run-time environment cannot function without a stack, you
must define one in DM space. A typical size for the run-time stack is 8K
32-bit words of data memory.

C/C++ Run-Time Model and Environment

1-376 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The run-time stack is a 32-bit wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses.

During a function call, the calling function pushes the return address onto
the stack. (See Managing the Stack.)

Stack space is not provided by an input section. Instead, the .ldf file uses
the RESERVE and RESERVE_EXPAND directives to reserve a region of space
within Data Memory. Depending on the target processor and the
link-time options, the stack may be allocated a region of memory by itself,
or a single, contiguous region may be allocated for both the stack and the
default heap, with the stack occupying the higher addresses and the heap
occupying the lower addresses.

Run-Time Heap Storage

To dynamically allocate and deallocate memory at runtime, the C/C++
run-time library includes several functions: malloc, calloc, realloc and
free. These functions allocate memory from the run-time heap by default.
A typical size for the run-time heap is 16K 32-bit words of data memory.

The default heap is not provided by an input section. Instead, the .ldf file
uses the RESERVE and RESERVE_EXPAND directives to reserve a region of
space within Data Memory. Depending on the target processor and the
link-time options, the default heap may be allocated a region of memory
by itself, or a single, contiguous region may be allocated for both the stack
and the default heap, with the stack occupying the higher addresses and
the heap occupying the lower addresses.

The run-time library also provides support for multiple heaps, which
allow dynamically allocated memory to be located in different blocks. See
Using Multiple Heaps for more information on the use of multiple heaps.

 A default heap is always required by every project, as the run-time
library makes some use of it internally.

CrossCore Embedded Studio 1.1 1-377
C/C++ Compiler Manual for SHARC Processors

Compiler

Initialization Data Storage

The initialization section, seg_init, is where the compiler puts the initial-
ization data in Program Memory. When linking, use your Linker
Description File to map this section to Program Memory space.

The initialization section may be processed by two different utility pro-
grams: mem21k or elfloader.

• When using the elfloader utility, the seg_init section needs only
16 slots/locations of space.

• When using the mem21k utility, all RAM memory initialization will
be stored in the seg_init PM ROM section, so the seg_init sec-
tion will need to be sized accordingly.

For more information, see Memory Initialization.

Global Array Alignment
Global arrays must be aligned on a 64-bit word boundary or greater; the
compiler will normally use this knowledge when optimizing accesses. If
you declare arrays in assembly files that will be accessed from C/C++, use
the .ALIGN directive to ensure the array’s starting address has an alignment
of 2 or greater.

Controlling System Heap Size and Placement
The system heap is the default heap used by calls to allocation functions
like malloc() in C and the new operator in C++. System heap placement
and size are specified in the application’s .ldf file.

For details on adding and managing additional heaps besides the system
heap, see Using Multiple Heaps.

C/C++ Run-Time Model and Environment

1-378 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The following sections cover:

• Managing the System Heap in the IDE

• Managing the System Heap in the .ldf File

• Standard Heap Interface

Managing the System Heap in the IDE

The.ldf files created by the Project Wizard, with Startup Code/LDF
option accepted, can be controlled using selections in the System Config-
uration Overview dialog box.

1. Expand your new project in a project navigation view such as Proj-
ect Explorer.

2. Double-click system.svc. The Startup Code/LDF component
appears in the System Configuration Overview dialog box.

3. Click the Startup Code/LDF tab at the bottom of the dialog box.

4. Click the LDF tab that appears at the left of the dialog box. The
LDF Configuration page appears.

5. In the System heap area, check the Customize the system heap
check box.

6. You can now modify the size of the system heap, and choose into
which memory it is placed.

7. When you have modified the settings as required, save the changes,
via Ctrl+S, using File > Save, or by clicking on the floppy disk icon
in the toolbar; this will cause the IDE to generate an updated LDF
and related startup-code files, which will configure your heaps
during the application’s startup.

CrossCore Embedded Studio 1.1 1-379
C/C++ Compiler Manual for SHARC Processors

Compiler

Managing the System Heap in the .ldf File

If an .ldf file has not been added to the project either by using the Proj-
ect Wizard or by using a custom file, a default .ldf file from the
<install_path>\SHARC\ldf directory will be used.

By default, the compiler uses the file arch.ldf, where arch is specified
via the -proc arch switch. For example, if -proc ADSP-21469 is used,
the compiler defaults to using adsp-21469.ldf. The entry controlling
the heap has a format similar to the following (which is simplified for
clarity):

// macro that defines minimum system heap size

#define HEAP_SIZE 16K

dm_block3_dm_data_prio0

{

INPUT_SECTION_ALIGN(4)

// allocate minimum of HEAP_SIZE to system heap

RESERVE(sys_heap, sys_heap_length = HEAP_SIZE, 4)

} > mem_block3_dm32

// all other uses of mem_block3_dm32

sys_heap

{

INPUT_SECTION_ALIGN(4)

// if any of mem_block3_dm32 is unused, add to system heap

RESERVE_EXPAND(sys_heap, sys_heap_length, 0, 4)

// define symbols to configure the heap for runtime support

ldf_heap_space = sys_heap;

ldf_heap_end = ldf_heap_space + sys_heap_length;

ldf_heap_length = ldf_heap_end - ldf_heap_space;

} > mem_block3_dm32

C/C++ Run-Time Model and Environment

1-380 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

In this example, the minimal size of the heap can be modified by changing
the definition of the HEAP_SIZE macro. If this value is larger than the
memory output section being used, the linker issues error li2040.

The following macros can be used to configure the sizes of the system heap
and stack, when using the default .ldf files. When using these macros, all
three must be defined, for any of the definitions to take effect.

• HEAP_SIZE – Defines the size of the system heap. A typical value
would be “7K”.

• STACK_SIZE – Defines the size of the system stack. A typical value
would be “8K”.

• STACKHEAP_SIZE – Defines the size of the combined area used for
system heap and system stack. A typical value would be “15K”.
Must be defined to be the sum of HEAP_SIZE and STACK_SIZE.

The default .ldf files support the placement of heaps in L1 or SDRAM
(where available). By default, L1 is used. To select alternate heap place-
ment, the following macro can be defined when linking:

• USE_SDRAM_HEAP – Causes SDRAM memory to be used for the sys-
tem heap. It provides large capacity but is slow to access. Enabling
data cache for the memory used reduces the performance impact.

Besides the default system heap, you can also define other heaps. See
Using Multiple Heaps for more information.

Standard Heap Interface

The standard functions, calloc and malloc, allocate a new object from
the default heap. If realloc is called with a null pointer, it too allocates a
new object from the default heap.

CrossCore Embedded Studio 1.1 1-381
C/C++ Compiler Manual for SHARC Processors

Compiler

Previously allocated objects can be deallocated with the free or realloc
functions. When a previously allocated object is resized with realloc, the
returned object is in the same heap as the original object.

The space_unused function returns the number of bytes unallocated in
the heap with index 0. Note that you may not be able to allocate all of this
space due to heap fragmentation and the overhead that each allocated
block needs.

Using Multiple Heaps
The C/C++ run-time library supports the standard heap management
functions calloc, free, malloc, and realloc. By default, a single heap,
called the default heap, serves all allocation requests that do not explicitly
specify an alternative heap. The default heap is defined in the standard
linker description file and the run-time header.

Any number of additional heaps can be defined. These heaps serve alloca-
tion requests that are explicitly directed to them. These additional heaps
can be accessed via the extension routines heap_calloc, heap_free,
heap_malloc, and heap_realloc. For more information, see Using the
Alternate Heap Interface.

Multiple heaps allow the programmer to serve allocations using
fast-but-scarce memory or slower-but-plentiful memory as appropriate.

The following sections cover:

• Defining a Heap

• Defining Additional Heaps in the IDE

• Defining Heaps at Runtime

• Tips for Working With Heaps

• Allocating C++ STL Objects to a Non-Default Heap

C/C++ Run-Time Model and Environment

1-382 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Using the Alternate Heap Interface

• Freeing Space

Defining a Heap

Heaps can be defined in the IDE or at runtime. In both cases, a heap has
three attributes:

• Start (base) address (the lowest usable address in the heap)

• Length (in words)

• User identifier (userid, a number >= 1)

The default system heap, defined at link-time, always has userid 0.
In addition, heaps have indices. This is like the userid, except that the
index is assigned by the system. All the allocation and deallocation
routines use heap indices, not heap user IDs. A userid can be converted
to its index using heap_lookup(). Be sure to pass the correct identifier to
each function.

Defining Additional Heaps in the IDE

The Startup Code/LDF Add-in allows you to configure and extend your
heaps through a convenient graphical interface:

• Modify the size of your heaps.

• Change whether they are in internal or external memory (where
available).

• Add additional heaps, or remove them.

CrossCore Embedded Studio 1.1 1-383
C/C++ Compiler Manual for SHARC Processors

Compiler

To add a new heap:

1. Expand your new project in a project navigation view such as Proj-
ect Explorer.

2. Double-click system.svc. The Startup Code/LDF component
appears in the System Configuration Overview dialog box.

3. Click the Startup Code/LDF tab at the bottom of the dialog box.

4. Click the LDF tab that appears at the left of the dialog box. The
LDF Configuration page appears.

5. In the Stack and Heaps area, click on System heap.

6. Click Add.... The Add User Heap dialog box appears, and you can
fill in the details of your new heap. Click OK when finished.

7. When you have modified the settings as required, save the changes,
via Ctrl+S, using File > Save, or by clicking on the floppy disk icon
in the toolbar; this will cause the IDE to generate an updated LDF
and related startup-code files, which will configure your heaps
during the application’s startup.

The same interface allows you to edit additional heaps or remove them,
via the Edit... and Remove... buttons, respectively.

Defining Heaps at Runtime

Heaps may also be defined and installed at runtime, using the heap_in-
stall() function:

int heap_install(void *base, size_t length, int userid);

This function can take any section of memory and start using it as a heap.
It returns the heap index allocated for the newly installed heap, or a nega-
tive value if there was some problem. (See Tips for Working With Heaps.)

C/C++ Run-Time Model and Environment

1-384 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Reasons why heap_install() may return an error status include, but are
not limited to:

• A heap using the specified userid already exists

• A new heap appears too small to be usable (length too small)

A heap is automatically initialized during installation. If necessary, a heap
can be re-initialized later on. For more information, see Freeing Space.

Tips for Working With Heaps

Not all memory in a heap is available to users. A few words are reserved
per heap and per allocation (rounded to ensure the allocation is two-word
aligned) which are used for housekeeping. Thus, a heap of 256 words is
unable to serve four blocks of 64 words.

Memory reserved for housekeeping precedes the allocated blocks. Thus,
if a heap begins at 0x0080 0000, this particular address is never returned to
the user program as the result of an allocation request; the first request
returns an address some way into the heap.

The base address of a heap must be appropriately aligned for a two-word
memory access. This means that allocations can then be used for vector
operations.

For C++ compliance, calls to malloc and calloc with a size of 0 will allo-
cate a block of size 1.

Allocating C++ STL Objects to a Non-Default Heap

C++ STL objects can be placed in a non-default heap through use of a
custom allocator. To do this, you must first create your custom allocator.
Below is an example custom allocator that you can use as a basis for your
own. The most important part of customalloc.h in most cases is the
allocate function, where memory is allocated to the STL object.

CrossCore Embedded Studio 1.1 1-385
C/C++ Compiler Manual for SHARC Processors

Compiler

Currently, the pertinent line of code assigns to the default heap (0):

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

Simply by changing the first parameter of heap_malloc(), you can allocate
to a different heap:

• 0 is the default heap

• 1 is the first user heap

• 2 is the second user heap

• And so on

Once you have created your custom allocator, you must inform your STL
object to use it. Note that the standard definition for “list”:

list<int> a;

is the same as writing:

list<int, allocator<int> > a;

where “allocator” is the default allocator. Therefore, we can tell list “a” to
use our custom allocator as follows:

list<int, customallocator<int> > a;

Once created, the list “a” can be used as normal. Also, example.cpp
(below) is a simple example that shows the custom allocator being used.

customalloc.h

template <class Ty>

class customallocator {

public:

typedef Ty value_type;

typedef Ty* pointer;

typedef Ty& reference;

C/C++ Run-Time Model and Environment

1-386 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

typedef const Ty* const_pointer;

typedef const Ty& const_reference;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

template <class Other>

struct rebind { typedef customallocator<Other> other; };

pointer address(reference val) const { return &val; }

const_pointer address(const_reference val)

const { return &val; }

customallocator(){}

customallocator(const customallocator<Ty>&){}

template <class Other>

customallocator(const customallocator<Other>&) {}

template <class Other>

customallocator<Ty>& operator=(const customallocator&)

{ return (*this); }

pointer allocate(size_type n, const void * = 0) {

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

cout << "Allocating 0x" << ty << endl;

return ty;

}

void deallocate(void* p, size_type) {

cout << "Deallocating 0x" << p << endl;

if (p) free(p);

}

void construct(pointer p, const Ty& val)

{ new((void*)p)Ty(val); }

void destroy(pointer p) { p->~Ty(); }

size_type max_size() const { return size_t(-1); } };

CrossCore Embedded Studio 1.1 1-387
C/C++ Compiler Manual for SHARC Processors

Compiler

example.cpp

#include <iostream>

#include <list>

#include <customalloc.h> // include your custom allocator

using namespace std;

main(){

cout << "creating list" << endl;

list <int, customallocator<int> > a;

 // create list with custom allocator

cout.setf(ios_base::hex,ios_base::basefield);

cout << "pushing some items on the back" << endl;

a.push_back(0xaaaaaaaa); // push items as usual

a.push_back(0xbbbbbbbb);

while(!a.empty()){

cout << "popping:0x" << a.front() << endl;

//read item as usual

a.pop_front(); //pop items as usual

}

cout << "finished." << endl;

}

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work in exactly the same way as the corresponding standard functions
without the heap_ prefix, except that they take an additional argument
that specifies the heap index.

These are the library functions that can be used to initialize the heaps, to
allocate memory, and to free memory; the functions are described in the
C/C++ Library Manual for SHARC Processors.

int heap_install(void base, size_t length, int userid);

int heap_init(int idx);

C/C++ Run-Time Model and Environment

1-388 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

void *heap_calloc(int idx, size_t nelem, size_t elsize)

void *heap_free(int idx, void *)

void *heap_malloc(int idx, size_t length)

void *heap_realloc(int idx, void *, size_t length)

int heap_space_unused(int idx);

The actual entry point names for the alternate heap interface routines have
an initial underscore. The stdlib.h standard header file defines equivalent
prototypes without the leading underscores, which are mapped onto the
library entry points using #pragma linkage_name identifier.

Note that for

heap_realloc(idx, NULL, length)

the operation is equivalent to

heap_malloc(idx, length)

However, for

heap_realloc(idx, ptr, length)

where ptr != NULL, the supplied idx parameter is ignored; the reallocation
is always done from the heap from which ptr was allocated.

Similarly,

heap_free(idx, ptr)

ignores the supplied index parameter, which is specified only for consis-
tency—the space indicated by ptr is always returned to the heap from
which it was allocated.

The heap_space_unused(int idx) function returns the number of words
unallocated in the heap with index idx. The function returns -1 if there is
no heap with the requested heap index.

CrossCore Embedded Studio 1.1 1-389
C/C++ Compiler Manual for SHARC Processors

Compiler

C++ Run-Time Support for the Alternate Heap Interface

The C++ run-time library provides support for allocation and release of
memory from an alternative heap via the new and delete operators.

Heaps should be initialized with the C run-time functions as described.
These heaps can then be used via the new and delete mechanism by
simply passing the heap ID to the new operator. There is no need to pass
the heap ID to the delete operator as the information is not required
when the memory is released.

The routines are used as in the example below.

#include <heapnew>

char *alloc_string(int size, int heapID)

{

char *retVal = new(heapID) char[size];

return retVal;

}

void free_string(char *aString)

{

delete aString;

}

Freeing Space

When space is “freed”, it is not returned to the “system”. Instead, freed
blocks are maintained on a free list within the heap in question. The
blocks are coalesced where possible.

It is possible to re-initialize a heap, emptying the free list and returning all
the space to the heap itself, using the heap_init function:

int heap_init(int index)

C/C++ Run-Time Model and Environment

1-390 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

This returns zero for success, and nonzero for failure. Note, however, that
this discards all records within the heap, so it may not be used if there are
any live allocations on the heap still outstanding.

Startup and Termination
When the processor starts running, it somehow has to transfer control to
the application’s main() function, and it has to ensure that, before doing
so, all the expected parts of the C/C++ run-time environment have been
set up, including:

• Registers, which must be configured according to the rules in
Registers.

• Heap and stack, which must be set up according to Controlling
System Heap Size and Placement and Managing the Stack.

• Global variables must have been initialized to their starting values.

• Constructors of any static global instances must have been run.

• The arguments to main(), argc, and argv, must have been set up.

This is the job of the startup code (or “C Run-Time Header”, or “CRT”).
The startup code is described in the System Run-Time Documentation, but
some additional information is provided in the following sections:

• Memory Initialization

• Global Constructors

• Support for argv/argc

Memory Initialization

When control flow reaches the start of main(), global and static variables
must have been initialized to their default values. When you build your
application, the toolchain arranges for the executable image to contain

CrossCore Embedded Studio 1.1 1-391
C/C++ Compiler Manual for SHARC Processors

Compiler

sections of memory that are either zero- or value-filled, depending on how
your data is declared. The image also contains sections that are filled with
executable code. Further details are in Memory Section Usage.

During development, when you load your application into your processor
using the IDE, the IDE copies the contents of those sections from your
executable image into the processor’s memory.

Once your application is complete, you have to change your application so
that you no longer rely on using the IDE to load it into memory. This can
be done by either:

• Creating a bootable image with the loader; see Bootable Images.

• Creating a non-bootable image with the memory initializer; see
Non-Bootable Images.

Bootable Images

Usually, you will use the elfloader utility to create a bootable image that
can be stored in non-volatile memory, such as a SPI flash, and loaded into
memory at power-up by the Boot Code. In this model, the Boot Code
arranges for all of your application’s code and data sections to be copied
into the final volatile memory space before control is transferred to your
application.

The elfloader utility processes your executable file, producing a
boot-loadable file which you can use to boot a target hardware system and
initialize its memory.

The boot loader, elfloader, operates on the executable file produced by
the linker. When you run elfloader as part of the compilation process
(using the -no-mem switch), the linker (by default) creates a *.dxe file for
processing with elfloader.

For details on this process, refer to the Loader and Utilities Manual, and to
your processor’s programming reference manual.

C/C++ Run-Time Model and Environment

1-392 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Non-Bootable Images

If producing an executable file that is not going to be boot-loaded into the
processor, you may use the mem21k utility to process your executable.

In this model, when the Boot Code transfers control to your application,
your application’s code and data have not yet all been transferred to their
final locations in volatile memory. Instead, the startup code (which is in
non-volatile memory) invokes the __lib_setup_memory run-time library
function, which processes the initialization stream. This performs the task
of transferring your application’s code and data to volatile memory.

The mem21k utility processes your executable file, producing an optimized
executable file in which all RAM memory initialization is stored in the
seg_init PM ROM section. This optimization has the advantage of ini-
tializing all RAM to its proper value before the call to main() and reducing
the size of an executable file by combining contiguous, identical initializa-
tions into a single block.

The memory initializer, mem21k, operates on the executable file produced
by the linker. When running mem21k as part of the compilation process,
the linker (by default) creates a *.dxe file for processing with mem21k.

The mem21k utility processes all the PROGBITS and ZERO_INIT sections
except the initialization section (seg_init), the run-time header section
(seg_rth), and the code section (seg_pmco). These sections contain the
initialization routines and data.

The C run-time header reads the seg_init section, generated by mem21k,
to determine which memory locations should be initialized to what values.
This process occurs during the __lib_setup_memory routine that is called
from the run-time header.

For more details, refer to the System Run-Time Documentation and the
Linker and Utilities Manual.

CrossCore Embedded Studio 1.1 1-393
C/C++ Compiler Manual for SHARC Processors

Compiler

Global Constructors

This section covers:

• Constructors and Destructors of Global Class Instances

• Constructors, Destructors and Memory Placement

Constructors and Destructors of Global Class Instances

Constructors for global class instances are invoked by the C/C++ run-time
header during start-up. There are several components that allow this to
happen:

• The associated data space for the instance

• The associated constructor (and destructor, if one exists) for the
class

• A compiler-generated “start” routine

• A compiler-generated table of such “start” routines

• A compiler-constructed linked-list of destructor routines

• The run-time header itself

The interaction of these components is as follows.

The compiler generates a “start” routine for each module that contains
globally-scoped class instances that need constructing or destructing.
There is at most one “start” routine per module; it handles all the glob-
ally-scoped class instances in the module:

• For each such instance, it invokes the instance’s constructor. This
may be a direct call, or it may be inlined by the compiler optimizer.

• If the instance requires destruction, the “start” routine registers this
fact for later, by including pointers to the instance and its destruc-
tor into a linked list.

C/C++ Run-Time Model and Environment

1-394 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The start routine is named after the first such instance encountered,
though the classes are not guaranteed to be constructed or destructed in
any particular order (with the exception that destructors are called in the
reverse order of the constructors). Such instances should not have any
dependency on construction order; the -check-init-order switch
(on page 1-87) is useful for verifying this during system development, as it
plants additional code to detect uses of unconstructed objects during
initialization.

A pointer to the “start” routine is placed into the ctdm section of the gen-
erated object file. When the application is linked, all ctdm sections are
mapped into the same ctdm output section, forming a table of pointers to
the “start” routines. An additional ctdml object is appended to the end of
the table; this contains a terminating NULL pointer.

When the run-time header is invoked, it calls _ctor_loop(), which walks
the table of ctdm sections, calling each pointed-to “start” function until it
reaches the NULL pointer from ctdml. In this manner, the run-time
header calls each global class instance’s constructor, indirectly through the
pointers to “start” functions.

When the program reaches exit(), either by calling it directly or by
returning from main(), the exit() routine follows the normal process of
invoking the list of functions registered through the atexit() interface.
One of these is a function that walks the list of destructors, invoking each
in turn (in reverse order from the constructors).

This function is registered with atexit() during the run-time header,
before main() is called.

 Functions registered with atexit() may not make reference to
global class instances, as the destructor for the instance may be
invoked before the reference is used.

CrossCore Embedded Studio 1.1 1-395
C/C++ Compiler Manual for SHARC Processors

Compiler

Constructors, Destructors and Memory Placement

By default, the compiler places the code for constructors and destructors
into the same section as any other function’s code. This can be changed
either by specifying the section specifically for the constructor or destruc-
tor (see #pragma section/#pragma default_section and Placement Support
Keyword (section)), or by altering the default destination section for gen-
erated code (see #pragma section/#pragma default_section and -section
id=section_name[,id=section_name...]). Note that if a constructor is
inlined into the “start” routine by the optimizer, such placement will have
no effect. For more information, see Inlining and Sections.

While normal compiler-generated code is placed into the CODE area, the
“start” routine is placed into the STI area. Both CODE and STI default to
the same section, but may be changed separately using #pragma default_-
section or the -section switch (as the “start” function is an internal
function generated by the compiler, its placement cannot be affected by
#pragma section).

The pointer to the “start” routine is placed into the ctdm section. This is
not configurable, as the invocation process relies on all of the “start” rou-
tine pointers being in the same section during linking, so that they form a
table. It is essential that all relevant ctdm sections are mapped during link-
ing; if a ctdm section is omitted, the associated constructor will not be
invoked during start-up, and run-time behavior will be incorrect.

If destructors are required, the compiler generates data structures pointing
to the class instance and destructor. These structures are placed into the
default variable-data section (the DATA area).

Compiler C++ Template Support

1-396 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Support for argv/argc

By default, the facility to specify arguments that are passed to your main()
(argv/argc) at run-time is enabled. However, to correctly set up argc and
argv requires additional configuration by the user. Modify your applica-
tion as follows:

• Define your command-line arguments in C by defining a variable
called “__argv_string”. When linked, your new definition over-
rides the default zero definition otherwise found in the C run-time
library. For example,
extern const char __argv_string[] = "-in x.gif -out

y.jpeg";

Compiler C++ Template Support
The compiler provides template support C++ templates as defined in the
ISO/IEC 14882:2003 C++ standard.

Template Instantiation
Templates are instantiated automatically by the prelinker during compila-
tion (see Compiler Components). This involves compiling files,
determining any required template instantiations, and then recompiling
those files making the appropriate instantiations. The process repeats until
all required instantiations have been made. Multiple recompilations may
be required in the case when a template instantiation is made that requires
another template instantiation to be made.

Exported Templates

The compiler supports the export keyword. An exported template does
not need to be present in a translation unit that uses the template. For

CrossCore Embedded Studio 1.1 1-397
C/C++ Compiler Manual for SHARC Processors

Compiler

example, the following is a valid C++ program consisting of two transla-
tion units:

// File 1

#include <iostream>
static void print(void) { std::cout << "File 1" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b);

int main()

{

 print();

 return maxii(7,8);

}

// File 2

#include <iostream>

static void print(void) { std::cout << "File 2" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b)

{

 print();

 return (a>b) ? a : b;

}

The first file makes use of the maxii() function exported by the second.
Unrelated to this, both files declare their own, private copy of the print()
function.

The two files are separate translation units; one is not included in the
other, so no linking errors arise due to the individual definitions of the
print()functions. If file1.c obtained file2.c’s definition of maxii() by
including file2.c into file1.c (whether explicitly or implicitly — see
Implicit Instantiation), file1.c would also include file2.c’s definition of
the print() function, leading to a linkage error.

When a file containing a definition of an exported template is compiled, a
file with a .et suffix is created and some extra information is included in

Compiler C++ Template Support

1-398 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

the associated .ti file. The .et files are used by the compiler to find the
translation units that define a given exported template.

Implicit Instantiation

As an alternative to Exported Templates, the compiler can use a method
called implicit instantiation, which is common practice. It results in having
both the specification and definition available at point of instantiation.

 Implicit instantiation does not conform to the ISO/IEC
14882:2003 C++ standard, and does not work with exported tem-
plates. Implicit instantiation is disabled by default. It can be
enabled via the -implicit-inclusion switch on page 1-88.

Implicit instantiation involves placing template specifications in a header
(for example, .h) file and the definitions in a source (for example, .cpp)
file. Any file being compiled that includes a header file containing tem-
plate specifications will instruct the compiler to implicitly include the
corresponding .cpp file containing the definitions of the compiler.

For example, you may have the header file tp.h

template <typename A> void func(A var);

and source file tp.cpp

template <typename A> void func(A var)
{
...code...
}

Two files file1.cpp and file2.cpp that include tp.h will have file tp.cpp
included implicitly to make the template definitions available to the
compilation.

CrossCore Embedded Studio 1.1 1-399
C/C++ Compiler Manual for SHARC Processors

Compiler

 Because the whole of the file is included, other definitions in the
.cpp file will also be visible, which can lead to problems if the .cpp
file contains definitions unrelated to the templates being
instantiated. Exported Templates avoids this problem.

When generating dependencies, the compiler will only parse each implic-
itly included .cpp file once. This parsing avoids excessive compilation
times in situations where a header file that implicitly includes a source file
is included several times. If the .cpp file should be included implicitly
more than once, the -full-dependency-inclusion switch (on page 1-88)
can be used. (For example, the file may contain macro guarded sections of
code.) This may result in more time required to generate dependencies.

Generated Template Files

Regardless of whether implicit instantiation is used or not, the compila-
tion process involves compiling one or more source files and generating a
.ti file corresponding to the source files being compiled. These .ti files
are then used by the prelinker to determine the templates to be instanti-
ated. The prelinker creates a .ii file and recompiles one or more of the
files instantiating the required templates.

The prelinker ensures that only one instantiation of a particular template
is generated across all objects. For example, the prelinker ensures that if
both file1.cpp and file2.cpp invoked the template function with an
int, that the resulting instantiation would be generated in just one of the
objects.

Identifying Un-Instantiated Templates

If the prelinker is unable to instantiate all the templates required for a par-
ticular link, a link error will occur. For example:

[Error li1021] The following symbols referenced in processor 'P0'

could not be resolved:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

Compiler C++ Template Support

1-400 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]' refer-

enced from '.\Debug\main.doj'

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

Linker finished with 1 error

Careful examination of the linker errors reveals which instantiations have
not been made. Below are some examples.

Missing instantiation:

Complex<short> Complex<short>::conjugate()

Linker Text:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]'

referenced from '.\Debug\main.doj'

Missing instantiation:

Complex<short> *Buffer<Complex<short>>::getAddress()

Linker Text:

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

Missing instantiation:

Short Complex<short>::getReal()

Linker Text:

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

CrossCore Embedded Studio 1.1 1-401
C/C++ Compiler Manual for SHARC Processors

Compiler

There could be many reasons for the prelinker being unable to instantiate
these templates, but the most common is that the .ti and .ii files associ-
ated with an object file have been removed. Only source files that can
contain instantiated templates will have associated .ti and .ii files, and
without this information, the prelinker may not be able to complete its
task. Removing the object file and recompiling will normally fix this
problem.

Another possible reason for un-instantiated templates at link time is when
implicit inclusion (described above) is disabled but the source code has
been written to require it. Explicitly compiling the .cpp files that would
normally have been implicitly included and adding them to the final link
is normally all that is needed to fix this.

Another likely reason for seeing the linker errors above is invoking the
linker directly. It is the compiler’s responsibility to instantiate C++ tem-
plates, and this is done automatically if the final link is performed via the
compiler driver. The linker itself contains no support for instantiating
templates.

File Attributes
A file attribute is a name-value pair that is associated with a binary object,
whether in an object file (.doj) or in a library file (.dlb). One attribute
name can have multiple values associated with it. Attribute names and val-
ues are strings. A valid attribute name consists of one or more characters
matching the following pattern:

[a-zA-Z_][a-zA-Z_0-9]*

An attribute value is a non-empty character sequence containing any char-
acters apart from NUL.

File Attributes

1-402 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Attributes help with the placement of run-time library functions. All of
the runtime library objects contain attributes which allow you to place
time-critical library objects into internal (fast) memory. Using attribute
filters in the LDF, you can place run-time library objects into internal or
external (slow) memory, either individually or in groups.

This section describes:

• Automatically-Applied Attributes

• Default LDF Placement

• Sections Versus Attributes

• Using Attributes

Automatically-Applied Attributes
By default, the compiler automatically applies a number of attributes
when compiling a C/C++ file.

For example, it applies the Content, FuncName and Encoding attributes.
These automatically-applied attributes can be disabled using the
-no-auto-attrs switch (on page 1-48). Figure 1-7 shows a Content attri-
bute tree.

CrossCore Embedded Studio 1.1 1-403
C/C++ Compiler Manual for SHARC Processors

Compiler

Content Attributes

The Content attributes can be used to map binary objects according to
their kind of content, as show by Table 1-47.

Figure 1-7. Content Attributes

Table 1-47. Values of the Content Attribute

Value Description

CodeData This is the most general value, indicating that the binary object contains a mix of
content types.

Code The binary object does not contain any global data, only executable code. This can
be used to map binary objects into program memory, or into read-only memory.

Data The binary object does not contain any executable code. The binary object may
not be mapped into dedicated program memory. The kinds of data used in the
binary object vary.

ZeroData The binary object contains only zero-initialized data. Its contents must be mapped
into a memory section with the ZERO_INIT qualifier, to ensure correct initializa-
tion.

File Attributes

1-404 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

FuncName Attributes

The FuncName attributes are multi-valued attributes whose values are all
the assembler linkage names of the defined names in obj.

Encoding Attributes

The Encoding attributes can be used to map binary objects according to
the encoding of code they contain, as shown by Table 1-48.

InitData The binary object contains only initialized global data. The contents may not be
mapped into a memory section that has the ZERO_INIT qualifier.

VarData The binary object contains initialized variable data. It must be mapped into
read-write memory, and may not be mapped into a memory section with the
ZERO_INIT qualifier.

ConstData The binary object contains only constant data (data declared with the C const
qualifier). The data may be mapped into read-only memory (but see also the
-const-read-write switch (on page 1-30) and its effects).

Empty The binary object contains neither functions nor global data.

Table 1-48. Values of the Encoding Attribute

Value Description

SW The binary object contains only short-word code (ADSP-214xx processors only).

NW The binary object contains only normal-word code.

Mixed The binary object contains a mixture of short-word and normal-word code
(ADSP-214xx processors only).

Table 1-47. Values of the Content Attribute (Cont’d)

Value Description

CrossCore Embedded Studio 1.1 1-405
C/C++ Compiler Manual for SHARC Processors

Compiler

Default LDF Placement
The default .ldf file is written so that the order of preference for putting
an object in section seg_dmda or seg_pmco depends on the value of the
prefersMem attribute. Precedence is given in the following order:

1. Highest priority is given to binary objects that have a prefersMem
attribute with a value of internal.

2. Next priority is given to binary objects that have no prefersMem
attribute, or a prefersMem attribute with a value that is neither
internal nor external.

3. Lowest priority is given to binary objects with a prefersMem attri-
bute with the value external.

Although the default .ldf files only reference the values internal and
external, prefersMem may have other values. For example, an object using
a value such as L2 will be given second priority, as the value is neither
internal nor external. You may modify your .ldf file to assign appropriate
priority to any value you choose, by mapping objects with higher-priority
before objects with lower-priority values.

The prefersMemNum attribute is similar to the prefersMem attribute, but is
given numerical values instead of textual values. This makes it easier to
assign priority when there are many different levels, because you can use
relational comparisons in the .ldf file instead of just equalities and
inequalities. Table 1-49 shows the numerical values used by the run-time
library for each corresponding prefersMem attribute value.

Table 1-49. Values for prefersMemNum Attribute

prefersMem Attribute Value prefersMemNum Attribute Value

internal 30

any 50

external 70

File Attributes

1-406 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Sections Versus Attributes
File attributes and section qualifiers (on page 1-401) can be thought of as
being somewhat similar, since they can both affect how the application is
linked. There are important differences, however. These differences will
affect whether you choose to use sections or file attributes to control the
placement of code and data.

Granularity

Individual components—global variables and functions—in a binary
object can be assigned different sections, then those section assignments
can be used to map each component of the binary object differently. In
contrast, an attribute applies to the whole binary object. This means you
do not have as fine control over individual components using attributes as
when using sections.

“Hard” Versus “Soft”

A section qualifier is a hard constraint: when the linker maps the object
file into memory, it must obey all the section qualifiers in the object file,
according to instructions in the .LDF file. If this cannot be done, or if the
.LDF file does not give sufficient information to map a section from the
object file, the linker will report an error.

With attributes, the mapping is soft: the default LDFs use the prefersMem
attribute as a guide to give a better mapping in memory, but if this cannot
be done, the linker will not report an error. For example, if there are more
objects with prefersMem=internal than will fit into internal memory, the
remaining objects will spill over into external memory. Likewise, if there
are less objects with the attribute prefersMem!=external than are needed
to fill internal memory, some objects with the prefersMem=external attri-
bute may get mapped to internal memory.

Section qualifiers are rules that must be obeyed, while attributes are guide-
lines, defined by convention, that can be used if convenient and ignored if

CrossCore Embedded Studio 1.1 1-407
C/C++ Compiler Manual for SHARC Processors

Compiler

inconvenient. The Content attribute is an example: you can use the
Content attribute to map Code and ConstData binary objects into
read-only memory, if this is a convenient partitioning of your application.
However, you need not do so if you choose to map your application
differently.

Number of Values

Any given element of an object file is assigned exactly one section quali-
fier, to determine into which section it should be mapped. In contrast, an
object file may have many attributes (or even none), and each attribute
may have many different values. Since attributes are optional and act as
guidelines, you need only pay attention to the attributes that are relevant
to your application.

Using Attributes
You can add attributes to a file in two ways:

• Use #pragma file_attr (on page 1-267).

• Use the -file-attr switch (on page 1-36).

Refer to “Example 1” and “Example 2” on the use of attributes.

The run-time libraries have attributes associated with the objects in them.
For more information on the attributes in run-time library objects, see
“Library Attributes” in the C/C++ Library Manual for SHARC Processors.

Example 1

This example demonstrates how to use attributes to encourage the place-
ment of library functions in internal memory.

File Attributes

1-408 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Suppose the file test.c exists, as shown below:

#define MANY_ITERATIONS 500
void main(void) {

int i;
for (i = 0; i < MANY_ITERATIONS; i++) {

fft_lib_function();
frequently_called_lib_function();

}
rarely_called_lib_function();

}

Also suppose:

• The objects containing frequently_called_lib_function and
rarely_called_lib_function are both in the standard library, and
have the attribute prefersMem=any.

• There is only enough internal memory to map fft_lib_function
(which has prefersMem=internal) and one other library function
into internal memory.

• The linker chooses to map rarely_called_lib_function to inter-
nal memory.

For optimal performance in this example, frequently_called_lib_func-
tion should be mapped to the internal memory in preference to
rarely_called_lib_function.

The .ldf file defines the following macro $OBJS_LIBS_INTERNAL to store
all the objects that the linker should try to map to internal memory:

$OBJS_LIBS_INTERNAL =
$OBJECTS{prefersMem("internal")},
$LIBRARIES{prefersMem("internal")};

If they do not all fit in internal memory, the remainder get placed in exter-
nal memory – no linker error will occur. To add the object that contains

CrossCore Embedded Studio 1.1 1-409
C/C++ Compiler Manual for SHARC Processors

Compiler

frequently_called_lib_function to this macro, extend the definition to
read:

$OBJS_LIBS_INTERNAL =

$OBJECTS{prefersMem("internal")},

$LIBRARIES{prefersMem("internal")},

$LIBRARIES{ libFunc("frequently_called_lib_function") };

This ensures that the binary object that defines frequently_called_lib_-
function is among those to which the linker gives highest priority when
mapping binary objects to internal memory.

Note that it is not necessary for you to know which binary object defines
frequently_called_lib_function (or even which library). The binary
objects in the run-time libraries all define the libFunc attribute so that
you can select the binary objects for particular functions without needing
to know exactly where in the libraries a function is defined.

The modified line uses this attribute to select the binary object(s) for fre-
quently_called_lib_function and append them to the
$OBJS_LIBS_INTERNAL macro. The .ldf file maps objects in
$OBJS_LIBS_INTERNAL to internal memory in preference to other objects.
Therefore, frequently_called_lib_function gets mapped to L1.

Example 2

Suppose you want the contents of test.c to get mapped to external mem-
ory by preference. You can do this by adding the following pragma to the
top of test.c:

#pragma file_attr("prefersMem=external")

or use the -file-attr switch on the following command line:

cc21k -file-attr prefersMem=external test.c

Implementation Defined Behavior

1-410 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Both of these methods will mean that the resulting object file will have the
attribute prefersMem=external. The .ldf files give objects with this attri-
bute the lowest priority when mapping objects into internal memory, so
the object is less likely to consume valuable internal memory space which
could be more usefully allocated to another function.

 File attributes are used as guidelines rather than rules. If space is
available in internal memory after higher-priority objects have been
mapped, it is permissible for objects with prefersMem=external to
be mapped into internal memory.

Implementation Defined Behavior
Each of the language standards supported by the compiler have implemen-
tation defined behavior for a list of areas. The implementation used by the
compilers is detailed in this section.

Enumeration Type Implementation Details
The compiler by default implements the underlying type for enumerations
as the first type from the following list that can be used to represent all the
values in the specified enumeration: int, unsigned int, long, unsigned
long, long long, unsigned long long. If int, long or long long are
suitable and there are no negative enumerations constant values the
unsigned type for the same size is selected (i.e. unsigned int rather than
int). Enumeration constant values can be any integral type including long
long and unsigned long long.

Enumerations types being implemented as long long or unsigned long
long types is an Analog Devices extension to ANSI C89 standard
(ISO/IEC 9899:1990). Allowing enumerations constants to be integral
types other than int is an Analog Devices extension to the ANSI C89 and
ANSI C99 (ISO/IEC 9899:1999) standards. These extensions can be
disabled by using the -enum-is-int switch.

CrossCore Embedded Studio 1.1 1-411
C/C++ Compiler Manual for SHARC Processors

Compiler

For more information, see -enum-is-int.

When -enum-is-int is used the compiler issues error cc0066 "enumera-
tion value is out of "int" range" when it encounters enumeration constant
values that cannot be held using an int type. Warning cc1661 "enumera-
tion value is greater than int type" is issued when larger than int type
enumeration values are used and not compiling with the -enum-is-int
switch.

The different underlying types used by the compiler to implement enu-
merations can give rise to other compiler warnings. For example in the
following enumeration the underlying type will be unsigned int which will
result in warning cc0186 "pointless comparison of unsigned integer with
zero".

typedef enum { v1, v2 } e1;

void check (e1 v) {

 if (v < 0) /* pointless comparison if e1 is unsigned */
 printf(“out of range”);

}

If a negative enumeration constant was added to the definition of e1 or if
the example was compiled with the -enum-is-int switch the underlying
type used will be signed int and there would be no warning issued for the
comparison.

Implementation Defined Behavior

1-412 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

ISO/IEC 9899:1990 C Standard (C89 Mode)
The contents of this section refer to Annex G of the ISO/IEC 9899:1990
C Standard; subsection numbers such as 5.1.1.3 refer to the relevant sec-
tion of that Standard, which has some implementation-defined aspect.

G3.1 Translation

5.1.1.3 How a diagnostic is identified

The compiler will emit descriptive diagnostics via the standard error
stream at compile time (e.g. “cc0223: function declared implicitly”) or as
annotations in generated assembly files.

G3.2 Environment

5.1.2.2.1 The semantics of the arguments to main

By default, argv[0] is a NULL pointer.

The values given to the strings pointed to be the argv argument can be
defined by the user. For more information, see Support for argv/argc.

5.1.2.3 What constitutes an interactive device

An interactive device is considered a paired display screen and keyboard.

G3.3 Identifiers

6.1.2 The number of significant initial characters (beyond 31) in an
identifier without external linkage

The number of significant initial characters in an identifier without exter-
nal linkage is 15,000.

CrossCore Embedded Studio 1.1 1-413
C/C++ Compiler Manual for SHARC Processors

Compiler

6.1.2 The number of significant initial characters (beyond 6) in an iden-
tifier with external linkage

Identifiers with external linkage are treated in the same way as identifiers
without.

6.1.2 Whether case distinctions are significant in an identifier with
external linkage

Case distinctions are significant.

G3.4 Characters

5.2.1 The members of the source and execution character sets, except as
explicitly specified in this International Standard

The compiler supports the non-standard characters "$" and "`" (ASCII
39).

5.2.1.2 The shift states used for the encoding of multi-byte characters

No shift states are used for the encoding of multi-byte characters.

5.2.4.2.1 The number of bits in a character in the execution character
set

32 Bits.

6.1.3.4 The mapping of members of the source character set (in charac-
ter constants and string literals) to members of the execution character
set

Characters in the source file are interpreted as ASCII values, which are
also used in the execution environment.

Implementation Defined Behavior

1-414 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

6.1.3.4 The value of an integer character constant that contains a char-
acter or escape sequence not represented in the basic execution set or the
extended character set for a wide character constant

An unrecognized escape sequence will have the escape character dropped.
i.e. '\k' becomes 'k'.

6.1.3.4 The value of an integer character constant that contains more
than one character or a wide character constant that contains more than
one multi-byte character

An integer character constant may contain 1 character. Using more than 1
character will result in warning cc2226 being issued and all but the last
character being discarded.

Where a wide character contains more than one multi-byte character, only
the first character is retained and warning cc0026 will be issued. Subse-
quent characters are discarded

6.1.3.4 The current locale used to convert multi-byte characters into
corresponding wide characters (codes) for a wide character constant

Only the "C" locale is supported in Analog Devices toolchain and
processors.

6.2.1.1 Whether a "plain" char has the same range of values as signed
char or unsigned char

A "plain" char has the same range and value as a signed char.

CrossCore Embedded Studio 1.1 1-415
C/C++ Compiler Manual for SHARC Processors

Compiler

G3.5 Integers

6.1.2.5 The representations and sets of values of the various types of
integers

The representation is shown in Table 1-50.

6.2.1.2 The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented

When converting an unsigned integer to a signed integer of equal length,
the exact value of the unsigned integer will be copied to the signed integer.
If the sign bit is set, this will result in a negative number.

When converting a signed integer to a smaller signed integer, the lower
bits of the signed integer (of the size of the smaller signed integer) are cop-
ied to the smaller signed integer. If the top-most copied bit is set, this will
result in a negative number.

Table 1-50. Representations of Integer Types

Type Width Minimum Value Maximum Value

(signed) char 32 bits -2147483648 2147483647

unsigned char 32 bits 0 4294967295

(signed) short 32 bits -2147483648 2147483647

unsigned short 32 bits 0 4294967295

(signed) int 32 bits -2147483648 2147483647

unsigned int 32 bits 0 4294967295

(signed) long 32 bits -2147483648 2147483647

unsigned long 32 bits 0 4294967295

(signed) long long 64 bits -9223372036854775808 9223372036854775807

unsigned long long 64 bits 0 18446744073709551615

Implementation Defined Behavior

1-416 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

6.3 The results of bitwise operations on signed integers

The results of the operations are shown in Table 1-51.

6.3.5 The sign of the remainder on integer division

The sign of the remainder on integer division will be the same as the sign
of the first operand of the remainder operation.

6.3.7 The result of a right shift of a negative-valued signed integral type

Right shifts will retain the sign bit on a signed integer. All other bitwise
operations treat signed integers as unsigned.

G3.6 Floating-Point

6.1.2.5 The representations and sets of values of the various types of
floating-point numbers

The representations and value ranges are:

• float

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

Table 1-51. Bitwise Operations on Signed Integers

~ Same as unsigned integer

<< Same as unsigned integer

>> Will fill upper bits with ones if sign bit was originally set

& Same as unsigned integer

^ Same as unsigned integer

| Same as unsigned integer

CrossCore Embedded Studio 1.1 1-417
C/C++ Compiler Manual for SHARC Processors

Compiler

• double (default setting)

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

• double (when compiling with “-double-size-64”)

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

• long double

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

6.2.1.3 The direction of truncation when an integral number is con-
verted to a floating-point number that cannot exactly represent the
original value

Round to nearest, ties to even.

6.2.1.4 The direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number

Round to nearest, ties to even.

G3.7 Arrays and Pointers

6.3.3.4, 7.1.1 The type of integer required to hold the maximum size of
an array—that is, the type of the sizeof operator, size_t

long unsigned int.

Implementation Defined Behavior

1-418 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

6.3.4 The result of casting a pointer to an integer or vice-versa

A cast from pointer to integer results in the most-significant bits being
discarded if the size of the pointer is larger than the integer. If the pointer
is smaller than the integer type being cast to, the integer will be zero
extended.

A cast from integer to pointer results in the most-significant bits being
discarded if the size of the integer is larger that the pointer. If the integer
is smaller than the pointer type being cast to, the pointer will be
sign-extended.

6.3.6, 7.1.1 The type of integer required to hold the difference between
two pointers to elements of the same array, ptrdiff_t

long int.

G3.8 Registers

6.5.1 The extent to which objects can actually be placed in registers by
use of the register storage-class specifier

The register storage class specifier is ignored.

G3.9 Structures, Unions, Enumerations and Bit-Fields

6.3.2.3 A member of a union object is accessed using a member of a dif-
ferent type

The data stored in the appropriate location is interpreted as the type of the
member accessed.

CrossCore Embedded Studio 1.1 1-419
C/C++ Compiler Manual for SHARC Processors

Compiler

6.5.2.1 The padding and alignment of members of structures. This
should present no problem unless binary data written by one implemen-
tation are read by another.

Within a structure, members of the fundamental types are aligned on a
multiple of their size. Structures are aligned on the strictest alignment of
any of their members, but are always aligned to at least 32 bits.

6.5.2.1 Whether a "plain" int bit-field is treated as a signed int bit-field
or as an unsigned int bit-field

A "plain" int bit-field is treated as a signed int bit-field (including
bit-fields of size 1).

6.5.2.1 The order of allocation of bit-fields within a unit

Low to High Order.

6.5.2.1 Whether a bit-field can straddle a storage-unit boundary

A bit-field will be placed in an adjacent storage unit instead of
overlapping.

6.5.2.2 The integer type chosen to represent the values of an enumera-
tion type

By default, the compiler defines enumeration types with integral types
larger than int, if int is insufficient to represent all the values in the enu-
meration. The compiler can be forced to use only int through the use of
the -enum-is-int switch (on page 1-34).

G3.10 Qualifiers

6.5.3 What constitutes an access to an object that has volatile-qualified
type

Any reference to a volatile-qualified object is considered to constitute an
access.

Implementation Defined Behavior

1-420 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

G3.11 Declarators

6.5.4 The maximum number of declarators that may modify an arithme-
tic, structure, or union type

No maximum limit is enforced.

G3.12 Statements

6.6.4.2 The maximum number of case values in a switch statement

There is no hard-coded maximum number of case values in a switch
statement.

G3.13 Preprocessing Directives

6.8.1 Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set;
whether such a character constant may have a negative value

The character set used is the same.

Negative values are allowed.

6.8.2 The method for locating includable source files

Include files, whose names are not absolute path names and that are
enclosed in "..." when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch (on page 1-41) in the
order they are listed on the command line

3. Any directories on the standard list: <install_path>\...\include

CrossCore Embedded Studio 1.1 1-421
C/C++ Compiler Manual for SHARC Processors

Compiler

Note: If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

6.8.2 The support of quoted names for includable source files

Quoted file names are supported.

6.8.2 The mapping of source file character sequences

The source file character sequence is mapped to its corresponding ASCII
character sequence.

6.8.6 The behavior on each recognized #pragma directive

For more information, see Pragmas.

6.8.8 The definitions for __DATE__ and __TIME__ when respectively,
the data and time of translation are not available

The macros __DATE__ and __TIME__ will be defined as "[date unknown]"
and "[time unknown]" respectively.

G3.14 Library Functions

7.1.6 The null pointer constant to which the macro NULL expands

NULL expands to ((void *)0).

7.2 The diagnostic printed by and the termination behavior of the assert
function

ASSERT [{failed assertion expression}] fails at "{file name}":{line number}

Implementation Defined Behavior

1-422 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

7.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl,
islower, isprint, and isupper functions

The following characters are tested:

• isalnum - 0-9, a-z or A-Z

• isalpha - a-z or A-Z

• iscntrl - 0x00-0x1F or 0x7F

• islower - a-z

• isprint - 0x20-0x7E

• isupper - A-Z

7.5.1 The values returned by the mathematics functions on domain
errors

The values are:

• acos: 0

• asin: 0

• atan2: 0

• log: 0

• log10: 0

• pow: 0

• sqrt: 0

• fmod: 0

CrossCore Embedded Studio 1.1 1-423
C/C++ Compiler Manual for SHARC Processors

Compiler

7.5.1 Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range errors

The state of errno should not be relied upon unless stated explicitly in the
documentation.

7.5.6.4 Whether a domain error occurs or zero is returned when the
fmod function has a second argument of zero

Zero is returned.

7.7.1.1 The set of signals for the signal function

The following signals are supported:

• SIGTERM

• SIGABRT

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

7.7.1.1 The semantics for each signal recognized by the signal function

After the handler is invoked, the disposition of the signal is not reset to
SIG_DFL.

7.7.1.1 The default handling and the handling at program startup for
each signal recognized by the signal function

By default, SIGABRT will cause the program to terminate. All other signals
are ignored by default.

Implementation Defined Behavior

1-424 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

7.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior
to the call of a signal handler, the blocking of the signal that is
performed

Blocking of signals is not performed prior to the call of the signal handler.

7.7.1.1 Whether the default handling is reset if the SIGILL signal is
received by a handler specified to the signal function

If the SIGILL signal is received, the reset to SIG_DFL is not performed.

7.9.2 Whether the last line of a text stream requires a terminating
new-line character

The last line should have a terminating new-line character.

7.9.2 Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in

The space characters will appear.

7.9.2 The number of null characters that may be appended to data writ-
ten to a binary stream

Any number of null characters may be appended.

7.9.3 Whether the file position indicator of an append mode stream is
initially positioned at the beginning or end of the file

End of the file.

7.9.3 Whether a write on a text stream causes the associated file to be
truncated beyond that point

The file will become truncated.

7.9.3 The characteristics of file buffering

stderr is unbuffered, stdio is line-buffered, and other streams are fully
buffered.

CrossCore Embedded Studio 1.1 1-425
C/C++ Compiler Manual for SHARC Processors

Compiler

7.9.3 Whether a zero-length file actually exists

A zero-length file does exist.

7.9.3 The rule for composing valid file names

Any basic ASCII character that isn’t reserved by the file system is valid.

7.9.3 Whether the same file can be open multiple times

A file can be opened multiple times.

7.9.4.1 The effect of the remove function on an open file

There will be no effect on the file and the function will return -1.

7.9.4.2 The effect if a file with the new name exists prior to a call to the
rename function

There will be no effect on the files and the function will return -1.

7.9.6.1 The output for %p conversion in the fprintf function

The pointer address will be printed as an 8-character hexadecimal value.
e.g. 00004010.

7.9.6.2 The input for %p conversion in the fscanf function

All valid values that can be interpreted as a hexadecimal value will be read
until an invalid value or line break is reached, at which point no further
characters are read. if the value is larger than can be stored in an 8-charac-
ter hexadecimal, then the value will saturate.

7.9.6.2 The interpretation of a - character that is neither the first nor the
last character in the scanlist for %[conversion in the fscanf function

A hyphen does not infer an inclusive range of values. e.g. %[0-9] will look
for a sequence of '0', '-' and '5' chars.

Implementation Defined Behavior

1-426 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

7.9.9.1, 7.9.9.4 The value to which the macro errno is set by the fgetpos
or ftell function on failure

errno should never be relied upon.

7.9.10.4 The messages generated by the perror function

errno should never be relied upon, so the error messages returned by this
function should not be relied upon.

7.10.3 The behavior of the calloc, malloc, or realloc function if the size
requested is zero

This is equivalent to a size request of 1.

7.10.4.1 The behavior of the abort function with regard to open and
temporary files

abort will cause execution to jump to exit as if the program had run to
the end of main.

7.10.4.3 The status returned by the exit function if the value of the
argument is other than zero, EXIT_SUCCESS, or EXIT_FAILURE

The exit function never returns.

7.10.4.4 The set of environment names and the method for altering the
environment list used by the getenv function

The getenv function always returns NULL.

7.10.4.5 The contents and mode of execution of the string by the system
function

The system function always returns 0 and has no effect.

7.11.6.2 The contents of the error message strings returned by the
strerror function

"There are no error strings defined!".

CrossCore Embedded Studio 1.1 1-427
C/C++ Compiler Manual for SHARC Processors

Compiler

7.12.1 The local time zone and Daylight Saving Time

This implementation of time.h does not support either daylight saving or
time zones and hence this function will interpret the argument as Coordi-
nated Universal Time (UTC).

7.12.2.1 The era for the clock function

The era for the clock is the number of clock ticks since the start of pro-
gram execution.

ISO/IEC 9899:1999 C Standard (C99 Mode)
The contents of this section refer to Annex J of the ISO/IEC 9899:1999 C
Standard; the subsection numbers refer to parts of that Standard which
have implementation-defined aspects.

J3.1 Translation

3.10, 5.1.1.3 How a diagnostic is identified

The compiler will emit descriptive diagnostics via the standard error
stream at compile time (e.g. “cc0223: function declared implicitly”) or as
annotations in generated assembly files.

5.1.1.2 Whether each non-empty sequence of white-space characters
other than new-line is retained or replaced by one space character in
translation phase 3

Non-empty sequences of white-space characters are retained in translation
phase 3.

Implementation Defined Behavior

1-428 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

J3.2 Environment

5.1.1.2 The mapping between physical source file multi-byte characters
and the source character set in translation phase 1

When a multi-byte character is encountered, the compiler will interpret
the constituent bytes as ASCII characters irrespective of what was
intended by the author.

5.1.2.1 The name and type of the function called at program startup in a
freestanding environment

The name of the function called at program startup is:

int main();

or, alternatively:

int main(int argc, char *argv[]);

5.1.2.1 The effect of program termination in a freestanding
environment

On program termination, functions registered by the atexit function are
called in reverse order of registration and then the processor is placed in an
IDLE state.

5.1.2.2.1 An alternative manner in which the main function may be
defined

The default startup code source, which calls 'main', is provided and can be
configured by the user.

Alternatively, startup code can be generated in the project settings within
the IDE.

CrossCore Embedded Studio 1.1 1-429
C/C++ Compiler Manual for SHARC Processors

Compiler

5.1.2.2.1 The values given to the strings pointed to by the argv argu-
ment to main

By default, argv[0] is a NULL pointer.

The values given to the strings pointed to by the argv argument can be
defined by the user. For more information, see Support for argv/argc.

5.1.2.3 What constitutes an interactive device

An interactive device is considered a paired display screen and keyboard.

7.14 The set of signals, their semantics, and their default handling

The following signals are supported:

• SIGTERM

• SIGABRT

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

7.14 After the handler is invoked, the disposition of the signal is not
reset to SIG_DFL

By default, these signals are ignored.

7.14.1.1 Signal values other than SIGFPE, SIGILL, and SIGSEGV that
correspond to a computational exception

There are no other signal values that correspond to a computational
exception.

Implementation Defined Behavior

1-430 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

7.14.1.1 Signals for which the equivalent of signal(sig, SIG_IGN); is
executed at program startup

• SIGTERM

• SIGABRT

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

7.20.4.5 The set of environment names and the method for altering the
environment list used by the getenv function

There is no default operating system and getenv will always return NULL.

7.20.4.6 The manner of execution of the string by the system function

The system function always returns 0.

J3.3 Identifiers

6.4.2 Which additional multi-byte characters may appear in identifiers
and their correspondence to universal character names

Multi-byte characters may not be used in identifiers.

5.2.4.1, 6.4.2 The number of significant initial characters in an
identifier

The maximum number of significant initial characters in an identifier is
15,000.

CrossCore Embedded Studio 1.1 1-431
C/C++ Compiler Manual for SHARC Processors

Compiler

J3.4 Characters

The number of bits in a byte

32 bits.

5.2.1 The values of the members of the execution character set

The values of the execution character set are shown in Table 1-52 (with
unprintable characters left blank).

5.2.2 The unique value of the member of the execution character set
produced for each of the standard alphabetic escape sequences

These values are shown in Table 1-53.

Table 1-52. The Execution Character Set

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0

0x1

0x2 (space) ! “ # $ % & ‘ () * + , - . /

0x3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4 @ A B C D E F G H I J K L M N O

0x5 P Q R S T U V W X Y Z [\] ^ _

0x6 ‘ a b c d e f g h i j k l m n o

0x7 p q r s t u v w x y z { | } ~ (DEL)

Table 1-53. Escape Sequences in the Execution Character Set

Escape Value

\a 0x7

\b 0x8

\f 0xC

\n 0xA

Implementation Defined Behavior

1-432 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

6.2.5 The value of a char object into which has been stored any character
other than a member of the basic execution character set

The resulting value is derived from a cast of the character to signed int,
which will not affect the value of the character.

6.2.5, 6.3.1.1 Which of signed char or unsigned char has the same
range, representation and behavior as "plain" char

A "plain" char has the same range and value as a signed char.

6.4.4.4, 5.1.1.2 The mapping of members of the source character set (in
character constants and string literals) to members of the execution char-
acter set

Characters in the source file are interpreted as ASCII values, which are the
same values used in the execution environment.

6.4.4.4 The value of an integer character constant containing more than
one character or containing a character or escape sequence that does not
map to a single-byte execution character

An integer character constant may contain 1 character. Using more than 1
character will result in warning cc2226 being issued and all but the last
character being discarded. No escape characters other than those specified
in the C99 standard are supported, and these all map to a single byte in
the execution environment.

\r 0xD

\t 0x9

\v 0xB

Table 1-53. Escape Sequences in the Execution Character Set (Cont’d)

Escape Value

CrossCore Embedded Studio 1.1 1-433
C/C++ Compiler Manual for SHARC Processors

Compiler

6.4.4.4 The value of a wide character constant containing more than one
multi-byte character, or containing a multi-byte character or escape
sequence not represented in the extended execution character set

Where a wide character contains more than one multi-byte character, only
the first character is retained and warning cc0026 will be issued. Subse-
quent characters are discarded. No escape characters other than those
specified in the C99 standard are supported, and these all map to a single
byte in the execution environment.

6.4.4.4 The current locale used to convert a wide character constant con-
sisting of a single multi-byte character that maps to a member of the
extended execution character set into a corresponding wide character
code

Only the "C" locale is supported in Analog Devices toolchain and
processors.

6.4.5 The current locale used to convert a wide string literal into corre-
sponding wide character codes

Only the "C" locale is supported in Analog Devices toolchain and
processors.

6.4.5 The value of a string literal containing a multi-byte character or
escape sequence not represented in the execution character set

There are no escape sequences outside the basic or extended character sets.

J3.5 Integers

6.2.5 Any extended integer types that exist in the implementation

None.

Implementation Defined Behavior

1-434 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

6.2.6.2 Whether signed integer types are represented using sign and
magnitude, two’s complement, or one’s complement, and whether the
extraordinary value is a trap representation or an ordinary value

Two’s Complement:

• The sign bit being 1 and all value bits being zero is considered a
normal number.

6.3.1.1 The rank of any extended integer type relative to another
extended integer type with the same precision

N/A.

6.3.1.3 The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an object of
that type

The hexadecimal value is copied and then interpreted as signed. e.g. MAX-
_UINT becomes -1.

6.5 The results of some bitwise operations on signed integers

Right shifts will retain the sign bit on a signed integer. All other bitwise
operations treat signed integers as unsigned.

J3.6 Floating-Point

5.2.4.2.2 The accuracy of the floating-point operations and of the
library functions in the <math.h> and <complex.h> that return float-
ing-point results.

This is a conforming freestanding implementation of C99. The accuracy
of the library functions in these headers are therefore undocumented.

5.2.4.2.2 The rounding behaviors characterized by non-standard values
of FLT_ROUNDS

FLT_ROUNDS is a standard value.

CrossCore Embedded Studio 1.1 1-435
C/C++ Compiler Manual for SHARC Processors

Compiler

5.2.4.2.2 The evaluation methods characterized by non-standard nega-
tive values of FLT_EVAL_METHOD

FLT_EVAL_METHOD is undefined.

6.3.1.4 The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original value

Round to nearest, ties to even.

6.3.1.5 The direction of rounding when a floating-point number is con-
verted to a narrower floating-point number

Round to nearest, ties to even.

6.4.4.2 How the nearest representable value or the larger or smaller rep-
resentable value immediately adjacent to the nearest representable value
is chosen for certain floating constants

FLT_RADIX is defined as 2 in <float.h>, so floating-point constants are
represented using standards-conforming rounding.

6.5 Whether and how floating expressions are contracted when not dis-
allowed by the FP_CONTRACT pragma

This is a conforming freestanding implementation of C99. The FP_CON-
TRACT pragma is therefore not supported.

7.6.1 The default the state for the FENV_ACCESS pragma

This is a conforming freestanding implementation of C99, and the FENV_-
ACCESS pragma is only used for accessing the floating-point environment
fenv.h - a header not required for such an implementation. As such this
pragma is not supported.

Implementation Defined Behavior

1-436 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

7.6, 7.12 Additional floating-point exceptions, rounding modes, envi-
ronments and classification, and their macro names

There are no additional floating-point exceptions, rounding modes, envi-
ronments or classifications.

7.12.2 The default state for the FP_CONTRACT pragma

This is a conforming freestanding implementation of C99. The FP_CON-
TRACT pragma is therefore not supported.

F.9 Whether the "inexact" floating-point exception can be raised when
the rounded result actually does equal the mathematical result in an IEC
60559 conformant implementation

The "inexact" floating-point exception is not supported for SHARC
processors.

 F.9 Whether the "underflow" (and "inexact") floating-point exception
can be raised when a result is tiny but not inexact in an IEC 60559 con-
formant implementation

The "inexact" floating-point exception is not supported on SHARC
processors.

The "underflow" floating-point exception is not enabled by default on
SHARC processors.

CrossCore Embedded Studio 1.1 1-437
C/C++ Compiler Manual for SHARC Processors

Compiler

ISO/IEC 14822:2003 C++ Standard (C++ Mode)
The subsection of this section refer to parts of the ISO/IEC 14822:2003
C++ Standard which have implementation-defined aspects.

1.7 The C++ Memory Model

The fundamental storage unit in the C + + memory model is the byte. A
byte is at least large enough to contain any member of the basic execu-
tion character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined.

32 bits.

1.9 Program Execution

What constitutes an interactive device is implementation-defined.

An interactive device is considered a paired display screen and keyboard.

2.1 Phases of Translation

Physical source file characters are mapped, in an implementa-
tion-defined manner, to the basic source character set (introducing
new-line characters for end-of-line indicators) if necessary.

Characters in the source file are interpreted as ASCII values, which are
also used in the execution environment.

Whether each non-empty sequence of white-space characters other than
new-line is retained or replaced by one space character is
implementation-defined.

Non-empty sequences of white-space characters are retained.

Implementation Defined Behavior

1-438 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

It is implementation-defined whether the source of the translation units
containing these definitions is required to be available.

The source of the translation units containing these definitions must be
available.

2.2 Character Sets

The values of the members of the execution character sets are implemen-
tation-defined, and any additional members are locale-specific.

The values of the execution character set are shown in Table 1-54 (with
unprintable characters left blank).

2.13.2 Character Literals

A multi-character literal has type int and implementation-defined value.

An integer character constant may contain 1 character. If more than 1
character is used, error cc0026 is issued.

Table 1-54. The Execution Character Set for C++ Mode

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0

0x1

0x2 (space) ! “ # $ % & ‘ () * + , - . /

0x3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4 @ A B C D E F G H I J K L M N O

0x5 P Q R S T U V W X Y Z [\] ^ _

0x6 ‘ a b c d e f g h i j k l m n o

0x7 p q r s t u v w x y z { | } ~ (DEL)

CrossCore Embedded Studio 1.1 1-439
C/C++ Compiler Manual for SHARC Processors

Compiler

The value of a wide-character literal containing multiple c-chars is
implementation-defined.

Where a wide character contains more than one multi-byte character, only
the first character is retained and warning cc0026 will be issued. Subse-
quent characters are discarded.

The value of a character literal is implementation-defined if it falls out-
side of the implementation-defined range defined for char (for ordinary
literals) or wchar_t (for wide literals).

The full 32-bit value is retained.

2.13.4 String Literals

Whether all string literals are distinct (that is, are stored in non-overlap-
ping objects) is implementation-defined.

Identical string literals within the same object file will not be distinct.
That is, only one copy of the string will exist.

3.6.1 Main Function

An implementation shall not predefine the main function. This function
shall not be overloaded. It shall have a return type of type int, but other-
wise its type is implementation-defined.

The name of the function called at program startup is:

int main();

or, alternatively:

int main(int argc, char *argv[]);

The linkage (3.5) of main is implementation-defined.

main has external "C" linkage.

Implementation Defined Behavior

1-440 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

3.6.2 Initialization of Non-Local Objects

It is implementation-defined whether or not the dynamic initialization
(8.5, 9.4, 12.1, 12.6.1) of an object of namespace scope is done before
the first statement of main.

Dynamic initialization of an object of namespace scope is done before the
first statement of main.

3.9 Types

For POD types, the value representation is a set of bits in the object rep-
resentation that determines a value, which is one discrete element of an
implementation-defined set of values.

All POD types are represented in the same format as in C.

The alignment of a complete object type is an implementation-defined
integer value representing a number of bytes; an object is allocated at an
address that meets the alignment requirements of its object type.

Compound types (structs, classes) are aligned on the boundary that
matches the alignment of the most strictly-aligned member of the type.

Top-level arrays are always aligned on a double-word boundary, regardless
of the underlying type. Arrays within structures are not aligned beyond
the required alignment for their type.

3.9.1 Fundamental Types

It is implementation-defined whether a char object can hold negative
values.

A char can hold negative values.

CrossCore Embedded Studio 1.1 1-441
C/C++ Compiler Manual for SHARC Processors

Compiler

The value representation of floating-point types is
implementation-defined.

The representations of the floating point types are as follows:

• float

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

• double (default setting)

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

• double (when compiling with “-double-size-64”)

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

• long double

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

3.9.2 Compound Types

The value representation of pointer types is implementation-defined.

Pointer types are represented as 32-bit unsigned integers.

Implementation Defined Behavior

1-442 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

4.7 Integral Conversions

If the destination type is signed, the value is unchanged if it can be rep-
resented in the destination type (and bit-field width); otherwise, the
value is implementation-defined.

When converting a signed integer to a smaller signed integer, the lower
bits of the signed integer (of the size of the smaller signed integer) are cop-
ied to the smaller signed integer. If the topmost copied bit is set, this will
result in a negative number.

4.8 Floating-Point Conversions

If the source value is between two adjacent destination values, the result
of the conversion is an implementation-defined choice of either of those
values.

Round to nearest, ties to even.

4.9 Floating-Integral Conversions

An rvalue of an integer type or of an enumeration type can be converted
to an rvalue of a floating-point type. The result is exact if possible. Oth-
erwise, it is an implementation-defined choice of either the next lower
or higher representable value.

Round to nearest, ties to even.

5.2.8 Type Identification

The result of a typeid expression is an lvalue of static type const
std::type_info (18.5.1) and dynamic type const std::type_info or const
name where name is an implementation-defined class derived from
std::type_info which preserves the behavior described in 18.5.1.

The result of a typeid expression is an lvalue of static type const
std::type_info and dynamic type const std::type_info.

CrossCore Embedded Studio 1.1 1-443
C/C++ Compiler Manual for SHARC Processors

Compiler

5.2.10 Reinterpret Cast

The mapping performed by reinterpret_cast is implementation-defined.

For an expression "reinterpret_cast<T>(v)", the bits in the object repre-
sentation of "v" will be treated as type as an object of type "T".

A pointer can be explicitly converted to any integral type large enough
to hold it. The mapping function is implementation-defined.

The bit pattern of the pointer is interpreted as the integral type. No sign
extension is performed if the integral type is larger than the pointer.

A value of integral type or enumeration type can be explicitly converted
to a pointer. A pointer converted to an integer of sufficient size (if any
such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are
otherwise implementation-defined.

A cast from pointer to integer results in the most-significant bits being
discarded if the size of the pointer is larger than the integer. If the pointer
is smaller than the integer type being cast to, the integer will be
zero-extended.

A cast from integer to pointer results in the most-significant bits being
discarded if the size of the integer is larger than the pointer. If the integer
is smaller than the pointer type being cast to, the pointer will be
sign-extended.

Implementation Defined Behavior

1-444 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

5.3.3 Sizeof

sizeof(char), sizeof(signed char) and sizeof(unsigned char) are 1; the
result of sizeof applied to any other fundamental type (3.9.1) is imple-
mentation-defined. [Note: in particular, sizeof(bool) and sizeof(wchar_t)
are implementation-defined.]

Sizes are as shown in Table 1-55.

5.6 Multiplicative Operators

The binary / operator yields the quotient, and the binary % operator
yields the remainder from the division of the first expression by the sec-
ond. If the second operand of / or % is zero the behavior is undefined;
otherwise (a/b)*b + a%b is equal to a. If both operands are nonnegative
then the remainder is nonnegative; if not, the sign of the remainder is
implementation-defined.

If the first operand is negative, the sign of the remainder will be negative,
otherwise the sign of the remainder is nonnegative.

Table 1-55. Sizes of C++ Standard Types

char (signed, unsigned) 1

short (signed, unsigned) 1

int (signed, unsigned) 1

long (signed, unsigned) 1

long long (signed, unsigned) 2

float 1

double (default) 1

double (-double-size-64) 2

long double 2

bool 1

wchar_t 1

CrossCore Embedded Studio 1.1 1-445
C/C++ Compiler Manual for SHARC Processors

Compiler

5.7 Additive Operators

When two pointers to elements of the same array object are subtracted,
the result is the difference of the subscripts of the two array elements.
The type of the result is an implementation-defined signed integral type;
this type shall be the same type that is defined as ptrdiff_t in the <cstd-
def> header (18.1).

The type of the result is int.

5.8 Shift Operators

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an
unsigned type or if E1 has a signed type and a nonnegative value, the
value of the result is the integral part of the quotient of E1 divided by
the quantity 2 raised to the power E2. If E1 has a signed type and a neg-
ative value, the resulting value is implementation-defined.

Right shifts will retain the sign bit on a signed integer.

7.1.5.2 Simply Type Specifiers

It is implementation-defined whether bit-fields and objects of char type
are represented as signed or unsigned quantities.

By default, bit-fields and objects of char type are represented as signed
quantities.

Bit-fields can represented as unsigned quantities by using the compiler
switch -unsigned-bitfield (on page 1-78).

Implementation Defined Behavior

1-446 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

7.2 Enumeration Declarations

It is implementation-defined which integral type is used as the underly-
ing type for an enumeration except that the underlying type shall not be
larger than int unless the value of an enumerator cannot fit in an int or
unsigned int.

The underlying type for an enumeration shall be int.

7.4 The asm Declaration

The meaning of an asm declaration is implementation-defined.

For more information, see Inline Assembly Language Support Keyword
(asm).

7.5 Linkage Specifications

The string-literal indicates the required language linkage. The meaning
of the string-literal is implementation-defined.

Three string-literals are supported:

• "C" - the function name in the source file is prefixed with an under-
score ("_") in the object file.

• "C++" - the function name is mangled according to the compiler's
name mangling rules.

• "asm" - the function name in the source file is used in the object
file without a prefix or name-mangling.

CrossCore Embedded Studio 1.1 1-447
C/C++ Compiler Manual for SHARC Processors

Compiler

Linkage from C++ to objects defined in other languages and to objects
defined in C++ from other languages is implementation-defined and
language-dependent.

Three string-literals are supported:

• "C" - the function name in the source file is prefixed with an under-
score ("_") in the object file.

• "C++" - the function name is mangled according to the compiler's
name mangling rules.

• "asm" - the function name in the source file is used in the object
file without a prefix or name-mangling.

9.6 Bit-Fields

Allocation of bit-fields within a class object is implementation-defined.
Alignment of bit-fields is implementation-defined.

Bit-fields are stored using a big-endian representation.

Bit-fields are aligned such that they do not cross a 32-bit word boundary
(for bit-fields of type char, short, int or long) or a 64-bit boundary (for
bit-fields of type long long). For example, a 24-bit bit-field can be placed
immediately after an 8-bit bit-field, but a 25-bit bit-field member will be
aligned on the next 32-bit boundary.

It is implementation-defined whether a plain (neither explicitly signed
nor unsigned) char, short, int or long bit-field is signed or unsigned.

Plain bit-fields are signed.

Implementation Defined Behavior

1-448 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

14 Templates

A template name has linkage (3.5). A non-member function template
can have internal linkage; any other template name shall have external
linkage. Entities generated from a template with internal linkage are dis-
tinct from all entities generated in other translation units. A template, a
template explicit specialization (14.7.3), or a class template partial spe-
cialization shall not have C linkage. If the linkage of one of these is
something other than C or C++, the behavior is
implementation-defined.

Only C++ linkage is supported for templates.

14.7.1 Implicit Instantiation

There is an implementation-defined quantity that specifies the limit on
the total depth of recursive instantiations, which could involve more
than one template.

The limit on the total depth of recursive instantiations is 64.

15.5.1 The terminate() Function

In the situation where no matching handler is found, it is implementa-
tion-defined whether or not the stack is unwound before terminate() is
called.

The stack is not unwound before the call to terminate().

CrossCore Embedded Studio 1.1 1-449
C/C++ Compiler Manual for SHARC Processors

Compiler

15.5.2 The unexpected() Function

If the exception-specification does not include the class std::bad_excep-
tion (18.6.2.1) then the function terminate() is called, otherwise the
thrown exception is replaced by an implementation-defined object of the
type std::bad_exception and the search for another handler will continue
at the call of the function whose exception-specification was violated.

The object of the type std::bad_exception will contain the string "bad
exception".

16.1 Conditional Inclusion

Whether the numeric value for these character literals matches the value
obtained when an identical character literal occurs in an expression
(other than within a #if or #elif directive) is implementation-defined.

The numeric value for these character literals matches the value obtained
when an identical character literal occurs in an expression.

Also, whether a single-character character literal may have a negative
value is implementation-defined.

A single-character may have a negative value.

Implementation Defined Behavior

1-450 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

16.2 Source File Inclusion

Searches a sequence of implementation-defined places for a header iden-
tified uniquely by the specified sequence between the < and > delimiters,
and causes the replacement of that directive by the entire contents of the
header. How the places are specified or the header identified is
implementation-defined.

Include files, whose names are not absolute path names and that are
enclosed in "..." when included, are searched for in the following directo-
ries in this order:

• The directory containing the current input file (the primary source
file or the file containing the #include).

• Any directories specified with the -I switch (on page 1-41) in the
order they are listed on the command line.

• Any directories on the standard list: <install_path>\...\include.

The mapping between the delimited sequence and the external source
file name is implementation-defined.

The source file character sequence is mapped to its corresponding ASCII
character sequence.

A #include preprocessing directive may appear in a source file that has
been read because of a #include directive in another file, up to an imple-
mentation-defined nesting limit.

The compiler does not define a nesting limit for #include directives.

16.6 Pragma Directive

A preprocessing directive #pragma causes the implementation to behave
in an implementation-defined manner.

For more information, see Pragmas.

CrossCore Embedded Studio 1.1 1-451
C/C++ Compiler Manual for SHARC Processors

Compiler

16.8 Predefined Macro Names

If the date of translation is not available, an implementation-defined
valid date is supplied.

The macro __DATE__ will be defined as "[date unknown]".

If the time of translation is not available, an implementation-defined
valid time is supplied.

The macros __TIME__ will be defined as "[time unknown]".

Whether __STDC__ is predefined and if so, what its value is, are
implementation-defined.

__STDC__ is predefined with the value 1.

17.4.4.5 Reentrancy

Which of the functions in the C++ Standard Library are not reentrant
subroutines is implementation-defined.

The following functions are not reentrant in the C++ Standard library, as
implemented in CCES:

• Functions that use streams.

• Dynamic memory allocation functions (new, delete, etc.).

• The exceptions handling support routines.

Although these functions are not reentrant, thread-safe versions of them
are implemented in the multi-threaded C++ library. For more informa-
tion, see “Using the Libraries in a Multi-Threaded Environment” in the
C/C++ Library Manual for SHARC Processors.

Implementation Defined Behavior

1-452 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

17.4.4.8 Restrictions on Exception Handling

Any other functions defined in the C++ Standard Library that do not
have an exception-specification may throw implementation-defined
exceptions unless otherwise specified.

Table 1-56 shows which functions may throw the following exceptions, if
the application is built with exceptions enabled.

18.3 Start and Termination

Exit() - Finally, control is returned to the host environment. If status is
zero or EXIT_SUCCESS, an implementation-defined form of the status
successful termination is returned. If status is EXIT_FAILURE, an
implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

The program will idle at the label __lib_prog_term. R0 (the return regis-
ter) will contain the status.

Table 1-56. Functions Which Throw Exceptions

Function Exception Type

ios_base::clear failure

locale::locale runtime_error

_Locinfo::_Addcats runtime_error

_String_base::_Xlen length_error

_String_base::_Xran out_of_range

array new and delete operators bad_alloc

CrossCore Embedded Studio 1.1 1-453
C/C++ Compiler Manual for SHARC Processors

Compiler

18.4.2.1 Class bad_alloc

The result of calling what() on the newly constructed object is
implementation-defined.

what() will return the string "bad allocation".

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS.

what() will return the string "bad allocation".

18.5.1 Class type_info

const char* name() const; Returns: an implementation-defined NTBS.

Table 1-57 shows the string returned by the name() function for the basic
types.

Table 1-57. Strings returned by name()

Type String

bool b

char c

signed char a

unsigned char h

(signed) short s

unsigned short t

(signed) int i

unsigned int j

(signed) long l

unsigned long m

(signed) long long x

unsigned long long y

Implementation Defined Behavior

1-454 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

18.5.2 Class bad_cast

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS.

Calling what() will return the string "bad cast".

18.5.3 Class bad_typeid

bad_typeid() throw(); Notes: The result of calling what() on the newly
constructed object is implementation-defined.

Calling what() will return the string "bad typeid".

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS.

Calling what() will return the string "bad typeid".

18.6.1 Class Exception

exception& operator=(const exception&) throw(); Notes: The effects of
calling what() after assignment are implementation-defined.

Calling what() will return the string "unknown".

float f

double d

long double e

wchar_t w

Table 1-57. Strings returned by name() (Cont’d)

Type String

CrossCore Embedded Studio 1.1 1-455
C/C++ Compiler Manual for SHARC Processors

Compiler

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS.

Calling what() will return the string "unknown".

18.6.2.1 Class bad_exception

bad_exception() throw(); Notes: The result of calling what()on the
newly constructed object is implementation-defined.

Calling what() will return the string "bad exception".

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS.

Calling what() will return the string "bad exception".

21 Strings Library

The type streampos is an implementation-defined type that satisfies the
requirements for POS_T in 21.1.2.

streampos is a typedef of the fpos class.

The type streamoff is an implementation-defined type that satisfies the
requirements for OFF_T in 21.1.2.

streamoff is a typedef of the long type.

The type mbstate_t is defined in <cwchar> and can represent any of the
conversion states possible to occur in an implementation-defined set of
supported multi-byte character encoding rules.

Multi-byte characters are not supported in Analog Devices Compiler, so
no multi-byte characters may be used in identifiers.

Implementation Defined Behavior

1-456 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

21.1.3.2 struct char_traits<wchar_t>

The type wstreampos is an implementation-defined type that satisfies
the requirements for POS_T in 21.1.2.

The type wstreampos not supported in Analog Devices tool set.

The type mbstate_t is defined in <cwchar> and can represent any of the
conversion states possible to occur in an implementation-defined set of
supported multi-byte character encoding rules.

Multi-byte characters are not supported in Analog Devices Compiler, so
no multi-byte characters may be used in identifiers.

22.1.1.3 Locale Members

basic_string<char> name() const; Returns: The name of *this, if it has
one; otherwise, the string "*". If *this has a name, then
locale(name().c_str()) is equivalent to *this. Details of the contents of
the resulting string are otherwise implementation-defined.

name returns the name of *this, if it has one; otherwise, the string "*".

22.2.1.3 ctype Specializations

The implementation-defined value of member table_size is at least 256.

The value of member table_size is 256.

22.2.1.3.2 ctype<char> Members

In the following member descriptions, for unsigned char values v where
(v >= table_size), table()[v] is assumed to have an implementa-
tion-defined value (possibly different for each such value v) without
performing the array lookup.

As table_size has the value 256, it is not possible for v to be greater than
or equal to table_size.

CrossCore Embedded Studio 1.1 1-457
C/C++ Compiler Manual for SHARC Processors

Compiler

22.2.5.1.2 time_get Virtual Functions

iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const; Effects: Reads characters starting at
s until it has extracted an unambiguous year identifier. It is implementa-
tion-defined whether two-digit year numbers are accepted, and (if so)
what century they are assumed to lie in. Sets the t->tm_yearmember
accordingly.

If the two-digit year is less than '69', it is assumed that the year is in the
21st century (i.e. 2000 -> 2068); otherwise, it is assumed that the year is
in the 20th century.

22.2.5.3.2 time_put Virtual Functions

Effects: Formats the contents of the parameter t into characters placed
on the output sequence s. Formatting is controlled by the parameters
format and modifier, interpreted identically as the format specifiers in
the string argument to the standard library function strftime(). except
that the sequence of characters produced for those specifiers that are
described as depending on the C locale are instead
implementation-defined.

Table 1-58 shows the character sequences produced for each specifier that
depends on the C locale.

Table 1-58. Outputs for time_put Specifiers

Specifier Characters

%a “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”

%A “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,
“Saturday”, “Sunday”

%b “Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”,
“Sep”, “Oct”, “Nov”, “Dec”

Implementation Defined Behavior

1-458 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

22.2.7.1.2 Messages Virtual Functions

catalog do_open(const basic_string<char>& name, const locale& loc)
const; Returns: A value that may be passed to get()to retrieve a message,
from the message catalog identified by the string name according to an
implementation-defined mapping. The result can be used until it is
passed to close().

This function has no effect.

string_type do_get(catalog cat, int set, int msgid, const string_type&
dfault) const; Returns: A message identified by arguments set, msgid,
and dfault, according to an implementation-defined mapping.

The function do_get always returns the string pointed to by dfault.

void do_close(catalog cat) const; Notes: The limit on such resources, if
any, is implementation-defined.

This function has no effect.

%B “January”, “February”, “March”, “April”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”,
“December”

%c Date and time in the format:
DDD MMM DD HH:MM:SS YYYY
For example, “Sat Jan 31 23:59:59 2011”.

%p “AM”, “PM”

%x Date in the format:
MM/DD/YY
For example, “12/31/12”.

%X Time in the format:
HH:MM:SS
For example, “23:59:59”.

Table 1-58. Outputs for time_put Specifiers (Cont’d)

Specifier Characters

CrossCore Embedded Studio 1.1 1-459
C/C++ Compiler Manual for SHARC Processors

Compiler

26.2.8 Complex Transcendentals

The value returned for pow(0,0) is implementation-defined.

This is a conforming freestanding implementation of C++. Complex tran-
scendentals are not supported.

27.1.2 Positioning Type Limitations

The classes of clause 27 with template arguments charT and traits
behave as described if traits::pos_type and traits::off_type are streampos
and streamoff respectively. Except as noted explicitly below, their behav-
ior when traits::pos_type and traits::off_type are other types is
implementation-defined.

traits::pos_type and traits::off_type are streampos and streamoff
respectively.

27.4.1 Types

The type streamoff is an implementation-defined type that satisfies the
requirements of 27.4.3.2.

streamoff is of type long.

27.4.2.4 ios_base Static Members

bool sync_with_stdio(bool sync = true); Effects: If any input or output
operation has occurred using the standard streams prior to the call, the
effect is implementation-defined.

iostream objects are always synchronised with the standard streams. This
function has no effect.

Implementation Defined Behavior

1-460 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

27.4.4.3 basic_ios iostate Flags Functions

If (rdstate() & exceptions()) == 0, returns. Otherwise, the function
throws an object fail of class basic_ios::failure (27.4.2.1.1), constructed
with implementation-defined argument values.

If 'ios_base::badbit' is set, the exception will be created with the string
"ios_base::badbit set".

If 'ios_base::failbit' is set, the exception will be created with the string
"ios_base::failbit set".

27.7.1.3 Overridden Virtual Functions

basic_streambuf<charT,traits>* setbuf(charT* s, streamsize n); Effects:
implementation-defined, except that setbuf(0,0)has no effect.

streambuf() has no effect.

27.8.1.4 Overridden Virtual Functions

basic_streambuf* setbuf(char_type* s, streamsize n); Effects: If set-
buf(0,0) is called on a stream before any I/O has occurred on that
stream, the stream becomes unbuffered. Otherwise the results are
implementation-defined.

If setbuf(s, n) is called before any I/O has occurred, the buffer 's', of
size 'n', is used by the I/O routines. Calls to setbuf() on a stream after
I/O has occurred are ignored.

int sync(); Effects: If a put area exists, calls filebuf::overflow to write the
characters to the file. If a get area exists, the effect is
implementation-defined.

The sync() function has no effect on the get area.

CrossCore Embedded Studio 1.1 1-461
C/C++ Compiler Manual for SHARC Processors

Compiler

C.2.2.3 Macro NULL

The macro NULL, defined in any of <clocale>, <cstddef>, <cstdio>,
<cstdlib>, <cstring>, <ctime>, or <cwchar>, is an implementa-
tion-defined C++ null pointer constant in this International Standard
(18.1).

The macro NULL is defined as 0.

D.6 Old iostreams Members

The type streamoff is an implementation-defined type that satisfies the
requirements of type OFF_T (27.4.1).

streamoff is a typedef of the 'long' type.

The type streampos is an implementation-defined type that satisfies the
requirements of type POS_T (27.2).

streampos is a typedef of the fpos class.

Implementation Defined Behavior

1-462 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

CrossCore Embedded Studio 1.1 2-1
C/C++ Compiler Manual for SHARC Processors

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance on tuning your application to achieve the
best possible code from the compiler. Since implementation choices are
available when coding an algorithm, understanding their impact is crucial
to attaining optimal performance.

This chapter contains:

• General Guidelines

• Improving Conditional Code

• Loop Guidelines

• Using Built-In Functions in Code Optimization

• Smaller Applications: Optimizing for Code Size

• Using Pragmas for Optimization

• Useful Optimization Switches

• How Loop Optimization Works

• Assembly Optimizer Annotations

• Analyzing Your Application

This chapter helps you get maximal code performance from the compiler.
Most of these guidelines also apply when optimizing for minimum code
size, although some techniques specific to that goal are also discussed.

General Guidelines

2-2 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The first section looks at some general principles, and explains how the
compiler can help your optimization effort. Optimal coding styles are
then considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter includes a
short example to demonstrate how the optimizer works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, while others
identify styles to be avoided or code that it may be possible to improve.
These are commented in the code as “GOOD” and “BAD” respectively.

General Guidelines
This section contains:

• How the Compiler Can Help

• The volatile Type Qualifier

• Data Types

• Getting the Most From IPA

• Indexed Arrays Versus Pointers

• Using Function Inlining

• Using Inline asm Statements

• Memory Usage

CrossCore Embedded Studio 1.1 2-3
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Remember the following strategy when writing an application:

1. Choose the language as appropriate.
Your first decision is whether to implement your application in C
or C++. Performance considerations may influence this decision.
C++ code using only C features has very similar performance to
pure C code. Many higher level C++ features (for example, those
resolved at compilation, such as namespaces, overloaded functions
and also inheritance) have no performance cost.

However, use of some other features may degrade performance.
Carefully weigh performance loss against the richness of expression
available in C++ (such as virtual functions or classes used to imple-
ment basic data types).

2. Choose an algorithm suited to the architecture being targeted. For
example, the target architecture will influence any trade-off
between memory usage and algorithm complexity.

3. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially when choosing data types.

4. Tune critical code sections. After your application is complete,
identify the most critical sections. Carefully consider the strengths
of the target processor and make non-portable changes where nec-
essary to improve performance.

How the Compiler Can Help
The compiler provides many facilities to help the programmer to achieve
optimal performance, including the compiler optimizer, statistical pro-
filer, Profile-Guided Optimizer (PGO), and interprocedural optimizers.

General Guidelines

2-4 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

This section contains:

• Using the Compiler Optimizer

• Using Compiler Diagnostics

• Using Profile-Guided Optimization

• Using Interprocedural Optimization

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases, optimized code
can run ten or twenty times faster. Always use optimization when measur-
ing performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer the best possible visibility of the operations and
data, and hence the greatest freedom to safely manipulate the code. Future
releases of the compiler will continue to enhance the optimizer. Express-
ing algorithms simply will provide the best chance of benefiting from such
enhancements.

Note that the default setting (or “debug” mode within the IDE) is for
non-optimized compilation in order to assist programmers in diagnosing
problems with their initial coding. The optimizer is enabled through the
IDE by selecting Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > General > Enable optimization, or by using
the -O switch (on page 1-57). A “release” build from within the IDE auto-
matically enables optimization.

CrossCore Embedded Studio 1.1 2-5
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Using Compiler Diagnostics

There are many features of the C and C++ languages that, while legal,
often indicate programming errors. There are also aspects that are valid
but may be relatively expensive for an embedded environment. The com-
piler can provide diagnostics which save time and effort in characterizing
source-related problems:

These diagnostics are particularly important for obtaining high-perfor-
mance code, since the optimizer aggressively transforms the application to
get the best performance, discarding unused or redundant code; if this
code is redundant because of a programming error (such as omitting an
essential volatile qualifier from a declaration), then the code will behave
differently from a non-optimized version. Using the compiler’s diagnostics
may help you identify such situations before they become problems.

The diagnostic facilities are described in the following sections:

• Warnings, Annotations and Remarks

• Run-Time Diagnostics

• Steps for Developing Your Application

Warnings, Annotations and Remarks

By default, the compiler emits warnings to the standard error stream at
compile-time when it detects a problem with the source code. Warnings
can be disabled individually, with the -Wsuppress switch (on page 1-79)
or as a class, with the -w switch (on page 1-81), disabling all warnings and
remarks. However, disabling warnings is inadvisable until each instance
has been investigated for problems.

A typical warning would be: a variable being used before its value has been
set.

Remarks are diagnostics that are less severe than warnings. Like warnings,
they are produced at compile-time to the standard error stream, but unlike

General Guidelines

2-6 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

warnings, remarks are suppressed by default. Remarks are typically for sit-
uations that are probably correct, but less than ideal. Remarks may be
enabled as a class with the -Wremarks switch (on page 1-80) or by setting
Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Warning > Warning/annotation/remark control to Errors,
warnings, annotations and remarks in the IDE.

A typical remark would be: a variable being declared, but never used.

A remark may be promoted to a warning through the -Wwarn switch
(on page 1-79). Remarks and warnings may be promoted to errors
through the -Werror switch (on page 1-79).

Annotations are diagnostics that are between warnings and remarks in
severity. Like remarks, annotations are usually suppressed. Where remarks
comment on the input source file, annotations provide information about
the code the compiler has generated from the source file.

A typical annotation would be: using a volatile variable within a loop lim-
its optimization.

Both annotations and remarks can be viewed in the IDE; they are listed as
“infos” in the Problems view, and an “information” icon appears in the
gutter of the source file’s view, adjacent to the associated line. Hovering
over the gutter icon displays the annotations and remarks for the line.

Annotations are also emitted to the generated assembly file, as comments.
For more information, see Assembly Optimizer Annotations.

CrossCore Embedded Studio 1.1 2-7
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Run-Time Diagnostics

Although the compiler can identify many potential problems through its
static analysis, some problems only become apparent at runtime. The
compiler and libraries provide a number of facilities for assisting in
identifying such problems. These facilities are:

• Run-time diagnostics, where the compiler plants additional code to
check for common programming errors. For more information, see
Run-Time Checking.

• Stack overflow detection, where the compiler ensures that the stack
does not run out of space. For more information, see Stack Over-
flow Detection.

• Heap debugging, where the compiler links the application with an
enhanced version of the heap library, to detect memory leaks and
other common dynamic-memory issues. For more information, see
Heap Debugging.

Steps for Developing Your Application

To improve overall code quality:

1. Enable remarks and build the application. Gather all warnings and
remarks generated.

2. Examine the generated diagnostics, and choose those message types
that you consider most important. For example, you might select
just cc0223, a remark that identifies implicitly-declared functions.

3. Promote those remarks and warnings to errors, using the -Werror
switch (for example, “-Werror 0223”), and rebuild the application.
The compiler will now fault such cases as errors, so you will have to
fix the source to address the issues before your application will
build.

General Guidelines

2-8 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

4. Once your application rebuilds, repeat the process for the next
most important diagnostics.

5. When you have dealt with the diagnostics you consider significant,
rebuild your application with run-time diagnostics enabled, and
run your regression tests, to see whether any problems lurk. (Given
the overheads of run-time diagnostics, you will probably find it
better to only enable one form at a time.)

6. Once your application runs successfully with each form of
run-time diagnostic, disable run-time diagnostics and rebuild your
application for release.

Diagnostics you might typically consider first include:

• cc0223: function declared implicitly

• cc0549: variable used before its value is set

• cc1665: variable is possibly used before its value is set, in a loop

• cc0187: use of “=” where “==” may have been intended

• cc1045: missing return statement at the end of non-void function

• cc0111: statement is unreachable

If you have particular cases that are correct for your application, do not let
them prevent your application from building because you have raised the
diagnostic to an error. For such cases, temporarily lower the severity again
within the source file in question by using #pragma diag (on page 1-268).

Using Profile-Guided Optimization

Profile-guided optimization (PGO) is an excellent way to tune the com-
piler’s optimization strategy for the typical run-time behavior of a
program. There are many program characteristics that cannot be known
statically at compile-time but can be provided through PGO. The

CrossCore Embedded Studio 1.1 2-9
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

compiler can use this knowledge to improve its code generation. The ben-
efits include more accurate branch prediction, improved loop
transformations, and reduced code size. The technique is most relevant
where the behavior of the application over different data sets is expected to
be very similar.

 The data gathered during the profile-guided optimization process
can also be used to generate a code coverage report. See Pro-
file-Guided Optimization and Code Coverage.

Profile-guided optimization can be performed on applications running on
both hardware and simulators. The functionality supported and the steps
required are different in each case. A summary of these differences is listed
in Table 2-1.

Profile-guided optimization using the simulator is a non-intrusive process:
the application code is not modified to gather the profiling data.
Multi-threaded applications cannot be profiled using the simulator-based
method of profile gathering.

Profile-guided optimization for applications running on hardware offers
support for multi-threaded applications and applications that cannot be

Table 2-1. Differences Between Profile-Guided Optimization for
Simulators and Hardware

Profile-Guided Optimization for Simulators Profile-Guided Optimization for Hardware

Is non-intrusive to the application. No code
or data space needs to be reserved for the pro-
filing.

Is intrusive. Profiling requires both code and data
space to be reserved in the application.

Does not impact performance. Profiling is
performed in the background by the simula-
tor.

Impacts performance. Profiling is performed on
the processor as part of the application.

Does not support multi-threaded applica-
tions.

Supports multi-threaded applications.

Can only profile application where are
peripherals are simulated by the simulator.

Run on hardware allowing the profiling of appli-
cations that use custom hardware.

General Guidelines

2-10 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

run on the simulator (for example, due to custom hardware or requiring
input from peripherals not supported by the simulator). However, the
hardware-based profiling method is more intrusive to the application, as it
requires some instruction and data memory.

Using Profile-Guided Optimization With a Simulator

The PGO process when using a simulator for execution is illustrated in
Figure 2-1.

1. Compile the application with the -pguide switch (on page 1-63) or
the Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization > Pre-
pare application to create new profile option/-pguide. This creates
an executable file containing the necessary instrumentation for
gathering profile data. For best results, click General (under Com-
piler) in the tree control and select Enable optimization/-O switch
(on page 1-57) or select Interprocedural optimization/-ipa
(on page 1-42) switch.

Figure 2-1. PGO Process When Targeting a Simulator

Source Files

Data

Profile with
Simulator

Profile with
-Ov num

Compile with
-O -pguide

.dxe .pgo .dxe

CrossCore Embedded Studio 1.1 2-11
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

2. Gather the profile. Run the executable under the simulator, with
one or more training data sets.

a. Load the application into the simulator.

b. Enable profiling via Target > PGO > Simulator > Start.

c. Run the application with the desired training set.

d. Save the profile via Target > PGO > Simulator > Stop and
save.

e. Repeat the process with the next training set.

The training data sets should be representative of the data that you
expect the application to process in the field. Note that unrepresen-
tative training data sets can cause performance degradations when
the application is used on real data. The profile is stored in a file
with the extension .pgo.

3. Recompile the application using this gathered profile data:

a. Turn off the -pguide switch (on page 1-63) or choose Proj-
ect > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization >
Prepare application to create new profile option.

b. Place the .pgo file on the command line or include it in the
list of profiles under Optimize using existing profiles.

c. Ensure optimization is enabled:

Click General (under Compiler) in the tree control and
select Enable optimization option/-O switch (on page 1-57)
and/or Interprocedural optimization option/-ipa
(on page 1-42) switch.

General Guidelines

2-12 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 When C/C++ source files are specified in a compiler command
line, any specified .pgo files will be used to guide compilation.
However, any recompilation due to .doj files provided on the
command line will reread the same .pgo file as when the source was
previously compiled. For example, prof2.pgo is ignored in the fol-
lowing commands:

cc21k -O f2.c -o f2.doj prof1.pgo

cc21k -o prog.dxe f1.asm f2.doj prof2.pgo

An example application that demonstrates how to use PGO is in
Figure 2-2.

Using Profile-Guided Optimization With Hardware

The process for using PGO with hardware is illustrated in Figure 2-2.

1. Compile the application with:

a. The -pguide switch (on page 1-63) or choose the Project >
Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Profile-guided Optimization > Prepare appli-
cation to create new profile setting.

b. The -prof-hw switch (on page 1-65) or choose the Gather
profile using hardware setting.

This creates an executable file containing the necessary instrumen-
tation for gathering profile data when run on hardware.

For best results, click General (under Compiler) in the tree control
and select Enable optimization/-O switch (on page 1-57) or Inter-
procedural optimization/-ipa (on page 1-42) switch.

2. Gather the profile. Run the executable on the hardware, with one
or more training data sets. These training data sets should be repre-
sentative of the data that you expect the application to process in

CrossCore Embedded Studio 1.1 2-13
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

the field. Note that unrepresentative training data sets can cause
performance degradations when the application is used on real
data. The profile is stored in files with the extension .pgo and.pgt.

3. Recompile the application using this gathered profile data:

a. Turn off the -prof-hw switch (on page 1-65) or choose the
Project > Properties > C/C++ Build > Settings > Tool Set-
tings > Compiler > Profile-guided Optimization > Gather
profile using hardware setting.

b. Turn off the -pguide switch (on page 1-63) or the Prepare
application to create new profile setting.

c. Place the .pgo file on the command line or include it in the
list of profiles under Optimize using existing profiles. The
.pgo file contains a reference to the .pgt file, so this auto-
matically includes the .pgt file.

d. Ensure optimization is enabled:

Click General (under Compiler) in the tree control and
select Enable optimization/-O switch (on page 1-57) and/or
Interprocedural optimization/-ipa (on page 1-42) switch.

General Guidelines

2-14 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

PGO for hardware works by planting function calls into your application
which record the execution count (and in multi-threaded cases, the thread
identifier) at certain points. Applications built with PGO for hardware
should be used for development and should not be released.

PGO for hardware requires that an I/O device is available in the applica-
tion to produce its profiling data. The default I/O device will be used to
perform I/O operations for PGO.

PGO for hardware flushes any remaining profile data still pending when
exit() is invoked. Multi-threaded applications may need to flush data
explicitly.

When C/C++ source files are specified in a compiler command line, any
specified .pgo files will be used to guide compilation. However, any
recompilation due to .doj files provided on the command line will reread
the same .pgo file as when the source was previously compiled.

Figure 2-2. PGO on Hardware Process

Source Files

Data

Profile with
Hardware

Profile with
-Ov num

Compile with
-O -pguide

.dxe .pgo .dxe

CrossCore Embedded Studio 1.1 2-15
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

For example, prof2.pgo is ignored in the following commands:

cc21k -O f2.c -o f2.doj prof1.pgo

cc21k -o prog.dxe f1.asm f2.doj prof2.pgo

Flushing PGO Data in Multi-threaded and Non-terminating
Applications

Applications optimized with profile-guided optimization for hardware
need to ensure that the profiling information is flushed to the host
machine. Flushing occurs when any of the following conditions are met:

• In an application linked with the single-threaded runtime libraries,
data is flushed when the profile-guided optimization data buffer is
full.

• In an application linked with the threadsafe runtime libraries, once
the profile-guided optimization data buffer is 75% full, data will be
flushed at the next available opportunity.

• When the profile-guided optimization maximum flush interval has
been exceeded. By default the maximum flush interval is 10
minutes.

• When the application explicitly requests a flush of the pro-
file-guided optimization data.

Applications that do not terminate, and multi-threaded applications must
be modified to flush the data at an appropriate time. To request a flush of
the data, add a call to the function pgo_hw_request_flush(). The example
code in Listing 2-1 shows a function that has been modified to flush the
profile-guided data. The required changes are conditionally included
when the preprocessor macro _PGO_HW is defined. The _PGO_HW macro is
only defined when the application is compiled with the -pguide and
-prof-hw compiler switches. Flushing the data to the host is a cycle-inten-
sive operation, so you should consider carefully where to place the call to

General Guidelines

2-16 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

flush within your application. In Listing 2-1, the flush request has been
placed in function do_pgo_flush(), which is called after the critical data
loop in an attempt to reduce the impact of the profiling on the applica-
tion’s behavior. do_pgo_flush() is marked by #pragma pgo_ignore, so
that no profile information is generated for the function. Isolating the
flushing action in this manner is important because the verifies that a
gathered profile matches the function’s structure, before using the profile
in optimization; if pgo_hw_request_flush() was conditionally called
directly from main_loop(), when the application was recompiled with the
gathered profile, but without the -prof-hw switch, the compiler would see
that the call was now absent, making the profile invalid, and causing the
optimizer to disregard the profile.

Listing 2-1. Flushing Profile-Guided Optimization Data From an
Application

#if defined(_PGO_HW)

#include <pgo_hw.h>

#endif

extern int get_task(void);

#pragma pgo_ignore

static void do_pgo_flush(void) {

#if defined(_PGO_HW)

 pgo_hw_request_flush();

#endif

}

void main_loop(void) {

while (1) {

int task = get_task();

if (task == 1) {

// perform critical data loop

CrossCore Embedded Studio 1.1 2-17
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

do_pgo_flush();

} else {

// other tasks

}

}

}

Profile-Guided Optimization and Multiple Source Uses

In some applications, it is convenient to build the same source file in more
than one way within the same application. For example, a source file
might be conditionally compiled with different macro settings. Alterna-
tively, the same file might be compiled once, but linked more than once
into the same application in a multi-core or multiprocessor environment.
In such circumstances, the typical behaviors of each instance in the appli-
cation might differ. Identify and build the instances separately so that they
can be profiled individually and optimized according to their typical use.

The -pgo-session switch (on page 1-63) or PGO session name option
(Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Profile-guided Optimization) is used to separate profiles in
such cases. It is used during both stage 1, where the compiler instruments
the generated code for profiling, and during stage 3, where the compiler
uses gathered profiles to guide the optimization.

During stage 1, when the compiler instruments the generated code, if the
-pgo-session switch is used, then the compiler marks the instrumentation
as belonging to the session’s session-id.

During stage 3, when the compiler reads gathered profiles, if the
-pgo-session switch is used, then the compiler ignores all profile data not
generated from code that was marked with the same session-id.

Therefore, the compiler can optimize each variant of the source’s build
according to how the variant is used, rather than according to an average
of all uses.

General Guidelines

2-18 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Profile-Guided Optimization and the -Ov num Switch

When a .pgo file is placed on the command line, the optimization (-O)
switch, by default, tries to balance between code performance and
code-size considerations. It is equivalent to using the -Ov 50 switch.
To optimize solely for performance while using PGO, use the -Ov 100
switch. The -Ov num switch (on page 1-58) is discussed further along with
optimization for space in Smaller Applications: Optimizing for Code Size.

Profile-Guided Optimization and Multiple PGO Data Sets

When using profile-guided optimization with an executable constructed
from multiple source files, the use of multiple PGO data sets will result in
the creation of a temporary PGO information file (.pgi). This file is used
by the compiler and prelinker to ensure that temporary PGO files can be
recreated and to identify cases where objects and PGO data sets are
invalid.

The compiler reports an error if any of the PGO data files have been mod-
ified between the initial compilation of an object and any recompilation
that occurs at the final link stage. To avoid this error, perform a full
recompilation after running the application to generate .pgo data files.

When to Use Profile-Guided Optimization

PGO should be performed as the last optimization step. If the application
source code is changed after gathering profile data, this profile data
becomes invalid. The compiler does not use profile data when it can detect
that it is inaccurate. However, it is possible to change source code in a way
that is not detectable to the compiler (for example, by changing con-
stants). You should ensure that the profile data used for optimization
remains accurate.

For more details on PGO, refer to Optimization Control.

CrossCore Embedded Studio 1.1 2-19
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function that it is
optimizing. For example, it helps to know what data can be referenced by
pointer parameters or if a variable actually has a constant value. The -ipa
compiler switch (on page 1-42) enables interprocedural analysis (IPA),
which can make this information available. When this switch is used, the
compiler is called again from the link phase to recompile the program
using additional information obtained during previous compilations.

This gathered information is stored within the object file generated during
initial compilation. IPA retrieves the gathered information from the object
file during linking, and uses it to recompile available source files where
beneficial. Because recompilation is necessary, IPA-built modules in
libraries can contribute to the optimization of application sources, but do
not themselves benefit from IPA, as their source is not available for
recompilation.

Because it only operates at link time, the effects of IPA are not seen if you
compile with the -S switch (on page 1-72). To see the assembly file when
IPA is enabled, use the -save-temps switch (on page 1-72), and look at
the .s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as aligned() to pro-
vide information to the compiler about how each function interacts with
the rest of the program.

These directives are further described in Using the aligned() Builtin and
Using Pragmas for Optimization.

General Guidelines

2-20 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The volatile Type Qualifier
The volatile type qualifier is used to inform the compiler that it may not
make any assumptions about a variable or memory location (or a series of
them), and that such variables must be read from or written to as specified
and in the same order as in the source code.

Failure to use volatile when necessary is a common programming error
that can cause an application to fail when built in Release configuration
with compiler optimizations enabled. This is because the compiler
assumes that all non-volatile memory is modified explicitly and does not
change in a way the compiler cannot see. This assumption is used exten-
sively during optimization, where values held in memory may not be
reloaded if they do not appear to have changed. Since the cases listed
below do not adhere to the compiler’s assumptions, the compiler must be
informed of these situations through the use of the volatile type
qualifier.

It is essential to make the following types of objects volatile-qualified in
your application source:

• An object that is a memory-mapped register (MMR) or a mem-
ory-mapped device.

• An object that is shared between multiple concurrent threads of
execution. This includes data that is shared between processors or
data written by DMA.

• An object that is modified by an asynchronous event handler
(for example, a global variable modified by an interrupt handler).

• An automatic storage duration object (i.e. a local variable declared
on the stack) declared in a function that calls setjmp() and whose
value is changed between the call to setjmp() and a corresponding
call to longjmp().

CrossCore Embedded Studio 1.1 2-21
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Data Types
Table 2-2 shows the following scalar data types that the compiler
supports.

Fractional data types are represented using the integer types. Manipula-
tion of these is best done using of built-in functions, described in Using
System Support Built-In Functions.

Table 2-2. Scalar Data Types

Data Type Value

Single-Word Fixed-Point Data Types: Native Arithmetic

char 32-bit signed integer

unsigned char 32-bit unsigned integer

short 32-bit signed integer

unsigned short 32-bit unsigned integer

int 32-bit signed integer

unsigned int 32-bit unsigned integer

long 32-bit signed integer

unsigned long 32-bit unsigned integer

Double-Word Fixed-Point Data Types: Emulated Arithmetic

long long 64-bit signed integer

unsigned long long 64-bit unsigned integer

Single-Word Fixed-Point Data Types: Native
Arithmetic

fract 32-bit signed fractional

unsigned fract 32-bit unsigned fractional

short fract 32-bit signed fractional

General Guidelines

2-22 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Avoiding Emulated Arithmetic

Arithmetic operations for some data types are implemented by library
functions because the processor hardware does not directly support these
types. Consequently, operations for these types are far slower than native
operations (sometimes by a factor of a hundred) and also produce larger
code. These types are marked as “Emulated Arithmetic” in Data Types.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full-division operation,
it usually needs to call a library function. One instance in which a library
call is avoided is for integer division when the divisor is a compile-time

unsigned short fract 32-bit unsigned fractional

long fract 32-bit signed fractional

unsigned long fract 32-bit unsigned fractional

Floating-Point Data Types: Native Arithmetic

float 32-bit floating point
Note: Default when the Double size option is
set to 32 bits, or the -double-size-32 switch
is used.

double 32-bit floating point

Floating-Point Data Types: Emulated Arithmetic

double 64-bit floating-point
Note: Default when the Double size option is
set to 64 bits, or the -double-size-64 switch
is used.

long double 64-bit floating-point

Table 2-2. Scalar Data Types (Cont’d)

Data Type Value

CrossCore Embedded Studio 1.1 2-23
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

constant and is a power of two. In that case, the compiler generates a shift
instruction. Even then, a few fix-up instructions are needed after the shift
if the types are signed. If you have a signed division by a power of two,
consider whether you can change it to unsigned in order to obtain a sin-
gle-instruction operation.

When the compiler has to generate a call to a library function for one of
the arithmetic operators that are not supported by the hardware, perfor-
mance suffers not only because the operation takes multiple cycles, but
also because the effectiveness of the compiler optimizer is reduced.

Avoid emulated arithmetic operators where possible, especially in loops,
where their use can inhibit more advanced optimization techniques, such
as vectorization.

Getting the Most From IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible for analysis.

The performance features are:

• Initialize Constants Statically

• Dual Word-Aligning Your Data

• Using the aligned() Builtin

• Avoiding Aliases

General Guidelines

2-24 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Initialize Constants Statically

IPA identifies variables that have only one value and replaces them with
constants, resulting in a host of benefits for the optimizer’s analysis. For
this to happen a variable must have a single value throughout the pro-
gram. If the variable is statically initialized to zero, as all global variables
are by default, and is subsequently assigned some other value at another
point in the program, then the analysis sees two values and does not con-
sider the variable to have a constant value.

For example,

// BAD: IPA cannot see that val is a constant
#include <stdio.h>
int val; // initialized to zero

void init() {
val = 3; // re-assigned

}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

The code is better written as

// GOOD: IPA knows val is 3.
#include <stdio.h>
const int val = 3; // initialized once

void init() {
}

void func() {
printf("val %d",val);

CrossCore Embedded Studio 1.1 2-25
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

}

int main() {
init();
func();

}

Dual Word-Aligning Your Data

To make most efficient use of the hardware, it must be kept fed with data.
In many algorithms, the balance of data accesses to computations is such
that, to keep the hardware fully utilized, data must be fetched with loads
wider than 32 bits.

For external data, the ADSP-2116x chips require that dual-word memory
accesses reference dual-word-aligned addresses. Therefore, for the most
efficient code generation, ensure that your data buffers are
dual-word-aligned.

The compiler helps to establish the alignment of array data. Top-level
arrays are allocated at dual-word-aligned addresses, regardless of their data
types. In order to do this for local arrays, the compiler also ensures that
stack frames are kept dual-word-aligned. However, arrays within struc-
tures are not aligned beyond the required alignment for their type. It may
be worth using the #pragma align 2 directive to force the alignment of
arrays in this case.

If you write programs that pass only the address of the first element of an
array as a parameter, and loop that process through these input arrays, an
element at a time (starting at element zero), then IPA should be able to
establish that the alignment is suitable for full-width accesses.

Where an inner loop processes a single row of a multi-dimensional array,
try to ensure that each row begins on a two-word boundary. In particular,
two-dimensional arrays should be defined in a single block of memory
rather than as an array of pointers to rows all separately allocated with
malloc. It is difficult for the compiler to keep track of the alignment of the

General Guidelines

2-26 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

pointers in the latter case. It may also be necessary to insert dummy data
at the end of each row to make the row length a multiple of two words.

Using the aligned() Builtin

To avoid the need to use IPA to propagate alignment, and for situations
when IPA cannot guarantee the alignment (but you can), use the
aligned() built-in function to assert the alignment of important pointers,
meaning that the pointer points to data that is aligned. Remember when
adding this declaration that you are responsible for making sure it is valid,
and that if the assertion is not true, the code produced by the compiler is
likely to malfunction.

The assertion is particularly useful for function parameters, although you
may assert that any pointer is aligned. For example, when compiling the
function:

// BAD: without IPA, compiler doesn't know the alignment of a and
b.
void copy(char *a, char *b) {

int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

the compiler does not know the alignment of pointers a and b if IPA is not
being used. However, by modifying the function to:

// GOOD: both pointer parameters are known to be aligned.
#include <builtins.h>

void copy(char *a, char *b) {

int i;
aligned(a, 4);
aligned(b, 4);
for (i=0; i<100; i++)

a[i] = b[i];
}

CrossCore Embedded Studio 1.1 2-27
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

the compiler can be told that the pointers are aligned on dual-word
boundaries. To assert instead that both pointers are always aligned one
char before a dual-word boundary, use:

// GOOD: both pointer parameters are known to be misaligned.
#include <builtins.h>

void copy(char *a, char *b) {

int i;
aligned(a+1, 4);
aligned(b+1, 4);
for (i=0; i<100; i++)

a[i] = b[i];
}

The expression used as the first parameter to the built-in function obeys
the usual C rules for pointer arithmetic. The second parameter should give
the alignment in words as a literal constant.

Avoiding Aliases

It may seem that the iterations can be performed in any order in the fol-
lowing loop:

// BAD: a and b may alias each other.
void fn(char a[], char b[], int n) {

int i;
for (i = 0; i < n; ++i)

a[i] = b[i];
}

but a and b are both parameters, and, although they are declared with [],
they are pointers that may point to the same array. When the same data
may be reachable through two pointers, they are said to alias each other.

If IPA is enabled, the compiler looks at the call sites of fn and tries to
determine whether a and b can ever point to the same array.

Even with IPA, it is easy to create what appears to the compiler as an alias.
The analysis works by associating pointers with sets of variables that they

General Guidelines

2-28 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

may refer to at some point in the program. If the sets for two pointers
intersect, then both pointers are assumed to point to the union of the two
sets.

If fn above were called only in two places, with global arrays as arguments,
then IPA would have the results shown below:

// GOOD: sets for a and b do not intersect: a and b are not
aliases.

fn(glob1, glob2, N);
fn(glob1, glob2, N);

// GOOD: sets for a and b do not intersect: a and b are not
aliases.

fn(glob1, glob2, N);
fn(glob3, glob4, N);

// BAD: sets intersect - both a and b may access glob1;
// a and b may be aliases.

fn(glob1, glob2, N);
fn(glob3, glob1, N);

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would significantly lengthen compilation time.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

// GOOD: p and q do not alias.
int *p = a;
int *q = b;

// some use of p
// some use of q

CrossCore Embedded Studio 1.1 2-29
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

than

// BAD: uses of p in different contexts may alias.
int *p = a;

// some use of p
p = b;

// some use of p

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays Versus Pointers
The C language allows a program to access data from an array in two ways:
either by indexing from an invariant base pointer, or by incrementing a
pointer. The following two versions of vector addition illustrate the two
styles:

Style 1: using indexed arrays (indexing from a base pointer)

void va_ind(const short a[], const short b[], short out[], int n) {
int i;
for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];
}

Style 2: incrementing a pointer

void va_ptr(const short a[], const short b[], short out[], int n) {
int i;
short *pout = out;
const short *pa = a, *pb = b;
for (i = 0; i < n; ++i)

*pout++ = *pa++ + *pb++;
}

Trying Pointer and Indexed Styles

One might hope that the chosen style would not make any difference to
the generated code, but this is not always the case. Sometimes, one version

General Guidelines

2-30 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

of an algorithm generates better optimized code than the other, but it is
not always the same style that is better.

 Try both pointer and index styles.

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler, and sometimes this is accomplished better by hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Using Function Inlining
Function inlining may be used in two ways:

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is performed only when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-57) or the Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > General > Inlining option
to Automatic, automatically enabling optimization.

 Inline small, frequently executed functions.

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions and parameter passing overheads.

Using an inline function also has the advantage that the compiler can
optimize through the inline code and does not have to assume that scratch
registers and condition states are modified by the call. Prime candidates

CrossCore Embedded Studio 1.1 2-31
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

for inlining are small, frequently-used functions because they cause the
least code-size increase while giving most performance benefit.

As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

// GOOD: use of the inline keyword.
inline int add(int a, int b) {

return (a+b);
}

Inlining has a code-size-to-performance trade-off that should be consid-
ered. With -Oa, the compiler automatically inlines small functions where
possible. If the application has a tight upper code-size limit, the resulting
code-size expansion may be too great. Consider using automatic inlining
in conjunction with the -Ov num switch (on page 1-58) or the Optimize
for code speed/size slider to restrict inlining (and other optimizations
with a code-size cost) to parts of the application that are performance-crit-
ical. It is discussed in more detail later in this chapter.

For more information, see Function Inlining.

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

 Avoid the use of inline asm statements where built-in functions
may be used instead.

The compiler does not intensively optimize code that contains inline asm
statements because it has little understanding about what the code in the
statement does. In particular, use of an asm statement in a loop may
inhibit useful transformations.

The compiler has a large number of built-in functions that generate spe-
cific hardware instructions. These are designed to allow the programmer

General Guidelines

2-32 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

to more finely tune the code produced by the compiler, or to allow access
to system support functions. A complete list of compiler’s built-in func-
tions is given in Compiler Built-In Functions.

Use of these built-in functions is much preferred to using inline asm state-
ments. Since the compiler knows what each built-in function does, it can
easily optimize around them. Conversely, since the compiler does not
parse asm statements, it does not know what they do, and so is hindered in
optimizing code that uses them. Note also that errors in the text string of
an asm statement are caught by the assembler and not by the compiler.

Examples of efficient use of built-in functions are given in Using System
Support Built-In Functions.

For more information, see Inline Assembly Language Support Keyword
(asm).

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.ldf), allows the programmer control over where data is placed in mem-
ory. This section describes how to best lay out data for maximum
performance.

 Try to put arrays into different memory sections.

The processor hardware can support two memory operations on a single
instruction line, combined with a compute instruction. However, two
memory operations complete in one cycle only if the two addresses are sit-
uated in different memory blocks. If both access the same block, the
processor stalls.

CrossCore Embedded Studio 1.1 2-33
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Consider the dot product loop below. Because data is loaded from both
array a and array b in every iteration of the loop, it may be useful to ensure
that these arrays are located in different blocks.

// BAD: compiler assumes that two memory accesses together may
give a stall.

for (i=0; i<100; i++)
sum += a[i] * b[i];

The “Dual Memory Support Language Keywords” compiler extension (see
Dual Memory Support Keywords (pm dm)) can improve the compiler’s
use of the memory system. Placing a pm qualifier before the type definition
tells the compiler that the array is located in what is referenced as “Pro-
gram Memory” (pm).

The memory of the SHARC processor is in one unified address space and
there is no restriction on where in memory program code or data can be
placed. However, the default .ldf files ensure that pm-qualified data is
placed in a different memory block than non-qualified (or dm-qualified)
data, thus allowing two accesses to occur simultaneously without incur-
ring a stall. The memory block used for pm-qualified data in the default
.ldf files is the same memory block as is used for the program code, hence
the name “Program Memory”.

To allow simultaneous accesses to the two buffers, modify the array decla-
ration of either a or b program by adding the pm qualifier. Also add the pm
qualifier to the declarations of any pointers that point to the pm buffer.

For example,

pm int a[100];

and any pointers to the buffer a become, for example,

pm int *p = a;

Note that only global or static data can be explicitly placed in Program
Memory.

Improving Conditional Code

2-34 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Improving Conditional Code
When compiling conditional statements, the compiler attempts to predict
whether the condition will usually evaluate to true or to false, and will
arrange for the most efficient path of execution to be that which is
expected to be most commonly executed.

You can use the expected_true and expected_false built-in functions to
control the compiler’s optimization of conditional branches. By using
these functions, you can tell the compiler which way a condition is most
likely to evaluate, and so influence the default flow of execution. For
example,

if (buffer_valid(data_buffer))

if (send_msg(data_buffer))

system_failure();

shows two nested conditional statements. If it was known that
buffer_valid() would usually return true, but that send_msg() would
rarely do so, the code could be written as

if (expected_true(buffer_valid(data_buffer)))

if (expected_false(send_msg(data_buffer)))

system_failure();

Example of Compiler Performance Built-in Functions

The following example project demonstrates the use of these compiler per-
formance built-in functions:

SHARC\Examples\No_HW_Required\ADSP-21469\Branch_Prediction

The project loops through a section of character data, counting the differ-
ent types of characters it finds. It produces three overall counts: lowercase

CrossCore Embedded Studio 1.1 2-35
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

letters, uppercase letters, and non-alphabetic characters. The effective test
is as follows:

if (isupper(c))

nAZ++; // count one more uppercase letter

else if (islower(c))

naz++; // count one more lowercase letter

else

nx++; // count one more non-alphabetic character

The performance of the application is determined by the compiler’s ability
to correctly predict which of these two tests is going to evaluate as true
most frequently.

In the source code for this example, the two tests are enclosed in two
macros, EXPRA(c) and EXPRB(c):

if (EXPRA(isupper(c)))

nAZ++; // count one more uppercase letter

else if (EXPRB(islower(c)))

naz++; // count one more lowercase letter

else

nx++; // count one more non-alphabetic character

The macros are conditionally defined according to the macro EXPRS, at
compile-time, as shown by Table 2-3. By setting EXPRS to different values,
you can see the effect the compiler performance built-in functions have on
the application’s overall performance. By leaving the EXPRS macro unde-
fined, you can see how the compiler’s default heuristics compare.

Table 2-3. How Macro EXPRS Affects Macros EXPRA and EXPRB

Value of EXPRS EXPRA expected to be EXPRB expected to be

Undefined No prediction No prediction

1 True True

2 False True

Improving Conditional Code

2-36 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

To use the example, do the following:

1. Import the Branch_Prediction project into your workspace:

a. Select File > Import.

b. Choose General > Existing Projects Into Workspace and
click Next.

c. Ensure Select root directory is checked.

d. Browse to the SHARC\Examples\No_HW_Re-
quired\ADSP-21469\Branch_Prediction directory. Click
OK.

e. Check the Branch_Prediction project.

f. Ensure Copy projects into workspace is checked.

g. Click Finish.

2. Build the project.

3. Create a launch configuration for the ADSP-21469 SHARC pro-
cessor, for the executable you have just built.

4. Launch the configuration, and run the executable to completion.
You will see some output on the console as the project reports the
number of characters of each type found in the string. The applica-
tion will also report the number of cycles used.

5. Open Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Preprocessor.

3 True False

4 False False

Table 2-3. How Macro EXPRS Affects Macros EXPRA and EXPRB (Cont’d)

Value of EXPRS EXPRA expected to be EXPRB expected to be

CrossCore Embedded Studio 1.1 2-37
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

6. In the Preprocessor definitions field, add EXPRS=1. Click OK.

7. Re-build and re-run the application. You will receive the same
counts from the application, but the cycle counts will be different.

8. Try using values 2, 3, or 4 for EXPRS instead, and determine which
combination of expected_true() and expected_false() built-in
functions produces the best performance.

See Compiler Performance Built-In Functions (on expected_true and
expected_false functions) for more information.

Using PGO in Function Profiling
The compiler can also determine the most commonly-executed branches
automatically, using profile-guided optimization (PGO). See Optimiza-
tion Control for more details.

Example of Using Profile-Guided Optimization

Continuing with the same example (on page 2-34), PGO can determine
the best settings for the branches in EXPRA(c) and EXPRB(c) (and all other
parts of the source code) using profiling.

 Normally, when using PGO, you would configure one or more
input files as part of your data set. The application would read its
inputs from these files, via the peripherals the application uses, and
the data would influence the gathered profile. For this example, all
the input data is embedded in the application source.

Improving Conditional Code

2-38 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Opening the Project

To use the example, do the following:

1. Import the Branch_Prediction project into your workspace:

a. Select File > Import.

b. Choose General > Existing Projects Into Workspace and
click Next.

c. Ensure Select root directory is checked.

d. Browse to the SHARC\Examples\No_HW_Re-
quired\ADSP-21469\Branch_Prediction directory. Click
OK.

e. Check the Branch_Prediction project.

f. Ensure Copy projects into workspace is checked.

g. Click Finish.

2. Ensure that the Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Preprocessor > Preprocessor defini-
tions field does not contain a definition for EXPRS.

3. Build the project.

4. Create a launch configuration for the ADSP-21469 SHARC pro-
cessor, for the executable you have just built.

5. Launch the configuration, and run the executable to completion.
You will see some output on the console as the project reports the
number of characters of each type found in the string. The applica-
tion will also report the number of cycles used.

CrossCore Embedded Studio 1.1 2-39
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Gathering the Profile

To gather the profile on a simulator launch configuration:

1. Select Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization > Pre-
pare application to create new profile.

2. In your launch configuration, go to the Automatic Breakpoints
tab, and add a new software breakpoint on the label ___lib_start.

3. Build the application, and launch it.

4. When the start breakpoint is reached, select Target > PGO >
Simulator > Start.

5. Continue running the application, until it reaches the
__lib_prog_term label.

6. Select Target > PGO > Simulator > Stop and Save.

Because the application is running on a simulator, the simulator does the
work of gathering the profile, so the cycle-count will be the same as
before.

To gather the profile on a hardware launch configuration:

1. Select Project > Properties > C/C++ Build > Settings
>Tool Settings > Compiler > Profile-guided Optimization >
Gather profile using hardware and Prepare application to create
new profile.

2. Build the application, and launch it.

3. Continue running the application, until it reaches the
__lib_prog_term label.

Loop Guidelines

2-40 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Because the application is running on hardware, the compiler has planted
additional code to gather the profile, so the cycle-count reported will be
considerably higher than before. This is not a concern.

Rebuilding With the Profile

The profile will have been gathered into the file Debug/Branch_Predic-
tion.pgo, within your project’s directory. You now need to rebuild the
application using this profile, telling the compiler to optimize the applica-
tion according to execution counts for each path in the program. To do
this:

1. Ensure Project > Properties > C/C++ Build > Settings > Tool
Settings > Compiler > Profile-guided Optimization > Gather pro-
file using hardware is not selected.

2. Ensure Prepare application to create new profile is not selected.

3. Select Optimize using existing profiles.

4. Add Debug/Branch_Prediction.pgo to the list of Profiles.

5. Click General (under Compiler) in the tree control and ensure
Enable Optimization is selected.

6. Rebuild the application.

Now relaunch and run your rebuilt application. You will see a lower cycle
count than first reported, as the compiler has rearranged the generated
code so that the most commonly-executed paths are the defaults.

Loop Guidelines
Loops are where an application ordinarily spends the majority of its time.
It is therefore useful to look in detail at how to help the compiler to pro-
duce the most efficient code.

CrossCore Embedded Studio 1.1 2-41
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

This section describes:

• Keeping Loops Short

• Avoiding Unrolling Loops

• Avoiding Loop-Carried Dependencies

• Avoiding Loop Rotation by Hand

• Avoiding Complex Array Indexing

• Inner Loops Versus Outer Loops

• Avoiding Conditional Code in Loops

• Avoiding Placing Function Calls in Loops

• Avoiding Non-Unit Strides

• Loop Control

• Using the Restrict Qualifier

Keeping Loops Short
For best code efficiency, loops should be short. Large loop bodies are usu-
ally more complex and difficult to optimize. Large loops may also require
register data to be stored in memory, which decreases code density and
execution performance.

Loop Guidelines

2-42 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Avoiding Unrolling Loops
Do not unroll loops yourself. Not only does loop unrolling make the pro-
gram harder to read but it also prevents optimization by complicating the
code for the compiler.

// GOOD: the compiler unrolls if it helps.

void va1(const short a[], const short b[], short c[], int n) {

int i;

for (i = 0; i < n; ++i) {

c[i] = b[i] + a[i];

}

}

// BAD: harder for the compiler to optimize.

void va2(const short a[], const short b[], short c[], int n) {

short xa, xb, xc, ya, yb, yc;

int i;

for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];

xa = a[i]; ya = a[i+1];

xc = xa + xb; yc = ya + yb;

c[i] = xc; c[i+1] = yc;

}

}

Avoiding Loop-Carried Dependencies
A loop-carried dependency exists when a computation in a given iteration
of a loop cannot be completed without knowledge of values calculated in
earlier iterations. When a loop has such dependencies, the compiler can-
not overlap loop iterations. Some dependencies are caused by scalar
variables that are used before they are defined in a single iteration.

CrossCore Embedded Studio 1.1 2-43
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

However, if the loop-carried dependency is part of a reduction computa-
tion, the optimizer can reorder iterations. Reductions are loop
computations that reduce a vector of values to a scalar value using an asso-
ciative and commutative operator. A multiply and accumulate in a loop is
a common example of a reduction.

// BAD: loop-carried dependence in variable x.
for (i = 0; i < n; ++i)

x = a[i] - x;

// GOOD: loop-carried dependence is a reduction.
for (i = 0; i < n; ++i)

x += a[i] * b[i];

In the first case, the scalar dependency is the subtraction operation. The
variable x is modified in a manner that would give different results if the
iterations were performed out of order. In contrast, in the second case,
because the addition operator is associative and commutative, the com-
piler can perform the iterations in any order and still get the same result.
Other examples of reductions are bitwise and/or and min/max operators.
The existence of loop-carried dependencies that are not reductions pre-
vents the compiler from vectorizing a loop—that is, executing more than
one iteration concurrently.

Floating-point addition is by default treated as associative and as a reduc-
tion operator. However, strictly speaking, rounding effects can change the
result when the order of summation is varied. Use the -no-fp-associative
compiler switch (on page 1-50) to ensure floating-point operations are
executed in the same order as in the source code.

Avoiding Loop Rotation by Hand
Do not rotate loops by hand. Programmers are often tempted to “rotate”
loops in DSP code by hand, attempting to execute loads and stores from
earlier or future iterations at the same time as computation from the cur-
rent iteration. This technique introduces loop-carried dependencies that

Loop Guidelines

2-44 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

prevent the compiler from rearranging the code effectively. It is better to
give the compiler a simpler version, and leave the rotation to the compiler.

For example,

// GOOD: is rotated by the compiler.
int ss(short *a, short *b, int n) {

int sum = 0;
int i;
for (i = 0; i < n; i++) {

sum += a[i] + b[i];
}
return sum;

}

// BAD: rotated by hand: hard for the compiler to optimize.
int ss(short *a, short *b, int n) {

short ta, tb;
int sum = 0;
int i = 0;
ta = a[i]; tb = b[i];
for (i = 1; i < n; i++) {

sum += ta + tb;
ta = a[i]; tb = b[i];

}
sum += ta + tb;
return sum;

}

Rotating the loop required adding the scalar variables ta and tb and intro-
ducing loop-carried dependencies.

Avoiding Complex Array Indexing
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that is overwritten in a
subsequent iteration.

CrossCore Embedded Studio 1.1 2-45
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

// BAD: has array dependency.

for (i = 0; i < n; ++i)

a[i] = b[i] * a[c[i]];

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

// GOOD: uses induction variables.

for (i = 0; i < n; ++i)

a[i+4] = b[i] * a[i];

Inner Loops Versus Outer Loops
Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop to make the loop body run faster. Therefore, try to
make sure that your algorithm also spends most of its time in the inner
loop; otherwise it may actually run slower after optimization. If you have
nested loops where the outer loop runs many times and the inner loop
runs a small number of times, try to rewrite the loops so that the outer
loop has fewer iterations.

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler is able to convert if-then-else and ?:
constructs into conditional instructions. In other cases, it can evaluate the
expression entirely outside of the loop. However, for important loops, lin-
ear code should be written where possible.

Loop Guidelines

2-46 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

There are several techniques for removing conditional code. For example,
there is hardware support for min and max. The compiler usually succeeds
in transforming conditional code equivalent to min or max into the single
instruction. With particularly convoluted code the transformation may be
missed, in which case it is better to use min or max in the source code.

The compiler can sometimes perform the loop transformation that inter-
changes conditional code and loop structures. Nevertheless, instead of
writing

// BAD: loop contains conditional code.
for (i=0; i<100; i++) {

if (mult_by_b)
sum1 += a[i] * b[i];

else
sum1 += a[i] * c[i];

}

it is better to write

// GOOD: two simple loops can be optimized well.
if (mult_by_b) {

for (i=0; i<100; i++)
sum1 += a[i] * b[i];

} else {
for (i=0; i<100; i++)

sum1 += a[i] * c[i];
}

if this is an important loop.

CrossCore Embedded Studio 1.1 2-47
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Placing Function Calls in Loops
The compiler usually is unable to generate a hardware loop if the loop
contains a function call due to the expense of saving and restoring the con-
text of a hardware loop. In addition, operations such as division, modulus,
and some type coercions may implicitly call library functions. These are
expensive operations which you should try to avoid in inner loops. For
more details, see Data Types.

Avoiding Non-Unit Strides
If you write a loop, such as

// BAD: non-unit stride means division may be required.
for (i=0; i<n; i+=3) {

// some code
}

then for the compiler to turn this into a hardware loop, it needs to work
out the loop trip count. To do so, it must divide n by 3. The compiler may
decide that this is worthwhile as it speeds up the loop, but division is an
expensive operation. Try to avoid creating loop control variables with
strides other than 1 or -1.

In addition, try to keep memory accesses in consecutive iterations of an
inner loop contiguous. This is particularly applicable to multi-dimen-
sional arrays.

Therefore,

// GOOD: memory accesses contiguous in inner loop
for (i=0; i<100; i++)

for (j=0; j<100; j++)
sum += a[i][j];

Loop Guidelines

2-48 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

is likely to be better than

// BAD: loop cannot be unrolled to use wide loads.
for (i=0; i<100; i++)

for (j=0; j<100; j++)
sum += a[j][i];

as the former is more amenable to vectorization.

Loop Control
Use int types for loop control variables and array indices.For loop control
variables and array indices, it is always better to use signed ints rather
than any other integral type. For other integral types, the C standard
requires various type promotions and standard conversions that compli-
cate the code for the compiler optimizer. Frequently, the compiler is still
able to deal with such code and create hardware loops and pointer induc-
tion variables. However, it does make it more difficult for the compiler to
optimize and may occasionally result in under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. Use automatic variables for loop control and loop exit test. It is easy
for a compiler to see that an automatic scalar whose address is not taken
may be held in a register during a loop. But it is not as easy when the vari-
able is a global or a function static.

Therefore, code such as

// BAD: may need to reload globvar on every iteration.
for (i=0; i<globvar; i++)

a[i] = a[i] + 1;

may not create a hardware loop if the compiler cannot be sure that the
write into the array a does not change the value of the global variable. The
globvar must be reloaded each time around the loop before performing
the exit test.

CrossCore Embedded Studio 1.1 2-49
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

In this circumstance, the programmer can make the compiler’s job easier
by writing:

// GOOD: easily becomes a hardware loop.
int upper_bound = globvar;
for (i=0; i<upper_bound; i++)

a[i] = a[i] + 1;

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers do
not interfere with each other. The loads and stores in the following loop

// BAD: possible alias of arrays a and b
void copy(short *a, short *b) {

int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

 may be disambiguated by writing

// GOOD: restrict qualifier tells compiler that memory
// accesses do not alias
void copy(short * restrict a, short * restrict b) {

int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

The restrict keyword is particularly useful on function parameters. but
it can be used on any variable declaration. For example, the copy function
may also be written as:

void copy(short *a, short *b) {

int i;

short * restrict p = a;

short * restrict q = b;

Using Built-In Functions in Code Optimization

2-50 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

for (i=0; i<100; i++)

*p++ = *q++;

}

Using Built-In Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, provide a method
for the programmer to efficiently use low-level features of the processor
hardware while programming in C. Although this section does not cover
all the built-in functions available, it presents some code examples where
implementation choices are available to the programmer. For more infor-
mation, refer to Compiler Built-In Functions.

Using System Support Built-In Functions
Built-in functions are provided to perform low-level system management,
in particular for the manipulation of system registers (defined in sys-
reg.h). It is usually better to use these built-in functions rather than inline
asm statements.

The built-in functions cause the compiler to generate efficient inline
instructions and their use often results in better optimization of the sur-
rounding code at the point where they are used. Using the built-in
functions also usually results in improved code readability.

For more information on supported built-in functions, refer to Compiler
Built-In Functions.

Examples of the two styles are:

// BAD: uses inline asm statement

asm("#include <def21160.h>");

// Bit definitions for the registers

CrossCore Embedded Studio 1.1 2-51
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

void func_no_interrupts(void){

// Check if interrupts are enabled.

// If so, disable them, call the function, then re-enable.

int enabled;

asm("r0=0; bit tst MODE1 IRPTEN; if tf r0=r0+1; %0 = r0;"

: "=d"(enabled) : : "r0");

if (enabled)

asm("bit clr mode1 IRPTEN;"); // Disable interrupts

func(); // Do something

if (enabled)

asm("bit set mode1 IRPTEN;"); // Re-enable interrupts

}

// GOOD: uses sysreg.h

#include <sysreg.h> // Sysreg functions

#include <def21160.h> // Bit definitions for the registers

void func_no_interrupts(void){

// Check if interrupts are enabled.

// If so, disable them, call the function, then re-enable.

int enabled = sysreg_bit_tst(sysreg_MODE1, IRPTEN);

if (enabled)

sysreg_bit_clr(sysreg_MODE1, IRPTEN);

 // Disable interrupts

func(); // Do something

if (enabled)

sysreg_bit_set(sysreg_MODE1, IRPTEN);

// Re-enable interrupts

}

This example calls a function with interrupts disabled.

Using Built-In Functions in Code Optimization

2-52 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Using Circular Buffers
Circular buffers are useful in DSP-style code. They can be used in several
ways. Consider the C code:

// GOOD: the compiler knows that b is accessed as a circular
buffer
for (i=0; i<1000; i++) {

sum += a[i] * b[i%20];
}

Clearly the access to array b is a circular buffer. When optimization is
enabled, the compiler produces a hardware circular buffer instruction for
this access.

Consider this more complex example.

// BAD: may not be able to use circular buffer to access b
for (i=0; i<1000; i+=n) {

sum += a[i] * b[i%20];
}

In this case, the compiler does not know if n is positive and less than 20. If
it is, then the access may be correctly implemented as a hardware circular
buffer. On the other hand, if it is greater than 20, a circular buffer incre-
ment may not yield the same results as the C code.

The programmer has two options here.

The first option is to compile with the -force-circbuf switch. This tells
the compiler that any access of the form a[i%n] should be considered as a
circular buffer. Before using this switch, you should check that this
assumption is valid for your application.

• The value of i must be positive.

• The value of n must be constant across the loop, and greater than
zero (as the length of the buffer).

CrossCore Embedded Studio 1.1 2-53
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• The value of a must be a constant across the loop (as the base
address of the circular buffer).

• The initial value of i must be such that a[i] refers a valid position
within the circular buffer. This is because the circular buffer opera-
tions will take effect when advancing from position a[i] to either
a[i+m] or a[i-m], by addition or subtraction, respectively. If a[i]
is not initially valid, then any access before the first advancement
will not access the buffer, and a[i+m] and a[i-m] will not be guar-
anteed to reference the buffer after advancement.

 Circular buffer operations (which add or subtract the buffer length
to a pointer) are semantically different from a[i%n] (which per-
forms a modulo operation on an index, and then adds the result to
a base pointer). If you use the -force-circbuf switch when the
above conditions are not true, the compiler generates code that
does not have the intended effect.

The second, and preferred, option is to use built-in functions to perform
the circular buffering. Two functions (circindex and circptr) are pro-
vided for this purpose.

To make it clear to the compiler that a circular buffer should be used, you
may write either:

// GOOD: explicit use of circular buffer via circindex
#include <builtins.h>

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * b[j];
j = circindex(j, n, 20);

}

or

// GOOD: explicit use of circular buffer via circptr
#include <builtins.h>

int *p = b;

Smaller Applications: Optimizing for Code Size

2-54 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

for (i=0, j=0; i<1000; i+=n) {
sum += a[i] * (*p);
p = circptr(p, n, b, 20);

}

For more information, refer to Compiler Built-In Functions.

Smaller Applications: Optimizing for
Code Size

The same ethos for producing fast code also applies to producing small
code. You should present the algorithm in a way that gives the optimizer
clear visibility of the operations and data, and hence the greatest freedom
to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy
depends on the code-size constraint that the program must obey. The first
step should be to optimize the application for full performance, using -O
or -ipa switches. If this obeys the code-size constraints, then no more
need be done.

The “optimize for space” switch -Os (on page 1-58), which may be used in
conjunction with IPA, performs every performance-enhancing transfor-
mation except those that increase code size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (see on page 1-36). This operation performs section elimination in
the linker to remove unneeded data and code. If the code produced with
the -Os and -flags-link -e switches does not meet the code-size
constraint, some analysis of the source code is required to try to reduce the
code size further.

CrossCore Embedded Studio 1.1 2-55
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Note that loop transformations such as unrolling and software pipelining
increase code size. But it is these loop transformations that also give the
greatest performance benefit. Therefore, in many cases compiling for
minimum code size produces significantly slower code than optimizing for
speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding scale -Ov num switch (adjustable using the opti-
mization slider bar under Project > Properties > C/C++ Build > Settings
> Tool Settings > Compiler > General in the IDE), described
on page 1-58. The num parameter is a value between 0 and 100, where the
lower value corresponds to minimum code size and the upper to maxi-
mum performance. A value in-between is used to optimize the
frequently-executed regions of code for maximum performance, while
keeping the infrequently-executed parts as small as possible. The switch is
most reliable when using profile-guided optimization (see Optimization
Control) since the execution counts of the various code regions have been
measured experimentally. Without PGO, the execution counts are esti-
mated, based on the depth of loop nesting.

 Avoid the use of inline code.

Avoid using the inline keyword to inline code for functions that are used
a number of times, especially if they not very small. The -Os switch does
not have any effect on the use of the inline keyword. It does, however,
prevent automatic inlining (using the -Oa switch) from increasing the code
size. Macro functions can also cause code expansion and should be used
with care.

Using Pragmas for Optimization

2-56 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Using Pragmas for Optimization
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section looks at how they
can be used to finely tune source code. Refer to Pragmas for full details of
how each pragma works; the emphasis here is in considering under what
circumstances they are useful during the optimization process.

In most cases the pragmas serve to give the compiler information which it
is unable to deduce for itself. It must be emphasized that the programmer
is responsible for making sure that the information given by the pragma is
valid in the context in which it is used. Use of a pragma to assert that a
function or loop has a quality that it does not in fact have is likely to result
in incorrect code and hence a malfunctioning application.

An advantage of the use of pragmas is that they allow code to remain por-
table, since they are normally ignored by a compiler that does not
recognize them.

Function Pragmas
Function pragmas include #pragma alloc, #pragma const, #pragma pure,
#pragma result_alignment, #pragma regs_clobbered, and
#pragma optimize_{off|for_speed|for_space|as_cmd_line}.

#pragma alloc

This pragma asserts that the function behaves like the malloc library func-
tion. In particular, it returns a pointer to new memory that cannot alias
any pre-existing buffers. In the following code,

// GOOD: uses #pragma alloc to disambiguate out from a and b
#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int i;

CrossCore Embedded Studio 1.1 2-57
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

int *out = new_buf();
for (i=0; i<100; i++)

out[i] = a[i] * b[i];
}

the use of the pragma allows the compiler to be sure that the write into
buffer out does not modify either of the two input buffers a or b, and
therefore the iterations of the loop may be re-ordered.

#pragma const

This pragma asserts to the compiler that a function does not have any side
effects (such as modifying global variables or data buffers), and the result
returned is only a function of the parameter values. The pragma may be
applied to a function prototype or definition. It helps the compiler since
two calls to the function with identical parameters always yield the same
result. In this way, calls to #pragma const functions may be hoisted out of
loops if their parameters are loop independent.

#pragma pure

Like #pragma const, this pragma asserts to the compiler that a function
does not have any side effects (such as modifying global variables or data
buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pragma may be applied to a
function prototype or definition. Two calls to the function with identical
parameters always yield the same result provided that no global variables
have been modified between the calls. Hence, calls to #pragma pure func-
tions may be hoisted out of loops if their parameters are loop independent
and no global variables are modified in the loop.

Using Pragmas for Optimization

2-58 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma result_alignment

This pragma may be used on functions that have either pointer or integer
results. When a function returns a pointer, the pragma is used to assert
that the return result always has some specified alignment. Therefore, the
above example might further be refined if it is known that the new_buf
function always returns buffers which are aligned on a dual-word
boundary.

// GOOD: uses pragma result_alignment to specify that out has
// strict alignment
#pragma alloc
#pragma result_alignment (2)
int *new_buf(void);

int *vmul(int *a, int *b) {
int i;
int *out = new_buf();
for (i=0; i<100; i++)

out[i] = a[i] * b[i];
}

Further details on this pragma may be found in #pragma result_alignment
(n). Another more laborious way to achieve the same effect would be to
use aligned() at every call site to assert the alignment of the returned
result.

#pragma regs_clobbered

This pragma is a useful way to improve the performance of code that
makes function calls. The best use of the pragma is to increase the number
of call-preserved registers available across a function call. There are two
complementary ways in which this may be done.

First of all, suppose that you have a function written in assembly that you
wish to call from C source code. The regs_clobbered pragma may be
applied to the function prototype to specify which registers are “clob-
bered” by the assembly function, that is, which registers may have

CrossCore Embedded Studio 1.1 2-59
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

different values before and after the function call. Consider for example a
simple assembly function to add two integers and mask the result to fit
into 8 bits:

_add_mask:

modify(i7,-3);

r2=255;

r8=r8+r4;

r0=r8 and r2;

i12=dm(m7,i6);;

jump(m14,i12)(DB); rframe; nop;

._add_mask.end

Clearly the function does not modify the majority of the scratch registers
available and thus these could instead be used as call-preserved registers.
In this way fewer spills to the stack would be needed in the caller function.
Using the following prototype,

// GOOD: uses regs_clobbered to increase call-preserved register

set.

#pragma regs_clobbered "r0, r2, r8, i12, ASTAT"

int add_mask(int, int);

the compiler is told which registers are modified by a call to the add_mask
function. The registers not specified by the pragma are assumed to pre-
serve their values across such a call and the compiler may use these spare
registers to its advantage when optimizing the call sites.

The pragma is also powerful when all of the source code is written in C. In
the above example, a C implementation might be:

// BAD: function thought to clobber entire volatile register set

int add_mask(int a, int b) {

return ((a+b)&255);

}

Using Pragmas for Optimization

2-60 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Since this function does not need many registers when compiled, it can be
defined using:

// GOOD: function compiled to preserve most registers
#pragma regs_clobbered "r0, r2, i12, CCset"
int add_mask(int a, int b) {

return ((a+b)&255);
}

to ensure that any other registers aside from r0, r2, i12 and the condi-
tion codes are not modified by the function. If any other registers are used
in the compilation of the function, they are saved and restored during the
function prologue and epilogue.

In general, it is not very helpful to specify any of the condition codes as
call-preserved as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to be able
to keep them live across a function call. Therefore, it is better to use CCset
(all condition codes) rather than ASTAT in the clobbered set above. For
more information, refer to #pragma regs_clobbered string.

#pragma optimize_{off|for_speed|for_space|as_cmd_line}

The optimize_ pragmas may be used to change the optimization setting
on a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (using #pragma optimize_for_space), whereas functions critical to
performance should be compiled for maximum speed (using #pragma
optimize_for_speed). The #pragma optimize_off is useful for debugging
specific functions without increasing the size or decreasing the perfor-
mance of the overall application unnecessarily.

 #pragma optimize_as_cmd_line resets the optimization settings to
be those specified on the cc21k command line when the compiler
was invoked. Refer to General Optimization Pragmas for more
information.

CrossCore Embedded Studio 1.1 2-61
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count, no_vectorization, vector_for,
all_aligned, and no_alias pragmas.

#pragma loop_count

The loop_count pragma enables the programmer to inform the compiler
about a loop’s iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop if it knows the itera-
tion count range. If you know that the loop count is always a multiple of
some constant, this can also be useful as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to
omit the guards that are usually required after software pipelining. (A
“guard” is code generated by the compiler to test a condition at runtime
rather than at compile time.) Any of the parameters of the pragma that are
unknown may be left blank.

An example of the use of the loop_count pragma might be:

// GOOD: the loop_count pragma gives compiler helpful information

// to assist optimization)

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)

for (i=0; i<n; i++)

a[i] = b[i];

For more information, refer to #pragma loop_count (min, max, modulo).

#pragma no_vectorization

Vectorization (executing more than one iteration of a loop in parallel) can
slow down loops with very small iteration counts since a loop prologue
and epilogue are required. The no_vectorization pragma can be used
directly above a for or do loop to tell the compiler not to vectorize the

Using Pragmas for Optimization

2-62 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

loop, or directly before a function to disable vectorization for all loops in
the function.

#pragma vector_for

The vector_for pragma is used to help the compiler to resolve dependen-
cies that would normally prevent it from vectorizing a loop. It tells the
compiler that all iterations of the loop may be run in parallel with each
other, subject to rearrangement of reduction expressions in the loop. In
other words, there are no loop-carried dependencies except reductions. An
optional parameter, n, may be given in parentheses to say that only n iter-
ations of the loop may be run in parallel. The parameter must be a literal
value. For example,

// BAD: cannot be vectorized due to possible alias between a and

b

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

cannot be vectorized if the compiler cannot tell that the array b does not
alias array a. But the pragma may be added to tell the compiler that in this
case four iterations may be executed concurrently.

// GOOD: pragma vector_for disambiguates alias

#pragma vector_for (4)

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

Note that this pragma does not force the compiler to vectorize the loop.
The optimizer checks various properties of the loop and does not vectorize
it if it believes that it is unsafe or it is not possible to deduce information
necessary to carry out the vectorization transformation. The pragma
assures the compiler that there are no loop-carried dependencies, but there
may be other properties of the loop that prevent vectorization.

CrossCore Embedded Studio 1.1 2-63
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

In cases where vectorization is impossible, the information given in the
assertion made by vector_for may still be put to good use in aiding other
optimizations.

For more information, refer to #pragma vector_for.

#pragma SIMD_for

The SIMD_for pragma is similar to the vector_for pragma but makes the
weaker assertion that only two iterations may be issued in parallel. Further
details are given in #pragma SIMD_for.

#pragma all_aligned

The all_aligned pragma is used as shorthand for multiple aligned()
assertions. By prefixing a for loop with the pragma, it is asserted that
every pointer variable in the loop is aligned on a word boundary at the
beginning of the first iteration.

Therefore, adding the pragma to the following loop

// GOOD: uses all_aligned to inform compiler of alignment of a
and b
#pragma all_aligned
for (i=0; i<100; i++)

a[i] = b[i];

is equivalent to writing

// GOOD: uses aligned() to give alignment of a and b
#include <builtins.h>

aligned(a, 2);

aligned(b, 2);
for (i=0; i<100; i++)

a[i] = b[i];

In addition, the all_aligned pragma may take an optional literal integer
argument n in parentheses. This tells the compiler that all pointer

Using Pragmas for Optimization

2-64 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

variables are aligned on a word boundary at the beginning of the nth itera-
tion. Note that the iteration count begins at zero. Therefore,

// GOOD: uses all_aligned to inform compiler of alignment of a
and b
#pragma all_aligned (1)
for (i=99; i>=0; i--)

a[i] = b[i];

is equivalent to

// GOOD: uses aligned() to give alignment of a and b

#include <builtins.h>

aligned(a+98, 2);

aligned(b+98, 2);

for (i=99; i>=0; i--)

a[i] = b[i];

For more information, refer to #pragma all_aligned and Using the
aligned() Builtin.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that no
load or store in the loop accesses the same memory as any other. This
helps to produce shorter loop kernels as it permits instructions in the loop
to be rearranged more freely. See #pragma no_alias for more information.

CrossCore Embedded Studio 1.1 2-65
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Useful Optimization Switches
Table 2-4 lists the compiler switches useful during the optimization
process.

Table 2-4. C/C++ Compiler Optimization Switches

Switch Name Description

-const-read-write
on page 1-30

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere

-flags-link -e
on page 1-36

Specifies linker section elimination

-force-circbuf
on page 1-37

Treats array references of the form array[i%n] as circular buffer
operations

-ipa
on page 1-42

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
on page 1-50

Does not treat floating-point multiply and addition as an associative

-no-saturation
on page 1-54

Do not turn non-saturating operations into saturating ones

-O
on page 1-57

Enables code optimizations and optimizes the file for speed

-Os
on page 1-58

Optimizes the file for size

-Ov num
on page 1-58

Controls speed vs. size optimizations (sliding scale)

-pguide
on page 1-63

Adds instrumentation for the gathering of a profile as the first stage of
performing profile-guided optimization

-save-temps
on page 1-72

Saves intermediate files (for example, .s)

How Loop Optimization Works

2-66 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

How Loop Optimization Works
Loop optimization is important to overall application performance,
because any performance gain achieved within the body of a loop reaps a
benefit for every iteration of that loop. This section provides an introduc-
tion to some of the concepts used in loop optimization, helping you to use
the compiler features in this chapter.

This section contains:

• Terminology

• Loop Optimization Concepts

• A Worked Example

Terminology
This section describes terms that have particular meanings for compiler
behavior.

Clobbered Register

A register is “clobbered” if its value is changed so that the compiler cannot
usefully make assumptions about its new contents.

For example, when the compiler generates a call to an external function,
the compiler considers all caller-preserved registers to be clobbered by the
called function. Once the called function returns, the compiler cannot
make any assumptions about the values of those registers. This is why they
are called “caller-preserved.” If the caller needs the values in those regis-
ters, the caller must preserve them itself.

The set of registers clobbered by a function can be changed using #pragma
regs_clobbered, and the set of registers changed by a gnu asm statement is
determined by the clobber part of the asm statement.

CrossCore Embedded Studio 1.1 2-67
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Live Register

A register is “live” if it contains a value needed by the compiler, and thus
cannot be overwritten by a new assignment to that register. For example,
to do "A = B + C", the compiler might produce:

reg1 = load B // reg1 becomes live
reg2 = load C // reg2 becomes live
reg1 = reg1 + reg2 // reg2 ceases to be live;

// reg1 still live, but with a different
// value

store reg1 to A // reg1 ceases to be live

Liveness determines which registers the compiler may use. In this exam-
ple, since reg1 is used to load B, and that register must maintain its value
until the addition, reg1 cannot also be used to load the value of C, unless
the value in reg1 is first stored elsewhere.

Spill

When a compiler needs to store a value in a register, and all usable regis-
ters are already live, the compiler must store the value of one of the
registers to temporary storage (the stack). This “spilling” process prevents
the loss of a necessary value.

Scheduling

“Scheduling” is the process of re-ordering the program instructions to
increase the efficiency of the generated code but without changing the
program’s behavior. The compiler attempts to produce the most efficient
schedule.

Loop Kernel

The “loop kernel” is the body of code that is executed once per iteration of
the loop. It excludes any code required to set up the loop or to finalize it
after completion.

How Loop Optimization Works

2-68 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Loop Prolog

A “loop prolog” is a sequence of code required to set the machine into a
state whereby the loop kernel can execute. For example, the prolog may
pre-load some values into registers ready for use in the loop kernel. Not all
loops need a prolog.

Loop Epilog

A “loop epilog” is a sequence of code responsible for finalizing the execu-
tion of a loop. After each iteration of the loop kernel, the machine will be
in a state where the next iteration can begin efficiently. The epilog moves
values from the final iteration to where they need to be for the rest of the
function to execute. For example, the epilog might save values to memory.
Not all loops need an epilog.

Loop Invariant

A “loop invariant” is an expression that has the same value for all itera-
tions of a loop. For example:

int i, n = 10;

for (i = 0; i < n; i++) {

val += i;

}

The variable n is a loop invariant. Its value is not changed during the body
of the loop, so n will have the value 10 for every iteration of the loop.

Hoisting

When the optimizer determines that some part of a loop is computing a
value that is actually a loop invariant, it may move that computation to
before the loop. This prevents the same value from being re-computed for
every iteration. This is called “hoisting.”

CrossCore Embedded Studio 1.1 2-69
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Sinking

When the optimizer determines that some part of a loop is computing a
value that is not used until the loop terminates, the compiler may move
that computation to after the loop. This “sinking” process ensures the
value is only computed using the values from the final iteration.

Loop Optimization Concepts
The compiler optimizer focuses considerable attention on program loops,
as any gain in the loop’s performance reaps the benefits on every iteration
of the loop. The applied transformations can produce code that appears to
be substantially different from the structure of the original source code.
This section provides an introduction to the compiler’s loop optimization,
to help you understand why the code might be different.

This section describes:

• Software Pipelining

• Loop Rotation

• Loop Vectorization

• Modulo Scheduling

The following examples are presented in terms of a hypothetical machine.
This machine is capable of issuing up to two instructions in parallel, pro-
vided one instruction is an arithmetic instruction, and the other is a load
or a store. Two arithmetic instructions may not be issued at once, nor may
two memory accesses:

t0 = t0 + t1; // valid: single arithmetic
t2 = [p0]; // valid: single memory access
[p1] = t2; // valid: single memory access
t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory
t5 += 1, t6 -= 1; // invalid: two arithmetic
[p3] = t2, t4 = [p5]; // invalid: two memory

How Loop Optimization Works

2-70 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The machine can use the old value of a register and assign a new value to it
in the same cycle, for example:

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

The value of t1 on entry to the instruction is the value used in the addi-
tion. On completion of the instruction, t1 contains the value loaded via
the p0 register.

The examples will show “START LOOP N” and “END LOOP”, to indicate the
boundaries of a loop that iterates N times. (The mechanisms of the loop
entry and exit are not relevant).

Software Pipelining

“Software pipelining” is analogous to hardware pipelining used in some
processors. Whereas hardware pipelining allows a processor to start pro-
cessing one instruction before the preceding instruction has completed,
software pipelining allows the generated code to begin processing the next
iteration of the original source-code loop before the preceding iteration is
complete.

Software pipelining makes use of a processor’s ability to multi-issue
instructions. Regarding known delays between instructions, it schedules
instructions from later iterations where there is spare capacity.

Loop Rotation

“Loop rotation” is a common technique of achieving software pipelining.
It changes the logical start and end positions of the loop within the overall
instruction sequence, to allow a better schedule within the loop itself. For
example, this loop:

START LOOP N
A
B
C

CrossCore Embedded Studio 1.1 2-71
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

D
E
END LOOP

could be rotated to produce the following loop:

A
B
C
START LOOP N-1

D
E
A
B
C
END LOOP
D
E

The order of instructions in the loop kernel is now different. It still circles
from instruction E back to instruction A, but now it starts at D, rather than
A. The loop also has a prolog and epilog added, to preserve the intended
order of instructions. Since the combined prolog and epilog make up a
complete iteration of the loop, the kernel is now executing N-1 iterations,
instead of N.

In this example, consider the following loop:

START LOOP N
t0 += 1
[p0++] = t0
END LOOP

This loop has a two-cycle kernel. While the machine could execute the
two instructions in a single cycle—an arithmetic instruction and a mem-
ory access instruction—to do so would be invalid, because the second
instruction depends upon the value computed in the first instruction.

How Loop Optimization Works

2-72 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

However, if the loop is rotated, we get:

t0 += 1
START LOOP N-1
[p0++] = t0
t0 += 1
END LOOP
[p0++] = t0

The value being stored is computed in the previous iteration (or before the
loop starts, in the prolog). This allows the two instructions to be executed
in a single cycle:

t0 += 1
START LOOP N-1
[p0++] = t0, t0 += 1
END LOOP
[p0++] = t0

Rotating the loop has presented an opportunity by which the kth iteration
of the original loop is starting (t0 += 1) while the (k-1)th iteration is
completing ([p0++] = t0), so rotation has achieved software pipelining,
and the performance of the loop is doubled.

Notice that this process has changed the structure of the program slightly:
suppose that the loop construct always executes the loop at least once; that
is, it is a 1..N count. Then if N==1, changing the loop to be N-1 would be
problematic. In this example, the compiler inserts a guard: a conditional
jump around the loop construct for the circumstances where the compiler
cannot guarantee that N > 1:

t0 += 1
IF N == 1 JUMP L1;
START LOOP N-1
[p0++] = t0, t0 += 1
END LOOP
L1:
[p0++] = t0

CrossCore Embedded Studio 1.1 2-73
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Vectorization

Loop vectorization is another transformation that allows the generated code
to execute more than one iteration in parallel. However, vectorization is
different from software pipelining. Where software pipelining uses a dif-
ferent ordering of instructions to get better performance, vectorization
uses a different set of instructions. These vector instructions act on multi-
ple data elements concurrently to replace multiple executions of each
original instruction.

For example, consider this dot-product loop:

int i, sum = 0;
for (i = 0; i < n; i++) {

sum += x[i] * y[i];
}

This loop walks two arrays, reading consecutive values from each, multi-
plying them and adding the result to the on-going sum. This loop has
these important characteristics:

• Successive iterations of the loop read from adjacent locations in the
arrays.

• The dependency between successive iterations is the summation, a
commutative operation.

• Operations such as load, multiply and add are often available in
parallel versions on embedded processors.

These characteristics allow the optimizer to vectorize the loop so that two
elements are read from each array per load, two multiplies are done, and
two totals maintained.

The vectorized loop would be:

t0 = t1 = 0
START LOOP N/2

How Loop Optimization Works

2-74 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

t2 = [p0++] (Wide) // load x[i] and x[i+1]
t3 = [p1++] (Wide) // load y[i] and y[i+1]
t0 += t2 * t3 (Low), t1 += t2 * t3 (High) // vector mulacc
END LOOP
t0 = t0 + t1 // combine totals for low and high

Vectorization is most efficient when all the operations in the loop can be
expressed in terms of parallel operations. Loops with conditional
constructs in them are rarely vectorizable, because the compiler cannot
guarantee that the condition will evaluate in the same way for all the itera-
tions being executed in parallel.

Vectorization is also affected by data alignment constraints and data access
patterns. Data alignment affects vectorization because processors often
constrain loads and stores to be aligned on certain boundaries. While the
unvectorized version will guarantee this, the vectorized version imposes a
greater constraint that may not be guaranteed. Data access patterns affect
vectorization because memory accesses must be contiguous. If a loop
accessed every tenth element, for example, then the compiler would not be
able to combine the two loads for successive iterations into a single access.

Vectorization divides the generated iteration count by the number of iter-
ations being processed in parallel. If the trip count of the original loop is
unknown, the compiler will have to conditionally execute some iterations
of the loop.

 Vectorization and software pipelining are not mutually exclusive:
the compiler may vectorize a loop and then use software pipelining
to obtain better performance.

Modulo Scheduling

Loop rotation, as described earlier, is a simple software-pipelining method
that can often improve loop performance, but more complex examples
require a more advanced approach. The compiler uses a popular technique

CrossCore Embedded Studio 1.1 2-75
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

known as modulo scheduling, which can produce more efficient schedules
for loops than simple loop rotation.

Modulo scheduling is used to schedule innermost loops without control
flow. A modulo-scheduled loop is described using the following
parameters:

• Initiation interval (II): the number of cycles between initiating two
successive iterations of the original loop.

• Minimum initiation interval due to resources (res MII): a lower
limit for the initiation interval (II); an II lower than this would
mean at least one of the resources being used at greater capacity
than the machine allows.

• Minimum initiation interval due to recurrences (rec MII): an
instruction cannot be executed until earlier instructions on which
it depends have also been executed. These earlier instructions may
belong to a previous loop iteration. A cycle of such dependencies (a
recurrence) imposes a minimum number of cycles for the loop.

• Stage count (SC): the number of initiation intervals until the first
iteration of the loop has completed. This is also the number of iter-
ations in progress at any time within the kernel.

• Modulo variable expansion unroll factor (MVE unroll): the num-
ber of times the loop has to be unrolled to generate the schedule
without overlapping register lifetimes.

• Trip count: the number of times the loop kernel iterates.

• Trip modulo: a number that is known to divide the trip count.

• Trip maximum: an upper limit for the trip count.

• Trip minimum: a lower limit for the trip count.

How Loop Optimization Works

2-76 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Understanding these parameters will allow you to interpret the generated
code more easily. The compiler’s assembly annotations use these terms, so
you can examine the source code and the generated instructions, to see
how the scheduling relates to the original source. See Assembly Optimizer
Annotations for more information.

Modulo scheduling performs software pipelining by:

• Ordering the original instructions in a sequence (for simplicity
referred to as the “base schedule”) that can be repeated after an
interval known as the “initiation interval” (“II”);

• Issuing parts of the base schedule belonging to successive iterations
of the original loop, in parallel.

For the purposes of this discussion, all instructions will be assumed to
require only a single cycle to execute; on a real processor, stalls affect the
initiation interval, so a loop that executes in II cycles may have fewer than
II instructions.

Initiation Interval (II) and the Kernel

Consider the loop

START LOOP N
A
B
C
D
E
F
G
H

END LOOP

Now consider that the compiler finds a new order for A,B,C,D,E,F,G,H
grouping; some of them on the same cycle so that a new instance of the
sequence can be started every two cycles. Say this base schedule is given in

CrossCore Embedded Studio 1.1 2-77
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Table 2-5 where I1,I2,...,I8 are A,B,...,H reordered. Albeit a valid sched-
ule for the original loop, the base schedule is not the final modulo
schedule; it may not even be the shortest schedule of the original loop.
However, the base schedule is used to obtain the modulo schedule, by
being able to initiate it every II=2 cycles, as seen in Table 2-6.

Table 2-5. Base Schedule

Cycle Instructions

1 I1

2 I2, I3

3 I4, I5

4 I6

5 I7

6 I8

Table 2-6. Obtaining the Modulo Schedule by Repeating the Base
Schedule every II=2 Cycles

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 I1

2 I2, I3

3 I4, I5 I1

4 I6 I2, I3

5 I7 I4, I5 I1

6 I8 I6 I2, I3

7 I7 I4, I5 I1

8 I8 I6 I2, I3

9 I7 I4, I5

10 I8 I6

How Loop Optimization Works

2-78 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Starting at cycle 5, the pattern in Table 2-7 keeps repeating every 2 cycles.
This repeating pattern is the kernel, and it represents the modulo sched-
uled loop.

The initiation interval has the value II=2, because iteration i+1 can start
two cycles after the cycle on which iteration i starts. This way, one itera-
tion of the original loop is initiated every II cycles, running in parallel
with previous, unfinished iterations.

The initiation interval of the loop indicates several important characteris-
tics of the schedule for the loop:

• The loop kernel will be II cycles in length.

• A new iteration of the original loop will start every II cycles.
An iteration of the original loop will end every II cycles.

• The same instruction will execute on cycle c and on cycle c+II
(hence the name modulo schedule).

Finding a modulo schedule implies finding a base schedule and an II such
that the base schedule can be initiated every II cycles.

Table 2-7. Loop Kernel, N>=3

Cycle Iteration N-2
(last stage)

Iteration N-1
(2nd stage)

Iteration N
(1st stage)

II*N-1 I7 I4, I5 I1

II*N I8 I6 I2, I3

CrossCore Embedded Studio 1.1 2-79
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

If the compiler can reduce the value for II, it can start the next iteration
sooner, and thus increase the performance of the loop: The lower the II,
the more efficient the schedule. However the II is limited by a number of
factors, including:

• The machine resources required by the instructions in the loop.

• The data dependencies and stalls between instructions.

We’ll examine each of these limiting factors.

Minimum Initiation Interval Due to Resources (Res MII)

The first factor that limits II is machine resource usage. Let’s start with the
simple observation that the kernel of a modulo scheduled loop contains
the same set of instructions as the original loop.

Assume a machine that can execute up to four instructions in parallel. If
the loop has 8 instructions, then it requires a minimum of 2 lines in the
kernel, since there can be at most 4 instructions on a line. This implies II
has to be at least 2, and we can tell this without having found a base
schedule for the loop, or even knowing what the specific instructions are.

Consider another example where the original loop contains 3 memory
accesses to be scheduled on a machine that supports at most 2 memory
accesses per cycle. This implies at least 2 cycles in the kernel, regardless of
the rest of the instructions.

Given a set of instructions in a loop, we can determine a lower bound for
the II of any modulo schedule for that loop based on resources required.
This lower bound is called the “Resource based Minimum Initiation Inter-
val” (Res MII).

Minimum Initiation Interval Due to Recurrences (Rec MII)

A less obvious limitation for finding a low II are cycles in the data depen-
dencies between instructions.

How Loop Optimization Works

2-80 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Assume that the loop to be scheduled contains (among others) the
instructions:

i3: t3=t1+t5; // t5 carried from the previous iteration

i5: t5=t1+t3;

Assume each line of instructions takes 1 cycle. If i3 is executed at cycle c
then t3 is available at cycle c+1 and t5 cannot be computed earlier than
c+1 (because it depends on t3), and similarly the next time we compute t3
cannot be earlier than c+2. Thus if we execute i3 at cycle c, the next time
we can execute i3 again cannot be earlier than c+2. But for any modulo
schedule, if an instruction is executed at cycle c, the next iteration will
execute the same instruction at cycle c+II. Therefore, II has to be at least
2 due to the circular data dependency path t3->t5->t3.

This lower bound for II, given by circular data dependencies (recurrences)
is called the “Minimum Initiation Interval Due to Recurrences” (Rec MII),
and the data dependency path is called “loop carry path”. There can be any
number of loop carry paths in a loop, including none, and they are not
necessarily disjoint.

Stage Count (SC)

The kernel in Table 2-7 is formed of instructions which belong to 3 dis-
tinct iterations of the original loop: {I7,I8} end the “oldest” iteration —
in other words they belong to the iteration started the longest time before
the current cycle; {I4,I5,I6} belong to the next oldest initiated iteration,
and so on. {I1,I2,I3} are the beginning of the youngest iteration.

The number of iterations of the original loop in progress at any time
within the kernel is called the “Stage Count” (SC). This is also the number
of initiation intervals until the first iteration of the loop completes. In our
example SC=3.

The final schedule requires peeling a few instructions (the prolog) from
the beginning of the first iteration and a few instructions (the epilog) from

CrossCore Embedded Studio 1.1 2-81
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

the end of the last iteration in order to preserve the structure of the kernel.
This reduces the trip count from N to N-(SC-1):

I1; // prolog
I2,I3; // prolog
I4,I5, I1; // prolog
I6, I2,I3; // prolog
LOOP N-2 // i.e. N-(SC-1), where SC=3
I7, I4,I5, I1; // kernel
I8, I6, I2,I3; // kernel
END LOOP

I7, I4, I5; // epilog
I8, I6; // epilog

I7; // epilog
I8; // epilog

Another way of viewing the modulo schedule is to group instructions into
stages as in Figure 2-3, where each stage is viewed as a vector of height
II=2 of instruction lists (that represent parts of instruction lines).

Now the schedule can be viewed as:
SC0 // prolog

SC1 SC0 // prolog

LOOP (N-2) // That is N-(SC-1), where SC=3

SC2 SC1 SC0 // kernel

Figure 2-3. Instructions Grouped into Stages

StageCount Instructions

SC0 I1,
I2, I3

SC1 I4, I5,
I6

SC2 I7,
I8

How Loop Optimization Works

2-82 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

END LOOP

SC2 SC1 // epilog

SC2 // epilog

where, for example, SC2 SC1 is the 2 line vector obtained from concate-
nating the lists in SC2 and SC1.

Variable Expansion and MVE Unroll

There is one more issue to address for modulo schedule correctness.

Consider the sequence of instructions in Table 2-8. Table 2-9 shows the
base schedule that is an instance of the one in Table 2-5, and Table 2-10
shows the corresponding modulo schedule with II=2.

Table 2-8. Problematic Instance

Generic instruction Specific instance

I1 t1=[p1++]

I2 t2=[p2++]

I3 t3=t1+t5

I4 t4=t2+1

I5 t5=t1+t3

I6 t6=t4*t5

I7 t7=t6*t3

I8 [p8++]=t7

CrossCore Embedded Studio 1.1 2-83
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

However, there is a problem with the schedule in Table 2-10: t3 defined
in the fourth cycle (second column in the table) is used on the fifth cycle
(first column); however, the intended use was of the value defined on the
second cycle (first column). In general, the value of t3 used by t7=t6*t3 in
the kernel will be the one defined in the previous cycle, instead of the one
defined 3 cycles earlier, as intended. Thus, if the compiler were to use this
schedule as-is, it would be clobbering the live value in t3. The lifetime of

Table 2-9. Base Schedule from Table 2-5 Applied to the Instances in
Table 2-8

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3

4 t6=t4*t5

5 t7=t6*t3

6 [p8++]=t7

Table 2-10. Modulo Schedule Broken by Overlapping Lifetimes of t3

Iteration 1 Iteration 2 Iteration 3 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3=t1+t5

5 t7=t6*t3 t4=t2+1,t5=t1+t3 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3 t4=t2+1,t5=t1+t3

8 [p8++]=t7 t6=t4*t5

9 t7=t6*t3

10 [p8++]=t7

How Loop Optimization Works

2-84 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

each value loaded into t3 is 3 cycles, but the loop's initiation interval is
only 2, so the lifetimes of t3 from different iterations overlap.

The compiler fixes this by duplicating the kernel as many times as needed
to exceed the longest lifetime in the base schedule, then renaming the
variables that clash—in this case, just t3. In Table 2-11, we see that the
length of the new loop body is 4, greater than the lifetimes of the values in
the loop.

So the loop becomes:

t1=[p1++];
t2=[p2++],t3=t1+t5;
t4=t2+1,t5=t1+t3, t1=[p1++];

Table 2-11. Modulo Schedule Corrected by Variable Expansion: t3 and
t3_2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3_2=t1+t
5

5 t7=t6*t3 t4=t2+1,t5=t1+t3_2 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3_2 t4=t2+1,t5=t1+t3 t1=[p1++]

8 [p8++]=t7 t6=t4*t5 t2=[p2++],t3_2=t1+t
5

9 t7=t6*t3 t4=t2+1,t5=t1+t3_2

10 [p8++]=t7 t6=t4*t5

11 t7=t6*t3_2

12 [p8++]=t7

CrossCore Embedded Studio 1.1 2-85
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

t6=t4*t5, t2=[p2++],t3_2=t1+t5;
LOOP (N-2)/2
t7=t6*t3, t4=t2+1,t5=t1+t3_2, t1=[p1++];
[p8++]=t7, t6=t4*t5, t2=[p2++],t3=t1+t5;

t7=t6*t3_2, t4=t2+1,t5=t1+t3, t1=[p1++];
[p8++]=t7, t6=t4*t5, t2=[p2++],t3_2=t1+t5;

END LOOP
t7=t6*t3, t4=t2+1,t5=t1+t3_2;

[p8++]=t7, t6=t4*t5;
t7=t6*t3_2;
[p8++]=t7;

This process of duplicating the kernel and renaming colliding variables is
called variable expansion, and the number of times the compiler duplicates
the kernel is referred to as the modulo variable expansion factor (MVE).
Conceptually we use different set of names, “register sets”, for successive
iterations of the original loop in progress in the unrolled kernel (in prac-
tice we rename just the conflicting variables, see Table 2-12). In terms of
reading the code, this means that a single iteration of the loop generated
by the compiler will be processing more than one iteration of the original
loop. Also, the compiler will be using more registers to allow the iterations
of the original loop to overlap without clobbering the live values.

In terms of stages:

SC0 // prolog
SC1 SC0_2 // prolog
LOOP (N-2)/2 // That is N-(SC-1)/MVE, where SC=3, MVE=2
SC2 SC1_2 SC0 // kernel

SC2_2 SC1 SC0_2 // kernel
END LOOP

SC2 SC1_2 // epilog
SC2_2 // epilog

where SCN_2 is SCN subject to renaming; in our case only occurrences of
t3 are renamed as t3_2 in SCN_2.

How Loop Optimization Works

2-86 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

In terms of instructions:

I1; // prolog
I2,I3; // prolog
I4,I5, I1_2; // prolog
I6, I2_2,I3_2; // prolog
LOOP(N-2)/2 // That is N-(SC-1)/MVE, where SC=3, MVE=2
I7, I4_2,I5_2, I1; // kernel
I8, I6_2, I2,I3; // kernel

I7_2, I4,I5, I1_2; // kernel
I8_2, I6, I2_2,I3_2; // kernel

END LOOP
I7, I4_2,I5_2; // epilog
I8, I6_2; // epilog

I7_2; // epilog
I8_2; // epilog

where IN_2 is IN subject to renaming, in our case only occurrences of t3
are renamed as t3_2 in all IN_2, as seen in Table 2-12.

Table 2-12. Instructions after Modulo Variable Expansion

Generic Instruction Specific Instance

I1 and I1_2 t1=[p1++]

I2 and I2_2 t2=[p2++]

I3 t3=t1+t5

I3_2 t3_2=t1+t5

I4 and I4_2 t4=t2+1

I5 t5=t1+t3

I5_2 t5=t1+t3_2

I6 and I6_2 t6=t4*t5

I7 t7=t6*t3

I7_2 t7=t6*t3_2

I8 and I8_2 [p8++]=t7

CrossCore Embedded Studio 1.1 2-87
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Trip Count

Notice that as the modulo scheduler expands the loop kernel to add in the
extra variable sets, the iteration count of the generated loop changes from
(N-SC) to (N-SC)/MVE. This is because each iteration of the generated loop
is now doing more than one iteration of the original loop, so fewer gener-
ated iterations are required.

However, this also relies on the compiler knowing that it can divide the
loop count in this manner. For example, if the compiler produces a loop
with MVE=2 so that the count should be (N-SC)/2, an odd value of
(N-SC) causes problems. In these cases, the compiler generates additional
“peeled” iterations of the original loop to handle the remaining iteration.
As with rotation, if the compiler cannot determine the value of N, it will
make parts of the loop–the kernel or peeled iterations–conditional so that
they are executed only for the appropriate values of N.

The number of times the generated loop iterates is called the “trip count”.
As explained above, sometimes knowing the trip count is important for
efficient scheduling. However, the trip count is not always available. Lack-
ing it, additional information may be inferred, or passed to the compiler
through the loop_count pragma, specifying:

• “Trip modulo”: a number known to divide the trip count

• “Trip minimum”: a lower bound for the trip count

• “Trip maximum”: an upper bound for the trip count

A Worked Example
The following floating-point scalar product loop are used to show how the
compiler optimizer works.

How Loop Optimization Works

2-88 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Example: C source code for floating-point scalar product.

#include <builtins.h>

float sp(float *a, float *b, int n) {

int i;

float sum=0;

aligned(a, 2);

aligned(b, 2);

for (i=0; i<n; i++) {

sum+=a[i]*b[i];

}

return sum;

}

After code generation and conventional scalar optimizations, the compiler
generates a loop that resembles the following example.

Example: Initial code generated for floating-point scalar product

lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:

r4 = dm(i1, m6);

r2 = dm(i0, m6);

f12 = f2 * f4;

f10 = f10 + f12;

// end_loop .P1L9;

.P1L10:

The loop exit test has been moved to the bottom and the loop counter
rewritten to count down to zero. This enables a zero-overhead hardware
loop to be created. (r3 is initialized with the loop count.) sum is being
accumulated in r10. i0 and i1 hold pointers that are initialized with the
parameters a and b and incremented on each iteration.

The SHARC processors supported by the compiler have two compute
units that may perform computations simultaneously. To use both these
compute blocks, the optimizer unrolls the loop to run two iterations in

CrossCore Embedded Studio 1.1 2-89
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

parallel. sum is now being accumulated in r10 and s10, which must be
added together after the loop to produce the final result. To use the
dual-word loads needed for the loop to be as efficient as this, the compiler
has to know that i0 and i1 have initial values that are even. This is done
in the above example by use of aligned(), although it could also be prop-
agated with IPA.

Note also that unless the compiler knows that original loop was executed
an even number of times, a conditionally-executed odd iteration must be
inserted outside the loop. r3 is now initialized with half the value of the
original loop.

Example: Code generated for floating-point scalar product after vectoriza-
tion transformation

bit set mode1 0x200000; nop; // enter SIMD mode

m4 = 2;

lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:

r4 = dm(i1, m4);

r2 = dm(i0, m4);

f12 = f2 * f4;

f10 = f10 + f12;

// end_loop .P1L9;

.P1L10:

bit clr mode1 0x200000; nop; // exit SIMD mode

Finally, the optimizer rotates the loop, unrolling and overlapping itera-
tions to obtain highest possible use of functional units. Code similar to
the following is generated, if it were known that the loop was executed at
least four times and the loop count was a multiple of two.

How Loop Optimization Works

2-90 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Example: Code generated for floating-point scalar product after software
pipelining

bit set mode1 0x200000; nop; // enter SIMD mode
m4 = 2;
r4 = dm(i1, m4);
r2 = dm(i0, m4);
lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:
f12 = f2 * f4, r4 = dm(i1, m4);
f10 = f10 + f12, r2 = dm(i0, m4);
// end_loop .P1L9;

.P1L10:
f12 = f2 * f4;
f10 = f10 + f12;
bit clr mode1 0x200000; nop; // exit SIMD mode

If the original source code is amended to declare one of the pointers with
the pm qualifier, the following optimal code is produced for the loop
kernel.

Example: Code generated for floating-point scalar product when one buf-
fer placed in PM

bit set mode1 0x200000; nop; // enter SIMD mode
m4 = 2;
r5 = pm(i1, m4);
r2 = dm(i0, m4);
r4 = pm(i1, m4);
f12 = f2 * f5, r2 = dm(i0, m4);
lcntr = r3, do(pc, .P1L10-1)until lce;

.P1L9:
f12 = f2 * f4, f10 = f10 + f12, r2 = dm(i0, m4), r4 = pm(i1,

m4);
// end_loop .P1L9;

.P1L10:
f12 = f2 * f4, f10 = f10 + f12;
f10 = f10 + f12;
bit clr mode1 0x200000; nop; // exit SIMD mode

CrossCore Embedded Studio 1.1 2-91
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Assembly Optimizer Annotations
When the compiler optimizations are enabled, the compiler can perform a
large number of optimizations to generate the resultant assembly code.
The decisions taken by the compiler as to whether certain optimizations
are safe or worthwhile are generally invisible to a programmer. However,
it can be beneficial to get feedback from the compiler regarding the deci-
sions made during optimization. The intention of the information
provided is to give a programmer an understanding of how close to
optimal a program is and what more could possibly be done to improve
the generated code.

The feedback from the compiler optimizer is provided by means of anno-
tations made to the assembly file generated by the compiler. The assembly
file generated by the compiler can be kept by specifying the -S switch
(on page 1-72), the -save-temps switch (on page 1-72) or by checking
Project > Properties > C/C++ Build > Settings > Tool Settings > Com-
piler > General > Save temporary files option in the IDE.

The assembly code generated by the compiler optimizer is annotated with
the following information:

• Global Information

• Procedure Statistics

• Instruction Annotations

• Loop Identification

• Vectorization

• Modulo Scheduling Information

• Warnings, Failure Messages and Advice

The assembly annotations provide information in several areas that you
can use to assist the compiler’s evaluation of your source code. In turn,

Assembly Optimizer Annotations

2-92 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

this improves the generated code. For example, annotations could provide
indications of resource usage or the absence of a particular optimization
from the resultant code. Annotations which note the absence of optimiza-
tion can often be more important than those noting its presence. Assembly
code annotations give the programmer insight into why the compiler
enables and disables certain optimizations for a specific code sequence.

The assembly output for the examples in this chapter may differ based on
optimization flags and the version of the compiler. As a result, you may
not be able to reproduce these results exactly.

Annotation Examples
Your installation directory contains a number of examples which demon-
strate the optimizer’s annotation output. You can find these examples in
the following directory tree:

<installation>SHARC\Examples\No_HW_Required\proc\annotations

where proc is:

• ADSP-21469 – contains IDE projects pre-configured for the
ADSP-21469 processor.

The examples in this directory tree are not intended to be functional;
although they can be built in the IDE and loaded into a processor, they do
not do anything of significance. Instead, their purpose is to show the kind
of annotations generated by the compiler, for a given kind of input source
code. In each case, you can import and build the example, as described in
Importing Annotation Examples, then examine the resulting assembly file.

CrossCore Embedded Studio 1.1 2-93
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Depending on the example, you may also see annotations when viewing
the C source file in the IDE. Details on how to view the generated annota-
tions is given in:

• Viewing Annotation Examples in the IDE

• Viewing Annotation Examples in Generated Assembly

Importing Annotation Examples

To import an example into the IDE:

1. Do File > Import > General,

2. Select Existing Projects Into Workspace

3. Choose Select root directory, and click on Browse.

4. Navigate to the SHARC\Examples\No_HW_Required\proc\annota-
tions directory in your installation, for your preferred processor,
and click OK.

5. The IDE will list the available annotations example projects. Check
the examples you want to import.

6. Check Copy projects into Workspace. This will give you your own
working copy of the examples, so that you can build them.

7. Click Finish.

Once you have your annotations projects loaded into your IDE, you need
to build them. This will produce an executable file. It will also produce
generated assembly source files.

 A lot of diagnostics will appear in the Console view when you
build any of the annotations examples. This is normal, as annota-
tions are a form of diagnostic, and are emitted to the standard error
output as well as to the assembly file.

Assembly Optimizer Annotations

2-94 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Viewing Annotation Examples in the IDE

To view the annotations in the IDE:

1. Create a launch configuration for your selected processor, and
ensure that the launch configuration loads the executable you built
in Importing Annotation Examples.

2. Launch the configuration, and let the example run to main().

3. Step into the first function called by main(). main() itself doesn’t
do anything interesting.

4. You will see “i” information icons in the left-hand gutter of the
source file view. Hover your mouse pointer over these icons to see
the annotations that have been associated with the source lines.

5. Alternatively, open the Problems view; annotations are a
low-severity form of diagnostic, so are gathered by the Problems
view when the application is built.

The annotations examples produce these “i” information icons because
they enable annotations diagnostics: if you examine the projects, you will
see that they all set Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Warning > Warning/annotation/remark con-
trol to Errors, warnings and annotations.

CrossCore Embedded Studio 1.1 2-95
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Viewing Annotation Examples in Generated Assembly

To view annotations in the generated assembly file:

1. Open the annotations project and build it, if you have not already
done so.

2. In the Project Explorer view, browse to the Debug\src directory if
you built the project using the Debug configuration, or to the
Release\src directory if you built the project using the Release
configuration. You will find several assembly files there (with .s
suffix).

3. Double-click on the assembly file that corresponds to the example.
For example, in the file_position example, select
file_example.s.

4. The IDE will open the assembly file in a source view. You can see
the annotations as comments within that generated assembly file.

You can see the generated assembly files because the annotations projects
have been configured to have Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > General > Save temporary files
checked. Normally, this setting is off, and the compiler deletes the gener-
ated assembly file after it has been converted into an object file.

Global Information
For each compilation unit, the assembly output is annotated with:

• The time of the compilation

• The options used during that compilation.

• The architecture for which the file was compiled.

• The silicon revision used during the compilation

Assembly Optimizer Annotations

2-96 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• A summary of the workarounds associated with the specified archi-
tecture and silicon revision. These workarounds are divided into:

• Disabled: the workarounds that were not applied

• Enabled: the workarounds that were applied during the
compilation.

• Always on: the workarounds that are always applied and
that cannot be disabled, not even by using the -si-revision
none compiler switch.

• Never on: these are workarounds that are never applied and
that cannot be enabled.

The global_information project is an example of this information. Build
the project, then open the hello.s assembly file. You will see this infor-
mation at the start of the file.

Procedure Statistics
For each function, the following is reported:

• Frame size: size of stack frame.

• Registers used. Since function calls tend to implicitly clobber regis-
ters, there are several sets:

• The first set is composed of the scratch registers changed by
the current function. This does not count the registers that
are implicitly clobbered by the functions called from the
current function.

CrossCore Embedded Studio 1.1 2-97
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• The second set are the call-preserved registers changed by
the current function. This does not count the registers that
are implicitly clobbered by the functions called from the
current function.

• The third set are the registers clobbered by the inner func-
tion calls.

• Inlined Functions – if inlining happens, then the header of the
caller function reports which functions were inlined inside it and
where. Each inlined function is reported using the position of the
inlined call. All the functions inlined inside the inlined function
are reported as well, generating a tree of inlined calls. Each node,
except the root, has the form:

file_name:line:column’function_name

where:

• function_name is the name of the function inlined.

• line is the line number of the call to function_name, in the
source file.

• column is the column number of the call to function_name,
in the source file.

• file_name is the name of the source file calling
function_name.

Assembly Optimizer Annotations

2-98 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The procedure_statistics annotation example illustrates this. You can
view the annotations in the IDE either via the C source window or the
generated assembly.

• In a C source window, the procedure information for each function
can be viewed by hovering the mouse pointer over the “i” informa-
tion icon in the gutter beside the first line of each function
declaration—for example, beside “int foo(int in)”, in
procedure_statistics.c.

• In an assembly source window, the procedure information can be
viewed by scrolling down to the label that marks the start of each
function—for example, just after the label “_foo:” in
procedure_statistics.s.

The procedure_statistics_inlining demonstrates the annotations pro-
duced when a function inlines the contents of another function. Build the
project in the Release configuration, and open Release\src\proce-
dure_statistics_inlining.s. Observe how calls to functions f2() and
f3() have been inlined into function f1(), and how the annotations at
label “_f1:” report this.

Note that, if you build using the Debug configuration, you do not see the
same annotations, as the optimizer is not enabled, so inlining does not
happen.

Instruction Annotations
Sometimes the compiler annotates certain assembly instructions. It does
so in order to point to possible inefficiencies in the original source code,
or when the -annotate-loop-instr compiler switch (on page 1-29) is
used to annotate the instructions related to modulo scheduled loops.

The format of an assembly line containing several instructions is changed.
Instructions issued in parallel are no longer shown all on the same
assembly line; each is shown on a separate assembly line, so that the

CrossCore Embedded Studio 1.1 2-99
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

instruction annotations can be placed after the corresponding instruc-
tions. Thus

instruction_1, instruction_2, instruction_3;

is displayed as:

 instruction_1, // {annotations for instruction_1}

instruction_2, // {annotations for instruction_2}

instruction_3; // {annotations for instruction_3}

Example instruction_annotations demonstrates both these kinds of
annotation. Build the example using the Release mode.

• When viewing instruction_annotations.c in the C source win-
dow, you can see that there is an annotation in the bad_mod()
function to indicate that the division operation is emulated in soft-
ware. You can also see that the optimizer modulo-scheduled the
loop in the dotprod() function, but the individual instruction
annotations are not available.

• When viewing instruction_annotations.s in the assembly source
window, you can see the same annotations as for the C source win-
dow, but you can also see the additional information for each
instruction within the loop in the dotprod() function.

Loop Identification
One useful annotation is loop identification—that is, showing the rela-
tionship between the source program loops and the generated assembly
code. This is not easy due to the various loop optimizations. Some of the
original loops may not be present, because they are unrolled. Other loops
get merged, making it difficult to describe what has happened to them.

Assembly Optimizer Annotations

2-100 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The assembly code generated by the compiler optimizer is annotated with
the following loop information:

• Loop Identification Annotations

• File Position

Finally, the assembly code may contain compiler-generated loops that do
not correspond to any loop in the user program, but rather represent con-
structs such as structure assignment or calls to memcpy.

Loop Identification Annotations

Loop identification annotation rules are:

• Annotate only the loops that originate from the C looping con-
structs do, while, and for. Therefore, any goto defined loop is not
accounted for.

• A loop is identified by the position of the corresponding keyword
(do, while, for) in the source file.

• Account for all such loops in the original user program.

• Generally, loop bodies are delimited between the Lx: Loop at <file
position> and End Loop Lx assembly annotation. The former
annotation follows the label of the first block in the loop. The later
annotation follows the jump back to the beginning of the loop.
However, there are cases in which the code corresponding to a user
loop cannot be entirely represented between such two markers. In
such cases the assembly code contains blocks that belong to a loop,
but are not contained between that loop’s end markers. Such
blocks are annotated with a comment identifying the innermost
loop they belong to, Part of Loop Lx.

CrossCore Embedded Studio 1.1 2-101
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• Sometimes a loop in the original program does not show up in the
assembly file, because it was either transformed or deleted. In either
case, a short description of what happened to the loop is given at
the beginning of the function.

In cases where a loop has been totally deleted (because a
source-level loop is never entered), the compiler issues the follow-
ing remark (see Warnings, Annotations and Remarks):

cc1973: loop never entered – eliminated

In cases where the loop control code surrounding a loop body has
been removed (because the loop always iterates only once), the
compiler issues the following remark (see Warnings, Annotations
and Remarks):

cc1974: loop always iterates once – loop converted to linear code

• A program’s innermost loops are those loops that do not contain
other loops. In addition to regular loop information, the innermost
loops with no control flow and no function calls are annotated with
additional information such as:

• Cycle count. The number of cycles needed to execute one
iteration of the loop, including the stalls.

• Resource usage. The resources used during one iteration of
the loop. For each resource, the compiler shows how many
of that resource are used, how many are available and the
percentage of utilization during the entire loop. Resources
are shown in decreasing order of utilization. Note that
100% utilization means that the corresponding resource is
used at its full capacity and represents a bottleneck for the
loop.

Assembly Optimizer Annotations

2-102 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Register usage. If the -annotate-loop-instr compilation
switch is used, then the register usage table is shown. This
table has one column for every register that is defined or
used inside the loop. The header of the table shows the
names of the registers, written on the vertical, top down.
The registers that are not accessed do not show up. The col-
umns are grouped on data registers, pointer registers and all
other registers. For every cycle in a loop (including stalls),
there is a row in the array. The entry for a register has a '*'
on that row if the register is either live or being defined at
that cycle.

If the code executes in parallel (in a SIMD region), access-
ing a D register usually means accessing its corresponding
shadow register in parallel. In these cases, the name of the
register is prefixed with 2x. For instance, 2xr2.

• Optimizations. Some loops are subject to optimizations
such as vectorization or modulo scheduling. These loops
receive additional annotations as described in the vectoriza-
tion and modulo scheduling paragraphs.

• Sometimes the compiler generates additional loops that may or
may not be directly associated with the loops in the user program.
Whenever possible, the compiler annotations try to show the rela-
tion between such compiler-generated loops and the original source
code.

The loop_identification annotation example shows some of these anno-
tations. Build the example using the Release configuration. The function
bar() in file loop_identification.c contains two loops, written in such a
way that the second loop will not be entered: when the first loop com-
pletes, the conditions of entry to the second loop are false. When the

CrossCore Embedded Studio 1.1 2-103
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

optimizer is enabled, the compiler can detect this through a process called
“constant propagation”, and can delete the second loop entirely.

• When viewing loop_identification.c in a C source window, “i”
information icons appear in the gutter next to the lines containing
the for and while keywords that introduce loops. For the first
loop, trip count, estimated cycle count and resource usage is given,
while for the second loop, the annotation reports that the loop is
removed due to constant propagation.

• When viewing loop_identification.s in an assembly source win-
dow, an annotation appears following the “_bar:” label, reporting
the removed loop. At other points in the function, annotations
appear showing that the following code is part of the first loop, or
part of the top level of the function (i.e. not in any loop).

File Position

When the compiler refers to a file position in an annotation, it does so
using the file name, line number and the column number in that file as
"ExampleC.c" " line 4 col 5.

This scheme uniquely identifies a source code position, unless inlining is
involved. In presence of inlining, a piece of code from a certain file posi-
tion can be inlined at several places, which in turn can be inlined at other
places. Since inlining can happen an unspecified number of times, a recur-
sive scheme is used to describe a general file position.

Therefore, a <general file position> is <file position> inlined from
<general file position>.

Assembly Optimizer Annotations

2-104 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Annotations example file_position demonstrates this. When built using
the Release configuration, two levels of inlining occur in file
file_position.c:

• When viewing file_position.c in a C source window, the loop at
the start of function f3() has an “i” information indicating that the
loop has been inlined into function f2() twice, and that each of
those instances have in turn been inlined into function function
f1().

• When viewing file_position.s in an assembly source window,
annotations appear in the generated file immediately before the
code for the loop. The annotations in function f2() indicate that
the following code was inlined from function f3(), and the annota-
tions in function f1() indicate that the following code was inlined
from function f2(), which in turn was inlined from function f3().
There are also annotations at the start of functions f2() and f1()
reporting which functions have been inlined into them, as
described in Procedure Statistics.

Vectorization
The trip count of a loop is the number of times the loop goes around.

Under certain conditions, the compiler is able to take two operations from
consecutive iterations of a loop and execute them in a single, more power-
ful SIMD instruction giving a loop with a smaller trip count. The
transformation in which operations from two subsequent iterations are
executed in one SIMD operation is called “vectorization”.

For instance, the original loop may start with a trip count of 1000.

for(i=0; i< 1000; ++i)
a[i] = b[i] + c[i];

and, after the optimization, end up with the vectorized loop with a final
trip count of 500. The vectorization factor is the number of operations in

CrossCore Embedded Studio 1.1 2-105
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

the original loop that are executed at once in the transformed loop. It is
illustrated using some pseudo code below.

for(i=0; i< 1000; i+=2)
(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

In the above example, the vectorization factor is 2.

If the trip count is not a multiple of the vectorization factor, some itera-
tions need to be peeled off and executed unvectorized. Thus, if in the
previous example, the trip count of the original loop was 1001, then the
vectorized code would be:

for(i=0; i< 1000; i+=2)
(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);
a[1000] = b[1000] + c[1000];

// This is one iteration peeled from
// the back of the loop.

In the above examples the trip count is known and the amount of peeling
is also known. If the trip count is not known (it is a variable), the number
of peeled iterations depends on the trip count, and in such cases, the opti-
mized code contains peeled iterations that are executed conditionally.

Unroll and Jam

A vectorization-related transformation is unroll and jam. Where the source
file has two nested loops, sometimes the compiler can unroll the outer
loop, to create two copies of the inner loop each operate on different iter-
ations of the loop. It can then “jam” these two loops together, interleaving
their operations, giving a sequence of operations that is more amenable to
vectorization. The compiler issues annotations when this transformation
has happened.

Assembly Optimizer Annotations

2-106 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The unroll_and_jam annotation example demonstrates this. The example
contains three source files:

• unroll_and_jam_original.c – the “real” example. This file con-
tains a function which the compiler is able to optimize using the
unroll-and-jam transformation.

• unroll_and_jam_unrolled.c – this file is illustrative of how the
compiler’s internal representation would be, part-way through the
unroll-and-jam transformation. This is not an example of how you
should write your code. In this representation, the compiler has
unrolled the outer loop once, so that there are two complete, sepa-
rate copies of the inner loop. The first copy works on even
iterations, while the second works on odd iterations.

• unroll_and_jam_jammed.c – another illustrative representation of
the function, after the transformation is complete. The compiler
has taken the two copies of the loop and overlapped them, then
vectorized the operations so that the narrow loads and stores are
now wide loads and stores that access two adjacent locations in par-
allel, and the accumulation operations do two separate additions in
the same cycle.

 You should always write your code in the cleanest manner possible,
to most clearly express your intention to the compiler. You should
not attempt to apply transformations such as unroll-and-jam
explicitly within your code, as that will obscure your intent and
inhibit the optimizer. The unrolled and jammed files are only pre-
sented here to illustrate the behavior of the transformation.

CrossCore Embedded Studio 1.1 2-107
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The unroll_and_jam annotation example makes use of the unroll_and_-
jam_original.c file to demonstrate the annotation produced during this
transformation. Build the example using the Release configuration.

• When viewing the unroll_and_jam_original.c file in a C source
window, there is an “i” information icon next to the outer loop,
reporting that the loop has been unrolled and jammed.

• When viewing the unroll_and_jam_original.s file in an assembly
source window, there is an annotation preceding the generated
code for the outer loop, reporting that the loop has been unrolled
and jammed.

Loop Flattening

Another transformation, related to vectorization, is “loop flattening”. The
loop flattening operation takes two nested loops that run N1 and N2 times
respectively and transforms them into a single loop that runs N1*N2 times.

The loop_flattening annotation example demonstrates this. It contains
two files to illustrate the transformation:

• loop_flattening_original.c –This file contains two nested loops,
iterating 30 times and 100 times, respectively.

• loop_flattening_flattened.c – This file contains a single loop,
iterating 3000 times. This file is not an example of how you should
write your code, it is merely an illustration of the transformation
applied by the compiler optimizer.

Assembly Optimizer Annotations

2-108 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The loop_flattening annotation example uses loop_flattening_origi-
nal.c to demonstrate the annotations produced. Build the example using
the Release configuration.

• When viewing loop_flattening_original.c in a C source win-
dow, there is an annotation on the outer loop, indicating that the
two loops were flattened into one.

• When viewing loop_flattening_original.s in an assembly source
window, there is an annotation at the beginning of the function,
indicating that the two loops were flattened into one; the annota-
tion appears at the start of the function because a loop was “lost”
(the loop’s structure was removed), and lost loops are reported at
the start of each function.

Vectorization Annotations

For every loop that is vectorized, the following information is provided:

• The vectorization factor

• The number of peeled iterations

• The position of the peeled iterations (front or back of the loop)

• Information about whether peeled iterations are conditionally or
unconditionally executed

For every loop pair subject to loop flattening, the following information is
provided:

• The loop that is lost

• The remaining loop that it was merged with

CrossCore Embedded Studio 1.1 2-109
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The vectorization annotation example demonstrates some of this. File
vectorization.c contains a function copy() which the compiler can
conditionally vectorize, when optimizing. Build the example using the
Release configuration.

• When viewing vectorization.c in a C source window, there are
“i” information icons next to the loop constructs in the copy()
function. These annotations report that there are multiple versions
of the loop, one of which is unvectorized; that a loop was vector-
ized by a factor of two; the trip counts for the loops; and so on.

• When viewing vectorization.s in an assembly source window,
there are multiple versions of the loop in the function. One has
annotations to indicate it has been vectorized, while the other has
an annotation to indicate that it is the unvectorized version of the
same loop.

Modulo Scheduling Information
For every modulo scheduled loop (see also Modulo Scheduling), in addi-
tion to regular loop annotations, the following information is provided:

• The initiation interval (II)

• The final trip count if it is known: the trip count of the loop as it
ends up in the assembly code

• A cycle count representing the time to run one iteration of the
pipelined loop

• The minimum trip count, if it is known and the trip count is
unknown

• The maximum trip count, if it is known and the trip count is
unknown

• The trip modulo, if it is known and the trip count is unknown

Assembly Optimizer Annotations

2-110 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• The stage count (iterations in parallel)

• The MVE unroll factor

• The resource usage

• The minimum initiation interval due to resources (res MII)

• The minimum initiation interval due to dependency cycles (rec
MII)

Annotations for Modulo Scheduled Instructions

The -annotate-loop-instr compiler switch (on page 1-29) can be used to
produce additional annotation information for the instructions that
belong to the prolog, kernel or epilog of the modulo scheduled loop.

Consider the example whose schedule is in Table 2-11. Remember that
this does not use a real DSP-architecture, but rather a theoretical one able
to schedule four instructions on a line, and each line takes one cycle to
execute. We can view the instructions involved in modulo scheduling as in
Table 2-13.

Due to variable expansion, the body of the modulo scheduled loop con-
tains MVE=2 unrolled instances of the kernel, and the loop body contains
instructions from 4 iterations of the original loop. The iterations in prog-
ress in the kernel are shown in the table heading, starting with Iteration
0 which is the oldest iteration in progress (in its final stage). This example
uses two register sets, shown in the table heading.

The instruction annotations contain the following information:

• The part of the modulo scheduled loop (prolog, kernel or epilog)

• The loop label. This is required since prolog and epilog instruc-
tions appear outside of the loop body and are subject to being
scheduled with other instructions.

CrossCore Embedded Studio 1.1 2-111
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• ID: a unique number associated with the original instruction in the
unscheduled loop that generates the current instruction. It is useful
because a single instruction in the original loop can expand into
multiple instructions in a modulo scheduled loop. In our example
the annotations for all instances of I1 and I1_2 have the same id,
meaning they all originate from the same instruction (I1) in the
unscheduled loop.

The IDs are assigned in the order the instructions appear in the
kernel and they might repeat for MVE unroll > 1.

• Loop-carry path, if any. If an instruction belongs to the loop-carry
path, its annotation will contain a ‘*’. If several such paths exist,
‘*2’ is used for the second one, ‘*3’ for the third one, etc.

• sn: the stage count the instruction belongs to.

• rs: the register set used for the current instruction (useful when
MVE unroll > 1, in which case rs can be 0,1,...mve-1). If the
loop has an MVE of 1, the instruction’s rs is not shown.

Assembly Optimizer Annotations

2-112 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• In addition to the above, the instructions in the kernel are anno-
tated with:

• Iteration. Iter: specifies the iteration of the original loop an
instruction is on in the schedule.

• In a modulo scheduled kernel, there are instructions from
(SC+MVE-1) iterations of the original loop. Iter=0 denotes
instructions from the earliest iteration of the original loop,
with higher numbers denoting later iterations.

Table 2-13. Modulo Scheduled Instructions

Part Iteration 0 Iteration 1 Iteration 2 Iteration 3 ...

Register Set 0 Register Set 1 Register Set 0 Register Set 1

1 prolog I1

2 prolog I2, I3

3 prolog I4, I5 I1_2

4 prolog I6 I2_2, I3_2

5 L: Loop ...

6 kernel I7 I4_2, I5_2 I1

7 kernel I8 I6_2 I2, I3

8 kernel I7_2 I4, I5 I1_2

9 kernel I8_2 I6 I2_2, I3_2

10 END Loop

11 epilog I7 I4_2, I5_2

12 epilog I8 I6_2

13 epilog I7_2

14 epilog I8_2

CrossCore Embedded Studio 1.1 2-113
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Thus, the instructions corresponding to the schedule in Table 2-13 for a
hypothetical machine are annotated as follows:

1 : I1; // {L10 prolog:id=1,sn=0,rs=0}
2 : I2, // {L10 prolog:id=2,sn=0,rs=0}
3 : I3; // {L10 prolog:id=3,sn=0,rs=0}
4 : I4, // {L10 prolog:id=4,sn=1,rs=0}
5 : I5, // {L10 prolog:id=5,sn=1,rs=0}
6 : I1_2; // {L10 prolog:id=1,sn=0,rs=1}
7 : I6, // {L10 prolog:id=6,sn=1,rs=0}
8 : I2_2, // {L10 prolog:id=2,sn=0,rs=1}
9 : I3_2; // {L10 prolog:id=3,sn=0,rs=1}
10: //--
11: // Loop at ...
12: //--
13: // This loop executes 2 iterations of the original loop in
estimated 4 cycles.
14: //---
15: // Unknown Trip Count
16: // Successfully found modulo schedule with:
17: // Initiation Interval (II) = 2
18: // Stage Count (SC) = 3
19: // MVE Unroll Factor = 2
20: // Minimum initiation interval due to recurrences

(rec MII) = 2
21: // Minimum initiation interval due to resources

(res MII) = 2.00
22://---
23:L10:
23:LOOP (N-2)/2;
25: I7, // {kernel:id=7,sn=2,rs=0,iter=0}
26: I4_2, // {kernel:id=4,sn=1,rs=1,iter=1}
27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
28: I1; // {kernel:id=1,sn=0,rs=0,iter=2}
29: I8, // {kernel:id=8,sn=2,rs=0,iter=0}
30: I6_2, // {kernel:id=6,sn=1,rs=1,iter=1}
31: I2, // {kernel:id=2,sn=0,rs=0,iter=2}

Assembly Optimizer Annotations

2-114 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

32: I3; // {kernel:id=3,sn=0,rs=0,iter=2,*}
33: I7_2, // {kernel:id=7,sn=2,rs=1,iter=1}
34: I4, // {kernel:id=4,sn=1,rs=0,iter=2}
35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}
36: I1_2; // {kernel:id=1,sn=0,rs=1,iter=3}
37: I8_2, // {kernel:id=8,sn=2,rs=1,iter=1}
38: I6, // {kernel:id=6,sn=1,rs=0,iter=2}
39: I2_2, // {kernel:id=2,sn=0,rs=1,iter=3}
40: I3_2; // {kernel:id=3,sn=0,rs=1,iter=3,*}
41:END LOOP
42:

43: I7, // {L10 epilog:id=7,sn=2,rs=0}
44: I4_2, // {L10 epilog:id=4,sn=1,rs=1}
45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}
46: I8, // {L10 epilog:id=8,sn=2,rs=0}
47: I6_2; // {L10 epilog:id=6,sn=1,rs=1}
48: I7_2; // {L10 epilog:id=7,sn=2,rs=1}
49: I8_2; // {L10 epilog:id=8,sn=2,rs=1}

Lines 10-22 define the kernel information: loop name and modulo sched-
ule parameters: II, stage count, and so on.

Lines 25-40 show the kernel.

Each instruction in the kernel has an annotation between {}, inside a
comment following the instruction. If several instructions are executed in
parallel, each gets its own annotation.

For instance, line 27 looks like:

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

CrossCore Embedded Studio 1.1 2-115
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

This annotation indicates:

• That this instruction belongs to the kernel of the loop starting at
L10.

• That this and the other three instructions that have ID=5 originate
from the same original instruction in the unscheduled loop:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}
...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}
...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

• sn=1 shows that this instruction belongs to stage count 1.

• rs=1 shows that this instruction uses register set 1.

• Iter=1 specifies that this instruction belongs to the second itera-
tion of the original loop (Iter numbers are zero-based).

• The ‘*’ indicates that this is part of a loop carry path for the loop.
In the original, unscheduled loop, that path is I5 -> I3 -> I5. Due
to unrolling, in the scheduled loop the “unrolled” path is I5_2 ->
I3->I5->I3_2->I5_2.

The prolog and epilog are not clearly delimited in blocks by themselves,
but their corresponding instructions are annotated like the ones in the
kernel except that they do not have an Iter field and that they are pre-
ceded by a tag specifying to which loop prolog or epilog they belong:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}
...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}
...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

Assembly Optimizer Annotations

2-116 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Note that the prolog/epilog instructions may mix with other instructions
on the same line.

This situation does not occur in this example; however, in a different
example it might have:

I5_2, // {L10 epilog:id=5,sn=1,rs=1}

I20;

This shows a line with two instructions. The second instruction I20 is
unrelated to modulo scheduling, and therefore it has no annotation.

Warnings, Failure Messages and Advice
There are innocuous programming constructs that have a negative effect
on performance. Since you may not be aware of the hidden problems, the
compiler annotations try to give warnings when such situations occur.
Also, if a program construct keeps the compiler from performing a certain
optimization, the compiler gives the reason why that optimization was
precluded.

In some cases, the compiler assumes it could do a better job if you
changed your code in certain ways. In these cases, the compiler offers
advice on the potentially beneficial code changes. However, take this cau-
tiously. While it is likely that making the suggested change will improve
the performance, there is no guarantee that it will actually do so.

CrossCore Embedded Studio 1.1 2-117
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Some of the messages are:

• This loop was not modulo scheduled because it was optimized for
space
When a loop is modulo scheduled, it often produces code that has
to precede the scheduled loop (the prolog) and follow the
scheduled loop (the epilog). This almost always increases the size of
the code. That is why, if you specify an optimization that mini-
mizes the space requirements, the compiler doesn't attempt
modulo scheduling of a loop.

• This loop was not modulo scheduled because it contains calls or
volatile operations
Due to the restrictions imposed by calls and volatile memory
accesses, the compiler does not try to modulo schedule loops con-
taining such instructions.

• This loop was not modulo scheduled because it contains too
many instructions
The compiler does not try to modulo schedule loops that contain
many instructions, because the potential for gain is not worth the
increased compilation time.

• This loop was not modulo scheduled because it contains jump
instructions
Only single block loops are modulo scheduled. You can attempt to
restructure your code and use single block loops.

• This loop would vectorize if alignment were known
The loop was not vectorized because of unknown pointer
alignment.

• Consider using pragma loop_count to specify the trip count or
trip modulo
This information may help vectorization.

Assembly Optimizer Annotations

2-118 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Consider using pragma loop_count to specify the trip count or
trip modulo, in order to prevent peeling
When a loop is vectorized, but the trip count is not known, some
iterations are peeled from the loop and executed conditionally
(based on the run-time value of the trip count). This can be
avoided if the trip count is known to be divisible by the number of
iterations executed in parallel as a result of vectorization.

• operation of this size is implemented as a library call
This message is issued when source code operator operation results
in a library call, due to lack of hardware support for performing
that operation on operands of that size. In this case the compiler
also issues the following remark (see Warnings, Annotations and
Remarks):

cc2261: operation implemented as a library call

• operation is implemented as a library call
This message is issued when source code operator operation results
in a library call, due to lack of direct hardware support. For
instance, an integer division results in a library call. In this case the
compiler also issues the following remark (see Warnings, Annota-
tions and Remarks):

cc2261: operation implemented as a library call

• MIN operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MIN operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MIN instruction, which requires
signed values.

CrossCore Embedded Studio 1.1 2-119
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• MAX operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MAX operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MAX instruction, which requires
signed values.

• Use of volatile in loops precludes optimizations
In general, volatile variables hinder optimizations. They cannot be
promoted to registers, because each access to a volatile variable
requires accessing the corresponding memory location. The nega-
tive effect on performance is amplified if volatile variables are used
inside loops. However, there are legitimate cases when you have to
use a volatile variable exactly because of this special treatment by
the optimizer. One example would be a loop polling if a certain
asynchronous condition occurs. This message does not discourage
the use of volatile variables, it just stresses the implications of such
a decision.

• Jumps out of this loop prevent efficient hardware loop generation
Due to the presence of jumps out of a loop, the compiler either
cannot generate a hardware loop, or was forced to generate one that
has a conditional exit.

• There are N more instructions related to this call
Certain operations are implemented as library calls. In those cases
the call instruction in the assembly code is annotated explaining
that the user operation was implemented as a call. However the
cost of the operation may be slightly larger than the cost of the call
itself, due to additional overhead required to pass the parameters
and to obtain the result. This message gives an estimate of the
number of instructions in such an overhead associated with a
library call.

Analyzing Your Application

2-120 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• This function calls the “alloca” function which may increase the
frame size
The assembly annotations try to estimate the frame size for a given
function. However, if the function makes explicit use of alloca
then this increases the frame size beyond the original reported
estimate.

Analyzing Your Application
The compiler and run-time libraries provide several features for analyzing
the run-time behavior of your application. These features allow you to
better debug errors and fine tune the program. Features discussed in this
chapter are:

• Application Analysis Configuration discusses how the profiles, log
files and reports are named.

• Profiling With Instrumented Code discusses how to profile the
application, measuring the time spent in individual functions in an
application.

• Profile-Guided Optimization and Code Coverage discusses how to
improve application performance using profile-guided optimiza-
tion. Producing code coverage reports using profile-guided
optimization data is also discussed.

• Heap Debugging details how to use the run-time library heap
debugging feature to identify heap-allocated memory leaks and
heap-allocated memory corruption within an application.

• Stack Overflow Detection details how to use the stack overflow fea-
ture to determine when an application has exceeded its maximum
stack size.

CrossCore Embedded Studio 1.1 2-121
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Application Analysis Configuration
The analysis features described in this section can be configured through
some global settings which are used by an underlying profiling layer. This
layer is exposed by the <sys/adi_prof.h> header file. The following
aspects can be controlled through this layer:

• Application Analysis and File Naming

• Device for Profiling Output

• Frequency of Flushing Profile Data

Application Analysis and File Naming

The analysis features described in this section each rely on files created by
the application while it is running. In order for the analysis tools to be
able to locate such files, the application and the tools must agree on the
files’ names. This is achieved through the use of the linker’s EXECUT-
ABLE_NAME directive, which allows an application to discover the name of
its own executable image. The run-time library can then use this name as
the basis of the generated files, thereby tying the generated file to the exe-
cutable that created it. This allows the Reporter Tool to produce useful
reports based on the application and its generated log files.

The features that make use of this functionality are:

• Profile-guided optimization (PGO) for hardware (on page 2-8).

• Instrumented profiling (on page 2-123).

• Heap debugging (on page 2-135).

The EXECUTABLE_NAME directive takes an assembler symbol name as a
parameter. For the features in this chapter, the symbol name must be
__executable_name.

Analyzing Your Application

2-122 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

 You do not need to add the __executable_name symbol to your
application. The linker will automatically create an object file con-
taining the declaration of the symbol when it encounters the
EXECUTABLE_NAME directive in the .ldf file.

The __executable_name assembler symbol declared in the .ldf file can be
referenced in C/C++ applications. The data is stored in a NUL-terminated
C string.

As an alternative to using the EXECUTABLE_NAME directive, you can provide
a declaration of the symbol within your application, for example, in C:

char _executable_name[] = “my_executable.dxe”;

 If no EXECUTABLE_NAME directive is provided in the .ldf file, the
application will revert to using the default definition of __execut-
able_name. This contains the string unknown.dxe.

Device for Profiling Output

The profiling features require an underlying I/O device driver to produce
output to either stderr or the appropriate log file. The features will use
the device driver specified by the integer adi_prof_io_device. If adi_-
prof_io_device is -1, the profilers will use the default device driver.
adi_prof_io_device defaults to -1, but this definition can be overridden
with a value representing the required device driver.

CrossCore Embedded Studio 1.1 2-123
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Frequency of Flushing Profile Data

To reduce the impact of I/O operations, the profilers buffer data inter-
nally, and write the data to the log files in bursts. The intervals can be
controlled through the following global variables:

• adi_prof_min_flush_interval determines the minimum time that
must pass between buffer flushes.

• adi_prof_max_flush_interval determines the maximum time that
may pass between buffer flushes. This value is used to determine
whether to flush data to the log file before the buffer fills.

The library provides default values for each of these variables, but you can
override the defaults just by defining your own versions, for example:

 uint32_t adi_prof_max_flush_interval

 = ADI_MSEC_FLUSH_INTERVAL(10000); // 10 seconds

 The ADI_MSEC_FLUSH_INTERVAL macro is based upon the __PROCES-
SOR_SPEED__ macro.

Profiling With Instrumented Code
Instrumented profiling is an application profiling tool that provides a sum-
mary of cycle counts for functions within an application.

Instrumented profiling works by planting function calls into your applica-
tion which record the cycle count (and in multi-threaded cases, the thread
identifier) at certain points. Applications built with instrumented profil-
ing should be used for development and should not be released.

Instrumented profiling requires that an I/O device is available in the
application to produce its profiling data. The default I/O device will be
used to perform I/O operations for Instrumented Profiling.

Analyzing Your Application

2-124 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Instrumented profiling flushes any remaining profile data still pending
when exit() is invoked. Multi-threaded applications may need to flush
data explicitly.

To produce an instrumented profiling summary, perform these steps:

1. Compile your application with the -p switch, or with Project >
Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Processor > Enable compiler instrumented profiling
selected. For best results use the optimization switches that will be
enabled in the released version of the application.

2. Gather the profile. Run the executable with a training data set. The
training data set should be representative of the data that you
expect the application to process in the field. The profile is stored
in a file with the extension .prf.

3. Generate the profiling report. Two options for creating reports are
available:

a. Using the IDE; this produces an HTML format report.

b. Using the command line tools; this will produce a plain-text
report.

4. Based on the profiling report, modify the application to improve
performance in critical sections of code.

Generating an Application With Instrumented Profiling

The -p compiler switch (on page 1-61) enables instrumented profiling in
the compiler when compiling C/C++ source into assembly. The compiler
cannot instrument assembly files or files that have already been compiled
into object files.

CrossCore Embedded Studio 1.1 2-125
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

You can enable the -p switch in an IDE project via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor > Enable
compiler instrumented profiling.

 When compiling with the –p switch the compiler and linker will
define the preprocessor macro _INSTRUMENTED_PROFILING with a
value of 1.

Running the Executable File

To produce a profiling report, run the application in either the simulator
or on hardware. The application will produce a profiling file which is used
to create the profiling report. The profiling file will be located in the same
directory as the executable, and named as per the executable with a .prf
suffix.

 If the application’s .ldf file does not use the EXECUTABLE_NAME
directive, the profiling file will revert to the legacy name of
unknown.prf. For more information, see Application Analysis and
File Naming.

The profiling output file needs to be converted into a readable report.
This can be achieved using one of two tools: the IDE Reporter Tool or the
command line instrprof.exe tool. See Invoking the Reporter Tool and
Invoking the instrprof.exe Command Line Reporter for information on
how to produce a report from the .prf profile data file.

Invoking the Reporter Tool

The Reporter Tool produces an HTML-formatted report. To produce the
HTML file:

1. Select File > New > Code Analysis Report.

2. Select Instrumented profiling.

Analyzing Your Application

2-126 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

3. Enter the name of the application executable in the DXE that pro-
duced the data field.

4. If the application .ldf file does not contain an EXECUTABLE _NAME
directive, the Data file field will not have been automatically
updated. Enter the name of the .prf profiling data file into the
field.

5. Enter the filename for the HTML report that will be generated.

6. Click Finish.

Invoking the instrprof.exe Command Line Reporter

The instrprof.exe command line tool produces a plain-text report
printed to the command line console. To produce a report, invoke the
instrprof.exe tool, providing the application executable and the .prf
profiling data file as parameters. For example:

instrprof.exe test.dxe test.prf

The report is displayed via standard output, typically to the console or
command line.

Contents of the Profiling Report

The profiling report lists each profiled function called in the application,
how many times it was called, and cycle counts for that function. In
multi-threaded applications, the thread identifier is also displayed. The
Reporter Tool and instrprof command-line program present the same
information, but in different formats according to their output media.
The respective formats are described in The Reporter Tool Report Format
and The instrprof Command Line Tool Report Format.

CrossCore Embedded Studio 1.1 2-127
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Listing 2-2. Example Program for Instrumented Profiling

int apples, bananas;

void apple(void) {

apples++; // 10 cycles

}

void banana(void) {

bananas++; // 10 cycles

apple(); // 10 cycles

} // 20 cycles

int main(void) {

apple(); // 10 cycles

apple(); // 10 cycles

banana(); // 20 cycles

return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

For example, in the program shown as Listing 2-2, assume that apple()
takes 10 cycles per call and assume that banana() takes 20 cycles per call,
of which 10 are accounted for by its call to apple(). The program, when
run, calls apple() three times: twice directly and once indirectly through
banana(). The apple() function clocks up 30 cycles of execution, and this
is reported for both its inclusive and exclusive times, since apple() does
not call other functions. The banana() function is called only once. It
reports 10 cycles for its exclusive time, and 20 cycles for its inclusive time.
The exclusive cycles are for the time when banana() is incrementing
bananas and is not waiting for another function to return, and so it reports
10 cycles. The inclusive cycles include these 10 exclusive cycles and also
include the 10 cycles apple() used when called from banana(), giving a
total of 20 inclusive cycles.

Analyzing Your Application

2-128 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

The main() function is called only once, and calls three other functions
(apple() twice, banana() once). Between them, apple() and banana() use
up to 40 cycles, which appear in the main() function’s inclusive cycles.
The main() function’s exclusive cycles are for the time when main() is
running, but is not in the middle of a call to either apple() or banana().

 Time spent in unprofiled functions will be added to the exclusive
cycle count for the innermost profiled function, if one is active. An
active profiled function is a profiled function that has an entry in
the call stack; that is, it has begun execution but has not yet
returned. For example, if apple() called the system function mal-
loc(), the time spent in malloc() that is uninstrumented is added
to the time for apple().

The Reporter Tool Report Format

The HTML-formatted instrumented profiling report, produced by the
IDE’s Reporter Tool, contains a summary of information for the applica-
tion. Each profiled function called during execution is listed with the
following information:

• The function’s name.

• The pathname of the source file containing the function.

• The number of times this function was called.

• “Number of cycles without calls”: the total number of cycles spent
executing the code of this function; if the function calls other pro-
filed functions, the cycles spent in those functions is not included
in this figure. Note that if the function calls other non-profiled
functions, this figure will include the cycles spent in those
functions.

CrossCore Embedded Studio 1.1 2-129
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• “Number of cycles with calls”: the total number of cycles spent exe-
cuting this function, or any function it calls. In other words, this
figure gives the sum of cycle counts between this function being
called, and it returning.

• The percentage of time spent in this function. This percentage is
based on the “number of cycles without calls.”

• The thread identifier, for a multi-threaded application.

The instrprof Command Line Tool Report Format

The instrprof.exe tool emits a report to standard output. The following
is an example of the instrprof output:

Summary for thread 1

Function Name ExecCount Fn Only Fn+nested

_main 1 40 80

_apple 3 30 30

_banana 1 10 20

Functional Summary:

Function Name ExecCount Fn Only Fn+nested

_main 1 40 80

_apple 3 30 30

_banana 1 10 20

This report includes the following information, for each profiled function:

• The function’s name.

• “ExecCount”: the number of times this function was called.

Analyzing Your Application

2-130 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• “Fn Only”: this is the same value as “Number of cycles without
calls”, as described in The Reporter Tool Report Format.

• “Fn+nested”: this is the same value as “Number of cycles with
calls”, as described in The Reporter Tool Report Format.

The report gives a breakdown for each thread in the application, plus an
overall combined report for all threads. In this single-threaded example,
there is only one thread, so both portions of the report contain the same
information.

Profiling Data Storage

The profiling information is stored at runtime in memory allocated from
the system heap. If the profiling run-time support cannot allocate from
the heap (usually because the heap is exhausted), the profiling runtime
calls adi_fatal_error() and stops execution. The profiling data available
when this happens will be incomplete and probably not very useful. To
avoid this problem, increase the size of the system heap until the error is
no longer seen when running. For more information, see Using Multiple
Heaps.

 Although instrumented profiling uses the default heap for some of
its internal storage, none of these allocations will appear in a heap
usage report.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code
by inserting calls to a profiling library at the start and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.
The profiling library itself consumes some cycles, and these overheads are
not included in the figures reported for each function. Therefore, the total
cycles reported for the application by the profiler are less than the cycles
consumed during the life of the application.

CrossCore Embedded Studio 1.1 2-131
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

In addition to this overhead, there is some approximation involved in
sampling the cycle counter, because the profiler cannot guarantee how
many cycles will pass between a function’s first instruction and the sam-
ple. This is affected by the optimization levels, the state preserved by the
function, and the contents of the processor’s pipeline. The profiling
library knows how long the call entry and exit takes on average, and
adjusts its counts accordingly. Because of this adjustment, profiling using
instrumented code provides an approximate figure, with a small margin
for error. This margin is more significant for functions with a small num-
ber of instructions than for functions with a large number of instructions.

Multi-Threaded and Non-Terminating Applications

When an instrumented application is executed, it records data in the
application, occasionally flushing this data to the host computer. In
multi-threaded applications and non-terminating single-threaded applica-
tions, a request to flush data is required to ensure that all the profiling
data is flushed from the application.

 In multi-threaded projects the default thread stack size may not be
sufficient for profiling some applications, and may result in unex-
pected runtime behavior. Refer to your RTOS documentation for
instructions on increasing your thread stack size.

Flushing Profile Data

To flush profiling data, the application needs to include the header file
instrprof.h and call the function instrprof_request_flush(). Any
changes to the code for instrumented profiling can be guarded by the pre-
processor macro _INSTRUMENTED_PROFILING.

Analyzing Your Application

2-132 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

For example:

#if defined(_INSTRUMENTED_PROFILING)

#include <instrprof.h>

#endif

void myfunc_noreturn(int x) {

while (1) {

// Perform operations

#if defined(_INSTRUMENTED_PROFILING)

instrprof_request_flush();

#endif

}

}

The flush occurs when the call to instrprof_request_flush() is made.
Flushing cannot occur when the scheduler is disabled or from within
interrupt handlers.

Profiling of Interrupts and Kernel Time

A single-threaded application (that is, one not built with the –threads
compiler switch) adds any time spent in interrupts to the time of the
innermost, active profiled function that was interrupted. Time spent in
the interrupt handler is not visible in the profiling report produced. The
compiler does not instrument functions declared as event handlers.

In a multi-threaded application using a real-time operating system
(RTOS), only the time spent in the objects compiled with instrumenta-
tion is measured. Time spent in the scheduler/kernel and interrupt
handlers is not reported. In the HTML- formatted report produced by the
Reporter Tool, the percentage of time field is a percentage of the profiled
time, not the absolute time that the application was running.

CrossCore Embedded Studio 1.1 2-133
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Behavior That Interferes With Instrumented Profiling

Several features of the C and C++ programming languages can have an
impact on profiling results. The following features can result in unex-
pected results from profiling:

• Unexpected termination of application. If the application termi-
nates unexpectedly a complete set of profiling information may not
be available. To ensure the profiling information is complete, all
threads of execution should terminate by unwinding their stack
(returning from main() or their thread creation function), or by
calling exit(). RTOS-based systems may use a different imple-
mentation of exit(), so may require that data be flushed explicitly.

• Unexpected flow control. Functions that perform unexpected flow
control such as C setjmp/longjmp, C++ exceptions or calling other
instrumented functions via asm() statements, may all result in inac-
curate profiling information. Instrumented profiling relies on the
typical C/C++ behavior of call and return to be able to measure
cycle counts in functions. When features such as setjmp or C++
exceptions return through multiple stack frames, instrumented
profiling will attempt to complete the profiling information for any
stack frames unwound, but this may be inaccurate.

Profile-Guided Optimization and Code Coverage
The data recorded when running an application built with profile-guided
optimization (see Using Profile-Guided Optimization) can also be used to
generate a code coverage report using the IDE’s Reporter Tool. A code
coverage report provides a listing of your application’s C/C++ source with
execution counts for individual lines of code.

Analyzing Your Application

2-134 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

To produce a code coverage report, follow these steps:

1. Compile the application for profile-guided optimization for either
simulators (see Using Profile-Guided Optimization With a Simula-
tor) or hardware (see Using Profile-Guided Optimization With
Hardware).

2. Run the application to produce a .pgo file.

3. Select File > New > Code Analysis Report.

4. Ensure that Code coverage is selected.

5. Enter the name of the application executable in the DXE that pro-
duced the data field.

6. If the application .ldf file does not contain an EXECUTABLE _NAME
directive, the Data file field will not have been automatically
updated. Enter the name of the .pgo profiling data file into the
field.

7. Enter the filename for the HTML report that will be generated.

8. Click Finish.

The Code Coverage Report

The code coverage report contains a function-by-function summary of the
application. For each C and C++ source file compiled with profile-guided
optimization, a line count is displayed indicating how many times that
line was executed.

Unexpected Line Counts in a Code Coverage Report

Several compiler features may impact the accuracy of a code coverage
report. Compiler optimizations may rearrange code for better efficiency,
and in some cases remove sections of code. This may result in unexpected
line count information being displayed in the code coverage report.

CrossCore Embedded Studio 1.1 2-135
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

If the application was compiled for profile-guided optimization on hard-
ware, no line count information is reported for any function declared with
an interrupt handler pragma.

If the .pgo file already exists when you run your application to gather a
profile, the new profile data will accumulate into the same existing .pgo
file rather than replacing it. This allows you to run your application under
a number of different conditions and gather an overall coverage report.

Heap Debugging
The support for heaps provides convenient access to dynamic memory
within an application. While this is an easy and efficient way to use
dynamic memory, the lack of bounds checking associated with pointer
accesses means that mistakes are easy to make, and may have unpredict-
able side effects that are hard to identify and debug. CCES provides a heap
debugging library that can be used to detect errors in the use of the heap,
helping to identify issues that can cause unintended behavior.

The heap debugging library constrains debug versions of the heap manip-
ulation functions (such as malloc, free, new, delete) provided by the C
and C++ run-time libraries. These libraries record the heap activity and
attempt to identify any potential issues with the usage of the heap, such as
writing beyond the bounds of a buffer or failing to free memory.

The heap debugging library maintains a record of allocated blocks within
the heap to track the current state of the heap. This recorded information
is used as a reference to ensure that any heap allocations are valid; for
example, making sure that the block being freed has been allocated by
calloc, malloc, realloc, new or any derivatives and hasn’t been freed pre-
viously. A guard region of 12 bytes, filled with a known bit pattern, is
written before and after each block allocated from the heap and is checked
at de-allocation to detect any overwriting of the bounds of the block.
These bit patterns can be changed at build or run time to avoid the bit

Analyzing Your Application

2-136 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

patterns corresponding to any application data that may be written into
them, causing the bounds overflow to go undetected.

A cleanup function, adi_heap_debug_end, described in the C/C++ Library
Manual for SHARC Processors detects any potential memory leaks (mem-
ory that has been allocated but not de-allocated) and heap corruption.
This function is registered via atexit, and so is invoked if an application
calls exit or returns from main.

The heap debugging library can generate a report detailing heap usage and
errors via the Reporter Tool, to provide diagnostics via stderr at
run-time, to check heap(s) for corruption, and to generate a current heap
state snapshot of the heap(s).

Use the heap debugging library by linking it with your application. This
means that source code does not need to be rebuilt. The heap debugging
library also contains additional functions to allow the behavior of the heap
debugging to be modified or, for additional diagnostic tests, to be carried
out at runtime. These additional functions can be used by including the
header heap_debug.h and requires your code to be rebuilt. For more infor-
mation, see the section “heap_debug.h” in Chapter 1 of the C/C++ Library
Manual for SHARC Processors.

The heap debugging library can be enabled in the IDE via Project > Prop-
erties > C/C++ Build > Settings > Tool Settings > Compiler >
Run-time Checks > Link against heap debugging libraries.

For a comprehensive list of errors detected by the heap debugging library,
refer to the section “Library Error Specific Codes” in Chapter 1 of the
C/C++ Library Manual for SHARC Processors.

Since the heap debugging library requires additional memory for code and
data, an application may fail to link for projects that do not have sufficient
additional memory. Heap and stack usage is also increased, so run-time
errors may occur if insufficient stack or heap is available within your
application.

CrossCore Embedded Studio 1.1 2-137
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The heap debugging library requires an underlying I/O device driver to
produce output to either stderr or the .hpl file, as described in Device for
Profiling Output.

Calls to heap allocation and de-allocation functions also take longer when
heap debugging is enabled than if it is disabled, especially if report genera-
tion is enabled.

Getting Started With Heap Debugging

To use heap debugging, you first need to link your application against the
heap debugging library instead of the normal heap library. You may also
need to modify your application to perform some initial configuration,
depending on:

• Whether your application is single- or multi-threaded

• The levels of logging and diagnostics you require

This section contains these subsections:

• Linking With the Heap Debugging Library. This section covers
how to activate the heap debugging library.

• Heap Debugging Macro. This section explains how to condition-
ally include configuration code in your application.

• Default Behavior. This section describes how the out-of-the-box
configurations for the heap debugging library.

• Additional Heap Overheads. This section gives a brief summary of
the additional data requirements of heap debugging.

• The Heap Debugging Report. This section identifies the file pro-
duced by the heap debugging library.

Analyzing Your Application

2-138 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Linking With the Heap Debugging Library

You can enable the heap debugging library:

• In the IDE by selecting Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > Run-time Checks > Link
against heap debugging libraries.

• On the command-line, via the -rtcheck-heap switch
(on page 1-69).

Heap Debugging Macro

When Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Run-time Checks > Link against heap debugging libraries
has been selected, the macro _HEAP_DEBUG is defined in the compiler,
assembler and linker.

This macro is used in the header file heap_debug.h to define either proto-
type functions when enabled, or to use macros to replace any heap
debugging specific function calls with statements mimicking a successful
return from that function. This allows code to work independently of the
heap debugging library being linked, with minimal performance overhead
when the heap debugging library is not used. For more information, see
“heap_debug.h” in Chapter 1 of the C/C++ Library Manual for SHARC
Processors.

The _HEAP_DEBUG macro is also used to control the linking of the heap
debugging library in the default .ldf files.

CrossCore Embedded Studio 1.1 2-139
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Default Behavior

The behavior of the heap debugging libraries can be configured either at
build time or at runtime. Table 2-14 shows the default configuration.

The choice of configuration will affect the run-time performance of the
application. For example, an application configured to log all heap activity
to a file will make far more calls to the I/O library than an application
configured only to emit an error diagnostic when a problem is encoun-
tered. However, the choice of configuration does not affect the additional
code/data requirements imposed, as the heap debugging library has to
record the same information in order to detect errors, regardless of
whether that information is also being written to an activity log.

By default, applications generate an .hpl file of the heap activity; see The
Heap Debugging Report. The file can be converted into an HTML report
for later analysis.

By default, no diagnostics regarding heap usage are written to stderr. You
can enable stderr diagnostics by calling

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

If your application does not terminate via exit or by returning from main,
the heap debugging cannot track memory leaks or some cases of heap cor-
ruption. You must call adi_heap_debug_end at a suitable point in the
application. Calling adi_heap_debug_end instructs the heap debugging
library to check for any memory leaks and corruption before cleaning up
any internal data used.

If adi_heap_debug_end is not called, either manually or via exit, then
memory leaks can be identified in the report by the presence of a memory

Table 2-14. Default Configuration for Heap Debugging

Generate .hpl log file Enabled

Generate diagnostics to stderr Disabled

Analyzing Your Application

2-140 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

allocation without a corresponding de-allocation. Heap corruption can be
detected by calling adi_verify_all_heaps from anywhere within your
application.

 For more information, refer to the adi_verify_all_heaps entry in the
C/C++ Library Manual for SHARC Processors.

Additional Heap Overheads

In addition to the over-allocation of each memory block by 24-bytes to
use as a guard region around the block, the heap debugging library uses
the system heap to allocate memory used for internal data. Approximately
24-bytes of memory is allocated from the system heap per allocation made
from any heap, and 24-bytes of memory is allocated from the system heap
to record information about each heap in the system.

The Heap Debugging Report

The heap debugging library uses the symbol __executable_name, provided
by the EXECUTABLE_NAME() LDF instruction, to determine the name of the
.hpl file used to generate the heap debugging report. If the __execut-
able_name symbol is not present then the file unknown.hpl is used. For
more information, see Application Analysis and File Naming.

CrossCore Embedded Studio 1.1 2-141
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Using the Heap Debugging Library

The following sections describe the use of the heap debugging library.
They detail the type of errors detected by the heap debugging library,
explain how to generate a report detailing the heap usage and any errors
from the .hpl file created by the heap debugging library, and explain how
to enable stderr diagnostic reporting at runtime.

• Detected Errors. Lists the issues that the heap debugging library
can detect.

• Viewing Reports. Explains how to convert the generated .hpl log
file into report in HTML format.

• stderr Diagnostics. Covers how to control diagnostics emitted to
the standard error stream.

• Call Stack. Discusses the call stack recorded with each heap opera-
tion, and how to configure it.

• Setting the Severity of Error Messages. Explains how to change the
severity of each encountered issue.

• Default Diagnostic Severities. Lists the severity levels used by
default.

• Guard Regions. Discusses the memory spaces allocated before and
after each heap block, to detect writes beyond the block
boundaries.

• Enabling and Disabling Features. Explains how to configure the
library at built-time and at runtime.

• Buffering. Covers setting up a buffer to capture heap information
while I/O is not possible.

• Pausing Heap Debugging. Explains how the tracing may be tempo-
rarily suspended.

Analyzing Your Application

2-142 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

• Finishing Heap Debugging. Provides advice on making sure heap
tracing information is flushed to the log file.

• Verifying Heaps. Describes how to programmatically ensure that
heaps are consistent.

• Behavior of Heap Debugging Library. Notes that using the heap
debugging library has an impact on the characteristics of an appli-
cation, compared to the normal heap library. It also describes these
effects.

• Unfreed File I/O Buffers. Describes a side-effect of the
inter-dependence between the heap library and I/O library.

• Memory Used by Operating Systems. Indicates that any heap usage
by the RTOS may lead to additional entries in the heap log.

Detected Errors

The following errors are detected by the heap debugging library

• Allocation of length zero

• Allocations which are bigger than the heap

• De-allocation of a previously de-allocated memory

• De-allocation of a pointer not returned by an allocation function

• delete[] of memory allocated by new

• delete[] of memory allocated by C functions
(calloc,malloc,realloc)

• delete of memory allocated by C functions
(calloc,malloc,realloc))

• delete of memory allocated by new[]

• free of memory allocated by C++ allocator operations

CrossCore Embedded Studio 1.1 2-143
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

• free of null pointer

• free from incorrect heap

• Memory leaks (memory which has not been de-allocated)

• realloc of memory allocated by C++ allocator operations

• realloc of pointer not returned by allocation function

• realloc from incorrect heap

• Using heap functions from within an interrupt

• Writing beyond the scope of allocated memory block (up to 12
bytes before and after allocated memory)

• Writing to memory which has been de-allocated

Using the known bit patterns written in and around blocks by the heap
debugging library can help to identify erroneous reads by the presence of
these bit patterns in live data. These erroneous reads may be from:

• Memory that has been allocated from the heap but is uninitialized

• Memory that has been de-allocated

• Memory that is beyond the scope of the allocation (up to 12 bytes
before or after allocated memory)

See Guard Regions for more information on these bit patterns.

Analyzing Your Application

2-144 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Viewing Reports

To create an HTML report for your application’s heap activity:

1. Build the application with Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > Run-time Checks > Link
against heap debugging libraries, or with -rtcheck-heap
(on page 1-69).

2. Run the application to produce a .hpl file.

3. Select File > New > Code Analysis Report.

4. Ensure that Heap debugging is selected.

5. Enter the name of the application executable in the DXE that pro-
duced the data field.

6. If the application .ldf file does not contain an EXECUTABLE _NAME
directive, the Data file field will not have been automatically
updated. Enter the name of the .hpl profiling data file into the
field.

7. Enter the filename for the HTML report that will be generated.

8. Click Finish.

stderr Diagnostics

The heap debugging library can provide console diagnostic reporting for
any issues detected with the heap usage, writing diagnostic messages to
stderr as they are detected.

To enable stderr diagnostic reporting at runtime, call:

#include <heap_debug.h>

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

CrossCore Embedded Studio 1.1 2-145
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

To enable stderr diagnostics at build time, define the following C vari-
able in your application source:

bool adi_heap_debug_stderr_diag = true;

The stderr diagnostics can have one of three severities: error, warning
and ignored.

Errors print a diagnostic message and then call adi_fatal_error. (For
more information about adi_fatal_error, see the “Fatal Error Handling”
section in the C/C++ Library Manual for SHARC Processors.)

Warnings print a diagnostic message and then continue the application as
normal. Ignored errors do not produce any diagnostic messages and do
not terminate the application.

The severity of errors does not have any impact on the content of the gen-
erated heap debugging output file (.hpl), nor the heap debugging report
generated from it. All errors are included.

Generated diagnostics are in the following form:

Heap [severity] in block [address]: [message]

when a memory address is relevant, or in the form:

Heap [severity]: [message]

when no memory address is relevant. Both are followed by a call stack
where one is known and relevant. The severity is either error or warn-
ing; address represents the address of the memory block concerned, as
returned by the allocation function. message is a short description of the
issue that has been detected.

The call stack reported is the call stack of the function that identified the
issue. This may not be the same function as the source of the error in some
cases, such as detecting heap corruption and memory leaks.

Analyzing Your Application

2-146 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Table 2-15 provides three example situations in which diagnostic mes-
sages may appear.

Call Stack

The call stack associated with heap operations is included in the heap
debugging output file (and the report generated from the heap debugging
output file using the Reporter Tool) or any diagnostic messages produced
by the heap debugging library in order to help identify the source of the
identified issue. The call stack is stored in a buffer on the system heap,
requiring 8 bytes of memory for each potential element in the call stack.
By default this call stack is 5 elements deep.

The depth of the call stack can be changed by calling adi_heap_de-
bug_set_call_stack_depth at runtime, which will try to re-allocate
sufficient space for this buffer. (For more information about
adi_heap_debug_set_call_stack_depth, refer to the entry in the C/C++
Library Manual for SHARC Processors.) You can also keep the original buf-
fer and return false, if it is not possible to change the call stack depth.

Table 2-15. Examples of Diagnostic Messages

Situation Warning Text Indication

Attempting to free a
block that is already
free

Heap warning in block
0xFF80647C: free of free block
Call stack: 0xFFA098AC 0xF-
FA080F6

The memory block at
address 0xFF80647C
has been de-allocated
twice.

Calling malloc with
zero size

Heap warning: allocation of
length 0
Call stack: 0xFFA09972 0xF-
FA080F6

No block address has
been provided, as there
is no address associated
with this issue.

Memory leak Heap warning in block
0xFF80647C: unfreed block

No call stack is dis-
played here, as it
would refer to the call
stack of the function in
which the leak was
detected.

CrossCore Embedded Studio 1.1 2-147
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The values displayed in the call stack are the PC address of the return from
the previous function, starting from the call to the heap function and tra-
versing the stack towards main (up to the maximum call stack depth).

For example, when run, the following code:

#include <stdlib.h>

#include <heap_debug.h>

void do_free(char *x) {

free(x);

}

void main(void) {

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

do_free(0x0);

}

Produces the following warning:

Heap warning: free of null pointer

Call stack: 0x000400CA 0x000400D7

Where the addresses in the call stack, 0x000400CA and 0x000400D7 refer to
the return from the call to free in do_free and the call to do_free from
main.

Setting the Severity of Error Messages

When stderr diagnostics are enabled, the severity of errors can be set
based on the type of the error. These severities are described in
Table 2-16.

Analyzing Your Application

2-148 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

These can be configured at runtime by calling the functions adi_heap_de-
bug_set_error, adi_heap_debug_set_ignore and
adi_heap_debug_set_warning, with a parameter that is a bit-field where
each bit represents an error type. Macros representing these bits are pro-
vided by heap_debug.h. Multiple error types can be set to a severity at
once by using the bitwise OR operator. (For more information about
these functions, refer to the appropriate entries in the C/C++ Library
Manual for SHARC Processors.)

These severities can also be configured at build time by defining the fol-
lowing bit fields using the macros defined in heap_debug.h:

unsigned long adi_heap_debug_error;

unsigned long adi_heap_debug_ignore;

unsigned long adi_heap_debug_warning;

 Each error class should only be added to a single status, and each
error class should be added to a status. Otherwise, unexpected
behavior may occur.

These priorities have no impact on the report generation; all detected
errors are still displayed in the generated report.

If a warning is encountered, but the heap debugging library is unable to
use I/O due to being in an interrupt or scheduling being disabled, then
the warning is raised to an error and adi_fatal_error is called. For this
reason, setting the error type _HEAP_ERROR_ISR (heap usage within an
ISR) to a warning has no effect. Setting _HEAP_ERROR_ISR to be ignored

Table 2-16. Heap Debugging Diagnostic Message Severities

Severity Description

Error The application prints a diagnostic message and terminates.

Ignored The application does not print any diagnostic message and continues run-
ning.

Warning The application prints a diagnostic message and continues running.

CrossCore Embedded Studio 1.1 2-149
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

behaves as expected. (For more information about the adi_fatal_error
function, refer to the appropriate entry in the C/C++ Library Manual for
SHARC Processors.)

Changing Error Severity Examples

To promote any cases in which the wrong heap is used to de-allocate
memory, and any cases of attempting to allocate more memory than the
size of the heap so that these cases appear as terminating errors, use the
following code:

#include <heap_debug.h>

adi_heap_debug_set_error(_HEAP_ERROR_WRONG_HEAP |

_HEAP_ERROR_ALLOCATION_TOO_LARGE);

To demote any cases of using the wrong function to de-allocate memory,
de-allocations of invalid addresses, and heap corruption to a warning, use
the following code:

#include <heap_debug.h>

adi_heap_debug_set_warning(_HEAP_ERROR_FUNCTION_MISMATCH |

_HEAP_ERROR_INVALID_ADDRESS |

_HEAP_ERROR_BLOCK_IS_CORRUPT);

To ignore any cases of the wrong heap or wrong function being used to
de-allocate memory, use the following code:

#include <heap_debug.h>

adi_heap_debug_set_ignore(_HEAP_ERROR_WRONG_HEAP |

_HEAP_ERROR_FUNCTION_MISMATCH);

Default Diagnostic Severities

By default, any potentially suspicious heap behavior documented as
acceptable by the run-time libraries or C standard will result in a warning
at runtime. Even if this behavior is intentional, it may indicate an error in
the usage of the heap, such as attempting to free memory from the wrong

Analyzing Your Application

2-150 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

heap. Incorrect behavior results in an error at runtime. By default, no
issues are ignored.

The default severities of error messages are detailed in Table 2-17.

For more information on error classes, refer to the heap_debug.h entry in
the C/C++ Library Manual for SHARC Processors.

Guard Regions

The heap debugging library uses guard regions of 12 bytes (3 words for
SHARC platforms) before and after each block allocated from the heap
containing a known bit pattern. These patterns are checked when the

Table 2-17. Default Heap Debugging Diagnostic Severities

Error Type Default Severity

_HEAP_ERROR_UNKNOWN Error

_HEAP_ERROR_FAILED Warning

_HEAP_ERROR_ALLOCATION_OF_ZERO Warning

_HEAP_ERROR_NULL_PTR Warning

_HEAP_ERROR_INVALID_ADDRESS Error

_HEAP_ERROR_BLOCK_IS_CORRUPT Error

_HEAP_ERROR_FREE_OF_FREE Warning

_HEAP_ERROR_FUNCTION_MISMATCH Error

_HEAP_ERROR_UNFREED_BLOCK Warning

_HEAP_ERROR_WRONG_HEAP Warning

_HEAP_ERROR_ALLOCATION_TOO_LARGE Warning

_HEAP_ERROR_INVALID_INPUT Error

_HEAP_ERROR_INTERNAL Error

_HEAP_ERROR_IN_ISR Error

_HEAP_ERROR_MISSING_OUTPUT Warning

CrossCore Embedded Studio 1.1 2-151
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

free/allocated status of the block is modified or at the end of the applica-
tion, and if the values do not match, then heap corruption must have
occurred, such as overwriting of a buffer or writing to a block that has
been de-allocated.

Blocks allocated from the heap have 12 bytes before and after the block
filled with the allocated block boundary pattern. Corruption of these
before and after guard regions indicates underflow and overflow of the
block.

The contents of allocated blocks (other than blocks allocated using cal-
loc) are filled with the allocated block contents pattern to help manually
identify the use of allocated (but uninitialized) memory.

Free blocks are filled with the free blocks pattern. The 12 byte guard
region following the block is also filled with this value, though the 12 byte
guard region before the block is not as these 12 bytes are used by the heap
for the operation of the free list. Corruption of this memory indicates that
memory has been written to after it has been de-allocated.

Reading beyond the scope of the allocated block, of free or uninitialized
memory, can be identified by these bit patterns appearing in live data
within the application.

The default bit-patterns for the guard regions are shown in Table 2-18.

Table 2-18. Heap Debugging Guard Region Values

Guard Region Bit Pattern

Free blocks 0xBDBDBDBD

Allocated block boundaries 0xDDDDDDDD

Allocated block contents (not calloc) 0xEDEDEDED

Allocated block contents (calloc) 0x00000000

Analyzing Your Application

2-152 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

These patterns can be changed at runtime by calling

bool adi_heap_debug_set_guard_region (unsigned char free-pat-

tern,

unsigned char allocated-pattern,

unsigned char content-pattern);

where each parameter is a character representing the required bit pattern.
Any existing blocks are checked for corruption before the pattern is
changed. If there are any corruptions, then adi_heap_de-
bug_set_guard_region does not change the guard regions and will return
false. If the heap is valid, then the guard regions for all existing allocations
are changed along with the guard regions of any future allocations. The
patterns written to allocated block contents will not be updated, though
any new allocations will be filled with the new bit pattern.

The patterns can also be overridden at build time by defining the appro-
priate C variable, shown in Table 2-19.

These variables will be updated if adi_heap_debug_set_guard_region is
called at runtime, so it can be used to identify the current guard region
values. (For more information about the adi_heap_debug_set_guard_re-
gion function, refer to the appropriate entry in the C/C++ Library Manual
for SHARC Processors.)

 The variables described in Table 2-19 should not be written to at
runtime or false corruption errors may be reported.

Table 2-19. Heap Debugging Guard Region Variables

Guard Region Variable

Free blocks unsigned char adi_heap_guard_free

Allocated block boundaries unsigned char adi_heap_guard_alloc

Allocated block contents (not calloc) unsigned char adi_heap_guard_content

CrossCore Embedded Studio 1.1 2-153
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

The guard regions can be returned to the ADI defaults detailed in
Table 2-18 by calling adi_heap_debug_reset_guard_region. (For more
information about the adi_heap_debug_reset_guard_region function,
refer to the appropriate entry in the C/C++ Library Manual for SHARC
Processors.) As with adi_heap_debug_set_guard_region, adi_heap_de-
bug_reset_guard_region only changes the guard regions if no corruption
has been detected.

Enabling and Disabling Features

There are two ways in which features can be configured within an applica-
tion: via function calls at runtime or by defining variables at build time.
The default configuration is described in Default Behavior.

 Any allocation or de-allocation made while heap debugging is dis-
abled is not recorded by the heap debugging library. This may
result in errors if the memory is then manipulated with heap
debugging enabled. For instance, a block allocated with heap
debugging disabled and then de-allocated when heap debugging
has been enabled will report a free from invalid address error. Con-
versely, allocation of blocks with heap debugging enabled and
consequent manipulation of those blocks with heap debugging dis-
abled may result in an unfreed block error.

The features that can be enabled or disabled, along with the macros pro-
vided by heap_debug.h, are detailed in Table 2-20.

Table 2-20. Configurable Heap Debugging Features

Feature Macro

Run-time diagnostics _HEAP_STDERR_DIAG

Generation of .hpl file for heap report _HEAP_HPL_GEN

Tracking of heap usage _HEAP_TRACK_USAGE

Analyzing Your Application

2-154 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

At Runtime

Features within the heap debugging library can be enabled or disabled at
run time by using the functions adi_heap_debug_enable or
adi_heap_debug_disable.

(For more information about these functions, refer to the appropriate
entries in the C/C++ Library Manual for SHARC Processors.)

Use a bit-field constructed by combining the required macros specified in
Table 2-20, along with the bitwise or operator. To enable both run-time
diagnostics and .hpl file generation, use the following code:

adi_heap_debug_enable(_HEAP_STDERR_DIAG | _HEAP_HPL_GEN);

Enabling either run-time diagnostics or .hpl file generation implicitly
enables tracking of heap usage.

At Build Time

The global variables used to configure the heap debugging features can be
defined at build time, allowing the default configuration to be modified
with no performance overheads. These values can also be read at runtime
to identify the current configuration. These variables are detailed in
Table 2-21.

 The variables should not be written to directly at runtime or unex-
pected behavior may result.

Table 2-21. Variables Used To Configure Heap Debugging Features

Feature Variable

Tracking of heap usage bool adi_heap_debug_enabled

Run-time diagnostics bool adi_heap_debug_stder-
r_diag

Generation of .hpl file for heap report bool adi_heap_debug_hpl_gen

CrossCore Embedded Studio 1.1 2-155
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Buffering

The contents of the .hpl file used to generate a heap debugging report can
be buffered by the heap debugging library. This improves performance
and avoids any recorded data being lost when it is not currently safe to
write to that file.

The buffer is flushed periodically, or when it is safe to carry out I/O and
the buffer has reached a certain threshold.

By default, the heap debugging library does not have a buffer configured.
This means that every use of the heap results in the data being written to
the output file. As a result, the output file is always up to date and no
flushing of the output is required. This does, however, have an impact on
execution time. This is due to the overhead of the I/O operations required
and means that any data that cannot be written at the time will be lost.

A buffer can be specified at runtime by calling adi_heap_debug_set_buf-
fer with a pointer to the memory and the size of the buffer in addressable
units. The buffer threshold will be set to half of the size of the buffer.

For more information, refer to the adi_heap_debug_set_buffer entry in
the C/C++ Library Manual for SHARC Processors.

A buffer can be configured at built-time by defining the variables
described in Table 2-22.

The macro _ADI_HEAP_MIN_BUFFER, provided by heap_debug.h, can be
used to determine the minimum size required for the heap debugging out-
put buffer to be usable. This macro represents the size required to store 2
entries of the log data along with associated call stacks. The memory
requirement for an entry of log data is 56 bytes plus 8 bytes per call stack
item, up to the maximum call stack depth. The default maximum call
stack depth is 5 and can be modified by using
adi_heap_debug_set_call_stack_depth.

Analyzing Your Application

2-156 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Refer to the adi_heap_debug_set_call_stack_depth entry in the C/C++
Library Manual for SHARC Processors for further information.

When heap debugging is not enabled, _ADI_HEAP_MIN_BUFFER is defined as
0.

The number of bytes of data that has been lost due to insufficient buffer-
ing is stored in the 32-bit C integer variable adi_hpl_buf_lost_data,
provided by heap_debug.h.

Pausing Heap Debugging

Heap debugging can be temporarily disabled at runtime to improve the
performance in sections of code where heap usage does not need to be
debugged. With debugging disabled, no checks will be carried out and no
allocations or de-allocations will be recorded, but performance will be
close to the non-debug version of the heap functions.

 Heap debugging is enabled and disabled globally, so pausing heap
debugging will affect the tracking of all heap usage across any run-
ning threads until it has been re-enabled.

Any allocations or de-allocations made while heap debugging was
paused is not recorded, so any corresponding operations made after
heap debugging has been resumed may result in false errors being
produced regarding invalid addresses or memory leaks.

Table 2-22. Variables Used to Configure Heap Debugging Buffer

Variable Description

void *adi_hpl_buf_ptr Pointer to the start of the buffer

int adi_hpl_buf_size Size of the buffer in addressable units

int adi_hpl_buf_-
threshold

Threshold at which buffer will be flushed

CrossCore Embedded Studio 1.1 2-157
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Heap debugging can be paused by calling adi_heap_debug_pause and can
be re-enabled by calling adi_heap_debug_resume. (For more information
about these functions, refer to the appropriate entries in the C/C++
Library Manual for SHARC Processors.)

Finishing Heap Debugging

If an application does not exit, or uses an OS that does not support
atexit, the heap debugging library can not clean up or check for corrupt
blocks and memory leaks. In these cases the clean-up function
adi_heap_debug_end should be called at a suitable point within your
application. Heap debugging is be disabled upon completion of this func-
tion and any further heap usage will be ignored unless heap debugging has
been re-enabled by calling adi_heap_debug_enable. (For more informa-
tion about these functions, refer to the appropriate entries in the C/C++
Library Manual for SHARC Processors.)

It is safe to call adi_heap_debug_end multiple times within an application.

If an .hpl output file has already been written to by the current instance of
the application then the output file will be appended to.

 The adi_heap_debug_end function attempts to flush any buffer for
the .hpl file generation, so should only be called when I/O is safe
to use. Calling adi_heap_debug_end from within an interrupt or
unscheduled region results in adi_fatal_error being called.

Verifying Heaps

It is possible to check that one or more heaps are free of corruption at run-
time by calling the functions adi_verify_heap or adi_verify_all_heaps.
For more information about these functions, refer to the appropriate
entries in the C/C++ Library Manual for SHARC Processors.

For more information on heap corruption, see Guard Regions.

Analyzing Your Application

2-158 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

These functions return true if the heap or heaps are free of corruption, or
false if corruption is detected.

Behavior of Heap Debugging Library

The heap debugging library is compatible with the non-debug functional-
ity where possible. This ensures that an application should operate the
same with heap debugging enabled as without. However, some minor
changes in behavior may be observed. These changes in behavior are
detailed in the sections that follow.

Application Size

Due to the additional functionality provided by the heap debugging
library, code and data usage for your application will increase when using
the heap debugging libraries. Your application may fail to link if insuffi-
cient space is available for this library.

Performance

Due to additional validation checks, performance in the heap manipula-
tions is degraded compared to the non-debug version of the functions
provided by the C/C++ run-time libraries, especially if generation of the
.hpl file is enabled. With heap debugging disabled or paused, the perfor-
mance should be close to the non-debug version of the heap manipulation
functions.

Heap debugging can be enabled or disabled at run time, allowing you to
ignore selected parts of your applications to minimize the impact of heap
performance overheads.

 Heap operations carried out when heap debugging is disabled are
ignored and may result in false errors being reported.

By default, for non-threaded applications, an output file is created. It is
used to generate a heap debugging report. The I/O operations required are

CrossCore Embedded Studio 1.1 2-159
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

time consuming and can be disabled to improve performance by using the
following code:

adi_heap_debug_disable(_HEAP_HPL_GEN);

If heap tracing is disabled, then run-time diagnostics should be enabled to
identify any heap errors.

Heap Usage

For each allocation on any heap, the heap debugging libraries over allo-
cates the memory by 24 bytes for use as a guard region, as well as
approximately 24-bytes of internal data on the system heap. As a result
more heap space is used when heap debugging is enabled. You may need
to increase the size of your heaps if insufficient space is available.

Stack Usage

The additional function calls used for the heap debugging use the stack of
parameters and local variables, so the overall stack usage in your applica-
tion will increase when using the heap debugging library. This
is especially true when writing diagnostics or the .hpl file.

realloc

The versions of realloc and heap_realloc provided by the heap debug-
ging library always de-allocate the original block of memory and allocate a
new block of memory of the required size. This is the equivalent of calling
malloc, free then memcpy. The non-debug versions of realloc and heap_-
realloc try to re-use the existing memory first.

This change in behavior with the heap debugging version is intended to
catch cases where a block has been reallocated but pointers haven’t been
updated to reference the new block. These cases may occur in an applica-
tion, but this behavior cannot be relied on and may result in unexpected
behavior.

Analyzing Your Application

2-160 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

As a result, some calls to realloc or heap_realloc may fail with the heap
debugging that are successful without it. This can be avoided by ensuring
sufficient heap space is available.

Unfreed File I/O Buffers

For each file stream used, the run-time library allocates 512 bytes of mem-
ory from the heap to use as a buffer. For reasons of performance and code
size, the run-time libraries do not free this memory upon application exit.
The heap debugging library identifies these blocks as belonging to a file
buffer so an error about being unfreed will not be reported. The allocation
of the I/O buffer memory will be seen in the heap debugging report with-
out a corresponding free.

Memory Used by Operating Systems

Operating systems used in an application may make use of the heaps to
store internal data. This data may be reported as an unfreed block by the
heap debugging library, as it cannot identify the source of the allocation.
Some unfreed block reports are to be expected when using an operating
system if it is still running.

Stack Overflow Detection
The compiler provides support for detecting stack overflows, which can be
particularly troublesome bugs in the limited environment of an embedded
system.

This section includes:

• About Stack Overflows
gives a description of what a stack overflow is.

• Stack Overflow Detection Facility
explains how to use the compiler’s support for detecting stack
overflows.

CrossCore Embedded Studio 1.1 2-161
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

About Stack Overflows

This section gives an introduction to stack overflows, and why they are
problematic.

This section includes:

• What is Stack Overflow?
describes a stack overflow, and why it is different from other bugs.

• Likely Causes of Stack Overflow
gives examples of the kind of issues that can lead to stack overflows.

• Difficulties in Diagnosing Stack Overflow
shows why compiler support is useful.

• Limitations on the Compiler’s Stack Detection Capability
notes when compiler support is less useful.

• Fixing a Stack Overflow
gives advice on what to do when you have located your stack
overflow.

What is Stack Overflow?

A stack overflow is caused by the stack not being large enough for the
application. The effects of a stack overflow are undefined; the effects can
vary from data corruption to a catastrophic software crash.

The stack overflows when the stack pointer (i7) is modified to point past
the end of the memory reserved for the stack and the stack is written to
using the stack pointer or frame pointer (i6).

 A stack overflow is different from stack corruption caused by a bug
in your program code.

When the stack overflows, any writes to the stack using the stack pointer
(i7) or the frame pointer (i6) will begin to corrupt an area of memory
which it should not. The results are undefined.

Analyzing Your Application

2-162 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Likely Causes of Stack Overflow

There are many reasons why a stack overflow can occur, for example:

1. A function defines a too-large local array.

2. A function defines a too-large variable-length array (Refer to Vari-
able-Length Array Support.)

3. A function uses the alloca() function, with an too-large value as
its parameter, to allocate space in the stack frame of the caller.

4. The .ldf file has insufficient space set aside for the stack.

5. A function calls itself recursively too many times.

6. A function’s call tree is too deep.

7. A re-entrant interrupt handler is called too many times before the
interrupt is fully serviced.

Note that too large or too many is only slight more than not too large or not
too many; the application only has to exceed its available stack space by
one location for corruption to occur.

Difficulties in Diagnosing Stack Overflow

Without tools for stack overflow detection support, debugging a stack
overflow is not often easy and mostly involves setting breakpoints or add-
ing tracing statements at various places in your application. A stack
overflow might also not become apparent if you are building your applica-
tion in a Release configuration, when optimizations are enabled; a stack
overflow might not reveal itself until your application is built in a Debug
configuration, when optimizations are not enabled.

The timing of interrupts will also mask a stack overflow. If nested
interrupts are enabled and the time taken to service the interrupts is
insufficient before another interrupt is raised and serviced, then a stack
overflow can occur.

CrossCore Embedded Studio 1.1 2-163
C/C++ Compiler Manual for SHARC Processors

Achieving Optimal Performance From C/C++ Source Code

Stack Overflow Detection Facility

You can enable stack overflow detection via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Run-time Checks
> Generate code to catch a Stack Overflow, or via the -rtcheck-stack
switch (on page 1-71).

The stack is implemented as a circular buffer using I7. When stack over-
flow detection is enabled, the corresponding circular buffer overflow
interrupt (CB7I) is enabled. If the stack overflows, the interrupt is trig-
gered and transfers control to a function called _adi_stack_overflowed.
The IDE places a breakpoint on this function automatically, by default. If
you hit this breakpoint, examine the PCSTK register to determine the inter-
rupt handler return address. The instructions at or just prior to that
address that modify I7 are most probably the cause of the stack overflow.

It is possible that instructions for higher priority interrupts (than CB7I)
may delay hitting the breakpoint. In this situation it will be necessary to
look for a cause of stack overflow in those higher priority handlers or the
code immediately before they are raised.

Limitations on the Compiler’s Stack Detection Capability

The compiler cannot generate stack overflow detection just for particular
files; once stack overflow detection is enabled, it applies to the whole
application.

Certain compiler features will cause the compiler to generate calls to sup-
port libraries, which will transiently use arbitrarily-deep call-trees,
requiring additional stack space. These features are:

• Profiling With Instrumented Code

• Profile-Guided Optimization and Code Coverage

• Heap Debugging

Analyzing Your Application

2-164 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

Fixing a Stack Overflow

Once it has been identified that a stack overflow is the cause of your
application failure, correcting the problem can be as simple as increasing
the amount of memory reserved for your stack.

If, due to hardware memory restrictions, you are unable to increase the
amount of memory used for the stack, then conduct a review of your
application, examining your use of local arrays, function calling and other
program code that leads to a stack overflow.

CrossCore Embedded Studio 1.1 I-1
C/C++ Compiler Manual for SHARC Processors

I INDEX

Numerics
128-bit alignment, 1-216
__2116x__ macro, 1-302
__2126x__ macro, 1-302
__2136x__ macro, 1-302
__2137x__ macro, 1-302
__213xx__ macro, 1-302
__2146x__ macro, 1-302
2146x processors

generating normal word size, 1-56, 1-57
generating short word size, 1-74, 1-76

__2147x__ macro, 1-303
__2148x__ macro, 1-303
__214xx__ macro, 1-302
32-bit alignment, 1-216
32-bit floating-point arithmetic, 1-94
40-bit arithmetic, 1-292

implications of using in C/C++ code,
1-292

run-time library functions, 1-293
64-bit alignment, 1-216
64-bit floating-point arithmetic, 1-94

A
-A (assert) compiler switch, 1-26
absfx (absolute value) function, 1-121
accum, 1-105, 1-169, 1-367
action qualifier keywords, for use with

#pragma diag, 1-269
-add-debug-libpaths compiler switch, 1-27
_ADI_COMPILER macro, 1-305

__ADI_LIBEH__ macro, 1-34
_ADI_THREADS macro, 1-77, 1-305
__ADSP21000__ macro, 1-65, 1-303
__ADSP21160__ macro, 1-303
__ADSP21161__ macro, 1-303
ADSP-21161 processor

executing code from external SDRAM,
1-279

__ADSP21261__ macro, 1-303
__ADSP21262__ macro, 1-303
__ADSP21266__ macro, 1-303
ADSP-2126x/2136x processors

data placement, 1-300
data transfer between internal and

external memory, 1-301
__ADSP21362__ macro, 1-303
__ADSP21363__ macro, 1-303
__ADSP21364__ macro, 1-304
__ADSP21365__ macro, 1-304
__ADSP21366__ macro, 1-304
__ADSP21367__ macro, 1-304
__ADSP21368__ macro, 1-304
__ADSP21369__ macro, 1-304
__ADSP21371__ macro, 1-304
__ADSP21375__ macro, 1-304
__ADSP21467__ macro, 1-304
__ADSP21469__ macro, 1-304
__ADSP21477__ macro, 1-304
__ADSP21477__ macro, 1-304
__ADSP21478__ macro, 1-304
__ADSP21479__ macro, 1-304
__ADSP21483__ macro, 1-304

Index

I-2 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

__ADSP21486__ macro, 1-304
__ADSP21487__ macro, 1-304
__ADSP21488__, 1-305
__ADSP21488__ macro, 1-305
__ADSP21489__ macro, 1-305
aggregate assignment support (compiler),

1-167
alias, avoiding, 2-27
-aligned-stack compiler switch, 1-27
alignment inquiry keyword, 1-288
__alignof__ (type-name) construct, 1-288
alldata section identifier, 1-73
alter macro, 1-338
alternate

keywords, 1-49
registers, 1-319

alternate heap interface
C run-time library functions, 1-386
C++ run-time library support, 1-388

alternate heap placement, 1-379
alternative

operator keywords, 1-27
tokens, disabling, 1-27
tokens, enabling, 1-27

-alttok (alternative tokens) compiler switch,
1-27

ALU saturation, disabling, 1-315
-always-inline compiler switch, 1-28, 1-154
-anach (enable C++ anachronisms) C++

mode compiler switch, 1-85
anachronisms

default C++ mode, 1-86
disabling in C++ mode, 1-89

__ANALOG_EXTENSIONS___ macro,
1-305

-annotate (enable assembly annotations)
compiler switch, 1-28

-annotate-loop-instr compiler switch, 1-29,
2-102

annotation information, instrumental,
1-29

annotation keyword, 1-269
annotations

assembly code, 2-91
assembly source code position, 2-103
disabling, 1-28, 1-47
enabling, 1-72
loop identification, 2-99
modulo scheduling, information

provided, 2-109
modulo scheduling, parameters, 2-74
vectorization, 2-108

anomalies
IDs, 1-101
workaround management, 1-99
workarounds, 1-101

anomaly_macros_rtl.h, 1-103
ANSI standard, compiler, 1-35
archiver, 1-3
arguments and return transfer, 1-329
argv/argc support, 1-395
arithmetic operators for fixed-point types,

1-111
array

initializer, 1-163
storage, 1-361
zero length, 1-286

asm
compiler keyword, 1-151, 1-169
construct template operands, 1-175
keyword, 1-169, 1-288
statement, 1-287, 2-31
workarounds not applied, 1-99, 1-169

asm() construct
described, 1-169, 1-183
example with multiple instructions,

1-182
flow control, 1-185
input operand, 1-172

CrossCore Embedded Studio 1.1 I-3
C/C++ Compiler Manual for SHARC Processors

Index

asm() construct (continued)
optimizing, 1-182
reordering, 1-182
syntax, elements, 1-171
syntax, rules, 1-173
system registers, 1-186
template, 1-171
template example, 1-174
with compile-time constant, 1-184

asm() operand constraints, 1-178
specifying a long long value, 1-180

asm_sprt.h system header file, 1-336
-asms-safe-in-simd-for-loops compiler

switches, 1-29
asm volatile() construct, 1-183
assembler, for SHARC processors, 1-3
assembler program, 1-5
assembly

code annotations, 2-91
instruction operands, 1-171
support keyword (asm), 1-345

assembly construct
flow control, 1-185
operand description, 1-174
reordering and optimization, 1-182
syntax, 1-171
with multiple instructions, 1-181

assembly language support keyword (asm)
constructs with multiple instructions,

1-182
assembly optimizer

annotations, 2-91
file position, 2-103
global information, 2-95
loop flattening, 2-107
loop identification annotation, 2-100
messages and warnings, 2-117
modulo scheduling, 2-74, 2-109
procedure statistics, 2-96

assembly optimizer (continued)
vectorization, annotations, 2-108
vectorization, example, 2-105

assembly output annotations
disabling, 1-28, 1-47
enabling annotations, 1-28
failure messages, 2-116
global information, 2-95
in saved assembly file, 2-91
loop flattening, 2-107
loop identification, 2-99
modulo scheduling, 2-74, 2-109
procedure statistics, 2-96
selecting, 2-91
vectorization, defined, 2-104
warnings, 2-116

assembly routines
calling from C/C++ program, 1-334
with exception tables, 1-357
with parameters example, 1-350

atexit() library routine, 1-393
__attribute__ keyword, 1-289
attributes

adding to a file, 1-406
file, 1-29, 1-36, 1-48, 1-400
functions, variables and types, 1-289
names, 1-400
usage examples, 1-406
value, 1-400

attributes, automatically applied, 1-401
-auto-attrs compiler switch, 1-29
autoinit section identifier, 1-73
automatic

attributes, disabling, 1-48
attributes, enabling, 1-29
function inlining, 1-57
inlining, 1-96, 1-153, 2-30
inlining, controlled with the - Ov num

switch, 1-59

Index

I-4 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

automatic (continued)
loop control variables, 2-48
variables, 1-187

automatically-applied attributes, 1-401
automatic attributes

disabling, 1-47
enabling, 1-29

B
background registers, 1-319
bank_memory_kind pragma, 1-277
bank_optimal_width pragma, 1-279
bank qualifier, 1-192
bank_read_cycles pragma, 1-277
bank_write_cycles pragma, 1-278
__BASE_FILE__ macro, 1-305
biased round-to-nearest rounding, 1-124
binary object granularity, 1-405
bit-fields

signed, 1-75
unsigned, 1-78
values, 1-78

bitsfx (bitwise fixed-point to integer
conversion) function, 1-110

bool, see Boolean type support keywords
(bool, true, false)

Boolean type support keywords (bool, true,
false), 1-168

boot loader, 1-390
bsz section identifier, 1-73
-build-lib (build library) compiler switch,

1-30
build tools, 1-36
__builtin_aligned function, 2-19, 2-26,

2-63
__builtin_assert() function, 1-209
__builtin_circindex function, 2-53
__builtin_circptr function, 2-53

built-in functions
defined, 1-201
expected_false, 1-207
expected_true, 1-207
funcsize, 1-213
in code optimization, 2-50
system support, 2-50

C
C

tokens in, 1-27
variable-length arrays, 1-160

C++
alternative tokens in, 1-27
class constructor functions, 1-73
class instance function, 1-331
compiler switches, 1-85
constructors and destructors, 1-392
exceptions, 1-281
gcc compatibility features not supported,

1-282
member functions in assembly language,

1-341
style comments, 1-168
template inclusion control pragma,

1-249
templates, 1-395
virtual lookup tables, 1-73

-c89 (ISO/IEC 9899
1990 standard) compiler switch, 1-24

-c99 (ISO/IEC 9899
1990 standard) compiler switch, 1-24

calling
assembly language subroutine, 1-334
assembly language subroutines from

C/C++ programs, 1-334
C/C++ functions from assembly

language programs, 1-335
call preserved registers, 1-315, 1-355

CrossCore Embedded Studio 1.1 I-5
C/C++ Compiler Manual for SHARC Processors

Index

C++ anachronisms
disabling, 1-89
enabling, 1-85

C/C++
callable subroutines in SIMD mode,

1-343
code optimization, 2-2
data types, 1-92
preprocessor features, 1-301
run-time model, 1-310
switch statements, 1-73

cc21k compiler
see also compiler
defined, 1-1
overview, 1-3
running from command line, 1-8

ccall macro, 1-338, 1-346
C/C++ compiler, overview, 1-3
__CCESVERSION__ macro, 1-305
C/C++ language extensions

asm keyword, 1-169
bool keyword, 1-151
Compound literal expressions, 1-152
dm keyword, 1-187
false keyword, 1-151
indexed initializers, 1-152
inline keyword, 1-152, 1-153
long identifiers, 1-152
non-constant initializers, 1-152
pm keyword, 1-187
section keyword, 1-151
table describing, 1-151
true keyword, 1-151
variable length arrays, 1-152

C/C++ mode selection switches
-c89, 1-24

-C (comments) compiler switch, 1-30
-c (compile only) compiler switch, 1-30

C compiler
overview, 1-129
switches, 1-83

C/C++ run-time environment
See also mixed C/C++/assembly

programming
C/C++ run-time environment, see also

mixed C/C++ assembly programming
C data types, 1-361
char storage, 1-361
-check-init-order C++ mode compiler

switch, 1-87, 1-88, 1-393
circular buffers

automatic generation, 1-205
__builtin_circindex function, 2-53
__builtin_circptr function, 2-53
built-in functions, 1-205
DAG, 1-314
disabling automatic generation of, 1-48
enabling by setting CBUFEN, 1-315
enabling for use, 1-37
generating, 1-205
increment of index, 1-206
increment of pointer, 1-206
increments for modulus array references,

1-207
indexing, 1-205
used in DSP-style code, 2-52
used with the -force-circbuf compiler

switch, 2-52
circular pointer references, 1-205
cjump instruction, 1-322
C language extensions

C++ style comments, 1-152
preprocessor generated warnings, 1-152

class conversion optimization pragmas,
1-244

classes, initializing global instances, 1-392
class pointers, converting, 1-244
clobber, of asm() construct, 1-172

Index

I-6 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

clobbered
register definition, 2-66
registers, 1-234, 1-236

C mode compiler switches
-misra, 1-83
-misra-linkdir, 1-83
-misra-no-cross-module, 1-83
-misra-no-runtime, 1-83
-misra-strict, 1-84
-misra-suppress-advisory, 1-84
-misra-suppress-testing, 1-84
-Wmis_suppress, 1-84
-Wmis_warn rule_number, 1-85

C++ mode compiler switches
-anach (enable C++ anachronisms), 1-85
-check-init-order, 1-87, 1-88, 1-393
-eh (enable exception handling), 1-33
-full-dependency-inclusion, 1-88
-ignore-std, 1-88
-no-anach (disable C++ anachronisms),

1-89
-no-eh (disable exception handling),

1-49
-no-implicit-inclusion, 1-89
-no-rtti (disable run-time type

identification), 1-89
-no-std-templates, 1-90
-rtti (enable run-time type

identification), 1-90
-std-templates, 1-90

code_bank pragma, 1-273
code generation annotations, enabling,

1-80
code generation pragmas, 1-279
code inlining, controlling, 1-253
CODE memory area, 1-394
code optimization

built-in functions, 2-50
controlling, 2-4
enabling, 1-57

code optimization (continued)
for maximum performance, 2-55
for size, 1-58, 2-54
for speed, 1-58
using function pragmas, 2-56
using loop optimization pragmas, 2-61
using pragmas for, 2-56
using pragmas in, 2-56
with PGO, 2-8

code section identifier, 1-73
command-line

interface, 1-7
syntax, 1-9

comma-separated section qualifiers, 1-265
common compiler switches

-no-rtcheck-arr-bnd (disable runtime
checking of array boundaries), 1-52

-no-rtcheck (disable runtime checking),
1-51

-no-rtcheck-div-zero (disable runtime
checking for division by zero), 1-52

-no-rtcheck-heap (disable runtime
checking of heap operations), 1-52

-no-rtcheck-null-ptr (disable runtime
checking for NULL pointers), 1-53

-no-rtcheck-shift-check (disable runtime
checking of shift values), 1-53

-no-rtcheck-stack (disable runtime
checking for stack overflow), 1-53

-no-rtcheck-unassigned (disable runtime
checking for unassigned variables),
1-54

-rtcheck-arr-bnd (runtime checking of
array boundaries), 1-69

-rtcheck-div-zero (runtime checking for
division by zero), 1-69

-rtcheck-heap (runtime checking heap
operations), 1-69

-rtcheck-null-ptr (runtime checking for
NULL pointers), 1-70

CrossCore Embedded Studio 1.1 I-7
C/C++ Compiler Manual for SHARC Processors

Index

common compiler switches (continued)
-rtcheck (runtime checking), 1-68
-rtcheck-shift-check (runtime checking

of shift values), 1-70
-rtcheck-stack (runtime checking for

stack overflow), 1-71
-rtcheck-unassigned (runtime checking

for unassigned variables), 1-71
-compatible-pm-dm compiler switch, 1-30
compilation time, indicating with the

-no-progress-rep-timeout compiler
switch, 1-51

compiler
building for a specific hardware revision,

1-75, 1-100
built-in functions, 1-201
C/C++ extensions, 1-149, 1-151
code generator workarounds, 1-101
code optimization, 1-95, 2-2
command-line interface, overview, 1-7
command-line switch summaries, 1-10
command-line syntax, 1-9
diagnostic messages, 1-268
diagnostics, 2-5
disabling GNU compatibility mode,

1-51
disabling hardware anomaly

workarounds, 1-56
enabling GNU compatibility mode, 1-46
enabling hardware anomaly

workarounds, 1-81, 1-101
generating a label, 1-170
keywords, not recognized, 1-49
optimizer, 2-4
overview, 1-3
prelinker, 1-98
producing processor-specified code, 1-65
progress feedback, 1-65, 1-66
selecting specified compilation tool, 1-62
starting a new optimization pass, 1-66

compiler (continued)
stopping after compilation, 1-72
undefining macros, 1-77

compiler common switches
-extra-keywords (enable short-form

keywords), 1-35
-fx-contract (performance and accuracy),

1-38
-fx-rounding-mode-biased, 1-38
-fx-rounding-mode-truncation, 1-38
-fx-rounding-mode-unbiased, 1-39
-no-fx-contract, 1-50
-p (generate profiling implementation),

1-61
-workaround workaround_id, 1-101

compiler driver, 1-5, 1-101
compiler performance built-in functions

usage example, 2-34
Compiler proper, 1-5
compiler switches

-asms-safe-in-simd-for-loops, 1-29
-component, 1-30
-linear-simd, 1-44
-no-linear-simd, 1-50
-no-main-calls-exit, 1-50
-warn-component, 1-81

compile-time constant, 1-184
-component compiler switch, 1-30
compound literals, 1-167
compound macros, 1-308
compound statement., 1-308
conditional code

avoiding in loops, 2-45
improving, 2-34

conditional expressions, with missing
operands, 1-285

constants
accessed as read-write data, 1-30
initializing statically, 2-24

constants, pointer types, 1-31

Index

I-8 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

constdata section identifier, 1-73
constraint, of asm() construct, 1-172
-const-read-write compiler switch, 1-30
constructors, C++ classes, 1-392, 1-394
constructors and destructors

and memory placement, 1-394
for global class instances, 1-392
start routine, 1-392

constructs
flow control, 1-185
input and output operands, 1-183
with compile-time constant, 1-184

-const-string compiler switch, 1-31
content attributes, to map binary objects,

1-402, 1-403
continuation characters, 1-46, 1-51
controlling code inlining, 1-253
conversion

fixed-point types, 1-108
countlsfx (count leading sign or zero bits)

function, 1-122
count_ticks function, 1-275
__cplusplus macro, 1-305
CrossCore Embedded Studio

debugger, 1-39
graphical user interface (GUI), 1-4
running compiler from command line,

1-3, 1-8
cross-reference listing information, 1-82
C++ run-time, alternate heap interface

support, 1-388
C++ STL objects, 1-383
ctdm memory section, 1-393
__ctor_loop function, 1-393
custom allocator, 1-383

D
DAG

circular buffers, 1-314
registers, 1-314

DAG registers, asm() constraints, 1-178
data

alignment pragmas, 1-215
dual-word-aligned, 2-25
fetching with 32-bit loads, 2-25
memory storage, 1-374
storage formats, 1-361
transfer between internal and external

memory, 1-301
word alignment, 2-25

data_bank pragma, 1-273
DATA memory area, 1-394
data placement

compiler-controlled, 1-73
controlled by the -section id compiler

switch, 1-200
link-time checking of, 1-300

data section identifier, 1-73
data storage formats, 1-361
data storage initialization, 1-376
data type

formats, 1-361
sizes, 1-361

data types
bit sizes, 1-92
double, 1-94
fixed-point, 1-104
float, 1-94
int, 1-93
long, 1-93
long double, 1-94
long int, 1-93
scalar, 2-21

__DATE__ macro, 1-305
-D (define macro) compiler switch, 1-31,

1-77
debugger, generating debug line

information, 1-170
debugging, source-level, 1-39

CrossCore Embedded Studio 1.1 I-9
C/C++ Compiler Manual for SHARC Processors

Index

debugging information
debug optimization level, 1-95
generating, 1-39
lightweight, 1-39
removing, 1-72
with the -g switch, 1-39

Debug subdirectory, 1-27
declarations, mixed with code, 1-166
dedicated registers, 1-314
default

heap, 1-380
.ldf files, 1-378
LDF placement, 1-404
names, controlling, 1-73, 1-200
preprocessor macros, disabling, 1-49
sections, 1-263
target processor, 1-65

default_section pragma, 1-200
#define preprocessor command, 1-308
definition, unique identifier to, 1-257
delayed branches, disabled, 1-49
delete operator

with multiple heaps, 1-388
dependent name processing

disabling, 1-90
enabling, 1-90

destructors
C++ classes, 1-392, 1-394

diagnostic messages
modifying behavior, 1-270
restoring behavior, 1-270
saving behavior, 1-270
severity of, 1-268

diagnostic pragmas
misra_rules_all, 1-270

diagnostics
control pragma, 1-268
described, 2-5
remarks, 2-6
warnings, 2-5

diagnostic warnings, enabling, 1-80
Dinkum EC++ Library, 1-4
directives

EXECUTABLE_NAME, 2-121
divifx (division of integer by fixed-point)

function, 1-117
dm, see dual memory support keywords

(pm, dm)
dmaonly keyword, 1-269
DMAONLY qualifier, 1-300
DM qualifier, 1-265
double

32-bit data type, 1-32
64-bit data type, 1-32
data type, 1-361, 1-362, 1-364
data type formats, 1-32
storage format, 1-362

DOUBLE32 qualifier, 1-265
DOUBLE64 qualifier, 1-265
DOUBLEANY qualifier, 1-265
__DOUBLES_ARE_FLOATS__ macro,

1-32, 1-305
-double-size-32 compiler switch, 1-361,

1-363
-double-size-32 (single-precision double)

compiler switch, 1-32
-double-size-64 compiler switch, 1-361,

1-363
-double-size-64 (double-precision double)

compiler switch, 1-32
-double-size-any compiler switch, 1-32
-double-size-any compiler switch, 1-361,

1-364, 1-365
-dry-run (verbose dry-run) compiler switch,

1-33
-dry (terse -dry-run) compiler switch, 1-33
dual-memory support keywords (pm dm),

1-187
dual-word-aligned addresses, 2-25
dual-word boundary, 2-27

Index

I-10 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

dynamic_cast run-time type identification,
1-89

E
easm21k assembler, 1-3, 1-5
__ECC__ macro, 1-305
__EDG__ macro, 1-305
__EDG_VERSION__ macro, 1-306
-ED (run after preprocessing to file)

compiler switch, 1-33
-EE (run after preprocessing) compiler

switch, 1-33
-eh (enable exception handling) C++ mode

compiler switch, 1-33
elfar archive library, 1-3, 1-7
elfloader utility, 1-376, 1-390
emulated arithmetic, avoiding, 2-22
entry macro, 1-323, 1-337
enumeration types, 1-34
-enum-is-int compiler switch, 1-34
environment variables

ADI_DSP, 1-91
CC21K_IGNORE_ENV, 1-92
CC21K_OPTIONS, 1-92
PATH, 1-91
TEMP, 1-91
TMP, 1-91

errata workarounds, 1-100
error keyword, 1-269
error messages

control pragma, 1-268
overriding, 1-79

escape character, 1-288
-E (stop after preprocessing) compiler

switch, 1-33
examples

fixed-point dot product, 1-107

exception handler
disabling, 1-49
enabling, 1-33

__EXCEPTIONS macro, 1-33, 1-306
exceptions table, 1-281
exceptions tables

in assembly routine, 1-357
EXECUTABLE_NAME directive, 2-121
__executable_name symbol, 2-122
exit() library routine, 1-393
exit macro, 1-323, 1-337
expected_false built-in function, 1-207,

2-34
expected_true built-in function, 1-207,

2-34
EXPRS macro, 2-35
external memory

accessing from processor core, 1-300
accessing with inline functions, 1-301
using the dmaonly keyword with, 1-265,

1-269
-extra-keywords (not quite -analog)

compiler switch, 1-35
-extra-precision compiler switch, 1-35

F
faster operations, disabling, 1-54
-fast-fp (fast floating point) compiler

switch, 1-361
file

annotation position, 2-103
attributes, 1-400

automatically-applied, 1-401
attributes, adding, 1-36
attributes, disabling, 1-48
automatic attributes, 1-29
extensions, 1-9
multiple attributes, 1-36

-file-attr (file attribute) compiler switch,
1-36

CrossCore Embedded Studio 1.1 I-11
C/C++ Compiler Manual for SHARC Processors

Index

__FILE__ macro, 1-306
file name

description, 1-25
reading from, 1-25
to be processed, 1-25

-@ filename (command file) compiler
switch, 1-25

file-to-device stream, 1-96
__FIXED_POINT_ALLOWED macro,

1-306
fixed-point arithmetic

pragmas, 1-251
semantics, 1-108

fixed-point arithmetic pragmas, 1-251
fixed-point constants, 1-106
fixed-point types

arithmetic operators, 1-111
conversion, 1-108
using, 1-104

FIX instruction, 1-315
-flags (command line input) compiler

switch, 1-36
float

data type, 1-361, 1-362
floating-point

data size, 1-362
data types, 1-94
hexadecimal constants, 1-165
numbers, 1-361
underflow, avoiding, 1-37

floating-point multiplication and addition
as associative operations, 1-38
not as associative operations, 1-50

float storage format, 1-361, 1-362
-float-to-int compiler switch, 1-37
float to integer conversion, 1-37
flow control operations, asm constructs,

1-185
-force-circbuf (circular buffer) compiler

switch, 1-37, 2-52

-fp-associative (floating-point associative
operation) compiler switch, 1-38

fract, 1-105, 1-169, 1-367
frame pointer, 1-319, 1-320, 1-321

dedicated register, 1-314
free list, emptying, 1-388
-full-dependency-inclusion C++ mode

compiler switch, 1-88
-full-version (display versions) compiler

switch, 1-38
FuncName attributes, 1-403
funcsize built-in function, 1-213
function

-always-inline switch, 1-28
arguments/return value transfer, 1-329
calling in loop, 2-47
call return address, 1-346
declarations with pointers, 1-190
entry (prologue), 1-320, 1-346
exit (epilogue), 1-320, 1-346
inlining, about, 1-153
out-of-line copy, 1-156

function call
in loops, 2-47
reported statistics for, 2-96

function inlining
global asm statements, 1-157
how to use, 2-30
ignoring section directives, 1-158
optimization, 1-155
out-of-line copies, 1-156

functions
functsize, 1-213
obtaining size in bits, 1-213

function side-effect pragmas
for code optimization, 2-56
listed with example, 1-230, 1-242

fxbits (bitwise integer to fixed-point
conversion) function, 1-110

-fx-contract compiler switch, 1-38

Index

I-12 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

FX_CONTRACT pragma, 1-113, 1-251
fxdivi (division of integer by integer)

function, 1-119
-fx-rounding-mode-biased compiler

switch, 1-38
FX_ROUNDING_MODE pragma,

1-252
-fx-rounding-mode-truncation compiler

switch, 1-38
-fx-rounding-mode-unbiased compiler

switch, 1-39

G
GCC compatibility extensions, 1-282
general optimization pragmas, 1-229
gets macro, 1-338
-g (generate debug information) compiler

switch, 1-39
-glite (lightweight debugging) compiler

switch, 1-39
global

variables, 1-339
global asm statements, and inlining, 1-157
global data, 1-374
global information, 2-95
global variable debugging, 1-39
globvar global variable, 2-48
GNU C compiler, 1-282
GNU compatibility mode

disabling, 1-51
enabling, 1-46

granularity, 1-405
guard, 2-61

H
hardware

loops, nested, 1-67
pipelining, 2-70

hardware revision, building project for,
1-75, 1-100

header file control pragmas, 1-249
heap

base address, 1-383
default, 1-380
defining, 1-381
defining at runtime, 1-382
emptying free list, 1-388
freeing space for, 1-388
index, 1-386, 1-387
interface, alternate, 1-386
interface, standard, 1-379
interface, with multiple heaps, 1-388
memory control, 1-378
re-initializing, 1-388
system, 1-376

heap_calloc function, 1-386
heap debugging

default severities of error messages, 2-150
diagnostic message examples, 2-145
disabling, 2-156
finishing, 2-157
improving performance, 2-158
introduction to, 2-135
library default behavior, 2-139
linking with library, 2-138, 2-140
macro, 2-138
non-threaded applications, 2-139
setting severity of errors, 2-147

heap debugging library
buffering contents, 2-155
call stack, 2-146
errors detected by, 2-142
guard regions, 2-150
overheads, 2-140
stderr diagnostics, 2-144

_HEAP_DEBUG macro, 1-306

CrossCore Embedded Studio 1.1 I-13
C/C++ Compiler Manual for SHARC Processors

Index

heap extension routines
alternate heap interface, 1-386
heap_calloc, 1-380
heap_free, 1-380
heap_malloc, 1-380
heap_realloc, 1-380
listed, 1-380

heap_free function, 1-386
heap functions

calloc, 1-380
free, 1-380
malloc, 1-380
realloc, 1-380
standard, 1-379

heap_malloc function, 1-386
heap_realloc function, 1-386

heap debugging library, 2-159
heaps

non-default, 1-383
verifying, 2-157

HEAP_SIZE macro, 1-379
heap_space_unused function, 1-387
-help (command-line help) compiler

switch, 1-41
hexadecimal floating-point constants,

1-165
-HH (list headers and compile) compiler

switch, 1-40
-H (list headers) compiler switch, 1-40
hoisting, 2-68
__HOSTNAME__ macro, 1-76, 1-77

I
__IDENT__ macro, 1-306
idivfx (division of fixed-point by

fixed-point) function, 1-118
IEEE-754 floating-point formats, 1-365
-ieee-fp compiler switch, 1-361
IEEE single-/double-precision formats,

1-361

-ignore-std C++ mode compiler switch,
1-88

-I (include search directory) compiler
switch, 1-41, 1-56

-i (less includes) compiler switch, 1-42
implicit inclusion

defined, 1-249
disabling, 1-89
enabling, 1-88
of .cpp files, 1-88

implicit instantiation method, 1-397
include directory list, 1-41
include files, searching, 1-41
-include (include file) compiler switch,

1-42
incomplete function prototype, 1-81
index, starting value for, 1-207
indexed

array, 2-29
style, 2-30

induction variables, 2-45
initialization

data, 1-376
data storage, 1-376
memory, 1-46
order, 1-87, 1-88
section, processing of, 1-376

initializer
memory, 1-46
non-constant, 1-162

initiation interval
described, 2-75
kernel, 2-76

inline
asm statements, 2-31
assembly language support keyword

(asm), 1-169, 1-171, 1-182
automatic, 2-30
code, avoiding, 2-55
constructs, 1-182

Index

I-14 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

inline (continued)
control pragmas, 1-253
expansion of C/C++ functions, 1-57
file position, 2-103
function, 2-30
function support keyword, example,

1-153
function support keyword, inline, 1-151
keyword, avoiding use of, 2-55
keyword, described, 1-152
keyword, using, 2-30
qualifier, 1-154, 1-253

inline assembly (add) example, 1-345
inline keyword, 1-254
inline qualifier

enabling, 1-28
ignoring, 1-46

inlining, with #pragma inline, 1-154,
1-155, 1-254

inner loops
improving performance of, 2-45
producing optimal code for, 2-61

input operands, 1-172, 1-183
installation location, 1-62
instantiation, template functions, 1-247
instrumented profiling, 2-123

about report generation, 2-125
plain text report, 2-126
report contents, 2-126
unexpected results from, 2-133

_INSTRUMENTED_PROFILING
macro, 1-306

integer data type, 1-361
integer data types, 1-93
interface support macros

alter, 1-338
ccall, 1-338
C/C++ and assembly, 1-336
entry, 1-337

interface support macros (continued)
exit, 1-337
gets, 1-338
leaf_entry, 1-337
leaf_exit, 1-337
puts, 1-338
reads, 1-338
restore_reg, 1-339
save_reg, 1-338

interfacing C/C++ and assembly, see mixed
C/C++ assembly programming

interfacing C/C++ and assembly, see mixed
C/C++/assembly programming

intermediate files, saving, 1-72
interprocedural analysis (IPA)

code optimization with, 1-98
defined, 1-98
enabling, 1-42, 1-97, 2-19
framework, 1-256
generating usage information, 1-99
identifying variables, 2-24
-ipa compiler switch for, 1-42, 1-97,

2-19
#pragma core used with, 1-256

interprocedural optimizations
described, 1-97

interrupt handler pragmas, 1-220
interrupts, writing in C, 1-220
intrinsic (built-in) functions, 1-201
int storage format, 1-361
I/O conversion specifiers, 1-123
IPA, See interprocedural analysis (IPA)
IPA framework, and #pragma core, 1-256
-ipa (interprocedural analysis) compiler

switch, 1-42, 1-98, 2-19
IPA solver utility, 1-6
-I (start include directory) compiler switch,

1-41
iteration interval, 2-76

CrossCore Embedded Studio 1.1 I-15
C/C++ Compiler Manual for SHARC Processors

Index

K
keywords

alternate, 1-49
compiler, 1-150, 1-151
extensions, not recognzed, 1-49
extensions, recognized, 1-150

keywords (compiler), see compiler C/C++
extensions

L
_LANGUAGE_C macro, 1-306
language extensions (compiler), see

compiler C/C++ extensions)
leaf assembly routines, 1-344
leaf_entry macro, 1-323, 1-337
leaf_exit macro, 1-323, 1-337
legacy code, 1-200
li1151, 1-365
li2040, 1-379
librarian utility, 1-7
library

building with elfar, 1-30
file producing with elfar, 1-30
optimization, 1-98
searching for functions and global

variables when linking, 1-43
__lib_setup_processor routine, 1-391
lightweight debugging information, 1-39
-linear compiler switch, 1-44
line breaks, in string literals, 1-287
line debugging, 1-39
__LINE__ macro, 1-306
linkage_name pragma, 1-251
linker

and mapping requirements, 1-193
linker description file (.ldf file), 1-77
linker utility, 1-6
linking pragmas, 1-256
link library, 1-43

-list-workarounds (supported errata
workarounds) compiler switch, 1-44

live register, 2-67
-L (library search directory) compiler

switch, 1-43
-l (link library) compiler switch, 1-43
long

storage format, 1-361
_LONG keyword, 1-216
long long

storage format, 1-361
_LONG_LONG macro, 1-306
loop

annotations, 2-109
avoiding array writes, 2-44
avoiding conditional code in, 2-46
avoiding function calls in, 2-47
avoiding non-unit strides, 2-47
control variables, 2-48
cycle count, 2-101
epilog, 2-68
exit test, 2-48
flattening, 2-107
identification, 2-99
identification annotation, 2-100
inner vs. outer, 2-45
invariant, 2-68
iteration count, 2-61
kernel, 2-67
optimization, concepts, 2-69
optimization, explained, 2-66
optimization, pragmas, 1-223, 2-61
optimization, terminology, 2-66
parallel processing, 1-228
prolog, 2-68
register usage, 2-102
resource usage, 2-101
rotation, defined, 2-70
rotation by hand, 2-43
short, 2-41

Index

I-16 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

loop (continued)
trip count, 2-47, 2-104
unrolling, 2-42
vectorization, 1-223, 2-62, 2-73

loop annotation information
disabling, 1-47
enabling, 1-29

loop-carried dependency
avoiding, 2-42
avoiding loop rotation by hand, 2-43

loop optimization pragmas, 2-61
-loop-simd (generate SIMD code in loops)

switch, 1-44
L registers, 1-237
-L (search library) compiler switch, 1-56
lvalue

GCC generalized, 1-285
generalized, 1-285

M
macros

ccall, 1-346
compound statements as, 1-308
defining, 1-31
expanding to a compound statement,

1-309
__HOSTNAME__, 1-76, 1-77
mixed C/C++ assembly support, 1-336
predefined preprocessor, 1-302
__RTTI, 1-90
SKIP_SPACES, 1-309
stack management, 1-346
__SYSTEM__, 1-76
__USERNAME__, 1-76
variable argument, 1-158, 1-286
writing, 1-308

make rules only, 1-44
map files, .XML files, 1-45
-map (generate a memory map) compiler

switch, 1-45

maximum performance, 2-55
-MD (make and compile) compiler switch,

1-45
mem21k initializer

disabling, 1-50, 1-51
enabling, 1-46
not invoking after linking, 1-50, 1-51
processing executable file, 1-391
processing PROGBITS sections, 1-391
processing seg_init initialization section,

1-376
processing ZERO_INIT sections, 1-391
running, 1-46

-mem (enable memory initialization)
compiler switch, 1-46

meminit (memory initializer), 1-7
memmove (move memory range) function,

1-75
memory

bank pragmas, 1-273
controlling size of, 1-376
initialization, 1-46
initialization data storage, 1-376
initializer, See mem21k initializer
map file, 1-45
maximum performance, 2-32
space assignments, 1-190
used for placing code in, 1-371

memory bank
maximum transfer width (bits), 1-279

memory code/data storage, 1-373, 1-374,
2-32

memory keywords
function arguments and, 1-191
function declarations with pointers,

1-190
macros and, 1-191

memory map, generating, 1-45
memory-mapped registers (MMR)

accessing using macros, 1-186

CrossCore Embedded Studio 1.1 I-17
C/C++ Compiler Manual for SHARC Processors

Index

minimum code size, compiling for, 2-55
MISRA C

compiler, 1-129
compliance, 1-130
rule 10.5 (required), 1-136
rule 12.12 (required), 1-137
rule 12.4 (required), 1-136, 1-137
rule 12.8 (required), 1-137
rule 13.2 (advisory), 1-137
rule 13.7 (required), 1-138
rule 1.4 (required), 1-134
rule 1.5 (required), 1-134
rule 16.10 (required), 1-138
rule 16.2 (required), 1-138
rule 16.4 (required), 1-138
rule 17.1 (required), 1-139
rule 17.2 (required), 1-139
rule 17.3 (required), 1-139
rule 17.4 (required), 1-139
rule 17.6 (required), 1-140
rule 18.2 (required), 1-140
rule 19.15 (advisory), 1-141
rule 19.7 (advisory), 1-140
rule 20.10 (required), 1-142
rule 20.11 (required), 1-142
rule 20.3 (required), 1-141
rule 20.4 (required), 1-141
rule 20.7 (required), 1-141
rule 20.8 (required), 1-141
rule 20.9 (required), 1-142
rule 21.1 (required), 1-142
rule 2.4 (advisory), 1-134
rule 5.1 (required), 1-134
rule 5.5 (advisory), 1-134
rule 5.7 (advisory), 1-134
rule 6.3 (advisory), 1-135
rule 6.4 (advisory), 1-135
rule 8.10 (required), 1-135
rule 8.1 (required), 1-135
rule 8.5 (required), 1-135

MISRA C (continued)
rule 8.8 (required), 1-135
rule 9.1 (required), 1-136
rule clarifications, 1-130
rules, 1-133

-misra C compiler switch, 1-83
MISRA C switches, 1-83
.misra extension files, 1-134
.misra files, 1-83, 1-135
-misra-linkdir C compiler switch, 1-83
-misra-no-cross-module C compiler switch,

1-83
-misra-no-runtime C compiler switch, 1-83
MISRARepository directory, 1-83
misra_rules_all, 1-270
_MISRA_RULES macro, 1-306
-misra-strict C compiler switch, 1-84
-misra-suppress-advisory C compiler

switch, 1-84
-misra-suppress-testing C compiler switch,

1-84
misra_types.h header file, 1-137
missing operands, in conditional

expressions, 1-285
mixed C/C++ assembly naming

conventions, 1-339
mixed C/C++ assembly programming

arguments and return, 1-329
asm() constructs, 1-169, 1-171, 1-175,

1-182
conventions, 1-310
data storage and type sizes, 1-361
examples, 1-344
return address, 1-346
stack registers, 1-318
stack usage, 1-320

mixed C/C++ assembly support, macros,
1-336

-M (make only) compiler switch, 1-44

Index

I-18 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

-MM (make rules and compile) compiler
switch, 1-45

MODE1 register, 1-221, 1-315
modulo, variable expansion unroll factor,

2-75
modulo scheduling, 2-74, 2-76, 2-109

producing scheduled loops with, 2-74,
2-109

modulo scheduling information, 2-109
modulo variable expansion factor, 2-85
modulus array references, 1-207
-Mo (processor output file) compiler

switch, 1-45
-Mt filename (output make rule) compiler

switch, 1-45
mulifx (multiplication of integer by

fixed-point) function, 1-120
multicore support, 1-256
multi-line asm() C program constructs,

1-182
-multiline compiler switch, 1-46
multiple

attributes, 1-36
heaps, 1-380
heap support, 1-388
lines, spanning, 1-46

multi-statement macros, 1-308

N
naming conventions

assembly and C/C ++, 1-339
naming conventions, C and assembly,

1-339
native fixed-point constants, 1-106
native fixed-point types, fract and accum,

1-169
native fixed-point types fract and accum,

1-169
nested hardware loops, restrictions, 1-67
-never-inline compiler switch, 1-46

newline, in string literals, 1-46, 1-51
new operator

with multiple heaps, 1-388
-no-aligned-stack (do not align stack)

compiler switch, 1-47
-no-alttok (disable tokens) C++ mode

compiler switch, 1-47
-no-anach (disable C++ anachronisms)

compiler switch, 1-89
-no-annotate (disable assembly

annotations) compiler common
switch, 1-47

-no-annotate-loop-instr compiler common
switch, 1-47

-no-assume-vols-are-iops compiler switch,
1-48

-no-auto-attrs compiler switch, 1-48
-no-circbuf (no circular buffer) compiler

switch, 1-48
-no-const-strings compiler switch, 1-48
-no-db (no delayed branches) compiler

switch, 1-49
-no-def (disable definitions) compiler

switch, 1-49
-no-eh (disable exception handling) C++

mode compiler switch, 1-49
-no-extra-keywords (not quite -ansi)

compiler switch, 1-49
-no-fp-associative compiler switch, 1-50
-no-fx-contract compiler switch, 1-50
no implicit inclusion, defined, 1-249
-no-implicit-inclusion C++ mode compiler

switch, 1-89
NO_INIT qualifier, 1-265
-no-linear compiler switch, 1-50
-no-main-calls-exit compiler switch, 1-50
-no-mem (disable memory initialization)

compiler switch, 1-51
-no-multiline compiler switch, 1-51

CrossCore Embedded Studio 1.1 I-19
C/C++ Compiler Manual for SHARC Processors

Index

non-constant initializer support (compiler),
1-162

non-default heap, 1-383
non-IEEE-754 floating point format,

1-361
non-leaf

assembly routines, 1-344
routines to make calls (RMS), 1-352

non-temporary files location, 1-62
non-unit strides, avoiding in loops, 2-47
no_partial_initialization pragma, 1-219
-no-progress-rep-timeout compiler switch,

1-51
-normal-word-code compiler switch, 1-56
__NORMAL_WORD_CODE__ macro,

1-307
-no-rtcheck-arr-bnd (disable runtime

checking of array boundaries), 1-52
-no-rtcheck (disable runtime checking),

1-51
-no-rtcheck-div-zero (disable runtime

checking for division by zero), 1-52
-no-rtcheck-heap (disable runtime

checking of heap operations), 1-52
-no-rtcheck-null-ptr (disable runtime

checking for NULL pointers), 1-53
-no-rtcheck-shift-check (disable runtime

checking of shift values), 1-53
-no-rtcheck-stack (disable runtime

checking for stack overflow), 1-53
-no-rtcheck-unassigned (disable runtime

checking for unassigned variables),
1-54

-no-rtti (disable run-time type
identification) C++ mode compiler
switch, 1-89

-no-sat-associative compiler switch, 1-54
-no-saturation (no faster operations)

compiler switch, 1-54
-no-shift-to-add compiler switch, 1-55

-no-simd (disable SIMD mode) compiler
switch, 1-55

__NOSIMD__ macro, 1-306
-no-std-ass (disable standard assertions)

compiler switch, 1-55
-no-std-def (disable standard definitions)

compiler switch, 1-55
-no-std-inc (disable standard include

search) compiler switch, 1-56
-no-std-lib (disable standard library search)

compiler switch, 1-56
-no-std-templates C++ mode compiler

switch, 1-90
-no-threads (disable thread-safe build)

compiler switch, 1-56
-no-workaround (workaround id) compiler

switch, 1-56
__NUM_CORES__ macro, 1-307
num variable, 1-58
-nwc compiler switch, 1-57

O
-Oa (automatic function inlining) compiler

switch, 1-57
$OBJS_LIBS_INTERNAL macro, 1-407
-O (enable optimization) compiler switch,

1-57
-o (output) compiler switch, 1-60
operand constraints, 1-176
operation extensions, 1-152
operator, used with macro definition,

1-287
optimization

code size, 1-58, 2-54
compiler, 2-4
configurations (or levels), 1-95
controlling, 1-95
default, 1-95
disabling, 1-57
enabling, 1-57, 1-97, 1-98

Index

I-20 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

optimization (continued)
for code size, 2-55
for maximum performance, 2-55
inlining process and, 1-155
inner loop, 2-45
interprocedural analysis (IPA), 1-97
library, 1-98
loops, 1-223
pragmas used in, 2-56
reporting progress in, 1-66
sliding scale for, 1-58
speed, 1-58, 2-55
speed versus size, 1-58
switches, 1-57, 2-65
with interprocedural analysis (IPA),

1-97, 1-98
optimization levels

automatic inlining, 1-97
debug, 1-95
default, 1-95
interprocedural optimizations, 1-97
PGO, 1-96
procedural optimizations, 1-96

-Os (optimize for size) compiler switch,
1-58

outer loops, 2-45
out-of-line copy, 1-156
output operand, of asm() construct, 1-172,

1-183
-overlay-clobbers compiler switch, 1-60
overlay pragma, 1-232
-overlay (program may use overlays)

compiler switch, 1-60
overlays, registers clobbered by overlay

manager, 1-60
overlays, using in program, 1-60
-Ov num (optimize for speed versus size)

compiler switch, 1-58

P
passing

arguments to driver, 1-74
function parameters, 1-329

-path-install (installation location)
compiler switch, 1-62

-path-output (non-temporary files
location) compiler switch, 1-62

-path-temp (temporary files location)
compiler switch, 1-62

-path- (tool location) compiler switch, 1-62
peeled iterations, 2-105
per-file optimizations, 1-96, 1-97
-p (generate profiling implementation)

compiler switch, 1-61
.pgi files, 2-18
PGO

See also profile-guided optimization
(PGO)

code coverage report, 2-133
collecting data, 1-96
data sets, 2-18
interprocedural optimizations, 2-19
session identifier, 1-63
supported in the simulator only, 2-9

.pgo files
creating data sets, 2-11
defined, 1-96
gathering profile, 1-96, 2-13
gathering profile with the -pguide switch,

1-63
in PGO process, 1-63
-session-id identifier, 1-63

_PGO_HW macro, 1-307
PGO merger, 1-6
-pgo-session session-id compiler switch

reference page, 1-63
used to separate profiles, 2-17

.pgt files, 2-13

CrossCore Embedded Studio 1.1 I-21
C/C++ Compiler Manual for SHARC Processors

Index

-pguide (profile-guided optimization)
compiler switch, 1-63

placement
all data, 1-73
constant data, 1-73
constant data declared with _pm

keyword, 1-73
C++ virtual lookup table, 1-73
data, 1-73, 1-200
initialized data declared with _pm

keyword, 1-73
initialized variable data, 1-73
initializing aggregate autos, 1-73
jump-tables used to implement C/C++

switch statements, 1-73
machine instructions, 1-73
of run-time library functions, 1-401
static C++ class constructor functions,

1-73
string literals, 1-73
zero-initialized variable data, 1-73

placement support keyword (section),
1-199

pm, See dual memory support keywords
(pm,dm)

pm_constdata section identifier, 1-73
pm_data section identifier, 1-73
PM qualifier, 1-265
pointer

aligned on dual-word boundaries, 2-27
and index styles, 2-30
arithmetic action on, 1-287
class support keyword (restrict), 1-152,

1-159
incrementing, 2-29
induction variable, 1-224
resolving aliasing, 2-49
to data that is aligned, 2-26

pointer-induction variables, 1-224
pointer registers, 1-317

-P (omit line numbers and compile)
compiler switch, 1-61

POP STS instruction, 1-221, 1-222
-pplist (preprocessor listing) compiler

switch, 1-64
#pragma alignment_region, 1-217
#pragma alignment_region_end, 1-217
#pragma align num, 1-215, 1-224, 2-25
#pragma all_aligned, 2-63
#pragma alloc, 2-56
#pragma always_inline, 1-28, 1-154, 1-253
#pragma avoid_anomaly_45, 1-279
#pragma bank_maximum_width, 1-279
#pragma bank_memory_kind, 1-277
#pragma bank_write_cycles, 1-278
#pragma can_instantiate instance, 1-249
#pragma code_bank, 1-273
#pragma compiler support, 1-223
#pragma const, 2-57
#pragma core, 1-256
#pragma data_bank, 1-273
#pragma default_code_bank, 1-276
#pragma default_data_bank, 1-276
#pragma default_section, 1-262, 1-300,

1-394
#pragma default_stack_bank, 1-277
#pragma diag, 1-268, 2-8
#pragma diag(annotations), 1-270
#pragma diag(errors), 1-270
#pragma diag(pop), 1-271
#pragma diag(push), 1-271
#pragma diag(remarks), 1-270
#pragma diag(warnings), 1-270
#pragma do_not_instantiate instance,

1-248
#pragma file_attr, 1-267
#pragma FX_CONTRACT, 1-251
#pragma FX_ROUNDING_MODE,

1-125

Index

I-22 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

#pragma generate_exceptions_tables,
1-281

#pragma inline, 1-154, 1-155, 1-254
#pragma instantiate, 1-395
#pragma instantiate instance, 1-248
#pragma interrupt, 1-222
#pragma interrupt_complete, 1-221
#pragma interrupt_complete_nesting,

1-221
#pragma linkage_name, 1-251, 1-252,

1-256
#pragma loop_count(min, max, modulo),

1-224, 2-61
#pragma loop_unroll N, 1-225
#pragma misra_func, 1-231
#pragma no_alias, 1-227, 2-64
#pragma no_implicit_inclusion, 1-249
#pragma no_partial_initialization, 1-219
#pragma noreturn, 1-231
#pragma no_vectorization, 1-224, 1-231,

2-61
#pragma once, 1-250
#pragma optimize_as_cmd_line, 1-229
#pragma optimize_for_space, 1-229,

1-255, 2-60
#pragma optimize_for_speed, 1-229, 2-60
#pragma optimize_off, 1-229, 2-60
#pragma overlay, 1-232
#pragma pack (alignopt), 1-218
#pragma pad (alignopt), 1-218, 1-219
#pragma param_never_null, 1-244
#pragma pgo_ignore, 1-233
#pragma __printf_args, 1-242, 1-243
#pragma pure, 1-233, 2-57
#pragma regs_clobbered, 1-234, 2-58
#pragma regs_clobbered_call, 1-238
#pragma result_alignment, 1-241, 2-58
#pragma retain_name, 1-261
#pragma rtcheck(off), 1-272
#pragma rtcheck(on), 1-272

pragmas
data alignment, 1-215
data related, 1-273, 1-277
default_stack_bank, 1-277
for default section, 1-394
for fixed-point arithmetic, 1-251
for overlay support, 1-232
for SIMD support, 1-224
for turning off optimization, 1-229
function side-effect, 1-230, 1-242
FX_CONTRACT, 1-251
FX_ROUNDING_MODE, 1-252
header file control, 1-249
inline, 1-154, 1-155
inlining, 1-154, 1-254
instantiate instance, 1-248
interrupt, 1-222
interrupt_complete, 1-221
interrupt_complete_nesting, 1-221
interrupt handler, 1-220
linkage_name, 1-251, 1-252, 1-256
linking, 1-256
linking control, 1-256
loop_count (min, max, modulo), 1-224
loop optimization, 1-223, 2-61
memory, 1-273, 1-277
multiple cores, 1-256
optimization, 1-229, 1-270, 1-271
syntax, 1-213
template instantiation, 1-247
used for code optimization, 2-56

#pragma save_restore_40_bits, 1-222
#pragma save_restore_simd_40_bits,

1-223
#pragma __scanf_args, 1-243
#pragma section, 1-199, 1-262, 1-300,

1-394
pragmas for exceptions table, 1-281
#pragma SIMD_for, 1-224, 2-63

CrossCore Embedded Studio 1.1 I-23
C/C++ Compiler Manual for SHARC Processors

Index

#pragma source_position_from_call_site,
1-255

#pragma stack_bank, 1-275
#pragma suppress_null_check, 1-245
#pragma system_header, 1-250
#pragma vector_for, 1-228, 2-62
#pragma weak_entry, 1-267
predefined macros

__2116x__, 1-302
__2126x__, 1-302
__2136x__, 1-302
__2137x__, 1-302
__213xx__, 1-302
__2146x__, 1-302
__2147x__, 1-303
__2148x__, 1-303
__214xx__, 1-302
_ADI_COMPILER, 1-305
_ADI_THREADS, 1-305
__ADSP21000__, 1-303
__ADSP21160__, 1-303
__ADSP21161__, 1-303
__ADSP21261__, 1-303
__ADSP21262__, 1-303
__ADSP21266__, 1-303
__ADSP21362__, 1-303
__ADSP21363__, 1-303
__ADSP21364__, 1-304
__ADSP21365__, 1-304
__ADSP21366__, 1-304
__ADSP21367__, 1-304
__ADSP21368__, 1-304
__ADSP21369__, 1-304
__ADSP21371__, 1-304
__ADSP21375__, 1-304
__ADSP21467__, 1-304
__ADSP21469__, 1-304
__ADSP21477__, 1-304
__ADSP21478__, 1-304
__ADSP21479__, 1-304

predefined macros (continued)
__ADSP21483__, 1-304
__ADSP21486__, 1-304
__ADSP21487__, 1-304
__ADSP21488__, 1-305
__ADSP21489__, 1-305
__ANALOG_EXTENSIONS__, 1-305
__BASE_FILE__, 1-305
__CCESVERSION__, 1-305
__cplusplus, 1-305
__DATE__, 1-305
__DOUBLES_ARE_FLOATS__,

1-305
__ECC__, 1-305
__EDG__, 1-305
__EDG_VERSION__, 1-306
__EXCEPTIONS, 1-306
__FILE__, 1-306
__FIXED_POINT_ALLOWED, 1-306
_HEAP_DEBUG, 1-306
__IDENT__, 1-306
_INSTRUMENTED_PROFILING,

1-306
_LANGUAGE_C, 1-306
__LINE__, 1-306
_LONG_LONG, 1-306
_MISRA_RULES, 1-83, 1-306
__NORMAL_WORD_CODE__,

1-307
__NOSIMD__, 1-306
__NUM_CORES__, 1-307
_PGO_HW, 1-307
__RTTI, 1-307
__SHORT_WORD_CODE__, 1-307
__SIGNED_CHARS__, 1-307
__SILICON_REVISION__, 1-307
__SIMDSHARC__, 1-307
__STDC__, 1-307
__STDC_VERSION__, 1-307
__TIME__, 1-307

Index

I-24 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

predefined macros (continued)
__VERSION__, 1-307
__VERSIONNUM__, 1-308
__WORKAROUNDS_ENABLED,

1-308
predefined preprocessor macros, 1-302
prefersMem attribute, 1-404
prefersMemNum attribute, 1-404
prelinker, 1-6, 1-98, 2-18

MISRA C compiler, 1-135
prelinker, generating template files, 1-398
preprocessor

listing file, 1-64
predefined macros, 1-302
program, 1-301
warnings, 1-201

primary register set, 1-315
__printf_args pragma, 1-242, 1-243
procedural optimizations, 1-96
procedure statistics, 2-96
processor selection, 1-65
-proc processor (target processor) compiler

switch, 1-65
-prof-hw compiler switch, 1-65
profile-guided optimization (PGO)

adding instrumentation, 1-63
described briefly, 1-96
flushing, 2-15
merger utility, 1-6
multiple PGO data sets, 2-18
multiple source uses, 2-17
-Ov num switch, 1-59, 2-18, 2-55
PGO session identifier, 1-63
-pgo-session id switch, 1-63
profile instrumentation, 1-63
run-time behavior, 2-8
usage example, 2-37
when not used, 1-60
when to use, 2-8, 2-18

PGO (continued)
with hardware, 2-12
with simulator, 2-10

profiling, instrumented, 2-123
profiling data, flushing, 2-131
profiling implementation, generating

information on, 1-61
PROGBITS section, 1-391
-progress-rep-func compiler switch, 1-65
-progress-rep-opt compiler switch, 1-66
progress reporting, 1-66
-progress-rep-timeout compiler switch,

1-66
-progress-rep-timeout-secs compiler switch,

1-66
prototype, incomplete, 1-81
-p switch, instrumented profiling, 2-124
PUSH STS instruction, 1-221
puts macro, 1-338

Q
_QUAD keyword, 1-216
QUALIFIER keywords, for section

pragma, 1-265

R
RAM, initializing, 1-391
-R- (disable source path) compiler switch,

1-67
read_extmem function, 1-301
reads macro, 1-338
realloc heap function, 2-159
reductions, 2-43
ref-code characters, 1-82
register information, disabling propagation

of, 1-60, 1-232

CrossCore Embedded Studio 1.1 I-25
C/C++ Compiler Manual for SHARC Processors

Index

registers
alternate, 1-319
asm() constructs, 1-175
assigning to operands, 1-175
clobbered by overlay manager, 1-60
clobbered register sets table, 1-234,

1-236
dedicated, 1-314
live, 2-67
pointer, 1-317
reserved, 1-67
reserving, 1-318
return, 1-238
scratch, 1-316, 1-317
soft-wired, 1-237
stack, 1-317
transfer, 1-330
unclobbered, 1-236
user, 1-319
user-reserved, 1-237

registers for arguments and return (add 2)
example, 1-351

regs_clobbered string, 1-235
remark keyword, 1-269
remarks

control pragma, 1-268
using in diagnostics, 2-5

-reserve (reserve register) compiler switch,
1-67, 1-318

restore keyword, 1-269
restore_reg macro, 1-339
restrict

see also pointer class support keyword
keyword, 2-49
operator keyword, 1-159
qualifier, 2-49

restricted pointer, 2-49
-restrict-hardware-loops compiler switch,

1-67, 1-68
.RETAIN_NAME directive, 1-357

return address transfer, 1-346
return registers, 1-238
return value transfer, 1-329
rframe instruction, 1-323
roundfx (round fixed-point value)

function, 1-122
rounding, 1-124

biased round-to-nearest, 1-124
setting mode, 1-124
unbiased round-to-nearest, 1-124

-R (search for source files) compiler switch,
1-66

-rtcheck-arr-bnd (runtime checking of
array boundaries), 1-69

-rtcheck-div-zero (runtime checking for
division by zero), 1-69

-rtcheck-heap (runtime checking of heap
operations), 1-69

-rtcheck-null-ptr (runtime checking for
NULL pointers), 1-70

-rtcheck (runtime checking), 1-68
-rtcheck-shift-check (runtime checking of

shift values), 1-70
-rtcheck-stack (runtime checking for stack

overflow), 1-71
-rtcheck-unassigned (runtime checking for

unassigned variables), 1-71
__RTTI, 1-307
-rtti (enable run-time type identification)

C++ mode compiler switch, 1-90
__RTTI macro, 1-90, 1-307
run-time

C/C++ environment, see mixed C/C++
assembly programming

C header, 1-391
checking, 1-143
disabling type identification, 1-89
dynamically allocate/deallocate memory,

1-375
enabling type identification, 1-90

Index

I-26 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

run-time (continued)
environment, see also mixed C/C++

assembly programming
stack, 1-317

Runtime checking
-no-rtcheck-shift-check switch, 1-53
-no-rtcheck-stack switch, 1-53
-no-rtcheck switch, 1-51
-no-rtcheck-unassigned switch, 1-54
pragmas, 1-271, 1-272
-rtcheck-arr-bnd switch, 1-69
-rtcheck-div-zero switch, 1-69
-rtcheck-heap switch, 1-69
-rtcheck-null-ptr switch, 1-70
-rtcheck-shift-check switch, 1-70
-rtcheck-stack switch, 1-71
-rtcheck switch, 1-68
-rtcheck-unassigned switch, 1-71

run-time checking
limitations, 1-148
pragmas, 1-146
Response upon detection, 1-147
supported checks, 1-146

runtime checking, 1-143
Enabling, 1-144
-no-rtcheck-arr-bnd switch, 1-52
-no-rtcheck-div-zero switch, 1-52
-no-rtcheck-heap switch, 1-52
-no-rtcheck-null-ptr switch, 1-53

RUNTIME_INIT qualifier, 1-265

S
_Sat, 1-106
sat, 1-106
-sat-associative compiler switch, 1-72

saturation
disabling, 1-54
disabling associativity, 1-54
enabling associativity, 1-72

save_reg macro, 1-338
-save-temps compiler switch, 1-98
-save-temps (save intermediate files)

compiler switch, 1-72
scalar variables, 2-42
__scanf_args pragma, 1-243
scheduling, of program instructions, 2-67
-S compiler switch, 1-98
scratch registers, 1-316
scratch registers (dot oroduct) example,

1-347
search path

for include files, 1-41
for library files, 1-43
for library files when linking, 1-43

secondary registers, 1-319
section

elimination, 2-54
keyword, 1-151, 1-199
placing symbols in, 1-262
qualifiers, 1-263

.SECTION assembler directive, 1-199

.SECTION directive, 1-371
-section id (data placement) compiler

switch, 1-73, 1-200, 1-394
section identifiers, compiler-controlled,

1-73
section pragmas, 1-262
SECTKIND keywords, 1-264
SECTSTRING double-quoted string,

1-264
seg_dmda data section, 1-374
seg_dmda memory section, 1-372
seg_init initialization section, 1-376
seg_init memory section, 1-372
seg_int_code memory section, 1-372

CrossCore Embedded Studio 1.1 I-27
C/C++ Compiler Manual for SHARC Processors

Index

seg_int_code_sw memory section, 1-372
segment

see also placement support keyword
(section)

keyword, see section keyword
legacy keyword, 1-200

seg_pmco code section, 1-373
seg_pmco memory section, 1-372
seg_pmda data section, 1-374
seg_pmda memory section, 1-372
seg_rth memory section, 1-372
seg_swco memory section, 1-372
SHARC processors

data types, 1-361
short-form keywords

disabling, 1-49
enabling, 1-35

short storage format, 1-361
-short-word-code compiler switch, 1-74
__SHORT_WORD_CODE__ macro,

1-307
-show (display command line) compiler

switch, 1-74
-signed-bitfield (make plain bit-fields

signed) compiler switch, 1-75
__SIGNED_CHARS__ macro, 1-307
silicon revision

management, 1-99
version setting, 1-100

silicon revision, specifying, 1-75, 1-100
__SILICON_REVISION__ macro,

1-101, 1-307
SIMD_for pragma, 1-224
SIMD mode

C/C++ callable subroutines, 1-343
disabling, 1-55

__SIMDSHARC__ macro, 1-307
simulator, used with PGO, 2-9
single case range, 1-287
sinking process, 2-69

-si-revision (silicon revision) compiler
switch, 1-75, 1-100

sizeof() operator, 1-161, 1-287
SKIP_SPACES macro, 1-309
sliding scale, between 0 and 100, 1-58
small applications, producing, 2-54
software pipelining, 2-70, 2-73
source code, checking for syntax errors,

1-76
source directory, adding, 1-66
source path, disabling, 1-67
space_unused function, 1-380
spill, to the stack, 2-67
-S (stop after compilation) compiler switch,

1-72
-s (strip debug information) compiler

switch, 1-72
stack

frame, defined, 1-320
managing in memory, 1-320
managing routines, 1-320
managing with macros, 1-346
overflow detection, 2-160
pointer, 1-319, 1-320
pointer dedicated register, 1-314
registers, 1-317, 1-318

stack alignment
disabling, 1-47
enabling, 1-27

stack_bank pragma, 1-275
stack for arguments and return (add 5)

example, 1-350
stack overflow

about, 2-161
causes, 2-162
detecting, 2-163
detection, 2-160
difficulties, 2-162

stage count (SC), 2-75, 2-80

Index

I-28 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

standard
include search, disabling, 1-56
library search, disabling, 1-56
macro definitions, disabling, 1-55
optimizations, 1-39

standard assertions
disabling, 1-55
enabling, 1-26

statement expression, 1-282
static data, 1-374
status register, saving data in, 1-221
__STDC__ macro, 1-307
STDC STDC FX_FULL_PRECISION

pragma, 1-253
__STDC_VERSION__ macro, 1-307
-std-templates C++ mode compiler switch,

1-90
STI memory area, 1-394
sti section identifier, 1-73
string, literals with line breaks, 1-287
string concatenation feature, 1-181
string literals

marking as const-qualified, 1-31
multiline, 1-46
no-multiline, 1-51
not making const-qualified, 1-48

strtofxfx (convert string to fixed-point)
function, 1-123

struct
assignment, 1-75
copying, 1-75

-structs-do-not-overlap compiler switch,
1-75

struct/unions, 1-291
structures, initializing, 1-164
subroutine return address, example, 1-346
suppress keyword, 1-269
-swc compiler switch, 1-76
switch

-no-assume-vols-are-iops, 1-48

switches
-A (assert) compiler switch, 1-26
-add-debug-libpaths, 1-27
-aligned-stack (align stack), 1-27
-alttok (alternative tokens), 1-27
-always-inline, 1-28
-annotate (enable assembly annotations),

1-28
-annotate-loop-instr, 1-29
-auto-attrs (automatic attributes), 1-29
-build-lib (build library), 1-30
-C (comments), 1-30
-c (compile only), 1-30
-compatible-pm-dm, 1-30
-const-read-write, 1-30
-const-strings, 1-31
-D (define macro), 1-31
-double-size-32|64, 1-32
-double-size-any, 1-32
-dryrun (terse dry-run), 1-33
-dry (verbose dry-run), 1-33
-ED (run after preprocessing to file),

1-33
-EE (run after preprocessing), 1-33
-enum-is-int, 1-34
-E (stop after preprocessing), 1-33
-extra-keywords (enable short-form

keywords), 1-35
-extra-precision, 1-35
-file-attr name, 1-36
-@filename (command file), 1-25
-flags (command-line input), 1-36
-float-to-int, 1-37
-force-circbuf, 1-37
-fp-associative (floating-point associative

operation), 1-38
-full-version (display versions), 1-38
-g (generate debug information), 1-39
-glite (lightweight debugging), 1-39
-help (command-line help), 1-41

CrossCore Embedded Studio 1.1 I-29
C/C++ Compiler Manual for SHARC Processors

Index

switches (continued)
-HH (list headers and compile), 1-40
-H (list headers), 1-40
-I directory (include search directory),

1-41
-i (less includes), 1-42
-include (include file), 1-42
-ipa (interprocedural analysis), 1-42
-I (start include directory), 1-41
-list-workarounds (supported errata

workarounds), 1-44
-L (library search directory), 1-43
-l (link library), 1-43
-loop-simd, 1-44
-map filename (generate a memory map),

1-45
-MD (generate make rules and compile),

1-45
-mem (enable memory initialization),

1-46
-M (generate make rules only), 1-44
-MM (generate make rules and compile),

1-45
-Mo (processor output file), 1-45
-Mt filename (output make rule), 1-45
-multiline, 1-46
-never-inline, 1-46
-no-aligned-stack (disable stack

alignment), 1-47
-no-alttok (disable alternative tokens),

1-47
-no-annotate (disable alternative tokens),

1-47
-no-annotate-loop-instr, 1-47
-no-circbuf (no circular buffer), 1-48
-no-const-strings, 1-48
-no-db (no delayed branches), 1-49
-no-defs (disable defaults), 1-49
-no-extra-keywords (disable short-form

keywords), 1-49

switches (continued)
-no-fp-associative, 1-50
-no-mem (disable memory

initialization), 1-51
-no-multiline, 1-51
-no-progress-rep-timeout, 1-51
-normal-word-code, 1-56
-no-sat-associative, 1-54
-no-saturation (no faster operations),

1-54
-no-shift-to-add, 1-55
-no-simd (disable SIMD mode), 1-55
-no-std-ass (disable standard assertions),

1-55
-no-std-def (disable standard macro

definitions), 1-55
-no-std-inc (disable standard include

search), 1-56
-no-std-lib (disable standard library

search), 1-56
-no-threads (disable thread-safe build),

1-56
-no-workaround (workaround id), 1-56
-nwc, 1-57
-Oa (automatic function inlining), 1-57
-O (enable optimizations), 1-57
-o (output file), 1-60
-Os (optimize for size), 1-58
-overlay, 1-60
-overlay-clobbers, 1-60
-Ov num (optimize for speed vs. size),

1-58
-path-install (installation location), 1-62
-path-output (non-temporary files

location), 1-62
-path-temp (temporary files location),

1-62
-path- (tool location), 1-62
-pgo-session session-id, 1-63

Index

I-30 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

switches (continued)
-pguide (profile-guided optimization),

1-63
-P (omit line numbers and compile),

1-61
-pplist (preprocessor listing), 1-64
-PP (omit line numbers and compile),

1-61
-proc processor, 1-65
-progress-rep-func, 1-65
-progress-rep-opt, 1-66
-progress-rep-timeout, 1-66
-progress-rep-timeout-secs, 1-66
-R (add source directory), 1-66
-R- (disable source path), 1-67
-reserve (reserve register), 1-67
-restrict-hardware-loops, 1-67, 1-68
-S, 1-98
-sat-associative, 1-72
-save-temps, 1-98
-save-temps (save intermediate files),

1-72
-section id (data placement), 1-73
-short-word-code, 1-74
-show (display command line), 1-74
-signed-bitfield (make plain bit-fields

signed), 1-75
-si-revision version (silicon revision),

1-75, 1-100
sourcefile (parameter), 1-25
-S (stop after compilation), 1-72
-s (strip debug information), 1-72
-structs-do-not-overlap, 1-75
-swc, 1-76
-syntax-only (check syntax only), 1-76
-syntax-only (system definitions), 1-77
-T filename (.ldf file), 1-77
-threads (enable thread-safe build), 1-77
-time (tell time), 1-77

switches (continued)
-unsigned-bitfield (make plain bit-fields

unsigned), 1-78
-U (undefine macro), 1-77
-verbose, 1-79
-version (display version), 1-79
-v (version and verbose), 1-78
-Wannotations (enable code generation

annotations), 1-80
-warn-protos (warn if incomplete

prototype), 1-81
-w (disable all warnings), 1-81
-Werror-limit (maximum compiler

errors), 1-80
-Werror-warnings (treat warnings as

errors), 1-80
-W{...} number (override error message),

1-79
-workaround workaround_id, 1-81
-Wremarks (enable diagnostic warnings),

1-80
-Wterse (enable terse warnings), 1-80
-xref (cross-reference list), 1-82

switch section identifier, 1-73
symbols, placing in sections, 1-262
-syntax-only (check syntax only) compiler

switch, 1-76
-sysdef (system definitions) compiler

switch, 1-76
sysreg_bit_clr function, 1-203
sysreg_bit_clr_nop function, 1-203
sysreg_bit_set function, 1-203
sysreg_bit_set_nop function, 1-203
sysreg_bit_tgl function, 1-204
sysreg_bit_tgl_nop function, 1-204
sysreg_bit_tst_all function, 1-204
sysreg_bit_tst function, 1-204
sysreg.h header file, 1-202, 2-50
sysreg_read function, 1-203
sysreg_write function, 1-203

CrossCore Embedded Studio 1.1 I-31
C/C++ Compiler Manual for SHARC Processors

Index

sysreg_write_nop function, 1-203
system heap, 1-376
__SYSTEM__ macro, 1-76
system macros, defined, 1-76
system registers

accessing, 1-186, 1-202
handling, 2-50
list of, 1-204

T
target processor, specifying, 1-65
technical support, -xli
template

class, 1-395
control pragma, 1-249
function, 1-395
instantiation pragmas, 1-247
support in C++, 1-395
un-instantiated, 1-398

template, of asm() construct, 1-171
Template instantiation, 1-6
template instantiation, 1-395
temporary files location, 1-62
-T filename (linker description file)

compiler switch, 1-77
thread-safe

code, 1-77
thread-safe build

disabling, 1-56
-threads (enable thread-safe build) compiler

switch, 1-77
__TIME__ macro, 1-307
-time (tell time) compiler switch, 1-77
transfer registers, 1-330
transferring

function arguments and return value,
1-329

function parameters to assembly
routines, 1-329

trip
count, 2-75
loop count, 2-104
maximum, 2-75
minimum, 2-75
modulo, 2-75

trip count, 2-87
truncation, 1-124
type cast, 1-287
typeof keyword, 1-284
type sizes, data, 1-361

U
unbiased round-to-nearest rounding, 1-124
unclobbered registers, 1-236, 1-237
unnamed struct/union fields, 1-291
-unsigned-bitfield (make plain bit-fields

unsigned) compiler switch, 1-78
unsigned long long

storage format, 1-361
USE_L1DATA_HEAP macro, 1-379
USE_L2_HEAP macro, 1-379
user identifier, 1-381
__USERNAME__ macro, 1-76
user registers, 1-319
USE_SCRATCHPAD_HEAP macro,

1-379
USE_SDRAM_HEAP macro, 1-379
-U (undefine macro) compiler switch, 1-31,

1-77

V
va_arg (get next argument in variable list)

function, 1-331
variable

argument macros, 1-158, 1-286
length array, 1-160, 1-286
name length, 1-200
statically initialized, 2-24

Index

I-32 CrossCore Embedded Studio 1.1
C/C++ Compiler Manual for SHARC Processors

variable argument list
details of argument passing, 1-330

variable expansion and MVE unroll, 2-82
va_start (set variable list pointer) function,

1-331
vectorization

annotations, 2-108
avoiding, 2-61
defined, 2-104
factor, 2-104
loop, 2-62, 2-73
transformation, 2-62

-verbose (display command line) compiler
switch, 1-79

-version (display version) compiler switch,
1-79

version information, displaying, 1-38
__VERSION__ macro, 1-307
__VERSIONNUM__ macro, 1-308
virtual function lookup tables, 1-73, 1-200
void functions (delay) examples, 1-349
volatile

about, 2-20
C program constructs, 1-182
declarations, 2-5
register set, 1-238

vtable section identifier, 1-73
vtbl section identifier, 1-73, 1-200
-v (version and verbose) compiler switch,

1-78

W
-Wannotations (enable diagnostic

warnings) compiler switch, 1-80
-warn-component compiler switch, 1-81
warning keyword, 1-269
warning messages

control pragma, 1-268
described, 2-5
diagnostic, 2-5

warning messages (continued)
disabling, 2-5
disabling all, 1-81
errors, 1-80
#warning directive, 1-201

-Warn-protos (warn if incomplete
prototype) compiler switch, 1-81

-w (disable all warnings) compiler switch,
1-81, 2-5

-Werror-limit (maximum compiler errors)
compiler switch, 1-80

-Werror-warnings compiler switch, 1-80
-Wmis_suppress C compiler switch, 1-84
-Wmis_warn rule_number C compiler

switch, 1-85
-W{...} number (override error message)

compiler switch, 1-79, 2-5, 2-6
_WORD keyword, 1-216
workarounds

anomaly management, 1-99, 1-101
enabling, 1-101
errata, 1-100
interaction between -si-revision,

-workaround and -no-workaround,
1-102

list of valid workarounds, 1-101
not applied in asm(), 1-99
-no-workaround switch, 1-102
use of the -workaround switch, 1-101
valid workarounds list, 1-101
-workaround switch, 1-101

workarounds, not applied in asm(), 1-169
__WORKAROUNDS_ENABLED

macro, 1-101, 1-103, 1-308
-workaround workaround_id compiler

switch, 1-81
-workaround workaround_id compiler

switch, 1-101
-Wremarks (enable diagnostic remarks)

compiler switch, 1-80

CrossCore Embedded Studio 1.1 I-33
C/C++ Compiler Manual for SHARC Processors

Index

-Wremarks (enable diagnostic warnings)
compiler switch, 1-80, 2-6

write_extmem function, 1-301
writes, array element, 2-44
-Wterse (enable terse warnings) compiler

switch, 1-80

X
.XML files, 1-45
-xref (cross-reference list) compiler switch,

1-82

Z
ZERO_INIT qualifier, 1-265, 1-402
ZERO_INIT section, 1-391
zero length arrays, 1-286

	CCES 1.1 C/C++ Compiler Manual for SHARC Processors
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions

	1 Compiler
	C/C++ Compiler Overview
	Compiler Components

	Compiler Command-Line Interface
	Running the Compiler

	Compiler Command-Line Switches
	C/C++ Compiler Switch Summaries
	C/C++ Mode Selection Switch Descriptions
	-c89
	-c99
	-c++

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	-@ filename
	-A name[tokens]
	-add-debug-libpaths
	-aligned-stack
	-alttok
	-always-inline
	-annotate
	-annotate-loop-instr
	-asms-safe-in-simd-for-loops
	-auto-attrs
	-build-lib
	-C
	-c
	-compatible-pm-dm
	-component file.xml
	-const-read-write
	-const-strings
	-D macro[=definition]
	-dependency-add-target target
	-double-size[-32|-64]
	-double-size-any
	-dry
	-dryrun
	-E
	-ED
	-EE
	-eh
	-enum-is-int
	-extra-keywords
	-extra-precision
	-file-attr name[=value]
	-flags -{asm|compiler|ipa|lib|link|mem|prelink} switch [,switch2 [,...]]
	-float-to-int
	-force-circbuf
	-fp-associative
	-full-version
	-fx-contract
	-fx-rounding-mode-biased
	-fx-rounding-mode-truncation
	-fx-rounding-mode-unbiased
	-g
	-glite
	-gnu-style-dependencies
	-H
	-HH
	-h[elp]
	-I directory [{,|;} directory...]
	-I-
	-i
	-include filename
	-ipa
	-L directory[{;|,}directory…]
	-l library
	-linear-simd
	-list-workarounds
	-loop-simd
	-M
	-MD
	-MM
	-Mo filename
	-Mt name
	-map filename
	-mem
	-multiline
	-never-inline
	-no-aligned-stack
	-no-alttok
	-no-annotate
	-no-annotate-loop-instr
	-no-assume-vols-are-iops
	-no-auto-attrs
	-no-circbuf
	-no-const-strings
	-no-db
	-no-defs
	-no-eh
	-no-extra-keywords
	-no-fp-associative
	-no-fx-contract
	-no-linear-simd
	-no-main-calls-exit
	-no-mem
	-no-multiline
	-no-progress-rep-timeout
	-no-rtcheck
	-no-rtcheck-arr-bnd
	-no-rtcheck-div-zero
	-no-rtcheck-heap
	-no-rtcheck-null-ptr
	-no-rtcheck-shift-check
	-no-rtcheck-stack
	-no-rtcheck-unassigned
	-no-sat-associative
	-no-saturation
	-no-shift-to-add
	-no-simd
	-no-std-ass
	-no-std-def
	-no-std-inc
	-no-std-lib
	-no-threads
	-no-workaround workaround_id[,workaround_id …]
	-normal-word-code
	-nwc
	-O[0|1]
	-Oa
	-Os
	-Ov num
	-o filename
	-overlay
	-overlay-clobbers clobbered-regs
	-P
	-PP
	-p
	-path-{ asm | compiler | ipa | lib | link | prelink } pathname
	-path-install directory
	-path-output directory
	-path-temp directory
	-pgo-session session-id
	-pguide
	-pplist filename
	-proc processor
	-prof-hw
	-progress-rep-func
	-progress-rep-opt
	-progress-rep-timeout
	-progress-rep-timeout-secs secs
	-R directory[{:|,}directory …]
	-R-
	-reserve register[, register …]
	-restrict-hardware-loops maximum
	-rtcheck
	-rtcheck-arr-bnd
	-rtcheck-div-zero
	-rtcheck-heap
	-rtcheck-null-ptr
	-rtcheck-shift-check
	-rtcheck-stack
	-rtcheck-unassigned
	-S
	-s
	-sat-associative
	-save-temps
	-section id=section_name[,id=section_name...]
	-short-word-code
	-show
	-si-revision version
	-signed-bitfield
	-structs-do-not-overlap
	-swc
	-syntax-only
	-sysdefs
	-T filename
	-threads
	-time
	-U macro
	-unsigned-bitfield
	-v
	-verbose
	-version
	-W{annotation|error|remark|suppress|warn} number[,number ...]
	-Wannotations
	-Werror-limit number
	-Werror-warnings
	-Wremarks
	-Wterse
	-w
	-warn-component
	-warn-protos
	-workaround workaround_id[,workaround_id …]
	-xref filename

	C Mode (MISRA) Compiler Switch Descriptions
	-misra
	-misra-linkdir directory
	-misra-no-cross-module
	-misra-no-runtime
	-misra-strict
	-misra-suppress-advisory
	-misra-testing
	-Wmis_suppress rule_number [, rule_number]
	-Wmis_warn rule_number [, rule_number]
	MISRA-C Command-line Switch Restrictions

	C++ Mode Compiler Switch Descriptions
	-anach
	-check-init-order
	-friend-injection
	-full-dependency-inclusion
	-implicit-inclusion
	-no-anach
	-no-friend-injection
	-no-implicit-inclusion
	-no-rtti
	-no-std-templates
	-rtti
	-std-templates

	Environment Variables Used by the Compiler
	Data Type and Data Type Sizes
	Integer Data Types
	Floating-Point Data Types

	Optimization Control
	Optimization Levels
	Interprocedural Analysis
	Interaction With Libraries

	Controlling Silicon Revision and Anomaly Workarounds Within the Compiler
	Using the -si-revision Switch
	Using the -workaround Switch
	Using the -no-workaround Switch
	Interactions Between the Silicon Revision and Workaround Switches
	Anomalies in Assembly Sources

	Using Native Fixed-Point Types
	Fixed-Point Type Support
	Native Fixed-Point Types
	Native Fixed-Point Constants
	A Motivating Example
	Fixed-Point Arithmetic Semantics
	Data Type Conversions and Fixed-Point Types
	Bit-Pattern Conversion Functions: bitsfx and fxbits
	Arithmetic Operators for Fixed-Point Types
	FX_CONTRACT
	Rounding Behavior
	Arithmetic Library Functions
	divifx
	idivfx
	fxdivi
	mulifx
	absfx
	roundfx
	countlsfx
	strtofxfx

	Fixed-Point I/O Conversion Specifiers
	Setting the Rounding Mode

	Language Standards Compliance
	C Mode
	C++ Mode

	MISRA-C Compiler
	MISRA-C Compiler Overview
	MISRA-C Compliance
	Using the Compiler to Achieve Compliance

	Rules Descriptions

	Run-Time Checking
	Enabling Run-Time Checking
	Command-Line Switches for Run-Time Checking
	Pragmas for Run-Time Checking

	Supported Run-Time Checks
	Response When Problems Are Detected
	Limitations of Run-Time Checking

	C/C++ Compiler Language Extensions
	Function Inlining
	Inlining and Optimization
	Inlining and Out-of-Line Copies
	Inlining and Global asm Statements
	Inlining and Sections
	Inlining and Run-Time Checking

	Variable Argument Macros
	Restricted Pointers
	Variable-Length Array Support
	Non-Constant Initializer Support
	Designated Initializers
	Hexadecimal Floating-Point Numbers
	Declarations Mixed With Code
	Compound Literals
	C++ Style Comments
	Enumeration Constants That Are Not int Type
	Boolean Type
	The fract Native Fixed-Point Type
	Inline Assembly Language Support Keyword (asm)
	asm() Construct Syntax
	asm() Construct Syntax Rules
	asm() Construct Template Example

	Assembly Construct Operand Description
	Using long long Types in asm Constraints
	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs With Input and Output Operands
	Assembly Constructs With Compile-Time Constants
	Assembly Constructs and Flow Control
	Guidelines on the Use of asm() Statements

	Dual Memory Support Keywords (pm dm)
	Memory Keywords and Assignments/Type Conversions
	Memory Keywords and Function Declarations/Pointers
	Memory Keywords and Function Arguments
	Memory Keywords and Macros

	Memory Banks
	Memory Banks Versus Sections
	Pragmas and Qualifiers
	Memory Bank Selection
	Memory Banks for Code
	Memory Banks for Data

	Performance Characteristics
	Memory Bank Kinds
	Predefined Banks
	Defining Additional Banks

	Placement Support Keyword (section)
	Placement of Compiler-Generated Code and Data
	Long Identifiers
	Preprocessor Generated Warnings
	Compiler Built-In Functions
	builtins.h
	Access to System Registers
	Circular Buffer Built-In Functions
	Automatic Circular Buffer Generation
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	Compiler Performance Built-In Functions
	Expected Behavior
	Known Values

	Floating-Point Built-in Functions
	Fractional Built-In Functions
	Miscellaneous Built-In Functions

	Pragmas
	Data Declaration Pragmas
	#pragma align num
	#pragma alignment_region (alignopt)
	#pragma pack (alignopt)
	#pragma pad (alignopt)
	#pragma no_partial_initialization

	Interrupt Handler Pragmas
	#pragma flush_restore_loop_stack
	#pragma implicit_push_sts_handler
	#pragma interrupt_complete
	#pragma interrupt_complete_nesting
	#pragma interrupt_dispatched_handler
	#pragma interrupt_reentrant
	#pragma save_restore_40_bits
	#pragma save_restore_simd_40_bits

	Loop Optimization Pragmas
	#pragma SIMD_for
	#pragma all_aligned
	#pragma no_vectorization
	#pragma loop_count (min, max, modulo)
	#pragma loop_unroll N
	#pragma no_alias
	#pragma vector_for

	General Optimization Pragmas
	Function Side-Effect Pragmas
	#pragma alloc
	#pragma const
	#pragma misra_func(arg)
	#pragma no_vectorization
	#pragma noreturn
	#pragma overlay
	#pragma pgo_ignore
	#pragma pure
	#pragma regs_clobbered string
	#pragma regs_clobbered_call string
	#pragma result_alignment (n)

	Function Type-Checking Pragmas
	#pragma compatible_pm_dm_params
	#pragma compatible_pm_dm_retval
	#pragma __printf_args
	#pragma __scanf_args

	Class Conversion Optimization Pragmas
	#pragma param_never_null param_name [...]
	#pragma suppress_null_check

	Template Instantiation Pragmas
	#pragma instantiate instance
	#pragma do_not_instantiate instance
	#pragma can_instantiate instance

	Header File Control Pragmas
	#pragma no_implicit_inclusion
	#pragma once
	#pragma system_header

	Fixed-Point Arithmetic Pragmas
	#pragma FX_CONTRACT {ON|OFF}
	#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}
	#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}
	#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}

	Inline Control Pragmas
	#pragma always_inline
	#pragma inline
	#pragma never_inline
	#pragma source_position_from_call_site

	Linking Control Pragmas
	#pragma linkage_name identifier
	#pragma additional_linkage_name identifier
	#pragma core
	#pragma retain_name
	#pragma section/#pragma default_section
	#pragma file_attr(“name[=value]” [, “name[=value]” [...]])
	#pragma weak_entry

	Diagnostic Control Pragmas
	Modifying the Severity of Specific Diagnostics
	Modifying the Behavior of an Entire Class of Diagnostics
	Saving or Restoring the Current Behavior of All Diagnostics

	Run-Time Checking Pragmas
	#pragma rtcheck(off)
	#pragma rtcheck(on)

	Memory Bank Pragmas
	#pragma code_bank(bankname)
	#pragma data_bank(bankname)
	#pragma stack_bank(bankname)
	#pragma default_code_bank(bankname)
	#pragma default_data_bank(bankname)
	#pragma default_stack_bank(bankname)
	#pragma bank_memory_kind(bankname, kind)
	#pragma bank_read_cycles(bankname, cycles[, bits])
	#pragma bank_write_cycles(bankname, cycles[, bits])
	#pragma bank_maximum_width(bankname, width)

	Code Generation Pragmas
	#pragma avoid_anomaly_45 {on | off}
	#pragma no_db_return

	Exceptions Table Pragma
	#pragma generate_exceptions_tables

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (Typeof)
	Generalized Lvalues
	Conditional Expressions With Missing Operands
	Zero-Length Arrays
	GCC Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	Keyword for Specifying Names in Generated Assembler (asm)
	Function, Variable and Type Attribute Keyword (__attribute__)
	Unnamed struct/union Fields Within struct/unions

	Support for 40-Bit Arithmetic
	Using 40-Bit Arithmetic in Compiled Code
	Run-Time Library Functions That Use 40-Bit Arithmetic

	SIMD Support
	A Brief Introduction to SIMD Mode
	What the Compiler Can Do Automatically
	What Prevents the Compiler From Automatically Exploiting SIMD Mode
	How to Help the Compiler Exploit SIMD Mode
	How to Prevent SIMD Code Generation

	Accessing External Memory on ADSP-2126x and ADSP-2136x Processors
	Link-Time Checking of Data Placement
	Inline Functions for External Memory Access

	Preprocessor Features
	Predefined Preprocessor Macros
	Writing Macros
	Compound Macros

	C/C++ Run-Time Model and Environment
	Registers
	Dedicated Registers
	Mode Registers

	Preserved Registers
	Scratch Registers
	Stack Registers
	Parameter Registers
	Return Registers
	Aggregate Return Register
	Reservable Registers
	Alternate Registers

	Managing the Stack
	Function Call and Return
	Transferring Function Arguments and Return Value
	Basic Argument Passing
	Passing Parameters for Variable Argument Lists
	Passing a C++ Class Instance
	Return Values
	Parameter and Return Value Examples

	Calling Assembly Subroutines From C/C++ Programs
	Calling C/C++ Functions From Assembly Programs
	C/C++/Assembly Support Macros
	entry
	exit
	leaf_entry
	leaf_exit
	ccall(x)
	reads(x)
	puts=x
	gets(x)
	alter(x)
	save_reg
	restore_reg

	Symbol Names in C/C++ and Assembly
	C/C++ and Assembly: Extern Linkage
	C and Assembly: Underscore Prefix
	Other Approaches

	Implementing C++ Member Functions in Assembly Language
	Writing C/C++-Callable SIMD Subroutines
	Mixed C/C++/Assembly Programming Examples
	Using Inline Assembly
	Using Macros to Manage the Stack
	Using Scratch Registers
	Using Void Functions
	Using the Stack for Arguments
	Using Registers for Arguments and Return
	Using Non-Leaf Routines That Make Calls
	Using Call Preserved Registers

	Exceptions Tables in Assembly Routines

	Data Storage Formats
	Using Data Storage Formats
	Floating-Point Data Size
	Floating-Point Binary Formats
	IEEE Floating-Point Format
	IEEE Floating-Point Implementation

	fract Data Representation
	Precision Restrictions With 40-Bit Floating-Point Arithmetic

	Memory Section Usage
	Code Storage in Program Memory
	Data Storage in Data Memory
	Data Storage in Program Memory
	Run-Time Stack Storage
	Run-Time Heap Storage
	Initialization Data Storage

	Global Array Alignment
	Controlling System Heap Size and Placement
	Managing the System Heap in the IDE
	Managing the System Heap in the .ldf File
	Standard Heap Interface

	Using Multiple Heaps
	Defining a Heap
	Defining Additional Heaps in the IDE
	Defining Heaps at Runtime
	Tips for Working With Heaps
	Allocating C++ STL Objects to a Non-Default Heap
	Using the Alternate Heap Interface
	C++ Run-Time Support for the Alternate Heap Interface

	Freeing Space

	Startup and Termination
	Memory Initialization
	Bootable Images
	Non-Bootable Images

	Global Constructors
	Constructors and Destructors of Global Class Instances
	Constructors, Destructors and Memory Placement

	Support for argv/argc

	Compiler C++ Template Support
	Template Instantiation
	Exported Templates
	Implicit Instantiation
	Generated Template Files
	Identifying Un-Instantiated Templates

	File Attributes
	Automatically-Applied Attributes
	Content Attributes
	FuncName Attributes
	Encoding Attributes

	Default LDF Placement
	Sections Versus Attributes
	Granularity
	“Hard” Versus “Soft”
	Number of Values

	Using Attributes
	Example 1
	Example 2

	Implementation Defined Behavior
	Enumeration Type Implementation Details
	ISO/IEC 9899:1990 C Standard (C89 Mode)
	G3.1 Translation
	G3.2 Environment
	G3.3 Identifiers
	G3.4 Characters
	G3.5 Integers
	G3.6 Floating-Point
	G3.7 Arrays and Pointers
	G3.8 Registers
	G3.9 Structures, Unions, Enumerations and Bit-Fields
	G3.10 Qualifiers
	G3.11 Declarators
	G3.12 Statements
	G3.13 Preprocessing Directives
	G3.14 Library Functions

	ISO/IEC 9899:1999 C Standard (C99 Mode)
	J3.1 Translation
	J3.2 Environment
	J3.3 Identifiers
	J3.4 Characters
	J3.5 Integers
	J3.6 Floating-Point

	ISO/IEC 14822:2003 C++ Standard (C++ Mode)
	1.7 The C++ Memory Model
	1.9 Program Execution
	2.1 Phases of Translation
	2.2 Character Sets
	2.13.2 Character Literals
	2.13.4 String Literals
	3.6.1 Main Function
	3.6.2 Initialization of Non-Local Objects
	3.9 Types
	3.9.1 Fundamental Types
	3.9.2 Compound Types
	4.7 Integral Conversions
	4.8 Floating-Point Conversions
	4.9 Floating-Integral Conversions
	5.2.8 Type Identification
	5.2.10 Reinterpret Cast
	5.3.3 Sizeof
	5.6 Multiplicative Operators
	5.7 Additive Operators
	5.8 Shift Operators
	7.1.5.2 Simply Type Specifiers
	7.2 Enumeration Declarations
	7.4 The asm Declaration
	7.5 Linkage Specifications
	9.6 Bit-Fields
	14 Templates
	14.7.1 Implicit Instantiation
	15.5.1 The terminate() Function
	15.5.2 The unexpected() Function
	16.1 Conditional Inclusion
	16.2 Source File Inclusion
	16.6 Pragma Directive
	16.8 Predefined Macro Names
	17.4.4.5 Reentrancy
	17.4.4.8 Restrictions on Exception Handling
	18.3 Start and Termination
	18.4.2.1 Class bad_alloc
	18.5.1 Class type_info
	18.5.2 Class bad_cast
	18.5.3 Class bad_typeid
	18.6.1 Class Exception
	18.6.2.1 Class bad_exception
	21 Strings Library
	21.1.3.2 struct char_traits<wchar_t>
	22.1.1.3 Locale Members
	22.2.1.3 ctype Specializations
	22.2.1.3.2 ctype<char> Members
	22.2.5.1.2 time_get Virtual Functions
	22.2.5.3.2 time_put Virtual Functions
	22.2.7.1.2 Messages Virtual Functions
	26.2.8 Complex Transcendentals
	27.1.2 Positioning Type Limitations
	27.4.1 Types
	27.4.2.4 ios_base Static Members
	27.4.4.3 basic_ios iostate Flags Functions
	27.7.1.3 Overridden Virtual Functions
	27.8.1.4 Overridden Virtual Functions
	C.2.2.3 Macro NULL
	D.6 Old iostreams Members

	2 Achieving Optimal Performance From C/C++ Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using Compiler Diagnostics
	Warnings, Annotations and Remarks
	Run-Time Diagnostics
	Steps for Developing Your Application

	Using Profile-Guided Optimization
	Using Profile-Guided Optimization With a Simulator
	Using Profile-Guided Optimization With Hardware
	Flushing PGO Data in Multi-threaded and Non-terminating Applications

	Profile-Guided Optimization and Multiple Source Uses
	Profile-Guided Optimization and the -Ov num Switch
	Profile-Guided Optimization and Multiple PGO Data Sets
	When to Use Profile-Guided Optimization

	Using Interprocedural Optimization

	The volatile Type Qualifier
	Data Types
	Avoiding Emulated Arithmetic

	Getting the Most From IPA
	Initialize Constants Statically
	Dual Word-Aligning Your Data
	Using the aligned() Builtin
	Avoiding Aliases

	Indexed Arrays Versus Pointers
	Trying Pointer and Indexed Styles

	Using Function Inlining
	Using Inline asm Statements
	Memory Usage

	Improving Conditional Code
	Using PGO in Function Profiling
	Example of Using Profile-Guided Optimization
	Opening the Project
	Gathering the Profile
	Rebuilding With the Profile

	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop-Carried Dependencies
	Avoiding Loop Rotation by Hand
	Avoiding Complex Array Indexing
	Inner Loops Versus Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Loop Control
	Using the Restrict Qualifier

	Using Built-In Functions in Code Optimization
	Using System Support Built-In Functions
	Using Circular Buffers

	Smaller Applications: Optimizing for Code Size
	Using Pragmas for Optimization
	Function Pragmas
	#pragma alloc
	#pragma const
	#pragma pure
	#pragma result_alignment
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space|as_cmd_line}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_vectorization
	#pragma vector_for
	#pragma SIMD_for
	#pragma all_aligned
	#pragma no_alias

	Useful Optimization Switches
	How Loop Optimization Works
	Terminology
	Clobbered Register
	Live Register
	Spill
	Scheduling
	Loop Kernel
	Loop Prolog
	Loop Epilog
	Loop Invariant
	Hoisting
	Sinking

	Loop Optimization Concepts
	Software Pipelining
	Loop Rotation
	Loop Vectorization
	Modulo Scheduling
	Initiation Interval (II) and the Kernel
	Minimum Initiation Interval Due to Resources (Res MII)
	Minimum Initiation Interval Due to Recurrences (Rec MII)
	Stage Count (SC)
	Variable Expansion and MVE Unroll
	Trip Count

	A Worked Example

	Assembly Optimizer Annotations
	Annotation Examples
	Importing Annotation Examples
	Viewing Annotation Examples in the IDE
	Viewing Annotation Examples in Generated Assembly

	Global Information
	Procedure Statistics
	Instruction Annotations
	Loop Identification
	Loop Identification Annotations
	File Position

	Vectorization
	Unroll and Jam
	Loop Flattening
	Vectorization Annotations

	Modulo Scheduling Information
	Annotations for Modulo Scheduled Instructions

	Warnings, Failure Messages and Advice

	Analyzing Your Application
	Application Analysis Configuration
	Application Analysis and File Naming
	Device for Profiling Output
	Frequency of Flushing Profile Data

	Profiling With Instrumented Code
	Generating an Application With Instrumented Profiling
	Running the Executable File
	Invoking the Reporter Tool
	Invoking the instrprof.exe Command Line Reporter
	Contents of the Profiling Report
	The Reporter Tool Report Format
	The instrprof Command Line Tool Report Format
	Profiling Data Storage
	Computing Cycle Counts
	Multi-Threaded and Non-Terminating Applications
	Flushing Profile Data
	Profiling of Interrupts and Kernel Time
	Behavior That Interferes With Instrumented Profiling

	Profile-Guided Optimization and Code Coverage
	The Code Coverage Report
	Unexpected Line Counts in a Code Coverage Report

	Heap Debugging
	Getting Started With Heap Debugging
	Linking With the Heap Debugging Library
	Heap Debugging Macro
	Default Behavior
	Additional Heap Overheads
	The Heap Debugging Report

	Using the Heap Debugging Library
	Detected Errors
	Viewing Reports
	stderr Diagnostics
	Call Stack
	Setting the Severity of Error Messages
	Changing Error Severity Examples

	Default Diagnostic Severities
	Guard Regions
	Enabling and Disabling Features
	At Runtime
	At Build Time

	Buffering
	Pausing Heap Debugging
	Finishing Heap Debugging
	Verifying Heaps
	Behavior of Heap Debugging Library
	Application Size
	Performance
	Heap Usage
	Stack Usage
	realloc

	Unfreed File I/O Buffers
	Memory Used by Operating Systems

	Stack Overflow Detection
	About Stack Overflows
	What is Stack Overflow?
	Likely Causes of Stack Overflow
	Difficulties in Diagnosing Stack Overflow

	Stack Overflow Detection Facility
	Limitations on the Compiler’s Stack Detection Capability
	Fixing a Stack Overflow

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

